ChemMedChem

Supporting Information

Systematic Assessment of Fragment Identification for Multitarget Drug Design

Steffen Brunst, Jan S. Kramer, Whitney Kilu, Jan Heering, Julius Pollinger, Kerstin Hiesinger, Sven George, Dieter Steinhilber, Daniel Merk, and Ewgenij Proschak*

Supporting Information

Supplementary Tables 2
General 3
SOM training 3
Cloning of FXR and RXR constructs 3
FXR cloning: 3
RXRa cloning: 4
Protein expression and purification 5
FXR, LTA4H, sEH-H and sEH-FI: 5
5-LOX: 5
RXRa: 6
DSF screening 7
Orthogonal assay systems 8
Fragments: 8
Approved drugs 8
sEH-H activity assay 8
LTA4H activity assay: 8
5-LOX activity assay: 8
Hybrid reporter gene assay FXR and RXRa: 8
ITC measurements for sEH-H, LTA4H, FXR, and RXRa: 8
Results of the fragment testing 9
DSF experiments: 9
sEH-H: 9
LTA4H: 9
5-LOX: 10
RXRa: 10
FXR: 10
IC_{50} measurement results: 11
sEH-H activity 11
LTA4H activity: 11
5-LOX activity: 12
ITC Measurements results: 12
sEH-H measurement: 12
LTA4H measurement: 14
FXR measurement: 16
Results of the tested approved drugs 19
sEH-H activity: 19
LTA4H activity: 19
5-LOX activity 19
SMILES Codes of Prestwick Drug-Fragment Library (PDFL) 20
References 26

Supplementary Tables

Table S1: DSF validated with reference compounds. Assay conditions according to fragment testing. sEH-H, LTA4H and FXR were measured as triplicates and repeated 3 times. 5-LOX and RXRa were measured once as triplicate.

Protein	Reference compound $($ ref $)$	$\mathrm{T}_{\mathrm{M}}(\mathrm{DMSO})\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\mathrm{M}}($ ref $)\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{T}_{\mathrm{M}}$
sEH-H	$50 \mu \mathrm{M} \mathrm{CIU}$	56.7 ± 0.5	62.2 ± 0.4	5.6 ± 0.5
LTA4H	$50 \mu \mathrm{M}$ bestatin	54.8 ± 0.4	60.7 ± 0.9	5.9 ± 0.7
5-LOX	$100 \mu \mathrm{M}$ atreleuton	64.0 ± 0.0	63.7 ± 0.6	n.d.
RXRa	$50 \mu \mathrm{M}$ SR11237	No melting curve	59.0 ± 0.0	n.d.
FXR	$60 \mu \mathrm{M}$ GW4064	44.9 ± 0.6	n.d.	n.d.

Table S2: Excluded Pan Assay Interference Compounds (PAINS).

Structure	Reason for exclusion
Shift higher than the threshold on all five proteins.	
Shift higher than the threshold for sEH-H, LTA4H, and RXR.	
Contains reactive hydrazine functional group	

General

The Prestwick Drug-Fragment Library and all compounds tested in the orthogonal assay systems were purchased from Prestwick Chemical Librarys (lllkirch, France). The compounds measured in the ITC experiments were purchased from TCI Deutschland GmbH (compound 1), Fluorochem Ltd (compound 4,5 and 8) and BLD Pharmatech GmbH (compound 9 and 10). The restriction enzymes BamHI and Xhol were purchased from New England Biolabs GmbH. LB Broth and SYPRO® Orange Protein Gel Stain were purchased from Invitrogen ${ }^{\mathrm{TM}}$. If not otherwise declared the used chemicals were either purchased from AppliChem GmbH, Thermo Fisher (Kandel) GmbH, Merck KGaA or Carl Roth GmbH + Co. KG.

Purity of all active compounds was determined with a LCMS 2020 and a coupled UV detector module SPD-20A from Shimadzu. The columns Luna 10u C18(2) 100A ($250 \times 4.60 \mathrm{~mm}$) and Luna 10u CN 100A ($250 \times 4.60 \mathrm{~mm}$) from Phenomenex were used with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. The eluents were 0.1% formic acid and acetonitrile and the detection occurred via UV absorption at two wavelengths (254 and 280 nm). All final compounds exhibit a purity over 95% at 254 nm and 280 nm . The methods were as followed:

Method A: linear gradient from 40% to 90% acetonitrile within $10 \mathrm{~min}, 90 \%$ acetonitrile were hold for another 6 min, linear gradient from 90% to 40% within $2 \mathrm{~min}, 40 \%$ acetonitrile were hold for 2 min

Method B: hold 5% acetonitrile for 2 min, linear gradient from 5\% to 90% acetonitrile within $12 \mathrm{~min}, 90 \%$ acetonitrile for further 4 min , linear gradient from 90% to 5% within $1 \mathrm{~min}, 90 \%$ acetonitrile were hold for 1 min

Method C: linear gradient from 30% to 90% acetonitrile within $10 \mathrm{~min}, 90 \%$ acetonitrile were hold for another 5 min, linear gradient from 90% to 30% within $1 \mathrm{~min}, 30 \%$ acetonitrile were hold for 4 min

SOM training

The Kohonen network was used only for visualization of the chemical space. Overall, 16,791 compounds (1,280 approved drugs, 2,630 sEH inhibitors, 5,1635 -LO inhibitors, 1,118 LTA4H inhibitors, 2,831 RXR ligands, 3,769 FXR ligands) were used for training. Approved drugs were retrieved from the Prestwick Drug Library, while the other compounds were downloaded from ChembIDB v24 using the human target name as search item via the DataWarrior "Search Chembl Database" interface. FragFP fingerprints were calculated and a 50×50 Kohonen network was trained using default settings.

Cloning of FXR and RXR constructs

FXR cloning:
The FXR LBD construct (aa244-472) was cloned using the pFA-CMV-hFXR-LBD ${ }^{2}$ as PCR template (forward primer 5'-CCCCGGATCCGAACTGACCCCAGATCAACAG-3' and reverse primer 5'-CCCCCTCGAGTCATTATCACTGCACGTCCCAGATTTC-3). The PCR product as well as a modified pET29-vector were linearized with the restriction enzymes BamHI and Xhol and purified using NucleoSpin® Gel and PCR Clean-up (MACHERYNAGEL) according to supplier protocol. The purified products were ligated using T4-ligase for 1 h at $37^{\circ} \mathrm{C}$. The mixture was then used to transform E. coli (DH5a) by standard heat shock transformation protocol. Single clones were selected from agarose plates, containing a final concentration of $100 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin and multiplied plasmids were extracted using NucleoSpin $®$ Plasmid EasyPure (MACHERY-NAGEL) according to supplier protocol. The sequence of the insert was verified by Sanger sequencing. (Microsynth Seqlab) .The final construct carried an N -terminal His_{6}-tag and a TEV site followed by the FXR LBD.

DNA sequence of His-TEV-FXR(aa2244-472) construct:
ATGGGCCATCACCATCACCATCACGACTACGACATCCCGACTACCGAAAACCTGTACTTCCAGGGATCCGAACTGACCCCA GATCAACAGACTCTTCTACATTTTATTATGGATTCATATAACAAACAGAGGATGCCTCAGGAAATAACAAATAAAATTTTAAAA GAAGAATTCAGTGCAGAAGAAAATTTTCTCATTTTGACGGAAATGGCAACCAATCATGTACAGGTTCTTGTAGAATTCACAAA AAAGCTACCAGGATTTCAGACTTTGGACCATGAAGACCAGATTGCTTTGCTGAAAGGGTCTGCGGTTGAAGCTATGTTCCTT CGTTCAGCTGAGATTTTCAATAAGAAACTTCCGTCTGGGCATTCTGACCTATTGGAAGAAAGAATTCGAAATAGTGGTATCT CTGATGAATATATAACACCTATGTTTAGTTTTTATAAAAGTATTGGGGAACTGAAAATGACTCAAGAGGAGTATGCTCTGCTT ACAGCAATTGTTATCCTGTCTCCAGATAGACAATACATAAAGGATAGAGAGGCAGTAGAGAAGCTTCAGGAGCCACTTCTTG ATGTGCTACAAAAGTTGTGTAAGATTCACCAGCCTGAAAATCCTCAACACTTTGCCTGTCTCCTGGGTCGCCTGACTGAATT ACGGACATTCAATCATCACCACGCTGAGATGCTGATGTCATGGAGAGTAAACGACCACAAGTTTACCCCACTTCTCTGTGAA ATCTGGGACGTGCAGTGA

Protein sequence of His-TEV-FXR(aa2244-472) construct:
MGHHHHHHDYDIPTTENLYFQGSELTPDQQTLLHFIMDSYNKQRMPQEITNKILKEEFSAEENFLILTEMATNHVQVLVEFTKKLP GFQTLDHEDQIALLKGSAVEAMFLRSAEIFNKKLPSGHSDLLEERIRNSGISDEYITPMFSFYKSIGELKMTQEEYALLTAIVILSPDR QYIKDREAVEKLQEPLLDVLQKLCKIHQPENPQHFACLLGRLTELRTFNHHHAEMLMSWRVNDHKFTPLLCEIWDVQ

Sequencing Data:

Figure S1: Alignment of the His-TEV-FXR(aa244-472) construct and the sequencing data (T7term primer
(TGCTAGTTATTGCTCAGCGG) from Microsynth Seqlab) using the standard settings of "map to reference" with the software Geneious 11.0.5.

RXRa cloning:
The wildtype RXRa LBD construct (aa225-462) was first amplified via PCR (forward primer 5'-CCGAAAACCTGTACTTCCAGGGATCCACCTCTTCCGCCAATGAAGATATGCCGG-3' and reverse primer 5'-CTGCAGGTCGACCTCGAGTCATTAGGTCATCTGATGCGGAGCTTCC-3') from a tag free RXRa LBD construct and carried an N-terminal TEV recognition and cleavage side. The PCR product was again cloned into a pMAL vector with an ampicillin resistance using PCR (forward primer 5'-ATGACTCGAGGTCGACCTGCAGGCAAGCTTGG-3' and reverse primer 5'-CTGCAGGTCGACCTCGAGTCATTAGGTCATCTGATGCGGAGCTTCC-3'). The final construct carried an N-terminal maltose binding protein (MBP) tag followed by a poly-N-tag, a His $\mathbf{8}_{8}$-tag and a TEV site.

