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Chapter 1

Introduction

Proteins can be regarded as the most important building blocks of our body. They

function as mechanical tools, perform transport (e.g., hemoglobin) and communication,

catalyze biochemical reactions, and are involved in many other essential processes of life.

The native structure to which a protein folds by the process of protein folding determines

its biological function. To answer the protein folding problem of how the amino acid

sequence of a protein as synthesized by ribosomes dictates its structure, one has to un-

derstand the complex dynamics of protein folding. In the folding process the transition

between metastable conformational states plays a crucial role. These are long-lived in-

termediates, which for proteins can have lifetimes up to microseconds before undergoing

further transitions.

Experiments using nuclear magnetic resonance (NMR) spectroscopy or X-ray crystal-

lography can provide structural information on the native state or sometimes metastable

states [1]. But as a system quickly relaxes to a lower energy state, the dynamics of the

process of folding is hard to assess by experiment. In addition, traditional experiments

provide only average quantities such as mean structures, not distributions and variations.

Molecular dynamics computer simulations are used to obtain a deeper understanding of

the dynamics and mechanisms involved in protein folding [2].

Molecular dynamics simulations have become a popular and powerful approach to

describe the structure, dynamics, and function of biomolecules in atomic detail. In the

past few years, computer power has increased such that simulations of small peptides on

the timescale of microseconds are feasible by now. With the help of worldwide distributed

1
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computing projects as Folding@home [3] even folding simulations of small microsecond

and submicrosecond folding proteins are possible [4]. Markov chain models constructed

from molecular dynamics trajectories could prove promising for the modeling of the correct

statistical conformational dynamics over much longer times than the molecular dynamics

simulations used as input [5–7]. Unfortunately, it is neither trivial to define the discrete

states for a Markov approach, nor is it clear whether the system under consideration obeys

the Markov property.

As molecular dynamics simulations result in huge data sets which need to be analyzed,

one needs methods which filter out the essential information. For example, biomolecular

processes such as molecular recognition, folding, and aggregation can all be described in

terms of the molecule’s free energy [8–10]

∆G(r) = −kBT [ln P (r) − ln Pmax]. (1.1)

Here P is the probability distribution of the molecular system along some (in general

multidimensional) coordinate r and Pmax denotes its maximum, which is subtracted to

ensure that ∆G = 0 for the lowest free energy minimum. Popular choices for the co-

ordinate r include the fraction of native contacts, the radius of gyration, and the root

mean square deviation of the molecule with respect to the native state. The probabil-

ity distribution along these “order parameters” may be obtained from experiment, from

a theoretical model, or a computer simulation. The resulting free energy “landscape”

has promoted much of the recent progress in understanding protein folding [8–12]. Be-

ing a very high-dimensional and intricate object with many free energy minima, finding

good order parameters is essential for extracting useful low-dimensional models of con-

formational dynamics of peptides and proteins. For the decomposition of a system into a

relevant (low-dimensional) part and an irrelevant part principal component analysis has

become a crucial tool [13].

Principal component analysis (PCA), also called quasiharmonic analysis or essential

dynamics method [14–17], is one of the most popular methods to systematically reduce

the dimensionality of a complex system. The approach is based on the covariance matrix,

which provides information on the two-point correlations of the system. The PCA rep-

resents a linear transformation that diagonalizes the covariance matrix and thus removes
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the instantaneous linear correlations among the variables. Ordering the eigenvalues of the

transformation decreasingly, it has been shown that a large part of the system’s fluctua-

tions can be described in terms of only a few principal components which may serve as

reaction coordinates [14–20] for the free energy landscape.

Some PCA methods using internal (instead of Cartesian) coordinates [21–27] have been

proposed in the literature. In biomolecules, in particular the consideration of dihedral

angles appears appealing, because other internal coordinates such as bond lengths and

bond angles usually do not undergo changes of large amplitudes. Due to the circularity

of the angular variables it is nontrivial to apply methods such as PCA for the analysis of

molecular dynamics simulations.

This work presents a contribution to the literature on methods in search of low-

dimensional models that yield insight into the equilibrium and kinetic behavior of peptides

and small proteins. A deep understanding of various methods for projecting the sampled

configurations of molecular dynamics simulations to obtain a low-dimensional free energy

landscape is acquired. Furthermore low-dimensional dynamic models for the conforma-

tional dynamics of biomolecules in reduced dimensionality are presented. As exemplary

systems, mainly short alanine chains are studied. Due to their size they allow for perform-

ing long simulations. They are simple, yet nontrivial systems, as due to their flexibility

they are rapidly interconverting conformers. Understanding these polypeptide chains in

great detail is of considerable interest for getting insight in the process of protein folding.

For example, K. Dill et al. conclude in their review [28] about the protein folding problem

that “the once intractable Levinthal puzzle now seems to have a very simple answer: a

protein can fold quickly and solve its large global optimization puzzle simply through

piecewise solutions of smaller component puzzles”.

The thesis is organized as follows: Chapter 2 provides the theoretical foundations of

the dihedral angle principal component analysis (dPCA) for the analysis of the dynamics

of the φ, ψ backbone dihedral angles. In an introduction to circular statistics we thor-

oughly discuss the implications of the proposed sin/cos-transformation of the dihedral

angles which comes along with a doubling of variables from N angular variables to 2N

Cartesian-like ones. It is shown that indeed this transformation can truthfully represent

the original angle distribution without generating spurious results. Furthermore, we show
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that the dPCA components can readily be characterized by the conformational changes of

the peptide. For the trialanine system the equivalence between a Cartesian PCA and the

dPCA is demonstrated. We then introduce a complex valued version of the dPCA which

sheds some light on the doubling of variables occurring in the sin/cos dPCA. The devel-

oped concepts are demonstrated and applied to a 300 ns molecular dynamics simulation

of the decaalanine peptide.

What follows is a detailed study of the similarities and differences of various PCA

methods. The dPCA is evaluated in comparison to alternative projection approaches.

In particular, it is shown that Cartesian PCA fails to reveal the true structure of the

free energy landscape of small peptides, except for the conformationally trivial example

trialanine. The smooth appearance of the landscape is an artifact of the mixing of internal

and overall motion. This is demonstrated using a 100 ns and an 800 ns simulation of

pentaalanine and heptaalanine, respectively. In addition, the dPCA is compared to a

PCA which operates directly on the dihedral angles, thus avoiding a doubling of variables.

Various drawbacks of such a method which doesn’t properly take the circularity of the

variables into account are discussed. The dPCA is also compared to a version using the

correlation matrix instead of the covariance matrix. Finally, it is concluded that, for the

cases studied, the dPCA provides the most detailed low-dimensional representation of

the free energy landscape. The chapter ends with a correlation analysis for the dihedral

angles of heptaalanine which is compared to results from the literature, and some remarks

about nonlinear PCAs.

Based on the dPCA, Chapter 3 presents a systematic approach to construct a low-

dimensional free energy landscape from a classical molecular dynamics simulation. Demon-

strating that a representation of the free energy landscape in too less dimension can lead

to serious artifacts and oversimplifications of this intricate surface, it is attempted to

answer the question on how many dimensions or PCs need to be taken into account in

order to appropriately describe a given biomolecular process. It is shown that this di-

mensionality can be determined from the distribution and the autocorrelation of the PCs.

Employing an 800 ns simulation of heptaalanine using geometric and kinetic clustering

techniques, it is shown that a five-dimensional dPCA energy landscape is appropriate for

reproducing the correct number, energy, and location of the system’s metastable states
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and barriers. After presenting several ways to visualize the free energy landscape using

transition networks and a disconnectivity graph, we close the chapter with conclusions.

Having constructed low-dimensional free energy landscapes, the remaining aim is to

construct dynamic models in this reduced dimensionality. Chapter 4 is concerned with

the construction of low-dimensional models for peptide and protein dynamics from the

point of view of modern nonlinear dynamics. Using methods from nonlinear time series

analysis a deterministic model of the dynamics is developed and applied to molecular

dynamics simulations of short alanine polypeptide chains. The well-established concept of

the complexity of a dynamical system is applied to folding trajectories. Very interestingly,

while the dimension of the free energy landscape increases with system size, the Kaplan-

Yorke dimension may decrease. This suggests that the molecular dynamics generates

less and less chaotic orbits as the length of the peptide chains increases. Furthermore,

we introduce a mixed deterministic stochastic model for the conformational dynamics in

reduced dimensions which is based on the estimation of the drift and diffusion vector fields

of a Langevin equation. This makes it possible to, e.g., study nonequilibrium dynamics

as relaxation to the folded state of a protein.

Finally, in Chapter 5 we apply some of the developed techniques to a larger system,

namely a variant of the villin headpiece subdomain (HP-35 NleNle). Using many hun-

dreds of molecular dynamics trajectories as obtained from Folding@home, we analyze the

resulting free energy landscape for this system. In a next step we attempt to find a good

dynamic model using the Langevin ansatz as described in the last chapter. We finally

estimate folding times for this system, and conclude with an outlook. Conclusions are

drawn at the end of each chapter.
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Chapter 2

Dihedral Angle Principal

Component Analysis

Classical molecular dynamics (MD) simulations have become a popular and powerful

method to describe the structure, dynamics, and function of biomolecules in microscopic

detail [2]. As MD simulations produce a considerable amount of data (i.e., 3M coordinates

of all M atoms for each time step), there has been an increasing interest to develop

methods to extract the “essential” information from the trajectory. For example, one often

wants to represent the molecule’s free energy surface (the “energy landscape” [8–10]) as a

function of a few important coordinates (the “reaction coordinates”), which describe the

essential physics of a biomolecular process such as protein folding or molecular recognition.

The reduction of the dimensionality from 3M atom coordinates to a few collective degrees

of freedom is therefore an active field of theoretical research [5, 13–27,29–38].

Recently, it has been suggested to employ internal (instead of Cartesian) coordinates

in a PCA [21–27]. In biomolecules, in particular the consideration of dihedral angles

appears appealing, because other internal coordinates such as bond lengths and bond

angles usually do not undergo changes of large amplitudes. Studying the reversible fold-

ing and unfolding of pentaalanine in explicit water, Mu et al. [25] showed that a PCA

using Cartesian coordinates did not yield the correct rugged free energy landscape due

to an artifact of the mixing of internal and overall motion. As internal coordinates nat-

urally provide a correct separation of internal and overall dynamics, they proposed a

method, referred to as dPCA, which is based on the dihedral angles (φn, ψn) of the pep-

7
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tide backbone. To avoid the problems arising from the circularity of these variables, a

transformation from the space of dihedral angles {ϕn} to a linear metric coordinate space

(i.e., a vector space with the usual Euclidean distance) was built up by the trigonometric

functions sin ϕn and cos ϕn. In a recent comment [39] to Ref. [25], the concern was raised

that the dPCA method may lead to spurious results because of the inherent constraints

(sin2 ϕn + cos2 ϕn = 1) of the formulation. While it is straightforward to show that

the problem described in Ref. [39] was caused by numerical artifacts due to insufficient

sampling [40], the discussion nevertheless demonstrates the need for a thorough general

analysis of the dPCA.

In this chapter, we present a comprehensive account of various theoretical issues under-

lying the dPCA method. We start with a brief introduction to the basics of MD simulation

and derive the basic concepts of PCA. In an introduction to the circular statistics of an-

gle variables we discuss the transformation from an angle to the unit circle proposed in

Ref. [25], and demonstrate that the transformation amounts to a one-to-one representa-

tion of the original angle distribution. Adopting the (φ, ψ) distribution of trialanine as

a simple but nontrivial example, the properties of the dPCA are discussed in detail. In

particular, it is shown that in this case the dPCA results are equivalent to the results

of a Cartesian PCA, and that the dPCA eigenvectors may be characterized in terms of

the corresponding conformational changes of the peptide. Furthermore, we introduce a

complex-valued version of the dPCA, which provides new insights on the PCA of circular

variables. Adopting a 300 ns MD simulation of the folding of decaalanine, we carry out a

critical comparison of the various methods. The next two section are devoted to Cartesian

PCA and possible PCAs that are applied directly to the angular variables, respectively.

Here, adopting an 800 ns MD simulation of heptaalanine, we study the similarities as

well as the differences between these methods. We show that the dPCA provides the

most detailed representation of the free energy landscapes of the peptides under concern.

After a thorough correlation analysis for the dihedral angles of heptaalanine, we conclude

this chapter with some remarks about nonlinear PCA methods that have been recently

proposed in the literature.
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2.1 Introduction to molecular dynamics simulation

Molecular Dynamics (MD) Simulation is concerned with modeling molecular motion in

atomic detail. MD simulations can provide detailed information on the fluctuations and

conformational changes of proteins and nucleic acids. A potential or force field is assumed

for the description of the interactions between the particles,

−∂V (r)

∂ri

= Fi, (2.1)

where V (r) typically has the form

V = Vbonds + Vangles + Vdihedrals + VCoulomb + VvdW (2.2)

Vbonds =
∑

bonds

1

2
kb

ij(rij − b0
ij)

2 (2.3)

Vangles =
∑

angles

1

2
kθ

ij(θijk − θ0
ijk)

2 (2.4)

Vdihedrals =
∑

dihedrals

1

2
kφ

ijkl cos(nijkl(φijkl − φ0
ijkl)) (2.5)

VCoulomb =
∑

pairs

1

4πε0

qiqj

rij

(2.6)

VvdW =
∑

pairs

Aij

r12
ij

− Bij

r6
ij

. (2.7)

The first three terms are the interactions for the covalent bonds, the bond angles, and the

dihedral angles, respectively. The non-bonded interactions are described by the last to

terms, the electrostatic Coulomb and the Van der Waals interactions. The parameters of

the potential, e.g. bond length, force constants or atomic charges, determine the quality

of the force field. They are obtained by fitting simulation data against detailed quantum

chemical calculations and experimental measurements.

The second main assumption is that the atoms follow classical Newtonian dynamics.
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MD algorithms then iteratively solve the equations of motion

Fi(t) = miai(t) (2.8)

vi(t +
∆t

2
) = vi(t −

∆t

2
) + ai(t)∆t (2.9)

ri(t + ∆t) = ri(t) + vi(t +
∆t

2
)∆t, (2.10)

where velocities vi and positions ri of the atoms are commonly calculated by variants of

the Verlet algorithm such as the leap-frog method presented here. The method derives its

name from the fact that the computation of velocities and positions successively alternates

at 1
2
∆t time step intervals.

The most time consuming part in an MD simulation is the evaluation of the forces

acting on every particle, with the major computational effort spent for the non-bonded

interactions. To avoid the calculation of all O(N2) electrostatic interactions between pairs

of atoms, one e.g. uses a cutoff radius, where one neglects interactions beyond the cutoff

distance or variations of the particle-mesh Ewald’s (PME) summation.

Experimental methods as X-ray crystallography and nuclear magnetic resonance (NMR)

can provide atomic detailed structures which are long-lived and can hence be probed ex-

perimentally. But conformational states which make fast transitions between each other

are still a challenge to experiments. The structural mechanism of transitions normally

cannot be resolved. MD can provide insight into these processes.

Similar to experiments MD can simulate different ensembles. The microcanonical

ensemble (NVE) is realized by simply integrating Newton’s equation (2.8) in time. The

sum of kinetic and potential energy is constant and there is no exchange of temperature

or pressure with the sourrounding. To simulate e.g. the canonical ensemble (NVT)

the system is coupled to a temperature bath or thermostat. At certain time steps all

particle’s velocities are scaled by a factor in order to guarantee constant temperature.

Temperature in an MD simulation is obtained by equating the particle’s total kinetic

energy to 1
2
NfkbT (t),

Ekin(t) =
N

∑

i=1

1

2
miv

2
i (t) =

1

2
NfkbT (t), (2.11)

with Nf being the number of degrees of freedom of the system.
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2.2 Definition and derivation of principal components

Principal component analysis [13] (PCA), also called quasiharmonic analysis or essential

dynamics method [14–17], is one of the most popular methods to systematically reduce

the dimensionality of a complex system. The approach is based on the covariance matrix,

which provides information on the two-point correlations of the system. The PCA rep-

resents a linear transformation that diagonalizes the covariance matrix and thus removes

the instantaneous linear correlations among the variables. Ordering the eigenvalues of the

transformation decreasingly, it has been shown that a large part of the system’s fluctua-

tions can be described in terms of only a few principal components, which may serve as

reaction coordinates [14–20].

In this section we want to establish the basics of PCA and prove that the eigenvectors

obtained by PCA point into directions of maximal variance in a data set (see also [13]).

The main idea of PCA is to reduce the dimensionality of a given data set. This is achieved

by finding a set of a few new variables which are linearly uncorrelated and describe most

of the variation present in the originally very high dimensional data. The starting point is

the covariance matrix Σ = {σij} of the multidimensional random variable q. For example

q(t) can be a trajectory obtained from an MD experiment yielding realizations of the

random variable. We are now looking for a vector v such that the projection of the

original data

V (t) = v · q(t) =
∑

i

viqi(t) (2.12)

has maximum variance. Henceforward, we often omit to explicitly note the time t. As a

normalization constraint we require v to have unit length, as we want to avoid an infinite

variance of (2.12). For the variance of V we find

var[V ] = var

[

∑

i

viqi

]

=
∑

i

v2
i var[qi] + 2

∑

i<j

vivjcov[qi, qj]

=
∑

i

v2
i σii + 2

∑

i<j

vivjσij

= v · Σv, (2.13)
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where we used σij = σji in the last equation. Hence, we want to maximize v ·Σv subject

to v · v = 1. This is done by using the method of Lagrange multipliers. Differentiating

v · Σv − λ(v · v − 1) (2.14)

with respect to v gives

Σv − λv = 0, (2.15)

which shows that an optimal v must be an eigenvector of Σ with eigenvalue λ. From

var[V ] = v · Σv = v · λv = λv · v = λ (2.16)

we learn that λ must be as large as possible as we aim at maximizing the variance. Hence,

it follows that the optimal λ is the largest eigenvalue λ1 of the covariance matrix Σ, and

we denote its corresponding eigenvector by v(1). We have just shown that v(1) points into

the direction of maximum variance of our data set.

The projections

Vi = v(i) · q (2.17)

are called principal components of q, where v(i) is the eigenvector of Σ which corresponds

to the ith largest eigenvalue λi. In a similar way as above one can show that for all i

var[Vi] = λi (2.18)

holds, and that Vi has maximum variance subject to being instantaneously linearly un-

correlated with V1, . . . , Vi−1, i.e.,

〈(Vi(t) − 〈Vi〉) (Vj(t) − 〈Vj〉)〉 = 0, j = 1, . . . , i − 1. (2.19)

2.3 Circular statistics

Dihedral angles ϕ ∈ [0◦, 360◦[ represent circular (or directional) data [41]. Unlike to the

case of regular data x ∈ ]−∞,∞[, the definition of a metric is not straightforward, which

makes it difficult to calculate distances or means. For example, the regular data x1 = 10
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and x2 = 350 clearly give ∆x = |x2 − x1| = 340 and 〈x〉 = (10 + 350)/2 = 180. Visual

inspection of the corresponding angles ϕ1 = 10◦ and ϕ2 = 350◦, on the other hand, readily

shows that ∆ϕ = 20◦ 6= |ϕ2 − ϕ1| and 〈ϕ〉 = 0◦ 6= (ϕ1 + ϕ2)/2. To recover the standard

rules to calculate distances and the mean, we may assume that ϕ ∈ [−180◦, 180◦[. Then

ϕ1 = 10◦ and ϕ2 = −10◦, and we obtain ∆ϕ = |ϕ2−ϕ1| = 20◦ and 〈ϕ〉 = (ϕ1+ϕ2)/2 = 0◦.

This example manifests the general property that, if the range of angles covered by the

data set is smaller than 180◦, we may simply shift the origin of the angle coordinates to

the middle of this range and perform standard statistics.

φ

ψ

-180 -90  0  90  180
-180

-90

 0

 90

 180

Figure 2.1: Typical Ramachandran plot for the backbone angles φ, ψ of a peptide back-
bone. The color code corresponds to the logarithmic population density.

The situation is more involved for “true” circular data whose range exceeds 180◦. This

is the case for folding biomolecules, since the ψ angle of the peptide backbone is typically

distributed as ψα ≈ −60◦ ± 30◦ (for αR helical conformations) and ψβ ≈ 140◦ ± 30◦ (for

β extended conformations). If the values of the angles can be described by a normal

distribution, one may employ the von Mise distribution [41], which represents the circular

statistics’ equivalent of the normal distribution for regular data. However, this method

is not applicable to the description of conformational transitions, since the corresponding

dihedral angle distributions typically can only be described by multi-peaked probability

densities.
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A general approach to circular statistics is obtained by representing the angle ϕ by its

equivalent vector (x, y) on the unit circle. This amounts to the transformation

ϕ 7→
{

x = cos ϕ

y = sin ϕ .
(2.20)

Unlike to the periodic range of the angle coordinate ϕ, the vectors (x, y) are defined

in a linear space, which means that we can define the usual Euclidean metric ∆2 =

(x1 − x2)
2 + (y1 − y2)

2 between any two vectors (x1, y1)
T and (x2, y2)

T . The distance of

two angles with an actually small distance, e.g. ϕ1 = 179◦ and ϕ2 = −179◦, is given by

a small ∆ in the (x, y)-space, since the corresponding vectors lie close on the unit circle.

Hence, the problem of periodicity is circumvented. Furthermore, the vector representation

of the angles allows us to unambiguously calculate mean values and other quantities. For

example, to evaluate the mean of the angles ϕn, one simply calculates the sum of the

corresponding vector components and then determines the mean angle by [41]

tan〈ϕ〉 = 〈y〉/〈x〉 =

∑

n

sin ϕn

∑

n

cos ϕn

, (2.21)

that is,

〈ϕ〉 =















































tan−1





∑

n

sin ϕn

∑

n

cos ϕn



 ,
∑

n

cos ϕn > 0

tan−1





∑

n

sin ϕn

∑

n

cos ϕn



 + 180◦,
∑

n

cos ϕn < 0

π

2
· sgn

(

∑

n

sin ϕn

)

,
∑

n

cos ϕn = 0.

