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Abstract
We prove new existence results for a nonlinear Helmholtz equation with sign-changing non-
linearity of the form

−�u − k2u = Q(x)|u|p−2u, u ∈ W 2,p
(
R

N
)

with k > 0, N ≥ 3, p ∈
[
2(N+1)

N−1 , 2N
N−2

)
and Q ∈ L∞(RN ). Due to the sign-changes of Q,

our solutions have infinite Morse-Index in the corresponding dual variational formulation.

Mathematics Subject Classification 35J20 · 35Q60

1 Introduction

Real-valued solutions of nonlinear Helmholtz equations of the form

− �u − k2u = g
(
x, |u|2) u, x ∈ R

N (1.1)

arise in the study of high-frequency time-harmonic solutions of the Klein-Gordon equation

∂2U

∂t2
− �U + mU = g

(
x, |U |2) U , m > 0, (t, x) ∈ R × R

N

which is an important model in the mathematical description of nonlinear wave propagation.
Indeed, plugging in the time-harmonic ansatz U (t, x) = eiωt u(x) for ω2 > m we find that
the real-valued profile function u : RN → R satisfies (1.1) with k2 = ω2 − m > 0. In other
words, nonlinear Helmholtz equations can be seen as the high-frequency counterparts of the
well-studied class of stationary nonlinear Schrödinger equations where ω2 < m is assumed.
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In the present article, we consider nonlinear Helmholtz equations of the form

− �u − k2u = Q(x)|u|p−2u on RN (1.2)

for p ∈
[
2(N+1)

N−1 , 2N
N−2

)
and k > 0 with a weight function Q ∈ L∞(RN ) that may change

sign.One of themain tools for proving the existence of solutions is the dual variationalmethod
that, in its classical form, relies on the nonnegativity of the potential Q. In the context of
Nonlinear Helmholtz equations this method was first implemented in a paper by Evéquoz
and Weth [4]. To highlight the role of the nonnegativity of Q we briefly recapitulate the
approach.

Instead of (1.2) one considers a reformulation as the integral equation

u = R
(
Q|u|p−2u

)
u ∈ L p

(
R

N
)

, (1.3)

where R is the real part of a resolvent type operator R, i.e., a right inverse of the Helmholtz
operator −� − k2 on RN . For f ∈ S(RN ) the operatorR is given byR( f ) = � ∗ f where

�(x) := i

4

(
k

2π |x |
) N−2

2

H (1)
N−2
2

(k|x |), x ∈ R
N \ {0}

is the fundamental solution of theHelmholtz equation associatedwith Sommerfeld’s outgoing
radiation condition∣∣∣∣∇�(x) − k i�(x)

x

|x |
∣∣∣∣ = o

(
|x | 1−N

2

)
, as |x | → ∞. (1.4)

Here, H (1)
N−2
2

denotes the Hankel function of the first kind and order N−2
2 . So the operator R

from (1.3) is given by R( f ) = � ∗ f where � := Re(�) satisfies

�(x) = −1

4

(
k

2π |x |
) N−2

2

Y N−2
2

(k|x |), x ∈ R
N \ {0}. (1.5)

The symbol Y N−2
2

= Im(H (1)
N−2
2

) stands for the Bessel function of the second kind of

order N−2
2 . It is known [7, Theorem 2.3] that R extends as a continuous linear map from

L p′
(RN ) → L p(RN ) precisely for p ∈ [ 2(N+1)

N−1 , 2N
N−2

]
. To explain this briefly notice that

the Fourier symbol of R is the tempered distribution (|ξ |2 − k2 − i0)−1. Its behaviour at
infinity ∼ |ξ |−2 is responsible for the upper bound 2N

N−2 whereas frequencies |ξ | ≈ k give

rise to the lower bounds given by the Stein–Tomas exponent pST := 2(N+1)
N−1 . Recall that the

Stein–Tomas inequality reads

‖ f̂ ‖L2(SN−1) ≤ ‖ f ‖
L

2(N+1)
N+3 (RN )

, N ≥ 2.

Here, SN−1 denotes the unit sphere in R
N and 2(N+1)

N+3 = p′
ST is the dual Stein–Tomas

exponent.
Being given these mapping properties of R and hence of R = Re(R) we introduce the

dual variable ũ := Q1/p′ |u|p−2u and observe that solutions of (1.3) are precisely the critical
points of the (dual) energy functional I : L p′

(RN ) → L p(RN ) given by

I (ũ) := 1

p′ ‖ũ‖p′
p′ − 1

2

∫

RN

ũKũ dx .

