

W Very Important Publication

Threat to the Throne: Can Two Cooperating Boron Atoms Rival Transition Metals in Chemical Bond Activation and Catalysis?

Sven E. Prey^a and Matthias Wagner^{a,*}

Institut für Anorganische Chemie Goethe-Universität Frankfurt am Main Max-von-Laue-Str. 7, 60438 Frankfurt (Main), Germany E-mail: Matthias.Wagner@chemie.uni-frankfurt.de

Manuscript received: November 2, 2020; Revised manuscript received: November 26, 2020;

Version of record online: December 16, 2020

Dedicated to Professor Todd B. Marder on the occasion of his 65th birthday

© 2020 The Authors. Advanced Synthesis & Catalysis published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Abstract: Certain electron-rich 1,4-diborabenzene derivatives efficiently activate single, double, and triple bonds and thereby increasingly compete with transition metals in homogeneous catalysis. This review compares the activation of three model substrates (H₂, H₂C=CH₂, CO₂) by (i) 9,10-dihydro-9,10-diboraanthracene dianions, (ii) their neutral carbene-stabilized congeners, (iii) 1,3,2,5-diazadiborinines, and (iv) 1,4,2,5-diazadiborinines. Distinct structure-properties relationships become apparent, the most influential factors being (i) the steric demands of the B-bonded substituents, (ii) the charges on the B-doped (hetero)arenes, (iii) charge polarization as a result of additional N-doping, and (iv) the energies and nodal structures of the frontier orbitals. The observed reactions are explained by a transition metal-like activation mechanism. If the two boron atoms are chemically inequivalent, contributions of a B(+I)/B(+III) mixed-valence state determine the observed regioselectivities when polar substrates are added. The lessons learned from the conversions of the model substrates are subsequently used to rationalize the behavior of the B₂ heterocycles also toward more sophisticated substrate molecules. Finally, catalytic cycles based on H₂- and H⁻-transfers, hydroboration reactions, and CO₂ reductions will be covered.

- 1. Introduction
- 2. Syntheses of $[A]^{2-}$ -F-Type Molecules
- Comparative Assessment the Behavior of [A]²⁻-F-Type Molecules Toward H_2 , $H_2C=CH_2$, and CO_2
- 3.1. Dihydrogen and Further **Examples Single-Bond Activations**
- 3.2. Ethylene and Further Examples of C=C- and C≡C-Bond Activations
- 3.3. Carbon Dioxide and Further Examples of C=O-, C=NR-, and C=N-Bond Activations
- Evaluation of Potential Set Screws and Mechanistic Considerations
- 4.1. Steric Factors and Resulting Kinetic Effects
- 4.2. Frontier-Orbital Symmetries, Energies, and Charge Effects
- 4.3. Charge-Polarization Effects and Resulting Modes of Substrate Activation
- 5. Catalytic Transformations
- Non-Identical Twins: B₂ Platforms with Varying 6. π -Electron Counts
- Conclusion

Keywords: boron heterocycles; homogeneous catalysis; main group elements; nucleophilic boron; subvalent compounds

Sven Erik Prey, born in 1994, earned his B.Sc. and M.Sc. degrees in chemistry from the Goethe-Universität Frankfurt/ Main (Germany). He is currently working on his Ph.D. thesis in Prof. M. Wagner's group. His research focuses on the reactivity of anionic 9,10-dihydro-9,10-diboraanthracenes and their application as transition metal-free catalysts. He was supported by a

grant from the Goethe-Universität ("Deutschlandstipendium") as well as by the Nassauischer Zentralstudienfonds.

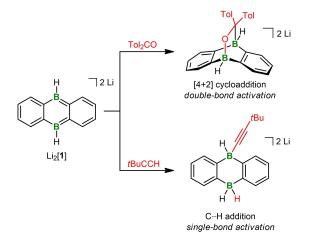
Prof. Matthias Wagner obtained his Ph.D. with Prof. H. Nöth at the Ludwig-Maximilians-Universität München (Germany). He was a postdoc with Prof. M. L. H. Green, FRS, at Oxford University (UK) and finished his Habilitation in 1997 at the Technische Universität München in the group of Prof. W. A. Herrmann. Since 1999, he has held the Chair of

Organometallic Chemistry at the Goethe-Universität Frankfurt/Main (Germany). His current research interests are boron and silicon chemistry in general, the investigation of reactive intermediates, and organometallic catalysis directed toward materials synthesis.

1. Introduction

The selective, time- and cost-efficient making and breaking of chemical bonds is at the core of advanced synthesis and catalysis. Element-element-bond activation generally proceeds via the outflow of charge density from bonding orbitals (σ or π in the cases of single or multiple bonds, respectively) and a concomitant inflow into antibonding orbitals (σ^* or π^*). In turn, the activating entity should ideally provide both vacant and filled orbitals of appropriate energy and symmetry for electron acceptance and donation. These prerequisites are fulfilled by many transition metal (TM) complexes that are stable in various oxidation states and possess an only partially occupied set of d orbitals at their respective metal centers. The terms "dblock metals" and "homogeneous catalysis" were therefore long regarded as two sides of one coin. Yet, this view changed fundamentally with the discovery of so-called "Frustrated Lewis Pairs (FLPs)", which are combinations of Lewis acidic and basic p-block species, sterically incapable of neutralizing each other's reactivity through adduct formation. When an FLP concertedly acts on the same substrate molecule, it also provides the combination of electron acceptor and donor sites required to cleave the attacked bond. During the past 15 years, the FLP concept has proven to be extremely fruitful to the extent that main group compounds can nowadays compete with transition complexes as mediators of chemical transformations.[1] Even more recently, electron-rich, doubly B-doped (hetero)arenes have emerged as a new class of activating p-block molecules; prominent examples $[A]^{2-}$ -F are compiled in Figure 1. They all have in common a central six-membered ring with an aromatic π -electron system (except [C]⁻) and two

Adv. Synth. Catal. 2021, 363, 2290-2309


boron atoms at the 1,4-positions. As will be discussed in detail below, this structural motif enables a high degree of cooperativity between the two boron atoms. It also leads to local frontier orbital symmetries at the boron atoms, which are ideal for the activation of molecules as different as element hydrides, carbonyls, imines, alkenes, alkynes, and (iso)nitriles. Both TMlike and FLP-like reaction mechanisms have been postulated. In Figure 1, suitable substrate classes for each member of the series $[A]^{2-}$ -F are shown in red, the reaction types observed so far are marked in blue, and those that have already been conducted catalytically are highlighted in bold letters.

After the introductory chapter 1), the main text comprises five sections: Section 2) reviews the most efficient synthesis routes to $[A]^{2-}$ -F-type molecules. Section 3) compares the behavior of these B₂ platforms toward the model substrates H₂, H₂C=CH₂, and CO₂, as well as toward related saturated and unsaturated compounds. Section 4) is devoted to promising optimization strategies and mechanistic considerations. Section 5) summarizes the currently known catalytic cycles that use $[A]^{2-}$ -F-type catalysts. Section 6) offers an outlook on B₂ platforms with non-aromatic central rings. The numbering scheme for the compounds covered by this review is as follows: General substance classes are given in capital letters ($[A]^{2-}$ -F, G) while Arabic numerals are used to address specific derivatives. In the cases of ionic species $[M(solv)]_n[X]$, the countercations M⁺ and/or their solvent spheres are only mentioned if they are likely to influence the reactivity or molecular structure of $[X]^{n-}$ in the given context. Whenever a solvent molecule (e.g., THF) serves as a ligand, its acronym is written in lower case letters (e.g., thf).

Figure 1. Prominent examples of electron-rich, doubly boron-doped (hetero)arenes [A]²⁻-F that are capable of activating a large number of substrates (red) via a variety of reaction types (blue); transformations that have been performed catalytically are highlighted in bold letters (MeOTf=MeOSO₂CF₃).

In 2010, our group investigated the behavior of the pristine 9,10-dihydro-9,10-diboraanthracene dianion salt Li₂[1] toward Tol₂CO and tBuCCH (Scheme 1; Tol = para-tolyl).^[2] The question was whether $[1]^2$ will still perform hydroboration reactions although the boron p_z orbitals are occupied by the two excess electrons, or whether [4+2] cycloadditions will occur. With the ketone, $[1]^{2-}$ indeed reacts as a B=C-C=B diene and cleanly furnishes a diborabicyclo[2.2.2]octadiene derivative (Scheme 1, top). The alkyne, however, undergoes neither hydroboration nor cyclo-

Scheme 1. Reactions of Li₂[1] with Tol₂CO and tBuCCH as early examples of double- and single-bond activations (Tol = para-tolyl; ambient conditions).

addition, but its terminal C-H bond is added across the two boron atoms of $[1]^{2-}$, resulting in an alkynyl borate (Scheme 1, bottom).

With its ability to activate single and double bonds under ambient conditions, [1]²⁻ performs the same key reactions as TM complexes or FLPs. In view of this promising performance and the distinct simplicity of its molecular scaffold, we herein suggest [1]²⁻ as a formal lead structure of the species $[A]^{2-}$ -F in the discussion to follow. Numerous set screws for adjusting the properties of the parent system to a specific purpose become apparent (Scheme 2): (i) Given that the reactions take place at the boron centers, the steric demand of the B-bonded substituents R has a decisive influence on the reaction outcome. (ii) By choosing countercations with different tendencies to form contact-ion pairs one can modulate not only the accessibility to the boron centers for an incoming substrate molecule but also the energy levels of the dianion's frontier orbitals. When the hydride substituents of $[1]^{2-}$ are replaced by neutral carbene ligands, the 9,10dihydro-9,10-diboraanthracene (DBA) scaffold loses all negative charges, thus eliminating any countercation effects. (iii) The introduction of additional heteroatoms into the central six-membered ring provides an effective means of rendering the two boron atoms chemically inequivalent. As a consequence, polarized resonance forms in which one boron atom carries a lone pair of electrons [formally B(+I)] while the other has a vacant p_z orbital [formally B(+III)] gain relative weight, giving the molecule some

Scheme 2. Set screws for tuning the reactivity of $[1]^{2-}$, which serves here as a formal lead structure: (i) steric demand of the boronbonded substituents; (ii) countercations and charges of the B₂ platforms; (iii) charge polarization by additional heteroatoms (NHC= N-heterocyclic carbene; HOMO = highest occupied molecular orbital; LUMO = lowest unoccupied molecular orbital).

charge effects

character of a "two-boron FLP",[3] and potentially shifting the mode of activation from "TM-like" to "FLP-like".

