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Abstract
In this survey paper, we present a multiscale post-processing method in exploration.
Based on a physically relevant mollifier technique involving the elasto-oscillatory
Cauchy–Navier equation, we mathematically describe the extractable information
within 3D geological models obtained by migration as is commonly used for geo-
physical exploration purposes. More explicitly, the developed multiscale approach
extracts and visualizes structural features inherently available in signature bands of
certain geological formations such as aquifers, salt domes etc. by specifying suitable
wavelet bands.
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1 Introduction

The success of any geophysical exploration project is determined by the quality of
the available exploration data. These data have to be analyzed and interpreted as
accurate as possible. During the realization of exploration projects, project managers
are confronted with different kinds of data. The available data consist of density data
sets from gravimetric surveys and/or data from magnetic surveys, but mainly from
migration results from conducted seismic exploration.

In Freeden and Blick (2013), a novel mollifier technique for post-processing of
exploration data as an improved interpretation technique based on the concept of a
“geophysically relevant" wavelet construction was proposed. The concept for this
technique goes back to an idea discussed in Freeden and Schreiner (2006) to obtain
mollifier approximations of the deflections of the vertical in gravitational theory. Free-
den and Blick (2013) was the point of departure for a series of mollifier approaches in
gravimetry, magnetometry, and seismics in Freeden’s group. In the case of gravimetry,
the mollifier method has been worked out and was realized by Freeden (2021), Free-
den and Bauer (2020), Freeden and Nashed (2020), Freeden and Sansò (2020), Berg
et al. (2020), Blick et al. (2018a), Freeden and Nashed (2018c), Freeden and Nashed
(2018d), Blick et al. (2017), Möhringer (2014), and Freeden and Gerhards (2013) (see
also the references therein). A similar technique applied to migration results via the
Helmholtz equation is discussed in Blick et al. (2018b) and Augustin et al. (2014). For
a summary of both methods, the reader is referred to Freeden et al. (2019), Freeden
and Nutz (2015), and Freeden (2010). Further approaches were discussed in Blick
(2015) for the acoustic wave equation and in Blick and Eberle (2019) for the static
Cauchy–Navier equation. As a recent contribution, Freeden (2021) and Blick et al.
(2021) also applied the mollifier approach to magnetometry, in addition to gravimetry.
The presented paper gives a survey about perspectives in the field of seismics.

It should be noted that the elastic potential as discussed in this paper is not used
for inversion purposes, instead, we apply the methodological framework only for
post-processing of already existing geological models to establish a better inter-
pretability. However, an inversion process can be applied as discussed e.g., in Freeden
(2021), Freeden andNashed (2020), Freeden andNashed (2018d), Freeden andNashed
(2018e), as well as in the monograph (Freeden and Nashed 2018a) and more specif-
ically, in the articles (Freeden and Nashed 2018b) and (Freeden and Nashed 2018c)
contained therein.

Following some considerations in Blick and Eberle (2019) for density data mod-
eling, we develop a method which enables us to specify also particular directional
characteristics of a migration result. In order to establish such a decorrelation tech-
nique, we mathematically make the transition from the Helmholtz equation to the
elasto-oscillatory Cauchy–Navier equation. In doing so, on the one hand, we leave the
classically motivated Helmholtz approach, on the other hand, we are able to detect
specific directional features by the elastic integral due to the tensorial nature of the
fundamental solution.
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2 Signature decorrelation based on the Helmholtz equation

In what follows, we summarize the results of the Helmholtz approach as given by
Blick (2015) in order to present the idea of a physically relevant wavelet construction
using Helmholtz wavelets. For the proofs of those results, the reader is referred to the
cited literature.

The start of the wavelet development is the representation of the solution U of the
Helmholtz equation

(Δ + k20)U (x) = α(x)F(x) (1)

in a regular region B, i.e., an open, bounded, and connected set in R
3 that contains

the origin and whose closed, compact and locally c(2)-smooth boundary ∂B is free
of double points and divides the space R3 into the inner space B and the outer space
Bext = R

3\B. Here, α(x) denotes the solid angle in x subtended by the boundary ∂B.
If B is a regular region, we have

α(x) =
⎧
⎨

⎩

1, x ∈ B
1
2 , x ∈ ∂B
0, x ∈ Bext

.

Further, let F : B → R be a Hölder continuous function. For a fixed k0 ≥ 0, the
Helmholtz integral equation

U (x) =
∫

B
G(Δ + k20; |x − y|)F(y) dy, x ∈ B

relating a given contrast function F (i.e., acoustically given seismic data or amigration
result) by convolution against the Helmholtz fundamental solution

G(Δ + k20; r) = −exp(ik0r)

4πr
, 0 < r , (2)

to the Helmholtz potentialU is a solution of Eq. (1). By mollification of G(Δ+k20; ·),
we obtain a “mollifier potential scaling function” Gτ (Δ + k20; ·) with scale parameter
τ > 0. Helmholtz differentiation results in the Haar-like “mollifier source scaling
function” Φτ (k0; ·) = (Δ + k20)Gτ (Δ + k20; ·). Hence, even if our main focus lies
on the application of the source scaling function, their theoretical construction always
starts on the potential level.

Our considerations are summarized in the following theorem (cf. Müller 1969).

Theorem 1 If F is Hölder continuous in B, then the Helmholtz differential equation

(Δ + k20)
∫

B
G(Δ + k20; |x − y|)F(y) dy = α(x)F(x)
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holds true for all x ∈ B. Here, α(x) denotes the solid angle in x subtended by the
boundary ∂B.
There exist several ways to mollify the fundamental solution. In this paper, we adopt
the two mollifications based on taylorized approximations as announced in Freeden
and Blick (2013) and numerically discussed in Blick (2015). First, we have a partial
mollification (referred to in this paper by l = 1), which is obtained by mollifying
only the term − 1

r in 0 ≤ r ≤ τ while leaving the term exp(ik0r) as it is. The second
mollification (l = 2) is obtained by Taylor mollification of the whole fundamental
solution. Following (Blick 2015), we obtain bothmollifications ofG(Δ+k20; ·) via the
continuously differentiable functions r �→ Gl

τ (Δ + k20; r), r ∈ [0,∞), respectively,
with

G1
τ (Δ + k20; r) =

⎧
⎪⎨

⎪⎩

− exp(ik0r)
4πr , τ ≤ r

− exp(ik0r)
(
3τ 2−r2

)

8πτ 3
, 0 ≤ r < τ

(3)

and

G2
τ (Δ + k20; r) =

⎧
⎪⎨

⎪⎩

− exp(ik0r)
4πr , τ ≤ r

− exp(ik0τ)
4π

(
1
τ

+ τ−r
τ 2

(1 − k0iτ)
)

, 0 ≤ r < τ

. (4)

By taking the Helmholtz derivative of Gl
τ (Δ + k20; ·), l = 1, 2, we find with r = |x |

Φl
τ (k0; r) = (Δx + k20)G

l
τ (Δ + k20; r), l = 1, 2,

where

Φ1
τ (k0; r) =

⎧
⎪⎨

⎪⎩

0, τ ≤ r

3 exp(k0ir)
(
r+k0i

(
r2−τ 2

))

4πrτ 3
, 0 < r < τ

and

Φ2
τ (k0; r) =

⎧
⎪⎪⎨

⎪⎪⎩

0, τ ≤ r

− exp(ik0τ)
4πτ

[

k20 +
(

k20(τ−r)
τ

− 2
rτ

)

(1 − k0iτ)

]

, 0 < r < τ

.

The kernels Gl
τ (Δ + k20; ·) and Φl

τ (k0; ·) are called “mollifier potential scaling
functions” and “mollifier source scaling functions”, respectively. Note that r �→
Gl

τ (Δ + k20; r), r ∈ [0,∞), is continuously differentiable. However in (0,∞),
r �→ Φl

τ (k0; r) is piecewise continuous. In addition, Φl
τ (k0; r) is singular in r = 0 in

the imaginary part for l = 1, andΦl
τ (k0; r) is singular in both real and imaginary parts
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Fig. 1 Sectional profile of the scaling functions Gl
τ (Δ + k20; ·) and Φl

τ (k0; ·), l = 1, 2 for τ = 1.5 and
k0 = 1 (blue), k0 = 3 (green), and k0 = 6 (red)

in r = 0 for l = 2. Analytically, this seems to be disadvantageous, but the scaling
functions are integrable and hence can still be used for convolution purposes. From
a numerical point of view, those integrals can be calculated efficiently by modified
Euler summation techniques as discussed in Blick (2015).

