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We investigated whether dichotomous data showed the same latent structure as the
interval-level data fromwhich they originated. Given constancy of dimensionality and factor
loadings reflecting the latent structure of data, the focus was on the variance of the latent
variable of a confirmatory factor model. This variance was shown to summarize the
information provided by the factor loadings. The results of a simulation study did not reveal
exact correspondence of the variances of the latent variables derived from interval-level
and dichotomous data but shrinkage. Since shrinkage occurred systematically, methods
for recovering the original variance were fleshed out and evaluated.
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INTRODUCTION

Data investigated in empirical research are the outcome of measuring attributes. We follow [1] in
perceiving measurement as the mapping of an attribute to a numeric scale. Various tools are used for
accomplishing the mapping, as for example observers, questionnaires, tests and apparatuses
providing reaction times, EEG recordings and more. The tools differ according to the
information that is made available. Because of differences regarding the quality of the provided
information, it has become customary to distinguish between different levels of measurement: the
nominal, ordinal, interval and ratio levels [2]. Furthermore, there are special levels like the level
characterizing dichotomous data. Dichotomous data can be thought of as derived from interval-level
data by dichotomization. But interval-level data are continuous and normally distributed [N (μ,σ)]
whereas dichotomous data are binary and following a binomial distribution [B (1, p)]. In this paper
the following question is addressed: Do dichotomous data show the latent structure of the interval-
level data from which they are assumed to originate? This question is of importance because one aim
in investigating binary data is achieving information on attributes that are considered as continuous
variables following a normal distribution. Furthermore, it is of importance for evaluating the
consequences of dichotomization for overcoming distributional problems. This question is
addressed in the framework of confirmatory factor analysis.

To illustrate the addressed question we selected four items of a scale measuring personal
optimism. These items showed a response format including four ordered categories. We
transformed the coded four types of responses of data collected by means of these items into
two types by dichotomization. Next, we investigated the structure of the data (N � 209). Fit statistics
provided by confirmatory factor analysis signified good model fit (χ2 � 2.1, df � 5, RMSEA � 0.0,
SRMR � 0.03, CFI � 1.0, NNFI � 1.1). But the factor loadings were only 0.20, 0.19, 0.22 and 0.18
suggesting that the contribution of optimism to responding may be minor. We also investigated the
original data. The factor loadings obtained in this investigation (0.64, 0.68, 0.66 and 0.68) suggested a
much larger contribution of optimism to responding. It is tempting to blame dichotomization for the
apparent change of the latent structure of data.
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The Latent Structure
The latent structure of data extends to the dimensionality and
amount of systematic variation characterizing data. Regarding the
investigation of the effect of dichotomization, the focus is on the
amount of systematic variation since a change of dimensionality
is unlikely to occur and beyond that can be controlled by
investigating model fit.

The amount of systematic variation is reflected by the factor
loadings of the model used in data analysis [3]. Factor loadings are
constituents of the measurement model of confirmatory factor
analysis (CFA) and also of the corresponding covariance matrix
(CM) model. The CM model is expected to reproduce the to-be-
investigated empirical covariance matrix. The customary versions of
CFA and CM models include one latent variable and decomposes
manifest variance into systematic and error components [4, 5].

Let ξ be the latent variable with E(ξ) � 0 and Var(ξ) � σ, ξ ∼ N
(0, σ), and X1, . . . , Xp a set of random variables following a
normal distribution. CFAmodels with one latent variable include
ξ for capturing the systematic variation characterizing the set of
random variables. In order to assure that systematic variation is
represented by σ, some transformations of the CM model are
necessary that are described in the following paragraphs.

The CMmodel of the p × p covariance matrix,∑(∑ ∈ Rp×p),
is defined as

Σ � λφλ′ + θ (1)

where λ represents the p × 1 vector of factor loadings, ϕ the
variance parameter and θ the p × p diagonal matrix of error
variables. In the case of one factor ϕ is a scalar. It is not necessarily
equivalent to σ. Instead, systematic variation of data is
represented by the product of ϕ and λ (and its transpose)
whereas θ represents variation due to random influences.