countercation effects

The main objective of this review is to identify particularly effective set screws and essential structureproperties relationships for compounds of the form [A]²⁻-F concerning potential catalytic behavior. For this purpose, we have selected archetypal substrate molecules, including H₂, H₂C=CH₂, and CO₂, and will critically evaluate all available information about their reactions with members of the $[A]^{2-}$ -F series. [4,5]

2. Syntheses of [A]²⁻-F-Type Molecules

Numerous protocols have been developed for the synthesis of DBAs. [6-10] Simple DBAs such as A-C without substituents on their *ortho*-phenylene rings are most conveniently prepared by a cyclocondensation reaction between 1,2-(Me $_3$ Si) $_2$ C $_6$ H $_4^{[11,12]}$ and BBr $_3$. $^{[6,10]}$

Treatment of the resulting 9,10-Br₂-DBA with Et₃SiH, MeMgI, or tBuCCLi furnishes the corresponding hydro- or organylboranes 1-3 (Scheme 3). [13-1 δ] The hydroborane 1 tends to oligomerize via B-H-B twoelectron-three-center (2e3c) bonds and is thus poorly soluble in non-coordinating solvents.[13] A nicely soluble low molecular weight derivative of $(1)_n$ that can easily be purified by crystallization and used for further transformations in a homogeneous liquid phase, is the dimethyl sulfide diadduct syn-1-(SMe₂)₂. [17] The two-electron reduction of $(1)_n$, syn-1- $(SMe_2)_2$, 2, or 3 with an excess of Li, Na, or KC8 in THF at room temperature leads to the salts $M_2[1]-M_2[3]$ (M=Li, Na, or K), which all have monomeric DBA dianions. [2,16,18] Similar to the case of *syn-1*(SMe₂)₂, 9,10-Br₂-DBA can bind two equiv. of the bulky Nheterocyclic carbene (NHC) ligand 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr). Magnesium reduction of the resulting diadduct anti-4Br₂ in Et₂O furnishes the dark green, neutral, IPr-supported 9,10diboraanthracene 4 through MgBr₂ elimination. [19] The macrocyclic Au(+I) complex Au[5Cl] can be prepared by treatment of 9,10-Br₂-DBA with 2-(iPr₂P)C₆H₄Li in toluene and by subsequent complexation of the obtained ditopic Z-type ligand^[20] with (Me₂S)AuCl in CH₂Cl₂. Further two-electron reduction of Au[5Cl] with potassium naphthalenide (KNaph) in THF/C₆H₆ produces the boroauride K(18-c-6)Au[5]. [21,22]

D-F-type B,N(O) heterocycles are also accessible via a fairly universal and modular synthesis approach reminiscent of the well-established chemistry of pyrazaboles and scorpionate ligands (Scheme 4):[23] Equimolar mixtures of ArBY₂ (Y=Cl or OMe) and suitably substituted 2-lithioimidazolides generate the 1,4,2,5-diazadiborinine derivatives $6Cl_2$, $7(OTf)_2$, and $8Cl_2$ after workup (Scheme 4). [24–26] In a similar vein, 1 equiv. of PhBCl₂ reacts with 2 equiv. of a 2-lithioimidazolide or 2lithiooxazolide to give the corresponding monoborates, which react further with a second equiv. of PhBCl₂ to produce the 2,5-dichloro-1,3,2,5-diazadiborinines 9Cl₂ and 10Cl₂ (Scheme 5).^[3,27] The unsymmetrically substituted 11Cl₂ featuring Ph(Cl)B and Cl₂B moieties has been prepared in close analogy to the syntheses of 9Cl₂

Scheme 3. Synthesis of the $[A]^{2-}$ - $[C]^-$ -type molecules $M_2[1]$ - $M_2[3]$, 4, and K(18-c-6)Au[5], starting from 9,10-Br₂-DBA. Note that 1 tends to form oligomers (1)_n via B-H-B 2e3c bonds in solution and the solid state. Reagents: a) exc. Et₃SiH, b) 2 MeMgI, c) 2 tBuCCLi (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene; KNaph = potassium naphthalenide; 18-c-6 = 18-crown-6).

Scheme 4. Synthesis of the compounds **6-8** (Mes=mesityl; $OTf = OSO_2CF_3$).

and 10Cl₂ by using iPr₂NBCl₂ instead of the first equiv. of PhBCl₂ and applying ethereal HCl for the subsequent iPr₂N/Cl exchange. Finally, the room-temperature reduction of the intermediate borates 6Cl₂-11Cl₂ with an excess of KC_8 in toluene or C_6H_6 provides the target products **6-11**. [3,24-28]

As is evident from Schemes 3, 4, and 5 the overall yields of M₂[1]-11 differ significantly, but all these compounds are sufficiently accessible for further use in substrate-activation reactions.

3. Comparative Assessment of the Behavior of [A]²⁻-F-Type Molecules Toward H₂, H₂C=CH₂, and CO₂

3.1. Dihydrogen and Further Examples of **Single-Bond Activations**

 H_2 is a non-polar, volatile compound with a high dissociation enthalpy of 104 kcal mol⁻¹, [29] which renders H-H-bond activation kinetically and thermodynamically challenging. Remarkably, a dearomative syn-addition of H_2 across the two boron centers has nevertheless been achieved for $M_2[1]$ - $M_2[3]$ (M=Li, Na, or K)^[14,16] as well as 1,4,2,5-diazadiborinine 7 with chemically equivalent boron atoms^[30] and 1,3,2,5diazadiborinine 9 with chemically inequivalent boron sites. [27] In the cases of DBA dianions $M_2[1]-M_2[3]$, it

Scheme 5. Synthesis of the compounds 9-11 (ah = annulated heterocycle; Mes = mesityl).

was found that the H₂-addition reaction is governed by the following factors: [16] (i) Countercation effects: The velocity of the H2-activation reaction increases drastically in the order $\text{Li}_2[1]/\text{Li}_2[2] < \text{Na}_2[1]/\text{Na}_2[2] < \text{K}_2[1]/$ $K_2[2]$ ([D₈]THF; determined at reaction temperatures of T = 50 °C as well as 100 °C). This trend is probably due to different degrees of cation-anion association in solution. All crystallographically characterized derivatives of $M_2[1]-M_2[3]$ exist as inverse sandwich complexes in the solid state with the two M⁺ cations residing above and below the respective B₂C₄ core. [31] Li⁺ coordination is retained even in THF solution, [14,32] whereas the Na⁺ and K⁺ salts seem to have an increasing tendency to form solvent-separated ion pairs under these conditions. [16] As a result, the presence of Na⁺ and K⁺ should impede the access of H₂ to the boron sites to a lesser extent than the presence of Li⁺. (ii) Electronic effects of the B-bonded substituents R: The $M_2[3]$ (R = CCtBu) series has not been included in the kinetic study, because H₂ activation by Li₂[3] is reversible and a dynamic addition-elimination equilibrium exists at $T=100\,^{\circ}$ C. This effect has been traced to the much less cathodic redox potential of 3 compared to, e.g., 2, which leads to the conclusion that the electronegativities (EN) of the B-bonded substituents [2: $EN(C(sp^3)) < 3$: EN(C(sp))] constitute another influential and potentially useful set screw. (iii) Steric effects of the B-bonded substituents R: H₂ addition is fastest for the sterically less demanding substituents R = H, Me, $C \equiv CtBu$, significantly slower for R = Et, Tol, and prohibitively slow for the bulky R=Mes (Mes = mesityl). [16] Given this background, we selected $K_2[2]$ for direct comparison with the diazadiborinines 7 and **9** (Table 1).

All three compounds activate H_2 (1 atm) at moderately elevated temperatures of T=50-90 °C and in an irreversible manner. The reaction is the slowest for the Mes-substituted derivative 7,[30] but not completely inhibited - in contrast to the case of the Messubstituted DBA dianion. A switch from 7 to 9 accelerates the reaction to a level more comparable to that of $K_2[2]$. Since 7 and 9 differ in several aspects, it is difficult to decide at this point if the reason for the improved performance of 9 rests mainly in the reduced steric hindrance at its B₂C₄ ring (Ph < Mes) or whether the different polarities of the BC₂ and BN₂ fragments are also relevant. The extension of the conjugated π systems of 7 and 9 goes beyond the central $B_2N_2C_2$ ring and includes the nitrogen lone pairs and also the two C=C double bonds of the annulated rings. As a result, $[2]^{2-}$, 7, and 9 have the same count of 14 π electrons. There are no reports yet of the addition of H₂ to the NHC-stabilized DBA 4, the boroauride K(18-c-6)Au[5], or the oxazoline derivative 10.^[33]

Table 1. Comparison of the reaction conditions applied for the addition of H₂ across the boron centers of K₂[2], 7, and 9; addition products $K_2[2H_2]$, $7H_2$, and $9H_2$ (Mes = mesityl).

Only for those members of the $[A]^{2-}$ -F series, which demonstrably mediate the cleavage of the H-H bond, has the activation of other homo- and moderately heteropolar single bonds been reported. Li₂[2] reductively cleaves the dichalcogens O₂tBu₂, S₂Me₂, S₂Tol₂, Se₂Ph₂, and Te₂Ph₂ under ambient conditions and with perfect selectivity. In THF solution, the resulting neutral DBA 2 and the respective lithium chalcogenides engage in dynamic association-dissociation equilibria. In the solid state, 2 and Li[OtBu] give a diadduct syn-Li₂[$\mathbf{2}(OtBu)_2$], Li[SMe] forms a [2.2.1]bicyclic B-(μ -SMe)-B monoadduct Li[2(SMe)], and in the three remaining cases the crystal lattices contain chalcogenide monoadducts Li[2(EAr)] in which only one boron atom is tetracoordinated. The activation of grey selenium, Se_{∞} , was achieved with 8 and afforded a bicyclo[2.2.2]octadiene derivative with one Se–Se bridge between the two boron atoms. [26] Also, the heteropolar element-element bonds of H-Bpin, H-Si(H)₂Ph, and H-Si(H)Ph₂ are syn-added to the imidazole-containing species 6, whereupon the respective hydrogen atoms end up at one boron center while a B-B/Si bond is established at the other (HBpin= pinacolborane).[24]

Concerning the successful heterolytic splitting of H–B and H–Si bonds, the obvious question is whether $[A]^{2-}$ -F-type compounds can also be used to activate H-C bonds. Recently, Kinjo's group reported that 9, when stirred in C₆H₆ at 90 °C for 30 h, does not remain inert, but is converted into a product containing two tetracoordinate boron centers, one of which carries a newly introduced hydrogen substituent. [28,35] A switch from 9 to 11 (Scheme 6), which features not only BC₂/ BN₂ sites, but also different B-bonded substituents Cl/ Ph, considerably improves the chemoselectivity of the

Scheme 6. Reactions of the 1,3,2,5-diazadiborinine 11 with H-C bonds of arenes (12, 13) and F-C bonds of partially fluorinated arenes (G).

reaction; the H-C₆H₅-activation product 12 was isolated in 76% yield.