For a graphical illustration of Gl
τ (Δ+k20; ·) and its Helmholtz derivativeΦl

τ (k0; ·),
see Fig. 1.

Summarizing our considerations, we are led to a result, which builds the theoretical
basis for our approach of geological feature extraction in a post-processing process
(cf. Blick 2015).

Theorem 2 The “τ -mollifier Helmholtz potential functions”

Ul
τ (x) =

∫

B
Gl

τ (Δ + k20; |x − y|)F(y) dy

and the “τ -mollifier Helmholtz contrast functions”

Fl
τ (x) =

∫

B
Φl

τ (k0; |x − y|)F(y) dy

satisfy the limit relations

lim
τ→0+

∣
∣
∣U (x) −Ul

τ (x)
∣
∣
∣ = 0, x ∈ B, l = 1, 2,

and

lim
τ→0+

∣
∣
∣α(x)F(x) − Fl

τ (x)
∣
∣
∣ = 0, x ∈ B, l = 1, 2,

provided that F is Hölder continuous in B.
In fact, we have that both the real and imaginary part ofU −Ul

τ converges with order
O(τ 2) as τ tends to zero.

A similar approach for the elasto-static Cauchy–Navier potential for the decorrela-
tion of density data is discussed in Blick and Eberle (2019). For those cases, it could
be shown that the source scaling functions are normalized, i.e., the respective integral
in R

3 is equal to one for all τ > 0. Note that this is a helpful feature used in the
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theory of singular integrals, since the integral kernels are Dirac sequences (for more
information, see e.g., Stein 1971; Hörmander 1998 and Wienholtz et al. 2009). This
is not the case here. Nevertheless, we are led to the next theorem (cf. Blick 2015).

Theorem 3 The volume integral of Φl
τ (k0; ·) amounts to

VΦl
τ (k0;·) =

∫

R3
Φl

τ (k0; |x − y|) dy

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3(k0τ+2i)(2+k0iτ exp(k0iτ)−2 exp(k0iτ)+k0iτ)

k30τ
3 , l = 1

− exp(k0τ i)

(

− k30τ
3i

12 + 5k20τ
2

12 + k0τ i − 1

)

, l = 2

(5)

with

lim
τ→0+ VΦl

τ (k0;·) = 1, l = 1, 2.

The theorem is of special importance, since Eq. (5) is used to normalize the wavelets
developed later on in this paper.

3 Signature decorrelation based on the elasto-oscillatory
Cauchy–Navier equation

Our task now is to adopt the Helmholtz scheme for the elasto-oscillatory Cauchy–
Navier equation. We again start with the potential equation, and more specifically, its
solution via fundamental solutions. Introducing C(n)(B) and c(n)(B) as the spaces of
n-times continuously differentiable tensor and vector functions in B, respectively, we
adopt a scaled version of the setup introduced byKupradze (1979) and present the clas-
sical theory of elasticity for homogeneous and isotropic media. A homogeneous and
isotropic elastic medium is composed of a regular region B of the three-dimensional
Euclidean space and a set of the constant quantities ρ0, λ0, and μ0 satisfying the
conditions

ρ0 > 0, μ0 > 0, 3λ0 + 2μ0 > 0,

where ρ0 is the constant density of the medium and λ0, μ0 are the constant Lamé
parameters. Using scaled Lamé parameters

λ = λ0

ρ0
, μ = μ0

ρ0

to enhance readability, we start with the following definition.
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Definition 1 The oscillatory state of the medium B(ρ0, λ0, μ0) corresponding to the
acceleration f is the pair [u, σ ], which satisfies the conditions

i) σ ∈ C(1)(B), u ∈ c(2)(B),

ii)
3∑

j=1

∂

∂x j
σi j + ω2ui − fi = 0, (6)

iii) σi j = λδi jdivu + μ

(
∂

∂x j
ui + ∂

∂xi
u j

)

(7)

with f ∈ R
3, u ∈ C

3, σ ∈ C
3×3 and the oscillation frequency ω ∈ R.

Substituting (7) into (6), we obtain the (scaled) oscillation equation (of classical elas-
ticity) or the (scaled) oscillatoryCauchy–Navier equation of themediumB(ρ0, λ0, μ0)

corresponding to the acceleration f in terms of the displacement components

μΔu + (λ + μ)∇divu + ω2u − f = 0, (8)

where

Δu = (Δu1,Δu2,Δu3)
T .

By use of the matrix differential operator

A(∂, ω) = {Ai j (∂, ω)}i, j=1,2,3

with

Ai j (∂, ω) = δi jμΔ + (λ + μ)
∂2

∂xi∂x j
+ δi jω

2,

we can reformulate Eq. (8) as

A(∂, ω)u − f = 0. (9)

We adopt the (tensor) fundamental solution G(A(∂, ω), x) of Eq. (9) from Kupradze
1979. G(A(∂, ω), x) is given by

Gjl(A(∂, ω); x − y) = −
2∑

m=1

(

δ jlαm + βm
∂2

∂x j∂xl

)
exp(ikm |x − y|)

2|x − y| , (10)

where

k21 = ω2

λ + 2μ
, k22 = ω2

μ
, (11)
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αm = δ2m

2πμ
, βm = (−1)m

2πω2 . (12)

It is easy to calculate that

A(∂, ω)G(A(∂, ω), x) = 0, x 	= 0.

All in all, we are confronted with a potential

u(x) =
∫

B
G(A(∂, ω); x − y) f (y) dy

that represents a solution of the Cauchy–Navier equation (9).

Remark 1 Since we only talk about the elasto-oscillatory Cauchy–Navier equation in
this paper, we will just use the term Cauchy–Navier equation and drop the elasto-
oscillatory part in order to keep the nomenclature short.

Remark 2 The Cauchy–Navier equation and the mollification of its fundamental solu-
tion can be applied in a number of other applications such as wave inversion (e.g.,
seismic imaging, Aki and Richards 2002) and specialized wave propagation (e.g.,
coupling of interior/exterior wave propagation problems, Eberle 2018, 2019, 2020).

Contrary to the construction of scaling functions for the scalar fundamental solutions
discussed so far, we are faced with the problem, that we cannot simply obtain a
mollification in a ball by application of the Taylor expansion as already presented in
Blick and Eberle (2019). In order to mollify the fundamental solution, we rewrite Eq.
(10) in terms of G(Δ + k20; ·). Hence,

G(A(∂, ω); x) = 2πα2G(Δ + k22; |x |)I
− 2πβ1G(Δ + k21; |x |) (−4πG(Δ; |x |))4 (|x |2k21 + 3|x |ik1 − 3)X

− 2πβ1G(Δ + k21; |x |) (−4πG(Δ; |x |))2 (1 − |x |ik1)I
− 2πβ2G(Δ + k22; |x |) (−4πG(Δ; |x |))4 (|x |2k22 + 3|x |ik2 − 3)X

− 2πβ2G(Δ + k22; |x |) (−4πG(Δ; |x |))2 (1 − |x |ik2)I, (13)

where I is the 3 × 3 identity tensor, X = xxT for x = (x1, x2, x3)T and G(Δ; ·)
denotes the fundamental solution w.r.t. the Laplace operator and is formally included
by setting k0 = 0 in G(Δ + k20; ·).

Now, we are able to introduce the mollification Gl
τ (A(∂, ω); ·), l = 1, 2, by sub-

stituting G(Δ + k2m; |x |) by Gl
τ (Δ + k2m; |x |), l = 1, 2, as well as G(Δ; |x |) by

G1
τ (Δ; |x |). Note that we exchange Gτ (Δ; |x |) only with the partial taylorization

G1
τ (Δ; |x |) instead of Gl

τ (Δ; |x |), l = 1, 2. The reason is twofold. First, by only tak-
ing the case l = 1, we keep the number of terms small especially regarding that we
have to take the fourth power of Gl

τ (Δ; |x |). Secondly, G1
τ (Δ; |x |) is the mollified

Laplace fundamental solution discussed in Blick (2015) and Blick and Eberle (2019)
and hence should be applied to mollify G(Δ; ·).

