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and ecto-5′-nucleotidase in purinergic signaling: how the field
developed and where we are now
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Abstract
Geoffrey Burnstock will be remembered as the scientist who set up an entirely new field of intercellular communication,
signaling via nucleotides. The signaling cascades involved in purinergic signaling include intracellular storage of nucleotides,
nucleotide release, extracellular hydrolysis, and the effect of the released compounds or their hydrolysis products on target tissues
via specific receptor systems. In this context ectonucleotidases play several roles. They inactivate released and physiologically
active nucleotides, produce physiologically active hydrolysis products, and facilitate nucleoside recycling. This review briefly
highlights the development of our knowledge of two types of enzymes involved in extracellular nucleotide hydrolysis and thus
purinergic signaling, the ectonucleoside triphosphate diphosphohydrolases, and ecto-5′-nucleotidase.
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Introduction

Ectonucleoside triphosphate diphosphohydrolases (E-
NTPDases) and ecto-5′-nucleotidase (eN) are only part of a
broader spectrum of extracellular nucleotide-metabolizing en-
zymes, including ectonucleotide pyrophosphatase/phosphodi-
esterases, alkaline phosphatases, prostatic acid phosphatase,
or extracellular ATP-regenerating enzymes [1, 2]. Yet, E-
NTPDases and eN have been the enzyme axis most extensive-
ly studied regarding purinergic signaling. Geoff Burnstock

maintained great interest in the mechanisms of extracellular
nucleotide breakdown as these control purinergic receptor ac-
tivity. This brief review is dedicated to Geoffrey Burnstock
(1929–2020) as the leading scientist and promotor in the field,
founder and chief editor of this journal, wonderful colleague,
and friend.

Nucleoside triphosphate
diphosphohydrolases

Early studies

Regarding the fate of ATP released from nerve endings, Geoff
Burnstock, in his seminal review of 1972 [3], discards the
possibility that it can directly be recycled. He strongly sup-
ports the notion that it is broken down by extracellularly lo-
cated enzymes via ADP and AMP to adenosine, which is then
recycled into the nerve ending for intracellular resynthesis of
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ATP. He develops a model of synthesis, storage, release, and
inactivation of ATP at the purinergic neuromuscular junction
that still holds today (Fig. 1).

Evidence for extracellular hydrolysis of ATP in tissue per-
fusates was provided already in the 1930s. But biochemical
approaches to a mechanistic analysis were developed later.
Since ATP is hydrolyzed intracellularly and by broken tissue,
convincing evidence for cell surface-located ATP hydrolysis
could initially only be obtained by analysis of dispersed and
intact cells. First evidence was provided in 1945 in carefully
washed bull spermatozoa by T. Mann in Cambridge [4]. More
detailed reports followed this pioneering study [5, 6]. When
analyzing nucleated avian erythrocytes, Wladimir A.
Engelhardt and Tatjana Wenkstern realized that not only
ATP but also ADP or ITP were hydrolyzed [7, 8]. Catalytic
activity had an alkaline pH optimum and was blocked by
EDTA (ethylenediaminetetraacetic acid). These two authors
introduced the term ecto-ATPase in 1955 [9] as well as the
terms ectoenzyme and ecto-apyrase (Engelhardt, 1958, held at
the International Symposium on Enzyme Chemistry, Tokyo
and Kyoto, 1957, [7] and Wenkstern and Engelhardt in 1959)
[8].

Objections and a solution

Yet, the function of this “ectoenzyme” remained obscure.
Nucleotides appeared not to be present in appreciable amounts
in the extracellular medium. ATPase activity was solely
known to relate to cellular energetics and cellular metabolism.
Could it have something to do with active transport of sub-
stances across the plasma membrane or the control of cell
permeability? [7]. This problem persisted for a very long time.

Biochemists would not agree that an energy-rich substance
such as ATP would at all be released from cells under phys-
iological conditions. And if so, the free enthalpy of hydrolysis
had to be employed somehow for an energy-driven cellular
process. It would not simply evaporate. This is the merit of
Geoff Burnstock: extracellular nucleotide hydrolysis makes
sense in the light of purinergic signaling.

