Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors

Supplementary Fig. 1 Copy-number profiles in PLAGL1-fused neuroepithelial tumor. Copy-number profiles derived from DNA methylation array of different tumors within the novel group showing structural alterations affecting chromosome $6 q$ around the PLAGL1 locus and chromosome $22 q$ including EWSR1 (a) as well as a chromothripsislike pattern affecting chromosomes 6 and 13 (b). Integrated plot of copy number variations in all samples within the cohort show no recurrent chromosomal alterations besides small structural aberrations on chromosome 22q and $6 q$ (c). The probes of the array are combined in 8000 bins (green/red dots). Gains/amplifications represent positive, losses represent negative deviations from the baseline.

Supplementary Fig. 2 Differences in gene expression profile between PLAGL1-fused neuroepithelial tumors (NET_PLAGL1) and different glial/glioneuronal tumors. Volcano plot depicting genes differentially expressed between samples in the novel group (NET_PLAGL1) versus pilocytic astrocytoma (PA; a), dysembryoplastic neuroepithelial tumor (DNT; b), and glioblastoma IDH-wildtype (GBM; c). PLAGL1 and the imprinted genes IGF2, H19 and DLK1 are more highly expressed in NET_PLAGL1 cases when compared with representative glial/glioneuronal tumors (a-c). Low OLIG2 and SOX10 expression levels in NET_PLAGL1 compared to glial/glioneuronal tumors (a-c).

Supplementary Fig. 3 Heatmap visualization of DNA methylation sites of PLAGL1 imprinting control region. Fifteen CpG sites of 40 PLAGL1 samples and 119 control tissue samples are shown. The hierarchical clustering of the samples separates most PLAGL1-fused cases from the control tissue samples and the heatmap of the methylation values displays that the CpG site in most PLAGL1-fused samples are slightly hypomethylated compared to the control tissue samples.

