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SciCrunch.org databases to receive RRID (Research Resource Identification Initiative
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tracking, reproducibility and re-use of your tool.

Once you have made the necessary corrections, please submit a revised manuscript
online at:
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If you have forgotten your username or password please use the "Send Login Details"
link to get your login information. For security reasons, your password will be reset.

Please include a point-by-point within the 'Response to Reviewers' box in the
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carried out and include a detailed rebuttal of any criticisms or requested revisions that
you disagreed with. Please also ensure that your revised manuscript conforms to the
journal style, which can be found in the Instructions for Authors on the journal
homepage. If the data and code has been modified in the revision process please be
sure to update the public versions of this too.

The due date for submitting the revised version of your article is 25 Jan 2022.
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Best wishes,

Hongling Zhou
GigaScience
www.gigasciencejournal.com
Reviewer 1
The authors did a very great job addressing my concerns. I can foresee this
manuscript as a great benchmarking paper for the community. However, It is still
important for the authors to clarify on the following questions before a publication:

1.In last paragraph of discussion, we have "If high-quality cell counts need to be
obtained, Alevin appears to be the most suitable method, as average gene counts are
high- and poor-quality barcodes are seldom reported."

This statement is super confusing because in Figure 5, the authors recommended
Alevin-Fry over Alevin for all cases? In addition, I do not see why if high-quality cell
counts needed, Alevin is necessarily the best tool.

We thank the reviewer for the recognition of this mistake. Indeed we meant Alevin-Fry
in this sentence as Alevin-fry overall is preferable to Alevin.
We changed the text accordingly.

2.The last sentence in the same paragraph - "For very large projects with a high
number of samples, pseudo-alignment tools such as Alevin-fry or Kallisto can be
advantageous in terms of runtime and storage efficiency, at the cost of a slight
reduction in accuracy."

This statement is not well-supported by the data. Based on Figure 1, the runtime of
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STARsolo and Alevin-fry are very similar. If the authors want to claim pseudoalignment
methods are advantageous in terms of runtime, I think only Kallisto should be
mentioned. However, the authors also raised concerns regarding Kallisto's accuracy.
So in this case, I am not sure if it is "at the cost of a slight reduction in accuracy".

We thank the reviewer for this remark. We agree that Kallisto is overall much faster
compared to the other tools and Alevin-fry has similar runtimes to STAR Solo.
Therefore, we now only mentioned Kallisto in the relevant sentence as suggested by
the reviewer.

3.STARsolo also provide multi-mapping reads assignment:
https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md#multi-gene-reads.
Please adjust Figure 5 accordingly.

Indeed a newer version of STAR Solo supports the assignment of multi-mapped reads.
Therefore, we agree with the reviewer and adjusted Figure 5 accordingly. Now the
figure includes the statement that an Expectation-Maximization (EM) algorithm can be
used to address this problem in STARsolo.

Reviewer 2

I am happy how my comments were addressed

We are happy that we could address all points to satisfaction.

Reviewer 3

The authors had resolved most of the issues in their revision. There are still some
crucial issues with the current manuscript which in my opinion need to be addressed

Major concerns
1. alevin-fry is added to the benchmarks, but I am not sure what is the exact mode the
alevin fry is run in. From
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/MapAlevin-
fry.sh#L63 it seems that alevin-fry is run in sketch mode but the actual execution of the
the https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/MapAlevin-
fry.sh#L85 does not seem to run sketch-mode. I did not find any mention of the
`sketch-mode` in the manuscript. According to this preprint
(https://www.biorxiv.org/content/10.1101/2021.06.29.450377v2) the runtime plot in
Figure 1 in the current manuscript are quite different from the preprint.

We thank the reviewer for pointing out this error. Alevin-fry was run with selective
alignment to show the performance in comparison with Alevin as we also run Alevin
with the selective alignment mode. We changed
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/MapAlevin-
fry.sh#L63  accordingly. We also extended the Background section with the
introduction of the sketch mode in Alevin-fry.
The different runtimes to the suggested paper might arise due to intron inclusion for the
analysis of single-nuclei data. The inclusion of introns leads to an enlargement of the
index size for Kallisto, as mentioned also in the preprint.
“However, when processing singlenucleus data, there is a notable performance
inversion between STARsolo and kallisto|bustools. The size of the kallisto|bustools
index grows much larger than those of the other tools, and the speed decreases
substantially.”
From the preprint
(https://www.biorxiv.org/content/10.1101/2021.06.29.450377v2.full.pdf) we could not
determine if the runtime measurements in the preprint have been performed for single
nuclei data with intron exclusion. However this would explain the runtime differences to
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our results.

2.  I am afraid the github repo in its current format is not reproducible.
    - I tried running the commands from
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/commands_map
ping.txt, I could not find `Homo_sapiens.GRCh38.97.cellranger_filtered.gtf` as non of
the commands create/download this file. Only one version of cell ranger was
downloaded.
    - If download scripts for the data can also be added to reproduction script that would
be great.

We agree with the reviewer on this point and revised the Github repository. Additional
to detailed instruction on how the rerun the mapping process, we now include a
separate shell script which downloads all the required software, downloads the
reference genomes and generates all the required indices for CellRanger, STARsolo,
Alevin, Alevin-fry and Kallisto. These script can be found in the Github repository within
the mapping folder
●The script that downloads and installs the software can be found here:
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/downloadSoftwar
e.sh
●The script that downloads the reference genomes and creates the required indices
can be found here:
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/create_index_do
wnload_data.sh
●To run all mappers on the PBMC dataset, the user has to apply the following script:
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/mapping.sh

3. When attempting to examine and understand some of the mapping commands used
in
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/commands_map
ping.txt, the values being passed to some of the commands seem a bit confusing.  For
example, when `STARsolo` is being run on the filtered index, it is being given the path
to a human index `-i ${main_outpath}references/starsolo/human/index_filtered` (line
286).  But when the unfiltered index is being provided (on line 305) it is seemingly
being given the path to a mouse index `-i
${main_outpath}references/starsolo/mouse/index_unfiltered`. The similar naming
convention can found in the same script
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/commands_map
ping.txt#L325-L330 and
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/commands_map
ping.txt#L345-L350, but this isn't the case for all methods (some e.g. are always
passed a "human" index for the PBMC dataset). I would request authors refine the
naming convention and explain if this was, indeed, the intended way of running PBMC.

We thank the reviewer for bringing this error to our attention. This has been a clear
mistake within the script. In the updated version, we corrected this mistake. However,
this mistake only happened in the github script due to a copy/paste mistake while
creating the commands for reproducing the data. The datasets shown in the
manuscript have been run with the correct reference genome. Otherwise the mapping
results would be substantially different from the results we show for the unfiltered
results (Suppl. Fig. 7 and Suppl. Fig. 2). We corrected the wrong reference genome for
the unfiltered PBMC dataset in the published scripts so that the results from the paper
can now be reproduced.

