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The cosmological implications of the Covariant Canonical Gauge Theory of
Gravity (CCGG) are investigated. CCGG is a Palatini theory derived from
first principles using the canonical transformation formalism in the covariant
Hamiltonian formulation. The Einstein-Hilbert theory is thereby extended by
a quadratic Riemann-Cartan term in the Lagrangian. Moreover, the require-
ment of covariant conservation of the stress-energy tensor leads to necessary
presence of torsion. In the Friedman universe that promotes the cosmological
constant to a time-dependent function, and gives rise to a geometrical correc-
tion with the EOS of dark radiation. The resulting cosmology, compatible with
the ΛCDM parameter set, encompasses bounce and bang scenarios with grace-
ful exits into the late dark energy era. Testing those scenarios against low-z
observations shows that CCGG is a viable theory.
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1 INTRODUCTION

The motivation for this work is to explore the potential
of the novel Covariant Canonical Gauge Gravity (CCGG)
and the hope to shed new light on some of the mysteries
of standard cosmology. That cosmology is based on Ein-
stein’s General Relativity, a phenomenology-driven theory
created by Einstein. Later, concepts like dark matter, dark
energy, or inflation, have been added too close substantial
gaps to observations, which are yet lacking agreed physical
understanding. CCGG is, in contrast, based on a rigorous
mathematical framework that is rooted in just a few fun-
damental assumptions (Struckmeier 2013; Struckmeier

et al. 2015; Struckmeier et al. 2019, 2017; Struckmeier
et al. 2020; Struckmeier & Redelbach 2008).

In this paper, we present the results of a first, prelim-
inary analysis of the CCGG-Friedmann universe focusing
on selected low-z observations. It is organized as follows.
We start by briefly sketching the philosophy and relevant
features of CCGG. Considering gravity as a gauge field is
not new (Hayashi & Shirafuji 1980; Hehl et al. 1976; Kib-
ble 1967; Sciama 1962; Utiyama 1956) but here we rely on
the mathematical rigorousness of the canonical transfor-
mation theory in the de Donder-Hamiltonian formulation
(De Donder 1930). This framework naturally yields a Pala-
tini (first-order) theory in the Riemann-Cartan geometry.
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Torsion and a quadratic Riemann-Cartan term are new
ingredients modifying the Einstein-Hilbert ansatz for vac-
uum gravity. As discussed in Refs. (Vasak et al. 2019; Vasak
et al. 2020) CCGG does not need to invoke any ad hoc
higher-order curvature terms and/or auxiliary scalar fields
(Starobinsky 1980, 1982; Wetterich 1988, 2015) to generate
interesting scenarios of cosmological evolution.

In an isotropic (Friedman) universe (Friedman 1922),
filled with homogeneous (standard) matter components
approximated by ideal fluids, the cosmological constant
is promoted to a cosmological field, and the quadratic
extension gives rise to a geometrical stress tensor with the
character of dark radiation. The dynamical cosmological
term arises due to the presence of torsion, and dark energy
appears as an energy reservoir based on a local contortion
density. For further discussions on torsion and cosmol-
ogy see also (Capozzielio et al. 2014; Capozziello 2002;
Capozziello et al. 2003; Chen et al. 2009; Hammond 2002;
Minkevich et al. 2007; Minkowski 1986; Shie et al. 2008;
Unger & Poplawski 2019). Numerical results are presented
sketching cosmological scenarios arising from the inter-
play of these “dark” components.

2 COVARIANT CANONICAL
GAUGE GRAVITY

The canonical approach to gauge gravity emanates from
several key principles:

1. Principle of Least Action: The dynamics of the classi-
cal field theory of matter and curvilinear spacetime geom-
etry derives via variation from an action integral which is
a world scalar.

2. Equivalence Principle: A local inertial (Minkowski)
frame must exist at any point of the space–time manifold
that is defined up to local Lorentz transformations.

