Supplementary information

Octanoic production in *Saccharomyces cerevisiae*: Investigation of new precursor supply engineering strategies and intrinsic limitations

Florian Wernig¹, Leonie Baumann¹ Eckhard Boles¹ & Mislav Oreb^{*1}

¹Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany

*Corresponding author Dr. Mislav Oreb Goethe University Frankfurt Institute of Molecular Biosciences Max-von-Laue Straße 9 60438 Frankfurt Germany Telephone +49 (0)69 798 29331 Telefax +49 (0)69 798 29527 E-Mail m.oreb@bio.uni-frankfurt.de

Table S1: Oligonucleotides used in this study

Primer	Sequence 5'-3'	Application
Name		
FWP322	CTGTCACCGTCAGAAAAATATGTCAATGAG	Amplification of COX9p with overhangs to
	GCAAGAACCGGGCTGGGCGATCTTCCTTG	<i>PGI1</i> locus to replace <i>PGI1p</i>
FWP323	GCCAGTTTGAAGTTAGTGAATGAGTTATTG	
1 11 525	GACATGTCTGTGTAAGTCGCTTGTAGTTAG	
SBP176	CTCTATTCCACGAGGCATTC	Amplification of <i>HXT7p⁻¹³⁹²</i> with overhangs
		to ZWF1 locus to replace ZWF1p
FWP327	ACCCGTGTACATAAGCGTGAAATCACCACA	
EWD221		Deper DNA for delation of ABE2
FWF351	ACACATIACOTIAOCAAAAOCAACAATAAC	Donor DNA for deletion of ARE2
	TGGAGCTATTAAATCTTTAT	
FWP332		-
1 1 1 352	GCAGGATGCCGGTTGTGTTTGTTATTGTTGC	
	TTTTGCTAACGTAATGTGT	
FWP337	TAAGGAAACGCAGAGGGCATACAGTTTGAAC	Donor DNA for deletion of DGA1
1 11 557	AGTCACATAATAATGAATTCATTGGAAAAC	
	ACAAAATATGTTAGAATAAA	
FWP338	TTTATTCTAACATATTTTGTGTTTTCCAATG	
	AATTCATTATTATGTGACTGTTCAAACTGTA	
	TGCCTCTGCGTTTCCTTA	
FWP342	TTGATTGCCATTTTTTTTTTTTCCAAGTTTCCT	Amplification of xPK-PTA cassette with
	TGTTATAAAATTAAAGTAGCAGTACTTC	overhangs for <i>GPP1</i> locus
FWP343	TTTATTTTTAGCGTAGTAGTTTTATCAAAAA	
	AATAAAAGAAAACACCCATGAACCACAC	
FWP362	TTGAAGAAACATGAAATTGCCCAGTATTCT	Amplification of <i>PFK1p-RPE1-RPE1t</i> with
	TAACCCAAAATGGATATTGATCTAGATGG	overhangs to URA3 locus
FWP363	AATCATTACGACCGAGATTCCCGGGTAATA	
	ACTGGAAAAATATAAGGATGAGAAAGTG	
FWP366	GTCGACGGTATCGATAAGCTTGATATCGAA	Amplification of <i>TEF2p</i> with overhangs to
	TTCCTGCAGTTGATAGGTCAAGATCAATG	prS52-K and ZWF1 for cloning of FWV169
FWP367	ATTTTTTCGAATTTGACGGGGCCTTCACTC	
	ATGTTTAGTTAATTATAGTTCGTTGAC	
FWP368	CTTGTTTTTAGAATATACGGTCAACGAACT	Amplification of ZWF1-ZWF1t with
	ATAATTAACTAAACATGAGTGAAGGCCC	overhangs to TEF2p and pRS52-K for
FWP369	AAATTTGTATTTGTAGAGTGCATCCTATATA	cloning of FWV169
	TTCAATTCATATTTTATCTCTTTTTTTTTTTT	
	TTTTTTC	
FWP170	AAAAAAAAAAGAGATAAAATATGAATTGA	Amplification of <i>SOL3-SOL3t</i> with
	ATATATAGGATGCACTCTACAAATAC	overhangs to CCW12p and pRS52-K for
FWP171	AGAAATTAATCTTCTGTCATTCGCTTAAACA	cloning of FWV169
	CTATATCAATAAATGGTGACAGTCGGTG	
FWP172	AGCCCTCTCAGAAAACACACCGACTGTCAC	Amplification of <i>CCW12p</i> with overhangs to
	CATTTATTGATATAGTGTTTAAGCGAATG	prS52-K and <i>SOL3</i> for cloning of FWV169
FWP173	TTTTGAGCCTCCATGTCTCTGAAGAACTCCC	
	TGTTGGCAAGGCACCCATGAACCACAC	
FWP174	ATCTGAACTGCCCCTTTTTGGACTAACCGTGT	Amplification of <i>TEF1p</i> with overhangs to
FWD177		pr552-K and GND1 for cloning of FWV169
FWP1/5		
EWD174		Amelification of CND1 CND1 11
FWP1/6		Amplification of GNDI-GNDIt with
EW/D177		cloning of EWV160
1 W F 1 / /		
	_ AGE ACCOCOLICIACICIACITCIAILA	

