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Summary

This paper explores the many interesting implications for oscillator design,

with optimized phase-noise performance, deriving from a newly proposed

model based on the concept of oscillator conjugacy. For the case of 2-D (pla-

nar) oscillators, the model prominently predicts that only circuits producing a

perfectly symmetric steady-state can have zero amplitude-to-phase (AM-PM)

noise conversion, a so-called zero-state. Simulations on standard industry oscil-

lator circuits verify all model predictions and, however, also show that these

circuit classes cannot attain zero-states except in special limit-cases which are

not practically relevant. Guided by the newly acquired design rules, we

describe the synthesis of a novel 2-D reduced-order LC oscillator circuit which

achieves several zero-states while operating at realistic output power levels.

The potential future application of this developed theoretical framework for

implementation of numerical algorithms aimed at optimizing oscillator phase-

noise performance is briefly discussed.
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1 | INTRODUCTION

Oscillator jitter is an unavoidable consequence of the internal noise sources generated by circuit components operating
at room temperature. The effects of oscillator jitter are observed in the frequency domain as a broadening of the phase-
noise spectrum. This issue represents a serious design obstacle as it for example causes inter-channel interference in
communication systems which in turn results in increased bit error rates (BERs). The reduction of close-to-carrier
phase-noise hence remains one of the most critical and essential factors of any oscillator design project.

A portion of the oscillator phase-noise response originates from amplitude perturbations which are then modulated
into the phase in a process known as oscillator AM-PM noise conversion.1-9 Herein, the following expression,
D=Dϕϕ +Dϕa , for the phase-diffusion, D, is introduced. The phase-diffusion is a real parameter which entirely charac-
terizes the phase-noise response of an autonomous oscillator.10-12 The contributions Dϕϕ and Dϕa are the oscillator
phase-diffusion constants due to phase (PM) and amplitude (AM) noise, respectively. Hence, Dϕa quantifies the AM-
PM noise conversion of the oscillator in a single constant. Importantly, this AM-PM component, Dϕa, is not a static
quantity but rather a function of the oscillator topology and chosen parameter values. An example illustrating this fact

Received: 18 May 2020 Revised: 22 September 2020 Accepted: 30 September 2020

DOI: 10.1002/cta.2893

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2020 The Authors. International Journal of Circuit Theory and Applications published by John Wiley & Sons Ltd

Int J Circ Theor Appl. 2021;49:1–17. wileyonlinelibrary.com/journal/cta 1

https://orcid.org/0000-0003-1916-7647
mailto:t.djurhuus@physik.uni-frankfurt.de
mailto:t.djurhuus@physik.uni-frankfurt.de
https://doi.org/10.1002/cta.2893
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/cta
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcta.2893&domain=pdf&date_stamp=2020-11-09


can be found in Djurhuus et al8,9 which considered a quadrature oscillator (QVCO) circuit. That paper revealed AM-
PM noise conversion to be a consequence of nonlinear coupling between oscillator blocks hence suggesting that the
AM-PM noise conversion could theoretically be canceled by introducing linear coupling.

The QVCO example highlights the appealing idea that the AM-PM contribution can be viewed as an “additional”
contribution which could, potentially, by some clever engineering or concepts (in the above case linear coupling), be
canceled or at least minimized. Hence, through optimized circuit design, it should then be possible to at least reduce, if
not cancel, the phase-diffusion component Dϕa. Once we achieve this result, it should be obvious from the above discus-
sion that we have reached a local, if not global, minimum of the overall phase-noise response of a particular oscillator
circuit.

There are at least two pertinent open questions which are obvious at this juncture. First, what are the design rules
for minimizing Dϕa, i.e., what topologies and parameter settings induce optimal performance, and second, are the spe-
cial states, Dϕa =0, referred to here as the zero-states, attainable at all.

In Djurhuus and Krozer,13 using a novel model framework based on the concept of oscillator conjugacy, the authors
were able to answer both these questions for the special case of two-dimensional oscillators. There it was proven that
zero-states were predicated on a symmetric oscillator limit-cycle solution. Hence, we have the situation : Dϕa =0)
symmetric steady-state. This novel and wide-reaching result has many direct implications for practical oscillator design.
Most importantly, it clearly identifies the zero-states (Dϕa =0) in the oscillator solution space. Knowing the zeros of a
measure is an absolute requirement for the development of optimization algorithms which hitherto were not possible.
In the following, we shall refer to the model framework developed in Djurhuus and Krozer13 as the SYM-AM/PM
model.

Several numerical experiments, performed in both Djurhuus and Krozer13 and in this paper, unequivocally verify
all the predictions put forth by the novel SYM-AM/PM model. However, these simulations also indicate that zero-states
remain generally unattainable for many industry-standard radiofrequency (RF) and μ-wave oscillators circuit topolo-
gies. In fact, our work shows that these circuit-classes only achieve zero-states in special limit-cases which are of no sig-
nificant value for practical design. Herein, we refer to these solution points as ambiguous zero-states or A-STATE(S) for
short. The prevalence of A-STATES in industry-standard oscillator circuits is certainly an unsatisfying situation. In this
paper, we intend to remedy this situation by applying the design rules acquired from the application of the novel SYM-
AM/PM model. Specifically, we demonstrate the synthesis of a novel LC oscillator circuit which achieves zero-states
(Dϕa =0 ) while operating at realistic output-power levels. These kinds of zero-states, with real prospects for design
value, will be referred to as proper zero-states or P-STATE(S) for short. This exercise will clearly illustrate how the SYM-
AM/PM model framework can be applied towards synthesis and design of optimized oscillator solutions. Furthermore,
this exercise will highlight how this theoretical program can be used to develop novel numerical algorithms aimed at
optimizing oscillator phase-noise performance.

The paper is organized in six sections. Section 2 delivers a comprehensive review of the main theoretical concepts
involved. Then, in Section 3, we introduce the SYM-AM/PM model, which was developed in Djurhuus and Krozer,13

review the various predictions which follow from its use and announce the various numerical measures to be used in
subsequent simulations. Section 4 contains numerical experiments on a MOSFET transistor differential-pair LC oscilla-
tor circuit, a very important unit found in most modern RF and μ-wave systems. The simulations unequivocally verify
all the predictions emerging from the SYM-AM/PM model. Section 5 details the synthesis and simulation of the novel
SYM-OSC oscillator circuit. It is shown that the SYM-OSC attains zero-states for parameter settings allowing the oscilla-
tor to operate at realistic output power levels, so-called P-STATES. Finally, Section 6 gives a brief discussion of the
obtained results and future work which we plan to pursue.