An analogous compound 13 was obtained from 11 in 1,3-(F₃C)₂C₆H₄. In partially fluorinated benzenes $C_6F_nH_{6-n}$ (n=3-5), however, 11 performs F–C-bond rather than H-C-bond activation (G). [28] These observations suggest that 11 prefers H–C(sp^2) over F–C(sp^3) bonds but F–C(sp^2) over H–C(sp^2) bonds. [36] It has been emphasized that the Ph/Cl-exchange upon going from 9 to 11 reduces the steric congestion in the transition states of C_6H_6 or $C_6F_nH_{6-n}$ addition, which should facilitate these processes. In the cases of the fluorobenzenes, the fluorophenyl rings are indeed attached to the less bulky ClBC₂ sites of 11, whereas the small F atom always binds to the bulkier PhBN₂ sites (syn-addition; Scheme 6). For C₆H₆, however, the regioselectivity is inverted, ^[37] indicating that matching polarities of the single bonds to be activated and the B(+I)C₂/B(+III)N₂ sites may exceed steric concerns (see section 4).

Due to its triplet ground state, the O₂ diradical is a special case of a non-polar small-molecule substrate. Exposure of 4 in C_6H_6 to dry air generates the [2.2.2]bicyclic endoperoxide 14 (1 atm, room temperature, 5 min; Scheme 7).^[19] Concerning the reaction mechanism, the involvement of single-electron transfer (SET) processes has been given consideration. The resulting B-O-O-B moiety resembles the B-Se-Se-B unit mentioned above and also Piers' B-O-O-C endoperoxides, which were obtained from NHC-stabilized 9boraanthracenes and O₂. [38-40] Likewise, a C₆H₆ solution of Kinjo's 1,4,2,5-diazadiborinine 6 reacts with neat O₂ to form the endoperoxide 15 (Scheme 7).[41] At elevated temperatures of 80 °C (10 h), the O-O bond of 15 can be added across the two boron atoms of a second equiv. of 6 to afford the macrocyclic species 16, albeit with moderate selectivity and in yields of only 15% (compare the above-mentioned reaction of Li₂[2] with the O-O bond of O₂tBu₂, which proceeds cleanly and quantitatively).

Scheme 7. Reactions of 4 and 6 with O₂ afford the endoperoxides 14 and 15; splitting of the O-O bond in 15 with 1 equiv. of 6 furnishes the macrocycle 16.

3.2. Ethylene and Further Examples of C=C- and **C**≡**C**-Bond Activations

The [4+2] cycloaddition reaction between $H_2C=CH_2$ and Li₂[2] quantitatively furnishes the diborabicyclo-[2.2.2]octadiene Li₂[17] (Table 2).^[16] In a similar vein, Harman's neutral NHC-DBA adduct 4 and Kinjo's oxazoline system 10 form cycloadducts 18^[19] and 19, [42] respectively. Cycloreversion reactions of Li₂[17] $(T=100\,^{\circ}\text{C})$ and **18** $(T=70\,^{\circ}\text{C})^{[43]}$ have not been observed; 19 is subject to a quantitative retro-[4+2]cycloaddition at T = 150 °C.

Li₂[2] also captures Ph₂C=CH₂ quickly and efficiently, but this time in a reversible manner (T=100 °C), which is of crucial importance, e.g., with regard to catalytic hydrogenation reactions (see section 5).^[16] Cycloadditions of Kinjo's 1,3,2,5-diazadiborinine **10** with different *para*-substituted styrene derivatives^[44] *p*-RC₆H₄(H)C=CH₂ were generally slower at ambient conditions than in the case of $H_2C=CH_2$. Compared to R = H in pristine styrene (12 h), electronwithdrawing substituents R = Br, CF_3 resulted in short-

Table 2. Comparison of the reaction conditions applied for the addition of H₂C=CH₂ across the boron centers of Li₂[2], 4, and **10**; addition products Li₂[**17**], **18**, and **19**.

B C C C C C C C C C	Li IPr B B H IPr 4	Ph B N Ph 10
[D ₈]THF	C ₆ H ₆	C ₆ D ₆
1 atm H ₂ C=CH ₂	1 atm H ₂ C=CH ₂	1 atm H ₂ C=CH ₂
r.t.	70 °C	r.t.
3 h	20 h	3 h
irreversible (up to 100 °C)	irreversible (up to 70 °C)	reversible (at 150 °C)
Li ₂ [17]	2 Li IPr B IPr 18	Ph N-B N-B N-B N-B N-B N-B N-B N-B N-B N-B

Adv. Synth. Catal. 2021, 363, 2290-2309

er reaction times (6 h, 3 h) than electron-donating substituents R = Me, OMe (> 12 h). [42] All these cycloadditions were reversible at T > 100 °C. Internal olefins are less susceptible to C=C-bond activation than the terminal ones. While both Li₂[2] and 10 are inert toward cyclohexene even at $T > 100^{\circ}$ C, [16,42] **10** forms a cycloadduct with the strained norbornene. [42]

Remarkably, the unsymmetrically BCl/BPh-substituted 1,3,2,5-diazadiborinine 11 forms bicyclic diboration products with naphthalene, anthracene, and tetracene regioselectively at their C(1)-C(2) edges (reversible at 80-140 °C); biphenylene also reacts in fashion, albeit at its C(2)–C(3)(Scheme 8). [28,45] Note that C_6H_6 , which has a more delocalized π -electron system, rather undergoes H–Cactivation under comparable conditions Scheme 6). Li₂[2] does not react with naphthalene or phenanthrene, despite the rather localized C(9)=C(10)double bond of phenanthrene.[16]

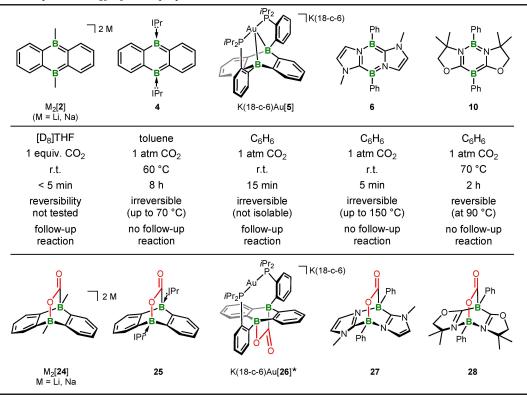
Reactions of $[A]^{2-}$ -F-type compounds with 1alkynes can, in principle, follow two different pathways: (i) H-C activation of the acidic terminal hydrogen atom or (ii) [4+2] cycloaddition of the C \equiv C bond. As mentioned above (Scheme 1), Li₂[1] attacks the H–C bond of $tBuC\equiv CH$ (cf. Li₂[20]; Figure 2). [2] Compounds 6 and 10, however, cleanly produce diborabicyclo[2.2.2]octatrienes with (p-BrC₆H₄)C≡CH $(21)^{[24]}$ and PhC \equiv CH $(22)^{[3]}$ respectively.

Even though it is tempting to attribute this striking difference to the different B₂ platforms, a definite interpretation has to await reactions of Li₂[1], 6, and

Scheme 8. Hetero-Diels-Alder reactions of the 1,3,2,5-diazadiborinine 11 with polycyclic aromatic hydrocarbons.

Figure 2. Products Li₂[20]-22 of the reactions of Li₂[1] (H−C activation), 6 (C≡C activation), and 10 (C≡C activation) with terminal alkynes; product Li₂[23] results from the reaction of Li₂[2] with the internal alkyne PhC≡CPh.

10 with exactly the same 1-alkyne such that steric and/ or electronic substituent effects can safely be excluded. In the case of the alkyne PhC≡CPh, which is devoid of a terminal hydrogen atom, the DBA dianion Li₂[2] no longer ignores the triple bond and undergoes a fast and irreversible [4+2] cycloaddition at room temperature (Li₂[**23**]; Figure 2).[16,46]


3.3. Carbon Dioxide and Further Examples of C=O-, C=NR-, and C≡N-Bond Activations

Similar to the C=C bond of H₂C=CH₂, the C=O bond of CO2 instantaneously adds across the boron atoms of $M_2[2]$ (M=Li, Na; Table 3). The resulting cycloadducts M₂[24] are stable and can be isolated if strictly 1 equiv. of CO₂ is administered. In the presence of an excess of CO₂, a follow-up reaction leads to a net disproportionation, which provides CO and CO₃²⁻ and paves the way for a potential catalytic cycle (cf. section 5). The reaction between CO₂ and the neutral DBA 4 is far more sluggish and requires excess CO2, an elevated temperature of 60°C, and a reaction time of 8 h.[19] Similar to M₂[2] the cycloadduct 25 is obtained and CO_2 is not released again up to $T = 70 \,^{\circ}\text{C}$. [43] Contrary to the case of the DBA dianion, no follow-up reaction takes place even though much more than 1 equiv. of CO₂ is present. Harman's boroauride K(18-c-6)Au[5], when stirred under a blanket of CO₂ (1 atm) at room

temperature in C₆H₆, is transformed to a corresponding CO_3^{2-} complex K(18-c-6)Au[29] (see Scheme 10), which is unstable in solution in the absence of CO_2 . [47,48] The primary [4+2] cycloadduct K(18-c-6)-Au[26] has not been detected so far, but is a proposed intermediate (Table 3). Rather, a 1:1 mixture of K(18c-6)Au[5] and CO₂, prepared at low temperatures in [D₈]toluene and monitored by variable-temperature NMR spectroscopy, ultimately contained equimolar amounts of unconsumed K(18-c-6)Au[5], the CO_3^{2-} complex K(18-c-6)Au[29], and CO. In summary, the stability of the primary CO2-DBA adducts toward additional CO₂ follows the trend $25 \gg M_2[24] > K(18$ c-6)Au[26]. Both Kinjo's 1,4,2,5-diazadiborinine 6 (room temperature, 5 min, irreversible) and 1.3.2.5diazadiborinine 10 (70 °C, 2 h, reversible) give bicyclic products 27 and 28 with excess CO₂ (1 atm). [3,24] The stability of the primary CO₂ adducts toward excess CO₂ correlates with the B–O bond lengths in the solid state. While the CO₂-inert compounds 25 (av. 1.5088 Å), **27** (1.475(15) Å), and **28** (1.509(6) Å) possess rather short B-O bonds, the CO₂-capturing $[Na][Na_3(thf)_6)[24]_2$ (av. 1.589 Å) has a significantly longer bond.

