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Abstract

Dual-energy CT (DECT) has emerged into clinical routine as an imaging technique with unique postprocessing
utilities that improve the evaluation of different body areas. The virtual non-calcium (VNCa) reconstruction
algorithm has shown beneficial effects on the depiction of bone marrow pathologies such as bone marrow edema.
lts main advantage is the ability to substantially increase the image contrast of structures that are usually covered
with calcium mineral, such as calcified vessels or bone marrow, and to depict a large number of traumatic,
inflammatory, infiltrative, and degenerative disorders affecting either the spine or the appendicular skeleton.
Therefore, VNCa imaging represents another step forward for DECT to image conditions and disorders that usually
require the use of more expensive and time-consuming techniques such as magnetic resonance imaging, positron
emission tomography/CT, or bone scintigraphy. The aim of this review article is to explain the technical background
of VNCa imaging, showcase its applicability in the different body regions, and provide an updated outlook on the

clinical impact of this technique, which goes beyond the sole improvement in image quality.
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Key points

e Virtual non-calcium (VNCa) computed tomography
(CT) imaging provides new relevant clinical infor-
mation compared to standard CT.

e VNCa improves CT sensitivity and specificity to
assess bone marrow disorders.

e VNCa CT may serve as an alternative to magnetic
resonance imaging in case of contraindications.

Background

Since the advent of dual-energy computed tomography
CT (DECT), numerous and noteworthy advantages over
conventional CT have been investigated such as image
optimization, artifact reduction, and the ability to
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provide additional information regarding tissue compos-
ition [1-8].

Among different DECT applications, virtual non-
calcium (VNCa) has become an increasingly popular
technique due to its ability to subtract calcium from
anatomical structures, resulting in better assessment of
numerous pathological conditions that might be masked
on standard CT. Firstly introduced in 2009, VNCa has
found its mainstream applications in removing calcified
plaques from vessels and depicting cancellous bone and
bone marrow changes [9-13].

Bone marrow edema (BME) or “bone bruise,” is con-
sidered the biomarker of injury of the skeletal system
and is associated with a reduction of fat component in
the trabecular bone, replaced by edema and hemorrhage.
Magnetic resonance imaging (MRI) represents the refer-
ence standard technique for the assessment of bone
marrow disorders [14]. DECT may be considered a po-
tentially cheaper, faster, and comprehensive imaging
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alternative through the creation of VNCa reconstruc-
tions, and it is aiming to provide as detailed information
as MRI for a number of clinical indications [15].

A large body of evidence has shown the potential of
DECT for collagen-based tendon and ligament imaging
or to differentiate hyperdense lesions from calcium, such
as urate crystals in patients with gout [16-20]. In this
setting, DECT’s ability to provide information regarding
an additional imaging parameter such as BME derived
from VNCa images might be particularly helpful for a
multiparametric approach to inflammatory, infiltrative,
and degenerative disorders as well as in an emergency
setting for traumatized patients.

This article discusses and summarizes the current clin-
ical applications of VNCa imaging including different
DECT platforms, their basic principles of physics, and
areas of potential development.

Basic principles of DECT

While standard single-energy CT uses a single polychro-
matic x-ray beam with a single peak energy of 120 kV,
DECT systems allow for simultaneous image acquisition
at two different voltages.

At the energy levels used in clinical routine, attenu-
ation of biological tissues is dependent on two major in-
teractions: Compton scattering and photoelectric effects.
Compton scattering is proportional to electron density
and has little energy dependence. On the other hand,
the photoelectric effect is dependent on the energy of
the x-ray beam (E), as well as on the atomic number (Z)
of the element, and it is predominant at lower energies
and near the element K-edge.

On single-energy CT platforms, the measurement of
attenuation using a single x-ray spectrum does not allow
for the differentiation of materials, because the attenu-
ation coefficient is not unique. In particular, it depends
either on the energy of the x-ray beam or on the con-
centration of a material. This means that at a given en-
ergy, a lower concentration of a higher Z material (i.e.,
iodine) may have the same attenuation as the higher
concentration of a lower Z material (i.e., calcium). How-
ever, since materials have unique attenuation profiles at
different energy levels, DECT aims to identify different
elements exploiting mathematical algorithms based on
their linear attenuation coefficients in order to achieve
the so-called material decomposition [21-23].