This enables us to define the mollification Gl
τ (A(∂, ω); ·) : R3 → C

3×3 as
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G1
τ (A(∂, ω); x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑

m=1

{
βm

exp(ikm |x |)
2|x |5

[
X(|x |2k2m + 2|x |ikm − 3)

+I(|x |2 − |x |3ikm )
]

− Iαm
exp(ikm |x |)

2|x |
}

, τ ≤ |x |

2∑

m=1

⎧
⎨

⎩
βm

exp(ikm |x |)
2

((
3τ2−|x |2

)

2τ3

)5

X(|x |2k2m + 3|x |ikm − 3)

+βm
exp(ikm |x |)

2

((
3τ2−|x |2

)

2τ3

)3

I(1 − |x |ikm )

− Iαm
exp(ikm |x |)

2

((
3τ2−|x |2

)

2τ3

)}

, 0 ≤ |x | < τ

and

G2
τ (A(∂, ω); x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑

m=1

{
βm

exp(ikm |x |)
2|x |5

[
X
(
|x |2k2m + 2|x |ikm − 3

)

+I
(
|x |2 − |x |3ikm

)]
− Iαm

exp(ikm |x |)
2|x |

}
, τ ≤ |x |

2∑

m=1

{
exp(ikmτ)

2τ2
(2τ − |x | − kmτ2i + kmτ |x |i)

×
[
βm

(
|x |2−3τ2

)4

16τ12
X
(
|x |2k2m + 3|x |ikm − 3

)

+βm

(
|x |2−3τ2

)2

4τ6
I(1 − |x |ikm ) − Iαm

]}
, 0 ≤ |x | < τ

.

We call Gl
τ (A(∂, ω); ·) the Cauchy–Navier potential scaling function with scale

parameter τ and, in accordance with the construction of Gl
τ (A(∂, ω); ·), the mollifi-

cation is equal to G(A(∂, ω); ·) for all |x | ≥ τ .

Remark 3 Here, we lose the radial symmetric property of G(Δ + k20; ·) due to the
application of the Hessian matrix in the definition of G(A(∂, ω); ·). However this is
advantageous for decorrelation purposes, since we are now able to better highlight the
spreading direction of the layers contained in the data.

Due to the continuous differentiability of Gl
τ (Δ + k20; ·), we directly obtain the

following lemma.

Lemma 1 The function Gl
τ (A(∂, ω); ·) is continuously differentiable in R3\{0}.

As in the Helmholtz case, the “τ -mollifier Cauchy–Navier potential functions”

ulτ (x) =
∫

B
Gl

τ (A(∂, ω); x − y) f (y) dy

converge to the Cauchy–Navier potential u.
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Theorem 4 Suppose thatB is a regular region inR3. Further on, let x ∈ B be arbitrary
and let f : B → R

3 be continuous. Then,

lim
τ→0+

∣
∣
∣u(x) − ulτ (x)

∣
∣
∣ = 0.

Proof We observe that

|G(A(∂, ω); x) − Gl
τ (A(∂, ω); x)| = 0, x ∈ R

3, |x | ≥ τ.

Hence, with

f0(x) =
⎧
⎨

⎩

f (x), x ∈ B

0, x ∈ Bext
,

and assuming 0 < τ < 1, we cut out a small ballBτ 2(x) of radius τ 2 around the center
x from the integral, so that we get

lim
τ→0+

∣
∣
∣
∣

∫

B
(G(A(∂, ω); x − y) − Gl

τ (A(∂, ω); x − y)) f (y) dy

∣
∣
∣
∣

= lim
τ→0+

∣
∣
∣
∣
∣

∫

Bτ (x)\B
τ2 (x)

(G(A(∂, ω); x − y) − Gl
τ (A(∂, ω); x − y)) f0(y) dy

∣
∣
∣
∣
∣
.

Next, we split f0 into its positive and negative parts f +
0 and f −

0 , respectively and split
(G(A(∂, ω); ·) − Gl

τ (A(∂, ω); ·) into its real (
) and imaginary part (�). Hence, we
have

∫

Bτ (0)\B
τ2 (0)


(G(A(∂, ω); y) − Gl
τ (A(∂, ω); y)) f +

0 (x − y) dy = O
(
τ 2
)

and
∫

Bτ (0)\B
τ2 (0)

�(G(A(∂, ω); y) − Gl
τ (A(∂, ω); y)) f +

0 (x − y) dy = O (τ )

as τ → 0+. The same steps lead to equivalent results for f −
0 , so that we obtain

lim
τ→0+

∣
∣
∣u(x) − ulτ (x)

∣
∣
∣ = 0.

�
Now, we take a look at deriving the Cauchy–Navier source scaling function cor-
responding to the potential scaling function

{
Gl

τ (A(∂, ω); ·)}
τ>0 by applying the

operator A(∂, ω) to Gl
τ (A(∂, ω); ·).

123



GEM - International Journal on Geomathematics (2021) 12 :16 Page 11 of 40 16

Theorem 5 For x, y ∈ R
3, we find

A(∂x , ω)Gl
τ (A(∂, ω); x − y) = Φl

τ (ω; x − y),

where Φl
τ (ω; ·) : R

3\{0} → C
3×3 is called the mollifier Cauchy–Navier source

scaling function and is given by

Φl
τ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

O, τ ≤ r

2∑

m=1
βm
[
T l
1(m) + T l

2(m)
]+ αm

[
T l
3(m) + T l

4(m)
]
, 0 < r < τ

,

(14)

with T l
1, T

l
2, T

l
3 and T l

4 as in (15) - (16), respectively, and O denotes the zero tensor.

The terms T l
1, T

l
2, T

l
3 and T l

4 where computed by use of the MATLAB Symbolic
Math Toolbox and are given by

T1
1(m) = − X

exp(rkmi)(r2 − 3τ2)

64rτ15

{

r(2μ + λ)

[

−r11k4m (15)

+ r10k3m26i + 12r9k4mτ2 + 114r9k2m − r8k3mτ2252i

+ r8km420i − 54r7k4mτ4 − 768r7k2mτ2 − 420r7 + r6k3mτ4864i

− r6kmτ23060i + 108r5k4mτ6 + 1476r5k2mτ4 + 3060r5τ2 − r4k3mτ61184i

+ r4kmτ47020i − 81r3k4mτ8 − 384r3k2mτ6 − 7020r3τ4 + r2k3mτ8462i

−r2kmτ64956i − 630rk2mτ8 + 4956rτ6 + k3mτ1036i

]

+ μ

[

r10k3mi + 9r9k2m − r8k3mτ212i + r8km30i − 78r7k2mτ2 − 30r7

+ r6k3mτ454i − r6kmτ2270i + 216r5k2mτ4 + 270r5τ2 − r4k3mτ6112i

+ r4kmτ4810i − 210r3k2mτ6 − 810r3τ4 + r2k3mτ8105i − r2kmτ6714i

+63rk2mτ8 + 714rτ6 − k3mτ1036i

]

+ (r2 − 3τ2)4ω2(r2k2m + rkm3i − 3)

}

,

T1
2(m) = − I

(r2 − 3τ2) exp(rkmi)

64τ15

{

λ

[

13r10k2m

+ r9km42i − 126r8k2mτ2 − 42r8 − r7kmτ2414i + 432r6k2mτ4

+ 414r6τ2 − r5k3mτ6108i + r5kmτ41458i − 590r4k2mτ6 − 1458r4τ4

+ r3k3mτ88i − r3kmτ62130i + 219r2k2mτ8 + 2130r2τ6 + rkmτ81044i

+ 36k2mτ10 − 1044τ8
]
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+ μ

[

15r10k2m + r9km48i − 150r8k2mτ2 − 48r8 − r7kmτ2486i + 540r6k2mτ4

+ 486r6τ2 − r5k3mτ6104i + r5kmτ41782i − 746r4k2mτ6 − 1782r4τ4

+ r3k3mτ857i − r3kmτ62946i + 165r2k2mτ8 + 2946r2τ6 + rk3mτ1036i

+ rkmτ81746i + 144k2mτ10 − 1746τ8
]