DNA sequence of MBP-His-TEV-RXR(aa225-462) construct:
ATGAAAACTGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAA TTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACT GGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACC CCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCG ATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCG CTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATT GCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGC GAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGC TGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTA TGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCG CCAGTCCGAACAAAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAG ACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAA AACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAAC GCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTAATTCGAGCTCGAACAACAACAACAATAA CAATAACAACAACCTCGGGATCGAGGGTACCCATCACCATCACCATCACCATCACCCGGGTACCGAAAACCTGTACTTCCA GGGATCCACCTCTTCCGCCAATGAAGATATGCCGGTTGAACGTATTCTGGAAGCAGAACTGGCAGTTGAACCGAAAACCGA AACCTATGTTGAAGCAAATATGGGTCTGAATCCGAGCAGCCCGAATGATCCGGTTACCAATATTTGTCAGGCAGCAGATAAA CAACTGTTTACCCTGGTTGAATGGGCAAAACGTATTCCGCATTTTAGCGAACTGCCGCTGGATGATCAGGTTATTCTGCTGC GTGCAGGTTGGAATGAACTGCTGATTGCCAGCTTTAGCCATCGTAGCATTGCAGTTAAAGATGGCATTCTGCTGGCAACCG GTCTGCATGTTCATCGTAATAGCGCACATAGTGCCGGTGTTGGTGCAATTTTTGATCGTGTTCTGACCGAACTGGTTAGCAA AATGCGTGATATGCAGATGGATAAAACAGAACTGGGTTGTCTGCGTGCAATTGTGCTGTTTAATCCGGATAGCAAAGGTCT GAGCAATCCTGCCGAAGTTGAAGCACTGCGTGAAAAAGTTTATGCAAGCCTGGAAGCCTATTGCAAACATAAATATCCGGA ACAGCCTGGTCGTTTTGCCAAACTGCTGCTGCGTCTGCCTGCACTGCGTAGTATTGGTCTGAAATGTCTGGAACACCTGTT TTTTTTCAAACTGATTGGTGATACCCCGATCGATACCTTTCTGATGGAAATGCTGGAAGCTCCGCATCAGATGACCTAA

Protein sequence of MBP-His-TEV-RXR(aa225-462) construct:
MKTEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKA FQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKY ENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSK PFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYA VRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNNNNNLGIEGTHHHHHHHHPGTENLYFQGSTSSANEDMPVERILEAELAVE PKTETYVEANMGLNPSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSELPLDDQVILLRAGWNELLIASFSHRSIAVKDGILLATGL HVHRNSAHSAGVGAIFDRVLTELVSKMRDMQMDKTELGCLRAIVLFNPDSKGLSNPAEVEALREKVYASLEAYCKHKYPEQPGR FAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLMEMLEAPHQMT

Sequencing Data:

Consensus Identity	
RXR α construct	
Sequencing	
Consensus Identity	
RXR α construct	20
Sequencing	
Consensus Identity	Cita H
RXR α construct	
Sequencing	
Consensus Identity	
RXR α construct	
Sequencing	

Figure S2: Alignment of the MBP-His-TEV_RXR(aa225-462) construct and the sequencing data starting at the end of the MBP (MaIE primer (GGTCGTCAGACTGTCGATG) from Microsynth Seqlab) using the standard settings of "map to reference" with the software Geneious 11.0.5.

Protein expression and purification

FXR, LTA4H, sEH-H and sEH-FI:
The LTA4H was purified as previously described ${ }^{3}$ and FXR was purified adapted from Merk et. al. ${ }^{4}$. In brief, for the expression of LTA4H and FXR transformed E.coli BL21 (DE3) cells were grown in LB Broth supplemented with $100 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin at a temperature of $37^{\circ} \mathrm{C}$ and shaking speed of 180 rpm until an OD_{600} of 0.8 was reached. Then the cultures were induced by the addition of isopropyl β-D-thiogalactopyranosid (IPTG), with a final concentration of $400 \mu \mathrm{M}$ in case of the LTA4H and $100 \mu \mathrm{M}$ for FXR. After induction the incubation temperature was lowered to $21^{\circ} \mathrm{C}$ for LTA4H and $18{ }^{\circ} \mathrm{C}$ in case of FXR. Cultures were harvested after $\sim 18 \mathrm{~h}$ by centrifugation at $4^{\circ} \mathrm{C}$ with 5500 xg for 20 min (centrifuge: Sorvall LYNX 4000 super speed centrifuge; rotor: F12-6X500-LEX fiberlite). For the expression of sEH-H and sEH-FI transformed E.coli BL21 (DE3) cells were grown in 5052 media supplemented with $100 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin at $37^{\circ} \mathrm{C}$ and 180 rpm as described by Hahn et al. ${ }^{5}$ and Lukin et al. ${ }^{6}$. Temperature was reduced to $16^{\circ} \mathrm{C}$ after 3 h and cells were harvested by centrifugation after additional 42 h of incubation. The cell pellets were either stored at $-20^{\circ} \mathrm{C}$ or directly suspended in buffer A supplemented with DNAse I and protease inhibitor mix (cOmplete ${ }^{\mathrm{TM}}$, EDTA-free Protease Inhibitor Cocktail, Roche). Cell suspension was lysed by a cell homogenizer (Invensys APV-1000 Homogenizer, Denmark). The lysed cells were centrifuged with $43992 \times \mathrm{g}$ at $4^{\circ} \mathrm{C}$ for 1 h (centrifuge: Sorval RC 5B Plus; rotor: HFA22.50). The supernatant was filtrated using a 0.45 mm syringe filter, before the filtrate was further purified by using an ÄKTA purifier (GE Healthcare) with a 5 ml HisTrap HP (GE Healthcare) equilibrated and run in buffer A. The HisTrap was eluted using buffer B and the protein concentration of the elution fractions was measured. The fractions containing protein were pooled and if necessary the volume was reduced to 5 ml by using an Amicon® Ultra-15 Centrifugal Filter Unit with a 3 kDa cutoff and centrifuging at $4^{\circ} \mathrm{C}$ with $2500 \times \mathrm{g}$ (centrifuge: 5810R; rotor: $\mathrm{F}-34-6-38$). In case of FXR, LTA4H and $\mathrm{sEH}-\mathrm{H}$ the protein was filtrated through a 0.22 mm filter and the 5 ml were further purified by using the ÄKTA purifier (GE Healthcare) running in buffer C and a HiLoad 16/600 Superdex 75 pg $^{\top \mathrm{M}}$ (GE Healthcare) for FXR and a HiLoad 16/600 Superdex $200 \mathrm{pg}^{\mathrm{TM}}$ (GE Healthcare) in case of LTA4H and sEH-H. sEH-FI was instead dialyzed two times against $\sim 100 x$ volume of buffer C for about 8 h each. The purity of the protein was evaluated by SDS page using a 14% polyacrylamide gel followed by Coomassi staining. The amount of protein was determined by measuring the sample with a NanoDrop ${ }^{T M} 2000$ c. The fractions containing pure protein were pooled. They were either used for ITC experiments or in case of sEH-H and sEH-FI the pooled fractions were supplemented with glycerol to a final concentration of 20%. The pooled fractions were then frozen in liquid nitrogen and then stored at $-80^{\circ} \mathrm{C}$.

For the ITC experiments FXR was expressed as described above but after the purification using a 5 ml HisTrap HP (GE Healthcare) the fractions containing the protein were pooled and a self-produced TEV protease containing a 6xHis tag was added with a molar ratio of $1: 10$. The mixture was dialyzed overnight using buffer A and a dialysis membrane with a 3 kDa MWCO. Then a second run using a 5 ml HisTrap HP (GE Healthcare) was performed. Proteins without His-tag were in the flow through. These fractions were concentrated using an Amicon $®$ Ultra-15 Centrifugal Filter Unit with a 10 kDa cutoff centrifuged at $4^{\circ} \mathrm{C}$ with $2500 \times \mathrm{g}$ (centrifuge: 5810R; rotor: F-34-6-38) until a final volume of 5 ml was reached. Concentrated sample was further purified by gel filtration in an analog fashion to the normal FXR purification. From the fractions containing the highest amount of protein an SDS page was performed and the purest fractions were pooled and dialyzed two times for 12 h in 1 L buffer C . The protein was frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$. The dialysis buffer was stored at $-20^{\circ} \mathrm{C}$.

5-LOX:

The 5-LOX protein was expressed and purified as previously published ${ }^{7,8}$. In short the transformed E.coli BL21 (DE3) cells were grown in LB Broth supplemented with $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin at a temperature of $37^{\circ} \mathrm{C}$ and shaking speed of 180 rpm for 5 h . Then the temperature was reduced to $21^{\circ} \mathrm{C}$ and the cultures were induced by adding IPTG to a final concentration of $200 \mu \mathrm{M}$. After growing overnight, the cells were harvested by centrifugation (centrifuge: Sorval RC 5B Plus; rotor: HFA12.500). The cells were
suspended using 20 ml buffer A per Liter of expression culture and chilled for 20 min on ice. The suspended cells were lysed by sonification (Bandolin MS73) $3 \times 1 \mathrm{~min}$ with 90% intensity. Cell homogenate was centrifuged (centrifuge: Sorval® RC-5B Refrigerated Superspeed Centrifuge; rotor: 5534) for 15 min at $4^{\circ} \mathrm{C}$ with $10,000 \times \mathrm{g}$, before the supernatant was further centrifuged for 70 min at $4^{\circ} \mathrm{C}$ with $100,000 \times \mathrm{g}$ (centrifuge: Optima ${ }^{\text {TM }}$ LE-80K Ultracentrifuge; rotor: Beckman fixed angle rotor 55.2 Ti). The supernatant was applied on a custom-made ATP-column with a column volume of $\sim 3.5 \mathrm{ml}$ followed by a ResourceQ 1 ml column. Purification steps were performed by means of an ÄKTA Xpress system (GE Healthcare) using buffer B. The 5-LOX was eluted using buffer B supplemented with 500 mM NaCl and then a gradient from 0% up to 100% of buffer B supplemented with 20 mM ATP. For the DSF experiments the buffer was changed to buffer B using an ÄKTA purifier (GE Healthcare) with three subsequentially arranged 5 ml HiTrap® Desalting Columns (GE Healtcare). The concentration was determined by performing a Bradford assay according to the Bio-Rad instruction manual.