DECT'’s ability to discriminate between different mate-
rials is highly proportional to the dual-energy ratio
(DE,4ti0). Since DECT uses two different energies for
measuring attenuation, DE_,;, is defined as the ratio of
the attenuation of a given material on a low-kV dataset
to the attenuation of the same material on a high-kV
dataset. The energy-dependent attenuation differences of
elements within a voxel allow DECT to exploit two- and
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three-material decomposition. The ability to differentiate
the DE ., of two materials also depends on the separ-
ation between low- and high-energy spectra and the Z of
the evaluated materials.

However, DECT algorithms work better when mate-
rials have high atomic numbers, because these are char-
acterized by large differences in attenuation at different
photon energies (i.e., iodine and calcium). At tube volt-
ages used in clinical routine, it is possible to generate
virtual unenhanced images by subtraction of iodine from
contrast-enhanced DECT examinations or VNCa series
by subtraction of calcium [5, 15, 20, 24, 25].

Different vendors offer diverse DECT technologies:

1) Dual-source CT (DSCT) platforms, consisting of
two x-ray tubes that generate two beams at differ-
ent voltages installed at about 90° from each other,
which have the advantage of high temporal reso-
lution; although two x-ray sources are involved, the
radiation dose administered to the patient is usually
divided between the two, resulting in dose neutral-
ity of second- and third-generation DSCT scanners
compared with conventional CT [25, 26];

2) Single-source with sequential acquisition CT
platforms, which consist of two scans acquired
consecutively at different tube potentials followed
by co-registration for post-processing, offering the
advantage of a full field of view and the drawback of
poor temporal resolution as the patient is scanned
twice, with an increase of radiation dose;

3) Single-source twin-beam platforms, in which a two-
material filter splits the x-ray beam into high- and
low-energy spectra on the z-axis before it reaches
the patient;

4) Single-source tube voltage switching CT platforms, in
which the x-ray tube alternates high and low poten-
tials several times within the same rotation, which
have the advantage of a full field of view;

5) Dual-layer detector CT platforms, which involve a
superficial and a deep layer within the same
detector plate that simultaneously collect low-
energy data by the superficial layer, and high-energy
data by the deep layer.

However, most of the current experience with VNCa
algorithms published in scientific literature has been
performed on second- and third-generation DSCT plat-
forms (Tables 1, 2, 3, and 4), which may be explained
with wider availability of this particular DECT technol-
ogy compared to the other ones.

Technical background of VNCa CT imaging
Due to three-material decomposition, the VNCa algo-
rithm estimates the amount of calcium on the DECT
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Table 1 Virtual non-calcium computed tomography (CT) ability to differentiate hemorrhage from parenchymal calcifications on

dual-energy head scans

Authors, year DECT Study type Qualitative analysis (sensitivity, Quantitative analysis cutoff Reference

[reference] platform specificity, accuracy) (sensitivity, specificity, accuracy) standard

Wiggins et al,, 2019 [19]  DSCT Clinical (137 patients)  100%, 100%, 100% 44 HU (100%, 93%, 95%) MRI

Hu et al, 2016 [17] DSCT Clinical (62 patients)  96%, 100%, 99% NA MRI or clinical
follow-up

Nute et al, 2015 [18] VSCT Phantom NA 50 HU (NA, NA, 90%) MRI

DECT Dual-energy computed tomography, DSCT, Dual-source CT, HU Hounsfield units, MRl Magnetic resonance imaging, NA Not available, VSCT

Voltage-switching CT

dataset and subtracts it from images to highlight the
anatomical structures that can be covered with bone
mineral or gross calcifications.

On VNCa imaging, the bone marrow attenuation
represents CT values of yellow and red marrow. In
particular, using the characteristic slope of the DE .,
of calcium, bone mineral voxels are projected to the
CT value of water (0 HU for both 100 kV and Sn140
kV) [27, 28]. As a consequence, the differences
among voxels reflect mainly the water and fat content
in the bone marrow. These differences can be visually
interpreted, using color-coded maps, or quantitatively
assessed by means of regions of interest and
expressed in HU [22, 29-31].

However, most of the cutoff values that have been sug-
gested to differentiate BME from normal bone marrow
are still quite heterogeneous, and range between -80 and
6 HU. These differences might depend either on the
anatomical region evaluated or on the type of DECT
platform used.

