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Nonlinear Differential Equations
and Applications NoDEA

Existence and orbital stability of standing
waves to a nonlinear Schrödinger equation
with inverse square potential on the half-line

Elek Csobo

Abstract. In our work, we establish the existence of standing waves to a
nonlinear Schrödinger equation with inverse-square potential on the half-
line. We apply a profile decomposition argument to overcome the difficulty
arising from the non-compactness of the setting. We obtain convergent
minimizing sequences by comparing the problem to the problem at “in-
finity” (i.e., the equation without inverse square potential). Finally, we
establish orbital stability/instability of the standing wave solution for
mass subcritical and supercritical nonlinearities respectively.
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waves, Orbital stability.

1. Introduction

We study the existence and orbital stability of standing waves for the following
nonlinear Schrödinger equation with inverse square potential on the half line{

iut + u′′ + c
u

x2
+ |u|p−1u = 0,

u(0) = u0 ∈ H1
0 (R+),

(1.1)

where u : R × R
+ → C, u0 : R

+ → C, 1 < p < ∞, and 0 < c < 1/4.
There has been considerable interest recently in the study of the

Schrödinger equation with inverse-square potential in three and higher dimen-
sions. Classification of the so-called minimal mass blow-up solutions, global
well-posedness, and stability of standing wave solutions were studied in [1,6,8,
22]. In the papers by Bensouilah et al. [1], and by Trachanas and Zographopou-
los [22] the authors establish orbital stability of ground state solutions in the
Hardy subcritical (c < (N − 2)2/4) and Hardy critical (c = (N − 2)2/4) case
respectively for dimensions higher that three. In both cases, orbital stability is
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proved by showing the precompactness of minimizing sequences of the energy
functional on an L2 constraint. Local well-posedness was established for the
two-dimensional space by Suzuki in [21], and in three and higher dimensions
by Okazawa et al. in [18]. The presence of the inverse square potential in one-
dimensional space has also attracted attention. In [13] H. Kovarik and F. Truc
established dispersive estimates for ∂2

x + c/x2.
The dynamics of the equation is closely related to Hardy’s inequality (see

[7])

c

∫ ∞

0

|u|2
x2

dx �
∫ ∞

0

|u′|2dx for all u ∈ C∞
0 (0,∞), (1.2)

where c � 1/4. We introduce the Hardy functional

H(u) =
∫ ∞

0

(
|u′|2 − c

x2
|u|2

)
dx,

which is closely related to our problem. We will mainly focus on the case
0 < c < 1/4, when the natural energy space associated to (1.1) is H1

0 (R+),
and the semi-norm ‖u′‖2

L2 is equivalent to H(u).
Let us consider the operator

Hc = − ∂2

∂x2
− c

x2

acting on C∞
0 (R+). Owing to the Hardy inequality, if c < 1/4 the qua-

dratic form 〈Hcϕ,ϕ〉 is positive definite on C∞
0 (R+). It is natural to take the

Friedrichs extension of Hc, thereby defining a self-adjoint operator in L2(R+),
which generates an isometry group in H1

0 (R+).
Local well-posedness for parameters 1 < p < ∞ and 0 < c < 1

4 follows
by standard arguments (see e.g. in [3] Chapter 4). In particular, the following
holds.

Theorem 1.1. Let 1 < p < ∞ and c < 1/4. For any initial value u0 ∈
H1

0 (R+), there exist Tmin, Tmax ∈ (0,∞] and a unique maximal solution u ∈
C((−Tmin, Tmax),H1

0 (R+)) of (1.1), which satisfies for all t ∈ (−Tmin, Tmax)
the conservation laws

‖u(t)‖L2 = ‖u0‖L2 , E(u(t)) = E(u0), (1.3)

where the energy is defined as

E(u) =
1
2

‖u′‖2
L2 − c

2

∥∥∥u

x

∥∥∥2

L2
− 1

p + 1
‖u‖p+1

Lp+1 , for u ∈ H1
0 (R+). (1.4)

Moreover, the so-called blow-up alternative holds: if Tmax < ∞ then
limt→Tmax ‖u′(t)‖L2 = ∞, (or Tmin < ∞ then limt→−Tmin ‖u′(t)‖L2 = ∞).

In this work we address the existence of standing wave solutions and their
orbital stability/instability. By introducing the ansatz u(t, x) = eiωtϕ(x), the
standing wave equation to (1.1) reads as

ϕ′′ +
c

x2
ϕ − ωϕ + |ϕ|p−1ϕ = 0. (1.5)
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First we will prove regularity of standing waves and the Pohozaev identities.
To establish the existence of standing waves we carry out a minimization pro-
cedure on the Nehari manifold for the so-called action functional

S(v) =
1
2

‖v′‖2
L2 − c

2

∥∥∥v

x

∥∥∥2

L2
+

ω

2
‖v‖2

L2 − 1
p + 1

‖v‖p+1
Lp+1 v ∈ H1

0 (R+).

Owing to the non-compactness of the problem, we have to use a profile decom-
position lemma, in the spirit of the article by Jeanjean and Tanaka [11]. To
establish strong convergence of the minimizing sequence on the Nehari mani-
fold we compare the minimization problem with the problem “at infinity”, i.e.
when c = 0. Hence, we obtain that the set of bound states is not empty:

A = {u ∈ H1
0 (R+) \ {0} : u′′ + cu/x2 − ωu + |u|p−1u = 0} �= ∅.

We are in particular interested in the orbital stability/instability of ground
states, i.e., solutions which minimize the action functional. We denote the set
of ground sate solutions by

G = {u ∈ A : S(u) � S(v) for all v ∈ A}.

We use Lions’ concentration-compactness principle to obtain a variational
characterization of ground states on an L2-constraint, thereby establishing
the orbital stability of the set of ground states for nonlinearities with power
1 < p < 5. Finally, for p � 5 we establish strong instability by a convexity
argument.

2. Existence of bound states

We start by investigating the standing wave equation,{
ϕ′′ + c

x2 ϕ − ωϕ + |ϕ|p−1ϕ = 0,

ϕ ∈ H1
0 (R+) \ {0}.

(2.1)

First, we prove the regularity of solutions to (2.1) by a bootstrap argument.

Proposition 2.1. Let ω > 0 and c < 1/4. Assume ϕ ∈ H1
0 (R+) is a solution of

(2.1) in H−1(R+). Then the following statements are true

(1) ϕ ∈ W 2,r
0 ((ε,∞)) for all r ∈ [2,+∞) and ε > 0, in particular ϕ ∈

C1((ε,∞));
(2) The solution is exponentially bounded, that is e

√
ωx(|ϕ|+ |ϕ′|) ∈ L∞(R+);

Proof. (1) For ϕ ∈ H1
0 (R+) we have ϕ ∈ Lq(R+) for all q ∈ [2,∞]. We get

easily that |ϕ|p−1ϕ ∈ Lq(R+) for all q ∈ [2,∞). By (2.1) we have for any
ε > 0 that ϕ ∈ W 2,q

0 ((ε,∞)) for all q ∈ [2,∞). By Sobolev’s embedding we
get ϕ ∈ C1,δ((ε,∞)) for all δ ∈ (0, 1), hence |ϕ(x)| → 0, and |ϕ′(x)| → 0 as
x → ∞.

(2) Let ω > 0. Changing ϕ(x) to ϕ(x) = ω1/(p−1)ϕ(
√

ωx) we may assume
that ω = 1 in (2.1). Let ε > 0 and θε(x) = e

x
1+εx , for x � 0. It is easy to see

that θε is bounded, Lipschitz continuous, and |θ′
ε(x)| � θε(x) for all x ∈ R

+.
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Additionally, θε(x) → ex uniformly on bounded sets of R
+. Taking the scalar

product of the equation (2.1) with θεϕ ∈ H1
0 (R+), we get

Re
∫
R+

ϕ′ · (θεϕ̄)′dx − c

∫
R+

θε
|ϕ|2
x2

dx +
∫
R+

θε|ϕ|2dx =
∫
R+

θε|ϕ|p+1dx.

Using the inequality Re(ϕ′(θεϕ̄)′) � θε|ϕ′|2 − θε|ϕ||ϕ′| and∫
R+

θε|ϕ||ϕ′|dx � 1
2

∫
R+

θε|ϕ|2dx +
1
2

∫
R+

θε|ϕ′|2dx,

we obtain
1
2

∫
R+

θε|ϕ′|2dx +
1
2

∫
R+

θε|ϕ|2dx − c

∫
R+

θε
|ϕ|2
x2

dx �
∫
R+

θε|ϕ|p+1dx.

Let R > 0 such that if x > R, then c
x2 � 1

8 and |ϕ(x)|p−1 � 1
8 . Then we get

c

∫
R+

θε
|ϕ|2
x2

dx +
∫
R+

θε|ϕ|p+1

� eR

(∫ R

0

c
|ϕ|2
x2

dx +
∫ R

0

|ϕ|p+1dx

)
+

1
4

∫
R+

θε|ϕ|2dx.

From the last two inequalities it follows that

1
2

∫
R+

θε|ϕ′|2dx +
1
4

∫
R+

θε|ϕ|2dx � eR

(∫ R

0

c
|ϕ|2
x2

dx +
∫ R

0

|ϕ|p+1dx

)
.