RXRa:

For the RXRa protein expression the pMal plasmid coding for the wildtype RXRa LBD construct was transformed into competent E.coli T7-express cells which already held a pGro7 co-plasmid, coding for the GroEL/ES chaperone, with a chloramphenicol resistance (from the Chaperone Plasmid Set Cat. \#3340, TAKARA Bio Inc. (Japan)). Positive clones were selected on LB -plates supplemented with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin and $34 \mathrm{mg} / \mathrm{ml}$ chloramphenicol. These clones where then used to inoculate a pre-culture of 250 ml LB-medium supplemented with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin and $34 \mathrm{mg} / \mathrm{ml}$ chloramphenicol. After incubation of $1 \mathrm{~h}\left(37^{\circ} \mathrm{C}, 180\right.$ $\mathrm{rpm}), 40 \mathrm{ml}$ of the pre-culture were used to inoculate the expression culture of 1 ILB -medium without antibiotics. The expression culture was incubated at $37^{\circ} \mathrm{C}$ with 180 rpm . At an OD_{600} of approximately $0.6-0.7$ the GroEL/ES expression was induced using 1 mg Arabinose. The flasks were then moved into a shaker at $20^{\circ} \mathrm{C}$ and 120 rpm .30 minutes later at an OD_{600} of 0.9-1.0 the target protein expression was induced using 0.5 mM IPTG. The expression cultures were incubated overnight and then harvested at 6000 rpm at $4^{\circ} \mathrm{C}$ for 15 min (centrifuge: Sorval $®$ Lynx 6000 ; rotor: $\mathrm{F} 10-4 \times 1000$). For the purification a pellet of 2 I E. coli culture was suspended in 50 ml lysis buffer A supplemented with protease inhibitor, DNAse, RNAse and lysozyme. Incubation was performed for at least 30 min and the mechanically lysis was done with a cell homogenizer (Invensys APV-1000 Homogenizer, Denmark). In order to force the ATP dependent GroEL/ES release the lysate was then incubated with 1 mM ATP for at least 30 min on ice. The cell debris were removed via centrifugation ($16500 \mathrm{xg}, 20 \mathrm{~min}, 4^{\circ} \mathrm{C}$, centrifuge: Eppendorf 5810 R ; rotor: F-34-6-38) and the supernatant was applied onto a 15 ml Ni-IDA Sepharose 6 fast-flow column. The target protein eluted at 300 mM imidazole. The N-terminal MBP used as a solubility-tag was removed with the help of a recombinant MBP-TEV protease during dialysis in 3 I buffer B. The TEV protease was applied with a $1: 50$ molar ratio. In order to remove the MBP-TEV protease, the cleaved N -Terminal MBP-tag and undigested target protein from the protein solution an amylose affinity chromatography (AAC) step was performed. An Amylose High Flow resin (NEB) on a gravity flow column was used. The MBP-TEV digest was applied onto the column and the flow through containing the cleaved protein was collected. The flow through of the AAC was then concentrated and purified in a final step with a $26 / 60$ Superdex 75 column on an ÄKTA purifier system in assay buffer C. The elution fractions were pooled, shock frozen with liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$.

For the ITC measurements RXRa was dialyzed, using a dialysis membrane with a 3 kDa MWCO and placed in 2 I fresh buffer C, overnight. Then concentrated using an Amicon® Ultra-15 Centrifugal Filter Unit with a 3 kDa cutoff and centrifuging at $4^{\circ} \mathrm{C}$ with 1500 xg (centrifuge: Eppendorf 5810R; rotor: $\mathrm{F}-34-6-38$) until a concentration higher than $50.5 \mu \mathrm{M}$ was reached.

Table S3: All buffers used for the protein purification:

Protein	buffer A	buffer B	buffer C
$\begin{aligned} & \text { sEH-H/ } \\ & \text { sEH-FI } \end{aligned}$	50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 70 \mathrm{mM}$ imidazole, $\mathrm{pH}=8$	$\begin{array}{ll} 50 \mathrm{mM} & \text { Tris, } \quad 500 \mathrm{mM} \\ 400 \mathrm{mM} & \mathrm{NaCl}, \\ \text { imidazole, } & 10 \mathrm{mM} \\ \mathrm{MgCl}_{2}, \mathrm{pH}=8 \end{array}$	50 mM Tris, 50 mM NaCl , $\mathrm{pH}=8$
FXR	20 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ (V/V) glycerol, 20 mM imidazole, 0.5 mM DTT, $\mathrm{pH}=7.5$	20 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ (V/V) glycerol, 250 mM imidazole, 0.5 mM DTT, $\mathrm{pH}=7.5$	10 mM Tris, 100 mM NaCl , 5 mM DTT, $\mathrm{pH}=8.3$
LTA4H	50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, $\mathrm{pH}=8$	50 mM Tris, 500 mM NaCl , 400 mM imidazole, $\mathrm{pH}=8$	50 mM Tris, 50 mM NaCl , $\mathrm{pH}=8$
5-LO	50 mM Triethanolamine, 5 mM EDTA, $1 \mathrm{mg} / \mathrm{ml}$ Lysozym, 0.4 mM PMSF, 2 mM DTT, $60 \mu \mathrm{~g} / \mathrm{ml}$ Soybean Trypsin Inhibitor, $\mathrm{pH}=8$	1X DPBS, 1 mM EDTA, pH = 7.5	$1 \mathrm{XPB}, 1 \mathrm{mM} \mathrm{EDTA}, \mathrm{pH}=7.5$
RXRa	$400 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM} \mathrm{NaP}$ i pH 7.8, $10 \% ~(\mathrm{w} / \mathrm{v})$ Glycerol, 20 mM Bmercaptoethanol, 20 mM imidazole, 20 mM MgSO 4	$400 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM} \mathrm{NaP} i \mathrm{pH}$ 7.8, 10\% (w/v) Glycerol, 20 mM B-mercaptoethanol	150 mM potassium fluoride, 25 mM HEPES, 5 mM DTT, 10% glycerol, $\mathrm{pH}=7.5$

Figure S3: SDS page of the purified proteins (proteins RXRa and FXR after TEV cleavage) using a 14% polyacrylamide gel, which was stained with coomassi. Precision Plus Protein ${ }^{T M}$ Unstained Protein Standards (Bio-Rad Laboratories, Inc.) was used as protein standard.

DSF screening

All experiments were performed as duplicates using MicroAmp fast 96 -well plates. Each plate contained 80 different compound wells and 16 DMSO control wells. First $0.8 \mu \mathrm{l}$ of a 25 mM Preswick Library Fragment dilution in DMSO or pure DMSO were placed in each of the well (final concentration $500 \mu \mathrm{M}$). Then $39.2 \mu \mathrm{l}$ of the master mix (containing protein, Triton x-100, SYPRO® Orange Protein Gel Stain and buffer that corresponds to the tested protein) were added.

Table S4: Final concentrations in DSF experiments:

Protein	Final concentrations under screening conditions
sEH-H	$500 \mu \mathrm{M}$ compound, $5 \mu \mathrm{M}$ protein, 19.625 mM Bis-tris, 3.6125 mM Tris, $3.6125 \mathrm{mM} \mathrm{NaCl}, 1.7 \%$ (V/V) glycerol, 0.01% (W/V) Triton X-100, 2.05 \% DMSO and $2.5 x$ SYPRO® with a pH = 7
LTA4H	$500 \mu \mathrm{M}$ compound, $5 \mu \mathrm{M}$ protein, 43.5 mM Tris, $43.5 \mathrm{mM} \mathrm{NaCl}, 0.01 \%$ (W/V) Triton X-100, 2.05\% DMSO and 2.5 x SYPRO® with a $\mathrm{pH}=8$
5-LOX	$500 \mu \mathrm{M}$ compound, $3.5 \mu \mathrm{M}$ protein, 0.87 x DPBS, 0.87 mM EDTA, 0.01% (W/V) Triton X-100, 2.1\% DMSO and $5 x$ SYPRO® with a $\mathrm{pH}=7.5$
RXRa	$500 \mu \mathrm{M}$ compound, $5 \mu \mathrm{M}$ protein, 130.5 mM potassium fluoride, 21.75 mM HEPES, 4.35 mM DTT, 8.7 \% (V/V) glycerol, $0.01 \%(\mathrm{~W} / \mathrm{V})$ Triton X-100, 2.1% DMSO and 5 x SYPRO® with a pH $=7.5$
FXR	$500 \mu \mathrm{M}$ compound, $5 \mu \mathrm{M}$ protein, 1.16 mM TRIS, $11.6 \mathrm{mM} \mathrm{NaCl}, 0.58 \mathrm{mM}$ DTT, 100 mM sodium citrate , 0.01% (W/V) Triton X-100, 2.1\% DMSO and 5x SYPRO® with a pH = 5.5

The measurements were performed using a iCycler iQ ${ }^{\text {TM }}$ Single-Color Real Time PCR device with a heat rate of $1^{\circ} \mathrm{C}$ per min, an excitation wavelength of 490 nm and an emission wavelength of 570 nm . The first derivation calculated by MyiQ Optical Software 1.0 was analyzed using Microsoft Office Excel 2013 by comparing the maxima. A shift of $1^{\circ} \mathrm{C}$ (in case of $5-\mathrm{LOX} 0.9^{\circ} \mathrm{C}$) or more compared to the DMSO control were assumed as potentially binding of the fragment.

Fragments:
The 10 fragments showing dual activity in the DSF experiments were validated by functional assay screening with a fixed concentration of $500 \mu \mathrm{M}$ in case of sEH-H and LTA4H, $100 \mu \mathrm{M}$ in case of $5-\mathrm{LOX}$ and $30 \mu \mathrm{M}, 10 \mu \mathrm{M}$ and $5 \mu \mathrm{M}$ in case of FXR and RXRa. The FXR and RXRa activity assays didn't show any results, because the concentration of used fragments was toxic for the cells or didn't show any activity. The compounds showing an inhibition greater than 50% (sEH and LTA4H), greater than 70 $\% ~(5-L O X)$ as well as the hits determined in the DSF experiments were further measured with concentrations between $1000 \mu \mathrm{M}$ and $0.1 \mu \mathrm{M}$ (sEH-H and LTA4H) and between $300 \mu \mathrm{M}$ and $1 \mu \mathrm{M}$ (5-LOX). The sEH and LTA4H activity assays were performed as triplicate and repeated 3 times. The 5-LOX activity assay was performed with one point per concentration and repeated 3 times Raw data was first analyzed in Microsoft Office Excel (2013), before $I C_{50}$ curves were plotted and further analyzed using GraphPad Prism 7 and GraphPad Prism 8 for the shown graphs.

