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Abstract
The sum of Lyapunov exponents L f of a semi-stable fibration is the ratio of the degree
of the Hodge bundle by the Euler characteristic of the base. This ratio is bounded from
above by the Arakelov inequality. Sheng-Li Tan showed that for fiber genus g ≥ 2 the
Arakelov equality is never attained. We investigate whether there are sequences of fibrations
approaching asymptotically theArakelov bound. The answer turns out to be no, if the fibration
is smooth, or non-hyperelliptic, or has a small base genus. Moreover, we construct examples
of semi-stable fibrations showing that Teichmüller curves are not attaining the maximal
possible value of L f .
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1 Introduction

The closure of a curve in Mg can equivalently be regarded as a semi-stable fibration f :
X → C of genus g. These fibrations come with an additional object, the relative dualizing
sheaf ωX/C . The sheaf defines two invariants, the self-intersection number and the degree of
its push-forward. A well known ratio among these numbers is the slope λ f defined as the
quotient of these two invariants, i.e. as

λ f := ω2
X/C

deg f∗ωX/C
.

Its definition is motivated by trying to understand effective divisors onMg , which goes back
to Cornalba and Harris [9]. Since curves are dual to divisors, the slope of nef curves in Mg

can be used to estimate the slope of effective divisors. This problem for divisors, known
as slope conjecture, is still open and understanding the slopes of fibrations is an important
problem in surface geometry. The slope of fibrations is bounded by the slope inequality

4(g − 1)

g
≤ λ f ≤ 12, (1)

where the upper bound is attained precisely by smooth fibrations and the lower bound can only
be attained by hyperelliptic fibrations with special properties, to be discussed in Section 5.

In the present paper we propose to study a new invariant for semi-stable fibrations, namely
the sumof non-negative Lyapunov exponents L f . Lyapunov exponents originate fromdynam-
ical systems and have been brought to the study of the geometry of the moduli space of curves
through the connection with billiards and the SL2(R)-action on the moduli space of flat sur-
faces. They measure the growth rate of cohomology classes of a flat bundle when parallel
transported along a geodesic flow. Since the growth rate definition of Lyapunov exponents
can equivalently be phrased as the speed of the image of geodesics under the period mapping,
it is tempting to nickname the invariant L f we are interested in as the speed of the semi-stable
fibration - and we will succumb the temptation from now on. While the nature of individual
Lyapunov exponents is rather unclear, the sum of the non-negative exponents, or the speed,
can be expressed by a ratio of classical invariants, namely as

L f = 2 · deg f∗ωX/C

2gC − 2 + s
,

where s is the number of singular fibers of f . The Arakelov inequality for semi-stable fibra-
tions

L f ≤ g

gives an upper bound of this ratio. Since the main result of [36] shows that the Arakelov
equality can never be attained for a fibration with fiber genus g ≥ 2 the question arise,
whether there are sequences of semi-stable fibrations reaching asymptotically the Arakelov
equality.
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Table 1 Upper bound of the speed for small base genus

g = 2 g = 3 g = 4 g = 5 g = 6 g = 7 g = 8

gC ≤ 1 1.889 2.833 3.778 4.722 5.667 6.611 7.556

gC = 2 1.944 2.917 3.889 4.861 5.833 6.806 7.778

We are going to partially answer this question by proving numerical bounds that are
strengthening the Arakelov inequality for the speed of various classes of semi-stable fibra-
tions. Initially, and not surprisingly, a smooth fibration, a so-called Kodaira fibration, is far
off from reaching the Arakelov bound.

Proposition 1.1 L et f : X → C be a Kodaira fibration of genus g. Then

L f ≤ g − 1

3
.

Therefore we focus subsequently on semi-stable fibrations f : X → C which have at least
one singular fiber. The next result asserts that a low base genus of C yields a better bound
than the Arakelov inequality for the speed.

Theorem 1.2 Let f : X → C be a semi-stable fibration of genus g ≥ 2 with s singular fibers
and let m ∈ N be a number such that

s

2gC − 2 + s
≥ 1

m
.

Then the speed of f is bounded from above by

L f ≤ g ·
(
1 − 1

18m

)
.

For the sake of illustration we exhibit some values up to three digits of upper bounds given
by Theorem 1.2 for small genera in Table 1.

Slope and speed of semi-stable fibrations are related. In fact the combination of the strict
canonical class inequality

ω2
X/C < (2g − 2) · (2gC − 2 + s)

and the slope inequality (1) show that high slope implies low speed. Equality in the lower
slope bound can only be attained by hyperelliptic fibrations with special properties, as we
havementioned above. There are various stricter, lower bounds of the slope known for various
classes of fibrations. In particular we will use lower bounds for non-hyperelliptic fibrations
of genus g = 3, 4, 5 by [27]. For g ≥ 6, we improve a result of [30] to get lower bounds for
the slope of non-hyperelliptic fibrations of genus g, which implies strict upper bounds for
the speed.

Theorem 1.3 Let f : X → C be a semi-stable, non-hyperelliptic fibration of genus g. Then
we have

(i) L f < 8
3 for g = 3,

(ii) L f < 7
2 for g = 4,

(iii) L f < 4 for g = 5,
(iv) L f <

8g+4
9 for 6 ≤ g ≤ 12,
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Table 2 Upper bound of speed for non-hyperelliptic fibrations

g = 3 g = 4 g = 5 g = 6 g = 7 g = 8 g = 9 g = 10 g = 11

2.667 3.5 4 5.778 6.667 7.556 8.444 9.333 10.222

Table 3 High speed examples of
semi-stable fibrations

g = 2 g = 3 g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

1.6 2.667 3.2 4 4.286 5 6 7

(v) L f < g − 1 for g ≥ 13.

Again we illustrate the approximate values to sketch a rough overview in Table 2.
By combining Proposition 1.1, Theorem 1.2 and Theorem 1.3 we see that a candidate

sequence reaching asymptotically the Arakelov equality must contain hyperelliptic, non-
smooth fibrations, whose base genus gC are asymptotically approaching infinity. Therefore
the focus will be on the construction of hyperelliptic fibrations over smooth curves C with
arbitrary base genus. Prior to this paper, the curves with the highest speed known were Teich-
müller curves, with a speed of L f = (g + 1)/2 as stated in [11]. We will give examples
of hyperelliptic fibrations showing that Teichmüller curves are not attaining the maximal
possible speed.

Theorem 1.4 Let g ≥ 2 be a number. Then there are semi-stable, hyperelliptic fibrations f :
X → C of genus g with a speed of

L f >
g + 1

2
.

In particular there are semi-stable, hyperelliptic fibrations f with

(i) L f = 8
5 for g = 2,

(ii) L f = 8
3 for g = 3,

(iii) L f = g − � g+1
4 � for g ≥ 4 odd,

(iv) L f = g − g2−2g
2g+2 for g ≥ 4 even,

(v) L f = g − g
4 for g ≡ 0 mod 4.

Again we exhibit some values for small fiber genus in Table 3.

2 Sum of Lyapunov exponents

This section contains the motivation of the nickname ’speed’ as well as some older results
on the speed of semi-stable fibrations coming from Teichmüller curves.

Lyapunov exponents of a semi-stable fibration measure the asymptotic growth rate of
cohomology classes under parallel transport along the geodesic flow gt of the base. More
precisely, given a semi-stable fibration of genus g ≥ 2, we denote by � the boundary
points of C . Then we start from the observation that the base C − � of f is hyperbolic,
i.e. uniformized by the upper half plane H. Consequently, we can look at the geodesic flow
gt on H, or rather on the unit tangent bundle T 1

H and its image on T 1C . We consider the
bundle V on T 1C which has as fibers over c ∈ C the cohomology H1(Fc, R). The Hodge
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On fibrations approaching the Arakelov equality 1877

norm makes this bundle a normed vector bundle, but the norm is anything but constant under
parallel transport by gt . Rather, in this situation an ergodicity hypothesis is satisfied and
consequently, Oseledets theorem [33] provides a filtration V = V1 � . . . � Vk ⊃ 0 and real
numbers λ̃1, . . . , λ̃k , such that for almost all c ∈ T 1C and v ∈ (Vi )c \ {0}, one has

‖gt (v)‖ = exp(̃λi t + o(t)).

The Lyapunov exponents

λ1 ≥ · · · ≥ λg ≥ 0 ≥ λg+1 ≥ · · · ≥ λ2g

are the sequence of the normalization of the exponents λ̃i repeated with multiplicity equal
to the rank of Vi/Vi+1 in order to get 2g exponents. The symplectic form on the bundle V
implies that the value of the Lyapunov exponents are symmetric with respect to the origin,
λ2g+1−i = −λi and by the normalization of the Lyapunov exponents we always have the
bound |λi | ≤ 1. For more information we refer to [8, Section 9].