4. It would be great to have some more details about exactly how the tool was run.  For
example, looking through the repository, it seemed that a spliced and intronic reference
was prepared, but the resulting count file looks to be read in using the standard mtx
loading procedure and it is not clear if the unspliced / spliced / ambiguous status of
UMIs is accounted for.
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In order to import Alevin-fry results to Seurat, we generate an MTX file with the
commands provided by the developers of alevin-fry. The function for generating MTX
files from Alevin-fry results can be found
here:https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/post_mappi
ng/filter_raw_emptyDrops.R The load function, that was provided by Alevin-fry, was
altered in order to create a count matrix that can be used for our downstream pipeline.
Thereby, the reviewer is correct by stating that we followed the standard mtx loading
procedure and imported the spliced UMIs.

 Currently the scripts are dependent on assumed directory structure with downloaded
datasets. While in some cases obtaining the data might not be straight forward, I would
suggest authors to provide an end-to-end reproduction script for at least one well-
known dataset such as PBMC.
The recommended way of running `alevin-fry` can be obtained from
https://github.com/COMBINE-lab/alevin-fry#a-quick-start-run-through-on-sample-data.
It would be interesting to see the results from such a run.

We thank the reviewer for this comment. In the revised version we now provide a
detailed script to reproduce the results for the PBMC dataset. This script can be found
here:
https://github.com/rahmsen/BenchmarkAlignment/blob/main/mapping/commands_map
ping_PBMC.txt

Minor concerns
1. Please mention the salmon version in the manuscript.
The Salmon version is now mentioned in the “Requirements” section

2. "Alevin-fry seems to have improved its barcode correction as here the decrease is
not present." this sentence is not clear to me, it could be made more comprehensible.

We thank the reviewer for this comment and rephrased the sentence in the discussion
section.
the sentence is now phrased as follows:
“In Alevin-fry the barcode correction seems to be improved as there is no severe
enrichment of cells that are unique to Alevin-fry.”

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Background: With the rise of single cell RNA sequencing new bioinformatic tools 

have been developed to handle specific demands, such as quantifying unique 

molecular identifiers and correcting cell barcodes. Here, we benchmarked several 

datasets with the most common alignment tools for scRNA-seq data. We evaluated 

differences in the whitelisting, gene quantification, overall performance and potential 

variations in clustering or detection of differentially expressed genes.  

We compared the tools Cell Ranger version 6, STARsolo, Kallisto, Alevin and Alevin-

fry on three published datasets for human and mouse, sequenced with different 

versions of the 10X sequencing protocol. 

Results: Striking differences have been observed in the overall runtime of the 

mappers. Besides that Kallisto and Alevin showed variances in the number of valid 

cells and detected genes per cell. Kallisto reported the highest number of cells, 

however, we observed an overrepresentation of cells with low gene content and 

unknown cell type. Conversely, Alevin rarely reported such low content cells. 

Further variations were detected in the set of expressed genes. While STARsolo, 

Cell Ranger 6, Alevin-fry and Alevin produced similar gene sets, Kallisto detected 

additional genes from the Vmn and Olfr gene family, which are likely mapping 

artifacts. We also observed differences in the mitochondrial content of the resulting 

cells when comparing a prefiltered annotation set to the full annotation set that 

includes pseudogenes and other biotypes.  

Conclusion: Overall, this study provides a detailed comparison of common scRNA-

seq mappers and shows their specific properties on 10X Genomics data.  
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Background 

Major advances could be achieved in the transcriptomics field by using single cell 

RNA sequencing (scRNA-seq) to conduct differential expression analysis, clustering, 

cell type annotation and pseudotime analysis on a single cell level [1]. Analysis of 

scRNA-seq data helped to reveal new insights into cellular heterogeneity, e.g. the 

altered phenotypes in circulating immune cells of patients with chronic ischemic 

heart diseases [2] or the transcriptional diversity of aging fibroblasts [3]. However, 

the analysis of scRNA-seq data is resource intensive and requires deeper 

knowledge of specific characteristics of each analysis tool. The most resource 

intensive step during single cell NGS data analysis is the alignment of reads to a 

reference genome and/or transcriptome. Therefore, a common question relates to 

the choice of the best scRNA-seq alignment tool that can be incorporated into a fast, 

reliable and reproductive analysis pipeline. Here we evaluated five popular alignment 

tools Cell Ranger 6, STARsolo as well as the pseudo-alignment tools Alevin, Alevin-

fry and Kallisto.  

 

Technological properties of these mappers are summarized in Supplementary table 

1. In general, the Cell Ranger 6 software suite developed for 10X Genomics 

Chromium platform [4] data uses STAR [5] as the standard alignment tool. STAR, 

originally designed for bulk-seq data, performs a classical alignment approach by 

utilizing a maximal mappable seed search, thereby all possible positions of the reads 

can be determined. In contrast, Kallisto [6], Alevin-fry [7] and Alevin [8] perform an 

alignment-free approach, so called pseudo-alignment.    

https://paperpile.com/c/0B28Le/3pH7
https://paperpile.com/c/0B28Le/jqD9
https://paperpile.com/c/0B28Le/xVCQ
https://paperpile.com/c/0B28Le/UIOZ
https://paperpile.com/c/0B28Le/6L9d
https://paperpile.com/c/0B28Le/VeM9
https://paperpile.com/c/0B28Le/VM8R
https://paperpile.com/c/0B28Le/9WgW
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The idea of alignment-free RNA-Seq quantification was introduced by Patro et al. [9] 

with Salfish and promised much faster alignments. Here, k-mers of reads and the 

transcriptome are compared, and no complete alignment between read and 

reference is computed, which leads to huge speed-ups. Two years later, the Patcher 

lab introduced Kallisto, a pseudo-alignment algorithm that achieved similar 

improvements in runtime but with higher alignment accuracy compared to Salfish. In 

response, Patro et. al. published Salmon [9], a reimplementation of their initial 

Salfish tool which implements a samples-specific bias model that accounts for 

various biases that prevent high false positive rates and overall refined expression 

estimates. With the advent of scRNA-seq, Kallisto introduced the Kalisto-bustools 

pipeline and Alevin was released as an extension of Salmon to process scRNA-seq 

data. 

Alevin makes use of an improved pseudo-alignment called selective alignment that 

promises a higher specificity but an increase in runtime compared to its previous 

implementation. With the release of Alevin-fry, Alevin introduced a custom version of 

pseudo-alignment that can use a memory-efficient sketch data structure to improve 

processing speed of large datasets. However, it has been shown that pseudo-

alignment tools have limitations in the quantification of lowly expressed genes [10]. 

In contrast to bulk-RNA-seq, preprocessing of scRNA-seq requires specific features. 