Similar to the case of CO₂, a number of carbonyl substrates undergo analogous C=O-addition reactions with $\text{Li}_2[1]$ (Tol_2CO), [2] $\text{Na}_2[2]$ (Ph_2CO , $Me_2CO)$, [15] K(18-c-6)Au[5] (Ph(H)CO), [49] and 10

Table 3. Comparison of the reaction conditions applied for the addition of CO₂ across the boron centers of $[A]^{2-}$ -F-type compounds; addition products M₂[24]-28. *) proposed intermediate.

(Ph(Me)CO). The clean [4+2] cycloaddition between the strong Brønsted base $Na_2[\mathbf{2}]$ and the enolizable Me_2CO (which affords $Na_2[\mathbf{30}]$; Scheme 9) is particularly remarkable, as simple deprotonation reactions would have been plausible alternative/additional options. This view is further underscored by Harman's results on the reaction between $K(18\text{-}c\text{-}6)Au[\mathbf{5}]$ and Me_2CO , which furnishes the Au-DBA complex $K(18\text{-}c\text{-}6)Au[\mathbf{31}]$,

$$Na_{2}[30] \qquad K(18-c-6)Au[31]$$

$$Na_{2}[2] \qquad K(18-c-6)Au[5]$$

$$Exc. \qquad CO_{2} \qquad Pr_{2}P$$

$$Na_{2}[33] (CX = CMe_{2}) \qquad Na_{2}[34] (CX = C=0)*$$

$$K(18-c-6)Au[32]$$

$$K(18-c-6)Au[31]$$

Scheme 9. Comparison of the reactions of $Na_2[2]$ and K(18-c-6)Au[5] with Me_2CO and CO_2/H_2CO . Only in the case of K(18-c-6)Au[5] the C=O bond of Me_2CO is completely cleaved $(Na_2[30]$ vs. K(18-c-6)Au[31]); the structural motifs of the products $Na_2[33]$ or $Na_2[34]$ and K(18-c-6)Au[32] obtained via corresponding reactions with CO_2/H_2CO are closely similar. *) proposed intermediate.

carrying a hydroxide ligand at one boron center and a prop-1-ene-2-yl substituent at the other (60 °C, 48 h; Scheme 9); evidently, one of the methyl groups of acetone was deprotonated in the course of the reaction. [49] Harman also found that K(18-c-6)Au[5] and excess H₂CO undergo a C-O-coupling reaction with formation of K(18-c-6)Au[32] (Scheme 9).

This outcome bears strong resemblance to the insertion of CO₂ into the B-O bond of Na₂[24] and Na₂[30], as both transformations generate products featuring B-OCOC-B fragments, which are analogous to that of K(18-c-6)Au[32] (Scheme 9; see also section 5). Finally, the reaction between K(18-c-6)Au[5] and Ph(H)CO ultimately results in C-C coupling to afford compound K(18-c-6)Au[35] with a B.-B-bridging pinacolate ligand (Scheme 10). Pinacol-type C-Ccoupling reactions have not been observed for Li₂[1] or Na₂[2] and Tol₂CO or Ph₂CO. The behavior of Li₂[2] toward carbonyl imines has been investigated in detail for the sterically demanding Ph(H)C=NtBu: The hetero-Diels-Alder reaction is rather slow and can largely be reversed at $T=100\,^{\circ}$ C, which, as already mentioned in the discussion of the Li₂[2]/Ph₂C=CH₂ combination, is essential for the catalytic hydrogenation of both substrates (see section 5).[16]

Akin to the reaction of the 1,4,2,5-diazadiborinine 6 with $(p-BrC_6H_4)C\equiv CH$, [4+2] cycloadducts are generated also with PhC≡N (36; Scheme 11). [24] The conversion of 6 with the isonitriles PhN=C: or XylN=C: take similar courses and afford the bicyclic carbenes 37 and 38 ($Xyl = 2,6-Me_2C_6H_3$; Scheme 11), which could not be isolated in free form. Yet, 37 has been trapped and structurally characterized as its (Tol)-Au(+1)37 complex.^[51] In contrast to the [4+2] cycloadduct 38 obtained with 6, XyIN=C: produces a [4+1]cycloadduct 39 with the 1,3,2,5-diazadiborinine 9 (Scheme 11).^[27] A conclusive explanation has not yet been disclosed; however, an obvious difference between 6 and 9 is that the former platform provides chemically equivalent boron centers, whereas the latter features inequivalent boron sites.

In summary, we have so far shown that $[A]^{2-}$ -F-type compounds are capable of interacting with a

$$|P_{1}|$$
 $|P_{2}|$ $|P_{$

Scheme 10. Left: CO₃²⁻ diadduct K(18-c-6)Au[29]. Right: Pinacol-coupling reaction of Ph(H)CO at the platform K(18-c-6)Au[5].

Scheme 11. Reactions of the diazadiborinines 6 and 9 with nitriles (36) and isonitriles (37, 38). Similar to the case of PhC \equiv N, PhN \equiv C: undergoes a [4+2] cycloaddition reaction, whereupon a carbene is formed, which can serve as a ligand toward Au(+I). The reactivity of XylN=C: depends on the choice of the diazadiborinine (6: [4+2] cycloaddition, 9: [4+1] cycloaddition; $Xyl = 2,6-Me_2C_6H_3$; Tol = para-tolyl).

variety of saturated as well as unsaturated substrates, albeit often under different reaction conditions and with different outcomes. In the following section we will use the available information from quantumchemical calculations to explain these findings.

4. Evaluation of Potential Set Screws and **Mechanistic Considerations**

The set screws outlined in Scheme 2 act via the steric demand of the B-bonded substituents, the influence of excess charges on the frontier orbitals, and charge polarization through symmetry breaking by N-doping. In the following, we put these factors in the context of the observed reactivity patterns.

4.1. Steric Factors and Resulting Kinetic Effects

The above-mentioned investigations in the activation of H₂ by different DBA-dianion salts M₂[A] revealed a strong dependence on the steric demands of the Bbonded substituents R, with larger substituents leading to slower reaction rates. The readily available dianions $[1]^{2-}$ and $[2]^{2-}$ carry the smallest possible substituents (R=H and Me), which therefore restrict access to the boron sites the least. As a caveat, however, one should keep in mind that such negatively charged B₂ platforms are necessarily associated with potentially coordinating and thus sterically non-innocent countercations. In the cases of uncharged NHC-DBA complexes like 4, the inevitable steric bulk of the carbene ligand reaches its lower limit already with the 1,3-dimethylimidazol-2ylidene, which would still put a comparable steric strain on the DBA skeleton as the Mes substituents in the H_2 -inert $[9,10\text{-Mes}_2\text{-DBA}]^{2-}$ dianion. Most of Kinjo's diazadiborinines have been equipped with medium-sized Ph groups (6, 9, 10), one exception being the Mes-substituted 7 (Schemes 4, 5). At first glance, already the consideration of steric effects is helpful to rationalize the reactivity trends along the series $[1]^{2-}$, $[2]^{2-} > 9 > 7$ (H₂ activation), $[2]^{2-} \approx 10 > 4$ (H₂C=CH₂ activation), and $[2]^{2-}\approx 6 > 10 \approx 4$ (CO₂) activation; cf. Tables 1-3), but deeper insight is gained only by inspecting the corresponding frontier orbitals and their relative energies.

4.2. Frontier-Orbital Symmetries, Energies, and **Charge Effects**

The HOMO and LUMO symmetries and energies, as well as the HOMO-LUMO gaps of the B₂ platforms are decisive factors for the efficient interaction with substrate molecules. A comparison of the HOMOs of selected derivatives [Li(thf)₂]₂[9,10-Mes₂-DBA], **6**, **9**, and 10 reveals informative qualitative similarities (Figure 3): [52] All the HOMOs correspond to delocalized π systems with nodal planes between the BC₂/BC₂, BCN/ BCN, and BC₂/BN₂ halves of the central rings. Orbital contributions from the boron atoms are substantial. In contrast, the respective LUMOs are less uniform. Those of [Li(thf)₂]₂[9,10-Mes₂-DBA], **6**, and **9** show in-phase combinations of the boron p_z orbitals. Major contributions from aryl substituents to the LUMOs of 6 and 9 (but not $[Li(thf)_2]_2[9,10-Mes_2-DBA]$) are also apparent. The LUMO of compound 10 is almost exclusively located at the orthogonally positioned Ph ring with a nodal plane running through both boron centers. Because of their different spatial distributions, the LUMOs of $[Li(thf)_2]_2[9,10-Mes_2-DBA]$, **6**, **9**, and **10** are far less straightforward to compare than the largely uniform HOMOs. In terms of substrate activation, the nature of the HOMO-substrate donations should thus largely be alike, whereas any substrate→LUMO back-

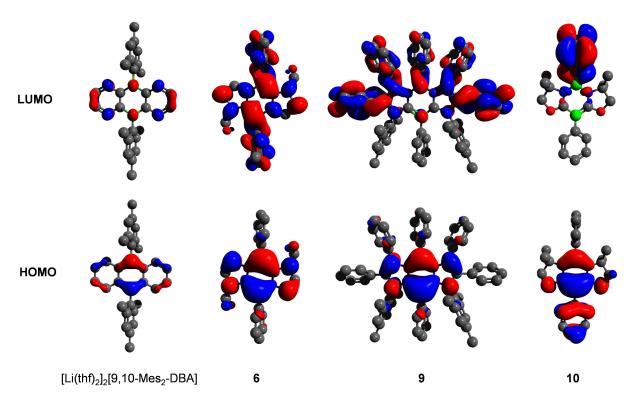


Figure 3. Plots of the HOMOs and LUMOs of [Li(thf)₂]₂[9,10-Mes₂-DBA], 6, 9, and 10. Orbital surfaces are drawn at an isovalue of 0.05 $a_0^{-3/2}$ for [Li(thf)₂]₂[9,10-Mes₂-DBA] and at 0.02 $a_0^{-3/2}$ for 6, 9, and 10; hydrogen atoms and countercations have been omitted for clarity.

donations will be different for all the B₂ platforms. For this reason, one must be careful when using the HOMO-LUMO gaps of certain B₂ platforms to predict or explain their reactivities.^[27] We note in this context that a recent theoretical treatment of small molecule activation by 10 has mainly considered the strong interactions between the HOMO of 10 and the LUMOs of the substrate molecules in the transition states. However, it was also emphasized that charge donation into the higher-lying LUMO+3 of 10 may well be important.[53]