Image quality on VNCa datasets is also influenced by
DECT scanning parameters. The use of higher spectral

separation allows for a precise assessment of bone min-
eral content [32]. Best results have been obtained with a
DE, ., of 70/150 kV. However, when a wide DE,,;, may
not be recommended because of the increase in image
noise, such as scanning the abdomen and pelvis, higher
radiation doses help provide optimal image quality [31].
Pitch and rotation time do not considerably affect image
quality, although spiral artifacts can appear when the
pitch is too low.

Color-coded VNCa datasets are usually automatically
processed from raw data of most modern DECT plat-
forms, with processing time lasting few minutes, and
showing the potential to be used in routine clinical prac-
tice [33, 34]. Slice thickness of 1-2 mm and smoother
reconstruction kernels are recommended and datasets
should be reformatted along two anatomical planes for
optimal qualitative evaluation [35].

Technical limitations of VNCa imaging should also be
taken into account. In fact, it has been demonstrated the
inability to accurately visualize minor alterations in mar-
row attenuation directly adjacent to cortical bone due to
incomplete masking of the cortex and to spatial

Table 2 Virtual non-calcium computed tomography (CT) ability to depict traumatic bone marrow edema on dual-energy spine

scans

Authors, year DECT Number of Qualitative analysis (sensitivity, Quantitative analysis cutoff Reference Spine
[reference] platform patients specificity, accuracy) (sensitivity, specificity, accuracy) standard site
Wang et al, 2020 [51] DSCT 20 859%, 97%, 93% -12 HU (95%, 86%, 98%) MRI T/L
Jeong et al, 2020 [52] DSCT 31 83%, 99%, 99% NA MRI T/L
Booz et al, 2020 [29] DSCT 52 93%, 95%, 90% -43 HU (85%, 95%, 97%) MRI S
Foti et al, 2019 [58] DSCT 76 88%, 92%, 90% cutoff NA (92%, 90%, 91%) MRI T/L
Diekhoff et al, 2019 [53]  SACT 70 72%, 70%, NA NA MRI /L
Frellessen et al, 2018 [45]  DSCT 51 96%, 96%, 98% NA MRI T/L
Diekhoff et al, 2017 [57] ~ SACT 9 88%, 100%, NA NA MRI /L
Petristsch et al, 2017 [54]  DSCT 22 64%, 99%, 93% -47 HU (92%, 82%, 84%) MRI L
Kaup et al, 2016 [55] DSCT 49 90%, 90%, 95% NA MRI T/L
Bierry et al, 2014 [10] DSCT 20 84%, 97%, 95% cutoff NA (85%, 82%, NA) MRI T/L
Wang et al, 201 3[27] DSCT 63 NA -80 HU (96%, 98%, 97%) MRI T/L

DECT Dual-energy computed tomography, DSCT Dual-source computed tomography, SACT Sequential acquisition computed tomography, HU Hounsfield units, NA

Not available, MRI Magnetic resonance imaging, T Thoracic, L Lumbar, S Sacral
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Table 3 Virtual non-calcium computed tomography potential to visualize non-traumatic bone marrow edema on dual-energy scans

of spine and pelvic girdle

Authors, year DECT Number Qualitative analysis Quantitative analysis cutoff Reference Disorder Anatomical

[reference] platform of patients (sensitivity, specificity, (sensitivity, specificity, accuracy) standard site
accuracy)

Shinohara et al,, DSCT 53 NA NA MRI Disc Spine

2020 [61] degeneration

Foti et al, 2020 DSCT 59 95%, 86%, 93% NA MRI Sacroiliitis Hip

[74]

Chen et al, 2020  DSCT 40 819%, 94%, NA -44 HU (76%, 91%, NA) MRI Sacroiliitis Hip

[71]

Gruggeberger DSCT 47 93%, 94%, NA -35 HU (94%, 83%, NA) MRI Sacroiliitis Hip

et al, 2020 [73]

Abdullayev et al,  DLCT 21 85%, 84%, 84% NA MRI Vertebral Spine

2019 [56] metastases

Booz et al, 2019  DSCT 41 91%, 92%, 94% NA MRI Disc herniation ~ Spine

[34]

Wu et al, 2019 DSCT 47 93%, 94%, 92% -33 HU (90%, 83%, 83%) MRI Sacroiliitis Spine/Hip

[70] Spondylarthritis

Kosmala et al, DSCT 53 NA -36 HU (100%, 97%, 99%) MRI Multiple Spine

2018 [12] myeloma

Kosmala et al, DSCT 34 91%, 91%, 91% -45 HU (93%, 92%, 93%) MRI Multiple Spine

2018 [66] Myeloma

DECT Dual-energy computed tomography, DLCT Dual-layer computed tomography, DSCT Dual-source computed tomography, HU Hounsfield units, NA Not

available, MRI Magnetic resonance imaging

averaging. Incomplete subtraction of cortical or cancel-
lous bone might also occur in the case of arthrosis, and
in the presence of gas or severe osteosclerosis, which
causes beam hardening artifacts that may result in a lack
of visible edema even in the presence of a fracture. For
this reason, any potential user of VNCa imaging should
be aware of its potential pitfalls [36, 37].