Little is known about individual Lyapunov exponents. The sum L f := ∑g
i=1 λi of

non-negative Lyapunov exponents is related to a ratio of the classical relative invariants
of fibrations. Kontsevich [13] showed that

2 · deg f∗ωX/C

|χ(C)| =
g∑

i=1

λi = L f ,

where f∗ωX/C is the Hodge bundle of the semi-stable fibration f .
We take advantage of an alternative intuitive explanation for the quantity measured by

Lyapunov exponents. Associated with any fibration f : X → C there is the period map p :
H → Hg from the universal cover of the curve C to the Siegel upper half space. Lyapunov
exponents measure the speed the image curves under p travel when traveling with unit speed
along the geodesic flow in H, in an average over all geodesics in H. This justifies to call L f

the speed of the fibration instead of using the bulky expression ’sum of all non-negative
Lyapunov exponents’.

2.1 Results for Teichmüller curves

The invariant ’sum of non-negative Lyapunov exponents’ was originally introduced to Teich-
müller curves (see [43]) and computed. For Teichmüller curves constructed from cyclic
covers, the speed has been computed in [8] and [40] contains some conjectural estimates for
further examples.

If f is a fibration coming from a Teichmüller curve generated by a flat surface (X , ω),
then the slope λ f and the speed L f are related by

λ f = 12κ f

L f
,

where κ f is a constant that only depends on the order of zeros of ω (see [11, Proposition
4.5]). For Teichmüller curves a lot is known about λ f and hence equivalently about L f .

For each fixed type of zeros of the flat surface there is a formula for the limit of L f as
χ(C) grows, the Lyapunov exponents for strata (see [13]). For g = 2 and for several other
types of zeros of the flat surface, the invariant L f is the same for all Teichmüller curves
living in the same stratum. This was established in [11], where this phenomenon was called
non-varying.
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Theorem 2.1 ([11, Corollary 3.5]) Let f : X → C be a hyperelliptic fibration of genus g
coming from a Teichmüller curve generated by a flat surface (X , ω). Then we have

L f = g2

2g − 1
and λ f = 4(g − 1)

g
if (X , ω) ∈ �Mhyp

g (2g − 2),

L f = g + 1

2
and λ f = 4(g − 1)

g
if (X , ω) ∈ �Mhyp

g (g − 1, g − 1).

The speed (g + 1)/2 for semi-stable fibrations is in fact the highest possible for any Teich-
müller curve by a result of [41].

Theorem 2.2 ([41, Theorem 1.2]) Let f : X → C be a fibration of genus g coming from a
Teichmüller curve generated by a flat surface (X , ω). Then we have

L f ≤ g + 1

2
.

Furthermore we have equality if and only if (X , ω) ∈ �Mhyp
g (g − 1, g − 1) or (X , ω) ∈

�Mhyp
g (12g−2).

To our knowledge, for any g ≥ 2 there are no previously known semi-stable fibrations with a
speed greater than (g+1)/2. For hyperelliptic Teichmüller curves, in particular when the flat
surface has only one zero, a lower bound for L f is known by [40], which is asymptotically
optimal as g → ∞. But even for Teichmüller curves beyond the cases where the type of
zeros fall into the non-varying phenomenon, there are intriguing open problems about the
speed. Already for fibrations with fiber genus 3 and when the flat surface has four simple
zeros it is challenging to get good lower bounds for L f . Any statement like this must except
the unique (as shown in [32]) Teichmüller curve of this type, where the speed is as low as it
could possibly be, i.e. L f = 1.

3 Fibrations

Let X be a smooth projective surface and let C be a smooth curve. We will call f : X → C
a fibration, if the map f is surjective and all fibers are connected curves. If all smooth fibers
are isomorphic to a fixed curve, we speak of a isotrivial fibration, if all fibers are smooth,
the fibration is smooth and if the fibration is isotrivial and smooth it is called locally trivial.
If no fiber contains a (−1)-curve we say the fibration is relatively minimal.

Let gC := g(C) be the genus of the base curve C , respectively g := g(F) the genus of a
general fiber F of f . If g = 0, then the fibration f : X → C is nothing but a ruled surface.
We are going to introduce them in Sect. 5.1 in another context. If g = 1, then f is called
an elliptic fibration. Since elliptic fibrations have been classified in the past (see [7,23] and
[24]) we will from now on always assume a fiber genus of g ≥ 2.

The basic invariants of f : X → C arise as the self-intersection number and the degree
of the push-forward of the relative canonical sheaf

ω f := ωX ⊗ ( f ∗ωC )∨.

The push-forward f∗ω f is a vector bundle on C of rank g, which we will call Hodge bundle
of f . The basic relative invariants for a fibration are now

ω2
f , deg f∗ω f and δ f := c2(X) − 4(gC − 1)(g − 1).
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On fibrations approaching the Arakelov equality 1879

The formula of these invariants is

ω2
f = c21(X) − 8(gC − 1)(g − 1),

deg f∗ω f = χ(OX ) − (gC − 1)(g − 1).

Finally we have two basic quantities, since all three invariants are related by Noether’s
formula

ω2
f = 12 deg f∗ω f − δ f . (2)

We will often denote the number deg f∗ω f by χ f . We say that the fibration f is semi-stable
if all fibers F are semi-stable, i.e. F is reduced, a singularity in F is at most a node and every
smooth rational component K of F has at least two points in common with F − K . Note
that every semi-stable fibration is relatively minimal and that δ f is nothing but the number
of nodes in all singular fibers. In fact we have δ f = 0 if and only if f is a fibration that has
no singular fibers, i.e. a smooth fibration. For a relatively minimal fibration it is well-known
that ω2

f and χ f are both non-negative numbers and moreover is χ f zero if and only if f is
locally trivial [3, Theorem III.18.2]. All fibrations will from now on be not isotrivial, unless
stated otherwise.

3.1 Slope of fibrations

For a fibration f : X → X , we already defined the slope λ f , defined as the quotient

λ f := ω2
f

χ f
.

The slope is well-defined, since we assume f to be not isotrivial and therefore we
have χ f > 0. In fact we do not require f : X → C to be semi-stable, we just need the
assumption that the fibration is relatively minimal. Due to Noether’s formula (2) we can
directly deduce the maximum λ f ≤ 12, which is attained if and only if the fibration is
smooth. On the other hand Cornalba-Harris [9] for semi-stable fibrations and Xiao [38] with
different methods for relatively minimal fibrations have shown the slope inequality.

Theorem 3.1 ([38, Theorem 2]) Let f : X → C be a relatively minimal fibration of
genus g ≥ 2. Then we have

4(g − 1)

g
≤ λ f ≤ 12.

Furthermore we have λ f = 12 if and only if f has no singular fibers.

Xiao also conjectured that equality in the lower slope bound 4(g− 1)/g can only be attained
by hyperelliptic fibrations, which was shown to be true in [27, Proposition 2.6]. The lower
bound is in fact sharp, we will construct examples in low genus attaining the lower slope
inequality later (see Example 5.12).

3.1.1 Slope of non-hyperelliptic fibrations

We call a fibration f : X → C non-hyperelliptic, if the general fiber is a non-hyperelliptic
curve of genus g. Note that this implies g ≥ 3. We just mentioned that the lower slope
inequality can only be attained by hyperelliptic fibrations. Hence there might exist better
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1880 M. Bieri

lower bounds for the slope of a non-hyperelliptic fibration. A lot is known in this direction,
for example in [28] a better bound for a trigonal fibration was proven and generalised to c-
gonal fibrations in [30]. Unfortunately, precise bounds for non-hyperelliptic fibrations are still
only known for small fiber genera. Let f : X → C be a relatively minimal, non-hyperelliptic
fibration. Then we have as strict lower bounds for the slope

λ f ≥
⎧⎨
⎩

3 for g = 3, [Hor91] and [Kon91]
24
7 for g = 4, [Che93] and [Kon93]
4 for g = 5, [Kon93]

(3)

Additionally it was recently discovered in [30] that the slope of a non-hyperelliptic fibration
of genus g ≥ 16 has as lower bound λ f ≥ 4. We follow here their work to state a lower slope
bound for a general non-hyperelliptic fibration.

To address the slope one usually works with the Harder-Narasimhan filtration for the
Hodgbe-bundle f∗ω f as introduced by Xiao in [38]. For this reason we let E be a non-zero
vector bundle on the curve C . We define the slope of E as the rational number

μ(E) := deg E
rank

E .

We call a bundle E stable, respectively semi-stable, if for every non-zero subbundle E ′ ⊆ E
we haveμ(E ′) < μ(E), resp.μ(E ′) ≤ μ(E). We further call a bundle E positive, respectively
semi-positive, if for all quotient bundles E � Q we have degQ > 0, resp. degQ ≥ 0. It is
well known that the Hodge bundle f∗ω f for a relatively minimal fibration f : X → C is
semi-positive. TheHarder-Narasimhan filtration for a vector bundle E is an unique filtration

0 = E0 ⊆ E1 ⊆ E2 · · · ⊆ En = E,

such that for i = 1, . . . , n

• each of the quotients Ei/Ei−1 is semi-stable of slope μi := μ(Ei/Ei−1),
• the slopes are strictly decreasing, that is μi > μ j for i < j .