Essential features are cell calling, removing PCR duplicates and assigning reads to 

individual genes and cells. These features can be achieved through barcode and 

UMI sequences, which are sequenced along with the reads. Therefore, the correct 

handling of barcode and UMI sequences are crucial steps while processing scRNA-

seq data. Each alignment tool applies different strategies to handle these errors.  

https://paperpile.com/c/0B28Le/VWCP
https://paperpile.com/c/0B28Le/9MPy
https://paperpile.com/c/0B28Le/izDw
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The most important step for cell calling is the correction of sequencing errors within 

the barcodes. Cell Ranger 6, STARsolo and Kallisto correct barcodes by comparing 

the sequenced barcodes to a set of all barcodes that are included in the library 

preparation kit, the so-called whitelist. This whitelist is provided by 10X Genomics. If 

no exact match of a sequenced barcode can be found in the whitelist, this barcode is 

replaced with the closest barcode from the whitelist, if the Hamming distance is not 

bigger than 1. Alevin, however, generates a putative whitelist of highly abundant 

barcodes that exceed a previously defined knee point. Afterwards Alevin assigns 

error prone barcodes to the closest barcode from the putative whitelist, while 

allowing an edit distance of 1. 

In order to remove biases from PCR duplicates (reads with the same mapping 

position, the same cell barcode) an identical unique molecular identifier (UMI) 

sequence is required for pooling these PCR duplicates. To correct errors in UMI 

sequences, Cell Ranger 6 and STARsolo group reads according to their barcode, 

UMI and gene annotation, while allowing 1 mismatch (MM) in the UMI sequence. As 

error prone UMIs are rare, they will be replaced by the higher abundant (supposedly 

correct) UMI. Afterwards a second round is done by grouping the barcode, corrected 

UMI and gene annotation. When groups differ only by their gene annotation, the 

group with the highest read count is kept for UMI counting. The other groups are 

discarded, as these reads origin from the same RNA construct but were mapped to 

different genes. A detailed description of the whitelisting and UMI correction 

methods, which are unique for Cell Ranger, can be found on the 10X website [11]. 

Alevin builds a UMI graph and tries to find a minimal set of transcripts for UMI 

deduplication [8]. In this process, similar UMIs are corrected. Kallisto applies a naive 

https://paperpile.com/c/0B28Le/Wfvz
https://paperpile.com/c/0B28Le/9WgW
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collapsing method which removes reads that originate from different molecules but 

contain the same UMI [6]. 

The third important preprocessing step of scRNA-seq data is the assignment of 

reads to individual genes and cells. Here, the alignment tools have striking 

differences handling these multi mapped reads. In STARsolo, Cell Ranger 6 and 

Kallisto multi-mapped reads are discarded when no unique mapping position can be 

found within the genome/transcriptome. Whereas Alevin equally divides the counts 

of a multi mapped read to all potential mapping positions. The order of necessary 

steps for quantification i.e. the alignment and barcode and UMI correction can vary 

for each tool. Therefore, Suppl Table 2 shows this order. Kallisto has the most 

different order where the barcode correction is executed after the alignment and a 

UMI correction is not performed. The other tools perform the barcode correction 

before the alignment and the UMI correction afterwards. 

Apart from the choice of the mapper, other decisions can influence the mapping 

results. One aspect is the choice of an appropriate annotation, which was shown to 

influence gene quantifications [12]. 10X Genomics recommends a filtered gene 

annotation that contains only a small subset that includes the biotypes protein 

coding, lncRNA and Immunoglobulin and T-cell receptor genes. Other biotypes e.g. 

pseudogenes are not included. Therefore, we were interested if a full annotation set 

affects the gene composition and the results of secondary analysis steps of scRNA-

seq. Thus, we compared the mapping statistics of the filtered annotations to the 

complete (unfiltered) Ensembl annotation.  

Specifically for scRNA-Seq tools, comprehensive benchmarking papers are sparse 

[13]. Until now, only a limited number of benchmarking papers for scRNA-seq 

https://paperpile.com/c/0B28Le/VeM9
https://paperpile.com/c/0B28Le/2Kvi
https://paperpile.com/c/0B28Le/owGg
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mappers were published. Du et al. [14] conducted a benchmark between STAR and 

Kallisto on different scRNA-seq platforms and showed a higher accuracy and read 

mapping number with the STAR alignment. However, STAR has about 4 times 

higher computation time and 7 fold increase in memory consumption than Kallisto. 

Chen et al. and Vieth et al. performed a pipeline comparison with human and mouse 

in vitro and simulated datasets with a vast combination of tools concentrating on 

imputation, normalization and calculation of differential expression [15,16]. Very 

recently, Booeshaghi and Pachter [17] published a preprint paper comparing Alevin 

and Kallisto on 10X datasets and stated that Alevin is significantly slower and 

requires more memory than Kallisto. As a direct answer to this preprint Zakeri and 

Patro [18] showed opposing results by using identical reference genomes and 

adjusting the parameters to establish an equal configuration of the tools. In their 

preprint, they showed that Alevin is faster and requires less memory than Kallisto. In 

a third preprint the group from STARsolo performed a benchmark of STARsolo, 

Alevin and Kallisto and claimed that STARsolo is more precise and outperforms the 

pseudo-alignment tools Alevin and Kallisto with simulated data. With a real dataset 

STARsolo replicated the results from Cell Ranger significantly faster, while 

consuming much less memory [19]. 

These contradictory results show that an independent evaluation of all five alignment 

tools is needed urgently. Therefore, we performed an in-depth and combined 

comparison of the five most common alignment tools (Cell Ranger 6, STARsolo, 

Alevin, Alevin-fry and Kallisto) on different 10X datasets. 

We used different scRNA-seq data sets of mouse and human to highlight specific 

differences and effects on downstream analysis with a focus on clustering, cell 

https://paperpile.com/c/0B28Le/hWdp
https://paperpile.com/c/0B28Le/IOVK+d13o
https://paperpile.com/c/0B28Le/RtKR
https://paperpile.com/c/0B28Le/yxd3
https://paperpile.com/c/0B28Le/dv6K


8 

annotation, differentially gene expression analysis as prominent goals of droplet-

based sequencing. Hereby, we followed the guidelines for reproducible, transparent, 

rigorous and systematic benchmarking studies by Mangul et.al [20] .  

We are convinced that this benchmark of commonly used mappers is a valuable 

resource for other researchers to help them to choose the most appropriate mapper 

in their scRNA-seq analysis. 

Methods 

Datasets  and Reference Genomes     

10X Drop-Seq Data 

We used four publicly available data sets.  

PBMC 

The first data set is human Peripheral blood mononuclear cells (PBMCs) from a 

healthy donor provided by 10X. It was downloaded from the 10X website [21]. It was 

sequenced with the v3 chemistry of the Chromium system from 10X.  