A more concise representation of the systematic variation of
data characterizes explorative factor analysis. In this case
systematic variation of data is represented by the variance of
the factor (� latent variable), v(v ∈ R), that is defined as sum of
squared factor loadings λi (i � 1, . . . , p):

v � ∑p
i�1

λ2i (2)

Given the same estimation method and underlying structure, the
variances of factor (v) and latent variable (σ) can be expected to
correspond. The representation of systematic variation according
to Eq. 2 can be also realized within Eq. 1 by scaling.

Scaling of the variance parameter of Eq. 1 according to the
reference-group method [6, 7] that means setting the variance
parameter equal to one (ϕ � 1), assures that only the factor
loadings represent the captured systematic variation. In this case
the squared factor loadings sum up to provide the variance of the
latent variable (� factor) in the following way:

∑p
i�1

λ2i � trace(λλ′) � trace(λϕλ′). (3)

There is also the possibility to (re-)scale variance parameter ϕ so
that it represents the variance of the latent variable [8]. This is

achieved by transforming the originally estimated factor loadings
λi(i � 1, . . .p) into adjusted factor loadings λpi (i � 1, . . .p) such
that

1 � ∑p
i�1

λp2i (4)

with λpi � cλi(c ∈ R+) in the first step. In the second step the
free factor loadings of the model are replaced by the estimated
factor loadings as fixed values (λpi ) whereas the otherwise fixed
variance parameter is set free for estimation. Finally, ϕ p is
estimated (that replaces ϕ as variance parameter of the
model).

For demonstrating that ϕ p represents the variance of the latent
variable, it is assumed that λp includes all λpi (i � 1, . . . , p) as fixed
entries (i.e., λp � cλ). Starting from Eq. 3, the following sequence
of transformations (from the right-hand side to the left-hand
side)

ϕp × trace(λpλp′) � ϕ × 1

c2
trace(cλcλ′) � ϕ × trace(λλ′) � trace(λϕλ′) � ∑p

i�1
λ2i

(5)

suggests that

ϕp � ∑p
i�1

λ2i (6)

since according to Eqs. 3, 4 the trace of λpλp9must be one. Given
the described conditions, the systematic variation of data
captured by the latent variable of the CFA model is estimated
by ϕ p.

The Input to Confirmatory Factor Analysis
The CM model also gives rise to the expectation of specific input
to CFA. The input is either an empirical covariance or correlation
matrix that is to be reproduced by the model [9]. The more
general event is the covariance matrix. In the case of interval-level
data the covariance based on product-moments, covPM(X,Y), is
computed and integrated in the covariance matrix to serves as
input:

covPM(X,Y) � 1
n
∑n
i�1
(xi − x) × (yi − y) (7)

where X(X ∈ R) and Y(Y ∈ R) are the normally distributed
random variables, xi and yi are the x-score and y-score of the
ith participant, x and y the corresponding means and n the
sample size.

Although dichotomous data can be thought of as derived from
interval-level data [N (μ,σ)], they are mostly available as binary
data [B (1, p)]. For example, the responses to the items of a scale
measuring arithmetic reasoning are usually available as correct
and incorrect responses although such a complex ability can be
assumed to be measurable with interval-level quality. The typical
way of assigning numbers to responses (e.g., 0 � incorrect, 1 �
correct) does not reflect the interval level. Furthermore, the
coding of the responses does neither create the interval-level
quality nor justifies mathematical operations like subtraction and
multiplication.
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In the case of such data the probability-based covariance
coefficient, covPb(X, Y), may provide the entries of the
covariance matrix that serves as input to factor analysis. This
coefficient includes probabilities (Pr). For binary variables
X(X ∈ {0, 1}) and Y(Y ∈ {0, 1}) it is defined as

covPb(X,Y) � Pr(X � 1∧Y � 1) − Pr(X � 1)Pr(Y � 1) (8)

where 1 serves as the code for the target response that may be
the correct response [10]. The computing of the probability-
based covariance starts with counting followed by the
transformation of the counts into probabilities that show
interval-level quality. Therefore, there is justification for
subsequent subtraction and multiplication in the following
steps; i.e., mathematical operations like subtraction and
multiplication are correct.