VNCa clinical applications

Head

Intracranial calcifications are common findings on head
CT scans [38]. They are often caused by dystrophic pro-
cesses within the choroid plexus and basal ganglia or
might occur as part of different disorders, such as tuber-
ous sclerosis, cysticercosis, Sturge-Weber syndrome, and

Table 4 Virtual non-calcium computed tomography ability to depict traumatic bone marrow edema on dual-energy scans of

appendicular skeleton

Author DECT Number Qualitative analysis (sensitivity, Quantitative analysis cutoff Reference Anatomical
platform of patients specificity, accuracy) (sensitivity, specificity, accuracy) standard site

Yang et al,, 2020 [81] DSCT 156 92%, 93%, 93% NA MRI Knee

Booz et al, 2020 [82] DSCT 56 96%, 97%, 97% -51 HU* (96%, 97%, 96%) MRI Knee

Yadav et al, 2020 [83]  DSCT 40 94%, 91%, 92% NA MRI Lower limb

Wang et al, 2019 [80] DSCT 35 88%, 98%, 95% -67 HU (81%, 99%, 90%) MRI Knee

Booz et al, 2019 [85] DSCT 62 92%, 97%, 98% -53 HU (82%, 95%, 98%) MRI Calcaneus

Foti et al, 2019 [87] DSCT 40 92%, 86%, 90% -20 HU (88%, 92%, 87%) MRI Ankle

Jang et al, 2019 [36] DSCT 35 100%, 100%, 100% -55 HU (100%, 94%, 95%) Standard CT  Hip

Ali et al, 2018 [86] DSCT 24 NA 6 HU (100%, 99%, 100%) Visual Wrist
assessment

Kellock et al, 2017 [37] DSCT 118 100%, 100%, NA NA Clinical Hip
follow-up

Reddy et al, 2015 [69]  DSCT 25 90%, 40%, NA NA Clinical Hip
follow-up

Guggenberger et al, DSCT 30 90%, 81%, 97% NA MRI Ankle

2012 [47]

BME Bone marrow edema, CT Computed tomography, DECT Dual-energy computed tomography, DSCT Dual-source computed tomography, HU Hounsfield units;
NA Not available, MRI Magnetic resonance imaging. *Cutoff value refers to tibial BME
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slowly growing brain tumors (i.e., meningiomas, dermoids,
craniopharyngiomas, and oligodendrogliomas) [39].

In an emergency setting, any focal source of intracra-
nial hyperattenuation might confound diagnosis, espe-
cially if intracranial hemorrhage needs to be excluded. In
a conventional CT scan of the head, any lesion with at-
tenuation levels greater than 100 HU is classified as a
calcification [40]. However, fresh blood usually has a
density of 50-65 HU whereas attenuation of calcifica-
tions can vary between 70 and 200 HU [41]. Hence, this
standard criterion may fail for lesions with attenuation
levels inferior to 100 HU, where values tend to overlap.

Currently, the proposed imaging techniques for
differentiating hemorrhage from calcification include
MRI-based techniques such as quantitative susceptibility
mapping and gradient-echo imaging [40].

VNCa has been shown to accurately differentiate be-
tween calcification and hemorrhage, even in lesions with
attenuation comprised between 50 and 100 HU (Fig. 1)
[18]. In clinical studies, VNCa with a cutoff of 44 HU
has shown high diagnostic performance for differenti-
ation of small foci of intracranial hemorrhage from
calcium (Table 1) [17, 19].

Spine

Fractures

MRI and CT are currently considered the diagnostic im-
aging modalities of choice to evaluate spine disorders
[42]. CT imaging is indicated in emergency trauma set-
tings to detect hypodense fracture lines due to its excel-
lent spatial resolution [42, 43]. On the other hand, MRI
is the reference standard technique for the evaluation of
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nerves, musculotendinous structures, and bone marrow
disorders. Moreover, MRI is particularly useful to diag-
nose BME secondary to trauma, which allows establish-
ing the chronicity of a fracture by the presence of
interstitial fluid [44—46]. However, MRI access can be
limited in routine trauma settings due to its high costs
and long acquisition times, which require prolonged and
potentially painful patient positioning [32, 46—48].