Cardiac 

The second data set consists of 7 samples of mouse heart cells at individual 

timepoints (Homeostasis, 1 day, 3 days, 5 days, 7, days, 14 days, 28 days) after 

myocardial infarction [22]. Data was downloaded from the ArrayExpress database 

under the accession E-MTAB-7895. This dataset was sequenced with the v2 

chemistry of the Chromium system from 10X.  

https://paperpile.com/c/0B28Le/gob1
https://paperpile.com/c/0B28Le/RF1e
https://paperpile.com/c/0B28Le/KFzP
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Endothelial 

The third dataset is from the mouse single cell transcriptome atlas of murine 

endothelial cells from 11 tissues (n=1) [23]. Data was downloaded from the 

ArrayExpress database under the accession E-MTAB-8077. It was sequenced with 

the v2 chemistry of the Chromium system from 10X. The dataset can not be mapped 

with Cell Ranger 4 and higher because the UMI sequence is one base shorter than 

is expected in the v2 chemistry (9 than 10 bases). To be able to map this dataset we 

added an A to all UMI sequences (R1 files) in the fastq file.  

Heart Failure (HF) 

 

The fourth dataset contains five samples of patients with aortic stenosis. Single 

nuclei sequencing was performed on tissue from the septum of the heart. The v3 

chemistry from 10x Genomics was applied. 

 

A technical summary of all datasets can be found in Suppl. Table 3 that contains the 

read composition and quality of each sample. 

 

Gene annotation databases 

Mouse and human genome and transcriptome sequences as well as gene 

annotations were downloaded from the Ensembl FTP server (Genome assembly 

GRCm38.p6 release 97 for mouse and GRCh38.p6 release 97 for human) [24]. The 

annotation for Cell Ranger 6 is the GENCODE version M22 for mouse and version 

31 for human that match the Ensembl release 97 [25]. 

https://paperpile.com/c/0B28Le/1ysb
https://paperpile.com/c/0B28Le/0lu4
https://paperpile.com/c/0B28Le/0lyD
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In this study, we compare two annotations (filtered and unfiltered). The filtered 

annotation file was generated applying the mkgtf and mkref function for Cell Ranger 

6.0.2 according to the manual from 10X [26]. Therefore, the filtered annotation file 

contains the following features: protein coding, lncRNA and the immunoglobulin and 

thyroid hormone receptor genes. For the unfiltered annotation, the complete 

Ensembl GTF file was used without any alterations. 

Software 

Source Code 

An index of the reference genome has been built for each tool individually, using the 

default parameters according to the manual pages of the individual tools. The exact 

commands for the creation of the indices and the mapping of the data are published 

at [27]. 

Cell filtering 

Cells were filtered with the R package DropletUtils v1.6.1 [28]. All raw gene-count 

matrices were processed with the emptyDrops method [29]. The emptyDrops 

function applies the emptyDrops method and 50000 iterations of the Monte Carlo 

simulation were chosen, to avoid low resolution p-values due to a limited number of 

sampling rounds.  

Downstream clustering analysis 

https://paperpile.com/c/0B28Le/sd34
https://paperpile.com/c/0B28Le/VEYX
https://paperpile.com/c/0B28Le/xEve
https://paperpile.com/c/0B28Le/sc01
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Seurat v3.1.5 [30] was used for the downstream analysis. For all secondary analysis 

steps, we retained cells with a number of genes between 200 and 2500 and a 

mitochondrial content < 10%. 

To compare the clustering we integrated the expression matrices of the samples 

from each mapper to remove technical noise and compare all combined samples. 

This was done for the Cardiac and PBMC data set. The data sets were first 

normalized with the SCTransform function. We then ranked the features with the 

function SelectIntegrationFeatures and controlled the resulting features with the 

function PrepSCTIntegration. Anchors were determined by FindIntegrationAnchors 

and afterwards used with the IntegrateData function. The UMAP algorithm was run 

on the first 20 principal components of a PCA. To determine clusters, the 

FindClusters function was utilized with the parameter resolution=0.15 to receive a 

number of clusters that is similar to the expected major cell types in the data set. The 

Endothelial matrices were only merged and not integrated because the resulting 

clustering would not yield appropriate tissue clusters due to the lack of different cell 

types. Yet, after merging the matrices we could obtain a similar clustering to the 

original study. 

SCINA cluster comparison 

To evaluate the effects of the different alignment and pseudo-alignment algorithms 

on clustering analysis, we created an artificial “ground truth”, where we assigned 

each barcode to a cell type. For this task we choose SCINA v1.2 [31] as an external 

classification tool. The semi-supervised classification method in SCINA requires a 

set of known marker genes for each cell type to be classified. Marker gene sets were 

obtained from Skelly et. al. [32] and combined with other marker gene sets, as 

https://paperpile.com/c/0B28Le/SkNp
https://paperpile.com/c/0B28Le/VAlF
https://paperpile.com/c/0B28Le/HAXJ
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suggested by Tombor et.al. [33] (Suppl. Table 4). An expectation–maximization (EM) 

algorithm uses the marker genes to obtain a probability for each provided cell type. 

After the classification each cell will be assigned a cell type that shows the highest 

probability based on the provided marker genes. Alignments with different mappers 

might result in different cell classifications for each barcode. Therefore, a consensus 

scheme is applied to each sample to create a cell type agreement for each barcode. 

Consensus of a cell classification for each barcode is achieved if two or more 

mappers agree on a cell type. 

The remaining barcodes were used as a global barcode set for SCINA. Sankey plots 

were generated with the R-package ggalluvial 0.12.3 [34] to illustrate the 

representation of cell types in each Seurat cluster (Suppl. Figure 5). In addition, to 

convey the differences between SCINA and the seurat clusters from each mapper,  

metrics were calculated. We show the precision, recall and F1-score in Suppl Figure 

6. The F1-score of the Cardiac dataset is in Figure 4A. 

DEG analysis 

For the differential gene expression (DEG) analysis each cluster from the integration 

in Seurat was assigned to a cell type by known marker genes for the PBMC dataset. 

The marker genes were obtained by the Seurat workflow for a similar 10X dataset  

[35]. DEGs were then calculated by using the FindAllMarkers function with the 

Wilcoxon-Rank-Sum test in Seurat and all DEGs above an adjusted p-value of 0.05 

were removed. Upset plots were then created with the remaining DEGs (Figure 4). 

https://paperpile.com/c/0B28Le/ZotO
https://paperpile.com/c/0B28Le/Ddbv
https://paperpile.com/c/0B28Le/MmqS
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Additional Software 

The R-package ComplexHeatmap 2.6.2 [36] was used to create the Upset-plots 

(Figures 2, 4; Suppl. Figure 2). 

Hardware 

All computations were executed on a workstation with Intel Xeon E5-2667 CPU and 

128 GB RAM. The OS was Ubuntu 18.04 LTS. 

Results 

For the comparison of the five different alignment tools Cell Ranger 6, STARsolo, 

Alevin, Alevin-fry and Kallisto, we analysed four representative datasets which are 

denoted as PBMCs, Endothelial, Cardiac (Endothelial) and HF (see method section 

for a detailed description of the datasets) in the following.  