3. Principle of General Relativity: The dynamics of the
system must be invariant with respect to arbitrary coordi-
nate transformations (diffeomorphisms).

4. Principle of Information Conservation: The inte-
grand of the action integral, the Lagrangian density, must
be reversibly (Legendre) transformable into Hamiltonian
densities,1 that is, non-degenerate or regular.

Einstein’s Principle of General Relativity and the
Equivalence Principle relevant for gravity are incor-
porated by a (“Lorentzian”) frame bundle with fibers
spanned by ortho-normal bases fixed up to arbitrary
(local orthochronous) Lorentz transformations. The
gauge group underlying the CCGG approach is thus
the SO(1,3)(+)×Diff(M) group. The covariant canonical

1This is not necessary but sufficient, see (Smetanová 2018).

transformation theory then implements form invariance
of the action integral with respect to that gauge group2

without any detour to 1+ 3 splitting or the Dirac formal-
ism. The (spin) connection coefficients emerge thereby
as the gauge fields. The gauge field is independent of the
metric tensors (or vierbein fields) which are fundamental
structural elements of the Lorentzian manifold. More-
over, the postulated regularity of the Lagrangian implies
that it must contain an at least quadratic Riemann-Cartan
tensor concomitant (Benisty et al. 2018). The quadratic
term, controlled by a new dimensionless deformation
parameter, is therefore chosen as the minimal extension of
Einstein’s linear Lagrangian. In this way, the framework
delivers a classical, linear-quadratic, first-order (Palatini)
field theory where the connection and metric mediate
gravitation. The couplings of matter fields and gravity are
unambiguously fixed, and space–time is endowed with
kinetic energy and inertia.3 The resulting space–time
geometry is not a priori constrained to zero torsion
and/or metric compatibility, may nevertheless implement
these restrictions dynamically via canonical equations
of motions.

The so called consistence equation in CCGG is a com-
bination of the Euler–Lagrange equations extending the
field equation of GR:

− Θ𝜇𝜈 ≔ g1

(
R𝛼𝛽𝛾𝜇 R𝛼𝛽𝛾

𝜈 − 1
4

g𝜇𝜈 R𝛼𝛽𝛾𝛿 R𝛼𝛽𝛾𝛿
)

− 1
8𝜋G

[
R(𝜇𝜈) − g𝜇𝜈

(1
2

R + 𝜆0

)]
= T(𝜇𝜈). (1)

Interpreting Θ𝜇𝜈 on the l.h.s. as the energy-momentum
(“strain”) tensor of space–time, this equation can be inter-
preted as a balance equation between the strain-energy
and the stress-energy tensor T(𝜇𝜈) of matter. The dimen-
sionless coupling constant g1 controls the admixture of
quadratic gravity to GR, G is Newton’s gravitational con-
stant, and we call 𝜆0 the “bare” cosmological constant. The
Riemann-Cartan tensor,

R𝛼
𝛽𝜇𝜈

= 𝛾𝛼
𝛽𝜈,𝜇

− 𝛾𝛼
𝛽𝜇,𝜈

+ 𝛾𝛼
𝜉𝜇
𝛾
𝜉

𝛽𝜈
− 𝛾𝛼

𝜉𝜈
𝛾
𝜉

𝛽𝜇

is in general built from an asymmetric connection, and
the symmetric portion of the stress-energy tensor is the
source term on the r.h.s. of the field equation. The con-
ventions (+, − , − ,−) for the metric signature and natural
units ℏ = c = 1 are applied. A comma denotes partial
derivative, and indices in (brackets) parentheses indicate
(anti-)symmetrization.