While single-energy CT is not able to remove bone
trabeculations and to uncover subtle bone marrow at-
tenuation changes, DECT allows for BME assessment
[20, 49-55]. Moreover, its rapid acquisition time lends it
favorably to emergency settings [46]. Several studies
have been carried out to evaluate the diagnostic per-
formance of VNCa reconstructions to detect acute verte-
bral fractures [56-58]. BME detection has been
qualitatively assessed by using color-coded images and
quantitatively using region-of-interest-based measure-
ments of bone marrow attenuation. When microfrac-
tures are present within the cancellous bone, bone
marrow attenuation increases since its fatty content is
replaced by edema and microhemorrhages. Color-coded
VNCa reconstructions show good to excellent results for
qualitative assessment of BME, either in terms of sensi-
tivity (range 72-96%), specificity (range 70-100%), and
accuracy (range: 90-99%) (Table 2).

Similarly, receiver operating characteristic curve
analysis of bone marrow attenuation on VNCa data-
sets has also demonstrated excellent sensitivity, speci-
ficity, and accuracy, ranging 85-96%, 82-90%, and
85-91%, respectively, using cutoff values from -80
and -12 HU [46, 56-58].

Fig. 1 Head dual-energy computed tomography scan shows a focal hyperattenuation in the pons classified as indeterminate at standard
grayscale series (a). This 80-year-old patient with a history of hypertension presented to the emergency department with altered mental status.
On the calcium-overlay image (b), the hyperattenuation focus remains visible, while it is not apparent on the virtual non-calcium image (c),
suggestive for parenchymal calcification. The finding was confirmed by magnetic resonance imaging. From Hu et al. [17]




D’Angelo et al. European Radiology Experimental (2021) 5:38

Interesting results have also been obtained for the
diagnosis of sacral insufficiency fractures (Fig. 2), show-
ing high sensitivity and specificity (93% and 95%, re-
spectively) for qualitative assessment, and values of 85%
and 95% for quantitative assessment using a cutoff value
of -43 HU [29]. This may allow DECT to act as a prom-
ising technique to avoid misinterpretation of insuffi-
ciency fractures and their related complications,
particularly in patients suffering from osteoporosis or
diffuse bone disease [59].

Degenerative disc disease

Degenerative disease of intervertebral disc apparatus is a
common age-related condition, causing lower back pain
and entailing substantial social and economic burden [34].

Common complications are compressions of the spinal
cord or spinal nerve root. Fast and accurate diagnosis is
necessary for rapid initiation of optimal therapy and to
avoid compressions that can result in irreversible mor-
bidity. MRI is the preferred diagnostic imaging modality
due to its ability to provide excellent demarcation be-
tween the intervertebral disc and cerebrospinal fluid
[60]. However, MRI has several limitations in clinical
routine, such as patients with ferromagnetic metallic im-
plants, claustrophobia, or difficulties in staying supine
and still for long acquisition times.

DECT imaging has been introduced as an attractive al-
ternative, especially due to VNCa imaging, which
achieved promising results for the identification of early
stages of intervertebral disc degeneration. Using a max-
imum CT value of 800 HU and a threshold of -200 HU,
VNCa color-coded maps with mixed CT overlay have
demonstrated the ability to detect different grades of the
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modified Pfirrmann classification, which is widely used
for disc degeneration grading [61]. In particular, VNCa
imaging is able to detect an increase in disc attenuation
that positively correlates to dehydration of nucleus pul-
posus and in a loss of its proteoglycan and water
content.

More advanced stages of intervertebral disc degener-
ation are characterized by disc height reduction, fissura-
tion of the annulus fibrosus, and herniation of the
nucleus polposus. Standard CT has shown moderate
sensitivity and specificity for the detection of lumbar
disk herniation, despite the improved results coming
from new iterative reconstruction algorithms [34, 62,
63]. More recently, DECT has overcome the impaired
contrast resolution of intervertebral discs by application
of color-coded VNCa reconstructions (Fig. 3).