This filtration originates from [19] which explains its name. We will from now on always
consider theHarder-Narasimhanfiltration of theHodge bundle f∗ω f and abbreviate it byH-N
filtration. It is clear from the semi-positivity of f∗ω f , that we haveμn ≥ 0. By defining ri :=
rankEi and setting μn+1 := 0 we can compute the degree of the Hodge bundle by

χ f =
n∑

i=1

ri (μi − μi+1). (4)

Remark 3.2 The sum of the first k non-negative Lyapunov exponents is always greater or
equal than the speed of any subbundle of the H-N filtration. More precisely, let f : X → C
be a semi-stable fibration with associated Lyapunov exponents L f = ∑g

i=1 λi . Then for
any 1 ≤ k ≤ g we have

deg Ei
2gC − 2 + s

≤
k∑

i=1

λi , (5)

by [15]. Of course (5) is an equality for k = g.

The crucial part of Xiao’s proof of the slope inequality is now the definition of a ’degree’
corresponding to themoving part of Ei for 1 ≤ i ≤ n. For this reasonwe letL be a sufficiently
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Fig. 1 A double cover fibration
of type (g, γ ), where the general
fiber of ϕ is of genus γ

ample line bundle on C such that Ei ⊗ L is generated by its global sections. We denote
by �(Ei ) ⊆ |ω f ⊗ f ∗L| the linear subsystem corresponding to sections in H0(C, Ei ⊗ L).
Now Z(Ei ) is defined as the fixed part of �(Ei ), while M(Ei ) = ω f − Z(Ei ) is the moving
part. Note that these definitions do not depend on the choice of the line bundle L. Let F be
a general fiber of the fibration f : X → C , then we define

di := M(Ei ).F
and set further dn+1 := 2g − 2. For example we have dn = 2g − 2, whereas the dimension
of the restricted linear subsystem �(Ei )|F is ri − 1 (see [17, page 157]). The next lemma is
the main tool for working with the slope via the H-N filtration.

Lemma 3.3 ([38, Lemma 2]) Let f : X → C be a relatively minimal fibration. Then for any
sequence of indices 1 ≤ i1 < · · · < ik ≤ n we have

ω2
f ≥

k∑
i=1

(di j + di j+1)(μi j − μi j+1),

where ik+1 := n + 1.

Example 3.4 By taking the trivial sequence of indices 1 ≤ n, we obtain by applying
Lemma 3.3 that

ω2
f ≥ (2g − 2)(μ1 − μn) + (4g − 4)(μn) = (2g − 2)(μ1 + μn),

which implies for g = 2 the slope inequality as in Theorem 3.1.

Our goal is to prove better lower bounds for the slope of non-hyperelliptic fibrations. For that
reason we introduce a generalization of being hyperelliptic. We call a genus g fibration f :
X → C a double cover of type (g, γ ), if there is a (not necessarily smooth) surface Y and
morphisms θ : X → Y and ϕ : Y → C such that deg(θ) = 2, the general fiber of ϕ is of
genus γ and the diagram in Fig. 1 commutes. It is clear by this definition that a hyperelliptic
fibration is nothing else than a double cover fibration of type (g, 0). The next proposition
is basically the same as [30, Proposition 3.5]. We just adjust a small detail in the proof to
improve the lower bound.

Proposition 3.5 Let f : X → C be a relatively minimal fibration of genus g ≥ 3. If f is not
a double cover fibration or if f is a double cover fibration of type (g, γ ) with 4γ ≥ g − 1,
then we have

λ f ≥ 9(g − 1)

2g + 1
.

Proof Let F be a general fiber of f , then we define

l := min{i : �(Ei )|F defines a birational map for F}
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and

l ′ := min{i : �(Ei )|F is a finite map of degree two for F}.
According to the proof of [30, Theorem 3.2] we may assume that such an l ′ exists. It is clear
that 1 ≤ l ′ < l ≤ n.We further let γ be the geometric genus of the image of F under�(Ei )|F .
Note that this γ is precisely the same if f is a double cover of type (g, γ ). For l ′ ≤ i ≤ l − 1
we define

θi :=
{
1, if i = l ′ = 1 and r1 = 1;
min{3ri − 3, 2r1 + γ − 1}, otherwise.

Now we use [30, (3-22)], which says in particular that

ω2
f ≥

l ′−1∑
i=1

(
1

2
(3ri − 2) + 1

2
(di + di+1)

)
(μi − μi+1)

+
l−1∑
i=l ′

(
1

2
(2θi − ri ) + 1

2
(di + di+1)

)
(μi − μi+1)

+
n∑
i=l

(
1

2
(5ri − 6) + 1

2
(di + di+1)

)
(μi − μi+1). (6)

We can now apply for the individual terms the following inequalities as stated in [30, page
13&14], namely

1

2
(3ri − 2) + 1

2
(di + di+1) ≥ 9

2
ri − 2, for 1 ≤ i ≤ l ′ − 1,

1

2
(2θi − ri ) + 1

2
(di + di+1) ≥ 9

2
ri − 3, for l ′ ≤ i ≤ l − 1, (7)

and we can directly compute

1

2
(5rn − 6) + 1

2
(dn + dn+1) = 9

2
g − 5. (8)

As for l ≤ i ≤ n − 1 we know that �(Ei )|F defines a birational map for F , we can apply
Castelnuovo’s bound as stated in [2, III.ç2.]. Therefore we have

di ≥ g

m
+ (m + 1)ri

2
+ m − 1

2
, where m =

⌊
d − 1

r − 1

⌋
.

Since 2 ≤ ri ≤ g − 1 this implies in particular that

di ≥ 2ri (9)

By rearranging while using ri+1 ≥ ri we get to

1

2
(5ri − 6) + 1

2
(di + di+1) ≥ 9

2
ri − 3, for l ≤ i ≤ n − 1. (10)

Now using that

χ f =
n∑

i=1

ri (μi − μi+1)
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by (4) and putting the inequalities (7), (8) and (10) together with (6) we arrive at

ω2
f ≥ 9

2
− 2μ1 − μ′

l − 2μn ≥ 9

2
− 3μ1 − 2μn .

The last inequality follows from the H-N filtration since μ1 ≥ μ′
l . Now combining this with

Example 3.4 brings us to

2g + 1

2g − 2
ω2

f ≥ 9

2
χ f + μn ≥ 9

2
χ f ,

which finishes the proof. ��
Remark 3.6 Lu and Zuo used in [30, Proposition 3.5] the inequality given by di ≥ 2ri −1/2
instead of (9). This then implies as lower bound for the slope that

λ f ≥ 18(g − 1)

4g + 3
.

Note that for g = 6 their lower bound is the same as the general slope inequality from
Theorem 3.1.

Corollary 3.7 Let f : X → C be a non-hyperelliptic fibration of genus g ≥ 3. Then we have

λ f ≥ 9(g − 1)

2g + 1
for 3 ≤ g ≤ 12,

and

λ f ≥ 4 for g > 12.

Proof If f is not a double cover of type (g, γ ) with 4γ < g − 1, then we are done by
Proposition 3.5. So let us assume the contrary. Then by [12, Theorem 3.1] we know that

λ f ≥ 4(g − 1)

g − γ
≥ 4.

Since we assume f to be non-hyperelliptic, we conclude with γ ≥ 1. ��
Note that the bound of Corollary 3.7 is weaker than (3) but beats the classical slope inequality
in Theorem 3.1 for g ≥ 6.

4 Speed of semi-stable fibrations

Beside the slope, there is another relative invariants linked to a fibration in this paper that is
playing a central role. The, for us, most important ratio is the speed

L f = 2 deg f∗ω f

2gC − 2 + s
,

where f : X → C is a semi-stable fibration of fiber genus g ≥ 2. We recall from Sect. 2
that L f is exactly the sum of non-negative Lyapunov exponents, which was the reason for
naming it speed. As described in the introduction is the speed bounded from above by the
strict Arakelov inequality L f < g. We will give a proof of this inequality in Theorem 4.3.

123



1884 M. Bieri

Fig. 2 A separating node p of type i ≥ 1

Remark 4.1 For a semi-stable fibration f : X → C let us consider the embedded curve φC :
C ↪→ Mg . We can then calculate its speed by

L f = 2
degφ∗

Cλg

2gC − 2 + s
,

where λg is the Hodge class ofMg . Here the number s above is not an intersection number,
but is the set-theoretic intersection of C with the boundary Mg \ Mg . For this reason the
speed is not an invariant for classes of curves in the moduli space of stable curves, in contrast
to the slope. Indeed, consider for example two plane quartics F and G. The pencil aF + bG
for [a : b] ∈ P1 gives (after blowing up at the base points) a curveC inM3 with intersection 3
and 27 with λg and δ0 respectively (see [18, page 170]). If F and G are general then we have
that s = 27, which is the degree of the discriminant locus. Actually, as speed we therefore
calculate

L f = 2 · 3
2 · 0 − 2 + 27

= 6

25
.

If we choose F general and G to have more than one irreducible node then the resulting
curve will have the same curve class, hence the same intersection number with the boundary
divisor δ0, but in this case we have s < 27 and therefore a different speed.