By taking ε ↓ 0 we get
1
2

∫
R+

ex|ϕ′|2dx +
1
4

∫
R+

ex|ϕ|2dx < ∞.

Since both ϕ and ϕ′ are Lipschitz continuous we deduce that |ϕ(x)|ex and
|ϕ′(x)|ex are bounded. �

We now prove that there exists a solution to (2.1). We define the action
functional associated to (2.1) as follows

S(u) =
1
2
H(u) +

ω

2
‖u‖2

L2 − 1
p + 1

‖u‖p+1
Lp+1 ,

for c < 1/4 and u ∈ H1
0 (R+). Clearly, we have

S′(u) = −u′′ − c

x2
u + ωu − |u|p−1u.

Therefore, to prove the existence of a solution to (2.1) amounts to show that
S has a nontrivial critical point. A simple calculation yields the following
identities.

Lemma 2.2. Assume p > 1, ω > 0 and c < 1/4. Let ϕ ∈ H1
0 (R+) be a solution

of (2.1) in H−1(R+). Then the following identities are true:

‖ϕ′‖2
L2 − c

∥∥∥ϕ

x

∥∥∥2

L2
+ ω ‖ϕ‖2

L2 − ‖ϕ‖p+1
Lp+1 = 0, (2.2)

‖ϕ′‖2
L2 − c

∥∥∥ϕ

x

∥∥∥2

L2
− p − 1

2(p + 1)
‖ϕ‖p+1

Lp+1 = 0. (2.3)
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Proof. We obtain the first equality by multiplying (2.1) by ϕ̄ and integrating
over R

+.
To prove the second equality, let us put ϕλ(x) = λ1/2ϕ(λx) for λ > 0.

We have that

S(ϕλ) =
λ2

2
‖ϕ′‖2

L2 − λ2c

2

∥∥∥ϕ

x

∥∥∥2

L2
+

ω

2
‖ϕ‖2

L2 − λ(p−1)/2

p + 1
‖ϕ‖p+1

Lp+1 ,

from which we get
∂

∂λ
S(ϕλ)

∣∣∣
λ=1

= ‖ϕ′‖2
L2 − c

∥∥∥ϕ

x

∥∥∥2

L2
− p − 1

2(p + 1)
‖ϕ‖p+1

Lp+1 .

We also have that
∂

∂λ
S(ϕλ)

∣∣∣
λ=1

=
〈

S′(ϕ),
∂ϕλ

∂λ

∣∣∣
λ=1

〉
.

Now ∂ϕλ

∂λ

∣∣∣
λ=1

= 1
2ϕ + xϕ′ is in H1(R+), since ϕ and ϕ′ are exponentially

decaying at infinity by Proposition 2.1. We obtain that the right hand-side
is well-defined. Since ϕ is a critical point of S, we obtain S′(ϕ) = 0, which
concludes the proof. �

Remark 2.3. Since (2.2) and (2.3) hold for solutions of (2.1), it follows for
ω �= 0 that

ω ‖ϕ‖2
L2 =

p + 3
2(p + 1)

‖ϕ‖p+1
Lp+1 > 0.

Hence, non-trivial solution of (2.1) exists only if ω > 0.

Let us define for all u ∈ H1
0 (R+) the following functional:

J(u) = (S′(u), u)H−1,H1
0

= H(u) + ω ‖u‖2
L2 − ‖u‖p+1

Lp+1 .

It follows from Lemma 2.2, that N = {u ∈ H1
0 (R+) \ {0} : J(u) = 0} contains

all nontrivial critical points of S. We aim to show that the infimum of the
following minimization problem is attained

m = inf{S(u) : u ∈ N} =
p − 1

2(p + 1)
inf{‖u‖p+1

Lp+1 : u ∈ N}. (2.4)

First we prove the following lemma.

Lemma 2.4. N is nonempty, and m > 0.

Proof. Let u ∈ H1
0 (R+) \ {0}. Take

t(u) =

(
H(u) + ω ‖u‖2

L2

‖u‖p+1
Lp+1

)1/(p−1)

.

By simple calculation, we get that J(t(u)u) = 0, hence t(u)u ∈ N . We see
that

m = inf
u∈N

S(u) = inf
u∈N

(
S(u) − 1

p + 1
J(u)

)
=

p − 1
2(p + 1)

inf
u∈N

(H(u) + ω ‖u‖2
L2).
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It follows from Sobolev’s and Hardy’s inequalities, that there exists C > 0
such that

H(u) + ω ‖u‖2
L2 = ‖u‖p+1

Lp+1 � C(H(u) + ω ‖u‖2
L2)(p+1)/2,

for all u ∈ N . Hence,(
1
C

)2/(p−1)

� H(u) + ω ‖u‖2
L2 for all u ∈ H1

0 (R+),

which implies that

m � p − 1
2(p + 1)

(
1
C

)2/(p−1)

> 0.

�

Lemma 2.5. Let c < 1/4, and p > 1. Then if u ∈ H1
0 (R+) is a minimizer

of (2.4), then |u| is also a minimizer. In particular, we can search for the
minimizers of (2.4) among the non-negative, real-valued functions of H1

0 (R+).

Proof. Let u ∈ H1
0 (R+) be a solution of the minimization problem (2.4). It

is well-known that if u ∈ H1
0 (R+) then |u| ∈ H1

0 (R+) and ‖|u|′‖L2 � ‖u′‖L2 .
Moreover, ‖|u|‖Lp+1 = ‖u‖Lp+1 . Therefore, J(|u|) � J(u). Hence there exists
a λ ∈ (0, 1] such that J(λ|u|) = J(u) = 0. Then

m � S(λ|u|) =
p − 1

2(p + 1)
‖λu‖p+1

Lp+1 � p − 1
2(p + 1)

‖u‖p+1
Lp+1 = m.

Hence λ = 1, J(|u|) = 0, and S(|u|) = m. �

Let m ∈ R. We say that {un}n∈N is a Palais-Smale sequence for S at
level m, if

S(un) → m, S′(un) → 0 in H−1(R+),

as n → ∞.

Lemma 2.6. Let c < 1/4, and p > 1. There exists a bounded Palais-Smale
sequence {un}n∈N ⊂ N for S at the level m. Namely, there is a sequence
{un}n∈N ⊂ N bounded in H1(R+) such that, as n → ∞,

S(un) → m, S′(un) → 0 in H−1(R+).

Proof. Since N is a closed manifold in H1
0 (R+), it is a complete metric space.

Hence, Ekeland’s variational principle (see pp. 51–53 in [20]) directly yields
the existence of a Palais-Smale sequence at level m in N .

We now show that if {un}n∈N ⊂ N and ‖un‖2
H1 → ∞, then S(un) → ∞.

Indeed, since un ∈ N from Hardy’s inequality we get that

S(un) =
p − 1

2(p + 1)
(H(un) + ω ‖un‖2

L2)

� p − 1
2(p + 1)

(min{1, (1 − 4c)} ‖u′
n‖2

L2 + ω ‖un‖2
L2).

Therefore, any Palais-Smale sequence {un}n∈N is bounded in H1
0 (R+). �
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Before proceeding to our next lemma, let us recall some classical results,
see e.g. [3], concerning the case c = 0. It is well-known that the set of solutions
of

q′′ − ωq + |q|p−1q = 0, ω > 0, q ∈ H1(R) (2.5)
is given by {eiθq(· + y) : y ∈ R, θ ∈ R}, where q is a symmetric, positive
solution of (2.5), explicitly given by

q(x) =
(

(p + 1)ω
2

sech2

(
(p − 1)

√
ω

2
x

))1/(p−1)

. (2.6)

Moreover, up to translation and phase invariance, it is the unique solution of
the minimization problem

m∞ = inf{S∞(u) : u ∈ H1(R) \ {0}, J∞(u) = 0}
=

p − 1
2(p + 1)

inf{‖u‖p+1
Lp+1(R) : u ∈ H1(R) \ {0}, J∞(u) = 0},

where the functionals S∞ and J∞ are defined by

S∞(u) =
1
2

‖u′‖2
L2(R) +

ω

2
‖u‖2

L2(R) − 1
p + 1

‖u‖p+1
Lp+1(R) ,

J∞(u) = ‖u′‖2
L2(R) + ω ‖u‖2

L2(R) − ‖u‖p+1
Lp+1(R) .

Lemma 2.7. Let 0 < c < 1/4, and p > 1. Then m < m∞.

Proof. It is not hard to see that m � m∞, we only need to prove that m �= m∞.
Let us first note that if u ∈ H1

0 (R+)\{0} and J(u) < 0, then m < S̃(u), where

S̃(u) =
p − 1

2(p + 1)

(
H(u) + ω ‖u‖2

L2

)
.

Indeed, if J(u) < 0, then let us define

t(u) =

(
H(u) + ω ‖u‖2

L2

‖u‖p+1
Lp+1

)1/(p−1)

.

Hence t(u) ∈ (0, 1), t(u)u ∈ N , and

m � S̃(t(u)u) = t2(u)S̃(u) < S̃(u).