2 | A BRIEF REVIEW OF ESTABLISHED THEORY

We consider an n-dimensional autonomous vector-field f :Rn !Rn generating a set of n-coupled ordinary differential
equations (ODEs)

_x= f ðxÞ ð1Þ

with xðtÞ :R!Rn being the n-dimensional time-dependent state-vector. The dynamical system in Equation (1) pro-
duces a stable limit set γ known as the oscillator limit-cycle. A steady-state solution xsðt+TÞ= xsðTÞ is a T-periodic
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solution orbit with an initial condition in γ. It then follows that xs(τ) 2 γ for all τ. The system in Equation (1) is time-
normalized using the timescale τ=2πðt=TÞ which implies a 2π periodic solution xsðτ+2πÞ= xsðτÞ and corresponding
oscillator frequency ω0 = 2π=T =1.

2.1 | Linear response map Φ and the oscillator tangent bundle TRn

The oscillator response, δx(τ), to small perturbations around the steady-state, γ(τ), is governed by the oscillator linear-
response map Φðq,sÞ :TsRn !TqRn . This map produces the oscillator output δxðqÞ=Φðq,sÞζðsÞ , at time τ= q , in
response to a small (deterministic or random/noise) perturbation vector ζ(s), at time τ= s. Here, the oscillator tangent
space TηRn represents the usual real n-dimensional vector-space Rn with the origin translated to the point γ(η) in state-
space (an affine vector-space). The entire domain and co-domain (image) of the map Φ, TRn, is known as the oscillator
tangent-bundle, is then given as union of the individual tangent spaces

TRn = [
η2½0;2π½

TηRn: ð2Þ

2.2 | The Floquet decomposition

For hyperbolic stable oscillators, the following unique decomposition of Φ will always exist:

Φðq,sÞ=
Xn
k=1

expð−μkðq−sÞÞukðqÞv†kðsÞ, ð3Þ

where {μi} are the n characteristic Floquet exponents, {ui(τ)} is the complete set of Floquet vectors, and {vi(τ)} is the com-
plete set of dual* Floquet vectors.10-12

The Floquet vectors and dual vectors support the following defining relationship:

v†i ðτaÞujðτbÞ= δðτa−τbÞδij fori=1,2,…n, ð4Þ

where v†i denotes the transposed of the (dual) vector vi, δij is the Kroenecker delta-function, whereas τa, τb are two
normalized time-points. The delta-function component of Equation (4) signifies that the bi-orthogonality property only
holds for equal time arguments. The set {ui(τ)} is complete, and we can hence always decompose any perturbation vec-
tor function as

ζðτÞ= a1ðτÞu1ðτÞ+ a2ðτÞu2ðτÞ+…+ anðτÞunðτÞ, ð5Þ

where {ai(τ)} are n expansion coefficient functions. From Equation (4), one then finds directly

v†kðτÞζðτÞ= akðτÞ, ð6Þ

and the dual vector vk hence picks out the component of ζ proportional to uk.
For an autonomous oscillator solution, the special exponent μ1 = 0 will always occur. The corresponding Floquet

vector u1, known as the phase-mode, is a scaled version of _xs , where xs is the steady-state solution of the system in

*The difference between vectors and dual vectors is that they transform as contra-variant and co-variant vectors, respectively.11 Henceforth, the terms
vector and vector-bundles are thus connected to contra-variant vectors and vector-functions, whereas the terms dual vector and dual vector-bundles are
associated with co-variant vectors and vector-functions.
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Equation (1) and hence tangent to the limit-cycle γ.10,11 Setting k=1 in Equation (6), it follows that the dual-vector
vk = v1 collects the part of the perturbation attributed to phase-mode uk = u1 as seen from Equation (5). When ζ is a
noise perturbation, it thus collects the oscillator phase-noise contribution. The dual vector, v1, hence has special status
as it relates to the oscillator phase-response and is often referred to in the literature as the perturbation-projection vec-
tor (PPV).10 For an autonomous oscillator, all that is not phase must, by definition, be amplitude. Hence, the remaining
n − 1 Floquet vectors fuiðτÞgni=2 are referred to as amplitude-modes and stability requires ℜ{μ(i> 1)} < 0, where ℜ{μi}
denotes the real part of the complex coefficient μi.

The n Floquet vector functions {ui(τ)} are now grouped in two so-called vector-bundles11

TM= spanfu1ðτÞg, ð7Þ

TI= spanfu2ðτÞ,u3ðτÞ,…,unðτÞg ð8Þ

with TM containing the single phase-mode, whereas the bundle TI holds the n − 1 amplitude-modes. The oscillator
tangent-bundle in Equation (2) can then be decomposed into phase and amplitude contributions as

TRn =TM⊕TI, ð9Þ

The bundle definitions in Equation (7)–(8) then prompt the definition of the equivalent dual bundles (see
footnote *)

T∗M= spanfv1ðτÞg, ð10Þ

NM= spanfv2ðτÞ,v3ðτÞ,…,vnðτÞg: ð11Þ

The geometric interpretation behind the concepts discussed above are illustrated qualitatively in Figure 1A. For a
more thorough discussion of these topics, we refer to Djurhuus et al.11

2.3 | The orthogonal decomposition of TRn

We consider the scenario where the phase-mode, u1, and the PPV, v1, are colinear u1ðτÞ= av1ðτÞ , a2R . From Equa-
tions (7) and (10), we then have† TM’T∗M. From the rule in Equation (4) and the definition of TI in Equation (8), it
follows that v1 is always orthogonal to TI and since u1 and v1 are colinear, it follows that u1 now also must be orthogo-
nal to TI. By definition, u1 is orthogonal to the dual space NM defined in Equation (11), and we therefore must have
TI’NM. We sum up the above discussion as

TM ’ T∗M , TI⊥TM, ð12Þ

where Q⊥W implies that the bundles Q and W are orthogonal. This orthogonal decomposition scenario is illustrated
qualitatively in Figure 1B.