Color-coded maps help distinguish small disc herniations
from cerebrospinal fluid, with better sensitivity and specifi-
city compared to standard CT, respectively of 91% and
92%, using MRI as a reference standard (Table 3) [34].

Infiltrative disease

The spine represents the most common site of bone
metastases. Only breast, prostate and lung cancers are
together responsible for more than 80% of cases of
metastatic bone disease [64].

A contrast-enhanced CT scan is typically performed in
oncologic patients either for staging and follow-up pur-
poses [56]. However, despite iodine-based contrast
agents helping enhance soft tissue contrast, the assess-
ment of bone lesions on standard CT remains challen-
ging. In a meta-analysis, conventional CT images
reported a sensitivity and specificity of 77% and 83% for

compatible with hemorrhage. From Hu et al. [17]

Fig. 2 Head dual-energy computed tomography scan shows focal hyperattenuation in the pons, classified as indeterminate at standard grayscale
series (). This 58-year-old patient had a history of hypertension and diabetes and presented to the emergency department with right arm
tremor, blurry vision, and increased systolic blood pressure. On the calcium-overlay image, the focal hyperattenuation in the pons was not
apparent (b). On the virtual non-calcium image (c), the focal hyperattenuation in the pons manifests as a focal area of high attenuation,
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Fig. 3 Spine dual-energy computed tomography. Standard grayscale series (a) shows typical findings of spondylarthrosis with vacuum

phenomena in L3/L4 and L4/L5 intervertebral discs. Virtual non-calcium reconstruction with optimization for intervertebral disc analysis (b) can
finely show the protrusion of lumbar discs (arrows), confirmed by magnetic resonance imaging T2-weighted sequence (c) (arrows). From Booz
et al. [34]

detection of spine metastasis [65]. Moreover, patients
may need to undergo additional imaging techniques,
such as MRI, scintigraphy, or positron emission tomog-
raphy when there is high suspicion for bone metastasis
presence [56].

The efficacy of VNCa reconstructions to detect meta-
static spine lesions has been recently assessed with dif-
ferent calcium suppression indices. In particular, the use
of low- and medium-suppression indices resulted in an
increase in sensitivity to 85%, compared to 78% of con-
ventional CT, and it was associated with a good inter-
reader agreement at subjective image analysis [56].

In a study from Abdullayev et al. [56], quantitative
analysis using low- and medium-suppression indices
showed promising results to discriminate between nor-
mal and metastatic bone, using a cutoff of -143 HU and
-31 HU, respectively (Table 3).

The role of DECT in infiltrative spine disorders has
also been focused on patients with multiple myeloma. In
this malignant hematological tumor, the unbridled
clonal proliferation of plasma cells causes an alteration
of the normal components of bone marrow [66]. Low-
dose total body CT scans are usually performed to de-
tect osteolytic lesions [66]. In this setting, DECT has
shown promising results, with better sensitivity com-
pared to standard CT (Fig. 4).

Different studies have proposed threshold values ran-
ging between -45 HU and -36 HU to achieve optimal

sensitivity by quantitative assessment and to allow fine
depiction either of focal and diffuse patterns of disease,
with accuracy ranging from 93 to 99% [12, 66, 67].

Appendicular skeleton

Hip

VNCa reconstructions are particularly helpful to detect
subtle hip fractures that might be missed on conven-
tional radiographs or standard CT, especially in patients
affected by diffuse skeletal disorders such as osteoporosis
or Paget’s disease [36].

Prompt identification of pelvic fractures is crucial for
therapeutical planning and misdiagnosis is related to dis-
ability and higher mortality rates, with complications
such as avascular necrosis and thromboembolism [68].
Different authors focused on the diagnostic performance
of VNCa reconstructions to detect pelvic fractures, using
clinical follow-up as a reference standard (Table 3). In
these studies, DECT performed significantly better than
standard CT, showing an improvement of sensitivity
(> 5%) when color-coded VNCa images were evaluated
[37, 69]. Moreover, quantitative analysis with a cutoff of
-55.3 HU vyielded sensitivity and specificity of 100% and
94%, respectively [36].