Now let us define ψA(x) = q(x + A) − q(x − A) for x � 0. For large enough A
we obtain the following estimates (see Lemma 5.1 in the Appendix):∫ ∞

0

|ψ′
A|2dx =

∫ ∞

−∞
|q′|2dx + O

((
2A +

1√
ω

)
e−2

√
ωA

)
,∫ ∞

0

|ψA|2dx =
∫ ∞

−∞
|q|2dx + O

((
2A +

1√
ω

)
e−2

√
ωA

)
,

∫ ∞

0

|ψA|2
x2

dx � 4
A2

∫ ∞

−∞
|q|2dx + O

(
1

A2
e−√

ωA

)
,∫ ∞

0

|ψA|p+1dx =
∫ ∞

−∞
|q|p+1dx + O

(
e−2

√
ωA

)
.
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Since 0 < c < 1/4, we obtain for A > 0 large enough

J(ψA) � ‖q′‖2
L2(R) + ω ‖q‖2

L2(R) − ‖q‖p+1
Lp+1(R) − 4c

A2
‖q‖2

L2(R) + O

(
1

A2
e−√

ωA

)

= − 4c

A2
‖q‖2

L2(R) + O

(
1

A2
e−√

ωA

)
< 0,

and

S̃(ψA) � p − 1
2(p + 1)

(
‖q′‖2

L2(R) + ω ‖q‖2
L2(R) − 4c

A2
‖q‖2

L2(R)

)
+ O

(
1

A2
e−√

ωA

)

= m∞ − p − 1
2(p + 1)

4c

A2
‖q‖2

L2(R) + O

(
1

A2
e−√

ωA

)
< m∞.

Since J(ψA) < 0, we get

m < S̃(ψA) < m∞,

which concludes the proof. �

We need the following lemma, which describes the behavior of bounded
Palais-Smale sequences. We note that H1

0 (R+) functions can be extended to
functions in H1(R) by setting u ≡ 0 on R

−. The proof of the following state-
ment is presented in the appendix.

Lemma 2.8. Let {un}n∈N ⊂ H1
0 (R+) be a bounded Palais-Smale sequence for

S at level m. Then there exists a subsequence still denoted by {un}n∈N, a
u0 ∈ H1

0 (R+) solution of

ϕ′′ +
c

x2
ϕ − ωϕ + |ϕ|p−1ϕ = 0,

an integer k � 0, {xi
n}k

i=1 ⊂ R
+, and nontrivial solutions qi of (2.5) satisfying

un ⇀ u0 weakly in H1
0 (R+),

S(un) → S(u0) +
k∑

i=1

S∞(qi),

un − (u0 +
k∑

i=1

qi(x − xi
n)) → 0 strongly in H1(R),

|xi
n| → ∞, |xi

n − xj
n| → ∞ for 1 � i �= j � k,

where in case k = 0, the above holds without qi and xi
n.

We only need to show that the critical point of S provided by Lemma 2.8
is non-trivial.

Theorem 2.9. Let 0 < c < 1/4. Then there exists u ∈ N \{0}, u � 0 a.e., such
that S(u) = m.
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Proof. We only have to prove that the {un}n∈N bounded Palais-Smale se-
quence obtained in Lemma 2.6 admits a strongly convergent subsequence. As-
sume that it is not the case. Using Lemma 2.8 we see that k � 1 and un is
weakly convergent to u0 in H1

0 (R+) up to a subsequence. Then

m = lim
n→∞ S(un) � S(u0) + S∞(q) = S(u0) + m∞.

Now, S(u0) � 0 since J(u0) = 0. Thus m � m∞, which contradicts Lemma 2.7.
Hence k = 0 and un → u0 in H1

0 (R+). �

Lemma 2.10. Let p > 1 and ω > 0. There exists a μ > 0 such that∫ ∞

0

|u|2dx = μ, for every u ∈ G.

The mass of ground state solutions is μ = m
ω

p+3
p−1 . Moreover, we have

‖u‖p+1
Lp+1 =

2(p + 1)
p − 1

m, and H(u) = m for every u ∈ G.

Proof. Since u ∈ G is a solution of (2.1), it satisfies (2.2) and (2.3). By sub-
tracting the two identities we get

ω ‖u‖2
L2 =

p + 3
2(p + 1)

‖u‖p+1
Lp+1 . (2.7)

Additionally, since u is a ground state solution, it also solves the minimization
problem (2.4). From (2.4) and (2.3) we get

ω ‖u‖2
L2 +

p − 5
2(p + 1)

‖u‖p+1
Lp+1 = 2m. (2.8)

From (2.7) and (2.8) it follows

‖u‖2
L2 =

m

ω

p + 3
p − 1

> 0.

Thus, let μ = m
ω

p+3
p−1 . Now it follows from (2.4) and (2.3) that

‖u‖p+1
Lp+1 =

2(p + 1)
p − 1

m, and H(u) = m for every u ∈ G.

which concludes the proof. �

3. Stability

In this section we consider nonlinearities with 1 < p < 5. Our aim is to
prove orbital stability of the standing waves. To do so, we investigate the
minimization problem:

I = inf{E(u) : u ∈ Γ}, (3.1)
where

Γ = {u ∈ H1
0 (R+) : ‖u‖2

L2 = μ}.

and the energy E is defined by (1.4). We will rely on a of Lions’ concentration-
compactness principle [15] and the arguments by Cazenave and Lions [4], see
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also in [3]. The main problem is to obtain compactness of minimizing sequences
owing to the absence of translation invariance. We define the problem at in-
finity by

I∞ = inf{E∞(u) : u ∈ H1(R) and ‖u‖2
L2 = μ}, (3.2)

where

E∞(u) =
1
2

∫
R

|u′|2dx − 1
p + 1

∫
R

|u|p+1dx.

We recall some well-known facts about the minimization problem (3.2) (see
[3, Chapter 8.]). For every μ > 0, there exists a unique, positive, symmetric
function q = q(μ) ∈ H1(R), such that

‖q‖L2 = μ, E∞(q) = I∞,

and q solves the nonlinear equation

q′′ − λq + |q|p−1q = 0,

where λ = λ(μ). Moreover, there exists M > 0 such that

e
√

λ|x||q(x)| � M and e
√

λ|x||q′(x)| � M.

We proceed by proving the following lemma:

Lemma 3.1. If 0 < c < 1/4, then the following inequality holds:

I < I∞.

Proof. For A > 0, let C(A) be a normalizing factor specified later. Let us
define

ΨA(x) = C(A)(q(x + A) − q(x − A)) for x � 0.

Since q is even, we obtain ΨA ∈ H1
0 (R+) and∫ ∞

0

|ΨA(x)|2dx = C2(A)
(∫ ∞

−∞
|q|2dx −

∫ ∞

−∞
q(x + A)q(x − A)dx

)
.

We estimate the second integral by (see Lemma 5.1)∫ ∞

−∞
q(x + A)q(x − A)dx = O

((
2A +

1√
λ

)
e−2

√
λA

)
.

We define

C(A) =

(
μ

μ − ∫ ∞
−∞ q(x + A)q(x − A)dx

)1/2

.

C(A) is a continuous function of A, C(A) � 1, and C(A) → 1 exponentially
fast as A → ∞. Thus, ‖ΨA‖L2 = μ for all A > 0. By Lemma 5.1 in the
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Appendix, we obtain for A > 0 large enough that∫ ∞

0

|Ψ′
A|2dx = C2(A)

∫ ∞

−∞
|q′|dx + O

((
2A +

1√
λ

)
e−2

√
λA

)
,

∫ ∞

0

|ΨA|2
x2

dx � 4C2(A)
A2

∫ ∞

0

|ΨA|2dx + O

(
1

A2
e−√

λA

)
,∫ ∞

0

|ΨA|p+1dx = Cp+1(A)
∫ ∞

−∞
|q|p+1dx + O(e−2

√
λA).

Hence for A large enough we get

E(ΨA) =
1
2

∫ ∞

0

|Ψ′
A|2dx − c

2

∫ ∞

0

|ΨA|2
x2

dx − 1
p + 1

∫ ∞

0

|ΨA|p+1dx

� C2(A)
(

1
2

∫ ∞

−∞
|q′|2dx − Cp−1(A)

p + 1

∫ ∞

−∞
|q|p+1dx

)

− c

2
4C2(A)

A2

∫ ∞

0

|ΨA|2dx + O

(
1

A2
e−√

λA

)
.

Owing to the exponential decay of the last term, for large A we get

E(ΨA) � E(q) − 2c

A2
μ = I∞ − 2c

A2
μ.

Since 0 < c < 1/4 we get that E(ΨA) < I∞, which concludes the proof. �

We need the following version of the concentration-compactness principle.
The proof follows the same way as in the classical case (see [15]).

Lemma 3.2. Let 0 < c < 1/4, and {un}n∈N ⊂ H1
0 (R+) be a sequence satisfying

lim
n→∞ ‖un‖2

L2 = M and lim
n→∞ H(un) < ∞.

Then there exists a subsequence {un}n∈N such that it satisfies one of the fol-
lowing alternatives.

(Vanishing) limn→∞ ‖un‖Lp → 0 for all p ∈ (2,∞).
(Dichotomy) There are sequences {vn}n∈N, {wn}n∈N in H1

0 (R+) and a
constant α ∈ (0, 1) such that:
(1) dist(supp(vn), supp(wn)) → ∞;
(2) |vn| + |wn| � |un|;
(3) supn∈N

(‖vn‖H1 + ‖wn‖H1) < ∞;
(4) ‖vn‖2

L2 → αM and ‖wn‖2
L2 → (1 − α)M as n → ∞;

(5) limn→∞
∣∣∫ ∞

0
|un|qdx − ∫ ∞

0
|vn|qdx − ∫ ∞

0
|wn|qdx

∣∣ = 0 for all q ∈ [2,∞);
(6) lim infn→∞{H(un) − H(vn) − H(wn)} � 0.