123



Dual variational methods for a nonlinear Helmholtz equation… Page 3 of 13 133

Here, K : L p′
(RN ) → L p(RN ), ũ → Q

1
p R(Q

1
p ũ) is a symmetric operator in the sense of

∫

RN

f Kg dx =
∫

RN

g K f dx for all f , g ∈ L p′ (
R

N
)

, (1.6)

see [4, Lemma 4.1]. We point out that the proof of this fact uses that Q is nonnegative. Under
the additional assumption that Q vanishes at infinity, one obtains that I is an odd functional
of class C1 that has the Mountain Pass Geometry and satisfies the Palais-Smale Condition.
So the existence of an unbounded sequence of solutions to (1.3) follows from the Symmetric
Mountain Pass Theorem. Inverting the transformation u → ũ one thus obtains an unbounded
sequence of solutions to the nonlinear Helmholtz equation (1.2). This is the strategy proposed
by Evéquoz and Weth [4] for the focusing nonlinear Helmholtz equation where Q ≥ 0. We
refer to [9] for analogous results in the defocusing case Q ≤ 0, where the dual variational
approach was implemented for the dual variable ũ := |Q|1/p′ |u|p−2u. In view of these two
results it is natural to ask for a dual variational approach work in the intermediate case of
sign-changing Q. In this paper, we provide a solution for this problem.

To treat sign-changing coefficients Q ∈ L∞(RN ) we have to come up with a new idea to
make the dual variational approach work. We write Q = Q+ − Q− where Q± := |Q|1A±
and

A+ := {Q > 0}, A− := {Q ≤ 0}. (1.7)

In fact we will consider Qλ := λQ+ − Q− for λ > 0 in the following. Our main idea is
to introduce the dual variables (φ, ψ) ∈ L p′

(A+) × L p′
(A−) associated with (u|A+ , u|A−)

and to derive a coupled system of nonlinear integral equations the solutions of which are
precisely the critical points of an associated strongly indefinite dual energy functional. We
will see that the indefiniteness comes from the presence of Q− and thus vanishes in the
case of a nonnegative function Q ≥ 0. In particular, the critical points of this dual energy
functional will have infinite Morse index, which clearly distinguishes these solutions from
the dual bound and ground states obtained in [4] in the case Q ≥ 0. We will explain the dual
variational framework in detail in Sect. 2. Our conditions for the existence of critical points

involve the linear operator K : L p′
(RN ) → L p(RN ), f → |Q| 1p R(|Q| 1p f ) as well as the

numbers

α := max‖φ‖p′=1,
supp(φ)⊂A+

∫

RN

φKφ dx, β := max‖φ‖p′=‖ψ‖p′=1,
supp(φ)⊂A+, supp(ψ)⊂A−

∫

RN

φKψ dx . (1.8)

Since we will assume K to be compact, both values are indeed attained. Moreover we have
β ≥ 0 and [4, Lemma 4.2(ii)] gives α > 0 once we assume that A+ has positive measure,
i.e., Q+ �≡ 0. Our main result reads as follows.

Theorem 1.1 Let p ∈ [ 2(N+1)
N−1 , 2N

N−2 ) and Q ∈ L∞(RN ), Q+ �≡ 0. Moreover assume that

K : L p′ (
R

N
)

→ L p
(
R

N
)

is compact and
∫

RN

ψKψ dx ≥ 0 for all ψ ∈ L p′
(A−).(1.9)

Then for almost allλ > λ0 := (2βα−1)p there is a nontrivial strong solution u ∈ W 2,q(RN )∩
C1,γ (RN ) for all q ∈

(
2N

N−1 ,∞
)

, γ ∈ (0, 1) of

− �u − k2u = Qλ(x)|u|p−2u on R
N . (1.10)
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Theproof relies on a combination of a saddle-point reduction and the abstractmonotonicity
trick by Jeanjean–Toland [6], which provides bounded Palais-Smale sequences (only) for
almost all λ > λ0. It would clearly be desirable to extend our result to all λ > λ0, but related
a priori bounds seem to be out of reach. Notice also that [9, Theorem 1.4] suggests the
existence of nontrivial solutions also for small λ > 0, possibly assuming the set {Q > 0} to
be small enough and following adifferent variational approach.Let us point out thatλ0 is small
provided that the number β, which is the same as the operator norm ‖1A+K(1A−)‖p′→p ,

is small compared to α > 0. In the case p >
2(N+1)

N−1 this can be achieved by considering
coefficient functions Q such that dist(A−, A+) is large enough, see [5, Lemma 2.6].

In the following Corollary, we show that the abstract conditions (1.9) hold for a reasonable
class of sign-changing functions Q ∈ L∞(RN ). If for instance Q vanishes at infinity, then
[4, Lemma 4.1(ii)] applied to |Q| implies that K : L p′

(RN ) → L p(RN ) is compact. It
is less immediate to verify the non-negativity assumption on the bilinear form (1.9). From
[2, Corollary 5.4] we infer that this condition holds for measurable sets A− with small
enough diameter. To be more precise, if y N−2

2
denotes the first (positive) zero of the Bessel

function Y N−2
2
, then the condition diam(A−) ≤ k−1y N−2

2
is sufficient. To put this condition

into perspective, note that for N = 3 we have Y 1
2
(t) = −

√
2
π t cos t , thus y1/2 = π/2 and

y N−2
2

> y1/2 for N > 3 (see [1], [Section 9.5]). We thus conclude as follows.

