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Autophagy is a highly conserved catabolic process cells use to maintain

their homeostasis by degrading misfolded, damaged and excessive proteins,

nonfunctional organelles, foreign pathogens and other cellular components.

Hence, autophagy can be nonselective, where bulky portions of the cyto-

plasm are degraded upon stress, or a highly selective process, where prese-

lected cellular components are degraded. To distinguish between different

cellular components, autophagy employs selective autophagy receptors,

which will link the cargo to the autophagy machinery, thereby sequestering

it in the autophagosome for its subsequent degradation in the lysosome.

Autophagy receptors undergo post-translational and structural modifica-

tions to fulfil their role in autophagy, or upon executing their role, for their

own degradation. We highlight the four most prominent protein modifica-

tions – phosphorylation, ubiquitination, acetylation and oligomerisation –
that are essential for autophagy receptor recruitment, function and turn-

over. Understanding the regulation of selective autophagy receptors will

provide deeper insights into the pathway and open up potential therapeutic

avenues.

Introduction

Cells employ various pathways to maintain their

homeostasis. Maintaining the balance between synthe-

sis and removal of proteins, organelles or other cellular

components is one of the major tasks of the cellular

quality control mechanism. Accumulation of damaged

or unwanted cellular components can increase the pro-

duction of reactive oxygen species or DNA damage,

and subsequently lead to cell death [1, 2]. To prevent

this, cells have evolved two major pathways – the

ubiquitin–proteasome system (UPS) and macroau-

tophagy (hereafter autophagy), both of which are

involved in the surveillance and quality control of

proteins and organelles [3,4]. While UPS relies on tag-

ging proteins with ubiquitin to target them for degra-

dation within the barrel-shaped proteasome,

autophagy allows the degradation of larger cellular

components (including organelles) within the lysosome,

mediated by a de novo-formed vesicle termed an

autophagosome (reviewed in Ref. [3–7]). These path-

ways are finely regulated, and any disruptions to either

of them can lead to neurodegeneration, cancer and

other pathologies.

The term ‘autophagy’ was first used by Christian de

Duve, in 1963 [8], before gaining significant traction
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upon the characterisation of autophagy-related pro-

teins (Atg) in yeast [9,10], and has since been shown to

have an essential role in higher eukaryotes. The core

autophagy machinery is highly conserved from yeast

to human, and it engages five multifunctional systems

– (a) ULK1/ULK2 kinase complex (Atg1 in yeast); (b)

the class III phosphatidylinositol 3-kinase (PI3K) com-

plex; (c) the LC3/GABARAP proteins and their

conjugation machinery (Atg8 in yeast); (d) autophagy-

related gene 2 (ATG2; same in yeast) and phosphatidyli-

nositol (e) phosphate effector proteins, including

WIPI1–4 proteins (Atg18 and Atg21 in yeast); and (f) the

membrane-spanning protein ATG9 (same in yeast;

reviewed in Ref. [11,12]). The main event in autophagy is

a de novo formation of a double membrane called phago-

phore, at endoplasmic reticulum (ER)-associated sites.

The orchestrated action of the autophagy machinery

components leads to the expansion of the phagophore,

recruitment of the cargo and formation of an

autophagosome. Autophagosomes fuse with lysosomes,

resulting in the degradation of the cargo and recycling

of the nutrients back into the cytosol [11]. Depending

on the cargo, autophagy can be selective or

nonselective. In nonselective autophagy, bulk portions

of the cytoplasm are sequestered by the phagophore

for degradation to maintain the nutrient levels in cells.

This type of autophagy is frequently observed upon

low nutrient levels during starvation. By contrast,

selective autophagy is required for maintaining the

number and integrity of cellular organelles, as well as

protecting the cell from pathogen invasions. Selected

cargo can be mitochondria, portions of ER, ribosomes,

peroxisomes, lysosomes, lipid droplets, aggregates, fer-

ritin and others [13,14]. The cargo is distinguished and

selected by proteins called cargo receptors, or selective

autophagy receptors (SARs), which act as a bridge

between the phagophore and cargo (Table 1) [6,13–18].
Generally, cargo receptors are defined and charac-

terised by their ability to bind cargo and facilitate the

recruitment of autophagic machinery, mainly through

the binding of Atg8/LC3/GABARAP proteins, and

finally being degraded with the cargo [19]. The specific

action of SARs is regulated by protein modifications,

predominantly phosphorylation, ubiquitination, acety-

lation and oligomerisation, which are the focus of this

review.