2Struckmeier (2013); Struckmeier & Redelbach (2008) have, as a proof
of concept, derived the Yang-Mills gauge theory from first principles.
3Since this is a Palatini theory, the Ostrogradsky instability theorem
does not apply. (Ostrogradsky 1850; Woodard 2020).
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3 GEOMETRICAL STRESS
ENERGY AND CARTAN
CONTORTION DENSITY

In this paper, we wish to explicitly work out the dif-
ferences invoked by the CCGG model to the standard,
GR-based so called ΛCDM cosmology, and hence assume
here both, a torsion-free geometry and the stress-energy
tensor to be covariantly conserved, 𝛻𝜈T

(𝜇𝜈)
= 0. (Here

and in the following quantities based on the torsion-free

Levi-Civita connection 𝛾
𝜆
𝜇𝜈 =

{
𝜆
𝜇𝜈

}
are marked by a bar).

This is, however, inconsistent with the behavior of the
strain-energy tensor as in general 𝛻𝜈Θ

(𝜇𝜈) ≠ 0. This can
readily be seen: Defining the (symmetric and traceless)
quadratic (Kretschmann) concomitant

Q𝜇𝜈 ≔ R𝛼𝛽𝛾𝜇 R𝜈
𝛼𝛽𝛾

− 1
4

g𝜇𝜈 R𝛼𝛽𝛾𝜉 R𝛼𝛽𝛾𝜉 (2)

and the (symmetric) Einstein tensor

G𝜇𝜈 ≔ R(𝜇𝜈) − 1
2

g𝜇𝜈 R (3)

we find
Θ

𝜇

v ;𝜇 = Q
𝜇

v ;𝜇 = R
𝜈

𝛼𝛽𝛾 𝛻𝜇R
𝛼𝛽𝛾𝜇

(4)

G
𝜇

v ;𝜇 ≡ 0. (5)

Rather than being a vanishing identity as it is for the
Einstein tensor, the expression on the r.h.s. of Equation (4)
gives a relation between metric and connection. If for a
specific ansatz for the metric the condition

R
𝜈

𝛼𝛽𝛾 𝛻𝜇R
𝛼𝛽𝛾𝜇

= 0 (6)

is violated, we obviously have to abandon the Levi-Civita
connection and accept an asymmetric connection. It is
well known that in metric compatible space–times this
means

𝛾𝜆𝜇𝜈 =

{
𝜆

𝜇𝜈

}
+ K𝜆

𝜇𝜈 (7)

where K𝜆𝜇𝜈 = S𝜆𝜇𝜈 − S𝜇𝜆𝜈 + S𝜈𝜇𝜆 = −K𝜇𝜆𝜈 is the contortion
tensor, a combination of metric and the Cartan torsion ten-
sor S𝜆

𝜇𝜈 =
1
2

(
𝛾𝜆𝜇𝜈 − 𝛾𝜆𝜈𝜇

)
. Invoking torsion is thus necessary

in this case condition (6).
The terms in Equation (1) that modify Einstein’s field

equation due to the quadratic terms and torsion can now
be explicitly worked out. The Riemann-Cartan tensor

R𝛼𝛽𝛾𝜎

(
𝛾𝜆𝜇𝜈

) ≡ R𝛼𝛽𝛾𝜎 + P𝛼𝛽𝛾𝜎, (8)

separates into the Riemann tensor commanding the
Levi-Civita connection, and the torsion-related correction,
the Cartan curvature tensor

P𝜆𝜎𝜇𝜈 ≔ 𝛻𝜇K𝜆𝜎𝜈 − 𝛻𝜈K𝜆𝜎𝜇 − K𝜆𝛽𝜈K𝛽
𝜎𝜇 + K𝜆𝛽𝜇K𝛽

𝜎𝜈. (9)

Similarly, the Einstein tensor becomes

G𝜇𝜈 = G
𝜇𝜈

+ P(𝜇𝜈) − 1
2

g𝜇𝜈 P, (10)

and Equation (1) can be brought into the “Einstein form”