General statistics 

The overall performance and basic parameters like runtime, genes per cell, cell 

number and mapping rate are summarized in Figure 1. In terms of runtime 

STARsolo, Alevin and Kallisto clearly outperformed Cell Ranger 6 and were at least 

three times faster. Kallisto showed the shortest runtimes and was on average 4 to 6 

times faster than Cell Ranger 6. Additionally, Kallisto and Alevin-fry showed the 

highest transcriptome mapping rate whereas Alevin showed a slightly decreased 

mapping rate across all datasets. The cell count and the average genes per cell 

were similar for Cell Ranger 6 and STARsolo across all datasets. Overall Cell 

Ranger and STARsolo had almost identical results regarding the cell count and the 

https://paperpile.com/c/0B28Le/Uq4T


14 

genes per cell which is expected from the similarity of both tools. In contrast, Alevin 

and Kallisto showed different behavior for the genes per cell across the datasets. 

Compared to the other tools, Alevin detected more cells with fewer genes per cell in 

the PBMC and Endothelial dataset. However, it detected less cells with more genes 

per cell in the Cardiac Endothelial and HF dataset. This is caused by the initial 

whitelisting in Alevin. It calculates a knee point in which all barcodes above the knee 

point are considered as a putative whitelist. Barcodes below the knee point are then 

considered as erroneous barcodes. In order to correct these barcodes the algorithm 

tries to find a barcode in the putative whitelist by a substitution, insertion or deletion. 

If this approach fails the barcode is considered a noisy barcode and will be removed.  

The percentage of noisy barcodes for Alevin is especially high for the HF and the 

Cardiac dataset. One possible explanation for this could be the library preparation 

protocol, as these datasets are single nuclei RNA-SEQ (snRNA-SEQ). The single 

nuclei isolation protocol requires to break the extracellular matrix in order to release 

the nuclei. This leads to a higher amount of debris which results in a higher 

percentage of background RNA contamination [37]. The percentage of barcodes 

which were discarded as “noisy barcodes” by Alevin are summarized for each 

sample in Suppl. Table 5. 

We think that the knee point is higher than expected in the Cardiac and HF datasets 

and the correction fails on many barcodes and, therefore, are removed prior to the 

mapping. More details with respect to these differences can be found in Suppl. 

Figure 1. In the PBMC and the Endothelial datasets, Alevin shows small peaks in the 

lower left corner of the density plots for UMI counts and genes per cell. These peaks 

represent cells, which have low UMI counts. For the Cardiac dataset Alevin did not 

https://paperpile.com/c/0B28Le/FRAJ
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detect these cells with low UMI content, which might explain the lower cell count for 

this dataset. However, in the Cardiac dataset, we observed more low content cells 

for Kallisto. This is consistent with the finding that Kallisto detects most cells in the 

Cardiac dataset. 

Cell and gene identification 

In 10X droplet based single cell sequencing, the individual cells are usually identified 

via the randomized cell barcodes, which are predefined by the whitelist. In order to 

determine if the different mapping tools detected identical cells, we merged the 

resulting cells based on their barcodes (Figure 2A). The majority of barcodes were 

identified by all alignment tools. However, Cell Ranger 6, STARsolo and Kallisto 

detected more barcodes as compared to Alevin and Alevin-fry in the Cardiac and HF 

dataset. These cells had far less reads per cell compared to the cells that were 

detected in all mappers, as shown in the panel 1 and 2 of Suppl. Figure 2 A&B. 

Alevin-fry and Kallisto also detected a set of barcodes. Their gene content is lower 

than the total dataset as can be seen in panel 3 of Suppl. Figure 2 A&B.  Similarly, 

Alevin detected unique barcodes for the PBMC and Endothelial datasets, which also 

had less gene content compared to the other cells detected by Alevin (panel 4 of 

Suppl. Figure 2 A&B). Additionally, we recognised that the majority of these 

barcodes are not included in the whitelist from 10X (Suppl. Table 6). Panel 5 of 

Suppl. Figure 2 B shows the unique barcodes for Kallisto in the HF dataset, which 

also have less gene content than the other cells. Overall, we saw a reduced number 

of genes per cell for the barcodes that were only detected by one or two of the five 

alignment tools. 
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By comparing the expressed genes, we could show that all alignment tools detect a 

similar set of genes (Figure 2B). Only Kallisto detected additional genes leading to a 

higher number of protein coding and lncRNA genes compared to the other tools 

(Suppl. Fig. 3). In the HF dataset a small number of  genes were not detected by 

Alevin-fry and Alevin.   

One gene family that occurred more frequently in Kallisto is the Olfr (Olfactory 

receptor) gene family, which exhibits dramatically enriched UMI counts (Figure 3A). 

Another Kallisto-enriched gene family is the Vmn (Vomeronasal receptors) family, 

which is detected with lower UMI counts compared to the Olfr family, but is still 

elevated compared to the other tools (Figure 3B). This leads to an increase in total 

gene counts for Kallisto (red line in Figure 3) and an increase of the respective 

biotypes (Suppl. Figure 3). The increased expression of genes from the Olfr gene 

family is exemplified in Suppl. Figure 3. The HF dataset shows an increased UMI 

count of Vmn genes in only 2 or 3 samples. Vomeronasal genes are non-functional 

in humans because they were deactivated by mutations and therefore should not be 

expressed in human tissue [38]. 

Effects on downstream analysis 

In order to evaluate downstream effects of the different alignment tools, we 

performed a semi-supervised cell type assignment with SCINA. Therefore, we used 

all cells that were found by more than two mappers and assigned them to a 

corresponding cell type based on the marker genes documented in Suppl. Table 2. 

Thereby, the majority of barcodes could be assigned to a specific cell type. Then we 

compared the clusters from each alignment tool to the assigned cell types from 

https://paperpile.com/c/0B28Le/BQMI
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SCINA. Using the barcodes to identify each cell, we traced the cells from their 

respective clusters to the assigned cell type.  

The fate from the predicted cell types to the clusters for each mapper can be 

observed in the sankey plots in Suppl. Figure 5. Suppl Figure 6 provides metrics in 

order to further evaluate the detection of barcodes in each tool and cell type. Here, 

we used a greedy assignment of Seurat clusters with the cell type classification from 

SCINA. The cluster will be assigned with its highest abundance cell type. Then, 

precision, recall and F1-scores were calculated.  

In general, the clustering was similar when comparing the alignment tools. Minor 

differences were observed for Kallisto and Alevin. In the PBMC dataset, Kallisto 

showed a higher number of missing barcodes (M.b.), predominantly from monocytes. 

Missing barcodes are barcodes that were found in at least two of the other mappers, 

but not in the present one. Which means that these monocytes were not present or 

filtered out in Kallisto. This results in a lower recall in Suppl. Figure 6B. 

In the Cardiac data set, the lower cell count found by Alevin leads to more barcodes 

associated with missing barcodes demonstrating that these cells are not detected in 

Alevin. The majority of these missing cells were assigned as endothelial cells. Which 

means that in the Cardiac dataset Alevin detected only around 50% of the 

endothelial cells that were found with the other tools. Also the number of B-cells and 

granulocytes were decreased due to the lower cell counts. This decrease is reflected 

in a lower recall in Suppl. Figure 6D and a lower F1-score in Figure 4A. However, the 

decrease in the latter cell types could not be confirmed in the PBMC dataset. 