Approved drugs:
The eight approved drugs were measured in the orthogonal assay systems analogous to the fragments. The approved drugs were tested on the targets, where the fragment structure they contain, showed activity. For the sEH-H and LTA4H, they were measured as triplicate in concentrations between $1000 \mu \mathrm{M}$ and $1 \mu \mathrm{M}$ and each measurement was repeated three times. For the 5-LOX they were measured as single point measurement in three different experiments with concentrations between $300 \mu \mathrm{M}$ and $1 \mu \mathrm{M}$. For FXR and RXRa a single hybrid reporter gene measurement with three concentrations between $30 \mu \mathrm{M}$ and $3 \mu \mathrm{M}$ was performed. Raw data was processed according to the fragments.
sEH-H activity assay:
The sEH-H activity assay was performed adapted from Hahn et al. ${ }^{5}$ and Lukin et al. ${ }^{6}$. In short 1μ l of compound dilution in DMSO or pure DMSO (for the positive and negative control) was placed in a black 96 -well plate (Thermo Scientific ${ }^{\text {TM }}$ Nunc ${ }^{\text {TM }}$ F96 MicroWell ${ }^{\text {TM }}$ Black Polystyrene Plate) and then 89μ of protein-mix or buffer mix (without protein as negative control) were added and the mixture was incubated for 30 min at room temperature. $10 \mu \mathrm{l}$ of 0.6 mM 3-phenyl-cyano(6-methoxy-2-naphthalenyl)methylester-2-oxiraneacetic acid (PHOME) were added to every well. The Plate was measured every minute for 45 min. Final concentration per well was $3 \mathrm{nM} \mathrm{sEH}-\mathrm{FI}, 0.001 \%$ Triton X-100, 25 mM Bis-tris, $0.1 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}, \mathrm{pH}=7.0,1.6 \%$ DMSO and $60 \mu \mathrm{M}$ PHOME.

LTA4H activity assay:

The LTA4H activity assay was performed adapted from Hiesinger et al. ${ }^{3}$.As in the sEH-H measurement $1 \mu \mathrm{l}$ of compound dilution in DMSO or pure DMSO (for the positive and negative control) was placed in a black 96 -well plate (Thermo Scientific ${ }^{\text {TM }}$ Nunc ${ }^{\text {TM }}$ F96 MicroWell ${ }^{\text {TM }}$ Black Polystyrene Plate) and then $89 \mu \mathrm{l}$ of protein-mix or buffer mix (without protein as negative control) were added and incubated for 30 min at room temperature. Then the reaction was started by the addition of $10 \mu \mathrm{l} 1.82 \mathrm{mM} \mathrm{L}$-arginin7 -amido-4-methylcumarine (Arg-AMC) to every well. After the addition the plate was measured every minute for 45 min . The final concentration per well was 100 nM LTA4H, 0.001% Triton X-100, 48.7 mM Tris, $48.7 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}=8,1.4 \% \mathrm{DMSO}$ and $182 \mu \mathrm{M}$ Arg-AMC.

5-LOX activity assay:

The 5-LOX-activity assay was performed adapted from Wertz et al. ${ }^{9}$ and Kretschmer et al. ${ }^{7}$. In short, the purified 5-LOX protein was used in a final concentration of $3 \mu \mathrm{~g} / \mathrm{ml}$ in assay buffer ($1 \times \mathrm{PBS}, 1 \mathrm{mM}$ EDTA, $\mathrm{pH}=7.4$) and preincubated with $10 \mu \mathrm{l}$ compound in DMSO or pure DMSO as positive control. Then 1 mM ATP (Roth) was added. The mixture was preincubated for 15 min on ice and then for 30 s at $37^{\circ} \mathrm{C}$ using a water bath. The reaction was started by addition of $2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$ and $20 \mu \mathrm{M}$ arachidonic acid (Cayman). After 10 min of incubation at $37^{\circ} \mathrm{C}$ the reaction was stopped by adding 1 ml of chilled methanol and the reaction vessel was placed on ice. $30 \mu \mathrm{l} 1 \mathrm{~N} \mathrm{HCl}, 200 \mathrm{ng}$ of Prostaglandin B1 (as internal standard) and $500 \mu \mathrm{~L}$ PBS were added. The Clean-UP C-18 solid phase extraction columns (UCT) were conditioned using 1 ml of methanol and 1 ml of water. Then the samples were given on the columns and washed with 1 ml water and $1 \mathrm{ml} 25 \%$ methanol. The extraction was performed by the addition of $300 \mu \mathrm{l}$ 100% methanol. The extract was diluted by adding $120 \mu \mathrm{l}$ water and $100 \mu \mathrm{l}$ of this dilution were analyzed by HPLC using the method and setup as described from Steinhilber et al. ${ }^{10}$.

Hybrid reporter gene assay FXR and RXRa:
The assay was performed as described by Pollinger et al..2. In brief HEK293T cells were cultured at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ using a mixture of DMEM high glucose, 10% FCS, 1 mM sodium pyruvate, $100 \mathrm{U} / \mathrm{ml}$ penicillin and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin. The cells were seeded in a 96 -well plate with a density of $3^{*} 10^{4}$ cells/well and after a growth time of 24 h the medium was changed to Opti-MEM. For the transfection Lipofectamin LTX reagent (Invitrogen ${ }^{T M}$) with the respective plasmids was used as described in the manufacturer's protocol. For FXR testing the plasmids pFR-Luc (Stratagene), pRL-SV40 (Promega) and pFA-CMV-hFXR-LBD were used. For RXRa the plasmids pFR-Luc (Stratagene), pRL-SV40 (Promega) and pFA-CMV-hRXRa-LBD. 5 h after transfection the medium was changed to a mixture of Opti-MEM, $100 \mathrm{U} / \mathrm{ml}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin and 0.1% DMSO with or without compound (untreated control). After incubation for 14-16 h the Dual-Glo ${ }^{\text {TM }}$ Luciferase Assay System (Promega) was performed as described by the manufacturer. The luminescence was measured using a Spark 10M luminometer (Tecan Deutschland GmbH) device. The measured firefly luciferase data were divided by the associated renilla luciferase data and multiplied by 1000 leading to a normalized result as relative light unit (RLU). The fold activation was then obtained by dividing the RLUs of the compound by the mean of the untreated control. Every plate also contained reference compounds (GW4064 for FXR and bexarotene for RXRa) as positive control.

ITC measurements for sEH-H, LTA4H, FXR, and RXRa:
ITC experiments were performed in normal mode using an "Affinity ITC" (TA-Instruments) at $25^{\circ} \mathrm{C}$. FXR was used with a concentration of $50 \mu \mathrm{M}$ in Tris buffer (10 mM Tris, $100 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{DTT}, \mathrm{pH}=8.3$), supplemented with 1% DMSO and 0.5% CHAPS. RXRa was also used in a concentration of $50 \mu \mathrm{M}$ in a HEPES buffer (containing 150 mM potassium fluoride, 25 mM HEPES, 5 mM DTT, 10% Glycerol, $\mathrm{pH}=7.5$) supplemented with 1% DMSO and 0.5% CHAPS. LTA4H was used with a
concentration of $20 \mu \mathrm{M}$ (for compound 10) and $40 \mu \mathrm{M}$ (for compound 9) in a Tris buffer (50 mM Tris, $50 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}=8$) supplemented with 1% of DMSO. sEH-H was used with a concentration of $20 \mu \mathrm{M}$ (for compound 10) and $40 \mu \mathrm{M}$ (for compound 9) in a Tris buffer (50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}=8$) supplemented with 1% of DMSO. $300 \mu \mathrm{~L}$ of the protein solution were placed in the cell. For blank experiments the dialysis buffer supplemented with 1% DMSO and 0.5% CHAPS was used. A $250 \mu \mathrm{M}$ or a $100 \mu \mathrm{M}$ dilution of compound in buffer containing final concentrations of 1% DMSO (as well as 0.5% CHAPS, in case of FXR and RXRa) was placed in the syringe. The titrations were performed with 1 injection of $0.5 \mu \mathrm{~L}$ and 30 injections with $2 \mu \mathrm{~L}$ or 35 injections with $1.5 \mu \mathrm{~L}$ as well as a spacing time between the injections of 240 or 300 seconds. One measurement with protein in the cell and blank buffer (respective buffer supplemented with 1% DMSO (as well as 0.5% CHAPS, in case of FXR and RXRa)) in the syringe was performed as well as two times for every compound measurement. A second blank experiment was performed where compound was titrated in the respective blank buffer. The results were analyzed using the program "NanoAnalyze Data Analysis" (Version 3.10.0 from TA Instruments) by subtracting a fix heat, determined by the blank experiments and using the independent option for modeling.

Results of the fragment testing
DSF experiments:
sEH-H:
A
Compound 2

D
Compound 9

B

Figure S4: DSF measurement of $s E H-H$ with $500 \mu \mathrm{M}$ of test compounds. Exemplary shown is the first derivation of the N1 melting curves. DMSO control (blue) and compounds (green) 2(A), 6(B), 7(C), and 9(D).

LTA4H:

Figure S5: DSF measurement of LTA4H with $500 \mu \mathrm{M}$ of test compounds. Exemplary shown is the first derivation of the N1 melting curves. DMSO control (blue) and compounds (green) 3(A), 4(B), 5(C), 6(D), 8(E), and 10(F).

5-LOX:

A
Compound 1

D

B
Compound 2

Figure S6: DSF measurement of 5-LOX with $500 \mu \mathrm{M}$ of test compounds. Exemplary shown is the first derivation of the N1 melting curves. DMSO control (blue) and compounds (green) 1(A), 2(B), 7(C), and 10 (D).

RXRa:
A
Compound

B
Compound 9

C
Compound 10

Figure S7: DSF measurement of RXRa with $500 \mu \mathrm{M}$ of test compounds. Exemplary shown is the first derivation of the N 1 melting curves. DMSO control (blue) and compounds (green) $\mathbf{1}(A), \mathbf{9}(B)$ and $\mathbf{1 0}(C)$.

FXR:
A

D
Compound 8

B

E
Compound 9

C
Compound 5

Figure S8: DSF measurement of FXR with $500 \mu \mathrm{M}$ of test compounds. Exemplary shown is the first derivation of the N1 melting curves. DMSO control (blue) and compounds (green) 3(A), 4(B), 5(C), 8(D) and 9(E).
IC_{50} measurement results:
sEH-H activity:

 triplicate in three different measurements with concentrations between $1 \mu \mathrm{M}$ and $1000 \mu \mathrm{M}$.

LTA4H activity:

Figure S10: IC_{50} determination of compounds $\mathbf{3}(\mathrm{A}), \mathbf{4}(\mathrm{B}), \mathbf{5}(\mathrm{C}), \mathbf{7}(\mathrm{D}), \mathbf{9}(\mathrm{E})$, and $\mathbf{1 0}(\mathrm{F})$ towards LTA4H activity. Measured as triplicate in three different measurements with concentrations between $1 \mu \mathrm{M}$ and $1000 \mu \mathrm{M}$.

Figure S11: IC_{50} determination of compound $\mathbf{2}(\mathrm{A}), \mathbf{5}(\mathrm{B}), \mathbf{7}(\mathrm{C}), \mathbf{8}(\mathrm{D}), \mathbf{9}(\mathrm{E})$ and $\mathbf{1 0}(\mathrm{F})$ towards 5 -LOX activity. Measured as single point in three different measurements with concentrations between $1 \mu \mathrm{M}$ and $300 \mu \mathrm{M}$.

