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Abstract: Strenuous and unaccustomed exercise frequently lead to what has been coined “delayed
onset muscle soreness” (DOMS). As implied by this term, it has been proposed that the associated pain
and stiffness stem from micro-lesions, inflammation, or metabolite accumulation within the skeletal
muscle. However, recent research points towards a strong involvement of the connective tissue.
First, according to anatomical studies, the deep fascia displays an intimate structural relationship
with the underlying skeletal muscle and may therefore be damaged during excessive loading.
Second, histological and experimental studies suggest a rich supply of algogenic nociceptors whose
stimulation evokes stronger pain responses than muscle irritation. Taken together, the findings
support the hypothesis that DOMS originates in the muscle-associated connective tissue rather than
in the muscle itself. Sports and fitness professionals designing exercise programs should hence
consider fascia-oriented methods and techniques (e.g., foam rolling, collagen supplementation) when
aiming to treat or prevent DOMS.

Keywords: DOMS; fascia; eccentric exercise; pain; athletes

1. Introduction

Delayed onset muscle soreness (DOMS) is a frequent post-exercise phenomenon that
typically manifests after strenuous and unaccustomed loading. Its symptoms, compris-
ing pain and stiffness of the affected soft tissue, occur hours following activity, reaching
maximal levels after one to three days [1]. While all types of muscle work may induce
general muscular exhaustion, DOMS is particularly caused by eccentric contraction [1,2].
Related examples include downhill running [3], ballistic stretching [4], plyometrics [5],
and eccentric resistance exercise [1]. Multiple theories exist attempting to explain the
mechanisms leading to DOMS and most of them suggest an important role of the skeletal
muscle (e.g., excessive lactate production, inflammation, structural damage). Yet, recent re-
search suggests a substantial mechanical and/or sensory contribution of the extramuscular
connective tissue. As the optimal stimuli needed to trigger adaptations of the deep fascia
are substantially different to those for the skeletal muscle [6], this may have significant
implications with regard to the prevention and treatment of DOMS. The present article
therefore reviews the available evidence describing the possible involvement of the deep
fascia in DOMS.

2. Classical Pathogenetic Models

One of the oldest theories describing the possible mechanism of DOMS focuses on the
accumulation of lactic acid. Lactate is a substance produced during glycolytic metabolism
and has been reported to induce pain when injected into skeletal muscles with [7,8] or
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without the addition of ATP or protons [9]. Excessive lactate concentrations may therefore
represent a noxious stimulus for free nerve endings of type III [9] and IV [10] afferents,
which are located within small blood vessels of skeletal muscles. Being connected to the
central nervous system via thinly myelinated (type III) or unmyelinated (type IV) nerve
fibers [11], the free or unencapsulated nerve endings act as the major nociceptors of the
skeletal muscles and respond to mechanical and chemical stimuli [12]. Although there
is evidence suggesting that receptor activation by metabolites may be involved to some
extent in muscular fatigue during intense exercise [13], the lactic acid theory has been
largely rejected as a cause of DOMS [1]. One reason for this is the time component. Lactate
concentrations promptly return to the baseline after cessation of physical activity, whereas
the DOMS-typical discomfort occurs with a delay. A second counter-argument is the
lacking correlation between lactate concentrations and the strength of DOMS. Although
concentric exercise does only very rarely lead to DOMS, lactate production is considerably
higher than in eccentric exercise even if the power output is matched [14]. This observation
fits with data showing high lactate concentrations and no DOMS after level running but
low lactate levels and substantial DOMS after downhill running [15].