(Compactness) There exists a sequence yn ∈ R
+, such that for any ε > 0

there is an R > 0 with the property that∫
(yn−R,yn+R)∩R+

|un|2 � M − ε.

for all n ∈ N.

We are now in a position to prove the following lemma.
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Lemma 3.3. Let 1 < p < 5, 0 < c < 1/4, and ω > 0. Then the infimum in
(3.1) is attained. Additionally, all minimizing sequences are relatively compact,
that is if {un}n∈N satisfies ‖un‖2

L2 → μ and E(un) → I then there exists a
subsequence {un}n∈N which converges to a minimizer u ∈ H1

0 (R+).

Proof. Step 1. We first show that 0 > I > −∞. Let u ∈ Γ. For λ > 0, we
define uλ(x) = λ1/2u(λx) ∈ Γ. Clearly,

E(uλ) =
λ2

2
‖u′‖2

L2 − cλ2

2

∫ ∞

0

|u|2
x2

dx − λ(p−1)/2

p + 1
‖u‖p+1

Lp+1

Since 1 < p < 5, we can choose a small λ > 0 such that E(uλ) < 0. Hence
I < 0.

Since c ∈ (0, 1/4), we have H(u) ∼ ‖u′‖2
L2 . We get from the Gagliardo-

Nirenberg inequality that there exists C > 0 such that for all u ∈ H1
0 (R+)∫ ∞

0

|u|p+1dx � CH(u)
p−1
4

(∫ ∞

0

|u|2dx

)1+ p−1
4

.

Since 1 < p < 5, this yields that there exists δ > 0 and K > 0 such that

E(u) � δ ‖u‖2
H1 − K for all u ∈ Γ, (3.3)

from which follows that I > −∞.
Every minimizing sequence is bounded in H1

0 (R+) and bounded from
below in Lp+1(R+). Indeed, let {un}n∈N ⊂ Γ be a minimizing sequence, then
by (3.3) it is bounded in H1

0 (R+). Furthermore, for n large enough we have
E(un) < I/2, thus

‖un‖p+1
Lp+1 > −p + 1

2
I. (3.4)

Now I < 0, hence the result follows.
Step 2. We now verify that all minimizing sequences have a subsequence

which converges to a limit u in H1
0 (R+). Let {un}n∈N satisfy ‖un‖2

L2 → μ and
E(un) → I. Since every minimizing sequence is bounded in H1

0 (R+), {un}n∈N

has a weak-limit u ∈ Lp(R+) . We can apply the concentration-compactness
principle (see Lemma 3.2) to the sequence {un}n∈N. We note that since the
sequence is bounded from below in Lp+1(R+) vanishing cannot occur.

Now let us assume that dichotomy occurs. Let α ∈ (0, 1), {vn}n∈N and
{wn}n∈N sequences as in Lemma 3.2. It follows from (5) and (6) of Lemma 3.2
that

lim inf
n→∞ (E(un) − E(vn) − E(wn)) � 0,

hence
lim sup

n→∞
(E(vn) + E(wn)) � I. (3.5)

Observe that for u ∈ H1
0 (R+), and a > 0, we have

E(u) =
1
a2

E(au) +
ap−1 − 1

p + 1

∫ ∞

0

|u|p+1dx.
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Let an =
√

μ/ ‖vn‖L2 and b2
k =

√
μ/ ‖wn‖L2 . Hence, anvn ∈ Γ and bnwn ∈ Γ,

which implies

E(vn) � I

a2
n

+
ap−1

n − 1
p + 1

∫ ∞

0

|vn|p+1dx,

E(wn) � I

b2
n

+
bp−1
n − 1
p + 1

∫ ∞

0

|wn|p+1dx.

Therefore

E(vn) + E(wn) � I(a−2
n + b−2

n ) +
ap−1

n

p + 1

∫ ∞

0

|vn|p+1 +
bp−1
n

p + 1

∫ ∞

0

|wn|p+1.

Now we observe a−2
n → α and b−2

n → (1 − α) by (4) of Lemma 3.2. Since
α ∈ (0, 1), we get that θ = min{α−(p−1)/2; (1−α)−(p−1)/2)} > 1. Property (5)
of Lemma 3.2 and (3.4) implies

lim inf
n→∞ (E(vn) + E(wn)) � I +

θ − 1
p + 1

lim inf
n→∞

∫ ∞

0

|un|p+1dx,� I +
θ − 1

2
> I,

which contradicts (3.5). Hence the following holds: there exists a sequence
yn ∈ R

+, such that for any ε > 0 there exists R > 0 with the property that∫
(yn−R,yn+R)∩R+

|un|2 � μ − ε. (3.6)

for all n ∈ N.
We now show that {yn}n∈N is bounded in R

+. First we show that if
yn → ∞, then

lim
n→∞

∫ ∞

0

|un|2
x2

dx = 0. (3.7)

Let us assume by contradiction that∫ ∞

0

|un|2
x2

dx � δ > 0, (3.8)

which implies together with Hardy’s inequality that

H(un) � (1/4 − c)δ. (3.9)

Let us take ξ ∈ C∞(R+), such that for R̃ > 0 and a > 0 we have that ξ(r) = 1
for 0 � r � R̃, ξ(r) = 0 for r � R̃ + a, and ‖ξ′‖L∞ � 2/a. We introduce
un,1 = un · ξ and un,2 = un · (1 − ξ). Clearly, un,1 ∈ H1

0 (R+), un,2 ∈ H1
0 (R+)

and un = un,1 + un,2. Moreover, the following inequalities hold

|u′
n,1|2 � 2(4a−2|un|2 + |u′

n|2),
|u′

n,2|2 � 2(4a−2|un|2 + |u′
n|2).

We obtain by direct calculation that

E(un) = E(un,1) + E(un,2) + ρn
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where

ρn =
1
2

∫ R̃+a

R̃

[
(|u′

n|2 − |u′
n,1|2 − |u′

n,2|2) − c

x2
(|un|2 − |un,1|2 − |un,2|2)

]
dx

− 1
p + 1

∫ R̃+a

R̃

(|un|p+1 − |un,1|p+1 − |un,2|p+1)dx.

We show that there exists R̃ > 0 and a > 1, such that for n large enough
|ρn| � (1/4 − c) δ

4 . First we observe by the properties of the cut-off that∣∣∣∣∣12
∫ R̃+a

R̃

(|u′
n|2 − |u′

n,1|2 − |u′
n,2|2)dx

∣∣∣∣∣ � 5
2

∫ R̃+a

R̃

|u′
n|2dx +

8
a2

∫ R̃+a

R̃

|un|2dx.

We claim that there exist R̃ > 0 and a > 1 such that for a subsequence {unk
}

we have ∫ R̃+a

R̃

|u′
nk

|2dx <
1
20

(1/4 − c)δ. (3.10)

Suppose that this claim does not hold, that is for all R > 0, a > 1 there exists
k ∈ N such that for all n � k the following holds∫ R+a

R

|u′
n|2dx � 1

20
(1/4 − c)δ.

Let (R1, R1 + a1). There exists k1 ∈ N, such that for all n � k1 we have∫ R1+a1

R1

|u′
n|2dx � 1

20
(1/4 − c)δ.

Now let R2 > R1+a1 and a2 > 1. Then by our assumption there exists k2 ∈ N,
such that for all n � k2 it holds that∫ R2+a2

R2

|u′
n|2dx � 1

20
(1/4 − c)δ.

Hence, there exists a subsequence {vnk
}k∈N such that for all j ∈ {1, 2} it holds

that ∫ Rj+aj

Rj

|u′
nk

|2dx � 1
20

(1/4 − c)δ

for all k ∈ N. Therefore, we can construct for all l ∈ N a subsequence {unk
}k∈N,

such that for all 1 � j � l there are disjoint intervals Aj = (Rj , Rj + aj), such
that ∫

Aj

|u′
nk

|2dx � 1
20

(1/4 − c)δ.

Hence for all l ∈ N there exists a subsequence {unk
}k∈N, such that for all k ∈ N

we have ∫ ∞

0

|u′
nk

|2dx �
l∑

j=1

∫
Aj

|u′
nk

|2dx � l

20
(1/4 − c)δ.
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This implies that
∫ ∞
0

|u′
nk

|2dx → ∞, which is a contradiction since {un}n∈N

is bounded in H1
0 (R+). Hence the assertion (3.10) is true. Now we note that∫ R

0

|un|p+1dx � ‖un‖p−1
L∞

∫ R

0

|un|2dx.