ITC Measurements results:
sEH-H measurement:

Compound 9

Graph S1: ITC titration of $40 \mu \mathrm{M}$ sEH-H in cell with $250 \mu \mathrm{M}$ compound 9 in syringe. One initial step with $0.5 \mu \mathrm{~L}$ followed by 35 steps with $1.5 \mu \mathrm{l}$ volume. The measurement was performed at $25^{\circ} \mathrm{C}$ and between every step there was a spacing of 240 s .

Compound 10

Graph S2: ITC titration of $20 \mu \mathrm{M}$ LTA4H in cell with $100 \mu \mathrm{M}$ compound 10 in syringe. One initial step with $0.5 \mu \mathrm{~L}$ followed by 30 steps with $2 \mu \mathrm{l}$ volume. The measurement was performed at $25^{\circ} \mathrm{C}$ and between every step there was a spacing of 300 s .

Compound 9

Graph S3: ITC titration of $40 \mu \mathrm{M}$ LTA4H in cell with $250 \mu \mathrm{M}$ compound 9 in syringe. One initial step with $0.5 \mu \mathrm{~L}$ followed by 30 steps with $1.5 \mu \mathrm{l}$ volume. The measurement was performed at $25^{\circ} \mathrm{C}$ and between every step there was a spacing of 240 s .

Graph S4: ITC titration of $20 \mu \mathrm{M}$ LTA4H in cell with $100 \mu \mathrm{M}$ compound 10 in syringe. One initial step with $0.5 \mu \mathrm{~L}$ followed by 30 steps with $2 \mu \mathrm{l}$ volume. The measurement was performed at $25^{\circ} \mathrm{C}$ and between every step there was a spacing of 240 s .

Graph S5: ITC titration of $50 \mu \mathrm{M} \mathrm{FXR}$ in cell with $250 \mu \mathrm{M}$ compound $\mathbf{4}$ in syringe. One initial step with $0.5 \mu \mathrm{~L}$ followed by 30 steps with $2 \mu \mathrm{l}$ volume. The measurement was performed at $25^{\circ} \mathrm{C}$ and between every step there was a spacing of 240 s .

Compound 8

Time (s)

Graph S6: ITC titration of $50 \mu \mathrm{M} \mathrm{FXR}$ in cell with $250 \mu \mathrm{M}$ compound 8 in syringe. One initial step with $0.5 \mu \mathrm{~L}$ followed by 30 steps with $2 \mu \mathrm{l}$ volume. The measurement was performed at $25^{\circ} \mathrm{C}$ and between every step there was a spacing of 240 s .

Graph S7: ITC titration of $50 \mu \mathrm{M}$ FXR in cell with $250 \mu \mathrm{M}$ compound 9 in syringe. One initial step with $0.5 \mu \mathrm{~L}$ followed by 30 steps with $2 \mu \mathrm{l}$ volume. The measurement was performed at $25^{\circ} \mathrm{C}$ and between every step there was a spacing of 240 s .

Results of the tested approved drugs

sEH-H activity:

Figure S9: IC_{50} determination of compound 14 (tolvaptam, left) and $\mathbf{1 7}$ (diflunisal, right) towards $\mathrm{sEH}-\mathrm{H}$ activity. Measured as triplicate in three different measurements with concentrations between $1 \mu \mathrm{M}$ and $1000 \mu \mathrm{M}$.

LTA4H activity:

Figure S13: IC_{50} determination of compound 11 (benoxinate, left) and 18 (fluvastatin, right) towards LTA4H activity. Measured as triplicate in three different measurements with concentrations between $1 \mu \mathrm{M}$ and $1000 \mu \mathrm{M}$.

5-LOX activity:

$\log _{10}(\mathbf{c}($ Inhibitor $)[\mathrm{M}])$
Figure S14: IC_{50} determination of compound 15 (beperidil) towards 5-LO activity. Measured as single point in three different measurements with concentrations between $1 \mu \mathrm{M}$ and $300 \mu \mathrm{M}$.

SMILES Codes of Prestwick Drug-Fragment Library (PDFL)

Brc1ccc(cc1)C(=O)c2ccccc2
C(C1CCNCC1)c2ccccc2
C(C1NCCc2ccccc12)c3ccccc3
C(CN1CCCCC1)C($\mathrm{c} 2 c \mathrm{cccc} 2) \mathrm{c} 3 \mathrm{ccccc} 3$
C(Cn1ccnc1)c2ccccc2
C(N1CCCC1)c2nc3ccccc3[nH]2
C(N1CCNCC1) 22 ccc 30 COc 3 c 2
C(N1CCNCC1)c2ccccc2
C(N1CCNCC1)c2ccenc2
C(Nc1ccccn1)c2ccccc2
C(Oc1ccc2OCOc2c1)[C@H]3CCCNC3
$\mathrm{C}(1 \mathrm{C}=\mathrm{Clc} 1 \mathrm{ccccc} 1) \mathrm{N} 2 \mathrm{CCNCC} 2$
C(c1ccccc1)n2ccnc2
C1CC(CCN1)c2c[nH]cn2
C1CC(CCN1)c2ccccc2
C1CC1Nc2ncnc3[nH]cnc23
$\mathrm{C} 1 \mathrm{CCc} 2 \mathrm{c}(\mathrm{C} 1)[\mathrm{nH}] \mathrm{c} 3 \mathrm{ccccc} 23$
C1CN(CCN1)C(c2ccccc2)c3ccccc3
C1CN(CCN1)c2ccccn2
C1CN(CCN1)c2ccncn2
C1CN(CCN1)c2nccon2
C1CN(CCN1c2ccccc2)c3ccccc3
C1CNCCC(C1) 22 ccccc 2
C1CNCCN(C1)C(c2ccccc2)c3ccccc3
C1CNc2ccccc2C1
C1COC(CN1)c2ccccc2
C1COCC(N1)c2ccccc2
C1COc2ccccc2N1
C1Cc2c(CN1)[nH]c3ccccc23
C1Cc2ccccc2CCN1
C1Cc2sccc2CN1
C1Nc2ccccc2Cc3ccccc13
C1Oc2ccccc2O1
CC(=O)C1CCNCC1
CC(=O)N(CCC(=O)O)c1ccccc1
CC($=0$) N1CCN(CC1)c2ccc(O)cc2
CC($=0$)NCCc1c[nH]c2ccccc12
CC(=O)NCc1ccenc1
CC(=O)Nc1cccon1
$\mathrm{CC}(=\mathrm{O}) \mathrm{Nc} 1 \mathrm{ncc}(\mathrm{s} 1)[\mathrm{N}+](=\mathrm{O})[\mathrm{O}-]$
CC(=O)Nc1nncs1
CC(=O)c1cc(Cl)ccc10
CC(=O)c1ccc(N2CCNCC2)c(F)c1
CC(=O) $\mathrm{c} 1 \mathrm{ccc}(\mathrm{O}) \mathrm{cc} 1 \mathrm{O}$
CC(=O)c1ccc2OCOc2c1
CC(=O)c1ccc2Sc3ccccc3Nc2c1
$\mathrm{CC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{ccccc} 10$
CC(C(=O)O)c1cccc(F)c1
CC(C(=O)O) 1 1ccccc 1
CC(C)(C)NCC(O)COc1ccccc1C2CCCC2
CC(C)(C)NCC(O) 11 ccccc 1
$\mathrm{CC}(\mathrm{C})(\mathrm{C}) \mathrm{NCCc} 1 \mathrm{ccccc} 1$
$\mathrm{CC}(\mathrm{C})(\mathrm{C}) \mathrm{OC}(=\mathrm{O}) \backslash \mathrm{C}=\mathrm{Clc} 1 \mathrm{ccccc} 1$
CC(C)(CN)c1ccccc1
$\mathrm{CC}(\mathrm{C})(\mathrm{Oc} 1 \mathrm{ccccc} 1) \mathrm{C}(=\mathrm{O}) \mathrm{O}$
CC(C)C1NCCc2c1[nH]c3ccccc23
$\mathrm{CC}(\mathrm{C}) \mathrm{CC}(\mathrm{N}) \mathrm{C} 1(\mathrm{CCC} 1) \mathrm{c} 2 \mathrm{ccc}(\mathrm{Cl}) \mathrm{cc} 2$
CC(C)NCC(O)c1ccccc1
CC(CCCN(C)C)Nc1ccncc1
CC(CO)Nc1ccccc1
CC(N)C(=O)Nc1ccocc1C
CC(N)C(=O) $11 \operatorname{ccccc} 1$
CC(N)COc1ccccc1
$\mathrm{CC}(\mathrm{O})(\mathrm{C}(=\mathrm{O}) \mathrm{O}) \mathrm{c} 1 \mathrm{ccccc} 1$
$\mathrm{CC}(\mathrm{O})(\mathrm{c} 1 \mathrm{ccccc} 1) \mathrm{c} 2 \mathrm{ccccc} 2$
CC(O)(c1ccccc1)c2ccccn2
$\mathrm{CC}(\mathrm{Oc} 1 \mathrm{ccccc} 1) \mathrm{C}(=\mathrm{O}) \mathrm{N}$
CC1 (NC(=O)NC1=O)c2ccccc2
CC1=C(O)c2ccccc2OC1=O
$\mathrm{CC} 1=\mathrm{CC}(=\mathrm{O}) \mathrm{N}(\mathrm{N} 1) \mathrm{c} 2 \mathrm{ccc}(\mathrm{C}) \mathrm{c}(\mathrm{C}) \mathrm{c} 2$
$\mathrm{CC} 1=\mathrm{CC}(=\mathrm{O}) \mathrm{N}(\mathrm{N} 1) \mathrm{c} 2 \mathrm{ccccc} 2$
$\mathrm{CC} 1=\mathrm{CC}(=\mathrm{O}) \mathrm{N}(\mathrm{N} 1) \mathrm{c} 2 \mathrm{ccccc} 2$
CC1=CC(=O)N(O)C(=C1)C2CCCCC2
CC1=CC(=O)NC(=S)N1
$\mathrm{CC} 1=\mathrm{CC}=\mathrm{C}(\mathrm{C} \# \mathrm{~N}) \mathrm{C}(=\mathrm{O}) \mathrm{N} 1$
CC1 $=C N C(=0) N C 1=O$
CC1CCC(=0)O1
CCC(=O)Nc1ccc(CC(=O)O)cc1
CCC(=O)Nc1ncnc2[nH]cnc12
CCC(C(=O)OCCN(CC)CC)c1ccccc1
CCC $1=\mathrm{C}(\mathrm{C}) \mathrm{CN}(\mathrm{C}(=\mathrm{O}) \mathrm{NCCc} 2 \operatorname{ccccc} 2) \mathrm{C} 1=\mathrm{O}$
$\operatorname{CCCC}(=0) \mathrm{Nc} 1 \operatorname{ccc}(\mathrm{O}) \mathrm{c}(\mathrm{c} 1) \mathrm{C}(=\mathrm{O}) \mathrm{C}$
$\operatorname{CCCC}(=0) \mathrm{Nc} 1 \operatorname{cccc}(\mathrm{c} 1) \mathrm{C}(=\mathrm{O}) \mathrm{C}$
$\operatorname{CCCC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{ccc}(\mathrm{F}) \mathrm{cc} 1$
CCCCOc1cc(C(=O)NC)c2ccccc2n1
CCCCOc1cc(ccc1N)C(=O)OC
CCCCc1nc(Cl)c(CO)[nH]1
CCCOc1ccc(cc1N)C(=O)OCC
CCCOc1ccccc1C(=N)N
CCN(CC)C(=O)CC\#N
CCN(CC)C(=O) $\backslash \mathrm{C}=\mathrm{C} \backslash c 1 \operatorname{ccccc} 1$
CCN(CC)CCNC(=O)c1ccc(N)c(Cl)c1
CCN(CC)CCNC(=O) $11 \operatorname{ccccc} 10$
CCN(CC)CCNc1ccccc1
CCN(CC)CCOC(=O)C1(CCCC1)c2ccccc2

```
NC(=O)COc1ccccc1
NC(=O)Cc1ccccc1
NC(=O)Cc1ccccn1
NC(=O)Cc1cccs1
NC(=O)N1CCNCC1
NC(=O)NS(=O)(=O)c1ccccc1
NC(=O)c1ccc2[nH]ccc2c1
NC(=O)c10cccc1O
NC(=O)c1cccen1
NC(=O)c1cencc1
NC(=O)c1nc[nH]c1N
NC1=CC=CNC1=O
NC1=Cc2ccccc2OC1=O
NC1=NC(=O)N(C=C1)[C@H]2C[C@H](O)[C@@H](CO)O2
NC1=NC(=O)N(C=N1)[C@@H]2O[C@H](CO)[C@@H](O)[C@H]2O
NC1=NCCN1
NC1CCC(=O)NC1=O
NC1CCN(Cc2ccccc2)CC1
NC1CCc2[nH]c3ccccc3c2C1
NC1CCc2ccccc12
NCC(CC(=O)O)c1ccccc1
NCC(O)COc1cccc2ccccc12
NCC1(CC1)c2ccccc2
NCCCCN1CCN(CC1)c2nccen2
NCCCCc1cccoc1
NCCCOc10ccc(CN2CCCCC2)c1
NCCOC(c1ccc(F)cc1)c2ccc(F)cc2
NCCOCc10cccc1
NCCc1c[nH]c2ccc(O)cc12
NCCc1c[nH]cn1
NCCc1ccc(F)cc1F
NCCc1ccc(O)cc1
NCCc1ccc(cc1)S(=O)(=O)N
NCc1c(N)ccc(Cl)c1Cl
NCc1cscn1
NCc1ncc[nH]1
NNC(=O)c1cccoc1
NNC(=O)c1ccncc1
NNCCc1ccccc1
NS(=O)(=O)c1cc(ccc1Cl)C(=O)O
NS(=O)(=O)c1 ccc(Cl)cc1
NS(=O)(=O)c1 ccc(cc1)C(=O)O
NS(=O)(=O)c1ccccc1
NS(=O)(=O)c1cccoc1C(F)(F)F
N[C@@H](C(=O)N)c1ccccc1
Nc1c(Cl)ccc2nsnc12
Nc1ccc(CS(=O)(=O)N2CCCC2)cc1
Nc1ccc(Cl)nn1
Nc1ccc(N)c(N)n1
```