+ (λ + μ)

[

r7k3m (r4 − 12r2τ2 + 54τ4)i

]

− τ6ω2(r2 − 3τ2)2(rkm + i)4i

}

,

T1
3(m) =X

k2 exp(rk2i)(λ + μ)(−k2r
3 + r23i + 3k2rτ2 + τ23i)

4r3τ3
,

T1
4(m) =I

exp(rk2i)

4rτ3

{

r
[
2λ + 8μ − r2k22μ + r2ω2 + rk2λi + rk2μ7i

]

− 3τ2
[
k2μ3i − rk22μ + rω2 + k2λi

]}

,

T2
1(m) =−X

exp(kmτ i)

32r3τ14

{

r5τ5
[
96λ(k3mτ336i

+ 37k2mτ2 + kmτ163i − 108)

+24μ(k3mτ3306i + 310k2mτ2 + kmτ138i − 918)
]

− r4τ6
[
3λ(−k3mτ3567i + 2855k2mτ2 + kmτ2288i + 2288)

+ 15μ(−k3mτ3243i + 1219k2mτ2 + kmτ976i + 976)
]

− r10(13λ + 27μ)(4k3mτ3 + k2mτ25i − kmτ + i)27i

+ τ10(36λ + 36μ)(k2mτ2 + kmτ i + 1)

− r11km (140λ + 290μ)(k2mτ2i + kmτ + 3i)

+ r9τ(288λ + 600μ)(k3mτ34i + 4k2mτ2 + kmτ13i − 2)

+ r12k2m (−1 + kmτ i)(165λ + 341μ)

− r7τ3(1080λ + 2268μ)(k3mτ33i + 3k2mτ2 + kmτ i − 4)

− r8τ2(1386λ + 2898μ)(−k3mτ33i + 5k2mτ2 + kmτ2i + 2)

+ r6τ4(2430λ + 5130μ)(−k3mτ32i + 5k2mτ2 + kmτ3i + 3)

+ r2τ8(1287λ + 2745μ)(k2mτ2 + kmτ i + 1)

− 4r3λτ7(k3mτ3243i + 291k2mτ2 + kmτ1757i − 1960)

− μ2r3τ7(k3mτ31053i + 1149k2mτ2 + kmτ7483i − 8456)

− ω2r3(r2 − 3τ2)4(r2k2m + rkm3i − 3)(r − 2τ + kmτ2i − rkmτ i)

}

,

T2
2(m) = − I

exp(kmτ i)

32rτ14

{

λ(r2 − 3τ2)

[

− r8(−k3mτ3111i + 150k2mτ2 + kmτ39i + 39)

− 6r7τ(k3mτ317i + 17k2mτ2 + kmτ57i − 12) + 4rτ7(6k2mτ2 + kmτ91i − 170)

− 15r10k2m (−1 + kmτ i) − 27r4τ4(−k3mτ37i + 30k2mτ2 + kmτ23i + 23)

+ 18r5τ3(k3mτ313i + 13k2mτ2 + kmτ53i − 28) + 9r6τ2(−k3mτ329i
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+ 60k2mτ2 + kmτ31i + 31) − 6r3τ5(k3mτ327i + 31k2mτ2 + kmτ175i − 180)

]

+ μ

[

−r10(−k3mτ3180i + 225k2mτ2 + kmτ45i + 45)

− 42r9τ(k3mτ34i + 4k2mτ2 + kmτ13i − 2) − 6rτ9(48k2mτ2 + kmτ323i − 550)

− 17r12k2m (−1 + kmτ i) + 234r8τ2(−k3mτ33i + 5k2mτ2 + kmτ2i + 2)

− 594r6τ4(−k3mτ32i + 5k2mτ2 + kmτ3i + 3)

+ 216r7τ3(k3mτ33i + 3k2mτ2 + kmτ11i − 4)

+ 24r3τ7(k3mτ327i + 51k2mτ2 + kmτ217i − 224)

− 12r5τ5(k3mτ390i + 106k2mτ2 + kmτ421i − 270)

+ r4τ6(−k3mτ3729i + 3785k2mτ2 + kmτ3056i + 3056)

]

+ (μ108τ2 − λ(r2 − 3τ2)12)τ8(k2mτ2 + kmτ i + 1)

+ (λ(r2 − 3τ2)14 + μ16r2)r9km (k2mτ2i + kmτ + 3i)

+ (λ(r2 − 3τ2)425 − μ2061τ2)r2τ6(k2mτ2 + kmτ i + 1)

− 4rτ6ω2(r2 − 3τ2)2(rkm + i)(ri − τ2i − kmτ2 + rkmτ)

}

,

T2
3(m) =X

exp(kmτ i)(λ + μ)(−1 + kmτ i)

2r3τ2
,

T2
4(m) = − I

exp(kmτ i)

2rτ2

[

(λ + 3μ)(kmτ + i)i − (ω2r(r − 2τ + kmτ2i − rkmτ i))

]

. (16)

Similar to the Helmholtz source wavelets, Φl
τ (ω; ·) is singular in the imaginary part

for l = 1, and Φl
τ (ω; ·) is singular in both real and imaginary parts for l = 2.

Nonetheless, both scaling functions are integrable and the analytical disadvantage can
be easily overcome by a numerical integration scheme as discussed in Blick (2015).

Figures 2 and 3 depict profiles of the scaling functionsGl
τ (A(∂, ω); ·) andΦl

τ (ω; ·).

Remark 4 Taking a look at Fig. 1 and comparing it to the cuts depicted on the right
side of Figs. 2 and 3, it is easy to observe the close relationship of the Cauchy–Navier
and Helmholtz scaling functions.

Lemma 2 For all τ > 0, the so-called volume integral of the mollifier scaling function
Φl

τ (ω; ·) given by

VΦl
τ (ω;·) =

∫

R3
Φl

τ (ω; y) dy

satisfies

lim
τ→0+ VΦl

τ (ω;·) = I .

123



16 Page 14 of 40 GEM - International Journal on Geomathematics (2021) 12 :16

Proof By use of polar coordinates and by virtue of elementary calculation, we find

VΦ1
τ (ω;·) =

2∑

m=1

I
{

−βm
2π

3k15m τ 15

[

ω2784604620800i

− ω2 exp(kmτ i)784604620800i + k17m λτ 15 exp(kmτ i)

− k18m λτ 16 exp(kmτ i)i + 2k17m μτ 15 exp(kmτ i) − k18m μτ 16 exp(kmτ i)2i

+ k2mτ 2ω250295168000i + k4mτ 4ω21714608000i + k6mτ 6ω240975200i

+ k8mτ 8ω2748440i + k10m τ 10ω210206i + k12m τ 12ω281i

− 784604620800kmτω2 exp(kmτ i) + k2mτ 2ω2 exp(kmτ i)342007142400i

+ 80472268800k3mτ 3ω2 exp(kmτ i) − k4mτ 4ω2 exp(kmτ i)9258883200i

+ 129548160k5mτ 5ω2 exp(kmτ i) − k6mτ 6ω2 exp(kmτ i)189574560i

− 18658080k7mτ 7ω2 exp(kmτ i) − k8mτ 8ω2 exp(kmτ i)1307880i

− 390600k9mτ 9ω2 exp(kmτ i) + k10m τ 10ω2 exp(kmτ i)6930i

− 5670k11m τ 11ω2 exp(kmτ i) + k12m τ 12ω2 exp(kmτ i)444i

− 78k13m τ 13ω2 exp(kmτ i) + k14m τ 14ω2 exp(kmτ i)15i

− k15m τ 15ω2 exp(kmτ i) + k16m τ 16ω2 exp(kmτ i)i

]

+ αm
2π exp(kmτ i2)

3k5mτ 3

[

72ω2 sin(kmτ2)

+ k5mλτ 3 exp(kmτ i2) − k6mλτ 4 exp(kmτ i2)i

+ 4k5mμτ 3 exp(kmτ i2) − k6mμτ 4 exp(kmτ i2)4i − 36kmτω2 exp(kmτ i2)

+ k2mτ 2ω2 cos(kmτ2)18i − 3k3mτ 3ω2 exp(kmτ i2)

+ k4mτ 4ω2 exp(kmτ i2)3i)

]}

and

V
Φ2

τ (ω;·) =
2∑

m=1

I
{

βm exp(kmτ i)

[

− 2πk2mλ

3
− 4πk2mμ

3
+ 3753πω2

10010
+ πk3mμτ4i

3
+ πk3mλτ2i

3

+ 698483πk2mτ2ω2

5765760
− πk3mτ3ω2142643i

5765760
− πkmτω2193i

630

]

+ αm

[
π exp(kmτ i)(4λ + 16μ − 5τ2ω2 − kmλτ4i − kmμτ16i + kmτ3ω2i)

6

]}

.