Since {un}n∈N is bounded in L∞(R+), in view of (3.6) we obtain for R > 0
given in (3.6) that∫ R

0

|un|2dx → 0 implies
∫ R

0

|un|p+1dx → 0. (3.11)

For large n we have R̃ + a < yn − R, since yn → ∞ by our assumption. Now
(3.11) implies∣∣∣∣∣ 8

a2

∫ R̃+a

R̃

|un|2dx

∣∣∣∣∣ +

∣∣∣∣∣
∫ R̃+a

R̃

c

x2
(|un|2 − |un,1|2 − |un,2|2)dx

∣∣∣∣∣
+

∣∣∣∣∣ 1
p + 1

∫ R̃+a

R̃

(|un|p+1 − |un,1|p+1 − |un,2|p+1)dx

∣∣∣∣∣
�

∣∣∣∣∣ 8
a2

∫ R̃+a

R̃

|un|2dx

∣∣∣∣∣ +
c

R̃2

∣∣∣∣∣
∫ R̃+a

R̃

|un|2(1 − ξ2 − (1 − ξ)2)dx

∣∣∣∣∣
+

∣∣∣∣∣ 1
p + 1

∫ R̃+a

R̃

|un|p+1(1 − ξp+1 − (1 − ξ)p+1)dx

∣∣∣∣∣
� (1/4 − c)δ

8
. (3.12)

for large n. Now (3.10) and (3.12) implies

|ρn| � (1/4 − c)δ
4

. (3.13)

Let us observe that ‖un,1‖Lp+1 → 0 by (3.11). Hence

E(un,1) =
1
2
H(un,1) + o(1).

Now let us notice that supp(un,2) ⊂ (R̃,∞). Moreover, in view of (3.6),∫ ∞

0

|un,2|2dx =
∫ ∞

yn−R

|un,2|2dx + o(1).

Hence ∫ ∞

0

|un,2|2
x2

dx =
∫ ∞

yn−R

|un,2|2
x2

dx + o(1) � μ

|yn − R|2 .

Now yn → ∞ implies that

E(un,2) = E∞(un,2) + o(1).

Thus,

E(un) =
1
2
H(un,1) + E∞(un,2) + ρn + o(1).
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From the properties of the cut-off and (3.6), we get

‖un,2‖2
L2 = ‖un‖2

L2 − ‖un,1‖2
L2 − 2Re

∫ R′+a

R′
un,1ūn,2dx → μ.

Since 1
2H(un,1) + ρn > 0 by (3.9) and (3.13), we obtain

I = lim
n→∞ E(un) � lim

n→∞ E∞(un,2) � I∞.

which is a contradiction, hence (3.7) follows.
Now, from (3.7) we obtain

lim
n→∞

(
1
2

∫ ∞

0

|u′
n|2dx − c

2

∫ ∞

0

|un|2
x2

dx − 1
p + 1

∫ ∞

0

|un|p+1dx

)
=

= lim
n→∞

(
1
2

∫ ∞

0

|u′
n|2dx − 1

p + 1

∫ ∞

0

|un|p+1dx

)
.

Hence

I � I∞,

which is again a contradiction. Thus {yn}n∈N is bounded and has an accumu-
lation point y∗ ∈ R

+. Therefore, it follows that for any ε > 0 there is R > 0
such that ∫ R

0

|un|2 � μ − ε.

for all n ∈ N. Hence un → u strongly in L2(R+). Moreover, since {un} is
bounded in H1

0 (R+) it is also strongly convergent in Lp+1(R+). By the weak-
lower semicontinuity of H (see [17]), it follows that E(u) � limn→∞ E(un) = I.
Hence E(u) = I, and E(un) → E(u) implies that H(un) → H(u), which
concludes that proof. �

Remark 3.4. If c < 0, the infimum is not attained on the L2 constraint. Indeed,
let us assume that there exists v ∈ H1

0 (R+), such that ‖v‖2
L2 = μ and E(v) = I.

Then taking translates of v, i.e. v(· − y) for y > 0, we get E(v(· − y)) < I,
which is a contradiction.

Lemma 3.5. Let 0 < c < 1/4, ω > 0 and 1 < p < 5. Let μ be defined by
Lemma 2.10. Then u ∈ H1

0 (R+) is a ground state solution of (2.1) if and only
if u solves the minimization problem{

u ∈ Γ,

S(u) = inf{S(v) : v ∈ Γ}.
(3.14)

Proof. Step 1. Let us first define

mA = inf{S(u) : u ∈ A},

and

mΓ = inf{S(u) : u ∈ Γ}.

If u ∈ G, then S(u) = mΓ. By Lemma 2.10 we know that u ∈ Γ, hence
mA � mΓ.
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Step 2. We claim that every solution of (3.14) belongs to A. Indeed, let us
consider a solution u to (3.14). There exists a Lagrange multiplier λ1 ∈ R such
that S′(u) = λ1u. Hence there exists λ ∈ R such that

− u′′ − c

x2
u + λωu = |u|p−1u. (3.15)

Indeed, since u is a solution of (3.14), and for λ > 0 let

uλ(x) = λ1/2u(λx).

We have uλ ∈ Γ. Since u1 is a solution of (3.14), we get from (3.15) and
Lemma 2.2 that

∂

∂λ
S(uλ)|λ=1 = ‖u′‖2

L2 − c
∥∥∥u

x

∥∥∥2

L2
− p − 1

2(p + 1)
‖u‖p+1

Lp+1 = 0. (3.16)

We can deduce directly from (3.15) and (3.16) that

λωμ =
p + 3
p − 1

H(u),

which implies that λ > 0. Let us define v by

u(x) = λ1/(p−1)v(λ1/2x).

By (3.16), v ∈ A, hence

S(v) � mA.

We obtain simple calculation that

mΓ = S(u) = λ2/(p−1)+1/2S(v) + (1 − λ)
ωμ

2
.

Hence,

mA � λ
2

p−1+ 1
2 mA + (1 − λ)

ωμ

2
.

Since u is a solution of (3.15), we obtain from Lemma 2.2 that mA � 0. By
Lemma 2.2 and Lemma 2.10 we have that

ωμ

2
=

(
2

p − 1
+

1
2

)
mA,

hence

0 � λ
2

p−1+ 1
2 − λ

(
2

p − 1
+

1
2

)
+

(
2

p − 1
− 3

2

)
.

The right hand side is always strictly positive, except if λ = 1. Thus, λ = 1,
which implies together with (3.16) that u ∈ A.
Step 3. It follows from Step 2, that mΓ � mA, hence mΓ = mA. In particular,
it follows that if u ∈ G, then u ∈ Γ and S(u) = mA, thus u satisfies (3.14).
Conversely, let u be the solution of (3.14). Then by Step 2 u ∈ A, and S(u) =
mΓ = mA, hence u ∈ G. �
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Theorem 3.6. Let 0 < c < 1/4, ω > 0, and 1 < p < 5. If ϕ is a ground state
solution of (2.1), then the standing wave u(t, x) = eiωtϕ(x) is an orbitally stable
solution of (1.1), i.e. for all ε > 0 there is δ > 0, such that if u(0) ∈ H1

0 (R+)
satisfies ‖ϕ − u(0)‖H1 < δ, then the corresponding maximal solution u of (1.1)
satisfies

sup
t∈R

inf
θ∈R

∥∥u(t) − eiθϕ
∥∥

H1 < ε.

Proof. Assume by contradiction that there exist a sequence {ϕn}n∈N ⊂ H1
0 (R+),

a sequence {tn}n∈N ⊂ R, and ε > 0, such that

lim
n→∞ ‖ϕn − ϕ‖H1 = 0,

and the corresponding maximal solution un of (1.1) with initial value ϕn sat-
isfies

inf
θ∈R

∥∥un(tn) − eiθϕ
∥∥

H1 � ε.

Set vn = un(tn). Applying Lemma 3.5, we obtain

lim
n→∞ inf

ϕ∈G
‖vn − ϕ‖H1 � ε. (3.17)

By the conservation of charge and energy, we obtain

‖vn‖2
L2 → μ, and E(vn) → I.

Hence {vn}n∈N is a minimizing sequence of (3.1). It follows from Lemma 3.3,
that there exists a solution u of the problem (3.1), such that ‖vn − u‖H1 → 0.
By Lemma 3.5 we obtain that u ∈ G, which contradicts (3.17). �

4. Instability

In this section we assume that p � 5. Let us define for v ∈ H1
0 (R+) the

functional

Q(v) = ‖v′‖2
L2 − c

∥∥∥ v

x

∥∥∥2

L2
− p − 1

2(p + 1)
‖v‖p+1

Lp+1 .

In Lemma 2.2 we have shown that if v is a solution of (2.1), then Q(v) = 0.
First, we prove the virial identities.

Proposition 4.1. Let u0 ∈ H1
0 (R+) be such that xu0 ∈ L2(R+) and u be the

corresponding maximal solution to (1.1). Then xu(t) ∈ L2(R+) for any t ∈
(−Tmin, Tmax). Moreover, the following identities hold for all v ∈ H1

0 (R+):

∂

∂t
‖xu(t)‖2

L2 = 4 Im
∫ ∞

0

ū(t)xu′(t)dx,

∂2

∂t2
‖xu(t)‖2

L2 = 8Q(u(t)).

Proof. The proof follows the same line as in [6]. �
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Proposition 4.2. Let p � 5 and let u0 ∈ H1
0 (R+) be such that

xu0 ∈ L2(R+) and E(u0) < 0.

Then the maximal solution u to (1.1) with initial condition u0 blows up in
finite time.

Proof. First, let us note that

Q(u(t)) = 2E(u(t)) +
5 − p

2(p + 1)
‖u(t)‖p+1

Lp+1 .

Since p � 5, we get by the conservation of the energy that

Q(u(t)) � 2E(u0) < 0 for all t ∈ (−Tmin, Tmax).