2.4 | The oscillator phase-noise spectrum

In this section, we consider the noise-perturbed version of the oscillator defined in Equation (1)

_x= f ðxÞ+ bðxÞzðτÞ, ð13Þ

†Here, we use the notation X’Y to indicate that the vector-bundle (contra-variant bundle) X and the dual bundle (co-variant bundle) Y describe the
same subspace of TRn (see footnote *).
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where b :Rn !Rn× p is the noise modulation matrix10 and z :R!Rp is a p-dimensional vector of uncorrelated, zero-
mean, unit-power Gaussian white noise sources‡. Note that since the noise analysis herein is based on the linear-
response (see discussion in Sections 2.1–2.2), the model implicitly assumes that the power of the noise sources zk are
weak compared to the deterministic signals x= ðx1,x2,…xnÞ† . Specifically, this is the situation for the important case of
electrical oscillators operating at room temperature. The noise perturbation in Equation (13), evaluated on the oscillator
steady-state solution xs(τ), can now be written

ξðτÞ= bðxsðτÞÞzðτÞ=
Xp
k=1

bkðτÞzkðτÞ, ð14Þ

where bk(τ) is the kth column of the modulation matrix b(x(τ)), whereas zk(τ) is the kth component of the noise-vector
z.

As the p noise sources {zk(τ)} in Equation (14) are uncorrelated, and equally distributed (i.e., white Gaussian noise),
the total response of any ensemble average function (such as diffusion constants) can found by adding the individual
contributions using the superposition principle. We can hence simplify the notation of the following analysis signifi-
cantly by only considering the response of the oscillator to a single noise source. Hence, let 1≤ q≤ p and consider the
qth term in Equation (14). We then define the simplified perturbation source as

ξðτÞ= κðτÞsðτÞ, ð15Þ

where κðτÞ= bqðτÞ and sðτÞ= zqðτÞ . In the following analysis, the various calculations are performed using the
source in Equation (15) as the oscillator noise perturbation. Later in the analysis phase, the superposition principle will
then be applied to show how this partial, single-source, response actually directly implies the total oscillator response
produced by the full perturbation vector in Equation (14).

From the discussion in Section 2.2, and the expression of the Φ in Equation (3), we know that the dual Floquet vec-
tor v1 (PPV) collects all noise perturbations attributed to the phase-mode u1, i.e., phase-noise. Specifically, given the
noise perturbation vector ξ, the so-called oscillator phase-diffusion D is calculated as

D=
1
2π ð

2π

0

v†1ðsÞhξðsÞξ†ðsÞiv1ðsÞds, ð16Þ

The oscillator phase-noise spectrum, around the first harmonic (carrier), then takes the (time-normalized) form10-12

Lðf mÞ=10log
4D

D2 + 4f 2m

 !
, ð17Þ

FIGURE 1 (A) A qualitative picture illustrating the Floquet

vector-bundles TM,TI (solid line) and the dual vector-bundles

T∗M,NM (dashed line). (B) W hen vector u1 and dual vector v1 are

colinear, i.e., u1 = av1, a2R, we attain the orthogonal decomposition

TM⊥TI [Colour figure can be viewed at wileyonlinelibrary.com]

‡Note that the power of the time-normalized noise sources in Equation (13) is scaled by a factor 2π/T compared to the original un-normalized sources,
as a simple calculation would reveal. The results discussed herein are independent of time-normalization, and this scale factor hence is not critical for
our investigation. It is therefore simply absorbed in modulation matrix b.
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where fm is the normalized offset-frequency from the carrier. The model leading to spectrum in Equation (17) assumes
a stable carrier which is an acceptable approximation for most practical electrical oscillator circuits, at least for reason-
able time-scales. However, it should be mentioned that this approach does neglect thermal and noise-induced drift of
the carrier frequency. For a more detailed description of the stochastic oscillator phase process, including drift, we refer
to the literature.14-17

We now decompose the phase-diffusion in Equation (16) into two separate contributions

D= Dϕϕ|{z}
PM-PM

+ Dϕa|{z}
AM-PM

, ð18Þ

where Dϕϕ represents the part of the phase-diffusion due to PM noise (noise tangent to γ) and Dϕa represent the compo-
nent due to AM noise (noise orthogonal to γ), i.e., the AM-PM noise conversion. The calculation of these parameters is
the topic of the following section.

2.5 | AM-PM noise conversion

We consider the vector-bundle N∗M’NM

N∗M= spanfâ1ðτÞ, â2ðτÞ,…, ân−1ðτÞg, ð19Þ

which is simply just the contra-variant version of the dual vector-bundle NM in Equations (11) (see footnotes * and †).
Together with the unit vector bundle ϕðτÞ 2TM, we can construct the orthonormal frame ðϕ̂,fâigÞ shown in Figure 2.
From this frame, the noise vector ξ(τ) in Equation (15) is decomposed into phase (PM) and amplitude
(AM) components

ξðτÞ= α0ðτÞϕ̂ðτÞsðτÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
PM noise

+
Xn−1

k=1
αiðτÞâiðτÞsðτÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

AMnoise

, ð20Þ

where α0ðτÞ= κ†ðτÞϕ̂ðτÞ, αi>0ðτÞ= κ†ðτÞâiðτÞ. The following projections are now defined

v†1ðτÞϕ̂ðτÞ= β0ðτÞ, ð21Þ

v†1ðτÞâiðτÞ= βiðτÞ, ð22Þ

where v1 is the dual phase-mode Floquet vector (PPV) discussed in Section 2.2. From Equation (6), it follows that the
TM= spanðu1ðτÞÞ component of any arbitrary vector x is calculated from the projections v†1ðτÞx . Furthermore, if we
define y= x−v†1ðτÞx, then, it must follow that y2TI; as v†1ðτÞy=0 (see discussion in Section 2.2). Using the definition of
TI in Equation (8) and the projections in Equations (21)–(22), we can then write the noise vector in Equation (20) as

FIGURE 2 The noise vector ξ, defined in Equation (15), is decomposed into phase (PM) and

amplitude (AM) components according to the orthonormal frame ðϕ̂,fâiðτÞgÞ [Colour figure can be

viewed at wileyonlinelibrary.com]
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ξðτÞ= ½ ρðτÞ|{z}
PM-PM