Table 1. Selective autophagy types and corresponding receptors.

Selective type of autophagy Selected cargo Species SARs [references]

Aggrephagy Aggregates Yeast Cue5 [25]

Plants NBR1 [112]

Mammals NBR1, OPTN, p62, TOLLIP, TAX1BP1 [96, 117–120]

BES1 degradation BES1 Plants DSK2A/B [69]

Cvt pathway Ape1, Ape4, Ams1 Yeast Atg19, Atg34 [22, 23]

ER-phagy ER Yeast Atg39, Atg40 [26]

Plants ATI3, C53 [44, 121]

Mammals ATL3, C53, CCPG1, FAM134B, RTN3, Sec62, TEX264,

CALCOCO1 [36, 44, 66, 103, 122–126]

Ferritinophagy Ferritin Mammals NCOA4 [56, 127]

Glycophagy Glycogen Mammals STBD1 [128]

Lipophagy Lipid droplets Mammals p62 [129, 130]

Lysophagy Lysosomes Mammals p62, TRIM16 [131, 132]

Midbody removal Midbody rings Mammals NBR1, p62, TRIM16 [133–135]

Mitophagy Mitochondria Yeast Atg32 [27]

Mammals AMBRA1, Bcl2L13, BNIP3, Cardiolipin, Ceramide,

FKBP8, FUNDC1, NDP52, NIX, NLRX1, OPTN, p62,

PHB2, TAX1BP1 [46, 79, 136–147]

NPC-phagy Nuclear pore complex (NPC) Yeast Nup159 [148, 149]

Nucleophagy Nucleus fragments Yeast Atg39 [26]

Pexophagy Peroxisomes Yeast Atg30, Atg36 [28, 29]

Mammals NBR1, p62 [150, 151]

Plastid-to-vacuole Plastids Plants ATI1 [152]

Proteaphagy Proteasome Plants RPN10 [153]

Ribophagy Ribosomes Mammals NUFIP1 [154]

Xenophagy Bacteria and viruses Mammals NDP52, OPTN, p62, TAX1BP1 [70, 155–157]

Plants NBR1 [158]

Zymophagy Zymogen granules Mammals p62 [159]

2 The FEBS Journal (2021) ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

The regulation of selective autophagy receptors A. Gubas and I. Dikic



Selective autophagy receptors

The main steps in selective autophagy include recogni-

tion of the cargo, coupling of the cargo to the phago-

phore and degradation of the cargo. In particular, the

first two steps depend on SARs – they recognise and

bind the cargo, and facilitate formation of the growing

phagophore [16].

The first type of selective autophagy was identified

in Saccharomyces cerevisiae. The cytoplasm-to-vacuole

pathway, commonly known as Cvt pathway, delivers

the enzymes aminopeptidase 1, aspartyl aminopepti-

dase and a-mannosidase (Ape1, Ape4 and Ams1,

respectively) into the vacuole [20,21]. The recognition

of these enzymes is achieved by Atg19 and Atg34

receptors. Both Atg19 and Atg34 can specifically bind

the cargo proteins, Atg11 – the scaffolding subunit of

Atg1 complex – and Atg8 proteins, which decorate the

pre-autophagosomal structure (PAS), thereby recruit-

ing the cargo into the Cvt pathway [22–24]. Selective
degradation of mitochondria, peroxisomes, ER, parts

of nuclei and aggregates by autophagy has also been

studied in yeast, with each of these degradation path-

ways employing autophagy receptors. Yeast SARs com-

monly bind Atg8 and Atg11, with the exception of Cue5,

which has shown no interaction with Atg11 [25–32]. In
yeast, binding to Atg8 proteins is mediated by a W/F/

YxxL/I/V motif, commonly known as Atg8-interacting

motif (AIM), characterised by hydrophobic residues on

positions 0 and +3, and often surrounded by acidic resi-

dues to stabilise the interaction [33].