− 1
8𝜋G

[
G
𝜇𝜈

− g𝜇𝜈Λ (x)
]
= T

(𝜇𝜈)
− g1 Q𝜇𝜈 + 1

8𝜋G
P′(𝜇𝜈),

(11)
which for g1 = 0 and S𝜆

𝜇𝜈 = 0 coincides with Einstein’s
field equation. Notice that for an application in cosmology
with just classical matter we will neglect the spin-torsion
interaction by assuming the stress-energy tensor of matter
to be independent of the affine connection and hence of
torsion, giving T

(𝜇𝜈) ≡ T(𝜇𝜈). Furthermore, P′(𝜇𝜈) ≔ P(𝜇𝜈) −
1
4

g𝜇𝜈P is the trace-free Cartan-Ricci tensor which as all ten-
sors in this equation is symmetric by definition, including
the quadratic Riemann concomitant Q𝜇𝜈 . The Cartan-Ricci
curvature scalar P(x) built from contortion and metric
promotes the cosmological constant to the cosmological
function

Λ (x) ≔ 𝜆0 +
1
4

P (x) . (12)

representing dark energy.4
The geometric tensor corrections, now moved to the

r.h.s. of the CCGG consistency equation, appear as a new,
trace-free geometrical stress-energy tensor representing
dark radiation in analogy to the energy-momentum ten-
sor of radiation or relativistic matter. This re-arrangement
enables now to study the newly emerging phenomena
of dark energy and dark radiation in relation to General
Relativity in a standard cosmological model.

4 CCGG COSMOLOGY

To align with the Cosmological Principle of
a homogeneous and isotropic universe, the
Friedman-Lemaître-Robertson-Walker (FLRW) metric

ds2 = dt2 + a2 (t)
[

dr2

1 − K0r2 − r2 (d𝜃2 + sin2 (𝜃) d𝜑2)] .
(13)

4As shown in (Vasak et al. 2020) the bare cosmological constant
acquires in this theory a contribution from that quadratic term to the
vacuum energy denoted g3, giving 𝜆0 = 3/16𝜋G g1 + 8𝜋G g3. This relieves
the identification of the cosmological constant with the vacuum energy
shedding on light on the cosmological constant problem.
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is assumed to describe the space–time geometry. The
dimensionless scale parameter a(t) is a function of the
cosmological time t and the only dynamical freedom of
the theory. It is normalized such that a(t0) = 1 applies to
today, that is, to time t0. The parameter K0 distinguishes
between three fundamental geometry types: K0 = 0 flat,
K0 > 0 spherical, K0 < 0 hyperbolic.

Calculating now the Christoffel symbols and the cur-
vature tensors, we find Equation (6) violated. Hence,
Equation (11) must be considered with the tensor cor-
rections as outlined above. The torsion tensor must be
selected such that it ensures the covariant conservation
of the strain-energy tensor. This will be left to a future
investigation and we perform a first analysis by neglecting
the torsion-dependent stress tensors. We thus substitute
Q𝜇𝜈 = Q

𝜇𝜈
and retain torsion only in the cosmological field

as a novel dynamical quantity Λ(x). In this geometry that
dark energy term can only depend on the universal time t.
The analysis is further simplified by adopting the scaling
ansatz

Λ (t) = Λ (t (a)) ≕ Λ0 f (a) (14)

with the dimensionless function f (a) and a constant
Λ0 which is a parameter equivalent to the Λ of the
ΛCDM ansatz. Plugging this into the CCGG consistency,
Equation (11) gives the Friedman equation

H2 (a)
H2

0
=

∑
i=r,m,K

Ωi a−ni + ΩΛ f (a) + Ωg (a) , (15)

where H(a) is the Hubble function, H0 ≡H(1). The con-
stants Ωi are identical to the ΛCDM density parameters

Ωi ≔ 8𝜋G
3H2

0
𝜌i ani = const., i = r,m. (16)

and
ΩK ≔ − K0

H2
0

𝜔K = −1
3
,nK = 2 (17a)

ΩΛ ≔ Λ0

3H2
0

𝜔Λ = −1,nΛ = 0, (17b)

with 𝜔i, i = m, r, … denoting the equation of state, and ni
the scaling property of the density of matter, radiation etc.
Ωg(a) represents the geometrical effects emerging from the
quadratic term (Vasak et al. 2019):

Ωg (a) ≔
(

1
4
Ωma−3 + ΩΛ f (a)

)(
3
4
Ωm a−3 + Ωr a−4

)
1
2

g2 − 1
4
Ωm a−3 − ΩΛ f (a)

.