+ λðτÞ|{z}
AM-PM

�u1ðτÞsðτÞ+
Xn
k=2

νk−1ðτÞukðτÞsðτÞ, ð23Þ

where {νk(τ)} are a set of n − 1 unspecified functions representing the oscillator amplitude-noise response, whereas ρ,λ :
R!R are two real functions, representing the PM/AM-noise contributions to the phase mode u1. From this description,
it follows that ρ holds the phase-mode (u1) noise component due to PM noise (PM-PM), whereas λ holds the phase-
mode noise component due to AM noise (AM-PM). From Equations (20) and (21)–(22), these two functions are written

ρðτÞ= α0ðτÞβ0ðτÞ, ð24Þ

λðτÞ=
Xn−1

i=1

αiðτÞβiðτÞ: ð25Þ

The following statement explains under what circumstances the AM-PM contribution in Equation (23), λ(τ), can be
zero

Corollary 2.1. The function λ :R!R defined in Equation (25) will be zero if, and only if, the Floquet decomposition
is orthogonal (see Section 2.3 and Figure 1)

λðτÞ=0,TM⊥TI: ð26Þ

Proof. From Equations (25) and (22)

λðτÞ=0,
Xn−1

i=1

αiðτÞβiðτÞ=
Xn−1

i=1

αiðτÞv†1ðτÞâiðτÞ= v†1ðτÞwðτÞ=0, ð27Þ

where wðτÞ=Pn−1
i=1αiðτÞâiðτÞ . The frame fâig , shown in Figure 2, spans the normal-space N∗M’NM which implies

wðτÞ 2N∗M. This frame is orthogonal to the limit cycle γ (see Figure 2). As wðτÞ 2N∗M, Equation (27) then implies that
v1 is orthogonal to N∗M’NM which means that it must be tangent to γ (see Figure 1). The vectors v1 and u1 are hence
colinear, i.e., TM’T∗M (see Section 2.3). But then it follows directly from Equation (12) that the Floquet decomposi-
tion must be orthogonal.

We proceed with the statement

Corollary 2.2. Given the decomposition of ξ in Equation (23) and the definition of the AM-PM phase-diffusion con-
stant Dϕa in Equation (18), we have

λðτÞ=0,Dϕa =0, ð28Þ

where the function λ :R↦R is defined in Equation (23).

Proof. See Appendix C1.

At this point, we must remind ourselves that the above results were derived using the single source
κðτÞsðτÞ= bqðτÞzqðτÞ in Equation (15) which represented the qth component of the sum in Equation (14). Hence, from
this point on, the notation DðqÞ

ϕa is used to refer to the partial AM-PM phase-diffusion constant due to the perturbation
bq(τ)zq(τ), whereas Dϕa is now reserved for the response due to the full noise perturbation in Equation (14). Combining
the results in corollaries 2.1 and 2.2, then gives the result

DðqÞ
ϕa =0,TM⊥TI: ð29Þ
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As mentioned above, the superposition principle can be applied to tie the partial result in Equation (29) to full
response. For this purpose, we now state

Corollary 2.3. The partial result in Equation (29), calculated using the single source in Equation (15), holds equally for
the response due to the full perturbation vector in Equation (14)

Dϕa =0,TM⊥TI, ð30Þ

where, as mentioned above, Dϕa now refers to the full AM-PM phase-diffusion constant calculated using ξ(τ) in
Equation (14).

Proof. Repeating the above calculation for each term bk(τ)zk(τ) in Equation (14), we would again arrive at Equation (29)
for q= k. Since the sources zk(τ) are uncorrelated, the ensemble averages will not contain any cross-terms mean-
ing that the response of each of the terms are mutually independent. It then follows directly from the superposi-
tion principle that the full AM-PM phase-diffusion constant is given as the sum Dϕa =

Pp
k=1D

ðkÞ
ϕa . Furthermore, as

a diffusion constant cannot be negative, we have

Dϕa =
Xp

k=1
DðkÞ
ϕa =0,DðxÞ

ϕa =0 for x=1,2,…p, ð31Þ

which says that Dϕa is zero if, and only if, all the partial terms fDðqÞ
ϕag are zero. Each term in this sum obeys

Equation (29), and combining this result with Equation (31), one arrives directly at Equation (30).

As discussed in Section 1, we refer to Dϕa =0 (zero AM-PM noise conversion) as zero-states. Equation (30) then
says that zero-states are only possible if the Floquet decomposition is orthogonal, i.e., TI⊥TM. Using the definitions of
TM and TI in Equations (7) and (8), this translates directly to the following condition for the special two-dimensional
(n=2) case

Dϕa =0, u1ðτÞ⊥ u2ðτÞ: ð32Þ

Hence, in-order for a two-dimensional oscillator to attain a zero-state, we must demand that the corresponding
Floquet phase and amplitude-modes, u1(τ) and u2(τ), are orthogonal for all values of τ.

3 | THE SYM-AM/PM MODEL

In13 a new methodology, based on the concept of oscillator conjugacy, was developed with the aim of analyzing oscilla-
tor noise response. In this text, we refer to this theoretical framework as the SYM-AM/PM model.

One prominent and wide-reaching prediction which emerges from the SYM-AM/PM model is represented by the
following statement13:

u1ðτÞ⊥ u2ðτÞ) γ 2 Sa, ð33Þ

where Sa is the collection of rotationally symmetric limit sets

Sa= w2Ws jwj− jaj=0j g a2C,f ð34Þ

with Ws being the 2-D oscillator stable manifold§ which is indexed here using the complex coordinate w. Note that Sa
simply holds all limit-sets which have the form of concentric circles centered at the point a. In words, Equations

§As explained in Djurhuus and Krozer,13 the stable manifold Ws must be diffeomorphic to the punctured plane Cnf0g. However, this just says that
the oscillation must bifurcate from a single DC operating point. Fortunately, this definition covers all practically useable electrical oscillator
topologies as well as almost all mathematical examples such as the van-der-Pol circuit class and the Selkov model.
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(33)–(34) say that an orthogonal decomposition is achieved if, and only if, the underlying steady-state oscillator solution
γ(τ) is perfectly symmetric. This connection between γ-symmetry and an orthogonal Floquet decomposition was first
discovered in Djurhuus and Krozer.13

Combining the result in Equation (33) with Equation (32), calculated in the previous section, we arrive at the novel
statement

Dϕa=0) γ 2 Sa, ð35Þ

which says essentially that for 2-D oscillators, zero AM-PM noise conversion follow from the symmetry of the steady-
state (deterministic) oscillator solution.