Having discussed the nodal structures of the frontier orbitals of the B₂ platforms, we now turn to the relative HOMO energies, which should decisively influence the reactivity patterns, too. Due to their double negative charges, dianions $[1]^{2}$ - $[3]^{2}$ possess particularly high-lying HOMOs. In fact, a positive orbital energy was computed for the HOMO of the bare dianion [9,10-Mes₂-DBA]²⁻ (as well as for the HOMO of pristine $[1]^{2-}$). However, in the presence of two coordinating Li⁺ cations, the electrons occupying the HOMO of the resulting inverse-sandwich complex [Li(thf)₂]₂[9,10-Mes₂-DBA] are no longer formally unbound. [14,32] As a consequence, both the use of donor solvents and the selection of less coordinating countercations (e.g., K⁺ vs. Li⁺) should increase the HOMO-energy levels and reactivities of $M_2[1]-M_2[3]$ by promoting

cation-anion dissociation. [16] Harman's complex K(18-c-6)Au[5], which has been categorized as an auride anion interacting with two cis-disposed neutral borane ligands via a B-Au(-I)-B 2e3c bond, [21] constitutes an example of extreme counterion interaction that leaves only little excess charge density on the DBA scaffold (cf. Scheme 2). The neutral NHC-supported DBA 4 should suffer even less from intramolecular Coulomb repulsion than the aforementioned metal complexes and consequently possess energetically even more favorable HOMOs, which is in agreement with cyclic-voltammetric measurements. [19,32] The diazadiborinines **6**, **9**, and 10 are uncharged and contain two electronegative nitrogen atoms in their central rings, which should further stabilize the corresponding HOMOs. On the other hand, the two strongly π -donating N/O atoms in the annulated rings will push electron density into the molecules' cores, thereby destabilizing the HOMOs. Taken together, these two opposing factors confer reactivities to 6, 9, and 10 that are comparable to those of $M_2[1]-M_2[3]$ but higher than that of 4. Overall, our conclusions are supported by quantumchemical calculations, which predict the following for E(HOMO): $[9,10-Mes_2-DBA]^{2-}$ $[\text{Li}(\text{thf})_2]_2[9,10\text{-Mes}_2\text{-DBA}] > 6 \approx 9 > 10.^{[52]}$

4.3. Charge-Polarization Effects and Resulting **Modes of Substrate Activation**

The donor and acceptor orbitals of a TM atom are located at the same reactive center, whereas the electron lone pair and the vacant orbital of an FLP usually reside at different sites. By analogy, the extent of π delocalization in a B₂ platform determines the degree of equivalence of the two B atoms and thus influences whether substrate activation takes place via a concerted "TM-like" or an "FLPlike" mechanism. Our respective assessment of concrete examples will exclude the special case of the Au(-I)/DBA(0) anion $Au[5]^-$, as its B_2C_4 core adopts a pronounced boat conformation due to strong Au(-I) \rightarrow B back donation. [21] For the central rings of $[1]^{2-,[32]}$ **4**, [19] and **6-10**, [3,24,27] a cyclic delocalization of the 6 π electrons and a concomitant aromatic character has been explicitly evoked. The members of the subset $[1]^{2-}$, 4, and 6-8 with symmetry-related boron atoms are thus best described by canonical forms with little charge separation (see "form I" in Figure 4), whereas 9-11 featuring chemically nonequivalent boron atoms may adopt some mixedvalence character with formal B(+I)/B(+III) centers (see "form II" in Figure 4).[3,32,53]

This view, though not visibly confirmed by an inspection of the HOMO plots of 9 and 10 (Figure 3), gains support from the following experimental findings, which consistently point toward the assignment $B(+I)C_2/B(+III)N_2$ ("form II"):[3,27,28,50] (i) The polar substrates NH₃ and MeOTf react with 9 and 10, respectively, such that "H $^{\delta+}$ " and "Me $^{\delta+}$ " are bonded to the BC₂ sites, whereas " δ -NH₂" and " δ -OTf" are attached to the BN₂ sites (MeOTf= $MeOSO_2CF_3$). (ii) The [4+2] cycloadditions between CO₂ or Ph(Me)CO and **10** form regioselectively $^{\delta+}$ C-BC₂ and $^{\delta-}$ O-BN₂ bonds (see Table 3). (iii) As the polarities of the $^{\delta+}$ H-C $^{\delta-}$ and $^{\delta-}$ F-C $^{\delta+}$ bonds in C_6H_6 and $C_6F_nH_{6-n}$ are inverted, the Ph ring resides on the BN₂ and the fluorophenyl rings on the BC₂ fragment after H-C/F-C-bond activation by 11 (see Scheme 6). The assumed mixed valency of the BC₂/BN₂ species 9 and 10 is, however, not a prerequisite for the observed B-centered nucleophilicity. For example, the symmetric BCN/BCN com-

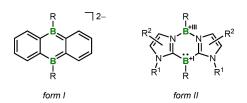


Figure 4. Relevant resonance structures of B₂ platforms featuring equivalent (form I) and inequivalent boron atoms (form II).

pound 6 also adds Me-OTf and H-P(p-FC₆H₄)₂ across its boron atoms^[24] and the DBA-dianion salt Na₂[2] nucleophilically attacks Et₃Si-Cl with formation of an Et_3Si-B bond. [16,54,55]

Plausible mechanistic scenarios for small molecule activation, based on the juxtaposition of a dominant "form I" and a dominant "form II", can be nicely illustrated by taking H₂ as the model substrate. [14] Figure 5 shows potential transition-state orbital interactions during the cleavage of H2 by a TM center (left), an FLP (right), or [A]²⁻- vs. E-type species (middle). TM-like activation: As the HOMO and the LUMO of $[A]^{2-}$ have the same local symmetries at the boron atoms as the corresponding frontier orbitals involved in TM-mediated H₂ splitting, a similar kind of concerted oxidative addition reaction could take place. [56] FLP-like activation: In an extreme view, the two excess electrons can be placed in the BC₂-boron p_z orbital of E while the BN₂-boron p₂ orbital remains empty such that the two boron atoms could take the roles of, e.g., phosphorus and boron in a P/B-FLP (Figure 5). [57]

A unifying concept that explains the reactivities not only of E-type (non-equivalent B(+I)/B(+III)centers) but also of **D**-type platforms (equivalent boron centers) was put forward by Kinio, who suggested that the two indistinguishable boron atoms of the 1,4,2,5-diazadiborinines can function both as nucleophilic and electrophilic centers, rendering Dtype species "main-group ambiphiles". [24] Taking into account our comparative assessment of all

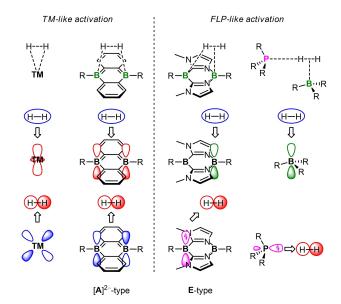
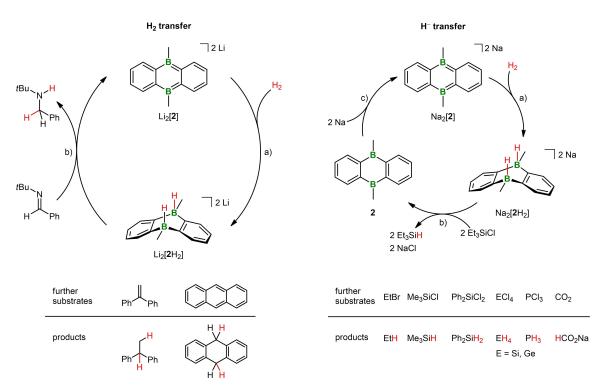


Figure 5. Transition-state orbital interactions relevant for the cleavage of H2 at a TM center (left), a P/B-FLP (right), and at $[A]^{2-}$ or E-type platforms (middle). HOMOs/LUMOs are shown in blue/red and electron lone pairs/vacant p_z orbitals in magenta/green.



available experimental and theoretical evidence, in particular the frontier-orbital symmetries and energies of the B₂ platforms, this view can now be extended as follows: We propose that the actual activation of chemical bonds by the whole set of compounds $[A]^{2-}$, B, D-F proceeds essentially via a "TM-like" mechanism involving a concerted (and in certain cases polarized) transition state. The partial $B(+I)C_2/B(+III)N_2$ mixed-valence character of **E** and F, in turn, determines the regioselectivities of addition reactions involving heteropolar substrates.

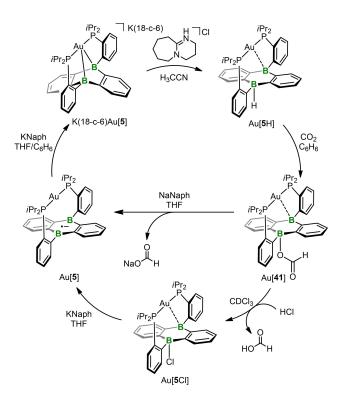
5. Catalytic Transformations

The substrate-activation reactions discussed so far set the stage for subsequent transformations and even full catalytic cycles, further closing the gap between Bcontaining and TM-based compounds as useful synthetic tools. Starting with the addition of H₂ to $M_2[2]$ (M=Li-K), our group succeeded in establishing catalytic H₂-transfer and H⁻-transfer reactions.^[16] The H₂ transfer to olefins and carbonyl imines produced alkanes and amines in excellent yields (Scheme 12, left). Substrates that fail to undergo the desired hydrogenation reactions fall into two categories: (i) irreversible binders that undergo [4+2]cycloaddition reactions with $[2]^{2-}$, thereby outcompeting H₂ as a substrate and poisoning the catalyst [e.g., H₂C=CH₂ and Ph₂C=O (unsuitable substrates) vs. Ph₂C=CH₂ and Ph(H)C=NtBu (suitable substrates)]. (ii) Substrates that behave inertly toward the H₂-addition product Li₂[2H₂] (e.g., phenanthrene). Contrary to classical P/B-FLPs, which tend to transfer first H⁺ and then H⁻ and therefore prefer to hydroelectron-rich element=element bonds, [58] Li₂[2H₂] supplies H⁻ first and is thus better designed for the conversion of electron-poor unsaturated compounds.[16] It is also important to mention the countercation effects in this case. Although the velocity of the H₂ addition follows the sequence $\text{Li}_2[2] < \text{Na}_2[2] < \text{K}_2[2]$, the highest overall H₂ transfer rates are nevertheless observed for Li₂[2] under the conditions applied (1 atm H₂, 100 °C, 10% catalyst loading). Obviously, the formation of strong contaction pairs promotes the actual H2 transfer by thermodynamic stabilization of the released [2]²⁻ dianion to such an extent that the beneficial influence of Li⁺ coordination on this second step outweighs its negative impact on the first step of the catalytic cycle.