(18)

where for convenience we use

g2 ≔ 1
16𝜋Gg1H2

0
. (19)

Ωg(a) is well defined since the function f (a) obeys the
unique differential equation (Vasak et al. 2019)

df
da

= 3Ωm

4ΩΛ

A (a) − B (a)
(

1
4
Ωma−3 + ΩΛ f (a)

)
a4

(
A (a) + B2 (a)

) (20a)

A (a) ≕ 1
2

g2

(3
4
Ωma−3 + Ωra−4

)
(20b)

B (a) ≕ 1
2

g2 −
1
4
Ωma−3 − ΩΛ f (a) (20c)

We now require that the dark energy term coincides
with the observed present-day value of the cosmological
constant. Setting Λ0 = Λobs gives then the initial condition
f (1) = 1, and Equation (15) reduces to

1 =
∑

i=r,m,Λ,K,g
Ωi. (21)

In order to align the parameters with the flat ΛCDM
or Concordance Model for which

∑
i = r,m,Λ Ωi = 1, the

curvature and the geometry terms must just cancel each
other:

−ΩK = Ωg =

(
1
4
Ωm + ΩΛ

)(
3
4
Ωm + Ωr

)
1
2

g2 − 1
4
Ωm − ΩΛ

. (22)

This relation can be resolved for g2,

1
2

g2 (ΩK) =
1
ΩK

(1
4
Ωm + ΩΛ

)(
ΩK − 3

4
Ωm − Ωr

)
, (23)

and is visualized in Figure 1. By Equation (19) this can eas-
ily be transformed into a relation of the curvature param-
eter ΩK and the deformation parameter g1 of the theory.
By this arrangement of the constants, g2 diverges with
ΩK → 0, and then of course g1 approaches zero. However,
while the limiting case g1 = 0 seems to recover the Hub-
ble equation of standard cosmology, the limiting process,
g1 → 0, is continuous but not convergent.5 With g1 and
g2 finite ΩK = 0 is excluded making the set of solutions
non-compact.

5Neither g1 nor g2 can be continuously connected to the value 0 as then
the quadratic term in either the Hamiltonian or in the Lagrangian
would diverge.
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F I G U R E 1 As g2 must be non-zero and finite the root
ΩK = −3Ωm/4+Ωr , where g2 = 0, and ΩK = 0 where g2 = ±∞, are
both “forbidden” values. This divides the parameter space in three
disjoint Regions denoted by I, II, and III with different
combinations of sign (ΩK ) and sign (g2). For ΩK → ±∞ the
coupling constant converges to g2 = Ωm/2+ 2ΩΛ

For later use, we note that the Friedman Equation (15)
can be re-written as an equation of motion of a classical
fictitious point particle with the dimensionless mass 2 in
an external potential V(a):

ȧ2 + V (a) = H2
0 ΩK (24)

V (a) = −H2
0
[
Ωr a−2 + Ωm a−1 + ΩΛ a2f (a) + Ωg (a) a2] .

(25)
The particle’s kinetic energy is ȧ2 ≡ H2 (a) a2, and its

total energy H2
0 ΩK = −K0.