Different conditions such as axial spondylarthritis and
sacroiliitis, involving either the spine or the pelvic girdle,
usually require patients to undergo MRI. The VNCa al-
gorithm has also been investigated for inflammatory
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Fig. 4 Hand dual-energy computed tomography scan in a patient with a non-displaced scaphoid fracture, which was confirmed at magnetic
resonance imaging (not shown). Standard grayscale series (a) shows a subtle cortical interruption, which is not clearly suggestive for fracture
(arrow). Color-coded virtual non-calcium image (b) depicts the presence of bone marrow edema confirming the hypothesis of a traumatic lesion.
Of note, the epiphyseal line on the distal radius and ulna are also color-coded in green (arrowhead). From Dareez et al. [84]

changes of the bone marrow (Table 3), with results
showing good diagnostic performance to highlight BME
caused by active inflammation [70-74]. Promising re-
sults have also been shown for infiltrative lesions, and
VNCa has been used as a guide for biopsy of malignant
pelvic neoplasms that are barely visible on standard CT
because of isodense bone marrow [75].

Limbs

A recent meta-analysis [76] compared the diagnostic
performance of CT and MRI to establish a definitive
diagnosis of a suspected fracture in small bones. MRI
yielded superior sensitivity and specificity compared to
CT (respectively 88% and 100% versus 72% and 99%),
using bone scintigraphy as a reference standard. In case
of suspected or subtle fractures, MRI is considered the
best advanced imaging option after conventional radiog-
raphy, as it finely depicts bone marrow and adjacent soft
tissues. On the other hand, MRI alone may not depict
fracture lines in case of intense BME, and conventional
radiographs or CT may be needed for diagnosis [77].
Additionally, high cost, low access, and contraindica-
tions prevent MRI from playing a role as an advanced
imaging option for suspected and occult fractures in
emergency settings [76, 78]. However, bone bruise is
considered the key finding of bone injury at MRI, as
it allows uncovering subtle fractures even in small
bones that might be occult at conventional radiog-
raphy and standard CT [79].

An increasing number of studies have shown the feasi-
bility of DECT to detect traumatic BME in small bones
of appendicular skeleton exploiting VNCa imaging
(Table 4), with improved diagnostic performance com-
pared to standard CT either for qualitative and quantita-
tive evaluation [80-83].

DECT can complement the information provided by
standard CT imaging and enhance the diagnostic cap-
abilities of VNCa for the evaluation of acute knee frac-
tures (Fig. 5). In a study by Booz et al. [82], qualitative
assessment of knee fractures by color-coded VNCa im-
ages yielded sensitivity and specificity of 95%, while at
quantitative analysis, these values were 96% and 97%, re-
spectively, using a -51 HU cutoff. Similar results have
been shown by Wang et al. [80], who proposed a cutoff
of -67 HU, yielding a sensitivity of 81% and specificity of
99%. Compared with standard CT, DECT has demon-
strated a 15-20% increase in sensitivity to detect frac-
tures, especially for less experienced radiologists [81].
The VNCa algorithm has been shown to perform well
even with a low radiation-dose protocol, with excellent
agreement with standard-dose DECT [48]. Bipartite pa-
tella and osteoarthritis can represent a pitfall of the
VNCa algorithm, since they may determine false posi-
tives and negatives [81]. An additional limitation repre-
sents also the presence of prostheses or osteosynthesis
implants [81].

Several authors have investigated the performance
of VNCa reconstructions to detect traumatic BME in
small bones of distal joints, such as the scaphoid [47,
84-88]. In these studies, DECT was able to highlight
traumatic BME with higher sensitivity and specificity
than standard CT either for qualitative assessment
and quantitative analysis (Table 4) [85]. Some case re-
ports also highlighted the ability of DECT to depict
Achilles tendon tears with improved confidence over
conventional CT [89]. Similar outcomes have been re-
ported for evaluation of cruciate ligament rupture in
acute knee trauma, with rather good sensitivity (79%)
and excellent specificity (100%), using MRI as a refer-
ence standard [16].
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Fig. 5 Dual-energy computed tomography scan in a patient presenting with right-sided acute ankle trauma. Standard grayscale series (a) does
not depict any fracture line. Color-coded virtual non-calcium image (b) shows a distinct traumatic bone marrow edema of the right calcaneus,
displayed as a green area (arrow). The finding was confirmed by magnetic resonance imaging (c) using a proton density-weighted

VNCa imaging performs well on small bones also to
depict inflammatory BME, related to rheumatoid arth-
ritis, in either large or small joints (Fig. 6), showing good
qualitative assessment and excellent agreement with
MRI [72].

Vascular applications

Sufficient removal of calcified plaques from vessels rep-
resents a current challenge for CT angiography (CTA)
studies. Calcified plaques commonly cause overesti-
mation of vascular stenosis assessment, especially in

small vessels, and may lead to unnecessary invasive pro-
cedures [90].