In summary, Cell Ranger 6 and STARsolo showed the highest agreement with the 

predicted cell types from SCINA, which is not surprising as they use the same 
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internal algorithm. The overlaps of Alevin and Kallisto were lower due to varying cell 

counts.  

Analysis of the differential expressed genes for the cell types of the PBMC dataset 

did show the highest agreement of STARsolo, Alevin-fry and Cell Ranger. Major 

differences among the alignment tools are summarized in Figure 4.  

The accuracy of the barcode detection per tool in each cell type can be seen Figure 

4A. The highest accuracy can be seen in Cell Ranger, STARsolo and Alevin. Lower 

accuracies are present in Alevin and Alevin-fry. Overall, cell types with a low amount 

of cells present in the dataset are difficult to detect in all tools. Comparing significant 

DEGs (p<0.05) in PBMC, we see in Figure 4A and B that STARsolo or Alevin has 

the highest overlap and correlation with Cell Ranger, respectively. Overall, Kallisto 

shows the lowest overlap and Alevin has intermediate overlaps. For the correlation 

(Figure 4C) this ranking is not as clear as it highly depends on the cell type. Despite 

the differences most of DEGs were detected by all tools in the PBMC dataset (Figure 

4D). Small groups of DEGs were detected by a single tool or when one or two tools 

have not detected DEGs. This is often the case in Alevin, Alevin-fry and Kallisto. In 

Figure 4E-H we compare significant DEGs (p<0.05) from the T-cells CD4+ cell type 

of Cell Ranger against the other tools, similar to Kaminov et.al. [19]. The highest 

correlation can be observed in STARsolo and Alevin-fry. Kallisto shows the lowest 

correlation against Cell Ranger and Alevin and intermediate correlation. These 

results are largely consistent with the results from Kaminow et.al. [19]. The uniquely 

overrepresented genes in Kallisto are likely the OLFR and VMN genes we showed in 

Figure 3. 

https://paperpile.com/c/0B28Le/dv6K
https://paperpile.com/c/0B28Le/dv6K
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Comparing filtered to unfiltered annotations 

The default transcriptome annotation dataset, which is recommended for Cell 

Ranger 6 by 10X Genomics, misses some important biotypes like pseudogenes and 

TEC’s, sequences that indicate protein coding genes that need to be experimentally 

confirmed. These differences in gene model compositions can have profound effects 

on the read mapping and the gene quantification as reported by Zhao et al. [12]. In 

order to evaluate the effects of different annotation sets on 10x scRNA-seq data, we 

compared the mapping statistics of the filtered annotations to the complete 

(unfiltered) Ensembl annotation.  

Besides the increase of processed pseudogenes (Suppl. Fig. 3), the usage of the 

unfiltered annotation led to a decrease in mitochondrial (MT) content across all 

alignment tools as shown in Suppl. Fig 7A. Especially the two mouse datasets 

showed a strong reduction of MT content in the unfiltered annotation. Suppl. Fig. 7B 

shows the amount of reads per mitochondrial gene which are not mapped. Further 

investigation revealed that the unfiltered annotation includes pseudogenes which are 

identical to MT genes (Suppl. Fig. 7E). A potential explanation for the reduced MT-

content with the unfiltered annotation is that the mapping algorithms cannot uniquely 

assign a read to the MT-gene, as the read can simultaneously map to the MT-gene 

and the identical pseudogene (Suppl. Fig. 7D&E). Therefore, this read is discarded. 

As high MT-content is a sign for damaged or broken cells, cells with an MT-content 

above a certain threshold are usually filtered out. However due to the reduced MT 

content less cells surpassed the MT content threshold and we could retrieve more 

cells. These additional cells clustered along with the other cell types, indicating that 

the cell quality is good and that these additional cells are not broken or damaged 

https://paperpile.com/c/0B28Le/2Kvi
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cells as exemplified in Suppl. Fig. 7C. Using the unfiltered annotation yielded up to 

10% more cells per sample. However deeper research is required to ensure the 

quality of these additional cells.  

Discussion 

Since handling of scRNA-seq data is a moving target, the constant revision of new 

tools is important to ensure reliable results. Therefore, independent benchmarking 

and evaluation of uncertainties of analysis tools is of central importance [39].  

Our study of real 10X Genomics data sets demonstrated advantages and 

disadvantages of five popular scRNA-seq mappers for gene quantification in single 

cells and adds to the growing number of benchmarks. The tools benchmarked in this 

study are widely used in many labs, thus, our results are relevant for many scientists 

working with scRNA-seq data. All mappers have been evaluated on in vivo datasets 

as these data might reveal unexpected differences or characteristics that probably 

could not have been found with simulated data as is highlighted by Srivastava et al 

[40]. From our perspective, the only advantage of simulated datasets is that it allows 

the assessment of read accuracy, which has already been done for the mappers we 

used in this study [20,41,42]. 

The runtime is one of the most important factors when choosing a tool, but the 

quality of the results is of equal importance. In our detailed analysis, we show that 

Cell Ranger 6 could be easily replaced with STARsolo, as they show almost identical 

results but STARsolo is up to 5x faster in comparison with Cell Ranger 6. The low 

variance in the PBMC dataset for the cell counts and genes per cell for Cell Ranger 

6 and STARsolo can be explained by the predefined sample size by 10X. 

https://paperpile.com/c/0B28Le/aBaX
https://paperpile.com/c/0B28Le/mhrY
https://paperpile.com/c/0B28Le/7yQs+gob1+rOTp
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Du et al. 2020 [14] reported that Kallisto was even faster than STARsolo; a finding 

which is consistent with our results as Kallisto had overall the shortest runtime 

across all mappers. However, the number of cells and the genes per cell varied 

across datasets for Alevin and Kallisto. 

Additionally, Kallisto seems to detect genes of the Vmn and Olfr family as highly 

expressed in several single cell data sets, although these genes are typically not 

expressed in these tissues. As these gene families belong to the group of sense and 

smell receptors, they are expected to be expressed at lower levels or be absent in 

PBMCs and heart tissue and likely represent artefacts. We consistently show that 

these genes are overrepresented in the Kallisto results (Figure 3 and Suppl. Figure 

4). As Kallisto does not perform quality filtering for UMIs this might have influenced 

the reported number of genes per cell as is indicated by Parekh et al [43].  

 

Another major difference of the tested mapping tools is the handling of errors in the 

barcodes. We could show that Alevin often detects unique barcodes, which were not 

identified by the other tools. These barcodes had very low UMI content and were not 

listed in the 10X whitelist. Therefore, It can be assumed that these barcodes were 

poorly assigned (Suppl. Figure 2, Section 4). A possible explanation might be the 

usage of a putative whitelist in Alevin that was calculated prior to the mapping, 

instead of using the one provided by 10X. In Alevin-fry the barcode correction seems 

to be improved as there is no severe enrichment of cells that are unique to Alevin-fry.  