	TGATAATAG	
FWP418	TCATTATAGAAATCATTACGACCGAGATTC	Amplification of ADH2p with overhangs to
	CCGGGTAATAACTGGGCAAAACGTAGGG	ALD6 and URA3 for integration
FWP402	GGTTCAGCAGTGTCAAAGTGTAGCTTAGTC	
	ATTGTGTATTACGATATAGTTAATAG	
FWP410	AATCAACTATCAACTATTAACTATATCGTA	Amplification of ALD6-ALD6t with
	ATACACAATGACTAAGCTACACTTTGAC	overhangs to ADH2p and URA3 integration
FWP419	TTGAAGAAACATGAAATTGCCCAGTATTCT	
	TAACCCAATCCACGTTAGTTTTCTTTGG	
FWP413	TTTTGCATTGCCTTATCTTTTGCCGCCAGAA	Donor DNA for deletion of ALD2
	GAAACAAGGTGACGACGGATGAATATGTTG	
	ACAGTCTAGCAAACAGTAG	
FWP414	CTACTGTTTGCTAGACTGTCAACATATTCAT	
	CCGTCGTCACCTTGTTTCTTCTGGCGGCAAA	
	AGATAAGGCAATGCAAAA	
FWP415	AACCCTTAATATAACTTCGTATAATGTATGC	Amplification of kanMX4 with overhangs to
	TATACGAAGTTATCAGCGACATGGAGGC	pRS42-H for replacement of hphNT
FWP416	ATATCACCTAATAACTTCGTATAGCATACA	
	TTATACGAAGTTATGACACTGGATGGCGG	