4.1 Types of nodes

Let f : X → C be a semi-stable fibration. A singular point of F is called a separating
node, if the partial normalization at this point consists of two components. We further denote
with Ync → �nc all singular fibers that do contain a non-separating node and define snc :=
|�nc|.Wewill call such singular fibers of non-compact type. Vice versawe defineYct → �ct

to be all singular fibers of compact type, i.e. fibers that contain no nodes but separating ones
and denote sct := |�ct |. Let us denote with δ0(F) the number of all non-separating nodes
in F .We say that a separating node is of type i , if the partial normalization at this point consists
of two components of arithmetic genus i and g − i (see Fig. 2) and denote with δi (F) the
number of all separating nodes of type i in F . We additionally set δ(F) := ∑

δi (F) to be
the number of all nodes in the singular fiber F .

Assume that F consists of l(F) irreducible components such that F = ∑l(F)
i=1 Fi . Then

we recall that the geometric genus of F is defined as the sum of the geometric genera of the
components, i.e.

ggeo(F) :=
l(F)∑
i=1

g(F ′
i ),
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where F ′
i is the normalization of Fi .

Lemma 4.2 ( [29, Lemma 2.2]) Let F be a semi-stable fiber of a relatively minimal fibra-
tion f : X → C of genus g. Then we have

δ(F) = g − ggeo(F) + l(F) − 1.

Using this lemma we easily see the equivalences

ggeo(F) = g ⇐⇒ δ(F) = l(F) − 1 ⇐⇒ δ0(F) = 0 ⇐⇒ F ∈ Yct .

For the fibration f : X → C we further define

δ0( f ) :=
∑
t∈C

δ0(Ft ) and δi ( f ) :=
∑
t∈C

δi (Ft ).

Note that

δ f = δ0( f ) + δ1( f ) +
�g/2�∑
i=1

δi ( f ).

In terms of themoduli space of stable curves where φC : C ↪→ Mg is the embedding induced
by f : X → C we get

δ0( f ) = deg(φ∗
C (δ0)) and δi ( f ) = deg(φ∗

C (δi )).

4.2 The strict Arakelov inequality

The Arakelov inequality was first proven in [1] in terms of heights of sections. We consider
the strict Arakelov inequality for semi-stable fibrations as established by Sheng-Li Tan.

Theorem 4.3 ([36, Theorem 2]) Let f : X → C be a semi-stable fibration of genus g ≥ 2.
Then we have

L f = 2
deg f∗ω f

2gC − 2 + s
< g.

Let us start with a semi-stable fibration f : X → C . It is a result of Arakelov [1] and
Beauville [6] that ωX/C is a nef divisor and all curves E in X such that ωX/C .E = 0 are
the (−2)-curves in the fibers. Contracting all (−2) curves defines a not necessary semi-stable,
but rather a stable fibration f # : X# → C , since every fiber is stable. We also call f # the
stable model of f . The surface X# might now be singular, i.e. contain singular points q ,
where q is a rational double point of type Amq (see Proposition 5.10). We know that mq is
exactly the number of (−2)-curves in X over q . If q is a singular point on the smooth part
of X#, then we set mq = 0.

An, for us, important invariant is the rational number r f , which we define in terms of the
stable model X# as

r f :=
∑
q∈X#

1

mq + 1
.

It is immediately obvious that r f ≤ δ f .
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Remark 4.4 Let f : X → C be a semi-stable fibration of genus g. We show that r f is
bounded by r f ≤ (3g − 3)s, where s is the number of singular fibers. In fact, we have for
each singular fiber F that

δ(F) = g − ggeo(F) + l(F) − 1 (11)

byLemma4.2.Additionally, the lemma states that the fiber has as geometric genus ggeo(F) =
g if and only if F is of compact type. Note that Eq. (11) still holds for the stable fiber F# after
contracting all (−2)-curves as we subtract on both sides the same amount in this procedure,
hence we have

δ(F#) = g − ggeo(F) + l(F#) − 1.

This implies that the number δ(F#) of singular points of the stable model is maximal for a
geometric genus of ggeo(F) = 0. More concretely, as any rational component of F# must
intersect the other components in at least three points, we have δ(F#) ≤ 3g−3 (see also [18,
page 51]). Let r(F) be the contribution of each singular fiber to r f , i.e.

r f =
s∑

i=1

r(F)

By our definition r(F) ≤ δ(F#). We therefore conclude trivially r f ≤ (3g − 3)s.

A rational double point q on X# is isomorphic to C
2/Gq , where Gq is a finite subgroup

of GL(2, C), with 0 as only fixed point. We call a singularity given by C
2/Gq a quotient

singularity, i.e. every rational double point is a quotient singularity. Let X̃q be the minimal
resolution of this quotient singularity with the exceptional divisor Eq . We put

ν(q) := e(Eq) − 1

|Gq | ,

where e(Eq) is the topological Euler characteristic. Miyaoka’s inequality now states the
following.

Theorem 4.5 ([31, Corollary 1.3]) Let X# be a complex surface such that KX# is nef and
that X# has only rational double points as singularities. Let σ : X → X# be the minimal
resolution. Then

3
∑
q∈X#

ν(q) ≤ 3c2(X) − c21(X).

Assume that on our surface X# a quotient singularity q is isomorphic to a rational double
point of type Amq , for some mq ≥ 2. Then we immediately get

ν(q) = (mq + 1) − 1

mq + 1
.

We note that if we consider additionally the nodes of the smooth part in X#, the inequality
in Theorem 4.5 does not change. Therefore we can calculate the number of singular points
in the singular fibers via

δ f =
∑
q∈X#

(mq + 1).

123



On fibrations approaching the Arakelov equality 1887

and we recall that

r f =
∑
q∈X#

1

mq + 1
,

which implies the following corollary.

Corollary 4.6 Let f : X → C be a semi-stable fibration of genus g, where the canonical
divisor KX is nef. Then we have

3(δ f − r f ) ≤ 3c2(X) − c21(X).

Now we can prove an upper bound for the self-intersection ω2
f .

Lemma 4.7 Let f : X → C be a semi-stable fibration of genus g. Then for any n ∈ N

satisfying 2gC − 2 + n−1
n s ≥ 0, we have

ω2
f ≤ (2g − 2)(2gC − 2 + s) + 3r f

n2
− (2g − 2)s

n
.

Proof Let π : C̃ → C a base change of degree d ·n totally ramified over�with ramification
index n. Let f̃ : X̃ → C̃ be the pullback fibration of f with respect to π , i.e. the smooth
minimal model of the fiber product X ×C C̃ → C̃ . By Riemann-Hurwitz, we know that
2gC̃ − 2 = dn · (2gC − 2 + n−1

n s
)
and therefore by our assumption gC̃ > 0. Hence X̃ is of

general type and in particular the canonical divisor

KX̃ ∼ KX̃/C̃ + KX̃ |F̃
is nef. Therefore using Corollary 4.6 we get

ω f̃ ≤ 3c2(X̃) − 3δ f̃ + 3r f̃ − 2(2gC̃ − 2)(2g − 2),

or equivalently

ω f̃ ≤ 3r f̃ + (2gC̃ − 2)(2g − 2).

Note that for any node q in a singular fiber, the preimage�−1(q) consists of d disjoint curves
of type An−1, hencemq̃ +1 = n(mq +1) and r f̃ = d

n r f . Since all fibrations are semi-stable,

the base change of degree dn implies that ω2
f̃

= dn · ω2
f . So in total we get

ω2
f ≤ (2g − 2)

(
2gC − 2 + n − 1

n
s

)
+ 3r f

n2
.

and therefore Lemma 4.7. ��

Remark 4.8 The condition 2gC − 2 + n−1
n snc ≥ 0 is in fact always satisfied for n > 1,

if snc > 0. In the case gC = 0 we know by [29] that snc ≥ 4.

Remark 4.9 From Lemma 4.7 we can directly deduce the strict canonical class inequality

ω2
f < (2g − 2)(2gC − 2 + s).

We therefore have found a proof of the strict Arakelov inequality.
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Proof of Theorem 4.3 We use Lemma 4.7, which we combine additionally with the slope
inequality of Theorem 3.1. Then we have

4(g − 1)

g
χ f ≤ (2g − 2)(2gC − 2 + s) + 3r f

n2
− (2g − 2)s

n

or rearranged

2χ f ≤ g(2gC − 2 + s) + g

2g − 2

(
3r f
n2

− (2g − 2)s

n

)
.

Since

lim
n→∞

(
3r f
n2

− (2g − 2)s

n

)
< 0,

we have proven the strict inequality for s > 0. If s = 0 than we will see in Proposition 1.1
that a much stronger inequality holds. ��
Remark 4.10 For a semi-stable fibration f : X → P1 over the projective line, we conclude
directly that there are always at least five singular fibers which was proven first in [36].
Since gP1 = 0, we have

χ f = χ(OX ) + (g − 1) ≥ g.