Almost 120 years ago, Hough [16] first proposed the theory that DOMS could result
from structural damage within the skeletal muscle. It has repeatedly been claimed that
high mechanical stresses imposed to the soft tissue could exceed the load-bearing capacity
of the sarcomere, leading to micro-ruptures located in or near the Z-disk (e.g., [17,18]).
In fact, such changes have regularly been identified during microscopic examinations of
biopsies taken after unaccustomed eccentric contractions [19,20]. The Z-line streaming
more frequently affects type II fast-twitch muscle fibers than type I slow-twitch muscle
fibers [1]. As insinuated by their names, fast-twitch fibers exhibit a high force, power, and
speed potential at limited endurance, while slow-twitch fibers achieve low contraction
speeds but high fatigue resistance. Compared with type I fibers, the fast-twitch type II
fibers have narrower and weaker Z-disks and less compliant titin filaments, which could
lead to greater mechanical stresses during eccentric contraction [1,21,22]. Furthermore, they
contain smaller isoforms of the sarcomere-stabilizing protein nebulin, potentially leading to
increased susceptibility to strain-induced damage [23]. All these factors, acting in concert,
probably explain why muscles with a large type II fiber content sustain greater damage
from eccentric contraction than those with a larger type I fiber content [24]. However,
some authors interpret the microscopic intracellular structural changes following eccentric
contraction as a natural part of the remodeling process rather than a sign of muscular
damage [25]. Furthermore, it remains unclear how this micro-traumatization should be
associated with pain. Of course, an activation of mechanosensitive type III afferents due to
structural lesions is conceivable, but this could only explain current pain sensations but not
a delayed onset and the persistence of pain after exercise. Finally, the activation threshold
of these receptors is very high, which prevents activation through normal contractions.
The assumption that morphological muscle damage is associated with DOMS symptoms
also lacks clinical and experimental support. Nosaka et al. [26] instructed male participants
to perform eccentric exercise bouts with variable repetition numbers. While induction of
DOMS was successful, pain experienced upon movement and palpation did not correlate
with plasma creatine kinase, which is a marker of muscle damage. Similar findings had
been made by Nurenberg et al. [27] who found only a weak correlation between the DOMS
grade and the degree of ultrastructural tissue injury as analyzed with electron micrographs.

A third complex of theories focuses on inflammatory processes. Contrarily to tis-
sue damage, a delayed and sustained activation of type-III afferents may be induced via
inflammation-associated intramuscular swelling, which exerts pressure on the mechanosen-
sitive receptors. This is supported by the observation that maximal swelling coincides with
the post-exercise DOMS peak [28]. In addition, inflammation could lead to increased pain
perception via the release of pain-modulating substances (such as PGE2) by inflammatory
cells invading the damaged muscle tissue. It is assumed that the inflammatory cells, which
enter the damaged tissue, are chemotactically guided to the site via substances that diffuse
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into the plasma and interstitial space [29]. Chemotaxis describes the movement of immune
cells towards substances (attractants) that are released from damaged cells. One example
of a chemotactically active substance is the chemoattractant protein MCP-1. It is highly
expressed in injured muscle cells and attracts macrophages [30]. Interestingly, there is a
possible link between the inflammation and the previously mentioned muscle damage
theory [31]. High mechanical loads do not only seem to cause damage to the contractile
elements of the muscle fibers but also to the membranes. The resulting change in membrane
permeability could be the basis for the release of chemotactically active substances.

The above assumptions fit with Armstrong’s early theory of the mechanisms un-
derlying DOMS [15,32]. He hypothesized that membrane damage resulting from high
mechanical forces results in an uncontrolled influx of calcium from the interstitial space,
which activates calcium-dependent proteases and phospholipases that further exacerbate
membrane damage. According to his theory, this process is amplified by the fact that
calcium accumulates within the mitochondria, affecting cellular respiration and thus ATP
synthesis and ultimately reducing the active return of calcium into the sarcoplasmic reticu-
lum by SERCA pumps. The membrane damage further results in an efflux of intracellular
components, such as enzymes, into the intercellular space and thereby attracts monocytes
that convert to macrophages. Mast cells and histocytes are activated and the accumulation
of chemicals resulting from phagocytosis and necrosis are then thought to activate free
nerve endings that trigger the pain. However, some authors have challenged the existence
of an exercise-induced sarcolemma injury or inflammation, as no sarcolemma injury could
be found after eccentric contractions despite the presence of severe DOMS [33]. This is
supported by others who only found very weak [26] or no evidence [34] of inflammation
and necrosis in muscles following exercise-induced muscle damage. Some authors even
speculate that the observed inflammation in human skeletal muscle after exercise may
rather represent a methodological artefact than a true exercise-induced event, due to the
invasive nature of muscle sampling [34].