 

While comparing the resulting cell clusters generated by each tool, we recognised 

only minor differences between the tools. Especially the clusters from Cell Rranger 

and STARsolo were similar. However, Kallisto detected fewer monocytes in the 

https://paperpile.com/c/0B28Le/hWdp
https://paperpile.com/c/0B28Le/1x7m
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PBMC dataset and Alevin detected fewer endothelial cells in the cardiac dataset. 

Overall, we saw a much higher variance in the clustering in the cardiac dataset. This 

could be due to the use of an older version of the library extraction protocol (10X v2), 

which has short barcode and UMI sequences, or a lower sequencing quality of the 

Cardiac dataset. 

The comparison of the complete annotation from Ensembl and the filtered 

annotation, as suggested by 10X, revealed that multi-mapped reads play an 

important role in scRNA-seq analysis. In this study, we showed that using an 

unfiltered annotation reduces the MT-content of cells compared to the filtered 

annotation. Therefore, the mitochondrial content as a way to distinguish valid cells 

and dead or damaged cells has to be carefully conducted as it depends on the 

annotation. The recommended annotation from 10X, which only contains genes with  

the biotypes protein coding gene and long non-coding gene, might lead to an 

overestimation of mitochondrial gene expression. However, on the other side all of 

these genomic loci that are identical to MT genes, so called nuclear mitochondrial 

DNA (NUMT), are unprocessed pseudogenes and are not yet experimentally 

validated and could well be artifacts from the genome assembly. For human samples 

we could not see major differences in the downstream results while using the 

complete annotation, therefore it might well be used instead of the filtered 

annotation. However for mouse samples a clear recommendation of whether to use 

the filtered or the complete annotation cannot be made, as more research into this 

issue is required. These results suggest that there is still a need to improve the 

handling of multi-mapped reads in scRNA-seq data. In datasets with a high 

percentage of multi-mapped reads EM-like algorithms, as suggested by Srivastava 

et.al [44] can be advantageous and improve gene quantification in scRNA-SEQ 

https://paperpile.com/c/0B28Le/uQc5
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datasets.  Future mapping tools might for example consider the likelihood of a gene 

to be expressed in a certain cell type. This might enhance the quantification of cell 

type-specific genes and prevent multi-mapped reads for cell types, where a certain 

gene is rarely expressed. Inclusion of mapping uncertainties may be another fruitful 

direction. 

Srivastava et al. [40] observed that there are significant differences between 

methods that align against the transcriptome with quasi-mapping (e.g. Alevin) and 

methods that do full spliced alignments against the genome (e.g. STAR) [40]. The 

observed discrepancies, when using the filtered annotation in our experiments, often 

result from genes that share the same sequences, and therefore, the true alignment 

origin cannot be determined. The reported positions of reads contained annotated 

transcripts e.g. from the mitochondria and a few unprocessed pseudogenes. 

In conclusion, our analysis shows that Alevin, Kallisto and STARsolo are very fast 

and reliable alternatives to Cell Ranger 6. They also scale to large datasets. A 

summary of advantages and disadvantages of each individual tool is provided in 

Figure 5.  

In general, we could show that STARsolo is an ideal substitute for Cell Ranger 6, as 

it is faster but otherwise performs similarly. If high-quality cell counts need to be 

obtained, Alevin-fry appears to be the most suitable method, as average gene 

counts are high and poor-quality barcodes are seldom reported. Kallisto, while 

reporting the highest number of barcodes, also contains many barcodes that could 

not be assigned to cells expected in the heart based on known marker genes. 

Therefore, we generally recommend STARsolo or Alevin-fry for most end-users as 

an alternative to Cell Ranger as these tools perform very stable over all datasets. For 

very large projects with a high number of samples, pseudo-alignment tools such as 

https://paperpile.com/c/0B28Le/mhrY
https://paperpile.com/c/0B28Le/mhrY
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Kallisto can be advantageous in terms of runtime and storage efficiency, at the cost 

of a slight reduction in accuracy. 

Availability of Source Code and Requirements 

● Project name: Comparative Analysis of common alignment tools for single cell 

RNA sequencing 

● Project home page:  https://github.com/rahmsen/BenchmarkAlignment 

● Operating system(s): x86_64-pc-linux-gnu (64-bit) 

● Programming language: R (version 3.6.2) 

● Other requirements: Cell Ranger 6.0, STARsolo 2.7.4a, Salmon 1.5.1, Alevin 

1.1.0, Alevin-fry 0.4.0, Kallisto 0.46.1, Seurat 4.0.3, DropletUtils 1.6.1, SCINA 

v1.2, ggalluvial 0.12.3, ComplexHeatmap 2.6.2, reshape2 1.4.4, ggplot 3.3.5, 

ggpubr 0.4.0, dplyr 1.0.7, svglite 2.0.0, jsonlite 1.7.2, egg 0.4.5 

● License: MIT 
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scRNA-seq: single cell RNA sequencing; NGS: next generation sequencing; UMI: 

unique molecular identifier; PCR: Polymerase chain reaction; PBMC: Peripheral 

blood mononuclear cell; lncRNA: long non-coding RNA; MM: mismatch; GTF: 

General Feature Format; DEG: Differentially expressed genes; UMAP: Uniform 

Manifold Approximation and Projection; SCINA: Semi-Supervised Subtyping 

Algorithm; Vmn: Vomeronasal receptor; Olfr: Olfactory receptor; PCA: Principal 

component analysis; M.b.: Missing barcodes; MT: mitochondrial; NUMT: nuclear 

mitochondrial DNA 

https://github.com/rahmsen/BenchmarkAlignment
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Figure Descriptions 

Figure 1: Summary of major measurements including runtime in hours (A), Genes 

per cell (B), cell count (C) and the mapping rate in percent (D). All bar plots show the 

mean of all samples with the standard error. 

 

Figure 2: The chart shows the barcodes (A) or genes (B) that have been detected by a 

certain number of mappers according to datasets. The number of mappers increases from 

right to left. First the barcodes or genes that have only been detected by one mapper up to 

the barcodes or genes that have been detected in all tools. 

 

Figure 3: UMI counts of all detected (A) Vmn (Vomeronasal receptor genes) and (B) 

Olfr (Olfactory receptor genes) genes per mapper in each sample. The red line indicates the 

total number of expressed genes in the gene families. 

 

Figure 4: Accuracy of cell annotation in Seurat compared with the barcode consensus 

scheme from SCINA (A). Differential gene expression (DEGs) between Cell Ranger and the 

other tools as overlap (B) and correlation (C). Intersection that shows the detection of DEGs 

by a varying number of tools. The number of tools increases from right (DEGs that were 

detected by one tool) to left (DEGs that were detected by all tools) (D). Log2FC of DEGs 

CD4+ T-cells between Cell Ranger and each of the other tools (E-H). The adjusted R² is the 

sample correlation of a linear model. 
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Figure 5: Summary of the results for each evaluated section of interest and mapper. Good 

results are colored in green, intermediate in yellow and poor results in red. 

 

Suppl. Figure 1 Distribution of UMI-counts and genes per cell for the individual data sets. 