Due to their nature as ditopic hydridoborates, $M_2[2H_2]$ can not only deliver a formal H⁻/H⁺ ion pair, but also two H⁻ ions and thereby convert various element halides to the corresponding element hydrides (Scheme 12, right).[16] Here, the DBA is liberated in its

Scheme 12. Left: Catalytic cycle for Li₂[2] as the hydrogenation catalyst. Right: Cyclic process for the transformation of Et₂SiCl into Et₃SiH by using Na₂[2H₂] as the hydride donor. Reaction steps: a) H₂ activation; b) H₂/H⁻ transfer; c) DBA reduction. Adapted with permission from E. von Grotthuss, S. E. Prey, M. Bolte, H. W. Lerner, M. Wagner, J. Am. Chem. Soc. 2019, 141, 6082-6091. Copyright 2020 American Chemical Society.

neutral form 2 such that the choice of the countercations is largely irrelevant for the second step of the catalytic cycle. H₂ addition therefore becomes ratedetermining and the best performing catalysts contain Na⁺ or K⁺ rather than Li⁺ cations. Other than the H₂ transfer, the H⁻ transfer requires the re-reduction of 2 by an added alkali metal to complete the catalytic cycle. Given that many element halides would also react with this reducing agent, a temporal separation of the reduction/H₂-activation steps from the H/Cl-exchange step demands a repeated sequential addition of the three components to the reaction vessel ("alternating process management" analogous to the industrial anthraquinone process for the synthesis of H₂O₂ from H_2 and $O_2^{[59]}$).


Our group also accomplished the DBA-mediated disproportionation of CO₂ to give CO and Li₂CO₃ (Scheme 13).[15] When put under a blanket of CO₂ at room temperature in THF, the salts $M_2[2]$ (M=Li, Na) first form the [4+2] cycloadducts $M_2[24]$ (cf. Table 3), which immediately react further by inserting a second equiv. of CO₂ into their B-O bonds. The resultant intermediates M₂[34] do not remain stable but expel CO and provide CO_3^{2-} -bridged DBA salts $M_2[40]$. In the case of M = Na the product remains stable and the reaction stops. In the case of M = Li, however, the diadduct dissociates and quantitatively releases 2 while Li₂CO₃ precipitates. By addition of Li metal, 2 can be reduced again and the resulting Li₂[2] is afterwards ready for a new cycle. [15] The behavior of Na₂[2] resembles the above-mentioned reaction of Harman's K(18-c-6)Au[5] with excess CO₂, which produces

Scheme 13. Proposed mechanism for the Li₂[2]-catalyzed conversion of M = Li metal and CO₂ to Li₂CO₃ and CO. In the case of M=Na metal, the reaction stops at the stage of Na₂[40] without closing the catalytic cycle.

stoichiometric quantities of CO and the CO₃²⁻ diadduct K(18-c-6)Au[29] (Scheme 10).

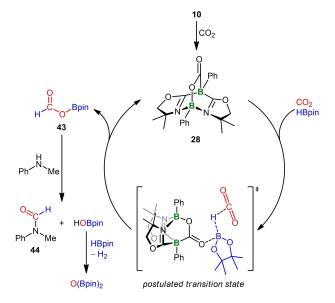
Alternatively, we have treated the double borohydride Na₂[2H₂] (Scheme 12, right) with CO₂ and achieved a clean conversion to the H-transfer product sodium formate, Na[HCO₂].^[16] The [HCO₂] ion initially remains coordinated to the DBA 2 (cf. the related carbonate adduct Na₂[40]; Scheme 13). During crystallization, this complex dissociates so that the free Lewis acid is released and only a subsequent twoelectron reduction with Na metal is required to restart the process.

With a similar goal in mind, Harman protonated his boroauride K(18-c-6)Au[5] at one boron atom to produce the borohydride Au[5H]; the use of [DBU-H]Cl in H₃CCN was found to be crucial for the success of this reaction step (Scheme 14; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene).[47] Upon exposure of Au[5H] to CO₂ in C₆H₆, the formate complex Au[41] is formed. So far, two options have been proposed for splitting the O-B bond of Au[41], regenerating the boroauride catalyst and harvesting either Na[HCO₂] or HCOOH: (i) two sequential oneelectron reductions of Au[41] in THF, first with 1 equiv. of NaNaph and then with 1 equiv. of KNaph; or (ii) the protonation of Au[41] with ethereal HCl in CDCl₃ and a subsequent twoelectron reduction of the resulting Au[5C1] with

Scheme 14. Six individually performed reactions, which, in principle, add up to a synthetic cycle for CO₂ reduction at an Au-DBA platform (MNaph = alkali metal naphthalenide).

2 equiv. of KNaph in THF/C₆H₆. To quote the authors' summary: "Collectively, these results outline a synthetic cycle for CO₂ reduction". [47]

Kinjo disclosed the catalytic hydroboration of various aliphatic and aromatic carbonyl derivatives using HBpin and 10. Interestingly, 10 turned out to only be the precatalyst in these transformations. The actual active catalyst forms in situ through a [4+2]cycloaddition reaction of 10 with equimolar quantities of the respective carbonyl substrate. Scheme 15 shows the catalytic cycle for Ph(Me)CO, which Kinjo selected as a representative model system.^[50] The cycloadduct 42 neither dissociates in the course of this catalytic cycle nor are the boron atoms directly involved in catalyst-substrate interactions, which fundamentally distinguishes this system from the previously described catalysts. DFT calculations suggest that 42 functions as an "electrostatic catalyst", which activates the H-Bpin bond for carbonyl insertion through attractive forces between the hydridic borane-H atom and positively polarized H₃C and H substituents that frame the pocket made of the two oxazoline units. The computed activation barrier is 27 kcal mol⁻¹, which seems to be quite high in light of the experimentally observed fast room-temperature reaction.


Scheme 15. Hydroboration of Ph(Me)CO with pinacolborane (HBpin), mediated by the electrostatic catalyst 42, which is formed in situ through [4+2] cycloaddition between the ketone and the 1,3,2,5-diazadiborinine 10.

proposed transition state

CO₂ is a special carbonyl substrate in this context. As before, a C=O bond is first added across the two boron atoms of 10 to furnish the bicyclic compound 28 (Scheme 16, Table 3). Quantum-chemical calculations suggest that 28, unlike the other carbonyl adducts, interacts with H-Bpin via the double-bonded oxygen atom and not via the oxazoline pocket. The resulting C=O...B complex is ready to hydroborate an incoming CO₂ molecule and thereby generate the mixed anhydride 43. The targeted aminolysis of the latter leads to N-formylation products such as 44 together with (ultimately) the byproduct O(Bpin)₂. [50]

6. Non-Identical Twins: B₂ Platforms with Varying π -Electron Counts

Apart from the set screws outlined above, variation of the π -electron count of the B₂ platforms should have a particularly strong influence on the compounds' reactivities. As an example, the B-centered nucleophilicity of the DBA dianion $[2]^{2-}$ is only one side of the coin. The two-electron oxidized neutral form 2, a structurally well-defined bidentate Lewis acid, [17,60] has already been applied by Wegner et al. for catalyzing inverse electron-demand Diels-Alder (IEDDA) reactions between 1,2-diazines and electron-rich dienophiles. [61,62] The same group has shown that the chlorinated congener 9,10-Cl₂-DBA catalyzes the dehydrogenation of ammonia-borane (H₃N–BH₃), which is relevant for

Scheme 16. The in situ formed cycloadduct 28 catalyzes the hydroboration of CO₂ with pinacolborane (HBpin). Upon treatment with amines (e.g., Ph(Me)NH), the primary product 43 undergoes aminolysis and produces the corresponding Nformylation products (e.g., 44) and stoichiometric quantities of O(Bpin)₂.

the development of new materials and hydrogen storage media. [63]

However, there is also a third redox state that can be adopted by DBAs and, in analogous form, by certain diazadiborinines, namely radicals with formally 5π electrons in their central rings. Such open-shell B_2 platforms could develop into main-group counterparts of paramagnetic TM complexes, which are already well-established in homogeneous TM catalysis. As a proof-of-principle, we refer to the recently published species Li[1]-[45][MgBr₃] (Scheme 17). In 2010, our

Scheme 17. Radicals derived from doubly boron-doped (hetero)arenes (top) and their boron-centered reactivity (bottom; $R^F = C(CF_3)_3$; Dipp = 2,6-diisopropylphenyl).

group prepared Li[1] through comproportionation of Li₂[1] and the diadduct syn-1(SMe₂)₂ in THF; treatment of the Li[1] solution with Li metal quantitatively regenerates the dianion salt Li₂[1].^[2,18] Following a similar approach, Harman obtained [4]Br from equimolar mixtures of 4 and anti-4Br₂ in toluene. ^[19]

The radical species Au[5] is accessible from Au-[5Cl] by one-electron reduction with KNaph in THF. The compound was formulated as a $[Au(+I)]^+[5]^$ zwitterion, the spin density of which is mainly located on the central B_2C_4 ring. [21] Kinjo's radical [7][Al(OC-(CF₃)₃)₄] forms upon one-electron oxidation of 7 with $Ag[Al(OC(CF_3)_3)_4]$ in C_6H_5F . [25] Here, the use of bulky Mes substituents on boron was necessary, as the corresponding Ph derivative 6 did not provide a stable radical cation. Finally, Braunschweig generated the CAAC-stabilized radical-cation salt [45][MgBr₃] and the corresponding neutral 45 through the reduction of the CAAC analog of anti-4Br₂ (see Scheme 3) with 0.5 and 1.1 equiv. of Bogdanović magnesium, MgAnth (CAAC = cyclic)(alkyl)(amino) carbene, anthracene; see Scheme 17).^[64] While the NHC-/ CAAC-supported radicals [4]Br/[45][MgBr₃] show similar structural and EPR-spectroscopic parameters, the neutral species 4/45 (6 π electrons in the central B₂C₄ rings) are strikingly different from each other: The NHC adduct 4 possesses a closed-shell ground state (EPR silent, NMR active), whereas the CAAC adduct 45 (EPR active, NMR silent) has an open-shell singlet biradical ground state of disjointed character. The DBA skeleton of 4 is essentially planar, whereas the B₂C₄ core of **45** assumes a distinct boat conformation with mutually syn-oriented CAAC ligands in the solid state.

The observed electron configuration of **45** results from a very small HOMO-LUMO gap, which is a desirable feature for organic electronic materials and often correlates with high charge-carrier mobilities. [65] In the class of the carbonaceous (oligo)acenes, comparably small HOMO-LUMO gaps can only be achieved by the synthetically challenging linear fusion of a significantly larger number of benzene rings.