(2.22)

Note that, even if the range of angles covered by the data set is smaller than 180◦ this

definition of circular average can differ from the arithmetic average. For example, the

arithmetic average of the 3 angles 0◦, 0◦, 90◦ is 30◦, while the circular average equals to

tan−1 1
2
≈ 26.6◦.

Although the vector representation of angles in Eq. (2.20) appears straightforward and

intuitively appealing, it has the peculiar property of doubling the variables: Given N angle

coordinates ϕn, we obtain 2N Cartesian-like coordinates (xn, yn). In the example given
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in Eq. (2.22), this does not lead to any problems, because in the end of the calculation

we are able to calculate back from the averaged vector coordinates to the original angle

coordinate, that is, the correctly averaged angle. Since Eq. (2.20) represents a nonlinear

transformation, however, we will see that obtaining the peptide’s angles in a direct way

after a dPCA treatment of the data is not possible in general (see below). In this case, a

subsequent analysis needs to be performed.

Having in mind to employ these coordinates for the description of peptide energy

landscapes, the question arises of whether the resulting representation preserves the char-

acteristics of the original energy landscapes. In particular, it is of interest if the number

and structure of minima and transition states are preserved in the 2N -dimensional (xn, yn)

space. To answer these questions and to illustrate the properties of transformation (2.20),

we consider a simple one-dimensional example described by the angular probability den-

sity (see Fig. 2.2A)

ρ(ϕ) =
1

2π
(1 − cos 4ϕ) (2.23)

with ϕ ∈ [−180◦, 180◦[. By construction, the density exhibits four maxima at ϕ =

±45◦, ±135◦. Employing transformation (2.20), we also want to express the density

in terms of the transformed variables x = cos ϕ and y = sin ϕ. Using that

ρ(ϕ) =
1

2π
(1 − cos 4ϕ)

=
1

2π
(1 − cos2 2ϕ + sin2 2ϕ)

=
1

2π
2 sin2 2ϕ)

=
1

π
(2 cos ϕ sin ϕ))2

=
4

π
cos2 ϕ sin2 ϕ, (2.24)

we obtain the corresponding probability density on a circle of unit radius

ρ(x, y) =
4

π
x2y2δ(x2 + y2 − 1) . (2.25)

The density plot of ρ(x, y) displayed in Fig. 2.2B demonstrates that transformation

(2.20) simply wraps the angular density ρ(ϕ) around the circumference of the unit circle.
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0
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0

0

0
ϕ

x

y

ρ(ϕ)

180−180

B

A

ρ(y)

ρ(x)

Figure 2.2: (A) Angular density ρ(ϕ) = 1
2π

(1 − cos 4ϕ). (B) Representation of ρ(ϕ)
through its probability density ρ(x, y) on the unit circle (artificial width added for a
better visualization). Also shown are the densities ρ(x) and ρ(y), which display the
angular density along the single Cartesian-like variables x and y, respectively. Note that
only ρ(x, y) reproduces the correct number of extrema of ρ(ϕ).
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Hence, all features of ρ(ϕ) are faithfully represented by ρ(x, y), particularly the number

and the structure of extrema. This is a consequence of the fact that transformation (2.20)

is a bijection, which uniquely assigns each angle ϕ a corresponding vector (x, y) and vice

versa.

We observe that this desirable feature is not obtained if we transform to only a single

Cartesian-like variable, x or y. The corresponding densities

ρ(x) =
8x2

√
1 − x2

π
, (2.26)

ρ(y) =
8y2

√

1 − y2

π
(2.27)

are also shown in Fig. 2.2B and derived in the Appendix 6.1. As a consequence of the

projection onto the x- or y-axis, each density exhibits only two instead of four maxima.

The above described properties of the one-dimensional example readily generalize to

the N -dimensional case, ϕn 7→ (xn, yn). In direct generalization of the unit circle, the data

points (xn, yn) are distributed on the surface of a 2N -dimensional sphere with radius
√

N .

This is because the distance of every data point (x1, y1, . . . , xN , yN) to the origin equals

(x2
1 + y2

1 + · · · + x2
N + y2

N)
1

2 = (1 + · · · + 1)
1

2 =
√

N . Since the transformation represents

a bijection, there is a one-to-one correspondence between states in the N -dimensional

angular space and in the 2N -dimensional vector space. Again, the Euclidean metric of

the 2N -dimensional vector space guarantees that mean values and other quantities can

be calculated easily.

We note that, alternatively to transformation (2.20), one may employ a complex rep-

resentation zn = eiϕn of the angles. As Euler’s formula eiϕ = cos ϕ + i sin ϕ provides a

direct correspondence between the 2N -dimensional real vectors (x1, y1, . . . , xN , yN)T and

the N -dimensional complex vectors (z1, . . . , zN)T , all considerations performed above can

also be done using the complex representation. We will explore this idea in more detail

in Sec. 2.7. Another straightforward way to use only N variables, is to use the angles ϕn

directly. Therefore one may shift the origin of each angular variable in such a way that

a minimal number of data points are at the periodic boundaries. We will also show the

performance of such a method in Sec. 2.10.
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2.4 Dihedral angle principal component analysis (dPCA)

Principal component analysis (PCA) is a well-established method to reduce the dimen-

sionality of a high-dimensional data set [13]. In the case of molecular dynamics of M

atoms, the basic idea is that the correlated internal motions are represented by the co-

variance matrix

σij = 〈(qi − 〈qi〉)(qj − 〈qj〉)〉, (2.28)

where q1, . . . , q3M are the mass-weighted Cartesian coordinates of the molecule and 〈. . .〉
denotes the average over all sampled conformations [14–17]. By diagonalizing the covari-

ance matrix we obtain 3M eigenvectors v(i) and eigenvalues λi, which are rank-ordered

descendingly, i.e., λ1 represents the largest eigenvalue. The eigenvectors and eigenvalues

of σ yield the modes of collective motion and their amplitudes, respectively. The principal

components

Vi = v(i) · q (2.29)

of the data q = (q1, . . . , q3M)T can be used, for example, to represent the free energy

surface of the system. Restricting ourselves to two dimensions, we obtain

∆G(V1, V2) = −kBT [ln ρ(V1, V2) − ln ρmax], (2.30)

where ρ is an estimate of the probability density function obtained from a histogram of

the data. ρmax denotes the maximum of the density, which is subtracted to ensure that

∆G = 0 for the lowest free energy minimum.

The basic idea of the dihedral angle principal component analysis (dPCA) proposed

in Ref. [25] is to perform the PCA on sin- and cos-transformed dihedral angles

q2n−1 = cos ϕn,

q2n = sin ϕn, (2.31)

where n = 1, . . . , N and N is the total number of peptide backbone and side-chain dihe-

dral angles used in the analysis. Hence the covariance matrix (2.28) of the dPCA uses

2N variables qn. The question then is whether the combination of the nonlinear transfor-

mation (2.31) and the subsequent PCA still gives a unique and faithful representation of
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the initial angular data ϕn.

Let us first consider the above discussed example of a one-dimensional angular density

ρ(ϕ) = 1
2π

(1− cos 4ϕ), which is mapped via transformation (2.31) on the two-dimensional

density on the unit circle ρ(x, y) = 4x2(1−x2)
π

δ(x2 + y2 − 1), where x = q1 = cos ϕ and

y=q2 =sin ϕ. Since in this case 〈x〉 = 〈y〉 = 〈xy〉 = 0 and 〈x2〉 = 〈y2〉 = 1
2
, we find that the

covariance matrix is diagonal with σ11 = σ22 = 1
2
. That is, we have degenerate eigenvalues

λ1/2 = 1
2

and may choose any two orthonormal vectors as eigenvectors. Choosing, e.g.,

the unit vectors ex and ey, the PCA leaves the density ρ(x, y) invariant, which —as

discussed above— is a unique and faithful representation of the initial angular density

ρ(ϕ). In general, one does not obtain a diagonal covariance matrix for a one-dimensional

angular density ρ(ϕ) (e.g., for ρ(ϕ) = 1
2π

+ 1
9
cos(ϕ) + 1

9
sin(ϕ) we obtain σ12 = −π2

81
6= 0).

A sufficient condition for a diagonal covariance matrix for an N -dimensional angular

density is that the latter factorizes in one-dimensional densities (i.e., ρ(ϕ1, . . . , ϕN) =

ρ(ϕ1)ρ(ϕ2) · · · ρ(ϕN)) and that 〈cos ϕn〉 = 0 or 〈sin ϕn〉 = 0 for all n = 1, . . . , N . In these

trivial cases, the dPCA method simply reduces to transformation (2.31).

2.5 A simple example - trialanine

The simplest nontrivial case of a dPCA occurs for a two-dimensional correlated angular

density. As an example, we adopt trialanine whose conformation can be characterized by a

single pair of (φ, ψ) backbone dihedral angles (see Fig. 2.3). Trialanine (Ala3) in aqueous

Figure 2.3: Molecular structure of trialanine.

solution is a model peptide which has been the subject of numerous experimental [42–45]

and computational [46–48] studies. To generate the angular distribution of (φ, ψ) of

trialanine, we performed a 100 ns MD simulation at 300 K. We used the GROMACS
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program suite [49,50], the GROMOS96 force field 43a1 [51], the simple point charge (SPC)

water model [52], and a particle-mesh Ewald [53] treatment of the electrostatics. Details

of the simulation can be found in Ref. [47]. Figure 2.4A shows the (φ, ψ) distribution

A F

EC

B DS2’
S1’S1

S2

S3 S3’

S2 S1 S1’S2’

S3’S3

Figure 2.4: (A) Ramachandran (φ, ψ) probability distribution of Ala3 in water as ob-
tained from a 100 ns MD simulation. Performing a dPCA, the resulting free energy
landscape along the first two principal components is shown in (B), the (φ, ψ) distribu-
tions pertaining to the labeled energy minima is shown in (C). Panels (D) and (E) show
the corresponding results obtained for a Cartesian PCA. Panel (F) displays the (θ1, θ2)
distribution obtained from the complex dPCA.

obtained from the simulation, which predicts that mainly three conformational states are

populated: the right-handed helix conformation αR (15 %), the extended conformation β

(39 %), and the poly-L-proline II (PII) helix-like conformation (42 %). Although recent

experimental data [45] indicate that the simulation overestimates the populations of αR

and β, we nevertheless adopt the MD data as a simple yet nontrivial example to illustrate

the performance of the dPCA method.

Performing the dPCA on the (φ, ψ) data, we consider the four variables q1 = cos φ, q2 =

sin φ, q3 = cos ψ, and q4 = sin ψ. Diagonalization of the resulting covariance matrix yields

four principal components V1, . . . , V4, which contribute 51, 24, 15, and 10 % to the overall

fluctuations of the system, respectively. To characterize the principal components, Fig.

2.5 shows their one-dimensional probability densities. Only the first two distributions are

found to exhibit multiple peaks, while the other two are approximately unimodal. Hence
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we may expect that the conformational states shown by the angular distribution of (φ, ψ)

in Fig. 2.4A can be accounted for by the first two principal components.
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3 4

Figure 2.5: Probability densities of the four principal components obtained from the
sin/cos (full lines) and the complex (dashed lines) dPCA of trialanine, respectively.

If we assume that V1 and V2 are independent (i.e., ρ(V1, V2) = ρ(V1)ρ(V2)), the three

peaks found for ρ(V1) as well as for ρ(V2) give rise to 3 × 3 = 9 peaks of ρ(V1, V2). To

identify possible correlations, Fig. 2.4B shows the two-dimensional density along the first

two principal components. For the sake of better visibility, we have chosen a logarithmic

representation, thus showing the free energy landscape [Eq. (2.30)] of the system. The

figure exhibits three (instead of nine) well-defined minima labeled S1, S2, and S3, reveal-

ing that the first two principal components are indeed strongly dependent. To identify

the corresponding three conformational states, we have back-calculated the (φ, ψ) dis-

tributions of the minima from the trajectory [54]. As shown in Fig. 2.4C as well as by

Table 2.1, the minima S1, S2, and S3 clearly correspond to PII, β, and αR, respectively.

A closer analysis reveals, that also fine details of the conformational distribution can be

discriminated by the first two principal components. For example, the shoulder on the left

side of the αR state in Fig. 2.4A corresponds to the region around V 2 ≈ −0.9 of the S3
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minimum. Moreover, the minor (3 %) population of the left-handed helix conformation

αL at φ ≈ 60◦ corresponds to the small orange region (outside of the square) of the S1

minimum.

It is instructive to compare the above results obtained by the dPCA to the outcome

of a standard PCA using Cartesian coordinates. Restricting the analysis to the atoms

CONH-CHCH3-CONH around the central (φ, ψ) dihedral angles of trialanine, the first

four principal components contribute 47, 28, 15, and 8 % to the overall fluctuations,

respectively, and exhibit one-dimensional probability densities that closely resemble the

ones obtained by the dPCA (data not shown). Figure 2.4D shows the resulting free energy

surface along the first two principal components, which looks quite similar to the dPCA

result. The three minima S1’, S2’, and S3’ are identified in Fig. 2.4E as the conformational

states PII, β, and αR. Again, also the details of the conformational distribution such as

the αL state are resolved by the first two principal components.

In summary, it has been shown that both the Cartesian PCA and the dPCA repro-

duced the correct conformational distribution of the MD trajectory of trialanine. In both

cases, the first two principal components were sufficient to resolve most details. Although

only four coordinates were used, the dPCA was found to be equivalent to the Cartesian

PCA using 33 coordinates.

MD data dPCA Cartesian PCA

state P [%] (φ, ψ) [deg] P [%] (φ, ψ) [deg] P [%] (φ, ψ) [deg]
PII 42 -67,132 45 -63,131 47 -64,132
β 39 -121,131 40 -121,131 38 -122,130
αR 15 -75,-45 16 -74,-46 16 -75,-46

Table 2.1: Conformational states PII, β, and αR of trialanine in water, characterized by
their population probability P and the average dihedral angles (φ, ψ). The results from
the dPCA and the Cartesian PCA are compared to reference data obtained directly from
the MD simulation.

2.6 Interpretation of eigenvectors

In the simple example above, Fig. 2.4 demonstrates that the first two principal components

V1 and V2 (or, equivalently, the first two eigenvectors v(1) and v(2)) are associated with
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motions along the ψ and the φ dihedral angles, respectively. In the case of the Cartesian

PCA, the structural changes of the molecule along the principal components are readily

illustrated, even for high-dimensional systems. From

Vi = v(i) · q

= v
(i)
1 q1 + v

(i)
2 q2 + v

(i)
3 q3 + . . . + v

(i)
3M−2q3M−2 + v

(i)
3M−1q3M−1 + v

(i)
3Mq3M

we see that, e.g., the first three components v
(i)
1 , v

(i)
2 , and v

(i)
3 of the eigenvector v(i) simply

reflect the influence of the x, y, and z coordinates of the first atom on the ith principal

component. Hence,

∆
(i)
1 = (v

(i)
1 )2 + (v

(i)
2 )2 + (v

(i)
3 )2 (2.32)

is a suitable measure of this influence. The quantities ∆
(i)
2 , . . . , ∆

(i)
M are defined analo-

gously.

In the dPCA, the principal components are given by

Vk = v(k) · q

= v
(k)
1 cos ϕ1 + v

(k)
2 sin ϕ1 + . . . + v

(k)
2N−1 cos ϕN + v

(k)
2N sin ϕN . (2.33)

In direct analogy to Eq. (2.32), we may define

∆
(k)
1 = (v

(k)
1 )2 + (v

(k)
2 )2 (2.34)

as a measure of the influence of angle ϕ1 on the principal component Vk (and similarly

∆
(k)
2 , . . . , ∆

(k)
N for the other angles). The definition implies that

∑

n ∆
(k)
n = 1, since the

length of each eigenvector is one. Hence ∆
(k)
n can be considered as the percentage of the

effect of the angle ϕn on the principal component Vk. Furthermore, Eq. (2.33) assures

that only structural rearrangements along angles with nonzero ∆
(k)
n may change the value

of Vk.

To demonstrate the usefulness of definition (2.34), we again invoke our example of

trialanine with angles φ (n = 1) and ψ (n = 2), and consider the quantities ∆
(k)
n describing

the effect of these angles on the four principal components (k = 1, . . . , 4), see Fig. 2.6. We

clearly see that the dihedral angle φ has almost no influence on V1 (∆
(1)
1 ≈ 0), whereas ψ
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has a very large one (∆
(1)
2 ≈ 1). As a consequence, the first principal component allows us

to separate conformations with a different angle ψ, but does not separate conformations

which differ in φ. Indeed, Fig. 2.4B reveals that V1 accounts essentially for the α↔β/PII

transition along ψ, but hardly separates conformations with different φ, such as β and PII.

Considering the second principal component V2, we obtain ∆
(2)
1 ≈ 1 and ∆

(2)
2 ≈ 0. This

is again in agreement with Fig. 2.4B, which shows that the second principal component

accounts essentially for transitions along φ. Recalling that V1, V2, V3, and V4, contribute

51, 24, 15, and 10 % to the overall fluctuations, respectively, the β ↔PII transitions

described by the second principal component represent a much smaller conformational

change than the α ↔ β/PII transitions described by V1. Similarly, although the ∆
(k)
n

of the third and forth principal component are quite similar to the previous ones, they

only account for fluctuations within a conformational state and are therefore of minor

importance in a conformational analysis.

0
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∆ n(k
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Figure 2.6: Influence of the dihedral angles φ (black bars) and ψ (gray bars) on the
principal component Vk (k = 1, . . . , 4) of the cos/sin dPCA of trialanine. Shown are the

quantities ∆
(k)
1 (for φ) and ∆

(k)
2 (for ψ) defined in Eq. (2.34), representing the percentage

of the effect of the two dihedral angels on Vk. Also shown are the contributions (in %) of
each principal component to the overall fluctuations of the system.
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2.7 Complex dPCA

Alternatively to the sin/cos transformation in Eq. (2.31) which maps N angles on 2N real

numbers, one may also transform from the angles ϕn to the complex numbers

zn = eiϕn (n = 1, . . . , N), (2.35)

which give an N -dimensional complex vector z = (z1, z2, . . . , zN)T . In what follows, we

develop a dPCA based on this complex data (“complex dPCA”), and discuss its relation

to the real-valued dPCA (“sin/cos dPCA”) considered above.

The covariance matrix pertaining to the complex variables zn is defined as

Cmn = 〈(zm − 〈zm〉)(z∗n − 〈z∗n〉)〉 (2.36)

with m,n = 1, . . . , N , and z∗ being the complex conjugate of z. Being an in principle

observable quantity, C is a Hermitian matrix with N real-valued eigenvalues µn and N

complex eigenvectors w(n)

Cw(n) = µnw
(n), (2.37)

where the eigenvectors are unique up to a phase θ0. We define the complex principal

components to be

Wn = w(n)Tz = rnei(θn+θ0), (2.38)

where we use vector-vector multiplication instead of a Hermitian inner product (see Ap-

pendix for details). Two nice features of the complex dPCA are readily evident. First,

the complex representation of N angular variables directly results in N eigenvalues and

eigenvectors, that is, there is no doubling of variables as in the sin/cos dPCA. Second, the

representation of the complex principal components by their weights rn and angles θn in

Eq. (2.38) may facilitate their direct interpretation in terms of simple physical variables.

From Euler’s formula eiϕ = cos ϕ+i sin ϕ, one would expect an evident correspondence

between the sin/cos and the complex dPCA. That is, there should be a relation between

the N complex eigenvectors w(n) and the 2N real eigenvectors v(k). Furthermore, the N

real eigenvalues µn of the complex dPCA should be related to the 2N real eigenvalues λk of

the sin/cos dPCA. However, this general correspondence turned out to be less obvious than
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expected (see Appendix 6.2), and we were only able to find an analytical relation in some

limiting cases. In these cases, one indeed may construct suitably normalized eigenvectors

w(n) such that the real and imaginary parts of the resulting principal components Wn of

the complex dPCA are equal to the 2N principal components Vk of the sin/cos dPCA.

In other words, for every n ∈ {1, . . . , N} there are two indices kn, k′
n ∈ {1, . . . , 2N} such

that

Re Wn = Vkn
, Im Wn = Vk′

n
, (2.39)

and the union of the indices kn, k′
n gives the complete set {1, . . . , 2N}. Moreover, the

eigenvalues µn of the complex dPCA are given by the sum of the two corresponding

eigenvalues λkn
and λk′

n
of the sin/cos dPCA

µn = λkn
+ λk′

n
. (2.40)

Apart from the limiting cases of completely uncorrelated and completely correlated

variables, we could not establish general conditions under which Eqs. (2.39) and (2.40)

hold. Empirically, Eq. (2.40) was always satisfied, while Eq. (2.39) was found to hold

in many (but not all) cases under consideration, see Figs. 2.5 and 2.9 below. We note

that even in numerical studies it may be cumbersome to establish the correspondences,

since the accuracy of (2.39) and (2.40) depends on the number of data points one uses

to calculate the covariance matrices in both methods, i.e., on the overall sampling of the

MD trajectory.

To demonstrate the performance of the complex dPCA, we first apply it to the above

discussed example of trialanine. Comparing the 2N = 4 eigenvalues of the sin/cos dPCA

λ1, . . . , λ4 to the two eigenvalues µ1 and µ2 of the complex dPCA, we obtain

µ1 = 0.630 = 0.489 + 0.141 = λ1 + λ3,

µ2 = 0.338 = 0.237 + 0.101 = λ2 + λ4,

that is, equation (2.40) is fulfilled. Choosing suitable normalization constants θ0 for the
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complex eigenvectors, we furthermore find the correspondence

Re W1 ≈ V1, Re W2 ≈ V2,

Im W1 ≈ V3, Im W2 ≈ V4.

As shown by the probability densities of the principal components in Fig. 2.5, both for-

mulations lead to virtually identical principal components.