An important astronomical observable is also the
dimensionless deceleration function

q ≔ − ä
ȧ2 a ≡ − ä

a
1

H2 (a)
, (26)

which explicitly depends on the curvature parameter K0,
and implicitly on the dark energy and curvature functions
in the Hubble function. For the ΛCDM “Default” parame-
ter set (cf. Table 1) the present-day deceleration parameter
q0 ≡ q(1) is

q0 ≈ −0.55 + K0∕H2
0 . (27)

The values of both, ΩK = −K0∕H2
0 and g2, are thus

restricted by the measurement accuracy of q0 (Bernal

T A B L E 1 The ΛCDM parameter sets used for the sensitivity
check of the Hubble diagram fit. The data are taken from the Refs.
(Planck collaboration 2016) (= Default, applied throughout this
paper), (Dhawan et al. 2020) (Late) and (Planck collaboration 2020)
(Early)

Data 𝛀𝚲 𝛀m 𝛀r h0

Default 0.69990 0.30000 0.00005 0.70903

Late 0.70000 0.30000 0.00005 0.74500

Early 0.68500 0.31500 0.00005 0.67400

et al. 2017; Camarena & Marra 2020; Planck collabora-
tion 2016).

In order to test the viability of the CCGG-Friedman
model within the present accuracy of observations, we
conduct a preliminary analysis with the four priors of the
flat Concordance Model and focus on investigating the
influence of the CCGG deformation parameter g1. Some
key results of our numerical analysis are presented in the
next section.

5 THE BOUNCE AND BANG
SCENARIOS

In order to get a first impression on the viability of
this cosmological model, we align with ΛCDM as far
as possible by using the corresponding parameter set
(here the “Default” values from Table 1) and assuming
that Equation (22) holds. The solution variety is seen
to split up into three fundamentally different scenar-
ios per parameter region. In Figure 2, the expansion
trajectories for Regions I–III are plotted for typical
values of the free parameter, ΩK = 0.28,0.01,−0.28
which correspond to the values of the deformation
parameter g1 = 4.27× 10120,− 3.87× 10118,4.64× 10119,
giving a considerable contribution of quadratic
gravity:

• Region I is a Bounce scenario: A deflating open uni-
verse will rapidly decelerate to a stillstand (ȧ = 0) and
bounce off6 at a finite scale amin to proceed in a steady
expansion into the dark energy era, see Figure 2. The
singularity is avoided due to the turning point of the
corresponding potential, Equation (25), in Figure 3
where V (z) ∕H2

0 ≡ V (a (z)) ∕H2
0 = ΩK is displayed using

for convenience the redshift parameter z≕ 1/a− 1.
The age of the universe depends on the parameter

6The CCGG bounce scenario has also been studied in (Benisty
et al. 2019).
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F I G U R E 2 The time evolution of the scale parameter from
the origin to today (a = 1) and beyond. Notice that the Friedman
equation is time-reversal invariant, such that a(−𝜏) denotes a
deflating trajectory of the scale size. Hence, the deflation to a finite
bounce (Region I) or to a singularity (bang scenarios II and III) is
displayed for negative conformal times

ΩK > 0.75Ωm +Ωr. For the value chosen here, the uni-
verse of Region I is around 30% older than the pop-
ular value H−1

0 . The deceleration parameter, Figure 4,
is always negative and for large z crosses the “phan-
tom divide”, where q(z)< − 1. This indicates a violation
of the energy conditions and possibly an unphysical
regime.

• Region II wields a potential without a turning
point that deviates from the potential of GR by a
rather flat wide maximum, see Figure 3. The evo-
lution starts with a (Big) Bang and the scale is
monotonously increasing, but in alternating acceler-
ation and deceleration phases (Figure 4). The uni-
verse can, depending on 0<ΩK < 0.75Ωm +Ωr (open
universe), be again significantly older than 1/H0
(Figure 2).

• Region III is comparably less spectacular. The dynam-
ics corresponds to a slightly amended ΛCDM/Big Bang
evolution. The universe is closed and consistently
younger than 1/H0. The expansion is decelerating ini-
tially and accelerating in the late era, similarly to the GR
dynamics.