Distribution is a kernel density estimate with a gaussian kernel of all samples for the PBMC, 

Endothelial and Cardiac data set. The left column displays the UMI counts per cell and on 

the right column the number of genes per cell. 

 

Suppl. Figure 2 (A) Amount of common and unique barcodes (mean± s.e.m.) detected by 

the individual alignment tools. Intersections of interest are marked by numbers. (B) Gaussian 

distribution of genes per cells the interesting intersection and dataset from A. The 

distributions of the tools from the intersection (non-transparent) are compared with all 

detected barcodes of each tool (transparent lines (in the background); denoted with ‘*’ in the 

legend) 

 

Suppl. Figure 3 Number (mean+s.e.m) of biotypes per dataset with at least 1 UMI count 

after mapping with a filtered (solid dots) or unfiltered annotation (square-triangles). IG = 

Immunoglobulin genes, TR = T-cell receptor genes, TEC = Sequences that need To be 

Experimentally Confirmed. 

 

Suppl. Figure 4 Expression of the OLFR gene family per cell in the PBMC data set for (A) 

Cell Ranger, (B) Cell Ranger 6, (C) STARsolo, (D) Alevin and (E) Kallisto. Cells are sorted 

by clusters that are denoted by the color code above each heatmap. 

 

Suppl. Figure 5 Sankey plots demonstrating the fate of each cell from SCINA cell types to 

the clusters obtained by Seurat. Only cells were kept if more than two mappers detected a 

barcode. (A) represent the PBMC data set and (B) the Cardiac data set. M.b. stands for 
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missing barcodes. These are barcodes that were found in at least two of the other mappers, 

but not in the present one. 

 

Suppl. Fig. 6 Consistency of cells detected by each mapper (“ground truth”) by greedy 

assignment of the barcodes to the SCINA classification. (A) F1-Score, (B) Recall and ( C) 

precision for the PBMC dataset. The recall (D)and precision (E) for the Cardiac dataset. 

 

Suppl. Figure 7 Difference in mitochondrial content (mt-content) of cells due to usage of a 

filtered and unfiltered annotation. A) MT-content of cells separated by filtered and unfiltered 

annotation. B) Reads mapped to the mitochondrial genes for the PBMC and Rosenthal data 

set with unfiltered annotation. Orange indicating the amount of reads that are removed due 

to multimapping when an unfiltered annotation is used. C) UMAP showing cells in green that 

are retained because the MT-content is below the filtering threshold when the unfiltered 

annotation was used in the mapping. D) Mitochondrial genes and its closest pseudogene 

when the mappers reported the secondary mapping position along with the sequence 

similarity to the MT gene. E) Example of the mapping process of a read from a MT gene with 

a filtered/unfiltered annotation. As the filtered annotation does not include potential NUMT’s, 

the read is uniquely mapped to the MT gene. Whereas the complete set contains NUMT’s 

and therefore the read cannot be uniquely mapped to the MT genes (multi-mapped) and 

therefore is discarded from counting. 
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performance
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- Whitelisting           
  causes loss or       
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- Faster mapping    
  in comparison       
  with Alevin.         

- Shortest runtime  
- highest mapping   
  rate

Barcode 
correction and 
filtering

- Detected               
  barcodes that are  
  not in the               
 whitelist

- More barcodes     
  are retained than  
  in Alevin

- Reports more        
 cells

- Lower detection    
  of Vmn and Olfr    
  gene family than   
  in Alevin

- Highest detection  
  rate of genes        
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  count for genes     
  not expressed in   
  studied tissue
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between filtered 
and unfiltered 
annotation
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- Multi-mapped        
  reads are              
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- EM-algorithm        
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- Counts of mullti-   
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  split with EM-        
  algorithm

- Multi-mapped        
  reads are              
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- EM-algorithm        
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- Multi-mapped        
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- EM-algorithm        
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- Highest Overlap    
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   classification 

- Very similar to       
  Cell Ranger with   
  minor differences

- Cell types              
  contain lower        
  amount of cells     
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- High amount of     
  barcodes not         
  detected

- No difference        
  detected

- No difference        
  detected

- Lower detection    
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  Alevin-fry

- Improved              
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  (than Alevin) with  
  Cell Ranger

- Lowest                  
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  Cell Ranger

Practical 
Recommendation

- Replacement        
  with STARsolo is  
  recommended

- Recommended     
  as a general          
  purpose mapper

- Pseudoalignment  
  is especially          
  suitable for            
  huge datasets

- Fast mapper        
- qualitative issues  
  with gene              
  detection

Figure_5 Click here to access/download;Figure;Figure_5.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123891&guid=37c99a7b-807d-4d2b-bee7-233ba3758147&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=123891&guid=37c99a7b-807d-4d2b-bee7-233ba3758147&scheme=1


  

Supplementary_Figure_1_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_Figure_1_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123877&guid=6c6c5701-0326-45a0-93c7-86fca9fb51cb&scheme=1


  

Supplementary_Figure_2_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_Figure_2_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123878&guid=37d9b43a-a7c3-4e92-a8e6-58b4eb4d6178&scheme=1


  

Supplementary_Figure_3_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_figure_3_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123879&guid=d56180bb-d260-4efe-8b57-a9a10fd35224&scheme=1


  

Supplementary_Figure_4_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_figure_4_supplementary_material.png

https://www.editorialmanager.com/giga/download.aspx?id=123880&guid=0456628d-f75d-41e2-973f-74f685c56eed&scheme=1


  

Supplementary_Figure_5_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_figure_5_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123881&guid=7f9deaa1-7b66-4455-8fe4-d0833f39a1f0&scheme=1


  

Supplementary_Figure_6_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_figure_6_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123882&guid=303bc0d8-0bf1-4cc2-9578-74d878f790fb&scheme=1


  

Supplementary_Figure_7_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_figure_7_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123883&guid=455463ab-b69a-4045-a9b8-f33b29a7d850&scheme=1


  

Supplementary_Table_1_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_Table_1_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123884&guid=480c5838-6cd0-4ca6-963e-d91ba61b3e52&scheme=1


  

Supplementary_Table_2_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_Table_2_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123885&guid=dca646c1-88a5-4843-9c5c-042cdd780885&scheme=1


  

Supplementary_Table_3_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_Table_3_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123886&guid=966f989d-f02b-46f7-9f95-442de9625c3a&scheme=1


  

Supplementary_Table_4_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_table_4_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123887&guid=6b6cb257-93a8-45d5-b932-b057f3b21ad1&scheme=1


  

Supplementary_Table_5_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_table_5_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123888&guid=7b0081ba-7dd5-4172-8396-db7b843949a8&scheme=1


  

Supplementary_Table_6_Supplementary Material

Click here to access/download
Supplementary Material

Suppl_Table_6_supplementary_material.pdf

https://www.editorialmanager.com/giga/download.aspx?id=123889&guid=9ebc169e-9896-43f6-b20e-3c8d6e27896b&scheme=1