Substituting βm , αm and km as given in Eqs. (11)–(12) and taking the limit τ → 0+
via l’Hospital’s rule provides the desired result. �
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Fig. 2 Profile of the real part of the scaling functions G1
τ (A(∂, ω); ·) (top left) and Φ1

τ (ω; ·) (bottom left)
in x3 = 0 and their respective cuts along the x1/x2 direction (right) of the top left picture for λ = μ = 1
and ω = 2

The scaling function Φl
τ (ω; ·) allows us to define the “τ -mollifier Cauchy–Navier

contrast functions” f lτ given by

f lτ (x) =
∫

B
Φl

τ (ω; x − y) f (y) dy.

This leads to the following theorem.

Theorem 6 The function Φl
τ (ω; ·) is piecewise continuously differentiable in R3\{0}.

In addition, assume thatB is a regular region inR3 and that f : B → R
3 is continuous
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Fig. 3 Profile of the real part of the scaling functions G2
τ (A(∂, ω); ·) (top left) and Φ2

τ (ω; ·) (bottom left)
in x3 = 0 and their respective cuts along the x1/x2 direction (right) of the top left picture for λ = μ = 1
and ω = 2

for l = 1 and continuously differentiable for l = 2. Then,

lim
τ→0+ |α(x) f (x) − f lτ (x)| = 0

holds true for all x ∈ B, where α denotes the solid angle in x subtended by the
boundary ∂B.
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Proof We split Φl
τ (ω; ·) into its real and imaginary parts so that

Φl
τ (ω; x − y) = 
Φl

τ (ω; x − y) + i�Φl
τ (ω; x − y).

Since x ∈ B and B is open, there exists a τ0 such that B ∩ Bτ (x) is simply connected

for all 0 < τ ≤ τ0. With 
Φl
τ (ω; ·) =

{(
Φl
τ (ω; ·))i j

}

i, j=1,2,3
, we have

∫

B

Φl

τ (ω; x − y) f (y) dy =
∫

B∩Bτ (x)

Φl

τ (ω; x − y) f (y) dy

=
⎧
⎨

⎩

3∑

j=1

∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)

i j
f j (y) dy

⎫
⎬

⎭
i=1,2,3

.

We split
(
Φl

τ (ω; ·))i j into its positive and negative parts, so that

∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)

i j
f j (y) dy

=
∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)+
i j

f j (y) dy

+
∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)−
i j

f j (y) dy,

where (·)+ and (·)− denote the positive and negative parts of the corresponding func-
tions, respectively.

Since f is continuous and
(
Φl

τ (ω; ·))+i j as well as
(
Φl

τ (ω; ·))−i j are integrable
and do not change the sign, the mean value theorem of integration guarantees the
existence of ξ1, ξ2 ∈ B ∩ Bτ (x), so that

∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)

i j
f j (y) dy

= f j (ξ1)
∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)+
i j

dy

+ f j (ξ2)
∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)−
i j

dy. (17)

According to Lemma 2 and observing that Φl
τ (ω; ·) is point symmetric and that ∂B

as the boundary of a regular region is locally c(2)-smooth, we have

lim
τ→0+

(∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)+
i j

dy +
∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)−
i j

dy

)

= α(x)δi j
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and hence,

lim
τ→0+

∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)−
i j

dy

= α(x)δi j − lim
τ→0+

∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)+
i j

dy.

Substituting the last equation into Eq. (17), we get

lim
τ→0+

∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)

i j
f j (y) dy

= lim
τ→0+

(

α(x) f j (ξ2)δi j + ( f j (ξ1) − f j (ξ2)
)
∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)+
i j

dy

)

.

(18)

Now we need to estimate the integral on the right hand side. Exemplary taking a look
at the case l = 1 (cf. Eq. (14)), we split the exponential function into cosinus and sinus
and see that

(
Φl

τ (ω; x − y)
)+
i j is composed of the following functions:

1. Terms of the form 0 ≤ cos(rkm)rnτm−15 for n + m ≥ 12 and 0 ≤ r ≤ τ ≤ π
2km

contribute to both the real and imaginary part. With polar coordinates, we get

∫ τ

0
cos(rkm)rn+2τm−15 dr = τm+n−12

n + 3
1H2

(
n

2
+ 3

2
,

[
1

2
,
n

2
+ 5

2

]

,−k2mτ 2

4

)

,

(19)

where pHq(a, b, z) denotes the generalized hypergeometric function (Magnus et al.
1966; Luke 1969) of order p, q. Here, p denotes the length of the vector a and q
the length of the vector b. We have

pHq(a, b, z) =
∞∑

j=0

(
(a1) j . . .

(
a j
)

j . . .
(
ap
)

j

(b1) j . . . (bk) j . . .
(
bq
)

j

)(
z j

j !
)

,

where

(x) j = Γ (x + j)

Γ (x)

withΓ as the Gamma function denotes the Pochhammer symbol. It should be noted
that pHq(a, b, z) is convergent for |z| < ∞ if p ≤ q. Hence for n + m ≥ 13, we
have

lim
τ→0+

∫ τ

0
cos(rkm)rn+2τm−15 dr = 0

and for n + m = 12, the integral is bounded.
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2. Observing that β1 = −β2 in Eq. (14) and k2 ≥ k1, we find terms of the form
0 ≤ (cos(rk1) − cos(rk2)) rnτm−15 for n + m = 10 and 0 ≤ r ≤ τ sufficiently
small. Integration leads to

lim
τ→0+

∫ τ

0
(cos(rk1) − cos(rk2)) r

n+2τm−15 dr

= τm+n−12

n + 1

(

1H2

(
n

2
+ 1

2
,

[
1

2
,
n

2
+ 3

2

]

,−k21τ
2

4

)

− 1H2

(
n

2
+ 1

2
,

[
1

2
,
n

2
+ 3

2

]

,−k22τ
2

4

))

= C,

where C is a constant. These terms contribute to the real part.
3. For the imaginary part, we have terms of the form 0 ≤ sin(rkm)rnτm−15 for

n + m ≥ 11 and 0 ≤ r ≤ τ ≤ π
km
. Integration yields

∫ τ

0
sin(rkm)rn+2τm−15 dr

= kmτm+n−11

n + 4
1H2

(
n

2
+ 2,

[
3

2
,
n

2
+ 3

]

,−k2mτ 2

4

)

(20)

which for τ → 0+ converges to zero in the case of m + n ≥ 12 and is bounded
for m + n = 11.

4. Terms of the form 0 ≤ C
(
km cos(rkm)rnτ 11−m + sin(rkm)rn−1τ 11−m

)
for τ ≤

π/(2km) andC a positive constant contribute to the imaginary part. Observing (19)
and (20), we have for n + m = 11

lim
τ→0+C

∫ τ

0

(
km cos(rkm)rn+2τ 11−m + sin(rkm)rn+1τ 11−m

)
dr = 0.

All in all using the triangle inequality, we can now state that for l = 1, both the
real and imaginary part of the integral of

(
Φl

τ (ω; x − ·))+i j are bounded for τ → 0+.
Similar observations for the case l = 2 show that the real part of the integral of
(
Φl

τ (ω; x − ·))+i j is bounded and the integral of the imaginary part is of orderO (τ−1
)

as τ → 0+. Hence, we have

lim
τ→0+

∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)

i j
f j (y) dy

= lim
τ→0+

(

α(x) f j (ξ2)
︸ ︷︷ ︸
→ f j (x)

δi j + ( f j (ξ1) − f j (ξ2)
)
∫

B∩Bτ (x)

(

Φl

τ (ω; x − y)
)+
i j

dy

︸ ︷︷ ︸
→0

)

= α(x) f j (x),
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for l = 1, 2, since f is continuous.
Following the same ideas, it is easy to show that for l = 1, we find

lim
τ→0+

∫

B∩Bτ (x)

(
�Φ1

τ (ω; x − y)
)

i j
f j (y) dy = 0,

if f is continuous. Hence, it remains to prove the imaginary case for l = 2. However,
if we want to realize that the imaginary part for l = 2 also converges to zero, we have
to assume that f ∈ c(1)(B).