Biochemical analysis

In spite of these uncertainties, an increasing number of studies
using various cellular systems analyzed the catalytic proper-
ties of extracellular nucleotide hydrolysis. The results varied
to some extent between individual studies. In retrospect, this is
not at all surprising since several “ATPases” exist in the plas-
ma membrane and, even more, several ectoenzymes capable
of hydrolyzing extracellular ATP may coexist in the same
tissue. But some consensus was achieved that the “enzyme”
is a glycosylated membrane integral protein, that the underly-
ing catalytic activity is activated by Ca2+ or Mg2+ in the mil-
limolar range and inhibited by EDTA, and that catalytic activ-
ity is highly sensitive to SH reagents but insensitive to inhib-
itors at concentrations which inhibit mitochondrial ATPase
and Na+/K+-ATPase. Km values for ATP were in the low
millimolar range. Both purine and pyrimidine nucleotides
were hydrolyzed, albeit with differing efficiency. In the
1980s, first attempts were made to purify the ectoenzyme(s).
The high detergent sensitivity turned out to be a major obsta-
cle for enzyme purification because the monomeric forms
retain little catalytic activity. These early studies were summa-
rized in several reviews [10–20].

Fig. 1 Schematic representation
of synthesis, storage, release, and
inactivation of ATP at purinergic
nerves as depicted by Burnstock
for purinergic neuromuscular
junctions in 1972 [3]. Reproduced
with permission from the
American Society for
Pharmacology and Experimental
Therapeutics
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Purification and molecular cloning

The rise of molecular genetics made all the difference.
Sequence information from purified proteins made it possible
to identify the encoding cDNA, followed by heterologous
expression and analysis of the protein. Moreover, sequence
comparison allowed the identification of paralogues and of
orthologues in other species. This was achieved by
converging efforts of several laboratories. An ATP
diphosphohydrolase was first purified to homogeneity by
Christoforidis et al. in 1995 [21] from human placenta. It
turned out that the peptide sequences obtained corresponded
to a functionally as yet unidentified lymphoid cell activation
protein (Cluster of differentiation 39, CD39) that had been
cloned and sequenced shortly before [22]. Of note, this was
not known to Christoforidis et al. when they submitted their
paper. Moreover, a soluble apyrase was cloned from potato
tubers in 1996 which was found to be related to CD39 and
known apyrases from other organisms. Apparently, there was
a group of widely conserved enzymes whose sequences shared
typical features such as the “apyrase conserved regions” [23]. In
the same year, this laboratory demonstrated ecto-apyrase activ-
ity of CD39 by expression in COS-7 cells [24]. Moreover,
peptide sequences from a bovine aorta-derived ATP
diphosphohydrolase revealed identity with CD39 [25].
Similarly, expression of CD39 in COS-1 cells confirmed its
ecto-ADPase activity and highlighted its role as a prime endo-
thelial thromboregulator [26]. The ice was broken.While it was
originally thought that there was only a single mammalian
“ecto-apyrase,” a paralog was soon sequenced and expressed
by Kegel et al., in 1997 [27]. Surprisingly, it turned out to

preferentially hydrolyze ATP and appeared to function as an
“ecto-ATPase” rather than an “ecto-apyrase” [28]. Moreover,
four paralogs were identified in 1998 in the human genome,
demonstrating that an entire gene and protein family must exist
[29]. We now know that eight paralogs are encoded in the
mammalian genome, all hydrolyzing nucleotides only, four of
which are typical surface-located ectonucleotidases
(NTPDase1, 2, 3, and 8) (Fig. 2). Related enzymes are found
in invertebrates, plants, yeast, protozoans, and bacteria [30]. E-
NTPDases share common sequence motifs with members of
the ASKHA (acetate and sugar kinases/Hsc70/actin) superfam-
ily of phosphotransferases [1, 31, 32] .

The years following envisaged impressive progress in fur-
ther characterizing proteins and genes, using mutation studies,
developing inhibitors, resolving atomic structures, and analyz-
ing their function in physiological and pathophysiological
conditions. The four surface-located E-NTPDases are glyco-
sylated and share their general membrane topology with two
transmembrane domains, which play an important role in
function and regulation of the enzymes in addition to anchor-
ing the proteins in the plasma membrane (Fig. 2). The forma-
tion of oligomers is essential for full catalytic activity. The
biochemical properties of the E-NTPDases, their splice vari-
ants, and their tissue distribution have been reviewed in detail
[1, 19, 20, 32–36].