Table S2: Plasmids used in this study

Laboratory	Plasmid name	Relevant elements	Reference
stock code			
ASB13	pRS41-H	CEN6/ARS4,, AmpR, hphNT1	Taxis and Knop., 2006
ASB16	pRS42-H	2micron, AmpR, hphNT1	Taxis and Knop., 2006
ASB20	pRS52-K	2micron, AmpR, kanMX4,	Boles lab stock
ASB22	pRS62-H	2micron, AmpR, hphNT1	Boles lab stock
ASB23	pRS62-K	2micron, AmpR, kanMX4,	Farwick et al., 2014
AB02	pRCC-N-POX1	2μ, AmpR, natNT2, ROX3p-opt.CAS9 ^{Sp} -CYC1t, SNR52p- gRNA[POX1]-SUB4t	This study
MR02	pRCC-K-URA3	2μ, AmpR, kanMX4, ROX3p-opt.CAS9 ^{5p} -CYC1t, SNR52p- gRNA[URA3]-SUB4t	Boles lab stock
HDV10	pHD8	2µ, AmpR, kanMX4, PFK1p-RPE1-RPE1t	Demeke et al., 2013
FWV169	prRS52-K-oxPPP	2µ, AmpR, kanMX4, TEF2p-ZWF1-ZWF1t, CCW12p-SOL3-SOl3t, TEF1p-GND1-GND1t	This study
FWV133	pRS313H-fusFAS ^{RK}	CEN6/ARS4, AmpR, hphNT1, FAS1p-FAS1 ^{R1834K} - FAS2-FAS2t	Wernig et al., 2020
SHV61	pRS315-fusFAS ^{RK}	CEN6/ARS4, AmpR, LEU2, FAS1p-FAS1 ^{R1834K} - FAS1t, FAS2p-FAS2-FAS2t	Wernig et al., 2020
TWRV1	pRS42-H- ^{Se} ACS-ALD6	2μ, AmpR, hphNT1, PGI1p-ALD6-RPL15At, PFK1p- ^{Se} ACS ^{L641P} -DIT1t	This study
FWV171	pRS42-K- ^{Se} ACS-ALD6	2µ, AmpR, kanMX, PGI1p-ALD6-RPL15At, PFK1p- ^{Se} ACS ^{L64} -DIT1t	This study
VSV111	pRCC-K-ALD6	2μ, AmpR, kanMX4, ROX3p-opt.CAS9 ^{Sp} -CYC1t, SNR52p-gRNA[ALD6]-SUB4t	Schadeweg & Boles, 2016
ISOV115	pRS42-H-ADH2	2μ , AmpR, hphNT1, HXT7p ⁻¹⁻³⁹² -ADH2-FBA1t	Brat & Boles, 2012
FWV156	pRCC-K-P _{PGI1}	2µ, AmpR, kanMX4, ROX3p-opt.CAS9 ^{Sp} -CYC1t, SNR52p-gRNA[pPGI1]-SUB4t	This study

FWV157	pRCC-K-P _{ZWF1}	2µ, AmpR, kanMX4, ROX3p-opt.CAS9 ^{Sp} -CYC1t,	This study
		SNR52p-gRNA[pZWF1]-SUB4t	
FWV158	pRCC-K-ARE2	2µ, AmpR, kanMX4, ROX3p-opt.CAS9 ^{Sp} -CYC1t,	This study
		SNR52p-gRNA[ARE2]-SUB4t	
FWV159	pRCC-K-DGA1	2µ, AmpR, kanMX4, ROX3p-opt.CAS9 ^{Sp} -CYC1t,	This study
		SNR52p-gRNA[DGA1]-SUB4t	
pB14	pYTK001- ^{Ca} xPK-B14	<i>CamR</i> , ^{Ca} xPK	Arun S. Rajkumar
pB15	pYTK001- ^{Bs} xPTA-B15	CamR, ^{Bs} xPTA	Arun S. Rajkumar
•	•		0
	<u> </u>	<u></u>	
pB20	pYTK001- ^{se} EutD-B20	<i>CamR</i> , ^{se} EutD	Arun S. Rajkumar
FWV163	pRS62-H- ^{Ca} xPK	2µ, AmpR, hphNT1, HXT7p ^{-1—392} - ^{Ca} xPK-FBA1t	This study
	a a Binm i	Barrie and I	
FWV164	cGG- ^{D3} PTA	HHF2p- ^{Ls} PTA-SSA1t	This study
FWV165	cGG- ^{Se} EutD	HHF2p- ^{Se} EutD-SSA1t	This study
		1	5
FWV168	pRCC-N-GPP1	2µ, AmpR, natNT2, ROX3p-opt.CAS9 ^{Sp} -CYC1t,	This study
		SNR52p-gRNA[GPP1]-SUB4t	

Sequences of relevant genes.