Finally, it is interesting to study if the representation of the complex principal compo-

nents by their weights rn and angles θn in Eq. (2.38) facilitates their interpretation. In the

case of our trialanine data, it turns out that the weights are approximately constant, i.e.,

r1 ≈ r2 ≈ 1. Hence, the probability distribution of the two angles (θ1, θ2) contains all the

conformational fluctuations of the data. Indeed, Fig. 2.4 reveals that ρ(θ1, θ2) is almost

identical to the original (φ, ψ) density from the MD simulation. In this simple case, the

complex dPCA obviously has managed to completely identify the underlying structure of

the data.

2.8 Energy landscape of decaalanine

We finally wish to present an example which demonstrates the potential of the dPCA

method to represent the true multidimensional energy landscape of a folding biomolecule.

Following earlier work on the folding of alanine peptides [25,36,45], we choose decaalanine

(Ala10) in aqueous solution. Employing similar conditions as in the case of trialanine

described above (GROMOS96 force field 43a1 [51], SPC water model [52], and particle-

mesh Ewald [53] treatment of the electrostatics), we ran a 300 ns trajectory of Ala10 at

300 K and saved every 0.4 ps the coordinates for analysis.

Let us first consider the free energy landscape ∆G [Eq. (2.30)] obtained from a

PCA using all Cartesian coordinates of the system. The calculations of ∆G(V1, V2) and

∆G(V3, V4) presented in Fig. 2.7A and B show that the resulting energy landscape is

rather unstructured and essentially single-peaked, indicating a single folded state and a

random ensemble of unfolded conformational states. However, as will be discussed in

detail in the next section, this smooth appearance of the energy landscape in the Carte-

sian PCA merely represents an artifact of the mixing of internal and overall motion.
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A C E G

FDB H

Figure 2.7: Free energy landscapes of Ala10 in water as obtained from a 300 ns MD sim-
ulation. The first column, (A) and (B), shows the results along the first four principal
components obtained from a Cartesian PCA, the second column, (C) and (D), the cor-
responding landscapes calculated from the sin/cos dPCA. Panels (E), (F), (G), and (H)
display the landscapes along the angles (θ1, θ2) and (θ3, θ4) and the weights (r1, r2) and
(r3, r4) of the complex dPCA, respectively.
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This becomes clear when a sin/cos dPCA of the N = 18 inner backbone dihedral angles

{ϕn} = {ψ1, φ2, ψ2, . . . , φ9, ψ9, φ10} is performed. The resulting dPCA free energy surfaces

∆G(V1, V2) and ∆G(V3, V4) shown in Fig. 2.7C and D exhibit numerous well-separated

minima, which correspond to specific conformational structures. By back-calculating

from the dPCA free energy minima to the underlying backbone dihedral angles of all

residues [54], we are able to discriminate and characterize 15 such states [55]. The most

populated ones are the all αR-helical conformation (8 %), a state (15 %) with the inner

seven residues in αR (and the remaining residues in β/PII), and two states (each 8 %)

with six inner residues in αR. Well-defined conformational states are also found in the un-

folded part of the free energy landscape, revealing that the unfolded state of decaalanine

is rather structured than random.

Figure 2.8: Influence of the 18 inner backbone dihedral angles {ϕn} =
{ψ1, φ2, ψ2, . . . , φ9, ψ9, φ10} on the first two principal component V1 and V2 of the cos/sin

dPCA of Ala10. Shown are the quantities ∆
(1)
n (for V1) and ∆

(2)
n (for V2) defined in Eq.

(2.34), representing the percentage of the effect of the dihedral angles on Vk. The black
and gray bars correspond to the φ and ψ angles, respectively. Also shown are the contri-
butions (in %) of each principal component to the overall fluctuations of the system.
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To obtain an interpretation of the kth principal component in terms of the dihedral

angles ϕn, Fig. 2.8 shows the quantities ∆
(k)
n defined in Eq. (2.34) which describe the effect

of these angles on the first two principal components. The first principal component V1 is

clearly dominated by motion along the ψ angles (gray bars), while fluctuations of the φ

angles (black bars) hardly contribute. Hence, going along V1 we will find conformations

which mainly differ in ψ angles. Considering the second principal component V2, we find

a dominant ∆
(2)
n for the angle ψ3 (and a smaller value for ψ9), revealing that V2 separates

mainly conformation that differ in ψ3. Similarly, the ∆
(k)
n obtained for next few principal

components are dominated by the contribution of a single ψ angle. For example, we find

that ∆
(3)
n , ∆

(4)
n , ∆

(5)
n , and ∆

(6)
n depend mostly on the angles ψ2, ψ9, ψ4 (and ψ8), and ψ5,

respectively (data not shown). Together with the percentage of the fluctuations (18, 10,

8, 7, 6, and 5 % for V1, . . . , V6) the quantities ∆
(k)
n therefore give a quick and valuable

interpretation of the conformational changes along the principal components Vk.

Figure 2.9: Probability densities of the first six principal components obtained from the
sin/cos (full lines) and the complex (dashed lines) dPCA of Ala10, respectively.
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It is interesting to compare the above results to the outcome of a complex dPCA of

the Ala10 trajectory. To check the similarity of the complex and the sin/cos dPCA in

this case, Fig. 2.9 compares the distributions of the sin/cos principal components Vk to

the distributions of the corresponding principal components Re Wn and Im Wn, obtained

from the complex dPCA using suitably normalized eigenvectors. Although we find good

overall agreement, the correspondence (2.39) is not perfect in all cases (see Appendix).

Finally, we wish to investigate whether the polar representation (2.38) of the complex

principal components facilitates the interpretation of the energy landscape of Ala10. To

this end, Fig. 2.7E-H shows the free energy surfaces (E) ∆G(θ1, θ2), (F) ∆G(θ3, θ4), (G)

∆G(r1, r2), and (H) ∆G(r3, r4). Similarly as found for Ala3, the energy landscape is only

little structured along the weights rn (mainly along r1), thus leaving the main information

on the conformational states to the angles θn (mainly θ2, θ3, and θ4). A closer analysis

reveals, e.g., that θ2 separates conformational states with different dihedral angle ψ3, while

θ3 separates conformations with different dihedral angle ψ2. Unlike to the simpler case of

trialanine, where the (θ1, θ2) representation of the complex dPCA was found to directly

reproduce the original (φ, ψ) distribution, however, the polar principal components of

Ala10 appear to be equivalent to the results of the standard sin/cos dPCA. Roughly

speaking, in both formulations we need about the same number of principal components

to identify the same number of conformational states.

2.9 Cartesian PCA

In section 2.5 Cartesian PCA was found to be equivalent to dPCA for the trialanine

system. Going to longer peptide chains which adopt much more conformational states, it

has been demonstrated by Mu et al. [25] that a PCA on the Cartesian coordinates fails

to reveal the true structure of the free energy landscape in the case of pentaalanine. The

smooth appearance in the Cartesian PCA represents an artifact of the mixing of internal

and overall motion. In this section we discuss the several problems of Cartesian PCA for

very flexible peptides.

In order to study dynamic structural changes of a peptide by a Cartesian PCA one

has to remove rotational and translational motion from an MD trajectory. This is usually

done by least-squares superpositioning. The full trajectory is fitted to a single reference
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structure. After the trivial removal of translational motion by subtracting the center of

mass from all configurations of the MD run, the overall rotation can be removed at each

time t by minimizing the function

∆(t) =

#atoms
∑

n=1

mn‖R(t)rn(t) − cn‖2 (2.41)

with respect to the rotation matrix R(t) ∈ R
3×3, where rn(t) is the position of the nth

atom at time t with its mass being mn, and the cn’s are the one chosen reference struc-

ture for all the MD trajectory. In Fig. 2.10A and B we see the free energy landscape

∆G(V1, V2) for Ala5 where we fitted the trajectory to the starting configuration of the

MD simulation, cn = rn(0) for all n, which is a mostly unfolded β structure. Depending

on the reference structure chosen we obtain slightly different landscapes, but anyways the

various conformations of the peptide cannot be resolved. In contrast to this, the dPCA

landscape shows many multiple peaks (Fig. 2.10C and D) which correspond to different

conformational states of the peptide. See [25] for a thorough discussion. Note that the

dPCA landscape is unique in the sense that its shape does not depend on a reference

structure as it is explicitly constructed from internal coordinates, the dihedral angles.

The failure of Cartesian PCA to provide the true free energy landscape seems to be

ubiquitous for small very flexible peptides, with the exception of the conformationally

trivial trialanine. We will see more examples of landscapes obtained by a Cartesian PCA

on larger systems in Chapter 5 of this thesis. But let us now get to the root of the problem.

While fitting of an MD trajectory is straightforward in the case of small fluctuations

around a mean structure, it is not possible to define an appropriate reference structure of

a molecule undergoing large amplitude motion. The fit will alter the coordinates and, for

example, artificial correlations between atoms may be introduced.

Another problem is the least-squares superposition itself. The least-squares treatment

implicitly requires that atoms are uncorrelated and that each atom has the same vari-

ance, which is not given of course. Theobald et al. [56,57] propose a maximum likelihood

method to overcome these drawbacks. They show that their maximum likelihood superpo-

sition provides markedly more accurate structural correlations than those extracted from

least-squares superpositions. Their method is implemented in the THESEUS package [58].
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A

B

C

D

E

F

Figure 2.10: Free energy landscapes of Ala5 in water as obtained from a 100 ns MD
simulation. The first column, (A) and (B), shows the results along the first four princi-
pal components obtained from a Cartesian PCA, the second column, (C) and (D), the
corresponding landscapes calculated from the sin/cos dPCA. Panels (E) and (F) display
the landscape along the principal components of a PCA directly on the dihedral angels
without prior sin/cos transformation.
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However the problem of the absence of an appropriate reference structure remains. Nev-

ertheless we tried out a maximum likelihood fit in order to see if we obtain a more detailed

free energy landscape than with a least-squares fit. Comparing Figs. 2.11 (A) and (B),

CBA

Figure 2.11: Comparison of different superposition methods for Cartesian PCA, and
dPCA free energy landscape for Ala7 as obtained from a 200 ns MD simulation. (A)
least-squares fit, (B) THESEUS maximum likelihood fit, and (C) dPCA (no fit necessary).

it seems that a more accurate fit does not provide a more detailed picture of the free

energy landscape when Cartesian coordinates are used. As already seen for Ala5 above,

also the dPCA free energy landscape ∆G(V1, V2) of Ala7 as shown in 2.11 (C), provides

a much more detailed picture. Again the distinct free energy minima correspond to vari-

ous conformational states of the system. The two superposition methods seem to fail to

correctly describe the correlations between the atoms in the case of peptides undergoing

large amplitude motion, and hence result in artificial free energy landscapes.

It is interesting to take a look at the covariance matrices of the Cartesian atoms for Ala7

as visualized in Fig. 2.12 for the two different superposition methods. Even though they

seem qualitatively similar, covariances are stronger among the first five as well as among

the last five atoms for the maximum likelihood fit in panel (B). Also certain covariances

are more pronounced in the least squares fit (A), but also vice versa. Nevertheless one

can say that these differences are not significant for the construction of the free energy

landscapes ∆G(V1, V2) (Fig. 2.11A and B) which are constructed along the eigenvectors

of the respective covariance matrix. The two landscapes resemble each other and both

provide an artificial picture of the true free energy landscape of Ala7.
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A B

Figure 2.12: Covariance matrices for Ala7 (200ns data) (A) least-squares fit, (B) THE-
SEUS maximum likelihood fit.

2.10 Direct angular PCA

One may pose the question whether a PCA performed directly on the dihedral angles

can result in a correct free energy landscape as already seen for the dPCA treatment. To

answer to this question we will discuss several questions at issue. One point is that treating

the dihedral angles with a data range larger than 180◦ like Cartesian variables, as detailed

in Sec. 2.3, the average angles and hence also covariances are not correctly calculated.

A possible consequence might be that the eigenvectors of the covariance matrix are not

optimally chosen to obtain equally good results as from the dPCA.

In order to minimize the error which is due to the fact that circularity of the angles

is not taken into account, we shift each angular variable in such a way that a minimal

number of data points are at the periodic boundaries. Algorithmically, for all angles

separately, one finds the angular value ϕ0 with minimum density, and shifts all values

above ϕ0 by −360◦. By doing so the interval of the circular data becomes [ϕ0 − 360◦, ϕ0],

and not anymore the somewhat arbitrarily chosen [−180◦, 180◦]. This preprocessing of

the data is visualized in Fig. 2.13. Note that this shifting (by 360◦!) does does not change

the circular mean of the data, nor does it change the cosine or sine values of ϕ. Hence the

dPCA on the shifted angles is exactly the same as before shifting, but for a PCA directly

on the angles we have now minimized the errors coming from a states which split up at

the periodic boundaries.
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A B

Figure 2.13: (A) Exemplary Ramachandran plot in the interval [−180◦, 180◦] ×
[−180◦, 180◦]. (B) Same Ramachandran plot periodically shifted in order to minimize
data points at the periodic boundaries. Here, angular values of minimum density are
φ0 = 135◦ and ψ0 = −125◦.

Employing a PCA directly on the shifted dihedral angles, without a prior sin/cos

transformation as in the dPCA, in Fig. 2.10E and F, we find a qualitatively similar

picture of the free energy landscape, nevertheless with a seemingly lower resolution - it

seems as if the peaks are kind of smeared out and not as well separated as in the dPCA

representation. The same phenomenon can be seen for the landscapes of the heptaalanine

system Ala7 in Fig. 2.14A and B. Even though there is quite some resemblance between

the two landscapes, which we will discuss next, the dPCA landscape provides the more

detailed picture. Later in Sec. 3.3 and the following sections in Chapter 3, we will provide

a full analysis of the dPCA free energy landscape of Ala7.

Recall that after centering the data in the direct angular PCA we calculated the

covariance matrix as we would do for Cartesian coordinates,

σij = 〈(ϕi − 〈ϕi〉)(ϕj − 〈ϕj〉)〉, (2.42)

where 〈·〉 denotes the arithmetic average over the shifted angles. We have already argued

multiple times why this is not the correct average. One may wonder if we get qualita-

tively better landscapes using the circular average instead. From Table 2.2A we see that

the circular averages for ψ-angles deviate ≈ 40-50 degrees from the arithmetic averages.
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BA C

Figure 2.14: Free energy landscapes of Ala7 in water as obtained from an 800 ns MD
simulation. (A) shows the results along the first two principal components obtained from
a dPCA, the second panel, (B) the corresponding landscapes calculated from a direct
PCA without prior sin/cos transformation. Panel (C) displays the landscape along the
principal components of a dPCA using the correlation instead of the covariance matrix.

Nevertheless we found that replacing the average by the circular one in (2.42) does not

significantly change the free energy landscape (data not shown). Also the covariance

may be calculated in a circular fashion. We will compare the circular with the standard

correlation in the following section 2.11.

But the problem of a PCA directly on circular variables must rather be the use of

eigenvectors, which are Cartesian by nature, as reaction coordinates for the free energy

landscape for circular data. Next, in an example we detail this problem. We also reason

why the landscapes obtained from a dPCA and a direct angular PCA have such a high

degree of resemblance with each other.

Figure 2.15: Structure of Carbon chain with 5 Carbon atoms.
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Figure 2.16: Results from a Carbon chain simulation. (A) Angular distribution of the
two dihedral angles. Panel (B) shows the data after PCA transformation. Panels (C)-(H)
present the data along all possible combinations of eigenvectors of the sin/cos dPCA.

To obtain a toy model we performed an MD simulation of a Carbon chain with 5

Carbon atoms as seen in Fig. 2.15. In Fig. 2.16A we see the resulting distribution for

the two dihedral angles of our model. From the distribution we clearly see the symmetric

cosine potential resulting in seven symmetric conformational states. In panel B we see

the same data after a direct PCA on A, which simply is a rotation by −135◦ in the plane.

Panels C-H show the data after a sin/cos transformation and subsequent projections onto

all possible 2D-planes of dPCA eigenvectors. In this way one can get an idea of how

the data is distributed on the 4-dimensional sphere with radius
√

2 (see Sec. 2.3). We

now want to learn how the PCAs perform on the angles, which will help understanding

the advantages of dPCA over a PCA directly on the angles. Let us now examine these

plots in more detail. In B the periodic boundaries are no longer at the x- and y-axes as

in A, but they are at the diagonals, that is, e.g. states 1 and 7 and states 3 and 5 are

neighbors, respectively. The problem of such an illustration of the data is that in general

we do not know where the periodic boundaries are as the eigenvectors are a combination

of the original angular variables. Hence, the circular geometry is mixed with the Cartesian

nature of the eigenvectors, e.g. after the PCA transform it is not clear anymore that state

1 and 7 are geometric neighbors. In contrast to that, in the dPCA treatment in C, state 4

is twisted to simultaneously flip around states 3, 6, and 7. In such a way it is ensured that
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e.g. state 1 can be represented as a direct neighbor of state 7, and that the geometric

proximity of states 3 and 5 can also be truthfully kept. Note that similar phenomena

can be observed from other perspectives on the data in panels D-H, but in addition due

to the fact that these representations are only projections, non-neighboring states can

overlap as e.g. states 1 and 3 in panel H. This cannot be regarded as a drawback of the

dPCA as this is a general problem when visualizing a high dimensional data set on a 2D

projected plane. Because of the one-to-one mapping to the 2N -dimensional sin/cos space

geometrically close states stay together even if they are originally separated by a periodic

boundary. In general, for N angles, this is not possible in an N -dimensional Cartesian

space only, this is a reason why the the dPCA needs up to 2N Cartesian variables.

As can be seen from Figs. 2.16C-H, the shape of the 7 states in the dPCA can be

represented as in the original distribution A, as seen e.g. for states 1, 3, 5, 7 in panel C,

states 2 and 6 in panel D, and state 4 in panel G. But they can also be kind of squeezed or

twisted as e.g. states 2, 4, 6 in C. That is because the states are wrapped on the surface

of a sphere, and as a sphere can locally be regarded as a plane, depending on from which

direction one looks at it, the states appear either similar to the original distribution or in

a way squeezed. Now it is important to recall that dPCA is looking for directions with

largest variance for the first modes. Thus, the V1/V2 plane will most likely be such that a

maximum number of conformational states will be represented in their original unfolded

shape, and not squeezed, because squeezing them would decrease their variance. If the

data is localized such that the curvature of the sin/cos sphere can be neglected we obtain

very similar results as for a PCA directly on the angles. In other cases the mixing of

Cartesian eigenvectors and circular geometry of the angles can result in seemingly less

detailed landscapes than the ones obtained by dPCA, as seen from a comparison in Fig.

2.14. The fact that a low-dimensional dPCA landscape provides a truthfull representation

of the true free energy landscape with the correct number, energy, and location of the

metastable conformational states and barriers is thoroughly studied in the next Chapter.

2.11 Correlation analysis

In this section we want to analyze the correlations between the dihedral angles of Ala7. We

would like to compare our result to the one obtained by J. E. Fitzgerald et al. in [59], where
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they report a strong anticorrelated motion of the φ angle of the ith residue (φi) and the ψ

angle of the residue i−1 (ψi−1). Only a slight correlation was found between the motions

of the two backbone dihedral angles of the same residue. They used a 200 ns simulation

of Ala7 with implicit solvent, N2 nonbonded interactions, and the GS-AMBER94 force

field. We used our 800 ns GROMOS simulation (see Appendix 6.4). Similar to [59] we

calculate the correlation coefficients between angles ϕi and ϕj as follows:

cij =
σij√
σiiσjj

, (2.43)

where

σij = 〈(ϕi − 〈ϕi〉)(ϕj − 〈ϕj〉)〉 (2.44)

is the covariance between angles ϕi and ϕj as used in the PCA which is performed directly

on the dihedral angels. Note that by doing so angles are treated like Cartesian variables.

In order to minimize the error which is due to the fact that circularity of the angles is not

taken into account in this definition of correlation, unlike Fitzgerald et al., we shift the

angular variables in such a way that a minimal number of data points are at the periodic

boundaries as detailed in Sec. 2.10.

Despite this shifting of angles, the arithmetic mean of the angles ϕi and also the cor-

relations are not properly calculated if circularity of the angular variables is not explicitly

taken care of. In Table 2.2A we already see that the circular averages for ψ-angles devi-

ate ≈ 40-50 degrees from the arithmetic averages. In contrast to that, the averages for

the φ-angles deviate only less than 5◦ from each other. We now compare the standard

correlations to circular correlations which are calculated as above in Eq. (2.43), however,

(ϕi −〈ϕi〉) and (ϕj −〈ϕj〉) in Eq. (2.44) are replaced by sin(ϕi −〈ϕi〉) and sin(ϕj −〈ϕj〉),
where now 〈·〉 denotes the circular mean of a variable as defined in Eq. (2.22). This is

the measure for correlation of circular variables as proposed by Jammalamadaka in [60].