Higher eukaryotes come with additional layers of

complexity to selective autophagy pathways, which

have been extensively studied. In mammals, over 30

autophagy receptors have been identified and described

(reviewed in Ref. [13,14]). Yeast Atg8 has six homo-

logues in mammals, corresponding to LC3 and

GABARAP families – LC3A, LC3B, LC3C and

GABARAP, GABARAP L1 and GABARAP L2 (also

known as GATE-16). Mammalian SARs bind LC3/

GABARAP proteins through conserved AIM-like

LC3-interaction region and GABARAP-interacting

motif (LIRs and GIMs, respectively) [33–35]. The

LIR/GIM region, similarly to AIM, is characterised

by hydrophobic residues at positions 0 and +3 and fre-

quently flanked by negatively charged amino acids that

contribute to reinforcing the binding [34,35].

Interestingly, whereas the majority of yeast SARs

interact with the scaffold protein Atg11, which recruits

Atg1 complex to cargo, only some mammalian SARs

interact with its functional mammalian homologue,

FAK-family-interacting protein of 200 kDa (FIP200),

which can drive the recruitment and activation of

ULK1 kinase and the downstream machinery to the

selected cargo, thereby facilitating phagophore forma-

tion [36–43]. In plants, selective autophagy has not

been as extensively studied; however, a number of

SARs have been reported to interact with ATG8 in an

AIM-dependent manner [44,45].

In addition to ATG8/LC3/GABARAP-binding sites,

SARs generally possess cargo-binding domains. These

are often ubiquitin-binding domains, since autophagic

cargo is frequently ubiquitinated. Ubiquitin-indepen-

dent cargo recognition involves SARs binding directly

to the cargo, as well as SARs recognising sugars and

lipids exposed on the cargo (Fig. 1; [46–51], reviewed
in Ref. [52]).

Regulation of autophagy receptors

For its full functionality and to minimise costly energy

losses, autophagy flux is tightly regulated (reviewed in

Ref. [53–55]). SARs undergo structural and post-trans-

lational modifications (PTMs) in order to operate in a

specific type of autophagy, to facilitate binding to

other proteins or simply to be removed via the protea-

some. Below, we outlined the most prominent SAR

modifications, such as phosphorylation, ubiquitination,

acetylation and oligomerisation (Fig. 2; Table 2), and

explain how they affect SARs within autophagy path-

ways.

Ubiquitination

Ubiquitination is commonly mentioned in the context

of protein degradation, as it serves as a signal for pro-

tein removal by either the proteasome or autophagy

[6]. SARs are also ubiquitinated for their own degra-

dation. An example is NCOA4, a ferritinophagy recep-

tor, involved in selective degradation of ferritin.

Ferritin is a protein that serves to store iron in cells

and release it in a controlled fashion when iron levels

are low [56,57]. NCOA4 is an iron-sensing protein,

which engages its C-terminal helical domain in coordi-

nating iron. As such, during high-iron levels, NCOA4

interacts with and is ubiquitinated by HERC2 ubiqui-

tin ligase, thereby preventing ferritin degradation and

iron release [57]. Regulation of ferritinophagy is essen-

tial for maintaining iron levels in cells, and any pertur-

bations within this process could lead to pathologies,

such as anaemia, or neurodegeneration, such as neu-

rodegeneration with brain iron accumulation (NBIA)

[58].

Ubiquitination may not only signal for SAR degra-

dation, but also regulate their function in autophagy.

For example, p62, a SAR involved in the regulation of
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redox homeostasis, undergoes nondegradative ubiquiti-

nation. During normal cellular conditions, Kelch-like

ECH-associated protein 1 (KEAP1) interacts with

nuclear factor erythroid 2-related factor 2 (NRF2), a

transcription factor involved in gene expression of

antioxidant proteins. Through its association with Cul-

lin3 E3 ligase, KEAP1 mediates the ubiquitination of

NRF2, targeting it for proteasomal degradation. Upon

oxidative stress, it is the task of p62 to sequester

KEAP1 within aggregates for autophagic degradation

in order to release NRF2, which can then translocate

to the nucleus and trigger an antioxidative response

(reviewed in Ref. [59]). Pan and colleagues have

reported that this process can be blocked by ubiquiti-

nation of p62 at Lys7 [60], which would normally form

a hydrogen bond with Asp69, driving homodimerisa-

tion of p62 via its Phox and Bem1 (PB1) domain

[61,62]. PB1-mediated homodimerisation is a prerequi-

site for its sequestering function. Ubiquitinated p62

can no longer mediate autophagic degradation of

KEAP1, suppressing the release of NRF2 and stimu-

lating antioxidative actions to restore redox homeosta-

sis [60].