Corollary 1.2 Assume p ∈ [ 2(N+1)
N−1 , 2N

N−2 ) and Q ∈ L∞(RN ), Q+ �≡ 0. Moreover assume

lim
R→∞ esssup|x |≥R |Q(x)| = 0 and diam (A−) ≤ k−1y N−2

2
. (1.11)

Then for almost all λ > λ0 := (2βα−1)p there is a nontrivial strong solution u ∈
W 2,q(RN ) ∩ C1,γ (RN ) for all q ∈

(
2N

N−1 ,∞
)

and γ ∈ (0, 1) of (1.10).

The regularity results in Theorem 1.1 and Corollary 1.2 are direct consequences of [4,
Lemma 4.3] and of the iteration procedure from Step 3 in the proof of [8, Theorem 1]. Notice
that [8, Theorem 1] provides solutions to far more general Nonlinear Helmholtz equations
than (1.2) regardless of whether sign-changes occur or not, but the constructed solutions are
small. This result relies on a fixed point approach. Let us also mention [3] where nontrivial
solutions of Nonlinear Helmholtz equations are constructed for rather general and possibly
sign-changing nonlinearities vanishing identically outside some compact subset of RN . Our
method is entirely different from any of these approaches.

This paper is organzied as follows: In Sect. 2 we introduce our basic tools and develop the
dual variational framework by reformulating the indefinite Nonlinear Helmholtz equation as
a coupled system of integral equations. Then we prove that nontrivial critical points of the
associated energy functional Jλ are indeed nontrivial solutions u ∈ L p(RN ) of the integral
equation u = R(Qλ|u|p−2u). This motivates the search for critical points of Jλ. In Sect. 3
we perform the saddle-point reduction of (φ, ψ) → Jλ(φ,ψ) leading to a reduced function
J̃λ that depends on φ only. In Sect. 4 we establish the existence of bounded Palais-Smale
sequences for these reduced functionals for almost all λ > λ0. As mentioned above, this step
entirely relies on the monotonicity trick by Jeanjean and Toland [6]. Finally, we combine all
the auxiliary results to prove Theorem 1.1 and Corollary 1.2 in Sect. 5.

Let us close this introduction by fixing some notation: Throughout the paper we denote
by Br (x) the open ball in R

N with radius r > 0 and center at x ∈ R
N . Moreover, we set

Br = Br (0) for any r > 0. For 1 ≤ s ≤ ∞, we abbreviate the standard norm on Ls(RN ) by
‖·‖s . The Schwartz-class of rapidly decreasing functions on R

N is denoted by S(RN ). For
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any p ∈ (1,∞) we always denote by p′ := p
p−1 the Hölder conjugate of p. The indicator

function of a measurable set B ⊂ R
N is 1B . By diam (B) we always denote the diameter

of a set. We will always use the symbols φ,ψ to denote L p′
(A+)− and L p′

(A−)-functions
that are continued trivially to the whole of RN .

2 Dual variational formulation

In this section we will formulate a variational framework to the Eq. (1.10). We recall from the
introduction that solutions of our problem are obtained as solutions of the integral equation

u = R(Qλ|u|p−2u), u ∈ L p
(
R

N
)

. (2.1)

where R( f ) = � ∗ f for the function � introduced in (1.5) and

‖R( f )‖L p(RN ) ≤ C ‖ f ‖L p′
(RN ) (2.2)

for all p ∈
[
2(N+1)

N−1 , 2N
N−2

]
and some constant C > 0.

To obtain the dual variational formulation of (2.1) we introduce v := 1A+u and w := 1A−u.
Then (2.1) is equivalent to the system

v = λ1A+R
[
Q+|v|p−2v

] − 1A+R
[
Q−|w|p−2w

]
,

w = λ1A−R
[
Q+|v|p−2v

] − 1A−R
[
Q−|w|p−2w

]
.

Setting

φ := λQ1/p′
+ |v|p−2v ∈ L p′

(A+), ψ := Q1/p′
− |w|p−2w ∈ L p′

(A−)

we deduce

λ1−p′ |φ|p′−2φ = Q1/p
+ v

= λQ1/p
+ R

[
Q+|v|p−2v

] − Q1/p
+ R

[
Q−|w|p−2w

]

= Q1/p
+ R

[
Q1/p

+ φ
]

− Q1/p
+ R

[
Q1/p

− ψ
]

= Q1/p
+ R

[|Q|1/p(φ − ψ)
]
.

Similarly

|ψ |p′−2ψ = Q1/p
− R

[|Q|1/p(φ − ψ)
]
.