Different methods for preparing the input to factor analysis
when investigating interval-level and dichotomous data, as
outlined in the previous paragraphs (see also Eqs. 7, 8), are
possible sources of differing results. In order to demonstrate that
there is no such method effect [11], we provide two examples.
These examples show that the probability-based covariance
coefficient and the (mathematically inacceptable) covariance
coefficient based on product-moments lead to the exactly same
results in binary data (see Table 1).

Table 1 lists the binary responses of ten fictitious participants
who completed four items (A1, A2, B1, B2). The lower part
provides the results of computing the covariances based on
product-moments and probability-based covariances of A1
and A2 and also of B1 and B2. The covariance of A1 and A2
is 0.15, irrespective of the computation method. The covariance
of B1 and B2 is 0.20 when computed by each one of the two
computation methods.

The Skewness Problem
Skewness is a characteristic of dichotomous data if the probability
of falling into one of the two possible groups of observations in
dichotomization deviates from 0.5. Skewness of data is a problem

since skewed data are likely to lead to incorrect results in CFA [12,
13]. Skewness means a distortion of the variances and covariances
serving as input in the sense of shrinkage. Starting from a
normally or binomially distributed random variable,
generation of skewness implies a shift of the peak of the
distribution in the direction of one of the two tails. This shift
is usually associated with a decrease of the variance.

The reversal of the effect of skewness on variances and
covariances can prevent the distorting influence of skewness on
the outcome of confirmatory factor analysis. There are variance-
stabilizing transformations that can be selected for this purpose
[14–16]. Such transformations are expected to yield constancy of
the variance despite deviations of the probability from 0.5.
Furthermore, there is the possibility to employ a link function
to overcome the difference between the distribution of data and the
distribution that is expected by the statistical procedure [17–19].
CFA, which is mostly conducted according to the maximum
likelihood estimation method, expects normally distributed data
(or at least symmetrically distributed data). Link transformations
for achieving normality focus the mean of a data distribution and
are expected to transform the distribution accordingly.

Furthermore, there is also the possibility to retain the original
(unchanged) variances and covariances as input to factor analysis
and to adapt the statistical model to the skewness of the data. This
can be achieved via the predictor-focused way of adapting the
model to the probability selected for splitting data in
dichotomization [20]. Adaptation of the model to theory-
based expectations is also a characteristic of growth-curve
modeling [21, 22]. This way of adaptation can be realized by
introducing an item-specific weight wi (i � 1, . . . , p) defined as
function of the probability (Pr) of the response X to item i (i � 1,
. . . , p), Xi(Xi ∈ {0, 1})), such that

wi �
�������������������������
Pr(Xi � 1) × [1 − Pr(Xi � 1)]√

(9)

[23]. The weight is at its maximum value for the probability of 0.5
and approaches zero for probabilities of 0 and 1.

TABLE 1 | Example Data Together With the Covariances Computed Using Product-moments (CPM) and Probabilities (PbC).

Participant Score
A1

Score
A2

Score
B1

Score
B2

1 1 1 1 1
2 0 0 0 0
3 1 1 1 0
4 1 1 1 1
5 0 0 0 0
6 1 0 1 1
7 0 1 0 0
8 0 0 0 0
9 1 1 1 1
10 0 0 0 0

Covariance
coefficient

— Result A — Result B

CPMa
— 0.15 — 0.20

PbCb
— 0.15 — 0.20

aCovariance based on product moments.
bProbability-based covariance.
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Such weights need to be integrated into the CM model Eq. 1.
Since errors are assumed to follow the normal distribution, the
assignment of weights is restricted to the systematic component
of the model. At first, the weights are inserted in the p×p diagonal
matrix W. Afterwards, W is integrated into the CM model such
that

Σ � (Wλ)ϕ(Wλ)′ + θ. (10)

The CM model specified this way expects probability-based
covariances Eq. 8 as input.