Finally, free radicals are also repeatedly cited as a reason for damage to the muscle
fiber membrane [35,36]. The fact that they are produced during eccentric contraction is not
controversial as numerous studies have shown this connection so far [37,38]. However, it
is unclear as to whether the free radicals are causally linked to the development of exercise-
induced membrane damage and DOMS. Among other factors, the time component speaks
against such a connection. Close et al. [39] demonstrated that the increase in free radicals
occurred only 24–48 h after maximal DOMS. In addition, the administration of antioxidants
had little or no effect on soreness. This is supported by De Oliveira and colleagues [40] who
found an antioxidant vitamin supplementation to prevent oxidative stress but not DOMS.
Some authors now even assume that the free radicals formed rather have a physiological
signaling effect and should be interpreted less in terms of a pathological influence [39].
Finally, as pointed out by Close et al. [35], it should be noted that the mitochondrial
production of ROS is highly associated with increases in aerobic metabolism. It is assumed
that ROS are produced at a rate of 0.15% of oxygen consumption [41]. Therefore, one
would expect that exercise associated with high oxygen consumption rather than eccentric
contractions would be associated with increased DOMS.

In summary, the classical pathogenic models focusing on the muscle tissue are not able to
explain the symptoms of DOMS commonly observed after unaccustomed eccentric contractions.

3. Possible Involvement of the Connective Tissue

A recent stream of research suggests that the collagenous connective tissue could
represent the pathogenic substrate of DOMS. Based on the available evidence, both the
architectural features and the sensory capacity of fascia may be causal for the perceived
post-exercise discomfort (for a conceptual illustration, see Figure 1).
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Figure 1. Schematic model of a fascial DOMS-origin. During strenuous exercise (1), morphological damage occurs in
the extramuscular connective tissue (2), which stimulates algogenic free nerve endings (3a). At the same time, local
inflammation and edema produce local swelling and further increase pain (3b). Original figure created by the authors.

3.1. Structural Damage: Anatomy of Fascia

If not dissected in cadavers or damaged during surgery, the collagenous connective
tissue is inextricably linked to the skeletal muscle. On the micro-level, the muscle fiber
fuses tightly with the endomysium [42]. Interestingly, up to 70% of the muscle fibers, do
not span the complete distance between insertion and origin [43]. Yet, as the endomysia of
adjacent fibers are structurally connected, they can still transmit force through translaminar
shearing [43]. Similar to the endomysium, the perimysium also does not only represent
an envelope for muscle fiber bundles. Rather, it forms a honeycomb-like network of
collagenous tubes with direct tissue continuity [44]. This has practical implications because
the perimysial web has been demonstrated to transmit a radial force upon mechanical
loading [44]. Finally, the deep fascia has been shown to exhibit direct fibrous expansions
merging with the underlying skeletal muscle, which means that muscular contraction can
selectively tension it [45]. Besides being structurally connected to the underlying muscle,
fascia does also provide a direct linkage to other muscles arranged parallel (e.g., from the
tibialis anterior to the extensor digitorum) or in-series (e.g., from the gastrocnemius to the
hamstrings) [46]. It is therefore tenable to assume that any muscular activity or loading
will have pronounced mechanical effects on the connective tissue.

As outlined, DOMS primarily occurs during eccentric loading, and during this active
lengthening, high strain forces act upon the skeletal muscle. From a functional point of view,
the described continuities to the collagenous soft tissue may represent a shock absorber
taking up excessive forces potentially damaging the skeletal muscle [46,47]. However,
if going beyond the loading capacity, microscopic or macroscopic damage may occur in
the endomysium, perimysium, or deep fascia. Following this paradigm, some studies
have examined the morphology and integrity of the collagenous connective tissue during
loading or following induction of DOMS.