Conversely, SAR ubiquitination can also be a signal

for autophagy activation and cargo recognition.

KEAP1/Cullin3 also directly ubiquitinates p62 at

Lys420, within its UBA domain. The ubiquitination

prevents p62 dimer formation through the UBA

domain, thereby enhancing its sequestration ability

and interactions with phagophores and LC3/

GABARAP proteins during ubiquitin stress [63,64]. A

similar ubiquitination pattern has been observed for

NBR1, with ubiquitin-stress-triggered ubiquitination

likely regulating its interaction with polyubiquitin

chains [63]. Furthermore, OPTN stably interacts with

HACE1 E3 ubiquitin ligase, which leads to HACE1-

mediated ubiquitination of OPTN at Lys193, facilitat-

ing the complex formation between OPTN, p62 and

Fig. 1. Types of cargo recognition in selective autophagy. During selective autophagy, cargo is carefully selected in several ways for its

degradation within the lysosome. (I) In ubiquitin-dependent autophagy, cargo is polyubiquitinated, which serves as a signal for its

degradation. Cargo receptors can simultaneously bind ATG8 proteins and polyubiquitin on the cargo, providing a strong link between

autophagy machinery and the cargo itself. (II) Cargo receptors can also bind sugars, such as lectins, that are recruited to the cargo, as is the

case during lysophagy, where galectin 3 decorates damaged lysosomes and is able to bind the receptors. (III) SARs can also bind directly to

the cargo and deliver it to the forming phagophore through the ATG8 binding. (IV) Some lipids (such as cardiolipin) can bind ATG8s and

provide a direct link between cargo and autophagy machinery in a receptor-independent manner. Phagophore elongates, surrounding the

cargo. When it seals, it fuses with the lysosome and the cargo is degraded.
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HACE1, as well as to coupling of cargo to the autop-

hagic machinery. HACE1 is downregulated in various

cancers, suggesting that the HACE1-OPTN axis may

play a role in tumour suppression [65].

There is also preliminary evidence for functional

regulation of ER-phagy receptors, but not much is

known about ubiquitination of ER-phagy SARs.

Atlastins 1 and 3 (ATL1 and ATL3), membrane-

bound dynamin-like GTPases, have been found to

function as ER-phagy receptors, binding GABARAPs

and targeting parts of the tubular ER for autophagy

[66]. Atlastins are involved in the fusion of ER

tubules, which is regulated through ubiquitination by

SYVN1 E3 ligase [67].

Fig. 2. Summary of regulatory modifications reported for SARs. SARs are regulated through post-translational, structural and other

modifications, most prominent ones summarised in this scheme. SARs and their modified sites are listed under the regulation modification

that affects them.
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In yeast, not many examples of ubiquitination

events regulating cargo receptor function have been

reported. However, Baxter and colleagues have shown

that Atg19, the Cvt pathway receptor, interacts with

and is ubiquitinated by the E3 ligase Ubp3 at lysines

213 and 216. Downregulation of this ubiquitination

results in decreased Cvt targeting [68].

Ubiquitination is one of the most abundant PTMs

in cells, and it is likely that many more SARs are regu-

lated in this way. Dysregulation of autophagy can

have pathological consequences, and thus, understand-

ing the regulation of SARs by ubiquitination may pro-

vide the basis for therapeutic approaches.

Phosphorylation

Phosphorylation plays an essential part in regulating

autophagic flux and is central to autophagy induction.

Moreover, it plays an important role in regulating the

ability of SARs to bridge the cargo with autophagic

machinery. In most cases, phosphorylation regulates

SARs binding to Atg8/LC3/GABARAP [31,69–73].
This has been shown already in yeast, and is conserved

across species, including humans. In yeast, pexophagy

receptors Atg30, Atg32 and Atg36 interact with Atg8

in an AIM-dependent manner. These interactions are

facilitated by phosphorylation at residues upstream of

the respective AIM regions [31]. Furthermore, Hrr25

and casein kinase 2 (CK2) have been shown to phos-

phorylate yeast SARs and facilitate their interaction

with the scaffold protein Atg11 [74–78].
Plant autophagy SARs are also modified by phos-

phorylation. During stress conditions, such as drought

and starvation, it is required to strengthen the interac-

tion of SARs, such as DSK2, with ATG8 [69].