The Hypotheses
In this section hypotheses suggesting constancy of the latent
structure despite dichotomization are specified. We consider two
types of constancy: exact constancy and relative constancy. As
already pointed out, the focus is on the amount of systematic
variation that is captured by the factor loadings [3] and
summarized by the variance of the latent variable [8]. In CFA
the variance of the latent variable can be estimated by variance
parameter φp if it is scaled to represent the sum of squared factor
loadings (see Eqs. 2, 4, 6). Exact constancy of the scaled estimates
of the variance parameter despite dichotomization means that
corresponding values are achieved in investigating normally
distributed data [N (0, 1)] and dichotomous data [B (1, p)].
This hypothesis is formalized by the following equation:

ϕN(0,1)p � ϕB(1,p)p. (11)

Failure to demonstrate exact constancy Eq. 11 does not
necessarily mean that dichotomous data originating from
interval-level data show a structure that completely differs
from the structure characterizing interval-level data.
Dichotomization could cause a systematic modification of
structure. In such a case it should be possible to identify
function g ( ) that describes the relationship between the
factor loadings contributing to the variance estimates for
interval-level and dichotomous data. We formalize this
hypothesis suggesting relative constancy as

ϕN(0,1)p � ϕg(X) ∼ N(0,1),X ∼ B(1,p)p. (12)

An Empirical Study Using Simulated Data
To investigate the influence of dichotomization on the latent
structure of data, an empirical study was conducted. One aim of
this study was to provide evidence either in favor or against the
hypothesis of exact constancy of the latent structure despite
dichotomization. There was also a complementary aim for the
case of failure to provide confirming evidence. This aim required
the recovery of the original latent structure on the basis of the
information on the latent structure characterizing the
dichotomous data.

Interval-level data were transformed into dichotomous data by
dichotomization for the purpose of this study. To control possible
error influence, two important sources of disturbance were
varied. First, since dichotomization can be realized by applying
various splits leading to different probabilities of the target
response, several different splits were included in the design of

the study. Second, since there might be different degrees of
efficiency in capturing systematic variation depending on the
expected amount of systematic variation, the amount of such
variation was varied. Both the interval-level data and the
dichotomous data were investigated by the same one-factor
confirmatory factor model.

METHOD

Continuous and normally distributed random data [N (0,1)] were
generated using PRELIS [24]. Dichotomous data showing a
binomial distribution [B (1, p)] were realized by dichotomizing
the continuous data using different splits so that five different
probabilities of the target response (that was 1; using 0 and 1 as
codes) were obtained (p � 0.2, 0.35, 0.5, 0.65, 0.8). Subsequently,
the continuous and normally distributed random data [N (0,1)]
were scaled down to N (0.0.25) to show a size of variance
corresponding to the size of the variance of X ∼ B (1, 0.5).

The latent structure was created by means of three 20 × 20 and
three 10 × 10 relational patterns. The off-diagonal entries of these
patterns corresponded to the squared factor loadings. In one
relational pattern the size of the factor loadings was 0.35 and in
the other patterns 0.5 and 0.65. The entries of the main diagonal
were ones. Since the three sizes of factor loadings could be
perceived as due to latent sources with different impacts on
responding, we addressed them as weak, medium and strong
sources.

The data generated according to the design of the study
included 400 × 3 (relational patterns) × 2 (numbers of
columns) data matrices of continuous and normally
distributed data and 400 × 3 (relational patterns) × 2
(numbers of columns) × 5 (probability levels) data matrices of
dichotomous and binomially distributed data. A data matrix
included 500 rows and either 10 or 20 columns.