In-order to numerically test and verify the novel hypothesis in Equation (35), we will need to quantify the levels of
γ-symmetry and AM-PM noise conversion. For this purpose, we introduce the measure

Λ=
1
2π ð

2π

0

ðρðτÞ=ρmaxÞ−1:0f gdτ
������

������, ð36Þ

where ρðτÞ= jγðτÞj2 = γ1ðτÞ2 + γ2ðτÞ2 , with γ1, 2 being the two components of the 2-D limit-cycle solution
(γðτÞ= ðγ1ðτÞ,γ2ðτÞÞ), whereas ρmax representing the maximal value of the function ρ on the interval τ 2 [0; 2π]. From
the definition of Sa in Equation (34) and the expression above, it should be clear that Λ=0, γ 2 Sa and Λ hence mea-
sures the level of limit-cycle symmetry, with Λ=0 for a perfectly symmetric solution. Next, we consider the function

Υ= max
τ2½0;2π�

∠fu1ðτÞ,u2ðτÞg−90∘j j, ð37Þ

where u1, 2(τ) are the first and second Floquet vector functions, respectively. It follows directly from Equation (32) that
Υ measures the level of AM-PM in the solution, with Υ=0 representing the zero-states discussed above. Using the defi-
nitions in Equation (36)–(37), it follows that in order for Equation (33), and consequently Equation (35), to hold true,
we must observe

Υ! 0)Λ! 0, ð38Þ

in our numerical simulation results.
The predictions which emerge from the SYM-AM/PM model directs us to seek out oscillator topologies and parame-

ter settings which produce the symmetric (Λ=0) steady-state solution, contained in the set Sa in Equation (34), in order
to achieve oscillators operating at the zero-states (Υ=0). Unfortunately, as will be discussed below, these Λ=0 states
seem to generally not occur in industry-standard RF and μ-wave oscillator circuit topologies. In fact, as will be made
evident in subsequent simulation trials, these circuit-classes only attain zero-states in special limit-cases which are
unworkable from a practical design perspective, the so-called A-STATES. The issues discussed here will become more
accessible in the following section where we consider a reduced-order model of a specific MOSFET transistor
differential-pair cross-coupled oscillator which is a unit found in many modern communication and remote-sensing
applications. This state-of-affairs will prompt us in Section 5 to demonstrate the synthesis of a novel 2-D LC oscillator
circuit, constructed using the design rules newly acquired from the SYM-AM/PM model, which in fact does present sev-
eral practically useful zero-states, the so-called P-STATES.

4 | A STANDARD MOSFET TRANSISTOR OSCILLATOR CIRCUIT—
AMBIGUOUS ZERO-STATES (A-STATES)

We consider the MOSFET differential pair LC oscillator, shown in Figure 3A. Here, we consider both the series resona-
tor load (red) and parallel resonator load (blue) options. The circuit operates in the current-limited regime18 implying
that the NMOS differential pair behaves as an ideal switch. From Figure 3A, the circuit is biased by the DC current
source IB and the small-signal transconductance is then written
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Gm =
ffiffiffiffiffiffiffiffiffi
knIB

p
, ð39Þ

where kn = μnCoxWn=Ln with μn, Cox,Wn, and Ln being the charge mobility, oxide capacitance, gate width, and length,
respectively. Using the result in Equation (39), the full nonlinear transconductance function of the MOSFET differential
pair in Figure 3A is then approximated19

ΘðvCÞ= IB
2
π
arctan

π

2
Gm

IB
vC

� �
, ð40Þ

where vC is the resonator differential capacitor voltage (see Figure 3). In Figure 3B, the differential-mode equivalent of
the full transistor circuit, referred to as the THETA-OSC, is shown. We consider both the series resonator load THETA-
OSC/SER (red) and parallel resonator load THETA-OSC/PAR (blue) options. In the following, we normalize the time
variable as τ=ωnt where ωn =1:0=

ffiffiffiffiffiffi
LC

p
is the natural frequency of the resonator. The dynamical equations of the 2-D

differential-mode THETA-OSC reduced-order circuit are then written as

_x = −ðz0=RpÞx−y=z0 +Θðz0xÞ
_y = z0x−ðRs=z0Þy,

ð41Þ

with x= vC=z0, y= iLz0, where vC, iL are the voltage across the capacitor C and current through inductor L, respectively,
whereas z0 =

ffiffiffiffiffiffiffiffiffi
L=C

p
is the resonator characteristic impedance and Θ was defined above in Equations (39)–(40) ¶. Here,

Rp, Rs≠ 0 corresponds to the THETA-OSC/[PAR/SER] circuits in Figure 3 with corresponding color codes (blue/red).
The capacitance C and inductance L do not occur explicitly in Equation (41) but are easily calculated from the given
parameters#.

Figure 4A shows a series of numerical calculations for the THETA-OSC/PAR circuit in Figure 3B as modeled by
Equation (41) (blue). We consider a constant Q circuit with Q=10 corresponding to a resonator load
Rp =Q=ðωnCÞ=Qz0 . The figure plots the two measures Υ,Λ in Equations (37) and (36) as function of the bias current
IB (see Figure 3A) and for four values of the resonator characteristic impedance z0. In Figure 4A, the concept of an

FIGURE 3 (A) A cross-coupled

MOSFET (NMOS) LC oscillator

operating in the current-limited

regime. (B) The equivalent 2-D circuit

for the differential-mode oscillation,

THETA-OSC, where the nonlinear

transconductance Θ models the

MOSFET pair in figure A). The circuit

includes either a series (THETA-

OSC/SER) or parallel (THETA-

OSC/PAR) resonator load [Colour

figure can be viewed at

wileyonlinelibrary.com]

¶In the following, we fix kn from Equation (39), in time-scaled form, as kn =2AV −2.
#As the resonator natural frequency ωn =1:0=

ffiffiffiffiffiffi
LC

p
is fixed (time normalization), we can express the circuit capacitance and inductance in terms of

parameters ωn, z0 as C=1:0=ðωnz0Þ and L= z0=ωn.