In mammals, TBK1 phosphorylates OPTN at

Ser177 during xenophagy, which strengthens its inter-

action with LC3s/GABARAPs and subsequently

restricts Salmonella growth [70], and at Ser473, which

facilitates its interaction with ubiquitin chains during

mitophagy [79]. Similarly, phosphorylation of Nix at

Ser34 and Ser35 enhances its interaction with LC3s

and initiates mitophagy [71]. Conversely, phosphoryla-

tion of FUNDC1 at Tyr18 prevents binding to LC3s/

GABARAPs, thereby inhibiting mitophagy [72]. Dur-

ing hypoxia, the interaction of FUNDC1 with LC3/

GABARAP proteins is determined by the phosphory-

lation of Ser13, which is regulated by the interplay of

a phosphoglycerate mutase (PGAM5) phosphatase

and casein kinase 2 [73].

p62 function in autophagy is also regulated by vari-

ous kinases. During proteotoxic stress, the phosphory-

lation at Ser407 by ULK1 kinase allows the transition

of p62 from dimer to a monomer, promoting its bind-

ing to ubiquitin, and allowing its recruitment to pro-

tein aggregates [80]. Similarly, phosphorylation at

Ser403 by various kinases enhances the binding to

ubiquitin chains [80–82], subsequently promoting cargo

degradation.

Phosphorylation also positively regulates

FAM134B-dependent ER-phagy. CAMK2B kinase

phosphorylates FAM134B at Ser151 within its reticu-

lon homology domain (RHD) in order to facilitate

Table 2. Autophagy-associated SAR modifications with

corresponding enzymes.

Protein Species

Residues (enzymes, if

known) References

Phosphorylation

p62 Mammals S24 (PKA), S403 (CK2,

ULK1, TBK1), S407

(ULK1)

[80–82,

160]

OPTN Mammals S177, S473 (both TBK1) [50, 70]

FUNDC1 Mammals S13 (CK2/phosphatase

PGAM5), Y18 (SRC)

[72, 73]

NIX Mammals S34, S35, S212 [71, 102]

BNIP3 Mammals S17, S24 [161]

FAM134B Mammals S151 (CAMK2B) [83]

Atg19 Yeast S390, S391, S396 (Hrr25) [75, 77]

Atg30 Yeast S71, S112 [31]

Atg32 Yeast T112, S114 (CK2), S119

(CK2)

[31, 74]

Atg36 Yeast S31 (N/A), S97 (Hrr25) [31, 77]

DSK2 Plants S240, S244 (+more)

(BIN2)

[69]

Ubiquitination

p62 Mammals K7 (TRIM21), K420

(Cullin3)

[60, 63, 64]

OPTN Mammals K193 (HACE1) [65]

ATL1 Mammals K285, K287 (SYVN1) [67]

NCOA4 Mammals N/A (HERC2) [57]

Atg19 Yeast K213, K216 (Ubp3p) [68]

Cue5 Yeast N/A (Rsp5) [25]

Acetylation

p62 Mammals K420, K435 [86]

FUNDC1 Mammals K114, K115 (predicted) [89]

Oligomerisation

p62 Mammals K7, R21, D69, E82, E409,

G410

[62, 99]

NBR1 Mammals [96]

OPTN Mammals E50 [43, 162]

NIX Mammals G204, G208 [102]

FAM134B Mammals G216 [83]

RTN3 Mammals [103]

Atg19 Yeast [98]

NBR1 Plants K11, K19, D60, D73 [112]

UFMylation

C53 Mammals N/A (UFL1) [44]

Plants
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FAM134B dimerisation and membrane fragmentation,

thereby making it accessible for autophagosome

sequestration [83]. Many other SARs undergo phos-

phorylation modifications as part of their regulation

mechanism, with further studies needed to understand

them and identify new ones [79,84,85].

Acetylation

Although equally essential, it took some time for

acetylation to attract attention of autophagy research-

ers, with new roles now rapidly emerging. Acetylation

involves the addition of an acetyl group onto lysines

or amino-termini of proteins. During selective autop-

hagy, UBA domain-mediated oligomerisation of p62

and its interaction with polyubiquitinated cargo are

regulated by acetylation. The activation of acetyltrans-

ferase TIP60 drives p62 acetylation at Lys420 and

Lys435, facilitating the binding to polyubiquitinated

proteins [86]. Ser403 and Ser407 phosphorylation,

found in close proximity to acetylated lysines, regu-

lates a similar function of p62 [80,81]. It is likely that

there is a link between the two PTMs, although fur-

ther research is needed to demonstrate this.