The CFA model for investigating the data included one latent
variable (� factor) and either 10 or 20 manifest variables. Because
of the off-diagonal entries of the relational patterns showing equal
sizes, the underlying structure of the data could be expected to be
reproducible by factor loadings constrained to equal sizes. This
expectation justified the assignment of numbers of equal size to
the entries of the vector of the factor loadings in the first step. In
the second step, there was scaling by transforming the factor
loadings according to Eq. 4 so that the variance parameter could
be expected to provide an estimate of the variance of the latent
variable. Covariances based on product-moments in the case of
interval-level data and probability-based covariances in the case
of dichotomous data served as input to confirmatory factor
analysis (see Eqs. 7, 8). There was no correction for random
deviations from exact normality of generated data.

We used the maximum likelihood estimation method via
LISREL [25] for investigating the data. It required continuous
data, invertibility and positive definiteness; the data could be
expected to be in line with these requirements. Furthermore,
there is the difference between the binomial distribution of the
data and the normal distribution of the latent variables of the
models that is likely to lead to model misfit. It was overcome by
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the transformation of factor loadings that means by adaptation of
model to data. This transformation was realized using the item-
specific weights wi (see Eqs. 9, 10). Since the major characteristics
of the model were in line with the major properties of the
generated data, good model fit could be expected. Therefore,
the results section does not include a report of the fit results.
Instead, the focus of the investigation is on the size of the variance
parameter regarding the exact constancy hypothesis and on the
size of factor loadings regarding the relative constancy
hypothesis. Variance estimates and factor loadings are reported.

RESULTS

Results for continuous and normally distributed data. The
variance estimates and standard deviations of latent variables
observed in investigating continuous data showing the normal
distribution are reported in Table 2.

The first column of this table lists the sources and the second
and third columns the sizes of factor loadings for standard
normal data [N (0.1)]. The fourth and fifth columns provide
the mean variance estimates and corresponding standard
deviations observed in investigating data matrices of datasets
with 10 columns showing a variance of 0.25 [N (0.0.25)]. The
sixth and seventh columns comprise the corresponding means
and standard deviations observed in investigating matrices of
datasets with 20 columns.

The mean variance estimates varied between 0.306 and 2.112.
There was a linear increase from weak to strong. Furthermore, the
means observed in investigating matrices of datasets with 10 and 20
columns differed systematically, as is suggested by Eq. 2 (2 × ϕpn�10
� ϕpn�20). Moreover, the comparison of the variance estimates
obtained for data with distributions N (0,1) and N (0.0.25) revealed
a decrease from 100 to 25 percent. All standard deviations were very
small. Apparently, a reduction of the variance of normally
distributed data for 100 to 25 percent was associated with a
corresponding reduction of the variance of the latent variable.

Results for binary and binomially distributed data. Table 3
provides the results observed in investigating dichotomous data.

The first column of this table gives the type of source and the
second column the probability level. The mean variance estimates
are provided in the third and fifth columns. The results for datasets
with 20 columns virtually always showed double the size of the
results for datasets with 10 columns. Since no difference between the
double of an estimate reported in column 3 and the corresponding
estimate reported in column 5 was larger than 0.008, in the
following the discussion of the results does not specify the
number of columns of the datasets that were investigated.

The variance estimates varied between 0.100 and 1.394. For
each type of source (weak, medium, strong) there was a decrease
in the size of the variance from the first to fifth rows (i.e., from p �
0.5 to p � 0.2/0.8). The decrease occurred stepwise from the
variance estimate for the probability level of 0.5 to the variance
estimates of the levels of 0.35 and 0.65 in the first step down and
to the variance estimates of the levels of 0.2 and 0.8 in the second
step down. Furthermore, the variance estimates for the
probability levels 0.35 and 0.65 and also for the probability
levels 0.2 and 0.8 differed by a very small amount only.
Regarding the influence of the type of source, there was an
increase in the size of the variance of the latent variable from
the weak to strong sources. All standard deviations were
very small.

Comparison of the results for normally and binomially
distributed data. Table 4 relates the variance estimates
obtained for continuous and normally distributed data [N
(0.0.25)] (see Table 2) to the variance estimates obtained for
dichotomous and binomially [B (1.0.5)] distributed data (see
Table 3). This comparison was restricted to variance estimates
obtained from data with variances of 0.25 to make the effect of
dichotomization especially obvious.