In terms of reactivity, **45** readily captures CO in a formal [4+1] cycloaddition reaction to yield the [2.2.1]-bicyclic structure **46** (Scheme 17). Given that Kinjo obtained an analogous cycloadduct **39** from the closed-shell 1,3,2,5-diazadiborinine **9** and the isonitrile XylN=C: (see Scheme 11), the formation of **46** does not necessarily have to be rooted in the biradical character of **45**. Clear-cut radical behavior was found for [7][Al(OC(CF₃)₃)₄], which abstracts a hydrogen atom from H–SnPh₃; the product was isolated in the form of its pyridine adduct [**47**][Al(OC(CF₃)₃)₄] (Scheme 17). A 2:1 mixture of [7][Al(OC(CF₃)₃)₄] and *p*-benzoquinone undergoes double-SET to generate the *p*-hydroquinonate-bridged [**48**][Al(OC(CF₃)₃)₄]₂. S-diazadibornote in passing that the closed-shell 1,3,2,5-diazadibor-

inine 10 reacts stoichiometrically with p-benzoquinone to produce the expected [4+2] cycloadduct. [50] The field of open-shell B₂ platforms is still in its infancy. Nevertheless, the results achieved so far give every reason to believe in a fruitful future development.

7. Conclusion

In this review, we have shown that electron-rich sixmembered heterocycles containing two cooperating B atoms can activate single, double, and triple bonds – in certain cases even in a catalytic fashion. Similar to transition metal (TM) complexes, whose properties can be optimized by the right ligand design, these boron compounds also offer numerous set screws to adjust their reactivities for a specific purpose. Under an inert atmosphere, the stability of the B₂ platforms is sufficient to enable high turnover numbers and the required reaction conditions are no more drastic than for many d-block species. This field of "main-group compounds as transition-metal mimics" is only just emerging and further fundamentally interesting and synthetically useful reactions are yet to be discovered. Nevertheless, boron heterocycles are already beginning to establish themselves as a third class of catalysts alongside TMs and FLPs.

Acknowledgements

We wish to thank M.Sc. Theodore A. Gazis, M.Sc. Jannik Gilmer, and M.Sc. Timo Trageser for helpful discussions. Open access funding enabled and organized by Projekt DEAL.

References

- [1] a) G. Erker, D. W. Stephan, Frustrated Lewis Pairs I, Springer-Verlag Berlin, Heidelberg, 2013; b) G. Erker, D. W. Stephan, Frustrated Lewis Pairs II, Springer-Verlag Berlin, Heidelberg, 2013; c) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46-76; Angew. Chem. 2010, 122, 50-81; d) D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 10018–10032; e) D. W. Stephan, Acc. Chem. Res. 2015, 48, 306-316; f) A. R. Jupp, D. W. Stephan, Trends Chem. 2019, 1, 35-48.
- [2] A. Lorbach, M. Bolte, H.-W. Lerner, M. Wagner, Organometallics 2010, 29, 5762-5765.
- [3] D. Wu, L. Kong, Y. Li, R. Ganguly, R. Kinjo, Nat. Commun. 2015, 6, 7340.
- [4] For a comprehensive list of boron-containing heterocycles capable of small molecule activation, see: Y. Su, R. Kinjo, Chem. Soc. Rev. 2019, 48, 3613–3659.
- [5] For a review on anionic organoboranes capable of small molecule activation, see: a) H. Budy, J. Gilmer, T. Trageser, M. Wagner, Eur. J. Inorg. Chem. 2020, 44, 4148–4162; for review articles on anionic sp^2-sp^3 diboron compounds and their applications in stoichio-

- metric and catalytic transformations, see: b) R. D. Dewhurst, E. C. Neeve, H. Braunschweig, T. B. Marder, Chem. Commun. 2015, 51, 9594–9607; c) A. B. Cuenca, R. Shishido, H. Ito, E. Fernández, Chem. Soc. Rev. 2017, 46, 415–430.
- [6] E. Januszewski, A. Lorbach, R. Grewal, M. Bolte, J. W. Bats, H.-W. Lerner, M. Wagner, Chem. Eur. J. 2011, 17, 12696-12705.
- [7] Ö. Seven, Z.-W. Qu, H. Zhu, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, Chem. Eur. J. 2012, 18, 11284-11295.
- [8] C. Reus, S. Weidlich, M. Bolte, H.-W. Lerner, M. Wagner, J. Am. Chem. Soc. 2013, 135, 12892–12907.
- [9] S. Luliński, J. Smétek, K. Durka, J. Serwatowski, Eur. J. Org. Chem. 2013, 8315-8322.
- [10] S. Brend'amour, J. Gilmer, M. Bolte, H.-W. Lerner, M. Wagner, Chem. Eur. J. 2018, 24, 16910-16918.
- [11] A. Lorbach, C. Reus, M. Bolte, H.-W. Lerner, M. Wagner, Adv. Synth. Catal. 2010, 352, 3443-3449.
- [12] C. Reus, N.-W. Liu, M. Bolte, H.-W. Lerner, M. Wagner, J. Org. Chem. 2012, 77, 3518-3523.
- [13] A. Lorbach, M. Bolte, H. Li, H.-W. Lerner, M. C. Holthausen, F. Jäkle, M. Wagner, Angew. Chem. Int. Ed. 2009, 48, 4584–4588; Angew. Chem. 2009, 121, 4654– 4658.
- [14] E. von Grotthuss, M. Diefenbach, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, Angew. Chem. Int. Ed. 2016, 55, 14067–14071; Angew. Chem. 2016, 128, 14273-14277.
- [15] E. von Grotthuss, S. E. Prey, M. Bolte, H.-W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2018, 57, 16491-16495; Angew. Chem. 2018, 130, 16729–16733.
- [16] E. von Grotthuss, S. E. Prey, M. Bolte, H.-W. Lerner, M. Wagner, J. Am. Chem. Soc. 2019, 141, 6082-6091.
- [17] A. Lorbach, M. Bolte, H.-W. Lerner, M. Wagner, Chem. Commun. 2010, 46, 3592–3594.
- [18] In 1995, Siebert et. al pioneered the field by reporting on the syntheses and X-ray crystal structure analyses of the monoanion radical salt [K(18-c-6)(thf)₂][2] and the closed-shell dianion salt [K₂(tmeda)(thf)₂][2]: P. Müller, S. Huck, H. Köppel, H. Pritzkow, W. Siebert, Z. Naturforsch. 1995, 50b, 1476-1484.
- [19] J. W. Taylor, A. McSkimming, C. F. Guzman, W. H. Harman, J. Am. Chem. Soc. 2017, 139, 11032-11035.
- [20] a) M. L. H. Green, J. Organomet. Chem. 1995, 500, 127-148; b) A. Amgoune, D. Bourissou, Chem. Commun. 2011, 47, 859-871; c) H. Braunschweig, R. D. Dewhurst, Dalton Trans. 2011, 40, 549-558.
- [21] J. W. Taylor, A. McSkimming, M. E. Moret, W. H. Harman, Angew. Chem. Int. Ed. 2017, 56, 10413-10417; Angew. Chem. 2017, 129, 10549-10553.
- [22] Related nickel, copper, and silver complexes have been prepared; however, no bond-activation reactions have been reported to date; see a) J. W. Taylor, A. McSkimming, M. E. Moret, W. H. Harman, Inorg. Chem. 2018, 57, 15406–15413; b) L. A. Essex, J. W. Taylor, W. H. Harman, Tetrahedron 2019, 75, 2255-2260.

- [23] a) K. Niedenzu, H. Nöth, Chem. Ber. 1983, 116, 1132–1153; b) S. Trofimenko, Chem. Rev. 1993, 93, 943–980; c) F. Jäkle, T. Priermeier, M. Wagner, J. Chem. Soc. Chem. Commun. 1995, 1765–1766; d) E. Herdtweck, F. Jäkle, G. Opromolla, M. Spiegler, M. Wagner, P. Zanello, Organometallics 1996, 15, 5524–5535; e) F. Jäkle, T. Priermeier, M. Wagner, Organometallics 1996, 15, 2033–2040; f) S. Trofimenko, Polyhedron 2004, 23, 197–203.
- [24] B. Wang, Y. Li, R. Ganguly, H. Hirao, R. Kinjo, Nat. Commun. 2016, 7, 11871.
- [25] B. Wang, Y. Li, R. Ganguly, R. D. Webster, R. Kinjo, Angew. Chem. Int. Ed. 2018, 57, 7826–7829; Angew. Chem. 2018, 130, 7952–7955.
- [26] G. K. H. Goh, Y. Li, R. Kinjo, Dalton Trans. 2019, 48, 7514–7518.
- [27] Y. Su, Y. Li, R. Ganguly, R. Kinjo, Angew. Chem. Int. Ed. 2018, 57, 7846–7849; Angew. Chem. 2018, 130, 7972–7975.
- [28] Y. Su, D. C. Huan Do, Y. Li, R. Kinjo, J. Am. Chem. Soc. 2019, 141, 13729–13733.
- [29] A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der Anorganischen Chemie, Vol. 102, De Gruyter, Berlin, 2007
- [30] B. Wang, R. Kinjo, Tetrahedron 2018, 74, 7273–7276.
- [31] These derivatives are: $[\text{Li}(\text{thf})_2]_2[1]$ (ref. [2]), $[\text{Na}_2(\text{thf})_3]_2[1]$, $[\text{K}_2(\text{thf})_4][1]$ (ref. [16]), $[\text{Li}(\text{thf})_2]_2[2]$, $[\text{Na}_2(\text{thf})_3][2]$ (ref. [15]), $[\text{K}_2(\text{tmeda})(\text{thf})_2][2]$ (ref. [18]), and $[\text{Li}(\text{thf})_2]_2[3]$ (ref. [14]). Further examples are: $[\text{Li}(\text{thf})_2]_2[A]$ and $[\text{K}(\text{thf})_2[A]$ (R = Tol; ref. [16]), $[\text{Li}(\text{thf})_2]_2[A]$ and $[\text{Li}(\text{OEt}_2)]_2[A]$ (R = Mes; ref. [32]).
- [32] C. Hoffend, M. Diefenbach, E. Januszewski, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, *Dalton Trans.* 2013, 42, 13826–13837.
- [33] The Au complex Au[5Cl] splits H₂ in the classical FLP fashion when 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is present. The products are Au[5H] and [DBU-H]Cl, see ref. [47].
- [34] E. von Grotthuss, F. Nawa, M. Bolte, H.-W. Lerner, M. Wagner, *Tetrahedron* 2019, 75, 26–30.
- [35] This information is provided in the Supporting Information of ref. [28].
- [36] Comparable investigations into the competition between C-H and C-F activation reactions have also been reported for group 10 transition metals: a) M. Reinhold. J. E. McGrady, R. N. Perutz, J. Am. Chem. Soc. 2004, 126, 5268-5276; b) E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, R. N. Perutz, Acc. Chem. Res. 2011, 44, 333-348; c) J. Zhou, M. W. Kuntze-Fechner, R. Bertermann, U. S. D. Paul, J. H. J. Berthel, A. Friedrich, Z. Du, T. B. Marder, U. Radius, J. Am. Chem. Soc. 2016, 138, 5250-5253; d) O. Eisenstein, J. Milani, R. N. Perutz, Chem. Rev. 2017, 117, 8710-8753; e) Y.-M. Tian, X.-N. Guo, M. W. Kuntze-Fechner, I. Krummenacher, H. Braunschweig, U. Radius, A. Steffen, T. B. Marder, J. Am. Chem. Soc. 2018, 140, 17612-17623; f) M. W. Kuntze-Fechner, H. Verplancke, L. Tendera, M. Diefenbach, I. Krummenacher, H.