In order to continue the proof, we present estimates only used in the case l = 2.
Here, we observe, that any function f ∈ c(1)(B) can be written as

f (y) = [ f (y) − ( f (x) + ∇ f (x)(y − x))] + ( f (x) + ∇ f (x)(y − x)).

It is easy to explicitly calculate that the theorem holds true for all linear functions due
to the point symmetry of the scaling functions. Hence, we can assume without loss
of generality, that Dα f (x) = 0 for |α| ≤ 1 and x ∈ B fixed. In that case, we apply
Taylor’s theorem to approximate f j (ξi ) by expansion around x , so that

∣
∣ f j (ξ1) − f j (ξ2)

∣
∣ ≤

∣
∣
∣
∣
∣
∣

∫ 1

0

∑

|α|=1

(ξ1 − x)α

α! Dα f j (x + t (ξ1 − x)) dt

−
∫ 1

0

∑

|α|=1

(ξ2 − x)α

α! Dα f j (x + t (ξ2 − x)) dt

∣
∣
∣
∣
∣
∣

≤
∫ 1

0

∑

|α|=1

|ξ1 − x |α ∣∣Dα f j (x + t (ξ1 − x)) − Dα f j (x)
∣
∣ dt

+
∫ 1

0

∑

|α|=1

|ξ2 − x |α ∣∣Dα f j (x + t (ξ2 − x)) − Dα f j (x)
∣
∣ dt

≤ 2τ
∑

|α|=1

max
y∈B∩Bτ (x)

|Dα f j (y) − Dα f j (x)|,

as τ tends to zero. All in all, combining these estimates with the observation that

∫

B∩Bτ (x)

(
�Φ2

τ (ω; x − y)
)+
i j

dy = O
(
τ−1
)

as τ → 0+, we follow the previous considerations up to Eq. (18), so that

lim
τ→0+

∫

B∩Bτ (x)

(
�Φ2

τ (ω; x − y)
)

i j
f j (y) dy

= lim
τ→0+

(
(
f j (ξ1) − f j (ξ2)

)
∫

B∩Bτ (x)

(
�Φ2

τ (ω; x − y)
)+
i j

dy

)
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= 0,

which proves the theorem. �

4 Wavelet representation of potential and contrast functions

Next, we deal with the mathematical mechanisms for interpretation and understanding
of available seismic information inside a regular regionB. In order to do that, we again
take a look at the Helmholtz case in order to make the reader more familiar with the
idea of seismic decorrelation and introduce the associated notation. Our purpose is to
demonstrate, how the multiscale procedure for the potential canonically transfers to
seismic data by use of “Helmholtz derivatives” as shown in Blick (2015).

As already noted, the source wavelets in this paper do not have zero mean (neither
in the real part, nor the entire function). Since the wavelets are constructed by taking
the difference of scaling functions with different scales, this results in the following
two cases which we want to avoid.

(i) Since VΦl
τ (k0;·) is not a constant but a function depending on τ , there exist τ1, τ2,

such that VΦl
τ2

(k0;·) compared to VΦl
τ1

(k0;·) is large. Calculating the difference, i.e.,
taking a look at the band-pass filtered signal, the result will be dominated by the
low-pass filtered signal generated by filtering withΦl

τ2
(k0; ·) and hence, we do not

get any new information from the decorrelation.
(ii) The volume integral VΦl

τ (k0;·) can be negative. Hence, suppose that VΦl
τ1

(k0;·) is
negative and VΦl

τ2
(k0;·) positive, then the band-pass filtered version is in fact the

summation instead of the subtraction of the information contained in the two low-
pass filtered signals.

Hence, we normalize by the real part of the volume integral of the source scaling
functions in order to construct wavelets that have zero mean in the real part. It would
also be possible to construct the wavelets Ψ l

τ j
(k0; ·) in such a way that the entire

wavelet has zero mean. However, this leads to a change in phase, which we want to
avoid.

We start with the considerations regarding the scaling functionsGl
τ (Δ+k20; ·). Sup-

pose that {τ j } j∈N0 is a positive,monotonically decreasing sequencewith lim j→∞ τ j =
0 and with 
VΦl

τ j
(k0;·) 	= 0 for all j ∈ N0. We consider the differences

W l
τ j

(Δ + k20; |x − y|) = Gl
τ j

(Δ + k20; |x − y|) − Gl
τ j−1

(Δ + k20; |x − y|)

and

Ψ l
τ j

(k0; |x − y|) = Φl
τ j

(k0; |x − y|)

VΦl

τ j
(k0;·)

− Φl
τ j−1

(k0; |x − y|)

VΦl

τ j−1
(k0;·)

.

W l
τ j

(Δ; ·) and Ψ l
τ j

(k0; ·) are called “mollifier Helmholtz potential wavelet function”
and “mollifier Helmholtz source wavelet function”, respectively.
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Seen from a numerical point of view, it is remarkable that both wavelet functions
y �→ W l

τ j
(Δ+k20; |x − y|) and y �→ Ψ l

τ j
(k0; |x − y|) vanish outside a ball around the

center x due to their construction. These functions are space-limited showing a ball as
local support. Furthermore, the ball becomes smaller and smaller with increasing scale
parameter j, so that more and more high frequency phenomena can be highlighted
without changing the features outside the ball.

The associated “τ j -mollifier potential wavelet functions” and the “τ j -mollifier con-
trast wavelet functions” are given by

(WU )lτ j (x) =
∫

Bτ j (x)∩B
W l

τ j
(Δ + k20; |x − y|)F(y) dy

and

(WF)lτ j (x) =
∫

Bτ j (x)∩B
Ψ l

τ j
(k0; |x − y|)F(y) dy.

The τ j -potential wavelet functions and the τ j -contrast wavelet functions, respectively,
characterize the successive detail information contained in Ul

τ j
− Ul

τ j−1
and Fl

τ j
−

Fl
τ j−1

, j ∈ N0. In other words, we are able to recover the potentialU and the contrast
function, i.e., the “geological signatures” F , respectively, in form of “band structures”

(WU )lτ j = Ul
τ j

−Ul
τ j−1

(21)

and

(WF)lτ j = Fl
τ j

− Fl
τ j−1

. (22)

As a consequence, the essential problem to be solved in multiscale extraction of
geological features is to identify those detail information, i.e., band structures, which
specifically contain desired geological characteristics, for example, aquifers and salt
domes.

Thus for x ∈ B and F ∈ C (0)(B), we finally end up with the following multiscale
reconstruction

U (x) = lim
J→∞Ul

τJ
(x) = Ul

τ0
(x) +

∞∑

j=1

(WU )lτ j (x)

and

α(x)F(x) = lim
J→∞ Fl

τJ
(x) = Fl

τ0
(x)


VΦl
τ0

(k0;·)
+

∞∑

j=1

(WF)lτ j (x).
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In addition, if F is Hölder continuous, we have

α(x)F(x) = (Δ + k20)


VΦl
τ0

(k0;·)
Ul

τ0
(x) +

∞∑

j=1

(Δ + k20)

⎛

⎝
Ul

τ j
(x)


VΦl
τ j

(k0;·)
− Ul

τ j−1
(x)


VΦl
τ j−1

(k0;·)

⎞

⎠ .

All in all, the potentialU aswell as the contrast function, i.e., the “geological signature”
F can be expressed in an additive way as a low-pass filtered signal Ul

τ0
and Fl

τ0
and

successive band-pass filtered signals (WU )lτ j and (WF)lτ j , j = 1, 2, . . . , respectively.
It should bementioned that this multiscale approach is constructed such that, within

the spectrum of all wavebands (cf. Eqs. (21) and (22)), certain rock formations may be
associated to a specific band within the multiscale reconstruction. Each scale param-
eter in the decorrelation is assigned to a data distribution which corresponds to the
associated waveband and thus, leads to a low-pass approximation of the data at a
particular resolution. The wavelet contributions are obtained as part of a multiscale
approximation by calculating the difference between two consecutive scaling func-
tions. In other words, the wavelet transformation (filtering) of a signal constitutes the
difference of two low-pass filters, thus it may be regarded as a band-pass filter. Due
to our construction, the wavelets show an increasing space localization as the scale
increases. In this way, the characteristic signatures of a signal can be detected in certain
frequency bands.