Confusing nomenclature

Considerable confusion existed regarding nomenclature.
Different names had been assigned by different groups and
to individual paralogues. Moreover, the often-used term ecto-

Fig. 2 Membrane topology of
NTPDases 1, 2, 3, and 8 and eN
(ecto-5′-nucleotidase). The boxes
in the NTPDase extracellular loop
represent the position of the
apyrase conserved regions. eN is
GPI-anchored. The GPI anchor
may be cleaved by endogenous
phospholipases resulting in the
release of the enzyme into the
interstitial space. NTPDases have
the potential to form homo-
oligomeric complexes (dimers to
tetramers). eN exists and
functions as a noncovalent dimer
[1]. The hydrolysis cascade is
shown for ATP to adenosine. But
it applies also to other nucleoside
triphosphates (NTP→NDP→
NMP; NMP→ nucleoside).
Purinergic receptors activated by
nucleotides and adenosine are
indicated below

119Purinergic Signalling (2021) 17:117–125



ATPase for the ecto-ATP diphosphohydrolase appeared mis-
leading since it disguised the fact that also ADP (an agonist of
several P2Y receptors) is hydrolyzed with AMP as the final
hydrolysis product. Moreover, not only ATP and ADP but
also other nucleoside tri- and diphosphates were hydrolyzed.
The author of this article thus put together a nomenclature
committee which finally met at the conference on “Ecto-
ATPases and related ectonucleotidases” held in Diepenbeek,
Belgium, in 1999 where it was agreed to apply a strictly bio-
chemical enzyme nomenclature and to name this new protein
family ectonucleoside triphosphate diphosphohydrolase fam-
ily (E-NTPDase family) (EC: EC 3.6.1.5) and its individual
members NTPDase1, NTPDase2, and so on [35, 37]. While
the name CD39 is frequently used for NTPDase1 in studies
merely relating to its catalytic function, the author holds that
the enzyme nomenclature should be applied.

Crystal structures and catalytic cycle

Of central importance for understanding the molecular mech-
anisms of hydrolysis and the development of inhibitors was
the resolution of crystal structures of E-NTPDases. First struc-
tures were obtained of the extracellular domain of rat
NTPDase2 [38] and a related soluble NTPDase of the patho-
genic bacterium Legionella pneumophila (LpNTPDase1),
which is secreted into the replication vacuole [39]. The crystal
structures revealed a pseudo-symmetrical arrangement of two
extended RNase H fold repeats that is also found in other
members of the actin structural superfamily. Two structural
domains are formed which are characterized by a central
mixed β-sheet and a peripheral layer of mainly α-helices.
Co-crystals with substrate analogs allowed to identify the cat-
alytic site and to propose a catalytic mechanism involving the
individual apyrase conserved regions. The same catalytic site

is employed in the hydrolysis of nucleoside di- and triphos-
phates. During the catalytic cycle, the domains undergo rota-
tional movements supporting the idea that the previously de-
scribed impact of transmembrane helix dynamics on activity is
achieved by coupling to a domain motion (Fig. 3) [40, 41].

Development of inhibitors

Multiple studies have highlighted the involvement of
ectonucleotidases in pathological conditions. The interplay
of ectonucleotidases with the nucleotide and adenosine recep-
tor systems has come increasingly into focus. Alterations in
extracellular nucleotide and adenosine levels can increase or
decrease P2 receptor and P1 receptor activity. The develop-
ment of potent and subtype-specific ectonucleotidase inhibi-
tors thus appeared mandatory [42]. This was a field Geoff
Burnstock was particularly interested in. In the 1990s, his
group published a series of papers on “ecto-ATPases,” which
mostly focused on the characterization of enzyme inhibitors
[13]. The development of potent and specific inhibitors
turned out to be a challenge. Inhibitors should not affect
nucleotide receptors or other types of ectonucleotidases—
which all share nucleotide-binding sites. And they should
not become hydrolyzed. While several E-NTPDase inhib-
itors have been developed, potent subtype-specific inhibi-
tors are scarce. Most of these are ATP analogs.
Other classes concern polyoxometalates, negatively
charged metal complexes, anthraquinone derivatives,
Schiff bases of tryptamine, quinoline derivatives, and
thiadiazolopyrimidones [43–46]. The elucidation of the
molecular structure of mammalian E-NTPDases now per-
mits a structure-guided approach of inhibitor development
with the ultimate goal of drug design [47].