3.2. DOMS-Specific Evidence

Despite its denomination, muscle injuries rarely affect only the muscle tissue [47]. In
about 90% of the cases, the actual site of injury is either located in the musculotendinous
junction or in the extramuscular fascia [47]. Like DOMS, muscle injury frequently occurs
after active excessive eccentric loading, and therefore both may exhibit a similar involve-
ment of the connective tissue. Interestingly, there is compelling evidence for the existence
of structural damage of the extracellular matrix in DOMS. Brown et al. [48] instructed
their participants to perform 50 maximal eccentric contractions of the knee extensors. In-
creased urinary hydroxyproline and hydroxylysine levels, suggestive of connective tissue
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breakdown, were measured immediately as well as two days post-activity. In a more
recent experiment, at 24 to 72 h after induction of DOMS, Mavropilas et al. [49] found
hydroxyproline elevations amounting up to 53%. Yet, interestingly, similar to the lacking
correlation with markers of muscle damage, the observed changes were not associated
with the perceived DOMS magnitude. Additional research is hence urgently warranted to
clarify the relation between structural connective tissue damage and DOMS-related pain.

Raastad et al. [50] examined tissue biopsies sampled from the vastus lateralis muscle
of healthy volunteers performing a total of 300 maximal eccentric contractions of the knee
extensors. On the days following exercise, immunoreactivity for tenascin-C and N-terminal
propeptide of procollagen type III, two markers of extracellular matrix remodeling, was
strongly increased. In eight untrained males, Crameri et al. [51] induced DOMS using
electrostimulation in one leg and active eccentric contraction (isokinetic dynamometer)
in the other leg. Electrostimulation caused significant degrees of intracellular disruption,
Z-disk destruction, and satellite cell markers. Surprisingly, these observations were only
rarely made after active contraction. While this finding raises questions about the relevance
of muscular damage, increased staining for tenascin-C was observed in both conditions,
with two individuals displaying a surge after as little as five hours.

In a recent experiment, Tenberg et al. [52] examined fascial morphology and mechanics
following exhausting eccentric and concentric exercise of the elbow flexors. Contrarily to
concentric loading, which does not lead to DOMS, brachial fascia thickness increased on
the days after eccentric exercise. Importantly, fascial thickening correlated with subjective
DOMS pain upon palpation, suggesting a clinical relevance of the observation. Besides
an accumulation of hyaluronic acid, the thickness increase in the fascia could particularly
reflect edema and inflammation resulting from fascial tissue injury. Changes were also seen
in tissue mobility. While muscle displacement during passive joint movement was higher
after eccentrics, fascial mobility remained unchanged. Additional research is warranted
in order to judge whether an inability of the fascia to follow movement of the muscle has
a pathogenic value in DOMS. In sum, the available evidence suggests the existence of
morphological changes in the extramuscular connective, some of which are directly linked
to subjective discomfort.

3.3. Sensory Contribution: Physiology of Fascia

Fascia is suggested to substantially contribute to proprioception and pain owing to its rich
equipment with sensory receptors. Specifically, histological analyses confirmed the existence
of Ruffini corpuscles [53,54], Pacini corpuscles [53,54], and free nerve endings [53,55–58]. As a
substantial portion of the identified fibers have been reported to be positive for substance P and
the calcitonin gene-related peptide (CGRP), an algogenic capacity of at least some free nerve
endings must be assumed [55–58]. Barry et al. [57] compared the nerve fiber density of different
lumbar tissues in rodents, reporting a threefold higher presence in the fascia as compared to
the muscle.

Owing to its sensory innervation, fascia has been suggested to represent a clinically
relevant potential pain generator. Taguchi et al. [56] applied mechanical, chemical, and
thermal stimuli to the rat crural fascia. Repetitive pinching with a sharpened watch-
maker’s forceps increased production of c-FOS, a gene expressed in neurons, which reflects
pain-related neural activation. Irritating the fascia by means of a cotton ball soaked with
bradykinin led to slowly increasing discharge rates in 13 out of 23 tested c-fibers carry-
ing sensory (e.g., nociceptive) information. While only a few fibers responded to cold
application, heat elicited activity of more than half of the c-fibers. In another experiment,
Schilder et al. [59] injected hypertonic saline solution into the subcutaneous tissue, the deep
fascia, and the muscles of the lower back region. Chemical irritation of the non-muscular
structures provoked more sustainable (~15 vs. ~10 min) and stronger pain sensations than
muscular injection. Additionally, only after fascial irritation, participants used affective
pain descriptors (e.g., agonizing, heavy, and killing), which are frequently related to reports
of low back pain. Deising et al. [60] performed a similar study stimulating different lumbar
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tissues by means of the nerve growth factor (NGF), whose injection evokes local hyperal-
gesia. Following the experiment, long-lasting sensitizations to mechanical and chemical
stimulation (up to two weeks) were observed with regard to the fascia. This is of interest
because DOMS complaints can persist for several days [1].