In the same way as for the Helmholtz equation, we obtain a multiscale procedure
for the potential u as well as the contrast function f ∈ c(l−1). Again suppose that
{τ j } j∈N0 is a positive, monotonically decreasing sequence with lim j→∞ τ j = 0 and
with 
VΦl

τ j
(ω;·) 	= 0 for all j ∈ N0. We consider the differences

W l
τ j

(A(∂, ω); x − y) = Gl
τ j

(A(∂, ω); x − y) − Gl
τ j−1

(A(∂, ω); x − y)

and

Ψ l
τ j

(ω; x − y) = Φl
τ j

(ω; x − y)


VΦl
τ j

(ω;·)
− Φl

τ j−1
(ω; x − y)


VΦl
τ j−1

(ω;·)
.

W l
τ j

(A(∂, ω); ·) andΨ l
τ j

(ω; ·) are called “mollifier Cauchy–Navier potential wavelet
function” and “mollifier Cauchy–Navier source wavelet function”.

The associated “τ j -mollifier Cauchy–Navier potential wavelet functions” and the
“τ j -mollifier Cauchy–Navier contrast wavelet functions” are given by

(Wu)lτ j (x) =
∫

B
W l

τ j
(A(∂, ω); x − y) f (y) dy

and

(W f )lτ j (x) =
∫

B
Ψ l

τ j
(ω; x − y) f (y) dy.
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As in the Helmholtz case, the τ j -Cauchy–Navier potential wavelet functions and the
τ j -Cauchy–Navier contrast wavelet functions, respectively, characterize the succes-
sive detail information contained in ulτ j − ulτ j−1

and f lτ j − f lτ j−1
, j ∈ N0. In other

words, we are able to recover the potential u and the contrast function, i.e., the “sig-
nature” f , respectively, in form of “band structures”

(Wu)lτ j = ulτ j − ulτ j−1
,

and

(W f )lτ j = f lτ j − f lτ j−1
.

Again, both wavelet functions y �→ W l
τ j

(A(∂, ω); x − y) and y �→ Ψ l
τ j

(ω; x − y)
vanish outside a ball around the center x due to their construction,which is of numerical
advantage for the convolution. Furthermore, the ball becomes smaller and smaller with
increasing scale parameter j, so that more and more high frequency phenomena can
be highlighted without changing the features outside the balls. Thus for x ∈ B, we
obtain the multiscale relations

u(x) = lim
J→∞ ulτJ (x) = ulτ0(x) +

∞∑

j=1

(Wu)lτ j (x)

and

α(x) f (x) = lim
J→∞ f lτJ (x) = f lτ0(x)


VΦl
τ0

(ω;·)
+

∞∑

j=1

(W f )lτ j (x).

In addition, if f is Hölder continuous in B, we have

α(x) f (x) = A(∂, ω)


VΦl
τ0

(ω;·)
ulτ0(x) +

∞∑

j=1

A(∂, ω)

⎛

⎝
ulτ j (x)


VΦl
τ j

(ω;·)
− ulτ j−1

(x)


VΦl
τ j−1

(ω;·)

⎞

⎠ .

Hence, the potential u as well as the contrast function f can be reconstructed as a
low-pass filtered signal ulτ0 and f lτ0 and successive band-pass filtered signals (Wu)lτ j
and (W f )lτ j , j = 1, 2, . . . , respectively.

5 Comparison of the Helmholtz and elasto-oscillatory Cauchy–Navier
decorrelation based on theMarmousi migration result

As point of departure, we construct a synthetic 3D migration result by continuing the
model in the x2 direction by putting copies of a 2D migration result from Ilyasov
(2011) (see also Martin et al. 2006; Irons 2015) behind each other in order to test
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(a) 2D cut of the 3D Marmousi migration result.

(b) Interpretation of the Marmousi model.
Fig. 4 The Marmousi model (top, Ilyasov 2011) and its interpretation (bottom, Martin et al. 2006)

the decorrelation ability of the wavelets. We specifically accept the downside of the
model that it is constant in the x2 direction in favor of the fact that we have a complete
interpretation of the model as depicted in Fig. 4.

The essential ingredients of the decorrelation applied to the Helmholtz equation are
illustrated for 2D cuts of a 3D version of theMarmousi migration result by the scheme
depicted in Fig. 5. The figure shows that the Helmholtz potential does not yield usable
information about the geology because of its smoothness (Fig. 5, top left), since the
differences may be understood as a discrete version of Eq. (1). However, if we go
over to the multiscale decorrelation in terms of band-pass filtered data Uτ j − Uτ j−1

of the potential U at scale j , structural information of the Marmousi model become
visible (Fig. 5, bottom left). The key idea of the method is that the potential wavelets
generating the potential decorrelation (Fig. 5, left) can be correlated via the application
of the Helmholtz operator to Haar-type wavelets in the migration level (right). In fact,
the decorrelation of the migration result in band signals (Fig. 5, bottom right) clearly
shows that information about the geological interfaces becomes available.

The aforementioned wavelet construction is particularly powerful because of its
“geophysical relevance”, i.e., it forms a compromise reflecting the underlying physics
(in accordance with the underlying differential equation) while still delivering an
adequate multiscale decorrelation of geological signatures. Transitions of geological
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F F
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Fig. 5 Schematic visualization of themultiscale decorrelationmechanism as depicted in Blick et al. (2018b)
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strata can be detected, but of course not the specific geological formations them-
selves. Nevertheless, the structure of the geological configuration and even the faults
become visible by mollifier decorrelation. The wavelets employed for establishing the
Helmholtz scheme constitute radial basis functions, so that they are only dependent
on the mutual distance of two points of the area under investigation. This means that
no specific directionally-reflected information can be verified by the model described
above.

5.1 Decorrelation using Helmholtz wavelets

Wearemore interested in the decorrelation of the source data, even if ourmathematical
setup allows us to also decorrelate the potential.We borrow the results of theHelmholtz
case from (Blick 2015) and present them here as a reference for the comparison to the
Cauchy–Navier decorrelation scheme.

We concentrate on the real part of the decorrelation of the 3D synthetic Marmousi
migration result for k0 = 0.036 rad

m based on a conducted parameter study in Blick
(2015). The range of k0 for the study is given by

[
0.0018 rad

m , 0.1 rad
m

]
and results

from the choice of an excitation frequency between 10 and 150 rad
s for occuring rock

velocities between 1500 and 5500 m
s . For a comparison to the decorrelation for other

values of k0, the reader is also referred to (Blick 2015). The sequence τ j is adopted
from (Blick 2015) as well. The sequence is constructed in such a way that for scales
j = 1, . . . , 5, the real part of VΦ2

τ (k0;·) is close to one. Since a smaller spacing of τ j is
also required for large scale parameters j , a dyadic sequence for scales j = 6, . . . , 9
is taken.

Remark 5 The depicted figures in this section denote 2D cuts of the complete 3D
convolution result of the 3D Marmousi migration result as used in Blick (2015).

A decorrelation of the 3D Marmousi migration result F via the partially and fully
taylorized normalized Helmholtz source scaling functions and wavelets is illustrated
in Figs. 6, 7, 8 and 9 for k0 = 0.036 rad

m .
We observe that the convolution with the partially taylorized normalized Helmholtz

source scaling function and wavelet tends to oscillate heavily and hence is blurred
due to ghost images for low scales. This phenomenon gets worse if k0 is increased.
Comparing with Fig. 4b, we notice that the salt dome in the lower left part of the
migration result and some coarser structures are clearly represented in the band-pass
filtered signal at scales j = 3.

In comparison, the decorrelation via the fully taylorized normalized Helmholtz
source scaling function and wavelet does not oscillate as heavily. As such, the char-
acteristics of the salt dome can be seen at scales j = 4 in the band-pass filtered data.
The structure changes for increasing scales j for both types of scaling functions. The
dominating layer at scale j = 6 is the shale layer directly above the salt dome. More-
over, we find finer layers in the band-pass filtered signal such as sand layers for higher
scales.