In terms of the Birman-Schwinger operatorK : f → |Q| 1p R(|Q| 1p f
)
introduced above this

can be reformulated as

λ1−p′ |φ|p′−2φ = 1A+K(φ − ψ),

|ψ |p′−2ψ = 1A−K(φ − ψ)

and therefore carries a variational structure through the (dual) energy functional Jλ on
L p′

(A+) × L p′
(A−) given by

Jλ(φ,ψ) := λ1−p′

p′ ‖φ‖p′
p′ − 1

p′ ‖ψ‖p′
p′ − 1

2

∫

RN

(φ − ψ)K(φ − ψ) dx . (2.3)
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This functional is of class C1 with

∂1 Jλ(φ,ψ)[h1] =
∫

RN

(
λ1−p′ |φ|p′−2φ − K(φ − ψ)

)
h1 dx, h1 ∈ L p′

(A+)

∂2 Jλ(φ,ψ)[h2] =
∫

RN

(
−|ψ |p′−2ψ − K(φ − ψ)

)
h2 dx, h2 ∈ L p′

(A−).

Here ∂1, ∂2 stand for partial derivatives with respect to φ and ψ . For this reason we will look
for critical points of Jλ. These solve the integral equation (2.1). Thus by the regularity results
[4, Lemma 4.3] and [8, p.13] these are indeed strong solutions to our original problem (1.10).

Proposition 2.1 Let (φ, ψ) ∈ L p′
(A+) × L p′

(A−) \ {(0, 0)} be a critical point of Jλ where
λ > 0. Then

u := R
(
|Q| 1p (φ − ψ)

)
∈ L p

(
R

N
)

is a nontrivial solution of (2.1).

Proof Let (φ, ψ) ∈ L p′
(A+) × L p′

(A−) \ {(0, 0)} be a critical point of Jλ. Thus we have

λ1−p′ |φ|p′−2φ = 1A+K(φ − ψ), |ψ |p′−2ψ = 1A−K(φ − ψ)

as well as

Qλ|u|p−2u = (λ1A+ − 1A− )|Q||u|p−2u

= (λ1A+ − 1A− )|Q| 1
p · ||Q| 1

p u|p−2 · |Q| 1
p u

= (λ1A+ − 1A− )|Q| 1
p · ||Q| 1

p R
[
|Q|1/p(φ − ψ)

]
|p−2 · |Q| 1

p R
[
|Q|1/p(φ − ψ)

]

= (λ1A+ − 1A− )|Q| 1
p · |K [φ − ψ] |p−2 · K [φ − ψ]

= (λ1A+ − 1A− )|Q| 1
p ·

∣∣∣λ1−p′ |φ|p′−2φ + |ψ |p′−2ψ

∣∣∣
p−2 ·

(
λ1−p′ |φ|p′−2φ + |ψ |p′−2ψ

)

= (λ1A+ − 1A− )|Q| 1
p ·

(
λ(1−p′)(p−1)φ + ψ

)

= |Q| 1
p · (φ − ψ) .

Applying R then gives R
(
Qλ|u|p−2u

) = R
(
|Q| 1p (φ − ψ)

)
= u. Hence u solves (2.1). ��

So we conclude that it remains to find nontrivial critical points of the functionals Jλ for as
many λ > 0 as possible. This will be achieved with the Mountain Pass Theorem for families
of C1-functionals by Jeanjean and Toland [6].

3 Saddle-point reduction

In this section we perform the saddle-point reduction of Jλ with respect to the ψ-variable.
To this end, we prove that for any fixed φ ∈ L p′

(A+) the functional ψ → Jλ(φ,ψ) attains
its maximum at some uniquely defined function in L p′

(A−) that we will call Z(φ) in the
following. We shall see that the positivity assumption

∫
RN

ψKψ dx ≥ 0 for all ψ ∈ L p′
(A−)
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ensures that the functionalψ → Jλ(φ,ψ) is strictly concave so that the global maximization
with respect to ψ is the only reasonable approach to perform a saddle point reduction. We
introduce the reduced functional J̃λ : L p′

(A+) → R via

J̃λ(φ) := sup
ψ∈L p′

(A−)

Jλ(φ,ψ). (3.1)

Proposition 3.1 Assume thatK : L p′
(RN ) → L p(RN ) is compact and that

∫
A−

ψKψ dx ≥ 0

for all ψ ∈ L p′
(A−). Then for every φ ∈ L p′

(A+) there exists a unique Z(φ) ∈ L p′
(A−)

such that for all λ > 0 we have

J̃λ(φ) = Jλ(φ, Z(φ)).

Moreover:

(i) For any φ ∈ L p′
(A+) the corresponding maximizer Z(φ) satisfies

‖Z(φ)‖p′ ≤ (
p′β ‖φ‖p′

) 1
p′−1 (3.2)

where β is defined in (1.8).
(ii) The map Z : L p′

(A+) → L p′
(A−) is continuous.