>^{Ca}xPK

ATGCAGAGTATAATTGGAAAACATAAGGATGAAGGCAAGATAACACCTGAGTATTTAAAAAAGATTGACGCGTATTGGCGTGCGGCCAATTTTATAA ${\tt GCGTCGGGCAGTTGTACCTACTTGATAACCCGCTGCTACGTGAGCCTCTTAAACCCGAGCATTTGAAGAGAAAGGTGGTTGGCCACTGGGGCACCAT$ $\tt CCCAGGGCAAAACTTCATTTACGCGCACTTGAATAGAGTAATTAAGAAGTATGATTTGGATATGATTTACGTGAGTGGCCCAGGCCACGGTGGGCAA$ ${\tt GTCATGGTAAGCAACAGCTACTTGGACGGGACATACTCCGAGGTCTACCCCAACGTTTCTAGGGATCTTAACGGGTTGAAGAAATTGTGTAAACAGT$ TTAGCTTTCCCGGCGGGATATCCTCCCATATGGCCCCGGAAACACCCGGATCCATTAACGAGGGCGGCGAGTTAGGGTATAGTTTGGCACATTCCTT AAATTCTTGAACCCGGTGACCGACGGTGCCGTTCTGCCAATTTTACATTTAAATGGGTATAAGATTAGTAATCCCACAGTGTTATCTAGAATACCTA AGGACGAGCTAGAGAAATTCTTTGAAGGGAATGGCTGGAAGCCATACTTTGTGGAAGGGGAGGACCCTGAGGCGATGCACAAATTGATGGCAGAAAC TCTTGATATAGTAACGGAAGAGATTCTAAACATACAAAAAAACGCCCAGGGAAAATAATGACTGCAGTAGACCAAAATGGCCAATGATAGTCTTGAGG ${\tt ACGCCTAAGGGGTGGACCGAAGTTCGTTGACGGGGTCCCGAATGAAGGGAGCTTTAGAGCCCATCAAGTGCCTCTAGCAGTTGATAGGTATC}$ ACACTGAAAAACCTGGACCAGCTGGAGGAGTGGTTGAAGTCATATAAGCCCCGAAGAACTTTTTGATGAAAAATTATCGTCTGATTCCCCGAGCTAGAAGA GCTGACGCCCAAGGGTAATAAAAGAATGGCTGCAAACTTACATGCCAATGGGGGGGTTGTTGTTGCGTGAGCTTAGAACCCCAGACTTCAGAGACTAT GAAATTTCCGTATCTTCGGCCCAGATGAAACGATGTCCCAACAGGTTGTGGGCGGTCTTTGAAGGGACGAAGAGGCAATGGCTAAGCGAGATTAAGGA ${\tt GCCTAACGATGAATTCCTTTCCAACGACGGGAGGATTGTCGACAGCATGCTTAGTGAACATTTATGTGAAGGATGGCTAGAAGGATACTTATTAACT$ GGACGTCATGGTTTTTTCGCGTCATATGAGGCGTTCTTAAGGATTGTAGACTCTATGATTACTCAACATGGGAAATGGTTGAAAGTCACTAGTCAAC TACCTTGGAGAAAGGACATTGCCAGCCTGAATTTAATAGCAACGTCCAATGTATGGCAGCAAGATCACAACGGCTATACCCACCAGGATCCGGGGTT ${\tt ATTAGGACATATCGTGGACAAAAAGCCTGAAAATTGTCAGAGCATATCTGCCCGCGGACGCCAACACACTACTAGCCGTGTTCGATAAGTGCCTACAC$ ACTAAACATAAAATCAACCTTCTTGTAACTAGTAAGCACCCCAGGCAGCAGTGGTTGACCATGGATCAAGCTGTGAAGCATGTGGAACAGGGAATAA GCATATGGGACTGGGCGTCTAACGATAAGGGTCAGGAGCCCGACGTTGTCATCGCATCTTGCGGGGATACGCCCACTTTGGAAGCCCTTGCAGCCGT ${\tt GACTATCTTACATGAGCACCTTCCCGAATTAAAGGTCCGTTTTGTCAACGTGGTAGACATGATGAAGTTGCTGCCTGAAAACGAGCACCCACACGGC$ ACCGTGAGAACAGAAATCTTCATGTGCACGGCTACATGGAAGAGGGGGACTATTACGACACCTTTCGACATGAGGGTGCAAAACAAGTTAGACAGATT ${\tt CAGTACATTAGGGAGGTTGGCGAAGATCTTCCCGAAATTACGAACTGGCAGTGGCACGTGTAG$