Hence, Proposition 4.1 implies that

∂2

∂t2
‖xu(t)‖2

L2 � 16E(u0) for all t ∈ (−Tmin, Tmax).

Integrating twice, we get

‖xu(t)‖2
L2 � 8E(u0)t2 +

(
4 Im

∫ ∞

0

ū0xu′
0dx

)
t + ‖xu0‖2

L2 (4.1)

The main coefficient of the second order polynomial on the right hand side is
negative. Thus, it is negative for |t| large, what contradicts with ‖xu(t)‖2

L2 � 0
for all t. Therefore, −Tmin > −∞ and Tmax < +∞. �

Theorem 4.3. Assume that ω > 0 and p = 5. Then for any solution ϕ ∈
H1

0 (R+) of (2.1) the standing wave eiωtϕ(x) is unstable by blow-up.

Proof. Since p = 5, we have for all v ∈ H1
0 (R+), that 2E(v) = Q(v). Hence

from Lemma 2.2 we get that

E(ϕ) = 0.

Let us define ϕn,0 =
(
1 + 1

n

)
ϕ. It is easy to see that E(ϕn,0) < 0. By

Lemma 2.1 we know that xϕn,0 ∈ L2(R+). The conclusion follows from Propo-
sition 4.2. �

Theorem 4.4. Let p > 5. Then for any ground state solution ϕ to (2.1), the
corresponding standing wave eiωtϕ(x) is orbitally unstable.

We need to prove a series of Lemmas to establish Theorem 4.4.

Lemma 4.5. Let v ∈ H1
0 (R+) \ {0} such that Q(v) � 0, and set vλ(x) =

λ1/2v(λx) for λ > 0. Then there exists λ∗ ∈ (0, 1] such that the following
assertions hold:
(1) Q(vλ∗) = 0.
(2) λ∗ = 1 if and only if Q(v) = 0.
(3) ∂

∂λS(vλ) = 1
λQ(vλ).

(4) ∂
∂λS(vλ) > 0 for all λ ∈ (0, λ∗), and ∂

∂λS(vλ) < 0 for all λ ∈ (λ∗,+∞).
(5) The function (λ∗,+∞) � λ �→ S(vλ) is concave.
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Proof. We get that by the scaling properties of λ �→ Q(vλ) that

Q(vλ) = λ2 ‖v′‖2
L2 − λ2c

∥∥∥ v

x

∥∥∥2

L2
− λ

p−1
2

p − 1
2(p + 1)

‖v‖p+1
Lp+1 .

We get from the Hardy inequality that for c ∈ (0, 1/4)

(1 − 4c)λ2 ‖v′‖2
L2 − λ

p−1
2

p − 1
2(p + 1)

‖v‖p+1
Lp+1

� Q(vλ) � λ2 ‖v′‖2
L2 − λ

p−1
2

p − 1
2(p + 1)

‖v‖p+1
Lp+1 .

Since p > 5, there exists λ ∈ (0, 1] small enough, such that Q(vλ) > 0. Hence,
there exists λ∗ ∈ (0, 1], such that Q(vλ∗) = 0. This proves (1). To prove (2),
we first note that if λ∗ = 1, then clearly Q(v) = 0. Now assume that Q(v) = 0.
Then

Q(vλ) = λ2Q(v) + (λ2 − λ
p−1
2 )

p − 1
2(p + 1)

‖v‖p+1
Lp+1

= (λ2 − λ
p−1
2 )

p − 1
2(p + 1)

‖v‖p+1
Lp+1 ,

which is positive for all λ ∈ (0, 1), since p > 5. Hence, (2) follows. (3) follows
form simple calculation:

∂

∂λ
S(vλ) = λ ‖v′‖2

L2 − λc
∥∥∥ v

x

∥∥∥2

L2
− λ

p−1
2 −1 p − 1

2(p + 1)
‖v‖p+1

Lp+1

=
1
λ

Q(vλ).

To show (4), we note that

Q(vλ) =
λ2

(λ∗)2
Q(vλ∗) + λ2

(
(λ∗)

p−5
2 − λ

p−5
2

) p − 1

2(p + 1)
‖v‖p+1

Lp+1 .

Since p > 5 and Q(vλ∗) = 0, we get that λ > λ∗ implies Q(vλ) < 0, and λ < λ∗

implies Q(vλ) > 0. This and (3), implies (4).
Finally, we get by simple calculation that

∂2

∂λ2
S(vλ) =

1
λ2

Q(vλ) − λ
p−5
2

(
p − 1

2
− 2

)
p − 1

2(p + 1)
‖v‖p+1

Lp+1 .

Since p > 5, we obtain for λ > λ∗ that ∂2

∂λ2 S(vλ) < 0 which concludes the
proof of (5). �

To prove orbital instability we prove a new variational characterization
of the ground state. Let us define the following set

M = {v ∈ H1
0 (R+) \ {0} : Q(v) = 0, J(v) � 0},

and the corresponding minimization problem

d = inf
W∈M

S(W ).

Then we have the following.
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Lemma 4.6. The following equality holds:

m = d,

where m is defined by (2.4).

Proof. Let v ∈ G. Since v solves (2.1), by Lemma 2.2 we have that Q(v) =
J(v) = 0, hence G ⊂ M, and

d � m.

Let now v ∈ M. Assume first, that J(v) = 0. In this case v ∈ N , and m � S(v).
Let us assume that J(v) < 0. Then for vλ(x) = λ1/2v(λx) we have

J(vλ) = λ2 ‖v′‖2
L2 − λ2c

∥∥∥ v

x

∥∥∥2

L2
+ ω ‖v‖2

L2 − λ(p−1)/2 ‖v‖p+1
Lp+1 ,

and limλ↓0 J(vλ) > ω ‖v‖2
L2 , thus there exists λ1 ∈ (0, 1), such that J(vλ1) = 0.

By Proposition 2.9

m � S(vλ1).

From Q(v) = 0 and Lemma 4.5 we have

S(vλ1) � S(v),

hence m � S(v) for all v ∈ M. Therefore m � d, which concludes the proof.
�

We now define the manifold

J = {u ∈ H1
0 (R+) \ {0} : J(u) < 0, Q(u) < 0, S(u) < d}.

We will prove the invariance of J under the flow of (1.1).

Lemma 4.7. Let u0 ∈ J and u ∈ C((−Tmin, Tmax),H1
0 (R+)) the corresponding

solution to (1.1). Then u(t) ∈ J for all t ∈ (−Tmin, Tmax).

Proof. Let u0 ∈ J and u ∈ C((−Tmin, Tmax),H1
0 (R+)) the corresponding max-

imal solution. Since S is conserved under the flow of (1.1) we have for all
t ∈ (−Tmin, Tmax) that

S(u(t)) = S(u0) < d.

We prove the assertion by contradiction. Suppose that there exists
t ∈ (−Tmin, Tmax) such that

J(u(t)) � 0.

Then, since J and u are continuous, there exists t0 ∈ (−Tmin, Tmax) such that

J(u(t0)) = 0,

thus u(t0) ∈ N . Then by Proposition 2.9 we have that

S(u(t0)) � d,

which is a contradiction, thus J(u(t)) < 0 for all t ∈ (−Tmin, Tmax). Let us
suppose now that for some t ∈ (−Tmin, Tmax) we have

Q(u(t)) � 0.
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Again, by continuity, there exists t1 ∈ (−Tmin, Tmax) such that

Q(u(t1)) = 0.

Hence we that Q(u(t1)) = 0, and J(u(t1)) < 0. Therefore, by Lemma 4.6

S(u(t1)) � d,

which is a contradiction. Hence,

Q(u(t)) < 0

for all t ∈ (−Tmin, Tmax), which concludes the proof. �

Lemma 4.8. Let u0 ∈ J and u ∈ C((−Tmin, Tmax),H1
0 (R+)). Then there exists

ε > 0 such that Q(u(t)) � −ε for all t ∈ (−Tmin, Tmax).

Proof. Let u0 ∈ J and let us define v := u(t) and vλ(x) = λ1/2v(λx). By
Lemma 4.5, there exists λ0 < 1 such that Q(vλ∗) = 0. If J(vλ∗) � 0, then by
Lemma 4.7 we get S(vλ∗) � m. On the other hand, if J(vλ∗) > 0, there exists
λ1 ∈ (λ∗, 1), such that J(λ1) = 0 and we replace λ∗ with λ1. In this case, by
Lemma 4.6 we get S(vλ∗) � m. In conclusion, in both cases we obtain

S(vλ∗) � d. (4.2)

By Lemma 4.5 we know that λ �→ S(vλ) is concave on (λ∗,+∞), thus

S(v) − S(vλ∗) � (1 − λ∗)
∂

∂λ
S(vλ)

∣∣∣
λ=1

. (4.3)

From Lemma 4.5 we have
∂

∂λ
S(vλ)

∣∣∣
λ=1

= Q(v). (4.4)

Moreover, since Q(v) < 0 and λ∗ ∈ (0, 1), we have

(1 − λ∗)Q(v) > Q(v). (4.5)

Combining (4.2)–(4.5), we obtain

S(v) − d > Q(v).

Define −ε = S(v) − d. Then ε > 0, since v ∈ J . Owing to the conservation of
the energy and mass, ε > 0 is independent from t, which concludes the proof.