Usually, a fixed HU value is used as a threshold to re-
move calcifications in conventional CTA, despite this
method often failing due to calcium blooming. Alterna-
tively, unenhanced CT acquisition can serve as a mask
for subtraction of calcified plaques. However, misregis-
tration artifacts may occur due to patient’s movements
or arterial pulsations between the two scans [13, 91].
DECT algorithms are well known to improve image
quality, to reduce the contrast medium volume and the
radiation dose to patients undergoing CTA studies [6,

Fig. 6 Dual-energy computed tomography scan of hands in a patient with rheumatoid arthritis. Magnification on the second
metacarpophalangeal joint shows a normal and smooth outline of cartilage and bone plate (short arrows) on standard grayscale series (a) and

N

normal virtual non-calcium attenuation (b). Conversely, bone marrow edema is evident on the third metacarpophalangeal joint presenting as an
extensive and ill-defined green area (long arrows). Magnetic resonance imaging by means of T2-weighted fat-saturation sequence confirmed the
presence of inflammatory bone marrow edema (c). From Jans et al. [72]
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13, 92-94]. DECT-based three-material decomposition
also allows for subtraction of the calcium signal from io-
dinated vessels, permitting the removal of hard plaques
from a CTA scan [95].

In this context, VNCa imaging has been shown to im-
prove the quantification of carotid artery stenoses caused
by hard plaques compared to conventional CTA, using
digital subtraction angiography as reference [95]. More-
over, lumen assessment did not show to be impacted by
blooming artifacts, probably because the algorithm rec-
ognizes and removes the spectral behavior of calcium
blooming components [95].

Future outlook

Energy-integrating detectors used in modern DECT
platforms are based on an indirect process of x-ray
conversion into an electrical signal, which passes by
photodiodes and conversion into light photons [96].
On the other hand, new photon-counting detectors
directly convert x-ray photons to an electrical signal,
increasing dose efficiency and spatial resolution, and
improving spectral separation together with its spatial
registration. In the near future, photon-counting de-
tector CT platforms may enable not only to visualize
BME more in detail, especially in small bones, but
also to differentiate among urate crystals, hydroxyapa-
tite, and calcium pyrophosphate deposits [97]. More-
over, preliminary data have shown promising results
for subtraction of calcified plaques from vessels, and
separation between blood and brain calcifications,
overcoming current VNCa limitations of suboptimal
material decomposition and resolution restrictions of
DECT platforms [98, 99].

However, we are still at the doorstep of this new era of
CT technology and further investigation needs to be per-
formed prior to introduction of photon-counting de-
tector CT platforms into clinical routine.

Conclusions

In the last ten years, DECT-based VNCa imaging has
been shown to provide additional clinically relevant in-
formation compared to standard CT in several neurora-
diology, vascular, and musculoskeletal applications. The
greatest experience in using VNCa reconstructions exists
in bone marrow imaging to date, particularly for trauma,
but also for inflammatory and oncologic bone marrow
pathologies. Several studies have demonstrated its poten-
tial also for the differentiation of hyperdense lesions as
well as for intervertebral disc assessment. In addition, in-
flammatory or infiltrative bone marrow disorders that
are conventionally assessed by means of MRI or bone
scintigraphy can be assessed in more detail with DECT
in comparison to standard CT. Subjective as well as ob-
jective analysis of VNCa images has shown high

Page 10 of 13

diagnostic accuracy and demonstrated its potential to
serve as a viable imaging alternative to MRI, bone scin-
tigraphy, or PET/CT in case of contraindications or
limited availability. Especially in emergency/trauma set-
tings, patients can substantially benefit from this tech-
nique due to time savings, early accurate diagnosis, and
prompt therapy initiation. However, despite multiple
studies having shown the potential of DECT-based
VNCa imaging, this technique still has not gained
ground in clinical routine, probably because of its lim-
ited availability considering that most of available studies
have been performed on second- and third-generation
DSCT platforms. This might have limited inter-vendor
correlation studies and hampered the integration of
VNCa imaging into clinical routine.

It is crucial to be aware of VNCa technical limitations
and differences related to acquisition protocols and re-
construction software, which may differ across vendors,
and generate different cutoff values for quantitative
assessment. Further investigation of VNCa imaging algo-
rithms is needed to gain a more comprehensive under-
standing of its potential.
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