The first and second columns of this Table provide the
variance estimates for interval-level data showing the normal
distribution [N (0.0.25)]. The means of the variance estimates for
dichotomous and binomially distributed data originating from
dichotomization with the probability level of 0.5 are included in
the fourth and sixth columns. Furthermore, ratios of the values
included in the first and fourth respectively the second and sixth
columns are reported in the fifth and seventh columns.

The ratios varied between 1.51 and 1.56. The differences
between the ratios were small, suggesting a small effect of the
strength of source. The ratios suggested that there was an increase
in the retained systematic variation.

In sum, the results did not confirm the hypothesized constancy
of the latent structure of data despite dichotomization in the sense
of exact constancy (see Eq. 11). However, the deviation from
exact constancy appeared to occur in a systematic way that
suggested the possibility of relative constancy (see Eq. 12).
The deviation appeared to be associated with the probability
of splitting the data in dichotomization, and the strength of the
source also appeared to influence the results.

The Shrinkage Correction
This section describes easy ways of recovering the latent structure
of interval-level data on the basis of dichotomous data and
provides an evaluation of these ways. The investigation is
conducted at the level of factor loadings since the effect of

TABLE 2 |Mean Variance Estimates and Standard Deviations of Latent Variable Observed in Investigating Interval-level Data with Variances of 0.25 for Datasets with 10 and
20 Columns (400 Datasets).

Type of source ϕN (0,1) n = 10 ϕN (0,1) n = 20 Mean variance estimates and standard deviations

ϕN(0,0.25) n = 10 SD n = 10 ϕN(0,0.25) n = 20 SD n = 20

Weak 1.225 2.45 0.306 0.001 0.612 0.001
Medium 2.500 5.00 0.625 0.001 1.250 0.001
Strong 4.225 8.45 1.056 0.001 2.112 0.001
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dichotomization characterized the columns of the dataset that
were split in dichotomization in the first place. Furthermore, the
transformations leading to the recovery of the original factor
loadings occurred at this level.

In order to eliminate probability level-related deviations (the
differences between factor loadings based on the same source but
differing according to the probability of the target response), a
ratio of products of variances for po � 0.5 and other ps is
computed and used as multiplier of the factor loadings:

λD.PC � po(1 − po) × [1 − po(1 − po)]
p(1 − p) × [1 − p(1 − p)] × λD (13)

where λD represents the observed factor loading for dichotomous
data and λD.PC the factor loading corrected for the probability-
based deviation from p � 0.5.

For compensating the shrinkage from interval-level data to
dichotomous data, two types of shrinkage correction were
worked out. First, we considered the correction by shrinkage
coefficient cS. For the purpose of relating factor loadings
computed from dichotomous data [B (1,p)] to factor loadings
computed from standard normal data [N (0.1)], we also
computed the ratios that were 2.50 for the weak type of
source, 2.485 for the medium type of source and 2.46 for the
strong type of source. These ratios surmounted the ratios
reported in Table 4 because of the switch from [N (0.0.25)]
to [N (0.1)]. The simplicity principle led us to select 2.5 as
shrinkage coefficient (cS � 2.5) so that

λD.PC.SC � cS × λD.PC (14)

where λD.PC represented the factor loading corrected for the
probability-based deviation (see Eq. 13) and λD.PC.SC the factor
loading additionally corrected by the effect of the type of source.
This correction coefficient could be perceived as the square root
of the ratio of squares of factor loadings for interval-level and
dichotomous data [λN(0,1) and λB(1,0.5)] of the weak source:

cS �

������
λ2N(0,1)
λ2B(1,0.5)

√√
(15)

Second, a simple function was also considered for accomplishing
the shrinkage correction. It included weights of 2.54 and -0.32
assigned to the linear and quadratic terms of a quadratic
polynomial for correcting the shrinkage:

λD.PC.SF � 2.54 × λD.PC − 0.32 × λ2D.PC (16)

where λD.PC represented the factor loading corrected for the
probability-based deviation and λD.PC.SF the factor loading
with the additional shrinkage correction. It needs to be added
that using the results of the simulation study for working out the
correction methods implicitly restricted their applicability to the
investigated ranges of factor loadings and probability levels.