10 DJURHUUS AND KROZER

http://wileyonlinelibrary.com


oscillator start-up boundary (SB) is introduced. Herein, the term SB represents the point in parameter space where the
oscillator solution is born, i.e., starts-up, from the DC operating point in some-kind of bifurcation (Hopf-bifurcation in
our case). The THETA-OSC/PAR circuit starts-up (turns-on) at Gm >Gm0 = 1:0=Rp =1:0=ðQz0Þ . Using the relation in
Equation (39), we can then find the bias current IB0 at start-up

IB0 = 1:0=ðknQ2z20Þ: ð42Þ

Here, IB0 describes the SB as for IB< IB0, the system is at rest (i.e., DC rest point) and for IB> IB0, the dynamics of
the system is described by a periodic limit-cycle solution. The boundary IB = IB0 hence represents the transition between
these two states (i.e., the bifurcation point). The four SBs, one for each value of z0, in Equation (42), are indicated in the
figure as dotted vertical lines. We note that Λ,Υ! 0 as IB! IB0 exclusively for the parameter value z0 = 1:0. Each curve
in Figure 4A corresponds to a unique set of circuit resonator parameters (C, L, Rp) as explained in footnote # and the
above derivation of the parallel load as Rp =Qz0.

Figure 4B repeats the experiments displayed in Figure 4A above but this time for the THETA-OSC/SER circuit (see
Figure 3B [red]) modeled by Equation (41) (red). Here, the resonator quality factor Q is again fixed as Q=10
corresponding to a resonator load Rs =ωnL=Q= z0=Q. A simple series-to-parallel transformation then gives the follow-
ing approximation for the equivalent parallel load R̂p≈Rsð1+Q2Þ. From the discussion above, we know that the oscilla-
tor circuit turns on for Gm >Gm0 = 1:0=R̂p = ðQ=z0Þ=ð1+Q2Þ. Using Equation (39) results in the following approximate
values for the SBs for the TANH-OSC/SER circuit in Figure 3B,

IB0≈ðQ=z0Þ2= kn 1+Q2
� �2	 


, ð43Þ

which depend on the value of the characteristic impedance z0, and are indicated in Figure 4B using vertical dotted lines.
Unlike what was observed in Figure 4A, no singularities, for either measure, occur for the TANH-OSC/SER at the SBs.
Each curve in Figure 4B corresponds to a unique set of circuit resonator parameters (C, L, Rs) as explained in footnote #
and the above derivation of the series load as Rs = z0=Q.

Figure 4A, which represents simulation results for the THETA-OSC/PAR circuit, featured a singularity in both
measures Λ and Υ, at the SB, for the parameter setting z0 = 1. Furthermore, this singularity occurred strictly pairwise,
by which is meant that is was never the case that Υ! 0 while Λ !̸0 for any parameter setting. From the above
description, it follows that the THETA-OSC/PAR circuit has a zero-state (i.e., Υ=0) at the SB. In contrast, the numeri-
cal experiments in Figure 4B, for the THETA-OSC/SER circuit, showed no evidence of singularities. While the THETA-
OSC/SER again attains minimum AM-PM, as measured by Υ, for z0 = 1:0, it never achieves any zero-states at the SB

FIGURE 4 Simulations of measures Υ and Λ, defined in Equations (37) and (36), for THETA-OSC differential-mode circuit (see

Figure 3B). (A) parallel load, THETA-OSC/PAR (blue), Q-factor : Q=10, dotted lines = SB in Equation (42). (B) Series load THETA-

OSC/SER (red), Q-factor : Q=10, dotted lines = SB in Equation (43) [Colour figure can be viewed at wileyonlinelibrary.com]
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(or anywhere else) exactly because it never attains a perfectly symmetric limit-cycle solution (Λ=0 ) at the SB
(or anywhere else). The above numerical experiments, detailed in Figures 4A and 4B, hence, follow the rule in
Equation (38) and thus fully corroborate and validate the SYM-AM/PM model and specifically the prediction in
Equation (35).

In Figure 4A, we see that the THETA-OSC/PAR circuit exhibits a zero-state (Υ=0) directly at the SB for z0 = 1. As
mentioned in the introduction, we refer this type of zero-state on the SB as an ambiguous zero-state or A-STATE. The
A-STATE in Figure 4A is very important for the purpose of verifying the predictions of the SYM-AM/PM model, and
this issue was discussed in detail above. However, as we approach the SB, the steady-state oscillator solution, γ,
approaches the quiescent DC operating point, with the corresponding oscillation amplitude approaching zero. It hence
follows that an A-STATE, such as the one shown in Figure 4A, holds no significant relevance for practical oscillator
design.

In contrast, a proper zero-state, or P-STATE, refers to a zero-state where the oscillator operates at nonzero power
output. The prospect of designing oscillators operating at P-STATES is indeed very interesting as these solution modes
represent a local, if not global, minima of the total phase-noise response. Fortunately, with the emergence of the novel
SYM-AM/PM model, we, for the first time, have the tools available in order to formulate rules which can be used to
guide our design in terms of topology and parameter settings. In the following section, we proceed to apply these
newly attained design rules in order to synthesize a novel electrical oscillator circuit which achieves several viable P-
STATES.