$\operatorname{CCN}(\mathrm{CC}) \mathrm{CCOC}(=\mathrm{O}) \mathrm{c} 1 \operatorname{ccccc} 1$
CCN(CC)CCOc1ccc(cc1)C(=O)C
CCN(CC)CCOc1ccccc1O
CCN(CC)Cc1cc(N)ccc1O
$\operatorname{CCN}(\mathrm{CC}) \mathrm{S}(=\mathrm{O})(=\mathrm{O}) \mathrm{c} 1 \operatorname{ccccc} 1$ CCN(CCCCO)C(C)Cc1ccc(OC)cc1
CCN(Cc1ccccc1)c2ccccc2 CCN1CCCC1CN CCN1CCCC1CNC(=O)c2ccc(N)cc2
CCNC(=O)c1ccc(Cl)cc1
CCNC(=O)c1ccenc1
$\operatorname{CCOC}(=\mathrm{O}) \mathrm{C} 1 \mathrm{c} 2 \operatorname{ccccc} 2 \mathrm{Oc} 3 \operatorname{ccccc} 13$
$\operatorname{CCOC}(=0) \mathrm{c} 1$ ccenc1
CCOc1ccc(N)cc1
CCOc1ccccc1C(=N)N
CCOc1ccccc1O
CCOc1ccccc1OCC2CNCCO2
CCOc1cccen1
CCc1ccc(CCO)nc1
CCc1cccc2c(CCO)c[nH]c12
$\mathrm{CN}(\mathrm{C}) \mathrm{C}(=\mathrm{O}) \mathrm{C}(\mathrm{c} 1 \operatorname{ccccc} 1) \mathrm{c} 2 \operatorname{ccccc} 2$
$\mathrm{CN}(\mathrm{C}) \mathrm{C}(=\mathrm{O}) \mathrm{Oc} 1 \operatorname{ccccc} 1$
CN(C)C(c1ccccc1)c2ccccc2
CN(C)CCCC(=O)c1ccc(F)cc1
CN(C)CCNC(=O)c1ccc(N)cc1
CN(C)CCNCc1ccccc1
CN(C)Cc1oc(CSCCN)cc1
CN1C(=O)CCC1=O
CN1C(=O)Nc2nc[nH]c2C1=O
CN1C2CCC1CC(O)C2
$\mathrm{CN} 1 \mathrm{C}=\mathrm{CC}=\mathrm{CC} 1=\mathrm{O}$
CN1CC(c2ccccc2)c3cccc(N)c3C1
CN1CCC[C@@H]1c2cccnc2
CN1CCN(CC1)C(c2ccccc2)c3ccccc3
CN1CCN(CC1)S(=O)(=O)c2ccccc2
CN1CCN(CC1)c2cc(N)ncn2
CN1CCN(CC1)c2ccc(N)cc2
CN1CCN(CC1)c2ccccc2
CN1CCN(CC1)c2nccc(N)n2
CN1CCN(CCCC(=O)c2ccc(F)cc2)CC1
CN1CCNCC1=O
CN1CCc2cccc(N)c2C1
CN1N(C(=O)C(=C1C)N)c2ccccc2
CN1NC(=O)C=C1
CNC(=O)c1c(C)onc1c2ccccc2
$\mathrm{CNC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{c}(\mathrm{OC}) \operatorname{ccc}(\mathrm{Br}) \mathrm{c} 1 \mathrm{OC}$
CNC(=O)c1cc(CI)c(N)cc1OC
CNC(=O)c1ccc(CI)cc1
CNC(=O)c1cnc(C)cn1
$\mathrm{Nc} 1 \mathrm{ccc}(\operatorname{cc} 1 \mathrm{Cl})[\mathrm{N}+](=\mathrm{O})[\mathrm{O}-]$
Nc1ccc2CCCCc2c1
Nc1cccc(Nc2nccen2)c1
$\mathrm{Nc} 1 \operatorname{cccc}(\mathrm{O}) \mathrm{c} 1$
Nc1cccc(c1)C\#C
Nc1cccc(c1)C(F)(F)F
Nc1ccccc1S(=O)(=O)N
Nc1cccen1
Nc1ccenn1
Nc1ccnc2ccccc12
Nc1ccnn1c2ccccc2
Nc1cnc2ccccc2n1
Nc1nc(N)nc(n1)c2ccccc2
Nc1nc2CCCCc2s1
Nc1nc2cc(ccc2[nH]1)C(=O)c3ccccc3
Nc1nc2ccccc2n1Cc3ccc(F)cc3
Nc1ncc(s1)[N+](=O)[O-]
Nc1ncnc2c1nen2CCO
Nc1ncns1
Nc1nncs1
Nc1oc2ccccc2n1
$\mathrm{O}=\mathrm{C}(\mathrm{C} 1 \mathrm{COc} 2 \mathrm{ccccc} 2 \mathrm{O} 1) \mathrm{N} 3 \mathrm{CCNCC} 3$
$\mathrm{O}=\mathrm{C}(\mathrm{CC} \# \mathrm{~N}) \mathrm{N} 1 \mathrm{CCCCC} 1$
$\mathrm{O}=\mathrm{C}(\mathrm{CCN} 1 \mathrm{CCCCC} 1) \mathrm{c} 2 \mathrm{cccc} 2$
$\mathrm{O}=\mathrm{C}(\mathrm{Cc} 1 \mathrm{ccccc} 1) \mathrm{c} 2 \operatorname{ccccc} 2$
$\mathrm{O}=\mathrm{C}(\mathrm{N} 1 \mathrm{CCNCC} 1) \mathrm{c} 2 \mathrm{ccccc} 2$
$\mathrm{O}=\mathrm{C}(\mathrm{c} 1 \operatorname{ccccc} 1) \mathrm{c} 2 \operatorname{ccccc} 2$
$\mathrm{O}=\mathrm{C} 1 \mathrm{CC} 2$ (CCCC2) $\mathrm{CC}(=\mathrm{O}) \mathrm{N} 1$
$\mathrm{O}=\mathrm{C} 1 \mathrm{CCCc} 2[\mathrm{nH}] \operatorname{ccc} 12$
$\mathrm{O}=\mathrm{C} 1 \mathrm{CCN}(\mathrm{CCc} 2 \operatorname{cccc} 2) \mathrm{CC} 1$
$\mathrm{O}=\mathrm{C} 1 \mathrm{CCNc} 2 \operatorname{ccccc} 2 \mathrm{~N} 1$
$\mathrm{O}=\mathrm{C} 1 \mathrm{CCOc} 2 \mathrm{ccccc} 12$
$\mathrm{O}=\mathrm{C} 1 \mathrm{CC} 2 \operatorname{ccccc} 2 \mathrm{~N} 1$
$\mathrm{O}=\mathrm{C} 1 \mathrm{CN}(\mathrm{Cc} 2 \mathrm{ccccc} 2) \mathrm{CCN} 1$
$\mathrm{O}=\mathrm{C} 1 \mathrm{CNCCN} 1$
$\mathrm{O}=\mathrm{C} 1 \mathrm{CNCN} 1$
$\mathrm{O}=\mathrm{C} 1 \mathrm{COCCN} 1$
$\mathrm{O}=\mathrm{C} 1 \mathrm{COc} 2 \mathrm{ccccc} 12$
$\mathrm{O}=\mathrm{C} 1 \mathrm{~N}(\mathrm{Cc} 2 \mathrm{ccccc} 12) \mathrm{c} 3 \mathrm{ccccc} 3$
$\mathrm{O}=\mathrm{C} 1 \mathrm{NC}=\mathrm{CC}=\mathrm{C} 1 \mathrm{C} \# \mathrm{~N}$
$\mathrm{O}=\mathrm{C} 1 \mathrm{NC}=\mathrm{NC}=\mathrm{C} 1 \mathrm{c} 2 \mathrm{ccccc} 2$
$\mathrm{O}=\mathrm{C} 1 \mathrm{NCCc} 2 \operatorname{ccccc} 12$
$\mathrm{O}=\mathrm{C} 1 \mathrm{NCN}(\mathrm{c} 2 \operatorname{ccccc} 2) \mathrm{C} 13 \mathrm{CCNCC} 3$
$\mathrm{O}=\mathrm{C} 1 \mathrm{NN}=\mathrm{C}(\mathrm{Cc} 2 \mathrm{ccccc} 2) \mathrm{c} 3 \mathrm{ccccc} 13$
$\mathrm{O}=\mathrm{C} 1 \mathrm{NN}=\mathrm{C} 2 \mathrm{C}=\mathrm{CC}=\mathrm{CN} 12$
$\mathrm{O}=\mathrm{C} 1 \mathrm{NN}=\mathrm{Cc} 2 \mathrm{ccccc} 12$
$\mathrm{O}=\mathrm{C} 1 \mathrm{Nc} 2 \mathrm{ccccc} 2 \mathrm{~N} 1 \mathrm{C} 3 \mathrm{CCNCC3}$
$\mathrm{O}=\mathrm{C} 1 \mathrm{Nc} 2 \mathrm{cccc} 2 \mathrm{Nc} 3 \operatorname{ccccc} 13$
$\mathrm{O}=\mathrm{C} 1 \mathrm{Nc} 2 \mathrm{ccccc} 2 \mathrm{O} 1$