We evaluated the two ways of recovering the latent structure
by attempts to reproduce the factor loadings for interval-level
data following the standard normal distribution. In these

TABLE 3 | Mean Variance Estimates and Standard Deviations of Latent Variables Observed in Investigating Dichotomous Data for Datasets with 10 and 20 Columns (400
Datasets).

Type of source Probability of selected
response

Observed mean variance estimates and standard deviations

ϕn = 10 SD n = 10 ϕn = 20 SD n = 20

Weak 0.50 0.196 0.001 0.392 0.000
— 0.65 0.169 0.001 0.338 0.000
— 0.35 0.171 0.001 0.343 0.001
— 0.80 0.100 0.001 0.204 0.001
— 0.20 0.100 0.000 0.204 0.000
Medium 0.50 0.404 0.001 0.808 0.000
— 0.65 0.353 0.001 0.707 0.001
— 0.35 0.357 0.001 0.714 0.000
— 0.80 0.216 0.000 0.432 0.001
— 0.20 0.213 0.001 0.432 0.001
Strong 0.50 0.697 0.000 1.394 0.000
— 0.65 0.610 0.000 1.220 0.000
— 0.35 0.615 0.001 1.230 0.001
— 0.80 0.388 0.001 0.776 0.000
— 0.20 0.392 0.001 0.776 0.001

TABLE 4 | Ratios of Variance Estimates for Interval-level Data and Dichotomous Data Showing the Variance of 0.25 for Datasets with 10 and 20 Columns (400 Datasets).

Variance estimates based
on normal data
∼ N(0,0.25)

Probability of selected
response

Variance estimates for dichotomous data and ratios of variance estimates

n = 10 n = 20

n � 10 n � 20 p ϕB(1,0.5) ϕN(0,0.25)/ϕB(1,0.5) ϕB(1,0.5) ϕN(0,0.25)/ϕB(1,0.5)

0.306 0.612 0.50 0.196 1.56 0.392 1.56
0.625 1.250 0.50 0.404 1.55 0.808 1.55
1.056 2.112 0.50 0.697 1.52 1.394 1.52
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attempts we started from the factor loadings reported in Table 3
for dichotomous data. The calculated shrinkage-corrected factor
loadings rounded to the two positions following the comma are
reported in Table 5.

The first column provides the expected factor loadings, the
second column the probabilities of the target response and the
third column the factor loadings observed in investigating
dichotomous data (the means of estimates reported for 10 and
20 manifest variables in Table 3). The results of transformations
according to Eq. 13 are included in the fourth column, according
to Eq. 14 in the fifth column and according to Eq. 16 in the sixth
column, respectively.

The correction for probability-related deviations Eq. 13 led to
factor loadings that showed similar sizes for the same source but
were not exactly equivalent (eliminating the third digit would
only reveal equivalence for the weak and medium sources). Using
the shrinkage coefficient described by Eq. 14 provided factor
loadings according to expectation for the weak source. For the
medium and strong sources there were deviations up to 0.01 and
0.03, respectively. Using the shrinkage correction described by
Eq. 16 reduced the number of deviations from expectations.
There were only three instead of seven deviations and the largest
deviation was 0.02.

It remains to report the effect of shrinkage correction on the
factor loadings reported in the introduction. The shrinkage
correction transformed the values of 0.20, 0.19, 0.22 and 0.18
into values of 0.58, 0.60, 0.55 and 0.61.

DISCUSSION

The information on the latent structure of data collected by a
measurement scale is used for evaluating its quality. The
procurement of such information is considered as an essential
part of test construction [26, 27]. Therefore, it is of great

importance that the information on the latent structure is free
of any bias and method effect [11]. This argument also extends to
shrinkage due to dichotomization that either occurs during
measurement or as a post-hoc transformation. Therefore, it is
worthwhile to investigate the effect of dichotomization and to
engage into the search for a way of reversing it.