Our results are presented in Table 2.2B. According to a circular correlation coefficient

of -0.01, ψ2 and ψ4 can be considered as uncorrelated, whereas we obtain an artificially

increased correlation of 0.12 with the standard correlation measure. For φ2 and ψ2 this

is similar. Examining the circular correlations, we see that in contrast to Fitzgerald et

al. [59], in both cases we observe the strongest correlations between the pairs φi and ψi,
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(A) φ2 ψ2 φ3 ψ3 φ4 ψ4 φ5 ψ5 φ6 ψ6

standard -81.9 92.4 -75.6 71.5 -75.1 62.3 -77.8 65.3 -81.4 82.2
circular -83.5 131.0 -78.5 121.5 -79.2 109.8 -81.7 108.2 -86.2 115.8

(B) φ2 ψ2 φ3 ψ3 φ4 ψ4 φ5 ψ5 φ6 ψ6

φ2 1 -0.19 0.04 -0.08 0.02 -0.08 0.03 -0.09 0.03 -0.06
ψ2 0.02 1 0.04 0.05 -0.06 0.12 -0.02 0.10 -0.05 0.08
φ3 0.05 0.06 1 -0.26 0.04 -0.13 0.02 -0.12 0.01 -0.11
ψ3 -0.07 -0.02 -0.11 1 0.03 0.20 -0.06 0.22 -0.01 0.16
φ4 0.04 -0.01 0.06 0.05 1 -0.29 0.01 -0.12 0.02 -0.11
ψ4 -0.08 -0.01 -0.18 0.05 -0.22 1 0.07 0.25 -0.02 0.22
φ5 0.05 0.00 0.04 -0.02 0.02 0.06 1 -0.23 0.04 -0.07
ψ5 -0.09 -0.01 -0.12 0.06 -0.17 0.14 -0.20 1 0.10 0.19
φ6 0.03 0.01 0.02 -0.02 0.01 -0.04 0.00 0.06 1 -0.20
ψ6 -0.06 0.00 -0.10 0.04 -0.11 0.12 -0.12 0.15 -0.13 1

(C) φ2 ψ2 φ3 ψ3 φ4 ψ4 φ5 ψ5 φ6 ψ6

standard 0.07 0.08 0.09 0.12 0.08 0.15 0.06 0.16 0.05 0.13
circular 0.05 0.02 0.08 0.04 0.08 0.10 0.06 0.11 0.04 0.09

Table 2.2: Comparison of the standard and the circular mean and correlation for the
dihedral angles of Ala7. (A) Arithmetic average (given in [−180◦, 180◦]) calculated from
the centered/shifted dihedral data and the circular average. (B) Circular correlation are
listed below the diagonal of the table. The standard correlation above the diagonal is
calculated for the shifted data. Entries |cij| > 0.1 are denoted bold for clarity. (C)
Averaged absolute correlation coefficients from (B) for each angle, i.e., 1

9

∑

j 6=i |cij|.

whereas ψi−1 and φi tend to have a only small correlations (|cij| . 0.1) with each other.

It is also notable that relatively high correlation coefficients are found between φ3 and

ψ4 (cij = −0.18), and also for φ4 and ψ5 (cij = −0.17), whereas Fitzgerald et al. found

no correlations between backbone dihedral angles that are separated by more than one

torsion angle. In 2.2C we listed the averaged absolute correlation coefficients. From there

one can see that the standard correlation measure tends to overestimate the correlations,

especially for ψ-angles. If this value is close to zero, as is the case for ψ2, it means that

the respective angle is almost uncorrelated to any of the other angles, and thus could be

omitted in a PCA analysis. For larger systems this quantity might help in reducing the

number of variables before a PCA.
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It is also interesting to see the performance of a PCA that uses the correlation matrix

rather than the covariance matrix. Recall that in the standard dPCA using the covariance

matrix Σ of the cos/sin transformed angles q we obtain their principal components by

Vi(t) = v(i) · q(t), (2.45)

where v(i) are the eigenvectors of Σ.

In practice it is also common to use the correlation matrix of q, and (2.45) becomes

Ui(t) = u(i) · qnorm(t), (2.46)

where u(i) are the eigenvectors of the correlation matrix, and qnorm is the standardized

version of q, with qnorm having the nth element qn/σ
1/2
nn (see also [13]). Note that the

covariance matrix for qnorm is the correlation matrix of q, that is, (2.46) can be regarded

as a covariance PCA for the standardized data qnorm.

Applying the correlation PCA to the sin/cos transformed variables for Ala7, Fig. 2.14C

shows the resulting free energy landscape ∆G(V1, V2). Interestingly, but without having a

deeper meaning, the landscape resembles the one obtained from the direct angular PCA

in Fig. 2.14B. In any case, the detailed structural appearance of the free energy landscape

is a particular property of the dPCA using the covariance matrix only. To conclude this

section we note that using the correlation may be advantageous for a PCA analysis in

some cases [13,57], we think that for our purpose the dPCA using the covariance matrix

of the cos/sin transformed data shows the best results.

2.12 Nonlinear principal component analysis

Finally we want to mention that recently there have been efforts to study the free energy

landscapes of peptides by a nonlinear principal component analysis (NLPCA) [35]. This

can be advantageous if the conformational states are nonlinearly distributed in the given

data set.

The basic idea of this method is that hierarchically arranged neural networks are

designed and these networks are trained to build a set of adequate nonlinear mapping

functions that map an input vector to its counterpart in the principal component space.
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Without going into detail, in Fig. 2.17 we present a quick comparison of the free energy

landscapes for hexaalanine Ala6 as obtained by NLPCA and the dPCA, respectively. For

a detailed analysis of the landscapes see [35]. It is interesting that we observe a strong

correlation between the first first modes of the NLPCA and the dPCA as seen from Fig.

2.17(C). Beyond the scope of this thesis, it can be an interesting topic to further analyze

nonlinear PCA methods, and to demonstrate possible advantages of such methods for the

construction and interpretation of free energy landscapes of biomolecules.

A B C

Figure 2.17: Free energy landscapes for hexaalanine Ala6 as obtained by (A) NLPCA and
(B) dPCA. Panel (C) compares the first eigenmode V1 of NLPCA with V1 of the dPCA.

2.13 Conclusions

We have studied the theoretical foundations of the dPCA in order to clarify the validity

and the applicability of the approach. In particular, we have shown that dPCA amounts

to a one-to-one representation of the original angle distribution and that its principal

components can be characterized by the corresponding conformational changes of the

peptide. Furthermore, we have investigated a complex version of the dPCA which sheds

some light on the mysterious doubling of variables occurring in the sin/cos dPCA. One

learns that N angular variables actually can be represented by N complex variables,

which then naturally lead to N eigenvalues and eigenvectors. Despite its similarity to the

sin/cos dPCA, the complex dPCA might be advantageous because the representation of

the complex principal components by their weights and angles may facilitate their direct

interpretation in terms of simple physical variables. Furthermore we have thoroughly

studied the similarities and differences of Cartesian PCA, PCAs performed directly on
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the angular variables, and the dPCA.

To demonstrate the potential of the dPCA, we have applied it to construct the energy

landscape of Ala10 from a 300 ns MD simulation. The resulting free energy surface ex-

hibits numerous well-separated minima corresponding to specific conformational states,

revealing that the unfolded state of decaalanine is rather structured than random. The

smooth appearance of the energy landscape obtained from a PCA using Cartesian coordi-

nates was found to be caused by an artifact of the mixing of internal and overall motion.

Hence the correct separation of internal and overall motion is essential for the construction

and interpretation of the energy landscape of a biomolecule undergoing large structural

rearrangements. Internal coordinates such as dihedral angles fulfill this requirement in

a natural way. Performing and analyzing an 800 ns MD simulation of Ala7 we could

show that the dPCA provided the most detailed low-dimensional representation of the

free energy landscape. A correlation study for the dihedral angles of Ala7 using a circular

correlation measure could show that, in contrast to a study performed by Fitzgerald et

al. in [59], that the correlated motion of the φ angle of the ith residue (φi) and the ψ

angle of the residue i − 1 (ψi−1), is much weaker. Furthermore, we found the strongest

correlations for neighboring torsion angles of the same residue.

Recently, several nonlinear approaches have been proposed [33–36] which may account

for nonlinear correlations not detected by a standard PCA. For example, it has been

discussed in Ref. [34] that completely correlated motion such as two atoms oscillating

in parallel direction but with a 90◦ phase shift is not monitored by a linear PCA, since

〈sin(ωt) sin(ωt + π/2)〉 = 0. This geometrical artifact caused by the relative orientation

of the atomic fluctuations was found to lead to a considerable (≈ 40 %) underestimation

of the correlation of protein motion [34]. Because of the use of dihedral angles and the

inherent nonlinear transformation, the dPCA represents a nonlinear PCA with respect to

Cartesian atomic coordinates and is therefore able to identify this type of fluctuations.

Furthermore, various methods have been suggested which allow for a identification of

metastable conformational states [5,20,30–32]. By calculating the transition matrix that

connects these states, one may then model the conformational dynamics of the system via

a master-equation description. While the dPCA also allows us to calculate metastable

conformational states and their transition matrix [25], it moreover provides a way to
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represent the free energy landscape as well as all observables of the system in terms of well-

defined collective coordinates [61]. This way the dPCA free energy surface can be used to

perform (equilibrium or nonequilibrium) Langevin simulations of the molecular dynamics

[62,63] as well as a simulation using a nonlinear dynamic model [36]. As all quantities of

interest can be converged to the desired accuracy by including more principal components,

the approach avoids problems associated with the use of empirical order parameters (such

as the number of native contacts) or low-dimensional reaction coordinates (such as the

radius of gyration), which may lead to artifacts and an oversimplification of the free energy

landscape [64].
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Chapter 3

Free Energy Landscape

In this chapter we present a systematic approach to construct a low-dimensional free en-

ergy landscape from a classical molecular dynamics (MD) simulation. The approach is

based on the in Chapter 2 discussed dihedral angle principal component analysis (dPCA),

which avoids artifacts due to the mixing of internal and overall motion in Cartesian co-

ordinates and circumvents problems associated with the circularity of angular variables.

Requiring that the energy landscape reproduces the correct number, energy, and loca-

tion of the system’s metastable states and barriers, the dimensionality of the free energy

landscape (i.e., the number of essential components) is obtained. This dimensionality

can be determined from the distribution and autocorrelation of the principal components.

Performing an 800 ns MD simulation of the folding of heptaalanine in explicit water and

using geometric and kinetic clustering techniques, it is shown that a five-dimensional

dPCA energy landscape is a suitable and accurate representation of the full-dimensional

landscape. In a second step, the dPCA energy landscape can be employed (e.g., in a

Langevin simulation) to facilitate a detailed investigation of biomolecular dynamics in

low dimensions. Finally, several ways to visualize the multidimensional energy landscape

are discussed.

3.1 Introduction

As we have seen in Chapter 2, assuming a time scale separation of the slow motion along

the first few PCs and the fast motion along the remaining PCs, the first few PCs may

47
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serve as reaction coordinates to represent the free energy landscape of a biomolecular

system. Since the eigenvectors of the covariance matrix form a complete basis, it is clear

that the representation of the conformational space in terms of PCs becomes exact when

sufficiently many PCs are taken into account. In practice, on the other hand, one- and

two-dimensional representations are commonplace, which may lead to serious artifacts and

oversimplifications of the free energy landscape of small folding peptides [64]. This rises

the important question on how many dimensions or PCs need to be taken into account in

order to appropriately describe a given biomolecular process. An energy landscape may

be characterized in terms of its minima which represent the metastable conformational

state of the systems, and its barriers which connect these states. Hence a suitable reduced

representation of the energy landscape should (at least) reproduce the correct number,

energy and location of the metastable states and barriers. Unfortunately, these crucial

quantities often get lost when the energy landscape is projected on a low-dimensional

subspace.

Figure 3.1: Schematic one- and two-dimensional representations of a model free energy
landscape. Although the reduced dimensionality representation reproduces the correct
number of minima and their energies, the connectivity of these states and their barriers
are obscured in a single dimension.

To illustrate the problem, Fig. 3.1 shows schematic one- and two-dimensional rep-
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resentations of a model free energy landscape. The two-dimensional energy landscape

∆G(r1, r2) exhibits n = 6 minima of energy ∆Gi corresponding to metastable conforma-

tional states of the system. The minima are connected by barriers of height ∆Gij. The

projection of the two-dimensional surface on its first coordinate is given by

∆G(r1) ∝ −kBT ln

∫

dr2P (r1, r2). (3.1)

The one-dimensional representation is found to reproduce the correct number of minima

and their energies. The former is clearly a consequence of the fact that all minima are

located at different values of r1. In general, however, we may obtain less minima in

lower dimensions because several minima may overlap along the reduced coordinate r1.

More importantly, though, Fig. 3.1 reveals that the true nature of the barriers may be

obscured in reduced dimensionality. As a typical example, consider minima 2 and 4. In

two dimensions, there exist two pathways of minimal energy between these two states,

2→ 1→ 4 and 2→ 5→ 4. Projecting on a single dimension, however, this connectivity

gets lost. Now states 2 and 4 are direct neighbors connected by a single barrier and states

1 and 2 are only connected via state 4. The energies ∆G24 and ∆G12 of these spurious

barriers and the corresponding transition rates k24 and k12 may be smaller or larger than

in full dimensionality as detailed next.

We adopt a simple example to show that the barrier heights in reduced dimensionality

may be smaller or larger than in full dimensionality. The idea is given in Fig. 3.2 which

shows two-dimensional population maps P (i, j) (i, j = 1, 2, 3) and their one-dimensional

projections P (i) =
∑

j P (i, j). The corresponding free energies are again calculated via

∆G ∝ ln P . In case (a), there are two states at (1,1) and (3,3) with populations 4/12

and 6/12, respectively, which are separated by a barrier at (2,2) with a population 2/12.

Projecting on one dimension, the energies of states and the barrier are retained. In panel

(b), the minimum-energy path has a barrier at (2, 2). Projecting on the horizontal axis,

the barrier between right and left states becomes higher. Finally, in panel (c) we have

constructed an example in which the barrier in one dimension becomes smaller compared

to the true barrier in full dimensionality.

Further circumstances under which a PCA-based free energy landscape may appear

simpler as it actually is have been thoroughly discussed in Chapter 2.
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Figure 3.2: Two-dimensional population maps P (i, j) (i, j = 1, 2, 3) (upper panels) and
their one-dimensional projections P (i) =

∑

j P (i, j) (lower panels), where P (i, j) = 0 for
empty fields. Projecting on the horizontal axis, the barrier between right and left states
(a) remains, (b) becomes higher, and (c) becomes smaller.

In this chapter, we employ the dPCA to systematically construct a low-dimensional

free energy landscape from a classical molecular dynamics (MD) simulation. Being based

on the backbone dihedral angles, the dPCA naturally distinguishes between the kinetically

well-separated main conformational states of the peptide, such as the αR helical and the β

extended conformations. The resulting free energy surface represents a reduced dynamic

model of the system and can be used, for example, to perform simulations of the molecular

dynamics using the Langevin approach [62,63,65,66] or a nonlinear dynamic model [33–36]

as also detailed in Chapters 4 and 5 of this thesis. Adopting an 800 ns MD simulation

of the folding of heptaalanine (Ala7) in explicit water, we show that a five-dimensional

dPCA energy landscape is a suitable and accurate representation of the full-dimensional

landscape of Ala7. In particular, geometric and kinetic clusterings yield approximately

the same metastable states and barriers as for the full-dimensional surface. Finally, we

present several ways to visualize the multidimensional energy landscape.

3.2 Clustering

To visualize the multidimensional energy landscape and identify its metastable states, we

have employed k-means clustering [67]. The k-means algorithm aims at finding a partition

C = (C1, . . . , Ck) of a given data set into k subsets that minimizes the sum of squares of



3.2. CLUSTERING 51

distances between the objects and their corresponding cluster centroids

σ2 =
k

∑

i=1

∑

xj∈Ci

‖xj − µi‖2, (3.2)

where xj are the objects contained in cluster Ci with centroid µi. The algorithm is

initialized with k random centers. For every object, all distances to the k centroids are

determined, and the object is assigned to the centroid with minimum distance. When

all objects have been assigned to a group, k new centroids are calculated as the average

over all objects in their corresponding groups. These steps are repeated until the objects

no longer switch clusters. As this method is sensitive to the initial conditions, one can

become trapped in a local minimum of Eq. (3.2). A simple solution to this problem is to

run the algorithm several times and to choose the best solution, i.e., with minimal value

of σ2. In the calculations shown below, typically 200 runs were performed.

As the number of clusters must be known beforehand in k-means, we need to establish

a criterion to determine this number. For example, we may request that a suitable

clustering should give a large fraction (say, larger that 90 %) of ”good” clusters. To define

such a good cluster, it is useful to introduce the circular variance [41] which provides an

appropriate measure of the spread of angular variables. It is defined as

var(ϕ) = 1 − R/L, (3.3)

R2 =

(

L
∑

i=1

cos ϕ(l)

)2

+

(

L
∑

i=1

sin ϕ(l)

)2

,

i.e., R is the resultant length of the vector sum of the vectors (cosϕ(l), sin ϕ(l)), where

ϕ(l) are realizations of angle ϕ. Note that var(ϕ) ∈ [0, 1]. A cluster is “good,” if the

average circular variance of all its N dihedral angles is below a certain limit

1

N

N
∑

i=1

var(ϕi) < σ2
max, (3.4)

where the maximal circular variance σ2
max is chosen such that angular fluctuations within a

conformational state are significantly smaller than σ2
max, while transitions between different

conformational states result in a circular variance much larger than σ2
max. For example,
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in order to clearly separate αR helical and the β extended conformations, a value of

σ2
max ≈ 0.2 is suitable.

By dividing the conformational space of the molecule into k clusters, discrete states

are defined for which we calculate the k×k transition matrix T(τ) of the process. Its

elements Tij(τ) denote the probability of observing the system in state j at time t+τ given

that it is in state i at time t [68,69]. Hence its diagonal elements Tii(τ) are a measure for

the metastability of state i. To estimate T(τ) from a MD simulation, we represent the

conformational state of the system at time t by vector c(t), where ci(t) = 1 if the system

is in state i and ci(t) = 0 if not. Then the transition probability Tij(τ) is given by [7]

Tij(τ) =
〈cj(τ)ci(0)〉

〈ci〉
, (3.5)

where 〈. . .〉 denotes an equilibrium average of the MD trajectory. If the process under

consideration can be described by a Markov chain [68], a master equation using transition

matrix T(τ) provides the complete information of the time evolution of the system (see

Refs. [5–7, 20, 30, 32, 70, 71] for recent applications of this approach to biomolecular pro-

cesses). We note that the estimates of Tij satisfy detailed balance, that is, time-reversed

information gave the same transition probabilities. Throughout this article we use τ = 1

ps and omit the τ -dependence of the transition matrix for notational convenience.

The eigenvalues µk (0 ≤ µk ≤ 1) of the transition matrix can be used to construct a

kinetic clustering of the process, that is, a clustering that defines its states through their

metastability rather than through geometric similarity [6, 69, 71]. In systems governed

by hierarchical dynamics [72], one expects a separation of time scales which allows us

to define metastable clusters which exhibit fast intracluster motion and slow intercluster

motion. Eigenvalues close to unity, the so-called Perron eigenvalues, correspond to such

metastable clusters, while small eigenvalues indicate the existence of kinetically unstable

clusters. Systems showing hierarchical dynamics typically exhibit a clear gap between

Perron and small eigenvalues.

A popular means to illustrate the energy landscape of biomolecules are disconnectiv-

ity graphs [10, 73]. To construct a free energy disconnectivity graph [74], one needs to

calculate the free energies ∆Gi of the k clusters as well as the free energy barriers ∆Gij

along the minimum-energy path connecting states i and j. Using Eq. (1.1), the ∆Gi are
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readily obtained from the population probabilities Pi of the corresponding conformational

states. The barriers ∆Gij can be estimated from transition state theory, which gives for

the transition from state i to state j the rate

kij = k0e
−∆Gij/kBT . (3.6)

Following Ref. [74], we estimate the transition state prefactor as k0 = kBT/h, which

results in k0 ≈ 1/(0.16 ps) at T = 300 K. Furthermore, we estimate the transition rates

from the transition matrix through kij = [T (τ)]ij/τ . This gives for the barrier heights

∆Gij = −kBT ln

(

Tij

k0τ

)

. (3.7)

Owing to the numerous approximations involved, this expression is not meant to provide

an accurate description of free energy barriers, but solely serves as a qualitative estimate

for the disconnectivity graph. The disconnectivity graph shown below was generated

using the program of M. Miller [75].

3.3 Dimensionality of the free energy landscape

In what follows, we employ the above described methods to construct and analyze the free

energy landscape of heptaalanine (Ala7), which is obtained from an 800 ns MD simulation

in aqueous solution at 300 K. We restrict the analysis to the backbone dihedral angles

φ2, ψ2, . . . , φ6, ψ6 of the inner residues (Fig. 3.3), since the dihedral angles of both end-

groups were found to be virtually uncorrelated to the rest of the system.

Generally speaking, the goal of any reduced-dimensionality representation is to appro-

priately describe a given problem by using a minimum number of dimensions. As explained

above, we consider ten (sin- and cos-transformed) dihedral angles φ2, ψ2, . . . , φ6, ψ6 in the

dPCA of Ala7, thus resulting in a 20-dimensional vector space. For the dPCA repre-

sentation of the free energy landscape, this amounts to the question of how many PCs

are needed in order to (at least) reproduce the correct number, energy, and location of

the metastable states and barriers. To address this question, Fig. 3.4 presents two-

dimensional dPCA representations of the free energy landscape of Ala7, including (A)
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Figure 3.3: Structure and dihedral angles labeling of Ala7.
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Figure 3.4: Two-dimensional representations of the free energy landscape of Ala7 as ob-
tained by dPCA: (A) ∆G(V1, V2), (B) ∆G(V3, V4), and (C) ∆G(V5, V6). The color coding
in panels (D)-(F) illustrates some prominent conformational states which are described
in Table 3.1, visualized on the upper landscape.
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∆G(V1, V2), (B) ∆G(V3, V4), and (C) ∆G(V5, V6). While the free energy exhibits several

minima corresponding to distinct metastable conformational states along the first five

PCs, there is only a single minimum found along V6, reflecting intrastate fluctuations.

As a further indication of the number of “essential” PCs, we may consider the per-

centage of overall fluctuations covered by the first n PCs (i.e., the sum of the first n

eigenvalues of the PCA). Interestingly, Fig. 3.5(A) reveals three kinds of PCs: The first

A

B

Figure 3.5: The principal components of Ala7 as obtained by the dPCA, characterized
by (A) their cumulative fluctuations and (B) their normalized fluctuation autocorrelation
functions. The latter is shown for the principal components V1 (full line), V2 (dashed
line), and V6 (dotted line). The size of the statistical error is similar to the line width of
the plots.

one covers 22 % of all fluctuations, each of the next four contribute about 10 %, while

the remaining PCs contribute less than 4 % each. A similar behavior is found for the

time scales of the fluctuations, revealed by the normalized fluctuation autocorrelation

function (〈Vn(t)Vn〉 − 〈Vn〉2)/(〈V 2
n 〉 − 〈Vn〉2) shown in Fig. 3.5(B). Judged by their initial
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time evolution, the first five PCs decay on a time scale of 1 ns, whereas the decay time of

the higher PCs is clearly shorter.