LC3 proteins, which shuttle between the nucleus and

the cytosol, are also regulated by acetylation. Upon

starvation, LC3 is deacetylated by Sirt1 at lysines 49

and 51, driving its translocation from the nucleus into

the cytosol, where it is able to participate in the pro-

cess of autophagy [87].

Acetylation is implicated in regulating ER-phagy

SARs through the modification of ATG9A protein.

ATG9A interacts with FAM134B and Sec62, two ER-

phagy receptors. This interaction is reduced upon

acetylation of ATG9A, which prevents binding of ER-

phagy receptors to LC3s and inhibits ER-phagy induc-

tion. This can be enforced in transgenic mice that over-

express ATase1 (AT-1) in forebrain neurons, causing a

progeria-like phenotype. AT-1 is required for translo-

cating cytosolic acetyl-CoA into the ER lumen [88].

FUNDC1 is also possibly regulated by acetylation,

as potential acetylation sites on it have been predicted

[89], but more work is required to understand its effect

and relevance. Acetylation offers an interesting

approach in terms of potential therapeutic targets, as

exemplified by AT-1 and ER-phagy. However, our

knowledge of this modification in autophagy is still at

the very beginning.

Oligomerisation

Protein function, structure or localisation is not only

regulated by PTMs. Oligomerisation has been shown

to have an important part in regulating the induction

of autophagy, either by promoting kinase activation,

such as oligomerisation of ULK1 [90], or by providing

the structural architecture for protein scaffold forma-

tion on the phagophore, with class III PI3K complex

and ATG16L1 as good examples [91,92].

In yeast, it has recently been shown that oligomeri-

sation of Atg17 is prerequisite for liquid–liquid phase

separation (LLPS) of the PAS [93,94]. Moreover,

LLPS has been shown to regulate the lysosomal degra-

dation of Ede-1-dependent endocytic protein deposits,

which are formed as a consequence of defects in early

stages of clathrin-mediated endocytosis. In this case,

Ede-1 has a role of cargo receptor, and its polymerisa-

tion drives LLPS. Through its binding to Atg8 and

Atg11, Ede-1 drives the degradation of the formed

condensates [95].

Many SARs contain a region in their sequence that

allows oligomerisation. Autophagic cargo is generally

larger than that of the proteasome, as it mainly con-

sists of organelles or macromolecules, which can attri-

bute to the necessity of autophagy receptors to

oligomerise. Furthermore, oligomerisation of SARs

allows better exposure of their domains and moieties,

as well as increases their binding avidity. To better ful-

fil their role as bridges between autophagic machinery

and cargo, many SARs homo- and hetero-oligomerise,

as shown for p62 and NBR1 [96,97]. Additionally,

autophagic cargo itself is known to oligomerise, to

allow efficient autophagic uptake, as it is the case with

ferritin during ferritinophagy [56].

During the yeast Cvt pathway, the cargo proteins

Ape1 and Ams1 form dodecamers and tetramers,

respectively, allowing efficient cargo packaging. Ape1,

as more abundant cargo, carries Ams1 to facilitate its

binding to Atg19, which forms a trimer. Atg19 trimers

are incorporated into the Ape1/Ams1 aggregates,

thereby controlling the size of the assembled cargo.

These large aggregates will be efficiently engulfed by

the Cvt vesicle and delivered to the vacuole [98].

In mammals, oligomerisation has been extensively

studied in the context of SAR regulation. The effect of

PTMs on p62 has frequently been attributed to the

regulation of its ability to oligomerise. p62 can oligo-

merise through its PB1 domain and through its UBA

domain, which has different consequences for autop-

hagy [62,99]. p62 polymerisation has been found to be

one of the requirements of p62 to undergo phase sepa-

ration, along with ubiquitin binding through its UBA

domain, which drives the concentration and sequestra-

tion of the autophagic cargo [49].

It has been shown that OPTN forms homo-hexam-

ers, with its role currently unknown [100]. However,

7The FEBS Journal (2021) ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

A. Gubas and I. Dikic The regulation of selective autophagy receptors



OPTN E50K mutation, associated with normal tension

glaucoma (NTG), has been shown to inhibit oligomeri-

sation and solubility of OPTN, and at the same time

strongly enhance its interaction with TBK1 [101].