But by the strict Arakelov inequality we know that 2χ f < g(−2 + s) and therefore s ≥ 5.
This bound is in fact sharp, in Example 5.12 we will get in touch with a g = 3 fibration with
five singular fibers.

4.3 Bounds of the speed

After having introduced the strict Arakelov inequality L f < g for semi-stable fibrations in
Sect. 4.2, which yields an upper bound for the speed, we ask the question if this bound is the
best possible.

4.3.1 Kodaira fibrations

Let us consider a smooth fibration f : X → C , i.e. a fibration with no singular fibers.
They were originally constructed by Kodaira (see [24] and [25]) as examples to show that
the signature of the surface is not multiplicative in the fiber, a result that was somewhat
surprising, since the multiplicity holds for the topological Euler characteristic. In his honor
they are nowadays called Kodaira fibration. In the literature one can also find the name
surface bundle. We know that a Kodaira fibration is iso-trivial if the fiber genus is g ≤ 2.
Indeed, since M2 is affine (see [22]), any embedding of a complete curve in M2 must be
constant. Additionally the base genus has to be gC ≥ 2 since we have by [3, Proposition
III.11.4] that

c2(X) = 4(g − 1)(gC − 1) > 0.

For Kodaira fibrations we can show a stronger upper bound than the Arakelov inequality.
This result should be known to experts, but since we are not aware of any reference we prove
it here.
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Proposition 1.1 Let f : X → C be a Kodaira fibration of genus g. Then

L f ≤ g − 1

3
.

Proof Using the multiplicity of the Euler characteristic we get

χ f = χ(OX ) − 1

4
e(F)e(C) = χ(OX ) − 1

4
c2(X) = 1

12

(
c21(X) − 2c2(X)

)
.

As X is of general type the Bogomolov-Miyaoka-Yau inequality c21(X) ≤ 3c2(X) therefore
defines an upper bound

χ f ≤ 1

12
c2(X) = 1

12
(2g − 2)(2gC − 2) = g − 1

6
(2gC − 2)

and the claim follows. ��

4.3.2 Fibrations of low base genus

The strictness of the Arakelov inequality or more precisely the strictness of the canonical
class inequality yields an upper bound for the speed of a semi-stable fibration, if the quotient

s

2gC − 2 + s

is bounded from below. Of course this is the case if the genus of the base curve C is low.
Theorem 1.2 Let f : X → C be a semi-stable fibration of genus g ≥ 2 with s singular fibers
and let m ∈ N be a number such that

s

2gC − 2 + s
≥ 1

m
.

Then the speed of f is bounded from above by

L f ≤ g ·
(
1 − 1

18m

)
.

Proof By Remark 4.4 we get that

r f =
∑
q∈X#

1

nq + 1
≤ (3g − 3)s.

Now we will use Lemma 4.7, which tells us that

ω2
f ≤ 2(2gC − 2 + s) − 2n − 9

n2
· s(g − 1).

Since 4(g − 1)χ f ≤ g · ω2
f by the slope inequality of Theorem 3.1, we get in terms of the

speed

L f ≤ g − 2n − 9

n2
· g
2

· s

2gC − 2 + s
≤ g − 2n − 9

n2
· g
2

· 1

m
,

for every n > 1 (see also Remark 4.8). The minimum is attained for n = 9 and hence the
claim follows. ��
For fibrations over the projective line we can easily get an upper bound for the speed that
depends on the number of singular fibers.
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Lemma 4.11 Let f : X → P1 be a semi-stable genus g fibration over the projective line
with s singular fibers. Let g or s be even. Then the speed L f is bounded by

L f ≤ g − 2

s − 2
.

Proof Using the strict Arakelov inequality (Theorem 4.3) we can immediately deduce
thatχ f < g(s−2)/2 = (gs)/2−1. But sinceχ f is by definition the degree of a vector bundle
on P1 and therefore a natural number and since gs is even, we have in fact χ f ≤ gs/2 − 2,
which computes the upper bound of the speed. ��
Remark 4.12 In particular, Lemma 4.11 states that

L f ≤ 4

3
for s = 5 and L f ≤ 3

2
for s = 6.

We recall that s ≤ 4 is not possible by Remark 4.10.

4.3.3 Non-hyperelliptic fibrations

Let f : X → C be a relatively minimal fibration such that the general fiber F is non-
hyperelliptic. We already discussed that the slope of such a fibration does not reach the lower
slope bound and hence, not surprisingly, we can find an upper bound for the speed for small
fiber genus. Moreover low slope and high speed are in fact related.

Theorem 1.3 Let f : X → C be a semi-stable, non-hyperelliptic fibration of genus g.
Then we have

(i) L f < 8
3 for g = 3,

(ii) L f < 7
2 for g = 4,

(iii) L f < 4 for g = 5,
(iv) L f <

8g+4
9 for 6 ≤ g ≤ 12,

(v) L f < g − 1 for g ≥ 13.

Proof The claim follows from the lower slope bounds for non-hyperelliptic fibrations in (3)
and Corollary 3.7 as well as from the strict canonical class inequality (see Remark 4.9). ��

5 Hyperelliptic fibrations

A hyperelliptic fibration is a fibration, whose general fiber is a hyperelliptic curve of genus g,
i.e. there is a hyperelliptic involution σ acting on each fiber. In this section we introduce
some techniques to construct examples of hyperelliptic fibrations.

An involution with no isolated fixed points on a surface can equivalently be viewed as
a branched double cover on a ruled surface. Following this approach, we will construct a
genus g datum for a hyperelliptic fibration. Working with this detour over ruled surfaces
is going back to the fundamental work of Horikawa (see [20] and also [34]). Xiao [37]
developed his techniques much further. For this approach we will introduce an even divisor
on a ruled surface, which defines a double cover that determines the hyperelliptic fibration.
Such a divisor can contain singularities that are resolved by an even blow-up, which ensures
that the strict transform is again an even divisor and defines therefore a double cover. Knowing
the singularities and the bidegree of the divisor is enough information to calculate the slope
of the fibration.
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5.1 Ruled surfaces

Let us consider a smooth ruled surface P over a smooth curve C , which means that we have
a fibration ϕ : P → C where the fibers are just P1’s. We will follow here the notation of [17]
and always remember that by mentioning P , the morphism ϕ and the base C are part of our
datum. Any ruled surface is given by a rank 2 vector bundle E on C , such that P = P(E). But
as the vector bundle E is only unique up to tensoring with a line bundle, we want our vector
bundle to be of a ’minimal’ degree. That is we call a vector bundle normalized, if it has a
nonzero section, but E⊗L has none for every line bundleL of negative degree. So let E always
be a normalized vector bundle with P = P(E). The integer e := − deg E is then an invariant
of the ruled surface P (see [17, Proposition V.2.8]). The nonzero section of E gives rise to a
horizontal curveC0 on P withC2

0 = −e. Since E is normalized, the number−e is the smallest
self-intersection number of any horizontal curve. Now C0 and �, where � is a general fiber
of ϕ, generate the Néron-Severi group of the ruled surface P (see [17, Proposition V.2.3]).
So as any divisor D on P is linear equivalent to aC0 + b�, we will also say that D has
bidegree (a, b). For instance, the canonical divisor of P has bidegree (−2, 2gC −2−e) [17,
Corollary V.2.11] and therefore we can compute K 2

P = 8(1 − gC ).
Let D be a divisor on the ruled surface P given locally at a point p = (y0, z0) ∈ D by a

function f (y0, z0) = 0, where

f (y, z) =
∑
j,k≥0

a jk y
j zk .

Then we define the multiplicity of p in D as

mult p(D) := mp = inf
j,k

{ j + k|a jk �= 0}.

It is clear from this definition that mp ≥ 1. In fact, if mp = 1, then the point p is smooth
on D.

5.2 Genus g datum

Our interest in ruled surfaces arises from the hyperelliptic involution of a hyperelliptic genus g
fibration f : X → C . In fact, after blowing up a finite number of points, every hyperelliptic
fibration factors through a ruled surface P by a double cover. The aim of this section is to
define a datum on a ruled surfaces which determines a hyperelliptic fibration. Then the slope
of this fibration can be calculated from information arising from the datum.

Let L be an invertible sheaf and R an effective, reduced divisor on a minimal, ruled
surface ϕ : P → C such thatOP (R) ∼= L⊗2. We call the tuple (R,L) a double cover datum
on P . Let s ∈ H0(P,L⊗2) then the dual s∨ defines an OP -algebra structure on

A := OP ⊕ L−1.

Setting X = Spec(A) induces now a double cover θ : X → P . The surface X might have
singular points arising over singular points of R. In fact we have X smooth if and only if R is
smooth. For more information we refer to [16]. Note that the reduced divisor R, called branch
divisor, must be even, where we recall that a divisor on P is called even, if it is divisible by
two in the Néron-Severi group of P .