From the above results we expect that a five-dimensional dPCA representation of

the free energy surface of Ala7 suffices to correctly describe its main features. This is

because higher PCs with unimodal probability distribution account for fluctuations rather

than for conformational transitions. Appendix 6.3 shows that this is strictly true for

Gaussian-distributed degrees of freedom. For other apparently unimodal distributions,

where insufficient statistics might obscure smaller substructures, the situation is less clear-

cut and introduces a certain ambiguity. Considering ∆G(V5, V6) in Fig. 3.4, for example,

we observe a weak correlation between the two principal components V5 and V6, although

the probability distribution along V6 is unimodal. This residual correlation of essential

PCs (V1−V5) with (apparently) non-essential PCs (V6−V20) therefore may also somewhat

change the definition of metastable states as well as their barriers. To investigate this

effect, in the following we employ various clustering techniques to study the metastable

states obtained from a five- and the full-dimensional energy landscape of Ala7.

3.4 Geometric and kinetic clustering

To characterize the metastable states of the reduced free energy landscape of Ala7 shown

in Fig. 3.4, we employ the k-means algorithm [67] as a well-established simple and fast

geometric clustering method. As the number of clusters must be known beforehand in

k-means, we first need to decide how many clusters should be considered in the analysis.

From a visual inspection of Fig. 3.4A it is already clear that we should include at least ≈
20 clusters to distinguish all states shown by the ∆G(V1, V2) surface. However, since the

two-dimensional representations in Fig. 3.4 do not reveal possible correlations between

each other, we cannot tell if the ≈ 20 states in ∆G(V1, V2) split up further in ∆G(V3, V4)

or not. To test if a clustering in k states is suitable, we request that such a clustering

should give a large fraction (say, larger that 90 %) of good clusters. As explained in Sec.

3.2, we call a cluster “good” when the average circular variance of all dihedral angles

is less than a certain threshold, thus discriminating fluctuations within a conformational

state from transitions between different conformational states. Figure 3.6(A) shows the

resulting percentage of good clusters as a function of k, the number of clusters used in
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Figure 3.6: Geometric and kinetic clustering of the free energy landscape of Ala7. (A)
Percentage of “geometrically good” clusters as a function of the number of clusters con-
sidered in k-means. (B) Percentage of metastable states (i.e., “kinetically good” clusters)
as a function of the number of clusters.

the algorithm. The fluctuations of the curve reflect the fact that k-means is a stochastic

algorithm and that therefore the best out of 200 k-means runs is shown for each value of

k. (A smooth curve is obtained by averaging over the n best runs.) The percentage of

good clusters exhibits a steep increase for small k and saturates for k & 20. In accordance

with the visual inspection of Fig. 3.4, this suggest that twenty represents a lower limit for

the number of clusters.

It is interesting to compare the above findings to the results of a kinetic clustering

of the process, that is, a clustering that defines its states through their metastability

rather than through geometric similarity [6, 69, 71]. To this end, we have calculated

the number of Perron eigenvalues of the transition matrix, which reflects the number of

metastable states of the partitioning (see Sect. 3.2). Plotting the fraction of metastable

clusters PPerron (i.e., the number of Perron eigenvalues divided by k) as a function of k,

Figs. 3.6(B) and 3.7 reveal that for k ≤ 23 all clusters are metastable. For larger k, we

observe an approximately linear decrease of PPerron(k). From Fig. 3.7 we can see up to

31 metastable clusters if we use k = 100 for the clustering. Note that the linear decrease
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indicates that number of metastable clusters hardly increases anymore with the number

of clusters used. That is, an additional cluster does not increase the number of kinetically

stable clusters anymore. In fact, metastable clusters are split up in two ore more unstable

clusters.
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Figure 3.7: Eigenvalues of transition matrices calculated for the states obtained from
k-means clustering of the five-dimensional free energy landscape of Ala7. The black spec-
trum was calculated for k = 23 clusters, whereas we used k = 30 and k = 50 for the red
and the green eigenvalue spectrum, respectively.

In what follows, we adopt k = 23 in order to obtain kinetically metastable states that

are at the same time geometrically well separated. To characterize these states, Table 3.1

comprises their population probability Pi, their metastability Tii, and a rough description

of the conformational state (α, β) of the five inner amino acids. Here α denotes the

right-handed helix conformation and β accounts for both extended β and poly-L-proline

II (PII) helix-like conformations, since most biomolecular force fields discriminate these

states only weakly [47]. α/β means that the circular variance of the corresponding ψ-

angle exceeded the threshold σ2 = 0.2, i.e., the corresponding amino acid adopts both α

and β conformations. All clusters are found to have a high metastability, ranging from

88-97 %. The largest cluster, and hence the global free energy minimum, is the all-β/PII

conformation with a population of 23.2%, followed by mostly extended conformations

with one amino acid in α. The all-α state has a population of 3.5%. The occurrence of
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cluster aa 2 aa 3 aa 4 aa 5 aa 6 Pi (%) Tii (%) P d
i (%) T d

ii (%)

1 β β β β β 23.2 97 23.3 95
2 β β α β β 7.6 96 7.5 92
3 β β β α β 7.5 96 7.4 93
4 β α β β β 7.0 95 7.1 92
5 α α/β β β β 6.4 96 1.4/5.4 89/92
6 β β β β α 5.3 95 5.2 91
7 β α α α α 3.9 97 3.8 95
8 β α α α β 3.8 95 3.8 92
9 β β α α β 3.5 94 3.4 89
10 α α α α α 3.5 97 3.3 96
11 α β α β α/β 3.5 96 0.8/2.7 88/90
12 β α α β β 3.3 94 3.3 90
13 β α β α β 3.3 94 3.1 90
14 α α/β β α β 2.5 95 0.8/1.8 88/90
15 β β α α α 2.4 95 2.3 91
16 β β α β α 2.2 93 2.0 88
17 α β α α α/β 2.1 94 0.9/1.2 89/84
18 α/β α β β α 1.9 91 0.3/1.8 83/87
19 β β β α α 1.8 91 1.7 88
20 α α α α/β β 1.7 92 1.3/0.6 87/81
21 α/β α α β α 1.5 93 0.3/1.1 79/87
22 α β β α/β α 1.4 88 0.4/0.9 85/84
23 α/β α β α α 1.0 88 0.3/0.7 87/85

Table 3.1: Conformational states of Ala7 as obtained from a k-means clustering on the
five-dimensional dPCA space. The states are characterized by the structure of their five
inner amino acids (α for helical conformations and β for extended or poly-L-proline II
conformations), their population probability Pi and their metastability Tii. The k-means
results for Pi and Tii in reduced space are compared to the results P d

i and T d
ii of a direct

clustering on the full-dimensional free energy landscape of Ala7. Statistical errors are
±0.2% for populations and ±1% for metastabilities.

several clusters with mixed α/β states demonstrates the limits of the k-means algorithm

in obtaining a physically meaningful clustering. On one hand, one needs a larger cluster

number k to resolve the conformations combined in such a state. On the other hand,

by increasing k, the metastabilities of the resulting clusters decrease, indicating that also

conformations with well-defined structure split up.

We are now in a position to assess the quality of the five-dimensional (5D) landscape

with respect to the true full-dimensional free energy landscape of Ala7. To this end,
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we employ a simple “direct” clustering of the full-dimensional dihedral angle space by

considering the two conformational states α and β/PII for each individual residue i. For

simplicity, we choose the definitions −180◦ ≤ ψi < 25◦ for α and 25◦ ≤ ψi < 180◦

for β/PII. This results in a total number of 25 = 32 possible conformational states for

the whole peptide. (Note that, due to this exponential scaling, direct clustering is only

feasible for small systems, while the linearly scaling k-means algorithm can be employed

to truly many-dimensional systems such as proteins.) The population probabilities and

metastabilities of these 32 states were calculated from the trajectory and are listed in the

two last columns of Table 3.1.

Regarding the direct clustering calculations as full-dimensional reference results, we

find that k-means clustering on the reduced dPCA energy landscape nicely reproduces

the population probabilities of all conformational states. This is also true for the mixed

α/β states in k-means, whose subpopulations can be determined by visual inspection

(data not shown). It is important to note that the latter analysis is not possible, if less

than five principal components are used. Furthermore, we find a good agreement for the

metastabilities of both methods, although the metastability of the k-means clusters are

typically a few percent higher. The latter is most likely due to the simple definition of

states used in the direct clustering. As a consequence, the “direct” barriers are consistently

≈ 10 % lower as the k-means barriers (data not shown). The latter findings, however,

represent mostly the shortcomings of the two simple clustering schemes, which could

be improved by invoking advanced kinetic clustering techniques as recently suggested in

Refs. [6] and [71].

Taking together the cluster analysis presented in Table 3.1, the distribution of the PCs

displayed in Fig. 3.4, and their fluctuations and time scales shown in Fig. 3.5, it has been

demonstrated that the 5D dPCA energy landscape is a suitable and accurate representa-

tion of the full-dimensional landscape of Ala7. That is, by using only five dimensions, we

correctly account for all populations and metastabilities of the conformational states as

well as for all slow motions of the system. In a second step, this reduced-dimensionality

representation may be employed to schematically illustrate the main features (states,

barriers, connectivities, energy basins, etc.) of the biomolecular system, see Sec. 3.6.

Furthermore, the free energy surface can be used to perform (equilibrium or nonequilib-
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rium) simulations of the molecular dynamics using the Langevin approach [62, 63, 65] or

a nonlinear dynamic model [36].

3.5 Markovian modeling

In order to describe the conformational dynamics of the system, one might wonder whether

an explicit simulation in a five-dimensional coordinate space is even necessary or if it is

sufficient to resort to a much simpler master equation modeling using the above described

conformational states and their transition matrix T(τ). The latter is correct if the dy-

namics is Markovian, that is, if the Chapman-Kolmogorov property

P(nτ) = P(0)T(nτ) = P(0)Tn(τ) (3.8)

holds, where P(t) = (P1(t), . . . , P23(t)) comprises the time-dependent population proba-

bilities of the conformational states. To check this condition, we used the discrete state

space as obtained by the k-means clustering with 23 states as listed in Table 3.1.
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Figure 3.8: Master equation results for the decay of (A) the most stable state 1 and (B)
the least stable state 23, assuming lag times nτ = 1, 10, 100, 500, and 1000 ps (from left
to right). The size of the statistical error is similar to the line width of the plots.
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Choosing the most stable state 1 and the least stable state 23 as representative exam-

ples, Fig. 3.8 shows the master equation results for the decay of these two states assuming

that (A) P1(0) = 1 and (B) P23(0) = 1, respectively. In contrast to condition (3.8), this

decay depends significantly on the chosen lag time nτ = 1, 10, 100, 500, and 1000 ps.

Only for lag times longer than several hundreds of picoseconds the Chapman-Kolmogorov

property is found to hold at least approximately. We note that memory times of 100-3000

ps are also expected from the decay of the PC autocorrelation functions shown in Fig.

3.5(B).

To study if lag times & 100 ps are suited to describe the conformational dynamics

of Ala7, we estimate the life times of the conformational states directly from the MD

simulation. Assuming an exponential waiting time distribution, we estimate mean life

times of ≈ 20 ps for states 22 and 23, while the most stable states 1, 7, and 10 live

for about 70 ps. That is, for our choice of discrete state space a Markov model of the

conformational dynamics of Ala7 is hardly appropriate, since the minimal lag time to as-

sure Markovian dynamics considerably exceeds the life times of the conformational states.

Although relatively long correlation times seem ubiquitous in biomolecular simulations,

this finding is of course not general but depends on the specific choice of discrete state

space as well as on the molecular system under consideration. For example, Chodera et

al. found a suitable time scale separation for the alanine dipeptide and the α-helical Fs

peptide, whereas the trpzip2 hairpin defied a Markovian treatment [6].

3.6 Visualization of the free energy landscape

A part of the reason that most authors focus on one- and two-dimensional energy land-

scapes lies in the problem of visualizing ∆G(q) in higher dimensions. Adopting the above

established five-dimensional free energy landscape of Ala7, in the following we discuss

several options to do so. As shown in Fig. 3.4, a straightforward way is to consider

two-dimensional cuts of the full-dimensional energy landscape. By color coding various

conformational states of interest (panels D-G), it is seen that k-means clustering nicely

reveals the correlation of the free energy minima in the respective representations. As an

example, consider state 11 which is clearly separated from the other states in the (V1, V2)

representation, while it overlaps with states 4 and 10 in (V3, V4), and partly overlaps with
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other states in (V5, V6). By including all necessary five dimension for the description of the

free energy landscape, we take all these correlations into account, e.g., when we evaluate

the distances between the clusters during a k-means run.

For illustrative purposes, nevertheless, one often wants to restrict the representation

of the full-dimensional energy landscape to two dimensions (2D). A simple way to do so

is to plot the energy landscape ∆G(V1, V2) along the first two components. Calculating

the geometric centers of all clusters and connecting all clusters that make transitions to

each other with transition probability Tij > 0.1%, Fig. 3.9(A) shows that the arrows

mostly connect neighboring states. That is, kinetically well separated clusters are also

geometrically distinct in the first two PCs of the dPCA.

As the distances of the cluster centers in (V1, V2) subspace do not reflect the true

distances in full-dimensional space, one may ask for a representation that yields the best

possible approximation of these distances in 2D. Here we use “best possible” in the sense

that we aim at finding the plane, on which the distances obtained through the projection

of the cluster centers deviates minimally from the original distances. This is obtained by a

PCA on the cluster centers (sometimes referred to as principal coordinate analysis [18,76])

and subsequent projection on its first two eigenvectors. (We note that, in general, the

latter are different from the first two eigenvectors of the whole data set [13, 76].) Figure

3.9 reveals that the distances in the resulting 2D representation (panel B) may differ from

the distances in the (V1, V2) subspace (panel A).

For clarity, furthermore, Fig. 3.9(B) only displays arrows between clusters i and j,

if their transition probability Tij > 1.5%. While most transitions again occur between

geometrically close clusters, there are also geometrically close clusters which only show

very infrequent transitions, e.g., clusters 2 and 14 or 11 and 14. From Table 3.1 we learn

that those states are actually quite distinct as they differ in the conformations of several

amino acids. Their geometrical similarity therefore represents an artifact of the projection

on only two dimensions in the principal coordinate plot. Nevertheless, the transitions are

correctly represented, as they were calculated from the clusters in five dimensions. In

particular, this visualization clearly separates the all-α state 10 from the all-extended

conformations (states 1 and its neighbors).

As a popular alternative, one may construct a free energy disconnectivity graph [10,
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73, 74] of the conformational states of Ala7 (see Sec. 3.2). As shown in Fig. 3.9(C),

the disconnectivity graph directly displays the connectivity and the barriers between all

states. Dividing up the energy landscape in six “basins”, this representation readily reveals

the hierarchy of the states. Moreover, we find many similarities with the 2D principal

coordinate representation in panel (B). For example, the large geometric and kinetic

separation of clusters 10 and 20 from all other states in the principal coordinate plot

shows up as the highest barrier separation in the disconnectivity graph. Furthermore,

the directed arrows point from states 2, 3, and 6 to state 1 but not vice versa. This

corresponds to the fact that these states share the same basin and that the free energy

A

B

C

Figure 3.9: Visualization of the free energy landscape of Ala7. Shown are (A) a two-
dimensional cut ∆G(V1, V2) along the first two components including transitions with
transition probability Tij > 0.1% between cluster centers, (B) a two-dimensional prin-
cipal coordinate representation where only transitions with probability Tij > 1.5% are
indicated (using a line width that is proportional to Tij), and (C) a disconnectivity graph
of the system.
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barrier to state 1 is almost one kcal/mol lower than from state 1 to the other states. As

another example, we find that state 14 has its own basin in the disconnectivity graph,

which is reflected by the absence of an edge with any other state in the principal coordinate

plot.

3.7 Conclusions

We have outlined a systematic approach to construct a low-dimensional free energy land-

scape from a classical MD simulation. For this purpose, we have employed the dPCA. The

dimensionality of the free energy landscape (i.e., the minimal number of PCs along which

the energy is considered) results from the condition that the energy landscape reproduces

the correct number, energy, and location of the system’s metastable states and barriers.

Restricting the analysis to a one- and two-dimensional energy surface may completely ob-

scure the true connectivity of the conformational states (Fig. 3.1) and result in spurious

barriers that can be smaller or larger than in full dimensionality (Fig. 3.2).

We have studied several criteria to determine the minimal number of PCs or number

of “essential” components. As a simple rule, it is clear that all PCs with multi-peaked

distributions need to be taken into account (Fig. 3.4). This is because the various peaks

correspond to distinct metastable conformational states, while unimodal distributions in-

trastate fluctuations. The number of essential components is also reflected by their overall

fluctuations and the distribution of time scales as shown by their autocorrelation func-

tions (Fig. 3.5). Employing these criteria, it has been found that a five-dimensional dPCA

energy landscape is a suitable and accurate representation of the full-dimensional land-

scape of Ala7. In particular, we have performed various clusterings on the 5D landscape

(Fig. 3.6) and obtained approximately the same metastable states and barriers as for a

clustering of the full-dimensional surface (Table 3.1).

The resulting free energy landscape may be employed for interpretative purposes to

schematically illustrate the main conformational states, barriers, and reaction pathways

of a biomolecular system. With this end in mind, we have studied several approaches to

visualize energy landscapes. Considering various two-dimensional cuts, we have shown

that a color coding of k-means clusters nicely reveals the correlation of the free energy

minima in the various representations (Fig. 3.4). To restrict the visualization of the energy



66 CHAPTER 3. FREE ENERGY LANDSCAPE

landscape to two dimensions, we have considered a principal coordinate analysis [i.e., a

PCA on the cluster centers in (V1, V2)] which yields the best possible 2D approximation of

the distances in full-dimensional space (Fig. 3.9). Connecting all clusters that make tran-

sitions to each other, this representation also facilitates a simple scheme of the transition

network of the system. We have found that mostly neighboring states are connected, i.e.,

kinetically well separated clusters are also geometrically distinct in the first two principal

components of the dPCA. The transition network of the principal coordinate analysis

yields in many aspects similar information as a free energy disconnectivity graph, which

directly displays the connectivity and the barriers between all states and also reveals the

energy basins of the system.

The ultimate goal of this work is to construct a model of the dynamics in reduced

dimensionality [33–36, 62, 63, 65]. If the process under consideration can be described by

a Markov chain of metastable states, this effort is obsolete since a suitable clustering

combined with a simple master equation provides the complete information of the time

evolution of the system. In many biomolecular systems, however, the underlying assump-

tion of a time scale separation between fast intrastate and slow interstate transitions may

break down. As seen in the following chapters, in these cases, the dPCA energy land-

scape combined with, e.g., a Langevin simulation may facilitate a detailed investigation

of biomolecular dynamics in low dimensions.



Chapter 4

Dynamics Simulations

In this chapter we will be concerned with the modeling of the dynamics of molecular

dynamics (MD) simulations using methods from nonlinear time series analysis. We start

with elaborating the necessary concepts of dynamical systems and time series analysis.

Conducting a proof of principle, demonstrating that it is possible to first decompose the

dynamics from an MD simulation in a relevant and an irrelevant part and then describe

simpler models in reduced dimensionality, we aim at answering the question: How “com-

plex” is the dynamics of peptide folding? Therefore we make use of the well-established

concept of the complexity of a dynamic system in the theory of nonlinear dynamics. It

is often associated with the fact that the “effective dimension” of the system [77], that

is, the dimension of the subspace a trajectory ~x(t) ∈ R
n will occupy in the course of its

time evolution ~̇x(t) = ~f(~x(t)), can be much smaller than n, the dimension the problem

is formulated in. This dimensionality reduction is caused by nonlinear couplings which

give rise to cooperative or synchronization effects and consequently reduce the effective

number of degrees of freedom. In the case of MD simulations hard constraints such as

covalent bonds and softer constraints such as intramolecular hydrogen bonds restrict the

motion of the atoms, thus reducing the dimensionality.

The decomposition into “system” and “bath” variables is a crucial step before mod-

eling the dynamics because it should ensure a time scale separation of these variables.

The system variables should contain all slow large-amplitude motions of the molecule

and hence represent conformational transitions while the bath variables only account for

high-frequency oscillations which trigger the transitions. In this chapter we will apply

67
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a deterministic model to describe the dynamics of peptide folding for various alanine

chains. The significance of the concept becomes apparent in the case of a dissipative

chaotic system, whose effective dimension typically is a noninteger number. Apart from

its conceptional value, the effective dimension of a dynamic system is of practical inter-

est since it may be calculated from measured or simulated data, e.g., by estimating the

correlation dimension [78] or the Lyapunov exponents from which the Kaplan-Yorke di-

mension [79] might be obtained. While the dimension of the free energy landscape of the

alanine peptides increases with system size, a Lyapunov analysis shows that the effective

dimension of the dynamic system is rather small and even decreases with chain length.

The observed reduction of phase space is a nonlinear cooperative effect that is caused by

intramolecular hydrogen bonds that stabilize the secondary structure of the peptides.

In section 4.3 we will introduce another approach to describe the dynamics of peptide

folding by a mixed deterministic and stochastic model. The method is based on the local

estimation of the drift and diffusion Langevin vector fields.

4.1 Dynamical systems and time series analysis

In this section we want to provide the basic concepts of dynamical systems and time series

analysis which we need for the interpretation and modeling of MD simulations. For more

in-depth discussions of this broad subject see e.g. the books [80–83].

A continuous-time dynamical system is given by a set of ordinary differential equations

~̇x(t) = ~f(~x(t), t), (4.1)

together with an initial condition ~x(0) = x0 ∈ R
d.

As the data from MD trajectories is output at certain time-steps only (e.g. every

1 ps), we obtain a time series which is discrete in time. Henceforward we will restrict

ourselves to discrete-time dynamical systems. For discrete-time dynamical system the

time evolution is determined by a map

~xn+1 = ~f(~xn). (4.2)

A dynamical system is called nonlinear if ~f is a nonlinear function. The space R
d is
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referred to as the phase space. The sequence x0, x1, x2, . . . obtained by iteration of (4.2)

is called orbit or trajectory.