Figure 5 plots the THETA-OSC oscillator limit-cycle γ and corresponding Floquet vector-bundles (u1(τ), u2(τ)) for
various circuit parameter configurations. The figure contains simulations of the THETA-OSC/[PAR/SER] circuits given

FIGURE 5 Plots of four limit-cycle solutions and corresponding Floquet vector-bundle for the THETA-OSC circuit in Figure 3. The two

figures on the left and right column correspond to simulations for the parameter settings ➀ : ðIb,z0Þ= ð� 5:0mA,1:0ΩÞ and ➁ :

ðIb,z0Þ= ð15:0mA,0:7ΩÞ, respectively. The two figures on the top and bottom row of the matrix correspond to plots for the THETA-OSC/

[PAR/SER] circuits ((blue/red) in Figure 3) [Colour figure can be viewed at wileyonlinelibrary.com]

12 DJURHUUS AND KROZER

http://wileyonlinelibrary.com


two different parameter configurations, labeled ➀ and ➁ (see Figure 5 caption and footnotek). The parameter configu-
ration ➀ corresponds to the SB for the specific parameter choice z0 = 1:0. For the THETA-OSC/PAR circuit, this operat-
ing point corresponds to the A-STATE shown in Figure 4A. The existence of this special state is clearly detected
in Figure 5A. Here, the perfectly symmetric limit-cycle and orthogonal Floquet vector-bundle directly corresponds to
the singularities in the measures Λ,Υ, defined in Equations (36) and (37), respectively, observed in Figure 4A (blue cur-
ves). Figure 5C shows simulations for the same configuration but for the THETA-OSC/SER circuit. The figure clearly
illustrates that no such symmetry property holds here and furthermore that the bundle is no longer orthogonal. This
again directly corresponds to the lack of an A-STATE (singularity) at the SB for the THETA-OSC/SER circuit in
Figure 4B (z0 = 1:0, blue curves). Finally, Figures 5B and 5D shows the equivalent simulations for the THETA-OSC/
[PAR/SER] for the parameter configuration ➁. Clearly, neither circuit produces a symmetric limit-set in this configura-
tion, and the bundles are also not orthogonal. These results again correlate directly with the curves in Figure 4A–B
(z0 = 0:7, turquoise curves). The plots in Figure 5 hence correlate directly with the equivalent curves in Figure 4A–B
and hence simply convey a different, perhaps more intuitive, representation of the same results.

5 | SYNTHESIS OF AN OSCILLATOR WITH PROPER ZERO-STATES
(P-STATES)

We consider the electrical circuit displayed in Figure 6 which we shall refer to throughout as the SYM-OSC circuit. In
order to model this circuit, we proceed to introduce the following two Q-factors:

Qp =ωnCRp

Qs =ωnL=Rs,
ð44Þ

where ωn =1:0=
ffiffiffiffiffiffi
LC

p
is the natural frequency of the circuit resonator. In Figure 6, the controlled sources iN and vN have

the form

iNðvC, iLÞ = a1vC + a2v3C + a3i2LvC
vNðvC, iLÞ = b1iL + b2i3L + b3v2CiL,

ð45Þ

where the values and units of the various parameters in the above expressions are listed in Table 1.
Continuous nonlinear functions such as those in Equation (45) can be realized electronically using various different

function synthesizer circuit topologies. The perhaps simplest option involves the use of standard op-amp
log/anti-log20,21 and summer circuits which allows for a bare-bone implementation of parametric polynomial functions.
Alternatively, operational-transcondutor-amplifier (OTA) circuits can be worked to synthesize any mathematical
function characteristic (see, e.g., Sánchez-Sinencio et al22). Finally, a dedicated chip such as the AD53823 can be used to
synthesize any polynomial function.

In the following, we normalize the time variable as τ=ωnt . The dynamical equations modeling the circuit in
Figure 6 can then be written as

FIGURE 6 The novel SYM-OSC oscillator

circuit, synthesized using design guidance

attained from the novel SYM-AM/PM model.

The circuit contains both a nonlinear

transconductance iN and transimpedance vN
which are defined in Equation (45)

kHere, �5mA refers to a value close to, but a little above IB =5mA which roughly represent the SB for both PAR/SER circuits, for z0 = 1:0, as seen
from Equations (42)–(43) and footnote ¶. We hence choose the of value of IB closest to the SB which still produces a converging limit-cycle solution.
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_x = −ðz0=RpÞx−y=z0 + iNðxz0,y=z0Þ
_y = −ðRs=z0Þy+ z0x+ vNðxz0,y=z0Þ,

ð46Þ

where x= vC=z0 , y= iLz0 with z0 =
ffiffiffiffiffiffiffiffiffi
L=C

p
being the resonator characteristic impedance, whereas vC, iL are the voltage

across the capacitor C and current through inductor L, respectively. Note that each set of circuit parameters in Equa-
tion (46) corresponds to a unique** component set (C, L, Rp, Rs) in Figure 6.

Figure 7A plots the two measures Λ and Υ, defined in Equations (36) and (37), for the SYM-OSC in Figure 6 with
Qp,Qs =10:0. The measures are plotted as a function of the transconductance parameter a1 for four values of the resona-
tor characteristic impedance z0. Here, the parameter a1 describes the linear part of the transconductance iN defined in
Equation (45) with the value of the remaining transconductance and transimpedance parameters being kept fixed to
the values displayed in Table 1. Each curve represents a unique set of the SYM-OSC circuit parameters introduced in
Figure 6 as explained in footnote **. The figure displays a clear zero-state at the point a1 = 6,z0 = 1. As discussed in the
introduction, since this operating point is located away from the SB, we are dealing with a so-called proper zero-state
also referred to here as a P-STATE.

Figure 7B again plots the two measures Λ and Υ for the SYM-OSC in Figure 6 with Qp,Qs =10:0. This time as a
function of the resonator characteristic impedance z0 =

ffiffiffiffiffiffiffiffiffi
L=C

p
and for three values of the transimpedance parameter b2.

Here, the parameter b2 describes the cubic part of the transimpedance vN defined in Equation (45) with the value of the

FIGURE 7 Simulations of measures Λ and Υ, defined in Equations (36) and (37), for the SYM-OSC circuit (see Figure 6) with constant

resonator quality factors Qp,Qs =10. (A) Sweep of transconductance parameter (linear part) a1 defined in Equation (46). (B) Sweep of

characteristic impedance z0 =
ffiffiffiffiffiffiffiffiffi
L=C

p
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 The values and units of the various parameters in Equation 45

# Value Units

a1 0.6 AV−1

a2 0.3 AV−3

a3 0.3 A−1V−1

b1 0.6 VA−1

b2 0.3 VA−3

b3 0.3 A−1V−1

**Throughout, we shall assume that the Q-factors in Equation (44) are fixed, and the corresponding parallel and series loads in Figure 6 are then
derived as Rp =Qp=ðωnCÞ=Qpz0 and Rs =ωnL=Qs = z0=Qs. Likewise, the capacitance C and inductance L are easily derived from the circuit
parameters as explained in footnote #.
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remaining transconductance and transimpedance parameters being kept fixed to the values displayed in Table 1. Each
plot point in this figure corresponds to a unique set of SYM-OSC circuit parameters as explained in footnote **. The fig-
ure reveals a clear zero-state at the point z0 = 1,b2 = 0:3, and again, we are dealing with a P-STATE.