The higher sensitivity of fascia to noxious stimuli does not only apply to chemical
agents. Again targeting the lower back region, Schilder et al. [61] showed that the same
response pattern (stronger pain sensation upon fascial vs. muscular irritation) occurs
in electrical stimulation. In addition to exhibiting a high general pain sensitivity, fascia
seems to respond strongly to local inflammation. Hoheisel & Mense [62] injected Freund’s
complete adjuvant in the rat thoracolumbar fascia, causing an inflammatory response.
Interestingly, 11% of neurons at the L3 level, which normally do not respond to input
from the lumbar fascia, became active. Furthermore, some nerve cells displayed new
receptive fields.

Taken together, the available evidence suggests that the fascial connective tissue rather
than the muscle may play a role in the development and perception of soft tissue pain.

3.4. DOMS-Related Evidence

Gibson et al. [63] instructed a sample of 13 healthy young adults to perform an
eccentric loading protocol for the tibialis anterior muscle of one leg. One day after induction
of DOMS, hypertonic saline was injected into the tibialis anterior muscle and its deep
fascia. In the non-exercised control leg, irritation of the fascia was more painful (+42%)
than stimulation of muscle tissue, which accords with the above findings of Schilder and
colleagues [59]. The same pattern (higher pain upon fascial injection) was found in the
exercised leg, however, there was a marked difference. While pain following muscular
irritation was identical to the control leg, stimulation of the fascia was 39% more painful.
This means that the deep fascia, but not the skeletal muscle, becomes more sensitive to
noxious chemical stimuli in the presence of DOMS. In the study of Lau et al. [64], ten
young male participants performed 10 × 6 maximal isokinetic eccentric contractions of
the non-dominant elbow flexors in order to induce DOMS. On the following days, the
authors measured the electrical pain threshold using ultrasound imaging and needle
electrodes. In line with previous findings, pain intensity changes from the baseline were
higher for the biceps brachii and the brachialis fascia as compared to the skeletal muscle
at 48 h post-exercise. Whilst changes in fascial sensitivity upon electrical stimulation
were not associated with palpation pain, a moderate to strong correlation existed with the
mechanical pain threshold (r = 0.63–0.87).

4. Practical Implications and Perspectives for Future Research

Hitherto, the majority of the available research on DOMS has been dedicated to
the study of the skeletal muscles. For instance, shear wave elastography represents a
promising and straightforward method to quantify the mechanical stiffness of the soft
tissue. With regard to DOMS, its application is particularly interesting because it allows
a clear differentiation assessment of structures (i.e., muscle vs. fascia). Agten et al. [65]
examined a sample of 10 volunteers on the days following heavy eccentric exercise of
the elbow flexors. Shear wave velocity (a surrogate of mechanical stiffness), measured
exclusively inside the muscles, increased immediately post-exercise but returned to the
baseline around day two. However, as subjective pain levels reached their peak on day
three, a causal relationship with DOMS seems improbable. In view of this and considering
the accumulating evidence on the potential implication of the fascia, future studies should
use imaging-based methods to study morphological and mechanical changes (i.e., stiffness
and elasticitiy) of the deep fascia (Figure 2).