We distinguish between conservative or Hamiltonian dynamical systems and dissipa-

tive dynamical systems. A conservative system is volume preserving in the sense that the

volume of an arbitrary volume element of phase space is preserved when it is evolved in

time. This is equivalent to

| det D~f(~x)| = 1 (4.3)

for all ~x, where D~f is the Jacobian matrix of partial derivatives of ~f . If in some region

| det D~f(~x)| 6= 1, (4.4)

then the system is called dissipative, and a small phase space volume either shrinks or

expands. Consider the one-dimensional case where |f ′(x)| < 1. Then, for a point y in a

small neighborhood of x it holds

f(y) ≈ f(x) + f ′(x)(y − x), (4.5)

which implies

|f(y) − f(x)| ≈ |f ′(x)||y − x| (4.6)

< |y − x|, (4.7)

and hence the distance of x and y decreases after one iteration of the map f . It is typical

for a dissipative system that many trajectories (depending on the initial condition x0) are

attracted by one or several certain subsets of phase space, that is, the trajectories come

arbitrarily close and never leave a so called attractor for large enough times.

An attractor can simply be a stable fixed point of ~f , for example, where the vicinity of

the fixed point contracts in all directions. But often attractors reveal a much more com-

plicated geometrical structure. They might even be fractals, a set showing self-similarity

on arbitrary length scales, having noninteger dimension. An attractor is called chaotic if

~f displays exponentially sensitive dependence on initial conditions, that is, the distance

between to nearby points on the attractor grows exponentially fast with time when the
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dynamical system is evolved. Chaotic attractors are often fractals.
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Figure 4.1: Orbits of the 2x modulo 1 map for initial conditions x0 = 0.10 (full line) and
x0 = 0.11 (dashed line).

As an example for the sensitive dependence on initial conditions in one dimension we

consider the 2x modulo 1 map [83]

xn+1 = 2xn modulo 1. (4.8)

Fig. 4.1 shows two trajectories of the map which initially deviate by 10−2. After only

six iterations the difference between the orbits is almost 0.4 which is forty (!) times as

much. Hence also small error in the initial conditions grows at a large rate rendering the

exact long-term prediction impossible for computer simulations (since numbers are only

stored up to a certain accuracy). For a chaotic attractor, this rate of divergence of nearby

trajectories can be measured by the Lyapunov exponents. They are defined as

hi = lim
N→∞

1

N
ln |λi(DfN(~x0))|, i = 1, . . . , d, (4.9)

where the λi’s are the eigenvalues of the matrix

DfN(~x0) = D~f(~xN−1) · D~f(~xN−2) · . . . · D~f(~x0). (4.10)

The existence of (at least one) positive Lyapunov exponents implies exponentially sensitive
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dependence on initial conditions and thus chaotic behavior of the dynamical system. They

correspond to expanding directions in phase space, whereas negative exponents correspond

to contracting directions.

Using (4.9) and (4.10), we derive the Lyapunov exponent of the 2x modulo 1 map as

follows,

h = lim
N→∞

1

N
ln |f ′(xN−1) · . . . · f ′(x0)| (4.11)

= lim
N→∞

1

N
ln(2N) (4.12)

= ln 2. (4.13)

As a rule, the Lyapunov exponent h is the average of the separation rate of an initial

difference

|xN − yN | ≈ exp(hn)|x0 − y0|. (4.14)

Thus, in the above example with h = ln 2 we can expect an error 2Nε after N iterations,

if ε was the initial error.

To determine the complexity of an attractor, which is often a fractal if the attractor

is chaotic, various dimension measures can be defined. Besides the topological dimension,

the information dimension, and the box-counting dimension, we want to point out the

Kaplan-Yorke or Lyapunov dimension [79]. It is defined as follows:

dKY = k +
1

|hk+1|

k
∑

i=1

hi, (4.15)

where k is the number of Lyapunov exponents such that (if they are ordered decreasingly)

the sum of the first k exponents is still positive or zero, whereas the sum of the first k +1

exponents is already negative. Loosely speaking, the definition of the leading term k in

dKY assures that the phase-space expanding (hi > 0) directions just counterbalance the

phase-space contracting (hi < 0) directions, thus warranting an overall invariant phase-

space volume, and thus an invariant set which is the attractor.

In experiments one cannot always or one does not want to measure all the components

of the phase space vector ~x(t). Usually only one (or a few) component of a function of
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~x(t) is available,

g(t) = G(~x(t)) ∈ R. (4.16)

The aim of delay or phase space reconstruction is to convert these observations into state

vectors to obtain phase space information on the geometry of the attractor. To allow for

the reconstruction of the deterministic system from the projection given by (4.16), one

might use delay coordinates. Therefore, the m-dimensional embedding vector

~y(t) = (g(t), g(t − ∆t), g(t − 2∆t), . . . , g(t − (m − 1)∆t)) (4.17)

is formed, where ∆t is called the lag or delay time [84]. Provided that the embedding

dimension m is large enough the attractor formed by ~y(t) has a qualitatively similar

structure as the unknown attractor formed by the original trajectory ~x(t). This can be

motivated by noting that ~y(t) actually can be seen as a function of ~x(t),

~y(t) = ~H(~x(t)), (4.18)

as g(t − n∆t) = G(~x(t − n∆t)), and ~x(t − n∆t) can be regarded as a function of ~x(t) by

integrating Eq. (4.1) backwards in time by an amount n∆t. Under very general conditions

H is well-defined and provides a one-to-one image between the two trajectories. For

example, Lyapunov exponents do not change under this coordinate transformation, and

hence it is feasible to calculate them from the embedded dynamics. If the dimension m

of the embedding is too small, the mapping of ~x(t) to ~y(t) can produce self-intersections

of ~y(t). This would violate the uniqueness of the orbit of a dynamical system. F. Takens

could show in [84] that if m is larger than twice the box counting dimension, this is

sufficient to avoid such effects. Note that this result is irrespective of the chosen lag time

∆t for the embedding, but strictly valid only for perfectly noise-free data. In practice,

when data is contaminated with noise, it is rather difficult to obtain good estimates of

the lag time. Choosing a too large lag time, successive elements of the embedding vector

will be almost independent (see Fig. 4.2A), and will give almost no further information

than the single dimension. On the other hand a too small lag time will result in a strong

correlation and similarity between successive elements as seen in Fig. 4.2B. Hence, unless

m is very large, the deterministic structures of the dynamical system may become hard
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A B

Figure 4.2: Exemplary delay embedding for the first dPCA mode of Ala7. In (A) the
delay time is 1 ns and in (B) ∆t = 1 ps.

to distinguish. Here, visual inspection can help finding a reasonable lag time for the

embedding.

4.2 How complex is peptide folding?

In this section, we now wish to apply the concept of dimensionality to the interpretation

of classical MD simulations [85]. While MD simulations describe biomolecular processes

such as folding and molecular recognition in atomic detail (i.e., 3N -6 coordinates for

an N -atomic system), it is clear that the many geometrical constraints of the molecule

(e.g., covalent and hydrogen bonds) result in a considerable reduction of the effective

number of degrees of freedom. As detailed in the previous chapters, in practice, the

structural dynamics of biomolecules is often described in terms of the molecule’s free

energy landscape, which is represented as a function of empirically introduced reaction

coordinates. As already thoroughly studied in the course of this thesis, alternatively, one

may employ a principal component analysis of the trajectory. While these coordinates

in some sense represent the essential dynamics of the system [16], in general it is not

clear how to determine the effective dimension of a biomolecular MD simulation, since

there always is some ambiguity in the choice of the reaction coordinates. As a first

attempt to assess the complexity of a biomolecular system, in this work we (i) perform

MD simulations of various peptide systems and extract time series that account for their

structural dynamics, (ii) construct a deterministic model of the dynamics using methods

from nonlinear time series analysis, and (iii) perform a Lyapunov analysis to calculate
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their effective dimension.

φ
ψ

Figure 4.3: MD snapshots of (left) an extended conformation of Ala3 showing the cen-
tral backbone dihedral angles φ and ψ, and (right) the αR helix conformation of Ala10

indicating the stabilizing n−(n+4) hydrogen bonds.

As molecular systems we have chosen the alanine peptides Alan with n = 3, 5, 7 and

10 in aqueous solution (see Fig. 4.3), for which 100 ns MD simulations at 300 K were per-

formed using the GROMACS program suite [50], the GROMOS96 force field 43a1 [51],

and the SPC water model [52] (for details see appendix 6.4). Unlike to proteins, these

systems are too small to adopt a stable native structure, but exhibit reversible folding

and unfolding of their secondary structure. Since this large amplitude motion results

in a strong mixing of internal and global motion (while only the internal motion is of

interest), we choose internal coordinates to describe the peptide structure, i.e., their

(φk, ψk) backbone dihedral angles (k = 2, . . . , n−1), see Fig. 4.3. To circumvent problems

associated with the fact that angles are circular variables we employ the dPCA proce-

dure as detailed in Chap. 2, i.e. the angles are mapped onto a Cartesian-like space via

x4k = cos φk, x4k−1 = sin φk, x4k−2 = cos ψk, and x4k−3 = sin ψk, resulting in 4(n − 2)

variables [25,37]. To remove linear correlations, a PC analysis of the MD trajectory ~x(t) is

performed, yielding the PCA eigenvectors ~ui and the corresponding PCs vi(t) = ~x(t) · ~ui,

which serve as a time series for the subsequent analysis.

As a first example, Fig. 4.4 shows the time series vi(t), the distributions P (vi), and the

autocorrelation functions Ci(t) obtained for the first two PCs of the Ala3 system. Both
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Figure 4.4: Time series vi(t), distributions P (vi), and autocorrelation functions Ci(t)
obtained for the first two principal components of the Ala3 system. The solid black lines
represent the results of the MD simulation, the dashed red lines correspond to results
from the nonlinear model of the dynamics.

distributions exhibit multiple peaks which correspond to different conformational states

of the peptide. For the first component, the peak at v1 ≈ −1.7 reflects the right-handed

helix conformation αR, while the peak at v1 ≈ 0.2 reflects extended conformations of

the peptide (see Fig. 4.3). Invoking the second PC, the latter can be decomposed in the

poly-L-proline II (PII) conformation and the fully extended (β) conformation [46]. The
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transitions between these states occur on a 200 ps (αR ↔ β) and 20 ps (PII ↔ β) time

scale, respectively. While the three conformational states of Ala3 can be described using

only two PCs, the situation is more involved for the longer peptides. For the Ala10 system,

for example, Fig. 4.5 shows that the distributions of the first two PCs are characterized

by a prominent double peak corresponding to an αR-type folded state (see Fig. 4.3), and

a large range of extended and intermediate states corresponding to unfolded structures of

the peptide. To discriminate these states, in total eight PCs are required. An analysis of

the time evolution of the first PC reveals collective conformational transitions, accounting

for the reversible folding and unfolding of the secondary structure of the peptide.

Performing a PC analysis of a MD trajectory, only the distribution of the first, say

dEL, PCs exhibit multiple peaks, while the remaining distributions P (vi) with i > dEL

are single-peaked and approach a Gaussian shape with increasing i [16]. That is, the

distributions P (vi) with i > dEL describe the fluctuations of the peptide within a spe-

cific conformational state, while the distributions with i ≤ dEL define these conforma-

tion states. Hence dEL can be considered as the dimension of the free energy landscape

∆G({vi}) ∝ − ln P ({vi}), because ∆G shows nontrivial structure only along the first dEL

PCs. As listed in Table 4.1, dEL increases with system size, i.e., from 2 for Ala3 to 8 for

Ala10.

It should be emphasized, however, that the energy landscape dimension dEL is concep-

tionally different from the effective dimension of the dynamics in phase space. In principle,

the latter can be obtained directly from a Lyapunov analysis of the MD trajectory [86].

In practice, though, the ubiquitous noise on the data prevents an accurate calculation of

the Lyapunov exponents, which account for the sensitivity of the trajectory with respect

to infinitesimal small deviations of its initial conditions. To overcome this problem, we

employ the methods of nonlinear time series analysis [80] and construct a deterministic

model of the dynamics which reproduces the main features of the MD data, but at a much

better signal to noise ratio.

With this end in mind, we assume that the dynamics of the system that produces the

the time series ~v(t) can be expressed by the Langevin equation

~̇v(t) = ~f(~v(t)) + ~η(t). (4.19)
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Figure 4.5: Same as in Fig. 4.4, but for the Ala10 system.

Here ~f describes the deterministic part of the dynamics, while ~η denotes a stochastic

driving term which represents the fluctuations of all degrees of freedom we want to ig-

nore, including, e. g., high-frequency bond oscillations, the motion of the solvent, and

the realization of the external heat bath. In order to obtain a simple model for the

deterministic part ~f of the dynamics, the following steps are taken. First, we restrict

the analysis to the first dEL PCs, thus disregarding all components accounting for simple

Gaussian fluctuations. Since only the deterministic part is subject of the dimensionality
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reduction (the noise term ~η(t) by definition explores all directions of phase space), we also

neglect the stochastic driving in Eq. (4.19). This is realized by applying a simple noise

reduction scheme, i.e., the Savitzky-Golay or least-squares filter [87] to the resulting tra-

jectory ~v(t) ∈ R
dEL . The filter is applied to each dimension separately. To understand the

Savitzky-Golay filter consider a single data point, e.g. v1(tj), which we want to replace

by some kind of local average (in time) of surrounding data points. Taking a window

of n data points earlier than tj and n data points later than it, we obtain a window of

length 2n + 1. The idea of the noise reduction filter is to approximate the data within

the window by a polynomial of typically quadratic or quartic order. This is realized by

least-squares fitting a polynomial to the 2n + 1 data points in the window, and then

replacing the point v1(tj) by the value of the polynomial at point tj. In Fig. 4.6 we see
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Figure 4.6: Time series of the MD simulation along V1 of a dPCA for Ala7 (full line),
together with its noise reduced time series after application of the Savitzky-Golay filter
(dashed line).

10 ns of MD simulation of Ala7 along the first principal component of a dPCA together

with the filtered data, using a window of 100 ps length and polynomials of quartic order

for the Savitzky-Golay noise reduction scheme. The noisy data is clearly smoothed while

the conformational transitions are still correctly reproduced. The third and final step is

to construct a state space in which the trajectory ~v(t) shows a deterministic behavior.

Since ~v(t) represents a projection of the original phase space (that explicitly includes the

positions and momenta of all atoms of the system), in general we can not expect that the

dimension dEL of the trajectory is sufficient for this purpose. To account for a possibly
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higher-dimensional phase space, we use an extension of the Takens embedding [84] and

embed the first (and most important) PC until this component is reconstructed suffi-

ciently well. Adding the remaining dEL − 1 components and using a time delay ∆t, the

resulting embedding vector at time step tj reads

~vj ≡ ( v1(tj) , v1(tj−∆t), . . . , v1(tj−(m−1)∆t),

v2(tj) , v3(tj), . . . , vdEL
(tj))

T , (4.20)

where m denotes the embedding dimension of the first PC, resulting in a dimension

dRS = dEL + m − 1 for the reconstructed state space. For all systems considered, m = 9

and ∆t from 0.2 ps (Ala3) to 4 ps (Ala10) were used.

Knowing the state space, we are now in a position to fit a deterministic nonlinear

model to the data. Following Farmer and Sidorowich [88], we employ a locally linear

model defined by the map

~vj+1 = Aj~vj +~bj, (4.21)

where Aj is a dRS × dRS matrix. Locally linear means that, given the vector ~vj at time

tj, the subsequent vector ~vj+1 at time tj+1 is obtained in linear approximation from Eq.

(4.21). The model parameters Aj and ~bj are obtained by a least squares fit which only

uses the spatial neighbors of ~vj [80, 89]. As a consequence, the model parameters need

to be calculated for every time step of the model trajectory. To validate the model,

we again consider the distributions and autocorrelation functions of the first two PC

of Ala3 (Fig. 4.4) and Ala10 (Fig. 4.5) and compare the modeled data to the results

obtained from the MD simulations. Reproducing the time scales of the dynamics as well

as the conformational distribution in almost all details, the model accounts nicely for the

essential features of the MD data.

Let us now turn to the Lyapunov exponents λi, (i = 1, . . . , dRS) of the peptide dy-

namics, which are calculated through the Jacobian matrix Aj of the map (4.21). For

all systems considered, we found two positive exponents λ1 and λ2, which quantify the

chaoticity of the dynamics in phase space. We first consider the Kolmogorov-Sinai entropy

hKS, which is given by the sum of the positive Lyapunov exponents [80]. It’s reciprocal

value τKS = 1/hKS is an estimate for the time span the evolution of the trajectory can be
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Ala3 Ala5 Ala7 Ala10

dEL 2 3 6 8
dKY 5.0 4.7 4.9 3.3
nHB - 0.03 0.6 2.4

τKS [ps] 3.8 3.7 5.9 8.0

Table 4.1: Comparison of dEL, the dimension of the energy landscape, and dKY, the
effective dimension of the dynamics, as obtained for various alanine peptides. Also shown
are nHB, the average number of αR-type i − (i + 4)-intramolecular hydrogen bonds, and
τKS, the reciprocal value of the Kolmogorov-Sinai entropy.

forecasted. As shown in Table 4.1, this picosecond time scale increases with system size,

thus indicating that the structural dynamics of the larger peptides is less chaotic than the

dynamics exhibited by the smaller systems.

To estimate the effective dimension dKY from the Lyapunov exponents, we employ the

Kaplan-Yorke conjecture [79] as given by Eq. (4.15). Table 4.1 lists the resulting values

of the effective dimension dKY obtained for Ala3 through Ala10. Ranging from ≈ 3 to

5, the dimensions appear to be quite small, considering that it accounts for the motion

of thousands of atoms. Most intriguing, though, is the fact that the effective dimension

decreases with system size, from 5 for Ala3 to 3.3 for Ala10. This is in striking contrast to

the behavior of the energy landscape dimension dEL which –as expected– increases with

chain length.

To explain this finding, detailed analyses of the all-atom MD trajectories were per-

formed, which revealed that the effect is caused by intramolecular interactions that sta-

bilize the secondary structure of the peptide. Most importantly, this is achieved by in-

tramolecular hydrogen bonds connecting the ith and (i + 4)th residues of the amino acid

chain, thus stabilizing the αR helix structure (see Fig. 4.3). As shown in Table 4.1 as well

as in Fig. 4.7, the average number of these hydrogen bonds increases significantly, once

the number of possible αR-type bonds reaches three for Ala7. Remarkably, the forma-

tion of stabilizing hydrogen bonds seems to significantly reduce the effective dimension,

although these bonds are not stable but formed and broken on a nanosecond time scale.

It is interesting to note that this decrease of the effective dimension is not observed

for the energy landscape dimension dEL. Apparently, this is because the latter quantity

is defined in the linear framework of PC analysis theory, whereas the effective dimension
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Figure 4.7: Number of hydrogen bonds connecting the ith and (i + j)th residues of the
alanine chains averaged over all snapshots of the respective trajectories.

dKY is obtained from a nonlinear description of the dynamics. In a similar vain, other

nonlinear methods for the analysis of biomolecular dynamics have been proposed that

are sensitive to nonlinear correlations and therefore may reduce the dimensionality of

the problem [33,34]. The effect of nonlinear dimensionality reduction is supposedly even

more important for the folding of larger peptides and proteins, which exploit a variety of

stabilizing interactions and exhibit significant cooperativity [90].

4.3 Multidimensional Langevin modeling

In the deterministic approach described in the last section we have eliminated the influence

of the bath variables by using a noise reduction scheme. By doing so, we obtained a

deterministic model which allowed for calculating e.g. Lyapunov exponents and hence

the estimation of the effective dimension. The more general approach is to first rewrite

the general multidimensional Langevin equation (4.19) as

~̇v(t) = ~f(~v(t)) + D(~v(t))~ε(t), (4.22)
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where we replaced the stochastic driving ~η(t) by the diffusion operator D(~v(t)) which

contains all spatial and temporal dependencies of the driving and a Gaussian-distributed

white noise process ~ε(t) which has variance σ. The goal of the Langevin approach is to

estimate drift and diffusion from the MD data. R. Hegger et al. showed [66] that under

very weak assumptions one can locally obtain the vector fields ~f and D of the discretized

version of (4.22)

∆~vn = ~vn+1 − ~vn = ~f(~vn) + D(~vn)~εn, (4.23)

by the local average and covariance matrix of the position difference ∆~vn. That is

~f(~vn) = 〈∆~vn〉 (4.24)

σ2D(~vn)DT (~vn) = 〈∆~vn∆~vT
n 〉 − 〈∆~vn〉〈∆~vT

n 〉, (4.25)

where the average 〈·〉 is taken over spatial neighbors of the point ~vn. This method has been

implemented and tested by R. Hegger et al. and showed promising results for the modeling

of the dynamics on the free energy landscapes for Ala3 and Ala7. The distributions

and the autocorrelation functions of all the principal components (serving as reaction

coordinates) as well as the lifetimes of metastable states have been correctly reproduced by

the Langevin model. The approach can be used for obtaining a continuous trajectory from

many short replica exchange MD simulations as it uses only pairs of adjacent trajectory

points for the estimation of the drift and diffusion. Also nonequilibrium simulations can be

easily conducted. One can e.g. restart several trajectories from the same nonequilibrium

point and study relaxation times. We will use it in the following chapter when we model

the dynamics of a variant of the villin headpiece subdomain.

4.4 Conclusions

After having presented the basic concepts of dynamical systems and nonlinear time series

analysis, we presented a deterministic model for the dynamics of short alanine chains.