(iii) The reduced functional J̃λ : L p′
(A+) → R is of class C1 with derivative

J̃ ′
λ[h] = ∂1 Jλ(φ, Z(φ))[h].

Proof We first establish the existence of a maximizer. So fix φ ∈ L p′
(A+) and con-

sider a maximizing sequence (ψn)n ⊂ L p′
(A−). Using Jλ(φ, 0) ≤ sup

ψ∈L p′
(A−)

Jλ(φ,ψ) =
Jλ(φ,ψn) + o(1) as n → ∞ we obtain

o(1) ≤ − 1

p′ ‖ψn‖p′
p′ +

∫

RN
φKψn − 1

2

∫

RN
ψnKψn ≤ − 1

p′ ‖ψn‖p′
p′ + β‖φ‖p′ ‖ψn‖p′ (n → ∞).

Here we used the nonnegativity assumption on K as well as (1.8). Hence,

‖ψn‖p′ ≤ (p′β‖φ‖) 1
p′−1 + o(1) (n → ∞), (3.3)

so (ψn)n is bounded. Passing to a subsequence we find ψ∗ ∈ L p′
(A−) such that ψn⇀ψ∗ in

L p′
(A−) as n → ∞. Using the compactness of K and the weak lower semicontinuity of the

norm we find

sup
ψ∈L p′

(A−)

Jλ(φ,ψ)

= λ1−p′

p′ ‖φ‖p′
p′ − 1

p′ ‖ψn‖p′
p′ − 1

2

∫

RN
φKφ dx +

∫

RN
φKψn dx − 1

2

∫

RN
ψnKψn dx + o(1)

= λ1−p′

p′ ‖φ‖p′
p′ − 1

p′ ‖ψn‖p′
p′ − 1

2

∫

RN
φKφ dx +

∫

RN
φKψ∗ dx − 1

2

∫

RN
ψ∗Kψ∗ dx + o(1)

≤ λ1−p′

p′ ‖φ‖p′
p′ − 1

p′ ‖ψ∗‖p′
p′ − 1

2

∫

RN
φKφ dx +

∫

RN
φKψ∗ dx − 1

2

∫

RN
ψ∗Kψ∗ dx + o(1)

= Jλ(φ,ψ∗) + o(1).
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Hence the supremum is attained at ψ∗. Since equality must hold in the above estimate we
conclude ‖ψn‖p′ → ‖ψ∗‖p′ , whence ψn → ψ∗ in L p′

(A−) as n → ∞. This shows the
existence of a maximizer satisfying the estimate stated in (i). So (i) is proved once we have
established the uniqueness of the maximizer.

To this end assume that ψ∗, ψ† ∈ L p′
(A−) are maximizers. Then we have

0 ≤ 1

2
Jλ(φ,ψ∗) + 1

2
Jλ(φ,ψ†) − Jλ

(
φ,

1

2
(ψ∗ + ψ†)

)

= 1

p′

(∥∥∥∥
ψ∗ + ψ†

2

∥∥∥∥
p′

p′
− 1

2
‖ψ∗‖p′

p′ − 1

2
‖ψ†‖p′

p′

)

+ 1

2

(∫

RN

ψ∗ + ψ†

2
K

[
ψ∗ + ψ†

2

]
dx − 1

2

∫

RN
ψ∗Kψ∗ dx − 1

2

∫

RN
ψ†Kψ† dx

)

= 1

p′

(∥∥∥∥
ψ∗ + ψ†

2

∥∥∥∥
p′

p′
− 1

2
‖ψ∗‖p′

p′ − 1

2
‖ψ†‖p′

p′

)
− 1

8

∫

RN
(ψ∗ − ψ†)K[ψ∗ − ψ†] dx

≤ 1

p′

(∥∥∥∥
ψ∗ + ψ†

2

∥∥∥∥
p′

p′
− 1

2
‖ψ∗‖p′

p′ − 1

2
‖ψ†‖p′

p′

)

≤ 0,

where we have used the nonnegativity condition in the second last step and the convexity
of z → |z|p′

in the last step. So we have equality in each estimate and conclude ψ∗ = ψ†.
Note that the maximizer does not depend on λ since the only λ-dependent term in Jλ(φ,ψ)

is λ1−p′
p′ ‖φ‖p′

p′ , which is independent of ψ .