CNC(C)(C)Cc1ccccc1
CNCC(c1ccc(OC)cc1)C2(O)CCCCC2
CNCCC(c1ccccc1)c2ccccc2
CNCCN(C)C(c1ccccc1)c2ccccc2
CNCCc1c[nH]c2ccccc12
CNCCc1ccc(OC)c(OC)c1
CNS(=O)(=O)CCc1ccccc1
CNS $(=\mathrm{O})(=\mathrm{O}) \mathrm{Cc} 1 \mathrm{ccc} 2[\mathrm{nH}] \mathrm{cc}(\mathrm{CCN}) \mathrm{c} 2 \mathrm{c} 1$
CNS(=O)(=O)c1ccccc1
$\operatorname{COC}(=O) \mathrm{C}(\mathrm{CO}) \mathrm{c} 1 \mathrm{ccccc} 1$
COC(=O)C(O)(C1CCCC1)c2ccccc2
$\operatorname{COC}(=0) \mathrm{C}(\mathrm{O})(\mathrm{C} 1 \mathrm{CCCCC} 1) \mathrm{c} 2 \mathrm{ccccc} 2$
$\operatorname{COC}(=0) \mathrm{C}(0) \mathrm{c} 1 \mathrm{ccccc} 1$
$\operatorname{COC}(=0) \mathrm{C}(\mathrm{c} 1 \mathrm{ccccc} 1) \mathrm{c} 2 \operatorname{ccccc} 2$
$\mathrm{COC}(=\mathrm{O}) \mathrm{C} 1=\mathrm{C}(\mathrm{C}) \mathrm{NC}(=\mathrm{C}(\mathrm{C} 1) \mathrm{C}(=\mathrm{O}) \mathrm{OC}) \mathrm{C}$
COC(=O)CN1CCc2sccc2C1
$\operatorname{COC}(=\mathrm{O}) \mathrm{Nc} 1 \mathrm{ccccc} 1$
$\operatorname{COC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{c}[\mathrm{nH}] \mathrm{c} 2 \mathrm{ccccc} 12$
$\operatorname{COC}(=\mathrm{O}) \operatorname{c} 1 \mathrm{ccc}(\mathrm{N}) \mathrm{cc} 1$
$\operatorname{COC}(=\mathrm{O}) \mathrm{c} 1 \operatorname{scc}(\mathrm{C}) \mathrm{c} 1 \mathrm{~N}$
$\operatorname{COCCOC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{ccc}(\mathrm{N}) \mathrm{cc} 1$
COc1cc(C)cc(C)c1C
COc1cc(N)c(Cl)cc1C(=O)NC2CCNCC2
$\operatorname{COc} 1 \mathrm{cc}(\mathrm{N}) \mathrm{ncn} 1$
$\operatorname{COc} 1 c c(\mathrm{NS}(=\mathrm{O})(=\mathrm{O}) \operatorname{c2ccc}(\mathrm{N}) \operatorname{cc} 2) \mathrm{ncn} 1$
$\mathrm{COc} 1 \mathrm{cc}(\mathrm{cc}(\mathrm{OC}) \mathrm{c} 1 \mathrm{OC}) \mathrm{C}(=\mathrm{O}) \mathrm{N}$
COc1cc2CCN(C)C(C)c2cc1OC
COc1cc2CCN(C)Cc2cc1OC
COc1cc2CCNC(=O)Cc2cc1OC
COc1cc2CCNC(C)c2cc1OC
COc1cc2CCNCc2cc1OC
COc1cc2[C@H](C)NCCc2cc1O
COc1cc2ccncc2cc1OC
COc1ccc(C(=O)C)c(O)c1
$\operatorname{COc} 1 \operatorname{ccc}(\mathrm{CC}(=0) \mathrm{O}) \mathrm{cc} 1$
COc1ccc(CC(C)N)cc1
COc1ccc(CCN(C)C)cc1OC
COc1ccc(CCN)cc1O
COc1ccc(CCN)cc1OC
COc1ccc(CCN2CCC(N)CC2)cc1
COc1ccc(CN2CCNCC2)cc1
COc1ccc(CNCCN(C)C)cc1
COc1ccc(CNc2nccen2)cc1
$\operatorname{COc} 1 \mathrm{ccc}(\mathrm{Cc} 2 \operatorname{ccc}(\mathrm{OC}) \mathrm{cc} 2) \mathrm{cc} 1$
$\operatorname{COc} 1 \operatorname{ccc}(\mathrm{Cl}) \operatorname{cc1C}(=\mathrm{O}) \mathrm{N}$
COc1ccc(N)nn1
COc1ccc(O) $\operatorname{cc} 10$
COc1ccc(OC)c(c1)C(C)O
$\operatorname{COc} 1 \operatorname{ccc}(\mathrm{OCC}(=\mathrm{O}) \mathrm{N}) \mathrm{cc} 1$
$\mathrm{O}=\mathrm{C} 10 \mathrm{Cc} 2 \mathrm{ccccc} 12$
$\mathrm{O}=\mathrm{C} 1 \mathrm{Oc} 2 \mathrm{ccccc} 2 \mathrm{C}=\mathrm{C} 1$
OC(=O)C(c1ccccc1)c2ccccc2
OC(=O)C1 (CCCC1) $22 c c c c c 2$
$\mathrm{OC}(=\mathrm{O}) \mathrm{C} 1=\mathrm{CC}(=\mathrm{O}) \mathrm{c} 2 \mathrm{ccccc} 2 \mathrm{O} 1$
OC(=O)CC(c1ccccc1)c2ccccc2
OC(=O)CC1Ccccc1
OC(=O)CCC(=O)Nc1ccccc1
OC(=O)CCC(=O) 1 1ccccc1
OC(=O)CCCc1ccc(cc1)c2ccccc2
$\mathrm{OC}(=\mathrm{O}) \mathrm{CC}[\mathrm{C} @ \mathrm{H}](\mathrm{NC}(=\mathrm{O}) \mathrm{c} 1 \operatorname{ccccc} 1) \mathrm{C}(=\mathrm{O}) \mathrm{O}$
OC(=O)CCc1ccc(Cl)cc1
OC(=O)CCc1oc(cn1)c2ccccc2
OC(=O)CNC(=O)c1ccccc1
OC(=O)COc 1 ccccc 1
OC(=O)Cc1 $1 \mathbf{c c c c} 1$
OC(=O)Cc1cccs1
$\mathrm{OC}(=\mathrm{O}) \backslash \mathrm{C}=\mathrm{Clc} 1 \mathrm{cnc}[\mathrm{nH}] 1$
$\mathrm{OC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{cc}(\mathrm{ccc} 1 \mathrm{O}) \mathrm{c} 2 \mathrm{ccc}(\mathrm{F}) \mathrm{cc} 2$
OC(=O) $11 \mathrm{cc}(\mathrm{ccc} 10) \mathrm{c} 2 \operatorname{ccccc} 2$
OC(=O) c1ccc(Oc2ccccc2)cc1
$\mathrm{OC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{ccc}(\mathrm{cc} 1) \mathrm{C}(\mathrm{F})(\mathrm{F}) \mathrm{F}$
OC(=O)c1cccc(c1)c2ccc(F)cc2F
$\mathrm{OC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{ccccc} 1 \mathrm{NCc} 20 \mathrm{ccc} 2$
$\mathrm{OC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{ccccc} 1 \mathrm{Nc} 2 \operatorname{cccc}(\mathrm{Cl}) \mathrm{c} 2$
$\mathrm{OC}(=\mathrm{O}) \mathrm{c} 1 \operatorname{coccc} 10$
OC(=O)c1cccen1
$\mathrm{OC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{cccnc} 1 \mathrm{Nc} 2 \operatorname{cccc}(\mathrm{Cl}) \mathrm{c} 2$
$\mathrm{OC}(=\mathrm{O}) \mathrm{c} 1 \mathrm{cccnc} 1 \mathrm{Nc} 2 \mathrm{cccc} 2$
OC(=O) c1encen1
OC(C1CCNCC1)(c2ccccc2)c3ccccc3
OC(Cn1ccnc1)c2ccc(Cl)cc2Cl
OC(c1ccc(Cl)cc1)c2ccccn2
OC(c1ccc(F)cc1)c2ccc(F)cc2
OC($11 \operatorname{ccccc} 1$) $\operatorname{c} 2 c c c(C I) c c 2$
OC(11 ccccc 1) c 2 ccccc 2
OC(11 ccccc 1) c 2 ccccn 2
OC1 (CCNCC1)c2ccc(Cl)cc2
OC1=CC(=O)Oc2ccccc12
OC1=CNS(=O)(=O)c2ccsc12
OC1CCN(CC1)c2ccccc2F
OC1N(C(=O)c2ncenc12)c3ccc(Cl)cn3
OC1c2ccccc2CCc3ccccc13
OCC(C(=O)O) $11 \operatorname{coccc} 1$
OCC(O)COc1ccc(Cl)cc1
OCC(O)COc1ccccc1
OCC1CCCNC1
OCC1CCNCC1
OCCCN1CCN(CC1)c2ccccc2