The common feature of all scenarios is the graceful exit
into the late dark energy era.

F I G U R E 3 The z-dependence of the scale potentials
V (z; g2 (ΩK )) ∕H2

0 with the values ΩK = 0.28,0.01,−0.28 typical for
the Regions I, II, and III, respectively. In Region I, a turning point
arises where the potential crosses the line ΩK = 0.28. Potentials of
Regions II and III do not cross the corresponding ΩK -lines at −0.28
and 0.01. The curve labeled GR shows the potential of the standard
ΛCDM cosmology where f (a)≡ 1, g1 = 0

6 CONSTRAINTS FROM LOW-Z
OBSERVATIONS

As a first test, we compare the CCGG cosmology model
and the standard GR ΛCDM model with the SNeIa
Hubble diagram (Riess et al. 2004) via the formula for
the extinction-corrected distance modulus, 𝜇 = m − M =
5 log dL

Mpc
+ 25. Thereby is

dL = (1 + z)∫
z

0

dz′
H (z′)

(28)

the luminosity distance, m the flux (apparent magni-
tude) and M the luminosity (absolute magnitude) of the
observed supernovae. The dependence of the predicted
distance modulus 𝜇 on the redshift z is plotted for the
parameter Regions I, II, and III in the left panel of Figure 5
and compared with the observational data. In a sensitiv-
ity analysis w.r.t. variations of the curvature parameter,
the mean-square deviation is minimized for ΩK = 0.122, a
value that points to Region II with an open geometry (see
right panel of Figure 5). This implies a dynamical scenario
with a singular Big Bang and a secondary inflation phase.7

7Remarkably, the “Early” parameter set (Planck collaboration 2020)
with a smaller H0 leads to a better result here even though we consider
low-z data. Moreover, the Hubble tension is slightly alleviated but the
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F I G U R E 4 The deceleration parameter q(z) in the three
Regions I (red), II (green), and III (blue). While in Region I, a
monotonically accelerating expansion is observed, accelerating and
decelerating phases occur in Region II. In Region III, similarly to
GR (black), an initially decelerating expansion transfers into
acceleration in the dark energy era

Furthermore, with Equation (23) we find g1 ∼ 10119, that is,
a significant admixture of quadratic gravity. Moreover, the
fact that the relative minimum is found with the Planck
parameter set indicates a potential for alleviating the so
called Hubble tension.

7 SUMMARY AND OUTLOOK

The key findings of the preliminary analysis presented
here are:

• Torsion is identified to promote the cosmological con-
stant to a time-dependent function.

• The quadratic gravity term gives rise to a geo-
metrical stress-energy with the properties of dark
radiation.

• Solutions are consistent with the ΛCDM parameter set.
• All solutions exit gracefully into the late dark energy era.
• The comparison with data suggests an open geom-

etry and a significant admixture of Riemann-Cartan
quadratic gravity in Einstein’s field equations.

jury is still out on the high value of the R19 measurement. The claim
that its origin is a huge local void (Haslbauer et al. 2020; Kim et al. 1920)
might be an alternative explanation.

F I G U R E 5 The SNeIa Hubble diagrams are compared with
the model prediction for the Regions I, II, and III (left panel). The
mean-square deviation for the two ΛCDM parameter sets from
Table 1 (right panel) display lower minima for non-zero values of
the curvature parameter ΩK than those found for standard Einstein
cosmology. The minimum is found for the “Early” (Planck)
parameter set, see Table 1

• The age of the universe can be significantly greater than
1/H0.

• After commencing with a Bang, the expansion dynam-
ics undergoes alternating acceleration and deceleration
phases.

A comprehensive analysis of the CCGG parame-
ter set versus a collection of low-z data is in progress
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with advanced MCMC tools. Furthermore, a model for
the torsion tensor that is consistent with the covari-
ant conservation of the strain-energy tensor is under
development.
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