An investigation of the latent structure yields information on
the dimensionality and systematic variation characterizing data.
The reported study concentrates on the investigation of the effect
of dichotomization on the amount of systematic variation. This
research strategy deviates from typical data analysis by a CFA
model that seeks to provide confirmation of the appropriateness
of the pre-specified model of measurement [28]. This deviation is
justified by the high degree of correspondence of the models
employed for data generation and for data analysis. In addition,
there were occasional checks regarding model fit during the
simulation study that would reveal deviations from the
expected dimensionality.

The comparison of factor loadings for interval-level and
dichotomous data suggested shrinkage of the systematic
variation due to dichotomization. This result is no surprise
since in dichotomization exact information on the (fictitious)
participants is replaced by information on the category to which
the (fictitious) participants are assigned. The information is
inexact in that it is an inexact characterization of the
(fictitious) participants. But, this does not mean that the
information is wrong or represents random influences only.

Inexact information on individual participants does not
preclude the achievement of exact information on the sample.
Counting the target responses in the sample and turning them
into probabilities provides information that is considered
interval-level information. It is used for computing
probability-based covariances [29]. The probabilities achieved
this way still reflect the influence of the probability levels used in
splitting the original interval-level data so that it is necessary to

TABLE 5 | Observed and Probability-corrected Factor Loadings for Dichotomous Data as Well as Recovered Factor Loadings for Interval-level Data (400 Datasets).

Expected loadings Probability of selected
response

Factor loadings for
dichotomous data

Recovered interval factor level
factor loadings using shrinkage

observed correcteda constantb/ functionc

0.35 0.50 0.140 0.140 0.35 0.35
0.65 0.130 0.139 0.35 0.35
0.35 0.131 0.140 0.35 0.35
0.80 0.100 0.140 0.35 0.35
0.20 0.101 0.141 0.35 0.35

0.50 0.50 0.201 0.201 0.50 0.50
0.65 0.188 0.201 0.50 0.50
0.35 0.189 0.201 0.50 0.50
0.80 0.146 0.203 0.51 0.50
0.20 0.147 0.205 0.51 0.51

0.65 0.50 0.264 0.264 0.66 0.65
0.65 0.247 0.264 0.66 0.65
0.35 0.248 0.265 0.66 0.65
0.80 0.197 0.275 0.68 0.67
0.20 0.197 0.275 0.68 0.67

aCorrected for probability level related shrinkage.
bSee Eq. 14.
cSee Eq. 16.
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take care of the associated skewness, as is outlined in previous
sections. Furthermore, the accuracy of the information depends
on sample size. Increasing the sample size increases the degree of
accuracy, as is suggested by the central limit theorem [30].

The simulation study includes attempts to recover the values
for factor loadings of interval-level data according to Eqs. 13–16
using the readily available information. The results are generally
good but also show small deviations from what is expected. The
recovery was very accurate if the data were constructed to reflect a
weak latent source. If the latent source was simulated to show
medium strength, it was also very accurate with one exception.
Small overestimation characterizes the recovery in the case of the
strong simulated source. So, it turns out that the information on
the systematic variation can largely be recovered despite the loss
of information on the (fictitious) participants. This suggests that
dichotomization is a systematic transformation of data that
retains general characteristics.

Further studies may show whether the deviations are simply
inaccuracies or an indication of another influence that has not been
considered so far. Moreover, although broad ranges of probabilities
and sizes of factor loadings of relevance have been considered,
generalization to the full ranges should be based on the results of a
more complete investigation. Further investigations may confirm
and extend the results of the reported study.

CONCLUSION

Dichotomization of data causes shrinkage of the latent variance of
data that means an impairment of the latent structure of data. The
shrinkage occurs in a systematic way so that recovery of the
original latent variance is possible.
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