Another useful property is that the noise in the upper left corner can be filtered
out with both methods. Here, the band-pass filtered signal of the partially taylorized
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(a) Low-pass filtered migration result
at scale = 1.j

(c) Low-pass filtered migration result
at scale = 2.j

(e) Low-pass filtered migration result
at scale = 3.j

(g) Low-pass filtered migration result
at scale = 4.j

(b) Band-pass filtered migration result
at scale = 2.j

(d) Band-pass filtered migration result
at scale = 3.j

(f) Band-pass filtered migration result
at scale = 4.j

(h) Band-pass filtered migration result
at scale = 5.j

Fig. 6 Real part of the multiscale approximation of the Marmousi migration result F by convolution
with the normalized and partially taylorized (l = 1) Helmholtz source scaling function and wavelet for
k0 = 0.036 rad

m
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(a) Low-pass filtered migration result
at scale = 5.j

(c) Low-pass filtered migration result
at scale = 6.j

(e) Low-pass filtered migration result
at scale = 7.j

(g) Low-pass filtered migration result
at scale = 8.j

(b) Band-pass filtered migration result
at scale = 6.j

(d) Band-pass filtered migration result
at scale = 7.j

(f) Band-pass filtered migration result
at scale = 8.j

(h) Band-pass filtered migration result
at scale = 9.j

Fig. 7 Real part of the multiscale approximation of the Marmousi migration result F by convolution
with the normalized and partially taylorized (l = 1) Helmholtz source scaling function and wavelet for
k0 = 0.036 rad

m
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(a) Low-pass filtered migration result
at scale = 1.j

(c) Low-pass filtered migration result
at scale = 2.j

(e) Low-pass filtered migration result
at scale = 3.j

(g) Low-pass filtered migration result
at scale = 4.j

(b) Band-pass filtered migration result
at scale = 2.j

(d) Band-pass filtered migration result
at scale = 3.j

(f) Band-pass filtered migration result
at scale = 4.j

(h) Band-pass filtered migration result
at scale = 5.j

Fig. 8 Real part of themultiscale approximation of theMarmousimigration result F by convolutionwith the
normalized and fully taylorized (l = 2) Helmholtz source scaling function and wavelet for k0 = 0.036 rad

m

123



GEM - International Journal on Geomathematics (2021) 12 :16 Page 31 of 40 16

(a) Low-pass filtered migration result
at scale = 5.j

(c) Low-pass filtered migration result
at scale = 6.j

(e) Low-pass filtered migration result
at scale = 7.j

(g) Low-pass filtered migration result
at scale = 8.j

(b) Band-pass filtered migration result
at scale = 6.j

(d) Band-pass filtered migration result
at scale = 7.j

(f) Band-pass filtered migration result
at scale = 8.j

(h) Band-pass filtered migration result
at scale = 9.j

Fig. 9 Real part of themultiscale approximation of theMarmousimigration result F by convolutionwith the
normalized and fully taylorized (l = 2) Helmholtz source scaling function and wavelet for k0 = 0.036 rad

m
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source scaling function does not contain the noisy data for all depicted scales, whereas
the band-pass filtered signal of the fully taylorized source scaling function is noiseless
starting with scales j = 4.

5.2 Decorrelation using Cauchy–Navier wavelets

For the Cauchy–Navier wavelet decorrelation, we have to prepare the data set before-
hand. The reason is, that the wavelets are based on the Cauchy–Navier equation, which
models a homogeneousmediumwith constant Lamé parametersλ0 andμ0, aswell as a
constant densityρ0. Hence,we choose a referencemedium, in this case sandstone,with
the parameters ρ0 = 2066.38 kg

m3 , λ0 = 1.9 · 109 Pa and μ0 = 6.3 · 109 Pa (Gopalakr-
ishnan 2016) to decorrelate the migration result. Hence, we have λ = 9.1948×105 m

2

s2

and μ = 3.0488 × 106 m2

s2
. We use the frequency ω = 95.3 rad

s so that k1 equates to

k0 = 0.036 rad
m used in the Helmholtz case. Further, we need vectorial input data f .

Taking f = Fei , i = 1, 2, 3, where {e1, e2, e3} denotes the canonical orthonormal
system inR3, the decorrelation will be concentrated along the xi direction in the i− th
component of the resulting vector. Moreover the remaining two components of the
solution vector contain the decorrelation in the diagonal direction of xi and x j , j 	= i .
Hence, for a complete decorrelation, we choose

f = (1, 1, 1)T F = (e1 + e2 + e3)F

(cf. Fig. 10) and present the resulting decorrelation in the form of convolutions ∗ by

(
Φτ j ∗ (e1F) + Φτ j ∗ (e2F) + Φτ j ∗ (e3F)

) = Φτ j ∗ f .

We are now prepared to take a look at the decorrelation depicted in Figs. 11, 12,
13 and 14 using Cauchy–Navier wavelets and concentrate on its real part. We only
present selected scales of low-pass and band-pass data since a full decorrelation would
be to extensive for the scope of this paper. The Cauchy–Navier wavelets and scaling
functions are able to highlight the same structural information as the corresponding
decorrelation via Helmholtz wavelets. More specifically, both, the partially and the
fully taylorized Cauchy–Navier wavelets and scaling functions can filter out the noise
in the upper left corner of the dataset as can be seen by taking a look at the low-pass
filtered data in Fig. 11 for the partially and Fig. 13 for the fully taylorized case.

Both methods present noiseless band-pass filtered data starting at scale j = 4 (cf.
Figs. 12 and 14) which also contain the structural information of the salt dome on
the lower left side in the pictures on the diagonal. The shale layers discussed in the
Helmholtz case can also be found in Figs. 12 and 14.

As pointed out numerous times throughout this paper, we developed the decor-
relation based on the Cauchy–Navier equation in order to highlight directional
characteristics of migration results.

It turns out, that the partially taylorized Cauchy–Navier source wavelets and scaling
functions oscillate heavily inside its support especially for large ω. As such, they
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Fig. 10 Cut of the input data for
the decorrelation via the
Cauchy–Navier source scaling
functions and wavelets

behave similarly to the partially taylorized Helmholtz source wavelets and scaling
functions. In both the Helmholtz and the Cauchy–Navier case, this may result in ghost
images in the decorrelation for small scales j .

Further, directional characteristics in the data can clearly be highlighted via the
Cauchy–Navier wavelets and source scaling functions. For example, Figs. 11 and 13
show structures extending along the directions of x1 = x2 and x1 = −x2 in the
off-diagonal entries in both the low-pass and band-pass filtered signal. This behavior
continues along all depicted scales, but is more pronounced for lower scales due to
the size of the support of the wavelets and scaling functions.

It is clear that the mixed directions involving the direction x3 are close to zero with
an amplitude of 10−12 and contain only numeric noise. This is due to the symmetry of
Φl

τ j
(ω; ·) and that f is constant in the x3 direction. The major improvement compared

to the decorrelation using Helmholtz wavelets is, that we can further decorrelate the
model so that we can precisely highlight structures stretching in the xi direction, as
well as diagonally in the data set. Therefore, an interpretation of a given migration
result using Cauchy–Navier wavelets will bemore precise then by applyingHelmholtz
wavelets.
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6 Conclusion

We discussed the scalar wavelet decorrelation using mollifier Helmholtz wavelets
and presented an approach for the directional interpretability by tensorial mollifier
Cauchy–Navier wavelet and scaling functions. Decorrelation results were presented
and compared for both types of wavelets. The mollifier Helmholtz wavelets lead to
a good decorrelation of the data, which aids the interpretation effort in exploration.
The mollifier Cauchy–Navier wavelets however, allow a more precise decorrelation
since the data set is even further disassembled so that structures stretching in either of
the three Cartesian directions as well as all diagonal directions can be highlighted. In
fact, the decorrelation via the mollifier Cauchy–Navier source wavelet yields further
information on the migration result by highlighting signatures spreading in the three
Cartesian coordinate directions on the diagonal and the mixed directions on the off-
diagonal of the decorrelation.
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