- Braunschweig, T. B. Marder, M. C. Holthausen, U. Radius, *Chem. Sci.* **2020**, *11*, 11009–11023.
- [37] It has been found that structurally related DBA derivatives can even accommodate two Mes substituents at the same boron center: S. Kirschner, S.-S. Bao, M. K. Fengel, M. Bolte, H.-W. Lerner, M. Wagner, *Org. Biomol. Chem.* 2019, 17, 5060–5065.
- [38] T. K. Wood, W. E. Piers, B. A. Keay, M. Parvez, *Angew. Chem. Int. Ed.* **2009**, *48*, 4009–4012; *Angew. Chem.* **2009**, *121*, 4069–4072.
- [39] T. K. Wood, W. E. Piers, B. A. Keay, M. Parvez, Chem. Eur. J. 2010, 16, 12199–12206.
- [40] A further example comes from the Jäkle group, who reported O₂ activation by a B–N-fused dipyridylanthracene: K. Liu, R. A. Lalancette, F. Jäkle, *J. Am. Chem. Soc.* **2019**, *141*, 7453–7462.
- [41] B. Wang, R. Kinjo, Chem. Sci. 2019, 10, 2088-2092.
- [42] D. Wu, R. Ganguly, Y. Li, S. N. Hoo, H. Hirao, R. Kinjo, *Chem. Sci.* **2015**, *6*, 7150–7155.
- [43] This information is provided in the Supporting Information of ref. [19].
- [44] [4+2] Cycloadditions of pristine styrene Ph(H)C=CH₂ (room temperature, <5 min) or the allene Ph₂C=C=CH₂ (room temperature, 1 h) have also been reported for compound **6**, see ref. [24].
- [45] Comparable vicinal diboration reactions of polycyclic aromatic hydrocarbons, although with different regiose-lectivities, have been reported for the system 1,2-(Me₃Si)₂-4,5-Cl₂C₆H₂/BBr₃: A. John, M. Bolte, H.-W. Lerner, M. Wagner, *Angew. Chem. Int. Ed.* **2017**, *56*, 5588–5592; *Angew. Chem.* **2017**, *129*, 5680–5684.
- [46] A related system comes from the Piers group, who reported that the cycloaddition of borabenzene-pyridine with dimethyl acetylenedicarboxylate or benzyne produces corresponding borabarrelene derivatives: a) T. K. Wood, W. E. Piers, B. A. Keay, M. Parvez, *Org. Lett.* 2006, 8, 2875–2878; neutral anthracene readily undergoes Diels-Alder reactions with benzynes to afford triptycene derivatives: b) C.-F. Chen, Y.-X. Ma, *Ypticenes Chemistry. From Synthesis to Applications* Springer-Verlag Berlin, Heidelberg, 2013; c) J. Maier, M. Deutsch, J. Merz, Q. Ye, O. Diamond, M.-T. Schilling, A. Friedrich, B. Engels, T. B. Marder, *Chem. Eur. J.* 2020, 26, 15989–16000.
- [47] J. W. Taylor, A. McSkimming, L. A. Essex, W. H. Harman, *Chem. Sci.* 2019, 10, 9084–9090.
- [48] This information is provided in the Supporting Information of ref. [47].
- [49] J. W. Taylor, W. H. Harman, Chem. Commun. 2020, 56, 4480–4483.
- [50] D. Wu, R. Wang, Y. Li, R. Ganguly, H. Hirao, R. Kinjo, Chem 2017, 3, 134–151.
- [51] B. Wang, K. Koshino, R. Kinjo, Chem. Commun. 2019, 55, 13012–13014.
- [52] The consistently designed and colored HOMO/LUMO plots shown in Figure 3 and the corresponding energy values are derived from single-point calculations that we performed at the B97D/TZVP level of theory (cf. ref.

- [32]) using published atomic coordinates of the compounds. Since such information is lacking for Harman's NHC-stabilized 4, this compound has not been included in the comparison.
- [53] L. Liu, C. Chan, J. Zhu, C.-H. Cheng, Y. Zhao, J. Org. Chem. 2015, 80, 8790–8795.
- [54] Very recently, Harman disclosed the activation of 1 equiv. of H₂O by K(18-c-6)Au[5], which resulted in the formation of one B–H and one B–OH bond. The primary product can react with a second equiv. of H₂O to afford H₂ and the hydroxide diadduct K(18-c-6)Au[5(OH)₂]: J. Taylor, H. Harman, *Chem. Commun.* 2020, 56, 13804– 13807.
- [55] These experiments revealed a second interesting aspect, related to the different charges of the B₂ platforms: When a neutral species such as **6** reacts with a cationic electrophile such as the Me⁺ of Me–OTf, the product [6Me]⁺ carries a positive charge that helps to attract even weakly coordinating anions like [OTf]⁻ to the second boron atom. As a result, the product contains two tetracoordinated boron sites (see ref. [24]). Yet, when a dianionic species such as [2]²⁻ performs an analogous reaction with Et₃Si–Cl, the product [2SiEt₃]⁻ is still anionic and thus repels even the potentially coordinating Cl⁻ anion, leaving the second boron atom tricoordinated and therefore reactive (see ref. [16]).
- [56] The picture can be extended to the cases of side-on approaching multiply-bonded substrates, which, according to the Dewar-Chatt-Duncanson model, also present frontier-orbital lobes of fitting symmetries to all the B₂ platforms: J. Chatt, L. A. Duncanson, J. Chem. Soc. 1953, 2939–2947.
- [57] The activating compound does not even have to contain two cooperating boron centers as evidenced by the experimentally proven nucleophilicity of a 9H-9-borafluorene dianion, which readily forms B-B/C/Si bonds when treated with boranes, haloalkanes, or halosilanes: a) A. Hübner, M. Bolte, H.-W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2014, 53, 10408-10411; Angew. Chem. 2014, 126, 10576-10579; b) A. Hübner, T. Kaese, M. Diefenbach, B. Endeward, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, J. Am. Chem. Soc. 2015, 137, 3705-3714; c) T. Kaese, T. Trageser, H. Budy, M. Bolte, H.-W. Lerner, M. Wagner, Chem. Sci. 2018, 9, 3881-3891; d) J. Gilmer, H. Budy, T. Kaese, M. Bolte, H.-W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2020, 59, 5621–5625; Angew. Chem. **2020**, 132, 5670–5674; e) T. Trageser, M. Bolte, H.-W. Lerner, M. Wagner,

- Angew. Chem. Int. Ed. **2020**, 59, 7726–7731; Angew. Chem. **2020**, 132, 7800–7805; by the same token, a Janovsky complex, prepared from PhLi/10 has been methylated at its BC₂ site using MeI: f) D. Wu, Y. Li, R. Ganguly, R. Kinjo, Chem. Commun. **2017**, 53, 12734–12737.
- [58] D. W. Stephan, Org. Biomol. Chem. 2012, 10, 5740– 5746.
- [59] K. H. Büchel, H. Moretto, P. Woditsch, *Industrielle Anorganische Chemie*, Wiley-VCH Verlag, Weinheim, 1999
- [60] Ö. Seven, S. Popp, M. Bolte, H.-W. Lerner, M. Wagner, Dalton Trans. 2014, 43, 8241–8253.
- [61] a) S. N. Kessler, H. A. Wegner, Org. Lett. 2010, 12, 4062–4065; b) L. Schweighauser, H. A. Wegner, Chem. Eur. J. 2016, 22, 14094–14103.
- [62] Further examples of compounds containing two cooperating Lewis acidic boron centers and their roles in catalysis or catalyst activation were described by Marder, Piers et al.: a) K. Köhler, W. E. Piers, A. P. Jarvis, S. Xin, Y. Feng, A. M. Bravakis, S. Collins, W. Clegg, G. P. A. Yap, T. B. Marder, *Organometallics* 1998, 17, 3557–3566; b) V. C. Williams, C. Dai, Z. Li, S. Collins, W. E. Piers, W. Clegg, M. R. J. Elsegood, T. B. Marder, *Angew. Chem. Int. Ed.* 1999, 38, 3695–3698; *Angew. Chem.* 1999, 111, 3922–3926; c) V. C. Williams, W. E. Piers, W. Clegg, M. R. J. Elsegood, S. Collins, T. B. Marder, *J. Am. Chem. Soc.* 1999, 121, 3244–3245; d) V. C. Williams, G. J. Irvine, W. E. Piers, Z. Li, S. Collins, W. Clegg, M. R. J. Elsegood, T. B. Marder, *Organometallics* 2000, 19, 1619–1621.
- [63] a) Z. Lu, L. Schweighauser, H. Hausmann, H. A. Wegner, Angew. Chem. Int. Ed. 2015, 54, 15556–15559; Angew. Chem. 2015, 127, 15777–15780; for review articles on B–N compounds as hydrogen storage media, see: b) T. B. Marder, Angew. Chem. Int. Ed. 2007, 46, 8116–8118; Angew. Chem. 2007, 119, 8262–8264; c) C. W. Hamilton, R. T. Baker, A. Staubitz, I. Manners, Chem. Soc. Rev. 2009, 38, 279–293.
- [64] C. Saalfrank, F. Fantuzzi, T. Kupfer, B. Ritschel, K. Hammond, I. Krummenacher, R. Bertermann, R. Wirthensohn, M. Finze, P. Schmid, V. Engel, B. Engels, H. Braunschweig, *Angew. Chem. Int. Ed.* 2020, 59, 19338–19343; *Angew. Chem.* 2020, 132, 19502–19507.
- [65] a) F. Würthner, R. Schmidt, ChemPhysChem 2006, 7, 793–797; b) J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452–483; Angew. Chem. 2008, 120, 460–492.