We consider a double cover datum (R,L) on P , where the branch divisor R intersects
a general fiber in 2g + 2 points. If R is smooth, then we can directly construct the double
cover θ : X → P branched over R. As P is minimal, there are no curves whose preimage is
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a (−1)-curve in X . Hence the composition of θ with the ruling of P , i.e. ϕ ◦ θ : X → P is
then a relatively minimal hyperelliptic fibration of genus g.

So let us in contrary assume that R is not smooth. Then there is a unique resolution
ψ̃ : P̃ → P of the singularities, which we construct in a ’even’ way. More concretely we
want to produce a double cover datum (R̃,L) on P̃ .

Definition 5.1 We call a sequence of blow-ups

ψ̃ = ψ1 ◦ · · · ◦ ψr : (P̃, R̃) = (Pr , Rr )−→ψr · · · −→ψ1(P0, R0) = (P, R)

an even resolution of R, if R̃ is a smooth reduced even divisor and Ri is the reduced even
inverse image of Ri−1 under ψi , i.e.

Ri = ψ∗
i Ri−1 − 2

⌊mpi

2

⌋
Ei .

We will call ψ̃ a minimal even resolution of R, if for any even resolution ψ̃ ′ : P̃ ′ → P of R
there exists an morphism �̃ : P̃ ′ → P̃ such that ψ̃ ′ = ψ̃ ◦ �̃ and �̃(R̃′) = R̃.

Note that a minimal even resolution of R is by our definition unique up to isomorphisms
of P̃ . Indeed, if there is another minimal even resolution P̃ ′ → P there exists �̃ : P̃ ′ → P̃
and �̃ ′ : P̃ → P̃ ′ such that �̃ ◦ �̃ ′ = idP and �̃ ′ ◦ �̃ = idP′ , hence P ∼= P ′.
Proposition 5.2 ([14]) Let (R,L) be a double cover datum on the minimal surface P. Then
there exists a minimal even resolution of R, denoted by ψ̃ : P̃ → P. Moreover there
exist L̃ ∈ Pic(P̃) such that L̃⊗2 ∼= OP̃ (R̃).

Proof We are going to construct such a minimal even resolution directly. For this purpose
we let ψ1 : P1 → P be a blow up of a singular point p1 ∈ R0 := R and we set L0 := L. We
define the divisor R1 on P1 to be

R1 := ψ∗
i R0 − 2

⌊mp1

2

⌋
E1.

Here E1 is the exceptional divisor of the blow-up of p1. Note that R1 is the reduced even
inverse image of R. Now, on P1, if there is a singular point p2 ∈ R1 we blow up p2
again by ψ2 : P2 → P1 and continue this procedure inductively until the divisor R̃ := Rr

on P̃ := Pr is smooth. In each step we blow up the singular point pi on Ri−1 ⊆ Pi−1 and
set

ψ̃ := ψ1 ◦ · · · ◦ ψr .

We define again as reduced even inverse image of Ri−1 the divisor Ri on Pi where

Ri := ψ∗
i Ri−1 − 2

⌊mpi

2

⌋
Ei

for i = 1, . . . , r . Here, consistently, we denote by Ei the exceptional divisor of the blow-up
of pi . This even resolution is minimal, since each ψi is a blow up centered at a singular
point of Ri−1. It is easy to see that for every i there exists a linebundle Li ∈ Pic(Pi ) such
that L⊗2

i
∼= OPi (Ri ). In conclusion we finish the proof by setting L̃ := Lr . ��

We finally have a unique double cover datum given by (R̃, L̃) on the ruled surface ϕ̃ :
P̃ → P such that (ψ̃)∗(R̃) = R. The datum defines a double cover whose minimal model
is a hyperelliptic genus g fibration. This allows us to define a triple (P, R,L) which yields
a hyperelliptic fibration f : X → C . We say that a singularity on R is a simple singularity,
if it is either a double point or a triple point that becomes at most a double point after evenly
blowing it up.

123



On fibrations approaching the Arakelov equality 1893

Definition 5.3 [39] Let ϕ : P → C be a ruled surface over a smooth curve C and let (R,L)

be a double cover datum on P . Let e be the minimal self-intersection of a horizontal curve
on P and n ∈ Z. Then we call (P, R,L) a genus g datum, if

(i) we have R.� = 2g + 2 for � a general fiber of ϕ,
(ii) there exists an even blow-up P̂ → P such that the reduced even inverse image R̂ of R

has only simple singularities.

Furthermore we take n ∈ Z to be the number such that the branch divisor R has as bide-
gree (2g + 2, (g + 1)e + n) in P .

The divisor R is a branch divisor, hence must be even or in other words divisible by two in
the Néron-Severi group of P . This implies that (g + 1)e + n must be even.

Remark 5.4 The number e of the surface P is bounded by e ≤ n/(g + 1). Let us consider a
genus g datum (P, R,L). The ruled surface comeswith the base genus gC and the invariant e,
which is the negative self-intersection number of C0. Now n ∈ Z is the number such that R
has bidegree (2g + 2, (g + 1)e + n), hence (g − 1)e ≡ n mod 2. If the section C0 of
the ruled surface does not belong to R then it is intersecting the branch divisor properly,
therefore R.C0 = n − (g + 1)e ≥ 0 and hence e ≤ n/(g + 1). Otherwise, since R is a
branch divisor which has no multiple components, the curve C0 intersects R � C0 properly,
i.e. (R � C0).C0 = n − ge ≥ 0, hence e ≤ n/g. Moreover, if e > n/(g + 1), then this
forces C0 to be a component of R.

5.3 Invariants

So far we have seen that we only need to consider the blow-up of all non-negligible points
to calculate the slope. Certain of these singularities correspond exactly to (−1)-curves in the
surface X̃ or in otherwords to isolated fixed points of the hyperelliptic involution of X . Given a
genus g datum (P, R,L), we always denote the minimal even resolution of R by ψ̃ : P̃ → P
and the associated double cover datum by (R̃, L̃). This datum defines a double cover θ̃ : X̃ →
P̃ and hence by composition a not necessarily relatively minimal fibration f̃ : X̃ → C . Its
minimal model is then a relatively minimal, hyperelliptic fibration f : X → C as shown in
Fig. 3. We say that the fibration f : X → C is associated to the genus g datum.

Lemma 5.5 ([3, page 183]) Let f̃ : X̃ → C be a hyperelliptic genus g fibration defined by a
genus g datum (P, R,L), where the branch divisor R has bidegree (2g + 2, (g + 1)e + n).
Let f : X → C be its minimal model and m be the number of vertical (−1)-curves in X̃ .
Then we have

(i) ω2
f = c21(X) − 8(g − 1)(gC − 1) = (2g − 2)n − 2

r∑
i=1

(ki − 1)2 − m,

(ii) χ f = χ(OX ) − (g − 1)(gC − 1) = 1
2 gn − 1

2

r∑
i=1

ki (ki − 1),

where ki :=
⌊
mpi
2

⌋
.

Remark 5.6 It is worth mentioning that our invariants of the fibration f do not depend on e
anymore, since we defined n in a way that e vanishes in any intersection. So, for example,
we have

K 2
P = 8(1 − gC ), R2 = 2(2g + 2)n and KP .R = (2g + 2)(2gC − 2) − 2n.
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Fig. 3 The hyperelliptic fibration
associated to a genus g datum

5.3.1 Negligible singularities

As just seen depend the invariants of f heavily on the multiplicity of singularities in R. The
idea of Xiao was now to cluster the singularities of R in two different types. Therefore, we
consider all singularities that are living on the same exceptional components, i.e. if pi ∈ Pi−1

and p j ∈ Pj−1 for j < i , such that ψ j ◦ · · · ◦ ψi−1(pi ) = p j . We recall that this means that
pi is infinitely near p j .

Definition 5.7 Let (P, R,L) be a genus g datum and let p ∈ R be a singularity of mul-
tiplicity mp . We call p a negligible singularity if mp ≤ 3 and for all pi infinitely near p
we have mpi ≤ 3. Consistently, we call a singularity that is not negligible a non-negligible
singularity.

Note that negligible singularities and simple singularities are the same. We can classify
them by using so-called A-D-E types. The description negligible comes from the fact that a
negligible singularity has no influence on the invariants of X̃ as we have just calculated in
Lemma 5.5.

Theorem 5.8 ([3, Theorem II.8.1]) Let p be a negligible singularity on the divisor R ⊆ P.
If m p = 2 then the singularity is in R locally of the form

Am : y2 + zm+1 = 0 where m ≥ 1.

If m p = 3 then the singularity is in R locally described by one of the following

Dm : y2z + zm−1 = 0 where m ≥ 4,

E6 : y3 + z4 = 0,

E7 : y3 + yz3 = 0,

E8 : y3 + z5 = 0.