We now prove (ii), i.e., the continuity of the map Z : Assume φn → φ in L p′
(A+) and

let (ψn)n := (Z(φn))n ⊂ L p′
(A−) be the associated maximizers. By (3.3), the sequence

(ψn)n is bounded and after passing to a subsequence we may assume ψn⇀ψ0 in L p′
(A−)

as n → ∞. Arguing as above we deduce

lim sup
n→∞

J̃λ(φn) = lim sup
n→∞

Jλ(φn, ψn) = lim sup
n→∞

Jλ(φ,ψn) ≤ Jλ(φ,ψ0) ≤ J̃λ(φ) (3.4)

using weak lower semicontinuity and lim inf
n→∞ ‖ψn‖p′ ≥ ‖ψ0‖p′ . On the other hand, with the

special choice ψ = Z(φ) we obtain

lim inf
n→∞ J̃λ(φn) ≥ Jλ(φ,ψ) = Jλ(φ, Z(φ)) = J̃λ(φ). (3.5)

Combining both estimates gives ‖ψn‖p′ → ‖ψ0‖p′ as well as J̃λ(φn) → J̃λ(φ) as n → ∞.
Thus we have equality in (3.4), (3.5). Since maximizers are unique, we obtain ψ0 = Z(φ)

and in particular Z(φn) = ψn → ψ0 = Z(φ0) in L p′
(A−) as n → ∞.
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We are left to prove (iii). Let h ∈ L p′
(A+) be arbitrary. We can estimate the difference

quotients as follows:

lim inf
τ→0

J̃λ(φ + τh) − J̃λ(φ)

τ
≥ lim inf

τ→0

Jλ(φ + τh, Z(φ)) − Jλ(φ, Z(φ))

τ

= lim inf
τ→0

∫ 1

0
∂1 Jλ(φ + τσh, Z(φ))[h] dσ

= ∂1 Jλ(φ, Z(φ))[h],

lim sup
τ→0

J̃λ(φ + τh) − J̃λ(φ)

τ
≤ lim sup

τ→0

Jλ(φ + τh, Z(φ + τh)) − Jλ(φ̃, Z(φ + τh))

τ

= lim sup
τ→0

∫ 1

0
∂1 Jλ

(
φ∗ + τσh, Z(φ + τh)

) [h] dσ
= ∂1 Jλ(φ, Z(φ))[h].

Here we used that Z is continuous and that ∂1 Jλ is continuous, see [10, Proposition 9]
for a similar computation. We conclude that J̃λ is Gâteaux-differentiable with continuous
derivative φ → ∂1 Jλ(φ, Z(φ))[·], see Proposition 3.1 (iii). Hence, the reduced functional J̃λ

is continuously (Fréchet-)differentiable with

J̃ ′
λ(φ)[h] = ∂1 Jλ(φ, Z(φ))[h] ∀h ∈ L p′

(A+)

as claimed. ��
Notice that the condition

∫
RN ψKψ dx ≥ 0 is also necessary for the existence of a global

maximizer of ψ → Jλ(φ,ψ) because otherwise this functional is unbounded from above.

4 Palais–Smale sequences for the reduced functional

In view of the results of the previous sections, we obtain a solution to our problem by proving
the existence of a nontrivial critical point of the reduced functional J̃λ : L p′

(A+) → R

introduced in (3.1). This will be done via Mountain-pass techniques for monotone families
of functionals originating from the work of Jeanjean and Toland [6].

Definition 4.1 Let X be a Banach space, M ⊂ R a compact interval. Then the family (Iν)ν∈M

of C1-functionals on X is said to have the Mountain Pass Geometry if there exist v1, v2 ∈ X
such that for all ν ∈ M it holds

cν := inf
γ∈�

sup
t∈[0,1]

Iν(γ (t)) > max{Iν(v1), Iν(v2)},

where � := {γ ∈ C([0, 1], X) : γ (0) = v1, γ (1) = v2}.
Theorem 4.2 (Jeanjean, Toland) [6, Theorem 2.1] Assume that X is a Banach space, M ⊂ R

a compact interval and (Iν)ν∈M a family of C1-functionals on X having the Mountain Pass
Geometry. Assume further that (Iν)ν∈M has the following property:

For every sequence (νn, φn) ∈ M × X with νn ↗ ν∗ ∈ M and with (H)

− Iν∗(φn), Iνn (φn),
Iνn (φn) − Iν∗(φn)

ν∗ − νn
bounded from above,

the sequence (φn) is bounded itself, and lim sup
n→∞

(Iν∗(φn) − Iνn (φn)) ≤ 0.
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Then for almost all ν ∈ M there is a bounded Palais–Smale sequence (BPS) for Iν at the
level cν .

We shall apply this result to X = L p′
(A+) and the family of C1-functionals Iλ := J̃λ :

X → R. We first verify the Mountain Pass Geometry for parameters λ ∈ (λ0,∞) where
λ0 = (2βα−1)p . Let us recall that α, β were defined as

α := max‖φ‖p′=1,
supp(φ)⊂A+

∫

RN

φKφ dx, β := max‖φ‖p′=‖ψ‖p′=1,
supp(φ)⊂A+, supp(ψ)⊂A−

∫

RN

φKψ dx .