$\mathrm{COc} 1 \mathrm{ccc}(\mathrm{cc} 1) \mathrm{C}(\mathrm{F})(\mathrm{F}) \mathrm{F}$	OCCN1CCN(CC1)c2ccccc2
COc1ccc(cc1)N2CCN(CC2)c3ccc(N)cc3	OCCOc1cccc2[nH]ccc12
COc1ccc(cc1)S(=O)(=O)N2CCNCC2	OCCc1ccc(Cl)cc1
COc1ccc(cc1N2CCCC2)C(=O)O	OCCn1cenc1
COc1ccc2C(=O)COc2c1	OCCn1encn1
COc1ccc2CC(CCc2c1)C(=O)O	OC[C@H]1O[C@@H](C%5BC@@H%5D1O)N2C=CC(=O)NC2=O
COc1ccc2CCCCc2c1	OCc1cc(O)cc(0)c1
COc1ccc2[nH]c(SC)nc2c1	OCc1cc2ccccc2[nH]1
COc1ccc2[nH]cc(CCN)c2c1	OCc1ccc(F) Cc 1 F
COc1ccc2[nH]cnc2c 1	OCc1ccc(0)cc1
COc1ccc2cc[nH]c2c1	OCc1ccc(cc1)[](=O)[0-]
COc1ccc2ccncc2c1	OCc1ccc2OCOc2c1
COc1ccc2nc(N)sc2c1	OCc1ccenc1
COc1cccc2C(=O)CCCc12	OCc1ccncc1
COc1 $6 c c c c 1$ N2CCN(CCCN)CC2	ONC(=O)Cc1 $\operatorname{ccccc} 1$
COc1 1 cccc 10 CCCO	Oc1cc(Cl)c(Cl)cc1Cl
COc1cccce10CCO	Oc1ccc(cc1)C(=O)NCc2ccenc2
CS(=O)(=O)NC(Cc1ccccc1)C(=0)O	Oc1ccc(cc1)c2ccc(F)cc2F
CS(=O)(=O)Nc1ccccc1	Oc1ccc2C(=O)CC(Oc2c1) $\mathrm{C3} \operatorname{ccccc} 3$
$\mathrm{CS}(=\mathrm{O})(=\mathrm{O}) \mathrm{Nc} 1 \mathrm{ccccc} 1 \mathrm{Oc} 2 \operatorname{cccc} 2$	Oc1ccc2C(=O)COc2c1
$\mathrm{CS}(=\mathrm{O})(=\mathrm{O}) \mathrm{c} 1 \mathrm{ccc}(\mathrm{CO}) \mathrm{cc} 1$	Oc1ccc2CCC($=0$) Nc2c1
CS(=O)(=O) $11 \operatorname{ccc}(\mathrm{~N}) \mathrm{cc} 1$	Oc1ccc2CCCc2c1
$\mathrm{C}[\mathrm{C} @ @ \mathrm{H}](\mathrm{O}) \mathrm{c} 1 \mathrm{cc}(\mathrm{cc}(\mathrm{c} 1) \mathrm{C}(\mathrm{F})(\mathrm{F}) \mathrm{F}) \mathrm{C}(\mathrm{F})(\mathrm{F}) \mathrm{F}$	Oc1ccc2[nH]ccc2c1
C[C@H]1NC(=O)NC1=O	Oc1ccc2cc[nH$] \mathrm{c} 2 \mathrm{c} 1$
$\mathrm{C}[\mathrm{N}+\mathrm{]}(\mathrm{C})(\mathrm{CCO}) \mathrm{Cc} 1 \mathrm{ccccc} 1$	Oc1cccc(CN2CCCCC2)c1
$\mathrm{Cc} 1[\mathrm{nH}] \mathrm{c} 2 \mathrm{ccccc} 2 \mathrm{c} 1 \mathrm{CC}(=\mathrm{O}) \mathrm{O}$	Oc1cccc2CCCCc12
Cc1[nH$] \mathrm{cnc} 1 \mathrm{CO}$	Oc1cccc2[nH]ccc12
Cc1c(C)c2OC(C)(C)CCc2c(C)c10	Oc1 1 ccc2ccenc12
$\mathrm{Cc1c}(\mathrm{~N}) \operatorname{cccc} 1 \mathrm{C}(\mathrm{F})(\mathrm{F}) \mathrm{F}$	Oc1 1 cccc 1C(=O)CCc2ccccc2
Cc1c[nH]nc1C	Oc1 $10 c c c 1 \mathrm{C}(=\mathrm{O}) \mathrm{Nc} 2 \mathrm{ccccc} 2 \mathrm{Cl}$
$\mathrm{Cc} 1 \mathrm{cc}(\mathrm{C}) \mathrm{nc}(\mathrm{O}) \mathrm{n} 1$	Oc1 $1 \operatorname{ccccc} 1 \mathrm{C}(=0) \mathrm{OC2CCCCC} 2$
$\mathrm{Cc} 1 \mathrm{cc}(\mathrm{cc}(\mathrm{C}) \mathrm{c} 1 \mathrm{CC} 2=\mathrm{NCCN} 2) \mathrm{C}(\mathrm{C})(\mathrm{C}) \mathrm{C}$	Oc1ccccc1C2CCCC2
Cc1cc(ccc1O)C(C)(C)CC(C)(C)C	Oc1ccccc1N2CCNCC2
Cc1cc(nnc1N)c2ccccc2	Oc1ccccc1OCC(F)(F)F
Cc1ccc(N) c (c1) $\mathrm{C} \# \mathrm{~N}$	Oc1nsnc1N2CCOCC2
$\mathrm{Cc} 1 \mathrm{ccc}(\mathrm{cc} 1) \mathrm{S}(=\mathrm{O})(=\mathrm{O}) \mathrm{N}$	Sc1nc2ccccc2[nH]1
$\mathrm{Cc} 1 \mathrm{ccc}(\mathrm{cc} 1) \mathrm{S}(=\mathrm{O})(=\mathrm{O}) \mathrm{NC}(=\mathrm{O}) \mathrm{N}$	Sc1ncc[nH]1
$\mathrm{Cc} 1 \mathrm{cccc}(\mathrm{C}) \mathrm{c} 1 \mathrm{~N}$	c1ccc(cc1) $\mathrm{C}(\mathrm{c} 2 \mathrm{ccccc} 2) \mathrm{n} 3 \mathrm{ccnc} 3$
Cc1cccc(C)c1NC(=O)CN2CCNCC2	c1ccc(cc1)C(c2ccccc2)n3cncn3
Cc1cccc(Nc2ccccc2C(=O)O)c1	$\mathrm{c} 1 \mathrm{ccc}(\mathrm{cc} 1) \mathrm{c} 2 \mathrm{c}[\mathrm{nH}] \mathrm{cn} 2$
Cc1cccc(0)c1	c1 ccc(cc1)c2ccccc2c3nnn[nH]3
Cc1ccccc1C($=0$) Nc2ccccc2	c1ccc(cc1)c2nnn[nH]2
Cc1ccccc1C(O)c2ccccc2	c1ccc(cc1)n2ccc3ccccc23
Cc1ccccc1Nc2ncccc2C(=O)O	c1ccc(cc1)n2ccnc2
Cc1cn(cn1)c2cc(N)cc(c2)C(F)(F)F	c1ccc2cnccc2c1
	c1ccc2ncenc2c1
	c1cnc2[nH]ncc2c1
	c1ancen 1

References

(1) Baell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of medicinal chemistry 2010, 53, 2719-2740.
(2) Pollinger, J.; Schierle, S.; Gellrich, L.; Ohrndorf, J.; Kaiser, A.; Heitel, P.; Chaikuad, A.; Knapp, S.; Merk, D. A Novel Biphenyl-based Chemotype of Retinoid X Receptor Ligands Enables Subtype and Heterodimer Preferences. ACS medicinal chemistry letters 2019, 10, 1346-1352.
(3) Hiesinger, K.; Schott, A.; Kramer, J. S.; Blöcher, R.; Witt, F.; Wittmann, S. K.; Steinhilber, D.; Pogoryelov, D.; Gerstmeier, J.; Werz, O.; et al. Design of Dual Inhibitors of Soluble Epoxide Hydrolase and LTA4 Hydrolase. ACS medicinal chemistry letters 2020, 11, 298-302.
(4) Merk, D.; Sreeramulu, S.; Kudlinzki, D.; Saxena, K.; Linhard, V.; Gande, S. L.; Hiller, F.; Lamers, C.; Nilsson, E.; Aagaard, A.; et al. Molecular tuning of farnesoid X receptor partial agonism. Nature communications 2019, 10, 2915.
(5) Hahn, S.; Achenbach, J.; Buscató, E.; Klingler, F.-M.; Schroeder, M.; Meirer, K.; Hieke, M.; Heering, J.; Barbosa-Sicard, E.; Loehr, F.; et al. Complementary screening techniques yielded fragments that inhibit the phosphatase activity of soluble epoxide hydrolase. ChemMedChem 2011, 6, 2146-2149.
(6) Lukin, A.; Kramer, J.; Hartmann, M.; Weizel, L.; Hernandez-Olmos, V.; Falahati, K.; Burghardt, I.; Kalinchenkova, N.; Bagnyukova, D.; Zhurilo, N.; et al. Discovery of polar spirocyclic orally bioavailable urea inhibitors of soluble epoxide hydrolase. Bioorganic chemistry 2018, 80, 655-667.
(7) M Kretschmer, S. B.; Woltersdorf, S.; Rödl, C. B.; Vogt, D.; Häfner, A.-K.; Steinhilber, D.; Stark, H.; Hofmann, B. Development of novel aminothiazole-comprising 5-LO inhibitors. Future medicinal chemistry 2016, 8, 149-164.
(8) Schröder, M.; Häfner, A.-K.; Hofmann, B.; Rådmark, O.; Tumulka, F.; Abele, R.; Dötsch, V.; Steinhilber, D. Stabilisation and characterisation of the isolated regulatory domain of human 5-lipoxygenase. Biochimica et biophysica acta 2014, 1842, 15381547.
(9) Werz, O.; Szellas, D.; Henseler, M.; Steinhilber, D. Nonredox 5-lipoxygenase inhibitors require glutathione peroxidase for efficient inhibition of 5-lipoxygenase activity. Molecular pharmacology 1998, 54, 445-451.
(10) Steinhilber, D.; Herrmann, T.; Roth, H. J. Seperation of lipoxines and leukotrienes from granuocytes. Journal of Chromattography 1989, 493, 361-366.