�

Lemma 4.9. Let us take u0 ∈ J such that xu0 ∈ L2(R+). Then the maxi-
mal solution u ∈ C((−Tmin, Tmax),H1

0 (R+)) corresponding to the initial value
problem (1.1) blows up in finite time.

Proof. From Lemma 4.8 we know that there exists ε > 0 such that

Q(u(t)) < −ε for t ∈ (−Tmin, Tmax).

From Proposition 4.1 we know that ∂2

∂t2 ‖xu(t)‖2
L2 = 8Q(u(t)), and by integra-

tion we get
‖xu(t)‖2

L2 � −4εt2 + C1t + C2. (4.6)
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The right hand side of (4.6) is negative for large |t|, which contradicts with
‖xu(t)‖2

L2 > 0 for all t. Therefore, Tmin > −∞ and Tmax < ∞ and by local
well-posedness it follows that

lim
t↓−Tmin

‖u(t)‖H1 = +∞, and lim
t↑Tmax

‖u(t)‖H1 = +∞.

�

Proof of Theorem 4.4. Let ϕ ∈ G. Owing to Lemma 4.9, it suffices to show
that there exists a sequence {ϕλ} ⊂ J , which converges to ϕ in H1

0 (R+).
Let us put ϕλ(x) = λ1/2ϕ(λx). By Lemma 4.5 {ϕλ} ⊂ J for all λ ∈ (0, 1).
Additionally, by Proposition 2.1, ϕ decays exponentially at infinity, and so does
ϕλ. Therefore, xϕλ ∈ L2(R+). Clearly, ϕλ → ϕ as λ → 0, and by Lemma 4.9
the maximal solution of (1.1) corresponding to ϕλ, blows up in finite time for
all λ ∈ (0, 1). Hence, the conclusion follows. �
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5. Appendix

We prove the following Lemma:

Lemma 5.1. Let ψA(x) = q(x + A) − q(x − A), where q is (2.6). Then ψA ∈
H1

0 (R+) and for large A > 0, we have the following approximations:∫ ∞

0

|ψ′
A|2dx =

∫ ∞

−∞
|q′|2dx + O

((
2A +

1√
ω

)
e−2

√
ωA

)
, (5.1)∫ ∞

0

|ψA|2dx =
∫ ∞

−∞
|q|2dx + O

((
2A +

1√
ω

)
e−2

√
ωA

)
, (5.2)

∫ ∞

0

|ψA(x)|2
x2

� 1
A2

∫ ∞

−∞
|q|2dx + O

(
1

A2
e−√

ωA

)
, (5.3)∫ ∞

0

|ψA(x)|p+1dx =
∫ ∞

−∞
|q|p+1dx + O(e−2

√
ωA). (5.4)

Proof. We will use the fact that q(x) � Me−√
ω|x| and q′(x) � Me−√

ω|x| for
some M > 0.

We get (5.1) by using the symmetry of q and q′:∫ ∞

0

|ψ′
A|2dx =

∫ ∞

−∞
|q′|2dx −

∫ ∞

−∞
q′(x + A)q′(x − A)dx.

We estimate the second term by∣∣∣∣
∫ ∞

−∞
q′(x + A)q′(x − A)dx

∣∣∣∣
�

∫ ∞

−∞
e−√

ω|x+A|−√
ω|x−A|dx =

((
2A +

1√
ω

)
e−2

√
ωA

)
,

hence (5.1) follows. We get (5.2) the same way.
We now show (5.3). From Hardy’s inequality we get∫ A/2

0

|ψA|2
x2

dx � 4
∫ A/2

0

|ψ′
A(x)|2 = O(e−√

ωA).

Moreover, we have∫ ∞

A/2

|ψA(x)|2
x2

dx � 4
A2

∫ ∞

A/2

|ψA|2dx =
4

A2

∫ ∞

−∞
|q|2 + O

(
1

A2
e−√

ωA

)
.

Hence ∫ ∞

0

|ψA|2
x2

dx =
∫ A/2

0

|ψA|2
x2

dx +
∫ ∞

A/2

|ψA|2
x2

dx

� 4
A2

∫ ∞

−∞
|q|2dx + O

(
1

A2
e−√

ωA

)
,

which is the estimate in (5.3).
To show (5.4), we use the fact that

|q(x − A) − q(x + A)|p+1 = qp+1(x − A) − (p + 1)qp(x − A)q(x + A) + O(q2(x + A)).
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We get ∫ ∞

0

qp+1(x − A)dx =
∫ ∞

−∞
qp+1(x)dx −

∫ −A

−∞
qp+1(x)dx

=
∫ ∞

−∞
qp+1(x)dx + O(e−√

ω(p+1)A),∫ ∞

0

qp(x − A)q(x + A)dx �
∫ ∞

0

e−√
ωp|x−A|−√

ω|x+A|dx = O
(
e−2

√
ωA

)
,∫ ∞

0

O(q2(x + A))dx = O(e−2
√

ωA).

Hence ∫ ∞

0

|ψA(x)|p+1dx =
∫ ∞

−∞
|q|p+1dx + O(e−2

√
ωA).

This concludes the proof. �

We now state the proof of Lemma 2.8. The proof follows the arguments
of the paper [11], with some important modifications. We introduce the norm

‖u‖2 =
∫ ∞

0

(
|u′|2 − c

|u|2
x2

+ ω|u|2
)

dx,

which is equivalent to the standard norm on H1
0 (R+) if 0 < c < 1/4.

Proof of Lemma 2.8. Step 1. There exists u0 ∈ H1
0 (R+), such that, up to a

subsequence, un is weakly convergent to u0 in H1
0 (R+), and S′(u0) = 0.

Since {un}n∈N is bounded in H1
0 (R+), it admits a weakly convergent subse-

quence in H1
0 (R+) with a weak limit u0 ∈ H1

0 (R+). We only need to show that
S′(u0) = 0. Since by our assumption S′(un) → 0, it suffices to show that for
all ϕ ∈ C∞

0 (R+) we have

S′(un)ϕ − S′(u0)ϕ → 0.

Indeed, we have

S′(un)ϕ − S′(u0)ϕ = Re
∫ ∞

0

(u′
n − u′

0)ϕ̄
′dx − cRe

∫ ∞

0

(un − u0)ϕ̄
x2

dx

+ ω Re
∫ ∞

0

(un − u0)ϕ̄dx

− Re
∫ ∞

0

(|un|p−1un − |u0|p−1u0)ϕ̄dx.

Since un ⇀ u0 in H1
0 (R+) and strongly in Lq

loc(R
+) for all q � 1, our statement

follows.
Let us set vn = un − u0.
Step 2. Assume that

sup
z∈R+

∫
B1(z)

|vn|2dx → 0, (5.5)

where B1(z) is the unit ball centered at z. Then un → u0 strongly in H1
0 (R+),

and Lemma 2.8 holds with k = 0.
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Using the fact that S′(u0) = 0, we get

S′(un)vn = Re
∫ ∞

0

u′
nv̄′

ndx − cRe
∫ ∞

0

unv̄n

x2
dx + ω Re

∫ ∞

0

unv̄ndx

− Re
∫ ∞

0

|un|p−1unv̄ndx =

= ‖vn‖2 + Re
∫ ∞

0

(|u0|p−1u0 − |un|p−1un)v̄ndx.

Hence,

‖vn‖2 = S′(un)vn + Re
∫ ∞

0

(|un|p−1un − |u0|p−1u0)v̄ndx.

We recall that S′(un) → 0. Hölder’s inequality implies that∣∣∣∣
∫ ∞

0

|un|p−1unvndx

∣∣∣∣ � ‖un‖p
Lp+1 ‖vn‖Lp+1 .

Assumption (5.5) and Lemma 1.1 in [16] implies that ‖vn‖Lp+1 → 0. Hence

Re
∫ ∞

0

|un|p−1unv̄ndx → 0.

We obtain similarly that Re
∫ ∞
0

|u0|p−1u0v̄ndx → 0, hence ‖vn‖2 → 0, which
completes the proof of Step 2.
Step 3. Assume that there exist {zn}n∈N ⊂ R

+ and d > 0, such that∫
B1(zn)

|vn|2dx → d. (5.6)

Then, up to a subsequence, we have for q ∈ H1(R), that (i) zn → ∞, (ii)
un(· + zn) ⇀ q �= 0 in H1(R), and (iii) S∞′(q) = 0.

To show (i), let us assume by contradiction that {zn}n∈N has an accu-
mulation point z∗ ∈ R

+. Then for a subsequence of {vn}n∈N we have∫
B2(z∗)

|vn|2dx � d.

Since vn ⇀ 0 in H1
0 (R+), we have vn → 0 in L2(B2(z∗)), which implies that

d � lim
n→∞

∫
B2(z∗)

|vn|2dx = 0,

which is a contradiction, hence (i) holds.
Since un(· + zn) is bounded in H1(R) the re exists q ∈ H1(R) such that

un(· + zn) converges weakly to q in H1(R). We only need to show that q �= 0.
Since u0(· + zn) ⇀ 0 in H1(R), we have that vn(· + zn) ⇀ q in H1(R), and in
L2

loc(R) in particular. Hence∫
B1(0)

|q(x)|2dx = lim
n→∞

∫
B1(0)

|vn(x + zn)|2dx =
∫

B1(zn)

|vn(y)|2dy � d > 0.