Proposition 4.3 Let K : L p′
(RN ) → L p(RN ) be compact and assume

∫
RN

ψKψ dx ≥ 0

for all ψ ∈ L p′
(A−). Then, for any given compact subinterval M ⊂ (λ0,∞), the family of

functionals ( J̃λ)λ∈M has the Mountain Pass Geometry according to Definition 4.1.

Proof For λ ∈ M we define rλ := (λp′−1α)1/(p′−2). Then we have

inf‖φ‖p′=rλ

J̃λ(φ) = inf‖φ‖p′=rλ

sup
ψ∈L p′

(A−)

Jλ(φ,ψ) ≥ inf‖φ‖p′=rλ

Jλ(φ, 0)

= inf‖φ‖p′=rλ

λ1−p′

p′ ‖φ‖p′
p′ − 1

2

∫

RN
φKφ dx

= λ1−p′

p′ r p′
λ − α

2
r2λ = α

(
1

p′ − 1

2

)
(λp′−1α)

2
p′−2

> 0.

On the other hand, we have

J̃λ(0) = sup
ψ∈L p′

(A−)

Jλ(0, ψ) = sup
ψ∈L p′

(A−)

[
− 1

p′ ‖ψ‖p′
p′ − 1

2

∫

RN
ψKψ dx

]
= 0.

According to Definition 4.1 it therefore remains to find some φ∗ ∈ L p′
(A+) with ‖φ∗‖p′ ≥

rλ0 such that J̃λ0(φ
∗) ≤ 0 holds.Notice that in this casewe actually have J̃λ(φ

∗) < J̃λ0(φ
∗) ≤

0 for all λ ∈ M ⊂ (λ0,∞). To achieve this we estimate J̃λ0 from above as follows

J̃λ0(φ) = Jλ0(φ, 0) − 1

p′ ‖Z(φ)‖p′
p′ +

∫

RN
φK(Z(φ)) − 1

2

∫

RN
Z(φ)K(Z(φ))

≤ Jλ0(φ, 0) − 1

p′ ‖Z(φ)‖p′
p′ + β‖φ‖p′ ‖Z(φ)‖p′

≤ Jλ0(φ, 0) + β p

p
‖φ‖p

p′

where we have used that max
c≥0

(
− cp′

p′ + β‖φ‖p′c
)

= β p

p ‖φ‖p
p′ . We choose φ∗ = Rφ0 where

the function φ0 ∈ L p′
(A+), ‖φ0‖p′ = 1 attains the maximum α = ∫

RN φ0Kφ0 dx > 0. Then
the choice R := ( 12αβ−p)1/(p−2) yields after some computations (recall λ0 = (2βα−1)p)

‖φ∗‖p′ = R =
(
1

2
αβ−p

) 1
p−2 ≥

(
λ

p′−1
0 α

) 1
p′−2

>
(
λp′−1α

) 1
p′−2 = rλ for all λ ∈ M .

123



Dual variational methods for a nonlinear Helmholtz equation… Page 11 of 13 133

Using again the explicit formulas for R, λ0 we find

J̃λ0(Rφ0) ≤ Jλ0(Rφ0, 0) + β p R p

p

= λ
1−p′
0

p′ R p′ − α

2
R2 + β p

p
R p

= R p′

p′ ·
(

λ
1−p′
0 − pα

2(p − 1)
R2−p′ + β p

p − 1
R p−p′

)

= R p′

p′ ·
(

λ
1−p′
0 − 1

2
αR2−p′

)

= R p′

p′ ·
(

(2βα−1)
− p

p−1 − 1

2
α ·

(
1

2
αβ−p

) 1
p−1

)

= 0

and thus the claim holds with v1 = 0 and v2 = φ∗ = Rφ0. ��

Having established the Mountain Pass Geometry of our functionals we now verify the
condition (H) in order to use Theorem 4.2

Proposition 4.4 For any compact subinterval M ⊂ (λ0,∞) the family of C1-functionals
( J̃λ)λ∈M satisfies the condition (H).

Proof Consider a sequence (φn, λn) ∈ L p′
(A+) × M with λn ↗ λ∗ and

− J̃λ∗(φn) ≤ C, J̃λn (φn) ≤ C,
J̃λn (φn) − J̃λ∗(φn)

λ∗ − λn
≤ C

for all n ∈ N. Then we have

C ≥ J̃λn (φn) − J̃λ∗(φn)

λ∗ − λn
= λ

1−p′
n − λ

1−p′
∗

λ∗ − λn
‖φn‖p′

p′

=
(
(p′ − 1)λ−p′

∗ + o(1)
)

‖φn‖p′
p′ (n → ∞)

So we conclude that (φn) is bounded. Furthermore, λn → λ∗ > 0 gives

lim sup
n→∞

(Iλ∗(φn) − Iλn (φn)) = lim sup
n→∞

(λ
1−p′
n − λ

1−p′
∗ )‖φn‖p′

p′ = 0,

which is all we had to show. ��

We thus conclude that Theorem 4.2 applies in our context and yields BPS sequences for J̃λ

at the corresponding Mountain pass levels cλ for almost all λ ∈ (λ0,∞). From the existence
of BPS sequences we deduce rather easily the existence of critical points at the corresponding
Mountain Pass level.