Besides helping to clarify the pathophysiology underlying DOMS, focusing on the
collagenous connective tissue could open new avenues for its treatment. According to a
systematic review with meta-analysis from Dupuy et al. [66], active recovery, massage,
the use of compression garments, immersion, contrast water therapy, and cryotherapy are
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effective in improving DOMS complaints. Assuming the presence of structural damage
in the deep fascia of the skeletal muscle, the timely supply of building material for tissue
repair should be crucial for recovery. The oral administration of gelatin has been shown
to increase the concentration of the amino acids: glycine, proline, hydroxyproline and
hydroxilysine, which are of essential importance for collagen production [67]. In addition,
gelatin intake caused a twofold increase of the N-terminal peptide of pro-collagen I (PINP),
which indicates stronger collagen production [67]. In a double-blind randomized, con-
trolled trial [68], 24 recreationally active male adults received a placebo or 20 g collagen
peptides daily over the period of one week before until 48 h after a fatigue protocol with
150 drop jumps. At two days post-exercise, the DOMS magnitude was substantially lower
in the verum group (90.4 vs. 125.7 mm on a visual analogue scale, d = 2.6) as compared
to the placebo group. Additionally, individuals with gelatin supplementation restored
decrements in counter-movement jump height (a measure of lower leg explosive force)
faster than participants with placebo intake (90% vs. 79% of baseline performance at
day two). In future trials, it should be evaluated if chronic collagen supplementation can
prevent further reduce DOMS and if different doses can modify the effect observed in this
initial exploratory trial.

Foam rolling, an intensive form of self-massage with polypropylene tools, represents
another promising method to address fascial alterations after strenuous exercise. Krause
et al. [69] demonstrated that an acute bout of rolling in the thigh reduces pain sensitivity
while improving the relative sliding capacities of the individual fascial layers. Altered
intrafascial gliding, which is normally ensured owing to the presence of hyaluronic acid,
has been linked with the occurrence of pain [70]. Possibly, the improvement of intrafascial
sliding can explain why rolling decreases soft tissue pain [71,72] and DOMS [72–74].
Additional research may combine specific assessments of fascial and muscular tissue
components (i.e., using ultrasound and elastography imaging, see Figure 2) as well as
subjective pain ratings after rolling treatments.
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Figure 2. Shear-wave elastography (SWE) of the ventral thigh before (left) and 48 h (right) after lower leg eccentric exercise.
In SWE, an acoustic radiation force impulse is used to produce shear waves traveling perpendicularly. Measuring the speed
of this horizontal shear wave propagation allows the calculation of mechanical properties. The colored regions of interest
indicate the tissue’s mechanical stiffness: while blue represents low values, red represents high values. Note the marked
stiffness increase in and near the deep fascia over the muscle (small circles). The scans used for this figure were acquired in
the authors’ laboratory.
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While both collagen supplementation and foam rolling represent relatively passive
strategies to trigger adaptations of the soft tissue, conditioning coaches and health profes-
sionals may consider designing specific exercise paradigms aiming to increase the tolerance
of fascia to loaded lengthening. Besides regular eccentric training and plyometrics, this may
particularly include multidirectional dynamic stretching at varying velocities. However,
although the connective tissue has generally been demonstrated to substantially adapt
to mechanical stimuli [6], studies specifically addressing the impact of exercise on the
morphology and mechanics of the deep fascia are still scarce.

5. Conclusions

Although theories explaining the pathogenesis of DOMS have long focused on the
skeletal muscle, there is accumulating evidence suggesting a prominent role of the col-
lagenous connective tissue. Based on the available literature, strain forces associated with
eccentric contraction may cause micro-ruptures and inflammation of the deep fascia. As
experimental research clearly demonstrates that fascia is more pain-sensitive than muscle
following chemical, thermal, electrical, and mechanical irritation, we propose that delayed
onset soft tissue stiffness (DOSS) is a more precise descriptor of the post-exercise phe-
nomenon. Currently, there is still a lack of studies examining fascia-specific approaches
for the prevention and treatment of DOSS. However, initial evidence suggests that foam
rolling and supplementation with collagen peptides may represent promising options to
alleviate the post-exercise-discomfort. Sports and fitness professionals may hence modify
previous approaches designed to prevent and treat DOSS, now providing more specific
stimuli for the deep fascia.

Author Contributions: J.W. conceived the idea for the article; J.W. and M.B. performed the literature
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