This implies that q �= 0.
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We finally show (iii). We define ũ(·) = un(· + zn). We obtain, similarly
as in Step 1, that for any ϕ ∈ C∞

0 (R),

S∞′(ũn)ϕ − S∞′(q)ϕ → 0.

It remains to show that S∞′(ũn)ϕ → 0. For any fixed ϕ ∈ C∞
0 (R), ϕ(· − zn)

is in H1
0 (R+) for sufficiently big n ∈ N. Hence, we obtain

S′(un)ϕ(· − zn) = Re
∫ ∞

−zn

u′
n(x + zn)ϕ̄′

n(x)dx − cRe
∫ ∞

−zn

un(x + zn)ϕ̄(x)
(x + zn)2

dx

+ ω Re
∫ ∞

−zn

un(x + zn)ϕ̄(x)dx

− Re
∫ ∞

−zn

|un(x + zn)|p−1un(x + zn)ϕ̄(x)dx.

Since S′(un) → 0 and ϕ(· − zn) is bounded in H1(R), it follows

Re
∫ ∞

−zn

ũ′
n(x)ϕ̄′

n(x)dx − cRe
∫ ∞

−zn

ũn(x)ϕ̄(x)
(x + zn)2

dx

+ ω Re
∫ ∞

−zn

ũn(x)ϕ̄(x)dx − Re
∫ ∞

−zn

|ũn(x)|p−1ũn(x)ϕ̄(x)dx → 0.

Moreover, since un is bounded in L∞, and ϕ is compactly supported, we get∣∣∣∣Re
∫ ∞

−zn

ũn(x)ϕ̄(x)
(x + zn)2

dx

∣∣∣∣
=

∣∣∣∣Re
∫ ∞

0

un(x)ϕ̄(x − zn)
x2

dx

∣∣∣∣ � 1
(zn − inf{supp(ϕ)})2

‖unϕ‖L∞ → 0,

Thus

S∞′(ũn)ϕ = Re
∫ ∞

−∞
ũ′

n(x)ϕ̄′
n(x)dx + ω Re

∫ ∞

−∞
ũn(x)ϕ̄(x)dx

− Re
∫ ∞

−∞
|ũn(x)|p−1ũn(x)ϕ̄(x)dx → 0,

which concludes the proof of Step 3.
Step 4. Suppose there exist k � 1, {xi

n} ⊂ R
+, qi ∈ H1(R) for 1 � i � k, such

that

xi
n → ∞, |xi

n − xj
n| → ∞ if i �= j,

un(· + xi
n) → qi �= 0, for all 1 � i � k,

S∞′(qi) = 0.

Then
(1) If supz∈R+

∫
B1(z)

|un − u0 − ∑k
i=1 qi(· − xi

n)|2dx → 0 then∥∥∥∥∥un − u0 −
k∑

i=1

qi(· − xi
n)

∥∥∥∥∥
H1

→ 0.
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(2) If there exist {zn} ⊂ R
+ and d > 0, such that∫

B1(zn)

∣∣∣∣∣un − u0 −
k∑

i=1

qi(· − xi
n)

∣∣∣∣∣
2

dx → d,

then, up to a subsequence, it follows that

(i) zn → ∞, and |zn − xi
n| → ∞ for all 1 � i � k,

(ii) un(· + zn) ⇀ qi+1 (iii) S∞′(qi+1) = 0.

Suppose assumption (1) holds. We introduce ξn = un −u0 −∑k
i=1 qa

i (· −
xi

n), where qa
i is a suitable cut-off of qi, such that supp(qa

i ) ⊂ (0,∞). This
is possible owing to the exponential decay of qi at infinity, and xi

n → ∞ as
n → ∞ for all i. We get

S′(un)ξn = Re
∫ ∞

0

u′
nξ̄′

ndx − cRe
∫ ∞

0

unξ̄n

x2
dx + ω Re

∫ ∞

0

unξ̄ndx

− Re
∫ ∞

0

|un|p−1unξ̄ndx

= ‖ξn‖2 + Re
∫ ∞

0

(u′
0 +

k∑
i=1

qa
i

′(· − xi
n))ξ̄′

ndx

+ Re
∫ ∞

0

(
ω − c

x2

) (
u0 +

k∑
i=1

qa
i (· − xi

n)

)
ξ̄ndx

− Re
∫ ∞

0

|un|p−1unξ̄ndx.

Since S′(u0)ξn = 0, we get

S′(un)ξn = ‖ξn‖2 + Re
∫ ∞

0

(|u0|p−1u0 − |un|p−1un)ξ̄ndx

+ Re
∫ ∞

0

k∑
i=1

qa
i

′(· − xi
n)ξ̄′

ndx

+ Re
∫ ∞

0

(
ω − c

x2

) k∑
i=1

qa
i (· − xi

n)ξ̄ndx.

Using the fact that ‖ξn‖Lp+1 → 0 by Lemma 1.1 in [16], we get that the second
term of the right hand side converges to zero. Now, from the weak convergence
of ξn to zero and that S′(un) → 0,we obtain that ‖ξn‖ → 0.

Suppose now that assumption (2) holds. Then (i) and (ii) follows as in
Step 3. To show (ii), let us set ũn = un(· + zn). We note that

S∞′(ũn)ϕ − S∞′(q)ϕ → 0,

for all ϕ ∈ C∞
0 (R). Now S∞′(ũn) → 0 follows similarly as in Step 3, which

concludes the proof.
Step 5. Conclusion By Step 1 we know that un ⇀ u0 and S′(u0) = 0. Hence (i)
of Lemma 2.8 is verified. If the assumption of Step 2 holds, then Lemma 2.8
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is true with k = 0. Otherwise, the assumption of Step 3 holds. We have to
iterate Step 4. We only need to show that assumption 1 of Step 4 occurs after
a finite number of iterations. Let us notice that∥∥∥∥∥un − u0 −

k∑
i=1

qi(· − xn
i )

∥∥∥∥∥
2

H1

= ‖un‖2
H1 + ‖u0‖2

H1 +
k∑

i=1

‖qi‖2
H1 − 2

〈
un, u0 +

k∑
i=1

qi(· − xn
i )

〉
H1

.

Moreover, since un ⇀ u0 and un(· + xn
i ) ⇀ qi, we get for the last term that〈

un, u0 +
k∑

i=1

qi(· − xn
i )

〉
H1

→ ‖u0‖2
H1 +

k∑
i=1

‖qi‖2
H1 ,

Now since un converges weakly to u0, we obtain for k � 1 that

lim
n→∞ ‖un‖2

H1 − ‖u0‖2
H1 −

k∑
i=1

‖qi‖2
H1 = lim

n→∞

∥∥∥∥∥un − u0 −
k∑

i=1

qi(· − xn
i )

∥∥∥∥∥
2

H1

� 0.

Since qi is a nontrivial critical point of S∞, it is true that ‖qi‖H1 � ε > 0.
Hence, after a finite number of iterations assumption 1 of Step 4 must occur.

Finally, we have to verify that

S(un) → S(u0) +
k∑

i=1

S∞(qi).

We first show that

S(un) → S(u0) + S∞(vn). (5.7)

A straightforward calculation gives

S(un) = S(u0) + S∞(vn) + Re
∫ ∞

0

u′
0(ū

′
n − ū′

0)dx − cRe
∫ ∞

0

u0(ūn − ū0)
x2

dx

+ ω Re
∫ ∞

0

u0(ūn − ū0)dx − c

2

∫ ∞

0

|un − u0|2
x2

dx

+
1

p + 1

(
‖un − u0‖p+1

Lp+1 − ‖un‖p+1
Lp+1 + ‖un‖p+1

Lp+1

)
From a lemma by Brezis and Lieb (see e.g. Lemme 4.6 [12]) we have∫ ∞

0

|un − u0|p+1dx −
∫ ∞

0

|un|p+1dx +
∫ ∞

0

|u0|p+1dx → 0.

Hence (5.7) follows. It only remains to show that

S∞(vn) →
k∑

i=1

S∞(qi).
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We calculate

S(vn) =
1
2

∥∥∥∥∥vn −
k∑

i=1

qi(· − xn
i )

∥∥∥∥∥
2

H1

+
1
2

∥∥∥∥∥
k∑

i=1

qi(· − xn
i )

∥∥∥∥∥
2

H1

+

〈
vn −

k∑
i=1

qi(· − xn
i ),

k∑
i=1

qi(· − xn
i )

〉
H1

− 1
p + 1

∥∥∥∥∥
k∑

i=1

qi(· − xn
i )

∥∥∥∥∥
p+1

Lp+1

− 1
p + 1

‖vn‖p+1
Lp+1 +

1
p + 1

∥∥∥∥∥
k∑

i=1

qi(· − xn
i )

∥∥∥∥∥
p+1

Lp+1

.

We have shown that vn − ∑k
i=1 qi(· − xn

i ) → 0 strongly in H1. Hence the
first and third term above converges to zero as n → ∞. By using Sobolev’s
inequality and ‖A − B‖ � | ‖A‖ − ‖B‖ | we have

∥∥∥∥∥
k∑

i=1

qi(· − xn
i )

∥∥∥∥∥
p+1

Lp+1

− ‖vn‖p+1
Lp+1 → 0,

which concludes the proof. �
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