Fig. 3 Ectodomain structure of NTPDase1 and eN. To mark the active
site of rat NTPDase1 (chain A of protein data bank [pdb] id 3zx3), the
non-hydrolysable ATP analogue AMPPNP (β,γ-imidoadenosine 5′-
triphosphate) (red) and a calcium ion (black sphere) have been
superimposed from rat NTPDase2 structure (pdb id 3cja). For the
homodimeric eN, the domains of one monomer are depicted in blue
and green, whereas the other subunit is shown in yellow and orange.

The catalytic zinc ions are shown in black and the structural Ca2+ ions
in gray. Adenosine (red) is bound to the C-terminal domains of the open
state structure of eN (pdb id 4h2i), and AMPCP (adenosine 5′-[α,β-
methylene]diphosphate) (red) is bound to the active site in the closed state
structure (pdb id 4h2i). The figure was kindly provided by Norbert
Sträter, Leipzig, Germany
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Therapeutic approaches

Equally important were studies which generated subtype-
specific antibodies for analyzing the distribution of the indi-
vidual enzymes in mammalian tissues [42] and the generation
of mice in which individual NTPDases were deleted. The first
gene encoding a mammalian NTPDase deleted from the
germline was Entpd1 [48]. The study proved its fundamental
role in hemostasis and thrombosis. This was followed by the
deletion of Entpd2, the gene encoding NTPDase2, which
allowed to analyze the function of the enzyme in taste buds
[49], followed by the deletion of NTPDas3 [50]. Moreover,
transgenic overexpression of NTPDase1 in mice or pigs per-
mitted insight into its role in multiple organ systems. One
outcome was the attenuation of myocardial infarction by de-
creasing infarct size [51–53], confirming previous results em-
phasizing the important role of ATP hydrolysis and in partic-
ular of NTPDase1 in the interplay with nucleotide receptors in
the control of vascular function [54, 55].Moreover, the benefit
of administration of soluble apyrase or of induction of
NTPDase1 by adenoviral vectors on several models of organ
transplantation has been investigated [56]. By now, multiple
organ systems and disease models including cancer, immuno-
suppression, and inflammation have been studied. Recently,
the clinical evaluation of anti-NTPDase1monoclonal antibod-
ies for cancer therapy has been initiated [57]. Only a selection
of overviews can be cited here [58–70].

Ecto-5′-nucleotidase

Biochemical properties

This enzyme was first described in extracts of heart tissue
by J.L. Reis in 1934 who named it “5-nucleotidase” [71].
He realized that “5-nucleotidase” differs from nonspecific
phosphatases already known at the time as it showed high
specificity towards nucleoside monophosphates (Fig. 2). In
contrast to NTPDases, 5′-nucleotidase was intensively in-
vestigated early on [72, 73]. In 1974, it was shown that
5′-nucleotidase is an ectoenzyme in several cell types
[74–76]. As a result of adenosine production, scavenging
of extracellular nucleotides (including nutrition), involve-
ment in vasodilation, neurotransmission, or hemostasis had
been described [77]. The glycoprotein eN is a major en-
zyme producing adenosine from extracellular AMP and
thus for activation of adenosine receptors [78]. Before this
context had been elucidated, eN was widely used as a
membrane marker and for the analysis of plasma membrane
recycling [79]. Eukaryotic eN functions as a noncovalent
dimeric Zn2+-binding protein, with reported Km values for
AMP between 1 and 50 μM. ATP and ADP are competi-
tive inhibitors of mammalian eN with Ki values in the low

micromolar range. This is important, since due to feed for-
ward inhibition, adenosine formation from ATP or ADP
will be considerably delayed until extracellular nucleotide
levels have fallen into the micromolar range [1].

While it was originally assumed that eN is an integral mem-
brane protein, it was shown by several groups that it can be
released by phosphatidylinositol-specific phospholipase C
and thus must be anchored to the plasma membrane by a
glycosylphosphatidylinositol (GPI) anchor [80]. Primary
structures were first obtained for the enzyme from rat liver
[81], human placenta [82], and the brain of the electric ray
[83]. Sequence comparison revealed that eN can be grouped
in t o t he ca l c i n eu r i n supe r f am i l y o f d i nuc l e a r
metallophosphatases with multiple members in prokaryotes,
invertebrates, and vertebrates. The molecular and functional
properties of eN have been reviewed [1, 84, 85]. Interestingly,
humans express several transcript variants [86].