This allowed for calculating the “effective dimension” of the systems. A Lyapunov anal-

ysis revealed that, while the dimensionality of the free energy landscape increases with

system size, the effective dimension of the dynamic system remains rather small and even
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decreases with chain length. This effect was shown to be caused by intramolecular hydro-

gen bonds causing a nonlinear cooperative effect. We also presented a mixed deterministic

and stochastic computational approach to describe the conformational dynamics in re-

duced dimensionality. This method was based on the local estimation of the drift and

diffusion vector fields of a general Langevin equation for the dynamics. While the work

presented here is only a first step towards a nonlinear analysis of MD data, it may open

ways to address the larger problem of describing folding processes. For example, we wish

to study if the folding of various structural motifs such as αR-helices and β-sheets results

in distinguishable properties of the corresponding dynamical model. Another next step

is to go beyond the locally linear ansatz and construct analytical models of the dynam-

ics. Such analytical models would contain a set of parameters which presumably depend

on, e.g., experimental conditions, amino-acid sequence, and folding motifs. The study of

this parameter dependence could then shed some light on the still elusive mechanism of

folding.
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Chapter 5

Applications to larger systems - an

outlook

So far we have developed statistical and dynamical methods for the construction, interpre-

tation, and modeling of the free energy landscape of relatively small peptides. Analyzing

these relatively well-understood systems put us in a position to extensively test our meth-

ods. For example, in Sec. 3.4 of Chap. 3 we assessed the quality of the free energy

landscape of Ala7 in reduced dimension with respect to the full-dimensional landscape.

Serving as a reference, a direct clustering of the full-dimensional dihedral angle space was

only feasible or reasonable because of the small system size.

Figure 5.1: Experimental crystal structure of the 35 residue variant of the villin headpiece
subdomain (HP-35 NleNle). The backbone is colored from red at the N terminus to blue
at the C terminus.
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In this chapter we want to analyze molecular dynamics simulations generated by the

world-wide distributed computing project Folding@home [3]. Every user of a personal

computer can download a client software that utilizes unused computer power to perform

the simulations in the background or via a screen saver. In this way Folding@home

became the world’s most powerful distributed computing cluster according to Guinness

World Records.

In April 2008 molecular dynamics trajectories of a villin variant, as described in [4],

became available for download [91]. The variant of the villin headpiece subdomain (HP-

35 NleNle) is the fastest-folding protein yet discovered, folding on a time scale of 1 µs.

Its native state is shown in Fig. 5.1. Using Folding@home, despite the large system-size

of about 10,000 atoms, hundreds of all-atom, explicit solvent MD simulations of the 35

residue subdomain could be performed, each on a time scale comparable to experimental

folding time, resulting in a total simulation time of almost half a millisecond.

In the following we will perform Cartesian PCA and dihedral angle PCA on the villin

trajectories. Applying our methods to a much larger system than before, we point out the

differences and similarities. Thereafter we construct a multidimensional Langevin model

for the dynamics of the system from which we can estimate folding times that we compare

to the folding times obtained by Ensign et al. [4].

5.1 Free energy landscapes for the villin system

The many hundreds of trajectories of the villin project are organized in 2 projects, one

starting from 9 different unfolded conformations (PROJ3036) and one starting from the

experimental structure (PROJ3037). The trajectories starting from structure k, are found

in RUNk. Each RUN contains up to 100 continuous trajectories with maximum length of

2 µs each.

We start our analysis using the first 5 trajectories (CLONE0-CLONE4) of the unfolded

conformation 0 (RUN0, see Fig. 5.2) of PROJ3036. Therefore we simply concatenate

the 5 trajectories resulting in approximately 9 µs of simulation time. First we perform

a dPCA on the 66 backbone dihedral angles {φ2, ψ2, . . . , φ34, ψ34}. The resulting free

energy landscape ∆G(V1, V2) is presented in Fig. 5.3A. We clearly distinguish several

free energy minima on the 2D projected landscape. We note that until the 10th PCs we
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4

97

0

Figure 5.2: Starting structures for RUNs 0,4,7,9 the 35 residue variant of the villin head-
piece subdomain (HP-35 NleNle).

A B C

Figure 5.3: Free energy landscapes of the villin headpiece subdomain as obtained from the
first 5 trajectories of RUN0. (A) shows the results along the first two principal components
obtained from a dPCA. (B) and (C) display the landscape obtained by a Cartesian PCA
using the starting and the native conformation as reference structure for the least-squares
fit, respectively.

obtain clearly multipeaked distributions, i.e. structural information in the free energy

surface. Interestingly, a Cartesian PCA on the Cα atoms (Fig.5.3B and C) reveals several

minima on the landscape as well. This finding clearly differs from the case for short

alanine chains were the free energy landscapes obtained by Cartesian PCA appeared to

be smooth and unstructured. This was shown to be caused by a mixing of internal and
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overall motion. Here, for the villin system also the reference structure seems not to make

a qualitative difference, as the landscape obtained by fitting the trajectory to the unfolded

state has a comparable amount of structure when fitting to the native state. Noting that

the trajectory of CLONE1 was the only one of this set that folded from unfolded structure

0 (V1 ≈ −1.3, V2 ≈ 0.6 in (A)) to a native-like conformation (V1 ≈ −3.6, V2 ≈ −3.6 in

(A)) we move on to analyzing the full data set of the many hundreds of trajectories all at

once.

A B C

Figure 5.4: Free energy landscapes of the villin headpiece subdomain as obtained from (A)
all trajectories of PROJ3036 (≈ 400µs), (B) 5 trajectories (CLONE0-CLONE4, ≈ 9µs)
starting from the unfolded conformation 0, and (C) 10 trajectories (CLONE0-CLONE9,
≈ 15µs) starting from conformation 4. All landscapes are visualized along the same first
two principal components as obtained from a dPCA on all the trajectories of PROJ3036.

We performed a dPCA on all the trajectories from PROJ3036 which consists of almost

400 µs of simulation. The free energy landscape ∆G(V1, V2) in Fig. 5.4A exhibits one

clear minimum corresponding to native-like structures, while the rest of the landscape

seems to be quite structureless at a first glance. In the full data set the population of

native-like states at V1 ≈ −6 is very high compared to a single unfolded conformation.

This is one reason why it is hard to distinguish structure in the unfolded part of the

landscape. Excluding the native state from the landscape the remaining part still looks

quite smeared out (data not shown). Does this suggest that the unfolded part of the

free energy landscape for the villin system is unstructured or even random? Projecting

only a small number of trajectories onto this landscape in 5.4B we see that actually

the landscape is quite structured. As already mentioned above only one of the 5 latter

trajectories samples the native state, hence the native state is not as much populated
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as when taking the whole set of trajectories into consideration. Thus, the landscape is

not dominated by the native structure and free energy minima can be distinguished in

the unfolded region. Also the first 10 trajectories starting from structure 4 (CLONE0-

CLONE9 of RUN4) reveal even more peaks on the landscape as can be seen in 5.4C.

We can conclude two things. The first observation is somewhat trivial. The dominant

native structure renders it almost impossible to distinguish structure in the unfolded

region of the free energy landscape. The second result is that taking more and more

trajectories into account which were simulated starting from different structures, the

2D representation of the free energy landscape ∆G(V1, V2) kind of fills up with energy

minima which lie geometrically close in this representation, resulting in a landscape which

looks smeared out. Along other modes Vk the free energy landscape doesn’t look more

structured either (data not shown). It can well be that even though in the full dimensional

sin/cos space (2*66 angles = 132 dimensions) the free energy minima can be clearly

distinguished from each other, on every 2D projection of the landscape the minima come

together giving this smeared out picture. This effect did not occur in the case of the

shorter alanine peptide chains. But there, there were not as many conformational states

as there seem to be for the villin system. Even if every amino acid is only treated as a

two-state system being either in the α- or the β/PII-region, we already have 233 ≈ 1010

theoretically possible conformations. To compare, we distinguished 32 conformational

states for the heptaalanine system. It still remains a challenge for future work to classify

the conformational diversity of the villin system.

5.2 Langevin dynamics for the villin system

We now wish to model the dynamics for the villin system using the multidimensional

Langevin model as described in section 4.3 in Chap. 4. To obtain a model we restrict

ourselves to a subset of trajectories as it would be computationally too costly to estimate

the drift and diffusion vector fields from the whole data set. In order to sample well the

phase space we choose one trajectory for every starting structure, that is, CLONE0 of

all 10 RUNs of PROJ3036 and CLONE0 from PROJ3037, and concatenate them as seen

in Fig. 5.5. Note that, as the Langevin model does not require a continuous trajectory,

this is a feasible approach. When concatenating trajectories we mark the last point of
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Figure 5.5: Time evolution of 11 concatenated trajectories along V1 as obtained by a
dPCA of all 11 trajectories. Each trajectory corresponds to a simulation time of . 2 µs.
The first trajectory of RUN0 (PROJ3037) is followed by the first trajectories of RUNk,
k = 0, . . . , 9 (PROJ3036), respectively. The numbering given in the upper row of the
figure is according to the starting structure k. Native-like structures correspond to a
value of V1 ≈ −5.5.

each trajectory in order not to use it for the estimation of the drift and diffusion, as

these points undergo false transitions originating only from the concatenation. We can

observe that trajectories which reach native-like structures tend to stay there as far as

one can tell from the maximum continuous simulation time of 2 µs. This is the case for

the trajectories from RUNs 0 (PROJ3037),2,4,7,9. This is in agreement with the fact that

the trajectories of PROJ3037 show a stable behavior staying close to the native structure.

Using the 11 trajectories we now wish to find the parameters for our dynamic model.

Therefore we need to determine the embedding vector with its dimension m and an

appropriate delay time ∆t, as well as the number of spatial neighbors k for the estimation

of the drift and diffusion fields. We tried out various embeddings in order to find a suitable

model. For example, we used an 8-dimensional embedding vector where we embed the first

dPCA component 5 times with lag time ∆t = 50 ps and then add the next 3 components,

i.e.

~vj ≡ (v1(tj), . . . , v1(tj−4∆t), v2(tj), v3(tj), v4(tj)) . (5.1)

The evolution of the resulting Langevin dynamics using k = 5 neighbors for the local

estimations of the drift and diffusion fields can be seen in 5.6A. This model cannot be

appropriate as it frequently leaves the native state and makes transitions to the unfolded
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Figure 5.6: Time evolution of the first principal component using a Langevin simulation
of the villin headpiece. (A) was generated using a 5D model, while for (B) the dynamics
was modeled in 14 dimensions. Native-like structures correspond to a value of V1 ≈ −5.5.

part of the free energy landscape. A truthful model should tend to stay in the native

state once it is reached. Using the first 10 modes of the dPCA, which are all multipeaked

modes, we embed the first 5 modes in 2 dimensions, respectively, with a much larger lag

time of 500 ps. We then add the modes 6-10 to the embedding vector. From 5.6B we

see that the resulting Langevin model with k = 50 after folding to the native state stays

there for all the simulation time of 20 µs. Thus, the necessary condition for a good model

is fulfilled.

Now we want to apply this model to estimate folding times from a reduced data

set. Therefore we used the first ten trajectories of RUNs 4, 7, and 9, respectively. For

these three different starting we calculated the dPCA free energy landscape, and ran

1000 Langevin simulations for each starting structures with the above derived model.

We stopped a Langevin run when it reached a native-like state which we determined by

the free energy minimum on the respective landscape which corresponds to the native

structure. In such a way we obtained the distribution of folding times as presented in Fig.

5.7. The mean of the folding times are 450 ns, 100 ns, and 1.1 µs for structures 4, 7, and

9, respectively.

Let us compare our results to the time scales found by Ensign et al. [4] which were

calculated by analyzing all trajectories (instead of only 10) from the respective RUN.

They estimate folding times of structures 4 and 7 to be 746 ns and 417 ns, respectively.

For structure 9 the timescale was estimated to be of the order of 5 µs. Note, that our
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Figure 5.7: Distribution of relaxation times to native-like structures from unfolded struc-
tures 4 (450 ns), 7 (100 ns), and 9 (1.1 µs). The mean of the distribution is given in
brackets. For every starting structure the distribution was calculated from 1000 Langevin
simulations which were stopped when reaching a native-like state.

folding times qualitatively reproduce the reference results. Nevertheless, in comparison,

our approach underestimates the folding time for structure 4 by about a factor of 2, and

for structures 7 and 9 by a factor of 4-5. This can have various explanations. One reason

is that we stopped the Langevin RUNs if the folded state was not reached after 5 µs.

Although relatively few trajectories did not fold within this time, by doing so, the real

lifetimes are a little underestimated by the mean given above. This effect is larger for

RUN9 where the folding time is longer than for the other RUNs. Now recall that we

used as a necessary condition for a good model (embedding dimension, lag time, number

of neighbors) that the trajectories stay close to the native structure once they reach it.

Our experience in running Langevin simulations is that when using a too low-dimensional

embedding the lifetimes of the states can be considerably underestimated [66]. So it

may well be that the 14-dimensional embedding vector we chose for modeling the folding

process is still of too small dimension. Another possible explanations can be that we used

only 10 trajectories for each RUN as input for our Langevin modeling, whereas the folding

times estimated from the MD by Ensign et al. used all (up to 100) simulations.
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5.3 Outlook

In this chapter we have detailed the first application of the methods developed in this thesis

to such a large system with hundreds of microseconds of MD simulation available from

the Folding@home project. In contrast to the case of smaller peptides that we analyzed

so far, besides the free energy landscape as obtained by dPCA the landscape as obtained

by Cartesian PCA seems to be structured as well. In order to give more quantitative

results more detailed analyses in that respect are needed. As the 2D representations of

the free energy landscapes seem to fill up the more simulations one takes into account,

this could indicate the existence of a very large number of conformational states in the

case of the villin headpiece. One would need to cluster the landscape in a way such that a

manageable number of clusters is obtained, yet providing enough detailed information on

the processes one is interested to study. We here only made the distinction between the

unfolded structures 0-9, and native-like states in order to study folding times. Therefore

a Langevin simulations of the folding process showed very promising first results. This is

only a first step towards modeling the villin dynamics by means of nonlinear time series

analysis.

In future works, one should verify whether one Langevin model is appropriate for the

description of the simulations from all different RUNs. Therefore one could derive a model

for each RUN separately that well-reproduces the folding times as estimated from the

MD trajectories, and then see whether the models are similar. More than 10 trajectories

should be taken into account, or at least it should be shown that the model one obtains by

resticting oneself to a subset of trajectories is appropriate. An additional careful k-means

analysis together with a transition a matrix analysis using ideas as presented in Chap.

3 will help to gain deeper insight in the structure of the free energy landscape and the

dynamics on it.
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Chapter 6

Appendix

6.1 Transformation of probability densities

In this section we derive the probability densities for the random variables cos ϕ and sin ϕ,

given the density for the angular variable

ρ(ϕ) =
1

2π
(1 − cos 4ϕ), ϕ ∈ [−180◦, 180◦]. (6.1)

We first need to consider the density (6.1) in the interval [−180◦, 0◦] in order to ensure

invertibility of the cosine function, obtaining

ρ(ϕ) =
1

π
(1 − cos 4ϕ), ϕ ∈ [−180◦, 0◦] (6.2)

by rescaling the original ρ by a factor of 2 in order to fulfill the condition
∫ 180◦

0◦
ρ(ϕ)dϕ = 1

of a probability density. Note that for obtaining the correct probability density for x =

cos ϕ in the interval [−1, 1] of the cosine, we need to add up the contribution of (6.1) in

[−180◦, 0◦] and [0◦, 180◦], which is consistent with our approach to consider the doubled

density in only one of the intervals (see Fig. 2.2B).

Now, in [−180◦, 0◦], we have

ϕ = − arccos x, x ∈ [−1, 1]. (6.3)
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Hence we find by substitution

∫ 180◦

0◦
ρ(ϕ)dϕ =

∫ 1

−1

ρ(− arccos x)
1√

1 − x2
dx. (6.4)

Finally, we obtain for the probability density h(x) of x = cos ϕ

h(x) = ρ(− arccos x)
1√

1 − x2

=
1

π
(1 − cos(4 arccos x))

1√
1 − x2

=
1

π
√

1 − x2

(

1 − cos2(2 arccos x) + sin2(2 arccos x)
)

=
1

π
√

1 − x2
2 sin2(2 arccos x)

=
2

π
√

1 − x2
(2 cos(arccos x) sin(arccos x))2

=
8

π
√

1 − x2
sin2(arccos x)x2

=
8

π
√

1 − x2

(

1 − cos2(arccos x)
)

x2

=
8(1 − x2)x2

π
√

1 − x2

=
8x2

√
1 − x2

π
(6.5)

Analogously, one derives the probability density for sinϕ.

Alternatively, we could have derived Eq. (6.5) from the two-dimensional density (2.25)

ρ(x, y) = 4
π
x2y2δ(x2 + y2 − 1) by integrating over y from −1 to 1. We originally had a

problem with this approach, which we make clear with the following example. When

integrating the uniform density ρ(ϕ) = 1
2π

over the unit circle in 2D, that is,

∫ 1

−1

∫ 1

−1

1

2π
δ(x2 + y2 − 1)dydx, (6.6)

using the substitution z := x2 + y2 − 1, we obtain 0.5 instead of 1. This is due to the use

of this Delta function to describe the unit circle. Thus, when using it, one has to rescale

the two-dimensional density by a factor of 2 to obtain the correct result.
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6.2 Complex dPCA vs. dPCA

The purpose of this section is to discuss the relations of the principal components (2.39)

and the eigenvalues (2.40) between the sin/cos and the complex dPCA, respectively. To

this end, we first establish a correspondence between the covariance matrices of the two

formulations. Using Euler’s formula, we express the matrix elements of the covariance

matrix (2.36) as

Cmn = 〈(eiϕm − 〈eiϕm〉)(e−iϕn − 〈e−iϕm〉)〉

= cov(cos ϕm, cos ϕn) + cov(sin ϕm, sin ϕn)

−i cov(cos ϕm, sin ϕn) + i cov(sin ϕm, cos ϕn), (6.7)

where cov(a, b) = 〈ab〉 − 〈a〉〈b〉. Without loss of generality (since the generalization is

straightforward), we restrict ourselves in the following to the case of two angles (N = 2).

Using Eq. (6.7) and the definition (2.28) of σ together with (2.31), it is easy to see that

one can transform the sin/cos covariance matrix σ into the complex covariance matrix C

according to

TσT † = C, (6.8)

where

T =

(

1 −i 0 0

0 0 1 −i

)

. (6.9)

Let us next derive Eqs. (2.39) and (2.40) for the limiting case of two uncorrelated angle

variables. The resulting covariance matrix of the sin/cos dPCA exhibits a block-diagonal

structure with 2× 2 blocks A and B. Assuming that (x1, x2)
T is an eigenvector of A with

eigenvalue λ1, then, due to orthogonality, (−x2, x1)
T is an eigenvector of A, too. Let its

eigenvalue be λ2. Analogously, let (x3, x4)
T and (−x4, x3)

T be the eigenvectors of B with

eigenvalues λ3 and λ4. It follows that

v(1) = (x1, x2, 0, 0)T , v(2) = (−x2, x1, 0, 0)T ,

v(3) = (0, 0, x3, x4)
T , v(4) = (0, 0,−x4, x3)

T (6.10)

are eigenvectors of σ with eigenvalues λ1, . . . , λ4. Using Eq. (6.8), it is now straightforward
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to verify that the eigenvectors w(n) of the complex dPCA can be defined as follows

Cw(1) := C (x1 − ix2, 0)T = (λ1 + λ2)w
(1) =: µ1w

(1),

Cw(2) := C (0, x3 − ix4)
T = (λ3 + λ4)w

(2) =: µ2w
(2), (6.11)

which reveals the simple relation (2.40) between the eigenvalues λk of the sin/cos dPCA

and the eigenvalues µn of the complex dPCA. By comparing the principal components

Wn = w(n)Tz (n = 1, 2) and Vk = v(k) · q (k = 1, . . . , 4), we finally obtain the equality

(2.39) of the principal components of the two formulations

Re W1 = V1, Im W1 = V2,

Re W2 = V3, Im W2 = V4. (6.12)

We note that the above definition of the principal components Wn is not equivalent to the

projection w(n) · z given by a Hermitian inner product. However, the appealingly simple

relation (2.39) between the principal components of the two dPCA methods only holds

when the Wn are defined that way.

While a 2× 2 block-diagonal structure of the sin/cos covariance matrix σ represents a

sufficient condition, it is certainly not a necessary requirement to yield relations (2.39) and

(2.40). In the case of trialanine, where the latter equations were satisfied to high accuracy

(see Fig. 2.5), the covariance matrix σ was indeed approximately block-diagonal. On the

other hand, our second example Ala10 also satisfied the equalities quite well (see Fig. 2.9),

although σ revealed only little block-diagonal structure. Finally, we found cases where

the correspondence holds for covariance matrices that are not block-diagonal at all. For

example, it can be shown that two completely correlated angle variables (say, ϕ1 and

ϕ2 = ϕ1+ const.) result in dPCA covariance matrices that satisfy Eqs. (2.39) and (2.40).

6.3 Integrating out Gaussian-distributed degrees of

freedom

We wish to reduce a high-dimensional energy surface to a lower dimensional one by

integrating out coordinates which only exhibit a single minimum and therefore do not
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describe conformational transitions. The question arises if the barriers of the landscape are

reproduced correctly when the lower dimensional surface is considered. As an illustrative

example, we consider the two-dimensional model

E(x, y) = V (x) +
1

2
ω(x)y2 + c(x)y, (6.13)

consisting of a general potential V (x) coupled via c(x)y to a harmonic potential 1
2
ω(x)y2,

where V (x), c(x), and ω(x) are general functions of coordinate x. This corresponds to

the case that the probability distribution along coordinate y is a Gaussian. Since

∂E

∂y
= ω(x)y + c(x) = 0 → ye = −c(x)/ω(x), (6.14)

the one-dimensional function

Ee(x) = E(x, y = ye) = V (x) − c2(x)/2ω(x) (6.15)

connects all extrema of the two-dimensional surface. The reduced free energy landscape

(N = const.)