Recently, Nix has been shown to dimerise, thereby

stabilising its interaction with LC3A and its function

as a cargo receptor. This dimerisation is regulated by

phosphorylation at Ser212 [102].

ER-phagy cargo receptors commonly undergo

oligomerisation as part of their regulation mechanism.

FAM134B oligomerisation is facilitated by the phos-

phorylation of its RHD by CAMK2B kinase, regulat-

ing ER membrane scission for ER-phagy demands

[83]. RTN3L, a long isoform of RTN3 reticulon, can

homodimerise and heterodimerise with RTN3S

isoform, and both have different functions during

ER-phagy [103]. RTN3L homodimers can drive frag-

mentation of ER tubules, which will be subsequently

delivered to the lysosome for degradation [103].

Conversely, RTN3L-RTN3S heterodimers contribute

to stabilisation of ER tubules instead [103]. In Droso-

phila, Atlastin has also shown a tendency to oligomer-

ise, in GTP-dependent manner. The formation of this

homo-oligomer is required for ER membrane tethering

and fusion [104,105], with similar role observed with

mammalian Atlastins ATL1, ATL2 and ATL3 [106–
111]. However, it remains to be discovered how

oligomerisation affects ATL1 and ATL2 receptor func-

tions in mammals.

Plant SARs also rely on oligomerisation for their

function. Plant NBR1, a functional hybrid of mam-

malian NBR1 and p62, undergoes oligomerisation via

its PB1 domain, similarly to p62, which is required for

its role in autophagy [112]. Oligomerisation has also

been observed in other SARs, with its function yet to

be completely understood [57,113,114], but likely

involved in facilitating the linkage of SARs with the

cargo and autophagic machinery.

Concluding remarks

With various cell types and different organelles,

macromolecules, aggregates and pathogens all targeted

for degradation by autophagy, across species, cells

have developed a large number of SARs, and evolved

tight regulatory mechanisms, since most of the SARs

also have additional functions to being cargo recep-

tors. PTMs such as phosphorylation, ubiquitination

and acetylation have been extensively studied (Fig. 2;

Table 2); hence, much is known about their role in

regulating SARs. In this review, we summarised the

most prominent and best characterised modifications

of SARs and how they affect the function of SARs in

their respective pathways. Along with PTMs, transla-

tional (reviewed in Ref. [115]) and structural changes

can be involved in regulating the SAR function. The

orchestrated action of multiple PTMs is a rapidly

emerging theme in autophagy and beyond. Such cross-

talk of PTMs provides an additional layer of complex-

ity and fine-tuning of regulatory mechanisms.

Phosphorylation is frequently reported to regulate

SAR binding to ubiquitin chains of the targeted cargo

[50,80,81], but it can also regulate ubiquitination of

the protein itself. PTMs can regulate the same function

of one SAR, as shown with p62, with acetylation and

phosphorylation, in addition to oligomerisation, all

regulating its binding to ubiquitinated cargo [80,81,86].

Conversely, same cargo receptors can be regulated by

several different modifications, all of which will regu-

late different parts of their function, again with p62

being best characterised example [43,63,80–
82,85,86,97].

The question of additional PTMs in relation to

SARs remains largely unexplored part of the field, but

processes such as methylation, glycosylation,

SUMOylation and ISGylation could have an impor-

tant role in SAR regulation. UFMylation has recently

emerged as an interesting process involved in regulat-

ing ER-phagy [44,116] (Fig. 2; Table 2), with ER-

phagy receptor C53 being the only ER-phagy cargo

receptor known to be regulated by UFMylation thus

far. This regulation has been shown in plants and is

conserved in mammals [44]. The rise of UFMylation

within the field provides novel insights into the regula-

tory mechanism of ER-phagy.

And while particular modifications have been identi-

fied for many SARs, the identity of enzymes catalysing

said modifications is not always clear. Therefore, it is

important to understand the identity of kinases, phos-

phatases, E3 ligases, deubiquitinases, acetylases,

deacetylases and others, especially in the context of

pathologies. Since any disorder in the process of

autophagy, as well as SARs, has been linked to

changes in immune response and, therefore patholo-

gies, such as infection, neurodegeneration and cancer,

further research of the regulatory mechanisms of SARs

will shed light and open new avenues of therapeutic

strategies.
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