Nomenclature

As for NTPDases, the nomenclature of 5′-nucleotidases was
initially confusing. Apparently, there existed also soluble
forms. Whereas some shared properties with eN, others
clearly differed regarding catalytic properties. Therefore, an
attempt was made by the author of this article to classify the
various types of 5′-nucleotidases, and a new nomenclature
was suggested [80]. One of the soluble forms was assigned
to eN, generated by cleavage of the GPI anchor. At that time,
no sequence information was available for soluble 5′-nucleo-
tidases. After the sequences of the six intracellular and soluble
5′-nucleotidases had been revealed, the nomenclature was
adapted accordingly [87]. CD73 (cluster of differentiation
73) is frequently used as an alternative name in studies ad-
dressing eN.

Crystal structures and inhibitors

Crystal structures were first obtained for Escherichia coli 5′-
nucleotidase which served as a model for mammalian eN [88,
89]. In 2012, crystal structures of both the open and closed
form of human eN lacking the membrane anchor were deter-
mined [90, 91]. These studies revealed an extensive active site
closure movement involving the N- and C-terminal domains
of the eN monomer, which is thought to be necessary for
human eN catalysis, permitting substrate binding and product
release (Fig. 3). In addition, the active site closure movement
may control eN substrate specificity towards AMP and there-
by inhibition by ADP and ATP. It is now possible to design
structure-based potent and selective small molecule inhibitors
for future drug development. This is important as the hydro-
lysis product adenosine is involved in numerous pathologies.
Progress had been made with several naturally occurring phe-
nolic compounds and flavonoids or anthraquinone dye
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derivatives [44, 92]. A catalytically active soluble rat eN pu-
rified after heterologous expression in insect cells [93] has
been widely used for drug screening. Recently, small mole-
cule inhibitors with subnanomolar Ki values at human and rat
eN could be developed, which are derivatives of purine and
pyrimidine nucleotides. Moreover, high-resolution co-crystal
structures revealed insight into the binding mode and repre-
sent an excellent basis for drug development [57, 94–96].
Similarly, monoclonal antibodies are applied as inhibitors of
eN and may be employed as therapeutic agents [97–99].

Highly relevant for adenosine signaling

Ecto-5′-nucleotidase plays an important role in tissue homeo-
stasis and pathology in many organ systems and in acute and
chronic inflammation [2]. This is particularly relevant in the
context of acute and chronic types of injury, where eN is
essential for maintaining tissue integrity and recovery [69,
86]. Important insight was obtained by targeted disruption of
the Nt5e gene in mice revealing that vascular leakage was
significantly increased in multiple organs and identifying the
enzyme as a critical mediator of vascular leakage in vivo
[100]. Moreover, genetic deletion of eN in mice is associated
with a proinflammatory phenotype suggesting that eN-
mediated adenosine formation represents a key innate mech-
anism to attenuate tissue inflammation [101, 102]. Behavioral
analyses of eN knockout mice suggest that eN is involved in
the regulation of learning and memory and psychomotor co-
ordination [103]. Numerous studies analyzing Nt5e-depleted
mice followed [85]. More recently, eN has gained consider-
able attention as a target for cancer treatment. Both ATP and
adenosine accumulate at high levels in inflammatory and tu-
mor sites. They play a central role in immune cell regulation
and tumor cell proliferation. eN is upregulated in various types
of cancer. The immunosuppressive adenosine impairs antitu-
mor responses and enhances tumor growth and metastasis.
Targeted eN (as well as NTPDase1) therapy using inhibitors
is therefore an important approach to effectively control tumor
growth [57, 99, 104–106].

Résumé

Fifty years after establishing the concept of purinergic signal-
ing by Geoff Burnstock and after about 80 years following the
discovery of the two types of ectonucleotidases and numerous
studies which elucidated their functional and structural prop-
erties, the time is now ripe for harvest. This concerns in par-
ticular the application of new tools for identifying the patho-
physiological involvement of the enzymes in purinergic sig-
naling in the various organ systems and the development of
tailored therapies for human diseases.
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