Proposition 4.5 Let K : L p′
(RN ) → L p(RN ) be compact and assume

∫
RN

ψKψ dx ≥ 0 for

all ψ ∈ L p′
(A−). Then for all λ ∈ (λ0,∞) every BPS sequence of J̃λ at its Mountain Pass

level cλ converges to a critical point of J̃λ at the level cλ.
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Proof Let (φ j ) j in L p′
(A+)be aBPS sequence for J̃λ, i.e., J̃λ(φ j ) → c > 0 and J̃ ′

λ(φ j ) → 0.
Wemay thus assume w.l.o.g. φ j⇀φ∗. Moreover, Proposition 3.1 (i) implies the boundedness
of (ψ j ) j := (Z(φ j )) j and hence w.l.o.g. also weak convergence. For all h ∈ L p′

(A+) we
then have, in view of the formula for J̃ ′

λ from Proposition 3.1 (iii),

∣∣∣∣
∫

RN
|φ j |p′−2φ j h − |φk |p′−2φkh dx

∣∣∣∣

=
∣∣∣∣ J̃ ′

λ(φ j )h − J̃ ′
λ(φk)h +

∫

RN
hK[φ j − φk] dx −

∫

RN
hK[ψ j − ψk] dx

∣∣∣∣
≤ ‖h‖p′ ·

[
‖ J̃ ′

λ(φ j )‖ + ‖ J̃ ′
λ(φk)‖ + ‖K[φ j − φk]‖p + ‖K[ψ j − ψk]‖p

]

= ‖h‖p′ · o(1) ( j, k → ∞).

We infer that (|φ j |p′−2φ j ) j converges strongly in L p(A+). By uniqueness of weak limits,
we infer |φ j |p′−2φ j → |φ∗|p′−2φ∗ strongly in L p(A+) and hence in particular ‖φ j‖p′ →
‖φ∗‖p′ . This finally implies φ j → φ∗ strongly in L p′

(A+). A standard computation finally
shows J̃λ(φ

∗) = cλ as well as J̃ ′
λ(φ

∗) = 0. ��

5 Proof of Theorem 1.1 and Corollary 1.2

We finally combine all auxiliary results to prove Theorem 1.1.

Proof of Theorem 1.1 From Proposition 2.1 and Proposition 3.1 we infer that for almost all
λ ∈ (λ0,∞) a nontrivial solution u ∈ L p(RN ) of the nonlinear Helmholtz equation (1.10) is
found oncewe have proved the existence of nontrivial critical points of the reduced functional
J̃λ for almost all λ ∈ M where M is an arbitrary compact subinterval of (λ0,∞). From
Proposition 4.3 we infer that the family ( J̃λ)λ∈M has theMountain Pass Geometry.Moreover,
by Proposition 4.4, condition (H) holds. So Theorem 4.2 yields for almost all λ ∈ M a BPS
sequence for J̃λ at the corresponding Mountain Pass level. By Proposition 4.5 each of these
BPS sequences converges to a critical point φλ of J̃λ at the Mountain Pass level. Since this
critical point is necessarily nontrivial, we have thus obtained the desired claim for L p(RN )-
solutions of (1.10). From [4, Lemma 4.3] we infer that each of these solutions belongs to
W 2,q(RN ) ∩ C1,α(RN ) for all p ≤ q < ∞ and α ∈ (0, 1). Arguing as in Step 3 and Step 4
[8, p.13] one even obtains that these solutions belong to W 2,q(RN ) for all q ∈ ( 2N

N−1 , p). In
particular, these solutions are strong solutions of (1.10), which finishes the proof. ��

Proof of Collorary 1.2 In order to apply Theorem 1.1 we show that (1.11) implies (1.9). In the
special case k = 1 the compactness of K was shown in Lemma 4.2 in [4]. So the general
case follows by rescaling. It therefore remains to show that δ := diam (A−) ≤ k−1y N−2

2

implies
∫
RN

ψKψ dx ≥ 0 for all ψ ∈ L p′
(A−). Due to (2.2), K = |Q|1/pR(|Q|1/p·) and

Q ∈ L∞(RN ) it suffices to prove

∫

RN

ψRψ dx ≥ 0, for all ψ ∈ S(A−). (5.1)
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Using that x, y ∈ A− implies x − y ∈ Bδ we infer from Corollary 5.4 in [2]
∫

RN

ψRψ dx =
∫

RN

ψ[1Bδ� ∗ ψ](x) dx ≥ 0,

which proves (5.1) and hence the Corollary. ��
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