G(x) = −kT ln N

∫ ∞

−∞

dy e−βE(x,y)

= V (x) − kT ln N

∫ ∞

−∞

dy e−β[ 1
2
ω(x)y2+c(x)y]

= V (x) − c2(x)/2ω(x) + const. (6.16)

is apart from a constant equivalent to Ee(x) and therefore reproduces correctly all barriers

and other extremal points of the free energy landscape.

6.4 Molecular dynamics simulation details

All MD simulations of the polyalanine chains were generated using the GROMACS pro-

gram suite [92]. What all simulations have in common is that the respective peptide was

solvated in a box of simple point charge (SPC) water [52], keeping a minimum distance

of 10 Å between the solute and each face of the box. The equation of motion was in-

tegrated by using a leapfrog algorithm with a time step of 2 fs. Covalent bond lengths
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were constrained by the procedure SHAKE [93] with a relative geometric tolerance of

0.0001. We employed a particle-mesh Ewald treatment for the long-range electrostatics

with a real-space cutoff of 1.2 nm, a grid of 0.12 nm, spline interpolation of order four,

and direct sum tolerance of 10−5. The Lennard-Jones interactions were cut off at 1.2 nm

without using shift or switch functions. The nonbonded interaction pair-list was updated

every 5 fs. The solute and solvent were separately weakly coupled to external temperature

baths at 300 K. [94] The temperature coupling constant was 0.1 ps. The total system was

weakly coupled to an external pressure bath at 1 atm using a coupling constant of 0.5 ps.

Ala3: For the trialanine simulation as introduced in Sec. 2.5 we used the GRO-

MOS96 force field 43A1 [95] to perform a 100 ns MD simulation. The final system

contained 2914 atoms within a cubic box of dimension 25 Å. The coordinates were

saved every 0.5 ps for analysis. For the analysis of the dihedral angles, throughout

the thesis we only used the two dihedral angles φ2, ψ2. The data can be found in

/data /MD ANA/ALA3 Aleko /phipsi.dat. As we needed to observe the fast interstate

dynamics between the α, β, and PII configurations for the nonlinear modeling in Chap.

4, we also ran a simulation were we saved the data every 0.2 ps. This simulation is saved

in /data /MD ANA/ALA3 Aleko 0.2ps.

Ala5: The details for the 100 ns pentalanine simulation used in Sec. 2.9 are given in

Mu et al. [25].

Ala7: The GROMOS force field 45A3 [95] was used in the simulations of Ala7 in the

zwitterionic state. The final system contained 3775 atoms within a cubic box of dimension

37 Å. Starting with an extended configuration of heptaalanine, the system was minimized

using the conjugate gradient method, followed by followed by 50 ps of MD simulation at

300 K and constant pressure at 1 atm.

We ran two simulations for the heptaalanine system. The first one has length 600 ns,

and the second one is ≈ 200 ns long (191.2 ns to be exact). The data were saved every 0.1

ps, but the timestep used in this thesis is 1 ps. In Sec. 2.9 we used the 200 ns simulation for

the comparison between the landscapes as obtained by dPCA and the Cartesian PCAs,

respectively. As the THESEUS fit required a too high amount of memory, we used a

larger timestep of 20 ps, thus only around 10,000 data points for the analysis as presented

in Fig. 2.11. Henceforward, from Sec. 2.9 we used the concatenation between the two
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trajectories (the 600 ns one is followed by the 200 ns trajectory), thus obtaining an

800 ns simulation. The reason for concatenating these was that the 600 ns very rarely

sampled the all-α configuration, whereas the 200 ns one did well-sample that region. One

should be aware of the discontinuity or false transition after 600 ns when modeling the

data or, more importantly, when calculating autocorrelation functions. We calculated the

autocorrelation functions for the two parts of the 800 ns simulation separately, and then

averaged the function values. The dihedral angles {φ2, ψ2, . . . , φ6, ψ6} for the concatenated

trajectory can be found in /data /MD ANA/ALA7 /ala7 phipsi 1ps.dat.

Ala10: For the decaalanine simulation as introduced in Sec. 2.8 we used the GRO-

MOS96 force field 43A1 [95] to perform a ≈ 300 ns (more exact, 309.5 ns) MD simulation.

The final system contained 9073 atoms within an octahedral box of dimension given by

the vector (46, 47, 40) Å.

The coordinates were saved every 0.2 ps for analysis and can be found in

/data /MD ANA/ALA10 dihedral angle more.dat. We used a timestep of 0.4 ps for our

analyses.

Villin headpiece subdomain: The details for the Folding@home simulations of the

villin headpiece subdomain HP-35 NleNle are given in Chap. 5, Ref. [4], and references

therein.

6.5 Source code in R

In this section we provide implementations of the most important PCA and cluster-

ing methods we presented in this thesis. The code is written in the R program pack-

age [96] using the circular statistics library [97]. This is exemplary code for heptaalanine

which can easily be adjusted for other peptides. The input file contains the 10 angles

{φ2, ψ2, . . . , φ6, ψ6}.

Method 1: Source code for performing dPCA.

rm(list=ls())

mem.limits(2000000000)
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a<-read.table("/data/aleko/CL_PAPER/ala7_phi2-psi6_10ps.dat")

a<-a/180*pi

nangles<-length(a[1,])

npoints<-length(a[,1])

#cos/sin transformation of angles

y<-matrix(nrow=npoints,ncol=2*nangles);

for (i in seq(1,2*nangles,2)) {

y[,i]<-cos(a[,(i+1)/2]);

y[,i+1]<-sin(a[,(i+1)/2]);

}

s<-svd(cov(y)) #diagonalize covariance matrix

V<-y %*% s$u #projection on eigenvectors

#write out dPCA modes

write.table(round(V,5),"ala7_phi2-psi6_10ps.dpca",row.names=F,col.names=F)

¥

Method 2: Source code for performing a PCA directly on the dihedral angles which are

shifted in order to minimize the points at the periodic boundaries as described in section

2.10.

rm(list=ls())

mem.limits(2000000000)

a<-read.table("/data/aleko/CL_PAPER/ala7_phi2-psi6_10ps.dat")

nangles<-length(a[1,])

npoints<-length(a[,1])
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#shift angles such that minimum density is on the periodic boundaries

for (i in 1:nangles) {

hista<-hist(a[,i],breaks=50,plot=F)

#position of minimum density

minpos<-hista$mids[hista$counts==min(hista$counts)][1]

a[,i][a[,i]>minpos]<-a[,i][a[,i]>minpos]-360

}

s<-svd(cov(a)) #diagonalize covariance matrix

V<-as.matrix(a) %*% s$u #projection on eigenvectors

#write out PCA modes

write.table(round(V,5),"~/ala7_phi2-psi6_10ps.apca",row.n=F,col.n=F)

¥

Method 3: This is an implementation of the clustering method using the circular variance

to determine the number of clusters as proposed in section 3.4. The output is a table

similar to Table 3.1.

rm(list=ls())

mem.limits(2000000000)

library(circular)

x<-read.table("/data/aleko/CL_PAPER/ala7_phi2-psi6_10ps.dpca")

a<-read.table("/data/aleko/CL_PAPER/ala7_phi2-psi6_10ps.dat")

acirc<-as.circular(a,units="degrees")

nangles<-length(a[1,])
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npoints<-length(a[,1])

ndim<-5 #dimensions used for clustering

nseeds<-2 #number of independent k-means runs

cutoff<-0.2 #threshold for circular variance

clfrac<-0.9 #fraction of good clusters

ncluster<-20 #number of clusters to start with

maxcluster<-30 #upper limit for cluster number

cstep<-1 #step to increase cluster number

tstep<-1 #lag for transition matrix

trackcl<-matrix(nrow=ceiling((maxcluster-ncluster)/cstep)+1,ncol=2)

count<-1

ok<-FALSE

#perform clustering

while(ok==FALSE) {

print(ncluster)

goodcl<-0

vmatrix<-matrix(nrow=ncluster,ncol=nangles)

cl<-kmeans(x[,1:ndim],ncluster,nstart=nseeds,iter.max=40)

for (k in 1:ncluster)

for (l in 1:nangles)

vmatrix[k,l]<-var.circular(subset(acirc,cl$cluster==k)[,l])

for (i in 1:ncluster)

if (mean(vmatrix[i,])<cutoff) goodcl=goodcl+1
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trackcl[count,1]<-ncluster

trackcl[count,2]<-goodcl/ncluster

count<-count+1

if (goodcl/ncluster>clfrac || ncluster>=maxcluster)

ok<-TRUE

else ncluster<-ncluster+cstep

}

round(trackcl,2) #show number of clusters and fraction of good clusters

#calculate transition matrix

tcount <- array(0,c(ncluster,ncluster))

tmatrix <- array(0,c(ncluster,ncluster))

for (n in 1:(length(cl$cluster)-tstep)) {

i<-cl$cluster[n]

j<-cl$cluster[n+tstep]

tcount[i,j] <- tcount[i,j]+1

}

for (n in 1:ncluster)

tmatrix[n,]<-tcount[n,]/sum(tcount[n,])

#calculate circular averages

amatrix<-matrix(nrow=ncluster,ncol=nangles)

for (k in 1:ncluster)

for (l in 1:nangles)

amatrix[k,l]<-mean.circular(subset(acirc,cl$cluster==k)[,l])

#Calculate table with sequence, population and metastability of clusters
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#"1": alpha, "2": beta/PII, "3": circular variance of psi angle too large

seqmatrix<-matrix(nrow=ncluster,ncol=7)

for (i in 1:ncluster) {

seqmatrix[i,6]=round(cl$size[i]/npoints*100,1)

seqmatrix[i,7]=round(tmatrix[i,i]*100,0)

for (j in 1:5) {

if (vmatrix[i,2*j]<cutoff) {

if (amatrix[i,2*j]<25) seqmatrix[i,j]=1

else seqmatrix[i,j]=2

}

else seqmatrix[i,j]=NA

}

}

#show table ordered by population of clusters

seqmatrix<-seqmatrix[sort(cl$size,index.return=T,decreasing=T)$ix,]

seqmatrix

¥
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Zusammenfassung

Das Ziel der vorliegenden Arbeit ist es, einen Beitrag zur Entwicklung von Methoden

zur Modellierung von freien Energieflächen von Biomolekülen zu leisten. Ausgehend von

Molekulardynamik-Simulationen geht es insbesondere darum, niedrig-dimensionale Mod-

elle für die Beschreibung von Konformationen und der Kinetik von Peptiden und kleinen

Proteinen zu erhalten.

Molekulardynamik-Simulationen haben sich als gängige und leistungsstarke Methode

zur Modellierung der Struktur, Dynamik und Funktion von Biomolekülen auf atomistis-

cher Ebene etabliert. In den letzten Jahren hat sich die Rechenleistung von Comput-

ern so weit entwickelt, dass Simulationen von kleinen Peptiden auf einer Zeitskala von

Mikrosekunden heutzutage kein Problem mehr darstellen. Mit Hilfe von Projekten wie

Folding@home, welche die benötigte Rechenleistung weltweit auf möglichst viele Rech-

ner verteilen, ist es mittlerweile sogar möglich, die Faltung von kleinen Proteinen im

Mikrosekunden und Sub-Mikrosekundenbereich zu simulieren.

Molekulardynamik-Simulationen erzeugen allerdings riesige Datenmengen (3M Koor-

dinaten bei M Atomen für jeden Zeitschritt), die analysiert werden müssen. Es ist daher

von großer Bedeutung, Methoden zur Verfügung zu haben, um diese Daten zu handhaben

und die entscheidenden Informationen herauszufiltern. Beispielsweise ist man daran in-

teressiert, die freie Energiefläche eines Moleküls als Funktion von einigen wenigen, aber

wichtigen, Koordinaten auszudrücken. Diese Reaktionskoordinaten sollen die wesentliche

Physik hinter den betrachteten biomolekularen Prozessen beschreiben können. Beliebte

Wahlen hierfür sind die Zahl nativer Kontakte, der Gyrationsradius und die mittlere

quadratische Abweichung des Moleküls von seiner nativen Struktur. In letzter Zeit hat die

resultierende freie Energiefläche das Verständnis von Proteinfaltung sehr vorangetrieben.

Ursprünglich ist diese Fläche jedoch ein sehr hoch-dimensionales und kompliziertes Ob-

119



120 BIBLIOGRAPHY

jekt mit einer Vielzahl von freien Energie-Minima. Daher ist es unerlässlich, gute Reak-

tionskoordinaten zu finden, um brauchbare niedrig-dimensionale Modelle für die freie

Energiefläche und der sich auf ihr abspielenden konformationellen Dynamik zu erhalten.

Um ein System in einen wichtigen (niedrig-dimensionalen) und einen belanglosen Teil zu

zerlegen, hat sich als Methode die Hauptkomponentenanalyse (principal component anal-

ysis, PCA) als äußerst hilfreich bewährt. Ein Vorteil der Verwendung von PCA-Moden als

Reaktionskoordinaten gegenüber der oben genannten Möglichkeiten ist, dass es prinzip-

iell möglich ist, durch einfache Hinzunahme von mehr Moden alle interessierenden Größen

mit der erwünschten Genauigkeit anzunähern.

Als sehr beliebte Methode, um die Dimensionalität eines komplexen Systems zu re-

duzieren, wird die PCA häufig auf kartesische Koordinaten angewendet. Es wurde gezeigt,

dass ein Großteil der Fluktuationen des Systems durch einige wenige Hauptkomponen-

ten beschrieben werden kann. Diese Hauptkomponenten können direkt mit Konforma-

tionsänderungen des betrachteten Moleküls in Zusammenhang gebracht werden und somit

als Reaktionskoordinaten für die freie Energiefläche dienen. Das Problem bei der Verwen-

dung von kartesischen Koordinaten ist, dass es eine große Herausforderung sein kann,

die interessante interne Bewegung, welche Konformationsänderungen entspricht, von der

globalen Gesamtbewegung zu trennen. Mu et al. [25] zeigten, dass aufgrund dieser

Schwierigkeit eine PCA auf kartesischen Koordinaten nicht die korrekte freie Energiefläche

für das Peptid Pentaalanin liefert. Um Probleme dieser Art zu vermeiden, wurden in der

Literatur einige Hauptkomponentenanalysen vorgeschlagen, die mit internen Koordinaten

arbeiten. Für Moleküle ist die Verwendung von Torsionswinkeln naheliegend, da andere

interne Koordinaten wie Bindungslängen oder Bindungswinkel sich normalerweise bei Fal-

tungsprozessen nicht so stark verändern. Aufgrund der Periodizität von Winkeln ist es

jedoch nicht trivial, eine PCA auf solche Koordinaten anzuwenden. Beispielsweise können

Mittelwerte von Winkeln nicht ohne Weiteres wie bei kartesischen Koordinaten als arith-

metisches Mittel gebildet werden, was sich ebenfalls auf die Berechnung von Korrelationen

auswirkt.

In dieser Arbeit verwenden wir als Beispiele, um unsere Methoden zu entwickeln und

zu testen, hauptsächlich Molekulardynamik-Simulationen von kurzen Poly-Alanin-Ketten.

Aufgrund ihrer Größe ist es uns möglich gewesen, hinreichend lange Simulationen als Aus-
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gangspunkt zu erhalten. Diese Systeme sind aufgrund der Anzahl ihrer Konformationen

überschaubar, jedoch nicht trivial, denn sie besitzen wegen ihrer Beweglichkeit eine sehr

schnelle Konformationsdynamik. Diese Bausteine von größeren Systemen genau zu verste-

hen ist von erheblicher Bedeutung, um Erkenntnisse über den Prozess der Proteinfaltung

zu gewinnen. Aber auch größere Systeme wie das 36 Aminosäuren lange Kopfstück des

Villin-Proteins werden betrachtet. Hunderte von Molekulardynamik-Trajektorien wurden

hierzu durch das Projekt Folding@home bereitgestellt.

Nach einer einführenden Einleitung erarbeiten wir uns im zweiten Kapitel dieser Ar-

beit ein tiefes Verständnis verschiedener PCA-Methoden, um von Molekulardynamik-

Simulationen erzeugte Konformationen in niedrig-dimensionale Räume zu projizieren. Der

Schwerpunkt liegt hierbei auf der genauen theoretischen Beschreibung der Dihedral An-

gle Principal Component Analysis (dPCA). Die dPCA verwendet als interne Koordinaten

den Sinus und den Kosinus der phi/psi-Winkel des Peptid- bzw. Protein-Rückgrats. Die

Auswirkungen dieser nichtlinearen Transformation, welche mit einer Verdopplung von

N phi/psi-Winkelkoordinaten auf 2N kartesische Koordinaten einhergeht, wird sorgfältig

behandelt. Hierfür benutzen wir Konzepte aus der zirkulären Statistik. Wir zeigen,

dass diese Transformation die Winkelverteilungen originalgetreu abbildet ohne beispiel-

sweise künstliche freie Energieminima zu erzeugen. Ausserdem zeigen wir, dass die

dPCA-Moden, ähnlich wie im kartesischen Fall, in direkten Zusammenhang mit Kon-

formationsänderungen gebracht werden können. Eine alternative Version der dPCA im

komplexen Zahlenraum liefert weitere Erkenntnisse über die Zusammenhänge der 2N Vari-

ablen der sin/cos-dPCA. Wie wir ausführen, kann man damit N Winkelkoordinaten durch

N komplexe Variablen beschreiben, was von Vorteil für die physikalische Interpretation

der PCA-Moden sein kann. Dies wird am Beispiel einer 300 ns langen Molekulardynamik-

Simulation von Decaalanin erläutert. Es folgt ein Vergleich der dPCA mit kartesischen

PCA-Varianten und es wird gezeigt, dass eine kartesische PCA, außer für das konforma-

tionell triviale Trialanin, für alle betrachteten Poly-Alanin-Ketten die falsche freie En-

ergiefläche liefert.

Es mag die Frage aufkommen, ob in der Praxis eine Verdopplung der Variablen, wie

sie durch die Sinus/Kosinus-Transformation in der dPCA zustande kommt, überhaupt

notwendig ist oder ob man direkt auf den Winkeln arbeiten kann ohne die Periodizität
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explizit zu behandeln. Wir zeigen daher im Vergleich zu solch einer direkten Methode,

dass für die von uns studierten Fälle die dPCA die detailliertesten freien Energieflächen

liefert. Kapitel 2 schließt mit einer Korrelationsanalyse der Torsionwinkel von Hep-

taalanin, welche in Zusammenhang mit Ergebnissen aus der Literatur gebracht wird,

und einigen Bemerkungen zu nichtlinearen PCA-Methoden ab.

Aufbauend auf den vorangegangenen Resultaten erarbeiten wir in Kapitel 3 eine sys-

tematische Vorgehensweise, um freie Energieflächen mit Hilfe der dPCA zu erhalten

und zu charakterisieren. Einleitend zeigen wir, welche Probleme mit zu stark verein-

fachten, d.h. zu niedrig-dimensionalen, Darstellungen der freien Energiefläche einher

gehen können. Es wird versucht, die notwendige Anzahl der dPCA-Moden zu bestim-

men, um einen gegebenen biomolekularen Prozess mit Hilfe der resultierenden freien

Energiefläche korrekt beschreiben zu können. Dazu fordern wir, dass zumindest die

Anzahl, die Lage und die Energie der metastabilen Zustände sowie die Energiebarri-

eren richtig wiedergegeben werden. Diese notwendige Dimensionalität kann durch die

Verteilungs- und Autokorrelationsfunktionen der dPCA-Moden bestimmt werden. An-

hand der Molekulardynamik einer 800 ns langen Trajektorie von Heptaalanin zeigen wir,

dass eine 5-dimensionale dPCA-Energiefläche eine angemessen exakte Beschreibung der

genauen hoch-dimensionalen freien Energiefläche darstellt. Zur Charakterisierung dieser

Flächen verwenden wir geometrische und kinetische Clustering-Verfahren. Wir stellen

dabei fest, dass, zumindest mit unserer Charakterisierung der Zustände, eine Markov’sche

Modellierung der Dynamik nicht in Frage kommt. Dies führt uns, nach Untersuchung ver-

schiedener Visualisierungen der freien Energiefläche, zu Kapitel 4.

Das letztendliche Ziel dieser Arbeit ist es, niedrig-dimensionale Modelle für die Dy-

namik auf der freien Energiefläche auszuarbeiten. Wir verwenden hierzu moderne Konzepte

der nichtlinearen Dynamik und Methoden der nichtlinearen Zeitreihenanalyse. Für die

Poly-Alanin-Ketten modellieren wir die Dynamik zunächst mit einem deterministischen,

lokal linearen Modell. Diese Auffassung der Faltungsprozesse als dynamisches System

im mathematischen Sinne ermöglicht eine Betrachtung der Komplexität ihrer Dynamik.

Besipielsweise errechnen wir die effektive Dimension (Kaplan-Yorke Dimension), die wir

mit der Dimension der freien Energieflächen vergleichen. Interessanterweise nimmt die

effektive Dimension bei ansteigender Systemgröße (Länge der Polypeptid-Kette) tenden-
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ziell ab, wenngleich die Dimension der freien Energieflächen zunimmt. Dies deutet auf

eine niedrigere Komplexität der Trajektorien für größere Systeme hin, welche durch die

ansteigende Anzahl von Wasserstoffbrücken erklärt wird. Zum Schluss des Kapitels führen

wir ein Modell für die Dynamik ein, welches sowohl eine deterministische als auch eine

stochastische Komponente hat. Es basiert auf der Schätzung der Drift- und Diffusionsvek-

torfelder einer allgemeinen multidimensionalen Langevin-Gleichung.

Im abschließenden 5. Kapitel wenden wir einige der bisher entwickelten Methoden auf

Trajektorien des Kopfstücks des Villin-Proteins an. Wir betrachten insbesondere freie En-

ergieflächen für dieses System und weisen auf Unterschiede zu den Poly-Alanin-Ketten hin,

die unter anderem aus der Größe dieses Systems resultieren. Mit dem Langevin-Ansatz

unternehmen wir erste erfolgversprechende Versuche, die Dynamik niedrig-dimensional zu

modellieren, und schätzen Faltungszeiten ab. Mit einem kurzen Ausblick beschließen wir

dieses Kapitel und damit auch diese Arbeit.
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