Accordingly, we will speak of a (negligible) singularity of type Am , Dm , E6, E7 or E8. Let
us decompose the minimal even resolution ψ̃ into ψ̃ = ψ̂ ◦ ψ ′, where ψ ′ : P̃ → P̂ is the
blow-up of all negligible and ψ̂ : P̂ → P the blow-up of all non-negligible singularities. We
further denote by (R̂, L̂) the reduced even image of (R,L) in P̂ . Now the branch divisor R̂
is in a certain way ’smooth enough’ to construct the double cover (Fig. 4).
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Fig. 4 Negligible and non-negligible blow-up

Fig. 5 The resolution of the rational double points

Remark 5.9 The pair (R̂, L̂) is a double cover datum on P̂ . It therefore defines a double
cover θ̂ : X̂ → P̂ , where the surface X̂ might be singular. Singularities arise over the
singular points of R̂, i.e. over the negligible points. We assume that the double cover is
locally given by

(x, y, z) �→ (y, z),

and the singularity lies in the origin. Then Theorem 5.8 tells us that the surface singularities
are locally described by

Am : x2 + y2 + zm+1 = 0 where m ≥ 1,

Dm : x2 + y2z + zm−1 = 0 where m ≥ 4,

E6 : x2 + y3 + z4 = 0,

E7 : x2 + y3 + yz3 = 0,

E8 : x2 + y3 + z5 = 0.

We call such a singularity a rational double point of type Am , Dm , E6, E7 or E8. Note that
any negligible singularity p satisfies 2�mp

2 � = 2. Therefore the minimal even resolutionψ ′ :
P̃ → P̂ of R̂ describes now a unique resolution σ : X → X̂ of the rational double points
in X̂ as shown in Fig. 5.

Proposition 5.10 [3] The exceptional curve of the minimal resolution of a rational double
point of type Am, Dm, E6, E7 and E8 consists of a configuration of (−2)-curves. The index
of the type equals the number of (−2)-curves in the resolution.
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The fibrations f : X → C associated to a genus g datum is not necessarily semi-stable but
we can use a sufficient criterion.

Proposition 5.11 Let f : X → C be a semi-stable, hyperelliptic fibration and let (P, R,L)

be the corresponding genus g datum. Then R̂ contains as negligible singularities only sin-
gularities of type Am for m ≥ 1 and all ramification points in R̂ of the morphism R̂ → C
are simple ramification points.

Proof It is clear that all ramification points in R̂ must be simple. So let us assume that R̂
contains a negligible singularity. The resolution graph of any negligible singularity other than
of type Am contains a (−2)-curve in X that does intersect the other components in exactly
one point (see Remark 5.8). In this case the corresponding fiber of f is not semi-stable. ��
Example 5.12 ([5, Example 5.2]) Let us construct an example of a semi-stable hyperelliptic
fibration attaining equality in the lower slope bound. Let ϕ : C → P1 be a cover of degree n,
ramified over the branch points R ⊆ P1 and let u be an automorphism of P1 such that R
contains no fixed point of u but satisfies u(R) ⊆ R. We assume further that all ramification
points of ϕ are of index 2. Then in C × P1 we regard the two divisors �ϕ and �u◦ϕ , defined
by the two graphs of ϕ and u ◦ ϕ. Since the automorphism group of P1 is PGL(2, C), the
divisors are linear equivalent, i.e. OC×P1(�ϕ ∪ �u◦ϕ) = L2 for some L ∈ Pic(C × P1). We
can therefore construct a double cover X ′ → C × P1, ramified over �ϕ ∪ �u◦ϕ . We denote
with f ′ : X ′ → P1 the composition of the double cover and the second projection. For t ∈ P

1

the fiber ( f ′)−1(t) is a double cover of the curve C , ramified along the divisor ϕ−1(t) +
ϕ−1(u−1(t)). Since this divisor is almost everywhere reduced, except for the points in R and
the two fixed points of u, where it has multiplicity 2, the fiber has only rational singularities,
i.e. it is a stable curve. By the Riemann-Hurwitz formula we calculate the fiber genus as g =
2gC +n−1. Let X → X ′ be the canonical resolution of the singularities. These singularities
appear only over �ϕ ∩ �u◦ϕ , so if we consider the now semi-stable fibration f : X → P1,
we have |R| + 2 singular fibers.

Let us restrict to the case C = P1. The graph �ϕ is a divisor of type (n, 1) and therefore
we can calculate the self-intersection �2

ϕ = 2n. Since the canonical divisor is KP1×P1 =
p∗
1KP1 + p∗

2KP1 we get �ϕ.KP1×P1 = −2n − 2. By applying Lemma 5.5 we finally find the
invariants of the fibration:

χ f = 1 + (g − 1), ω2
f = 8 − 4n + 8(g − 1), and δ f = 4 + 4n + 4(g − 1).

Using the morphism ϕ of degree 4, defined by ϕ(t) = t2 + 1/t2 (as a quotient of P1

by Z/2Z × Z/2Z), we get a genus 3 fibration with |R| = 3 and we conclude that its speed
is L f = 2 and its slope λ f = 8/3.

Remark 5.13 In [4], Beauville referred to [5, Example 5.2] as an example of a semi-stable
genus 3 fibration with five singular fibers such that δ f = 40 without giving any further
details. If this were true then it would yield an example of high speed, contradicting Noether’s
formula. However, the number of double points of this fibration is δ f = 28.

5.4 Hyperelliptic fibrations with high speed

Using a genus g datum (see Definition 5.3), i.e. a branch divisor on a ruled surface, we can
construct interesting examples of hyperelliptic fibrations. As the invariants of the fibration,
namely ω2

f and χ f , depend only on the bidegree of the branch divisor and its type of sin-
gularities by Lemma 5.5, we can directly compute slope and speed and find examples with
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high speed. All examples here are constructed on the ruled surface P := P1 ×C , which has
invariant e = 0. The main theorem of this section is then the following.
Theorem 1.4 Let g ≥ 2 be a number. Then there are semi-stable, hyperelliptic fibrations f :
X → C of genus g with a speed of

L f >
g + 1

2
.

In particular there are semi-stable, hyperelliptic fibrations f with

(i) L f = 8
5 for g = 2,

(ii) L f = 8
3 for g = 3,

(iii) L f = g − � g+1
4 � for g ≥ 4 odd,

(iv) L f = g − g2−2g
2g+2 for g ≥ 4 even,

(v) L f = g − g
4 for g ≡ 0 mod 4.

Proof We will construct the particular examples for odd genus in Example 5.16, for even
genus g ≥ 4 in Example 5.20, for genus 2 in Example 5.21, for genus 3 in Example 5.17 and
for v) in Example 5.22. ��

The existence of a branched cover C → C̃ between curves with given branching data is
a non-trivial question, known as the Hurwitz existence problem. We follow here [35], which
provides a nice overview over this problem. As we are working over the base field C all
curves are in fact Riemann surfaces, hence in particular orientable.

Definition 5.14 Let C and C̃ be smooth curves, let m ≥ 0 and d ≥ 2 be integers and
let (di j ) j=1,...,mi be a partition of d . We call the 5-tuple (C, C̃,m, d, (di j )), where i =
1, . . . ,m, the branch datum of a candidate branched cover. We further associate the num-
ber m̃ = m1 + · · · + mn to such a datum.

We say that a branch datum is compatible, if the following two conditions hold

(i) 2 − 2gC − m̃ = d · (2 − 2gC̃ − m),
(ii) m · d − m̃ is even.

It is easy to see that any branched cover defines a compatible branch datum, but it is still
working process in which cases a compatible branch datum can actually realize a branched
cover, i.e. there is a branched cover C → C̃ of degree d branched over m points of C̃ , such
that the preimage of the i-th branch point consists of mi points with local degree (di j ). We
use here the following theorem.

Proposition 5.15 ([42, Proposition 5.2]) Let (C, C̃,m, d, (di j )) be a compatible branch
datum such that C̃ = P1 and one of the partitions (di j ) is given by (d) only. Then this datum
realizes a branched cover.

By Proposition 5.15 it is clear that P1 ∼= C ∪ {∞} has a ramified cover of degree n > 0
over itself, which is totally ramified at exactly two points. Let g ≥ 2 be a number, then there
exists a double cover a1 : P1 → P1 which is ramified at 1 and ∞ and a2 : P1 → P1 a cover
of degree g + 1, totally ramified at the two points of a−1

1 (0). We take the composition a :=
a2 ◦ b1 : P1 → P1, which is a (2g + 2 : 1)-cover over the projective line.
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Fig. 6 Genus g datum over ruled
surface

5.4.1 Odd genus

Example 5.16 Let g ≥ 3 be an odd number and let

(C,P1, 3, 4, ((4), (4), (2, 2)))

be a compatible branch datum. By Proposition 5.15, this branch datum is realizable, we
denote it by b : C → P1. We take the branch points at 0, 1 and ∞ in P1, whose preimages
have local degree ((4), (4), (2, 2)). We now consider the divisor R that is described by a
and b in P1 × C , namely

R = {(y, z) ∈ P1 × C |a(y) = b(z)} ⊆ P1 × C

and we look at the projection on the second component, i.e. on C .

Our divisor R has a bidegree of (2g + 2, 4) on the ruled surface pr2 : P1 × C → C (see
Fig. 6). The map pr2|R : R → P1 can be seen as the pullback of a under the base change b
and therefore the set of critical points on the projective line is exactly � := b−1({0, 1,∞}).
Moreover we then have s := |�| = 4.