The curves in Figure 7A,B all fully corroborate and validate the SYM-AM/PM model discussed in Section 3. Both
zero-states in two above figures follow the prediction in Equation (35) as formulated in terms of Υ and Λ in Equation
(38). Importantly, we never observe behavior diverging from this rule (e.g., we never observe Υ! 0 ^Λ !̸0 ). Further-
more, as was noted, both of the zero-states in the above figures are so-called P-STATES which implies an operating
point away from the SB. Hence, in both cases, we are able to achieve a zero-state while operating the oscillator at non-
zero output-power. This is in stark contrast to the MOSFET oscillator example detailed in the previous section which
could only attain an ambiguous zero-state (A-STATE). We are still in the early stages of exploring and discovering all
the implications which follow from the novel SYM-AM/PM framework developed in Djurhuus and Krozer.13 The above
results for the SYM-OSC circuit, coupled with an upcoming expansion to higher dimensions currently being prepared
for publication, clearly demonstrate the promise of this framework for the purpose of synthesis of practical oscillator
designs with the optimized phase-noise response.

The ideas discussed herein open the door on a new class of numerical algorithms aimed at optimizing the phase-
noise performance of free-running oscillators. Our work details a novel link between the noise performance of an
autonomous oscillator system and symmetry properties of the underlying nonlinear steady-state oscillator solution. This
insight allows us to understand which directions in oscillator parameter-space will lead to improved noise performance.
Our work shows that these are the directions which lead to an increase in symmetry of the steady-state where full sym-
metry correspond to a fully optimized state (i.e., a zero-state). Knowing the zeros of the optimizing measure is a neces-
sary component in the formulation of these types of routines. Work is currently ongoing in this area, and we plan to
publish our results in the near future.

6 | CONCLUSION

The paper investigates the many interesting practical implications of the newly proposed SYM-AM/PM model frame-
work. A prominent prediction which has emerged from this work is that, for the case of 2-D (planar) oscillators, only
circuit topologies generating perfectly symmetric steady-states can have zero AM-PM noise conversion, the so-called
zero-states. The concept of zero-states is an interesting topic for practical oscillator design as they represent a minimum
which is at least local, if not global, for the total oscillator phase-noise response.

The paper includes simulation results for the important example of a MOSFET differential-pair LC oscillator circuit
which is a unit found in most modern RF and μ-wave systems. The various simulations all unequivocally verified the
correctness of every prediction made by the SYM-AM/PM model. In addition, these simulations showed that zero-
states, for this class of transistor circuits, were only possible at the start-up boundaries (SB) where the oscillator solution
bifurcates from the DC operating point, so-called A-STATES. These zero-states are only interesting from a verification
point-of-view and do not translate into practical oscillator design solutions.

In an effort to remedy this situation, and to illustrate the power of the newly acquired design rules which follow
from the SYM-AM/PM framework, we demonstrated the synthesis of a novel reduced-order LC oscillator circuit,
known as the SYM-OSC circuit, which attained these zero-states while operating at nonzero output power, so-called P-
STATES. This circuit was synthesized entirely by following the instructions, rules, and predictions derived from the
novel SYM-AM/PM model framework. The developed SYM-OSC example clearly illustrates how this new theory can be
used the synthesize practical oscillator solutions which attain zero-states while operating at realistic output-power
levels (P-STATES). The work detailed herein furthermore clearly demonstrate a possible path toward the eventually
development of novel numerical algorithms, based on the SYM-AM/PM model, aimed optimizing oscillator phase-noise
performance.
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APPENDIX A: PROOF OF COROLLARY 2.2.

Using the expression in Equation (23) for the noise vector ξ, we can calculate

ξðτÞξ†ðτÞ� �
=

ρðτÞ+ λðτÞ½ �u1ðτÞsðτÞ+
Xn

k=2
νk−1ðτÞukðτÞsðτÞ

	 

×

D
ρðτÞ+ λðτÞ½ �u†1ðτÞsðτÞ+

Xn

k=2
νk−1ðτÞu†kðτÞsðτÞ

	 
E
=

ρðτÞ+ λðτÞð Þ2u1ðτÞu†1ðτÞ+ΓðτÞ+ΩðτÞ,

ðA1Þ

where, as explained in connection with Equation (23), {νk(τ)} are the n− 1 components of the amplitude noise whereas
ρ(τ) and λ(τ) represent the PM/AM-noise contributions to the phase-mode, respectively. The above expression includes
the introduction of two matrix functions

ΓðτÞ =
Xn

j=2
ρðτÞ+ λðτÞ½ �νj−1ðτÞ u1ðτÞu†j ðτÞ+ ujðτÞu†1ðτÞ

	 

ΩðτÞ =

Xn

j=2

Xn

k=2
νj−1ðτÞνk−1ðτÞujðτÞu†kðτÞ,

ðA2Þ

and we have used that the noise source s(τ) is a zero-mean, < sðτÞ> =0, and unit-variance, < s2ðτÞ> =1, Gaussian
white noise source. Since both matrices Γ and Ω in Equation (A2) contains terms containing vectors uj>1ðτÞ,u†j>1ðτÞ, it
follows directly (see Equation (4) and text in Section 2.2) that

v†1ðτÞΓðτÞv1ðτÞ= v†1ðτÞΩðτÞv1ðτÞ=0 for all τ: ðA3Þ

From the definition of the phase-diffusion D (16), and the above results in Equations (A1)–(A3), we can calculate

D=
1
2π ð

2π

0
v†1ðsÞhζðsÞζ†ðsÞiv1ðsÞds= σρρ + σλλ +2σρλ, ðA4Þ

where

σxy =
1
2π ð

2π

0
xðsÞyðsÞds: ðA5Þ

Using the decomposition of D introduced in Equation (18) of Section 2.4, we can then write

Dϕϕ = σρρ, ðA6Þ

Dϕa = σλλ +2σρλ, ðA7Þ

and we see that λ=0, σλλ = σρλ =0,Dϕa =0.
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