Locally R is defined as a(y) = b(z) and so over b−1(1) the divisor R has g + 1 singular
points defined by y2 − z4 = 0, whereas over the two points of b−1(∞) there are g + 1
points defined by y2 − z2 = 0. This is precisely the definition of a singularity of type A3,
respectively of type A1 (see Theorem 5.8) and in particular these singularities are negligible.
The remaining two singularities are living over b−1(0) and are defined by yg+1 − z4 = 0.
Hence the even divisor R defines a genus g datum and therefore a fibration f : X → C
of genus g. The set of critical points, whose fibers are singular, is given by �. Let us recall
Lemma 5.5 which says that

χ f = χ(OX ) − (g − 1)(gC − 1) = 1

2
gn − 1

2

r∑
i=1

ki (ki − 1) ,

where ki :=
⌊
mpi
2

⌋
. Hence all we need to know to calculate the slope of this fibration is the

number of non-negligible singularities and their multiplicity. Let us focus on the two singular
points over b−1(0), locally defined by yg+1 − z4 = 0, hence of multiplicity four. We need
to apply an even blow-up ψ1 : P1 → P to these two singularities. We consider the blow-up
locally as C̃2 → C

2 centered at p1 = (0, 0) by

C̃2 = {(y, z), [u : v] ∈ C
2 × P1 | yv = zu}.
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In the chart u = 1 we get

yg+1 − y4v4 = y4(yg−3 − v4) = 0.

The component z4 = 0 is corresponding to 2�mp1
2 �E1 = 4E1, where E1 is the exceptional

divisor of the blow-up. The even inverse image R1 is by definition described locally by yg−3−
v4 = 0. If g = 3, then the even inverse image is smooth. If g = 5, then on the intersection
point of R1 and E1, namely on the point p2 = (0, 0), [0, 1], we have a unique singularity
of multiplicity two, more concretely a singularity of type A3. If g ≥ 7, we blow up further
the singularity of multiplicity four on R1 by ψ2 : P1 → P2, where we assume that R1 is
given by yg−3 − v4 = 0. We continue this process for both singular points of multiplicity 4
on R until the reduced inverse even image is smooth or all singular points living on the
reduced inverse even image are negligible. Let s4( f ) be the number of all such singularities
of multiplicity four, including infinitely near ones. Then by just counting we get

s4( f ) = 2 ·
(⌊

g + 1

4

⌋)
.

The resulting fibration is semi-stable by Proposition 5.11. Now we get χ f = 2g − 2k,

where k :=
⌊
g+1
4

⌋
. Note in addition that by the properties of a compatible branch datum we

get that 2gC − 2 + s = 4. Hence we calculate as speed L f = g − k.

Example 5.17 Let g = 3 and consider the compatible branch datum

(C,P1, 3, 3, ((3), (3), (3))).

Here C is a smooth curve of genus gC = 2 and we denote by b : C → P1 the corresponding
cover, branched over 0, 1 and ∞. We again take the divisor

R′ := {(y, z) ∈ P1 × C |a(y) = b(z)} ⊆ P1 × C

in the ruled surface defined by the projection pr2 : P1 × C → C . Let F0 be the fiber of pr2
over the point b−1(0), then the divisor R := R′ + F0 is of bidegree (8, 4) and induces a
semi-stable fibration f : X → C of genus 3. Over b−1(0) there are two singular points of
multiplicity four, whose infinitely near points are smooth. Hence we have

L f = 8

3
,

since 2gC − 2 + s = 3.

Example 5.18 Let g ≥ 2 be a number such that g ≡ 1 mod 4. Let b : P1 → P1 be a cover
of degree 4, ramified over the two points 0 and ∞. The divisor

R = {(y, z) ∈ P1 × P1|a(y) = b(z)} ⊆ P1 × P1

is an even divisor of bidegree (2g + 2, 4) of the ruled surface pr1 : P1 × P1 → P1 and
defines therefore a relatively minimal fibration f̃ : X → P1 of genus g. The number of
singular fibers is here s = 1+ 1+ 4 = 6. There are only two non-negligible singular points
over b−1(0), locally defined by yg+1 − z4 = 0. By blowing up we calculate

s4( f ) = 2 ·
⌊g
4

⌋

which implies

χ f = 2g − 2 ·
⌊g
4

⌋
.
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Note that the fibration is again semi-stable, hence we calculate as speed

L f = g −
⌊g
4

⌋
.

Example 5.19 Let g ≥ 7 be a number such that g ≡ 1 mod 6. We consider by b : P1 → P1

a cover of degree 6, totally ramified at 0 and ∞. The divisor

R = {(y, z) ∈ P1 × P1|a(y) = b(z)} ⊆ P1 × P1

is an even divisor of bidegree (2g + 2, 6) of the ruled surface pr1 : P1 × P1 → P1 and
defines therefore a relatively minimal fibration f : X̃ → P1 of genus g. The number of
singular fibers is here s = 1+ 1+ 6 = 8. There are only two non-negligible singular points
over the two points of b−1(0), locally defined by yg+1 − z6 = 0. As before we let s6( f )
be the number of all such singularities of multiplicity six, including infinitely near ones. By
blowing up we calculate

s6( f ) = 2 ·
⌊g
6

⌋

which implies

χ f = 3g − 6 ·
⌊g
6

⌋
.

Note that the fibration is again semi-stable, hence we calculate as speed

L f = g − 2 ·
⌊g
6

⌋
.

5.4.2 Even genus

Example 5.20 To construct a fibration of even genus g ≥ 4, we take the compatible branch
datum

(C,P1, 3, 2g + 2, ((g + 1, g + 1), (2g + 2), (2g + 2)))

which realizes a branched cover b : C → P1 by Proposition 5.15. Let 0, 1 and ∞ in P1 be
the branch points whose preimages have as local degree ((g+1, g+1), (2g+2), (2g+2)).
Now the branch divisor R is given by

R = {(y, z) ∈ P1 × C |a(y) = b(z)} ⊆ P1 × C

where again we consider the projection to the second component. Therefore R has a bidegree
of (2g + 2, 2g + 2) on the ruled surface pr2 : P1 × C → C and the set of critical points
is � := b−1({0, 1,∞}), with s := |�| = 4.

Again R is locally defined as a(y) = b(z) and so over b−1(1) and b−1(∞) the divisor R
has each g + 1 singular points defined by y2 − z2g+2 = 0. This is precisely the definition
of a singularity of type A2g+1. The remaining two singularities are living over the two
points of b−1(0) and are defined by yg+1 − zg+1 = 0. Again R is even and defines a
genus g datum, hence a relatively minimal fibration f : X → C of genus g. The set
of critical points, whose fibers are singular, is given by �. After applying an even blow-
up on the singularity yg+1 − zg+1 = 0, the even inverse image R1 is smooth. Hence the
singularity is of odd multiplicity g + 1 and neither the second component of a singularity of
type (g − 1 → g − 1) nor the first component of a singularity of type (g + 1 → g + 1).
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We say that this tuple of singular points is a singularity is of type sg and in particular we
get sg( f ) = 4. Now by Lemma 5.5 we get that

ω2
f = 2g2 + 8g − 12 and χ f = g2

2
+ 2g.

By the same argument as before 2gC − 2 + s = 2g + 2 and so in terms of slope and speed
we calculate

λ f = 4 − 24

g2 + 4g
and L f = g − g2 − 2g

2g + 2
.

Example 5.21 Let g = 2 and likewise to Example 5.21 we consider the branch datum

(C,P1, 3, 5, ((5), (5), (5)))

with the associated branched cover b : C → P1 and define

R′ := {(y, z) ∈ P1 × C |a(y) = b(z)} ⊆ P1 × C

as divisor on the ruled surface pr2 : P1 × C → C . Let F0 be the fiber of pr2 over the
point b−1(0). Then the divisor R := R′ + F0 is of bidegree (6, 6) and defines a semi-stable
fibration X → C . The divisor has two singular points of multiplicity three over b−1(0). By
applying the local even blow-up, the even inverse image R1 consists of two components, the
first is one copy of the exceptional curve and the latter the strict transform of R. On their
intersection point, namely on the point we have a unique singularity of multiplicity four. This
allows us to conclude χ f = 4 and therefore as speed

L f = 2 · χ f

2gC − 2 + s
= 2 · 4

5
= 8

5
.

Example 5.22 Let g ≡ 0 mod 4 and let

(C,P1, 3, 4, ((4), (4), (2, 2)))

be the same compatible branch datum as in Example 5.16 defining the same cover b : C →
P1. We also take as divisor in P := P1 × C here

R = {(y, z) ∈ P1 × C |a(y) = b(z)} ⊆ P1 × C .

Blowing evenly up k-times the two singularities defined by yg+1 − z4 = 0 resolves this
singularities, where

k :=
⌊
g + 1

4

⌋
.

Hence by the same calculation as before we get s4( f ) = 2 · (� g+1
2 �) and therefore

χ f = 2g − 2k as well as L f = g − k.
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