>^{Bs}PTA

>^{Se}EutD

Supplementary Figure S1: Octanoic acid production of strains VGY2 and LBY38. Strains were grown in phosphate buffered SCD medium and growth (A) and octanoic acid production (B) was monitored over 72 h. Samples represent mean and standard deviation of two biological replicates. Error bars may be smaller than symbols.

Supplementary Figure S2: Overexpression of PDH-bypass genes for octanoic acid biosynthesis. Strain LBY38 expressing high copy plasmids TWRV1 ($pHXT7^{1-392}$ -ADH2) or FWV171 (pPGII-ALD6, pPFKI- $^{Se}ACS^{L64IP}$) was grown in potassium phosphate buffered YPD media for 48 h with appropriate antibiotics for plasmid selection. Two appropriate high copy empty vectors (EVa and b) were used as control. (A) cell growth, (B) OA concentrations and (C) specific titers were analyzed. Values and error bars represent mean and standard deviation of two biological replicates.

Supplementary Figure S3: Deletion of β -oxidation and storage lipid formation in octanoic acid producing strians. (A) Growth and (B) octanoic acid production of strain with deletion in genes relevant for β -oxidation (*POX1*) and storage lipid formation (*ARE2*, *DGA1*). Samples were taken after 48 h of fermentation. Values represent mean and standard deviation of two biological replicates.

Supplementary Figure S4: Comparison of two different PTAs. (A) Growth, (B) OA production and (C) specific titers of a control strain (LBY38) or strains either expressing a PTA from *Bacillus subtilis* (^{BS}PTA) or *Salmonella enterica* (^{Se}PTA). Samples were taken after 48 h. Values show mean and standard deviation of two biological replicates.

Supplementary Figure S5: Octanoic acid production from glucose or ethanol in high OD fermentations compared to low OD fermentations. Strains LBY38 (A and B) or FWY45 (C and D) were inoculated to an OD of 0.1 (low OD, dashed lines) or 8.0 (high OD, solid lines) in potassium buffered YPD media containing either 0.1 mol/L (20.0 g Γ^1 glucose (black) or 0.2 mol Γ^1 (9.3 g Γ^1) ethanol (violet). Samples show mean and standard deviation of two biological replicates.

References

Brat, D., Weber, C., Lorenzen, W., Bode, H. B., & Boles, E. (2012). Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. *Biotechnology for Biofuels, 5.*

Demeke, M. M., Dietz, H., Li, Y., Foulqui-Moreno, M. R., Mutturi, S., Deprez, S., . . . Thevelein, J. M. (2013). Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. *Biotechnology for Biofuels*, *6*.

Farwick, A., Bruder, S., Schadeweg, V., Oreb, M., & Boles, E. (2014). Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. *Proceedings of the National Academy of Sciences of the United States of America*, 5159–5164. https://doi.org/10.1073/pnas.1323464111

Schadeweg, V., & Boles, E. (2016). Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. Biotechnology for Biofuels, 9, 257. https://doi.org/10.1186/s13068-016-0673-0

Taxis, C., & Knop, M. (2006). System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. *BioTechniques*, *40*, 73–78. https://doi.org/10.2144/000112040

Wernig, F., Born, S., Boles, E., Grininger, M., & Oreb, M. (2020). Fusing α and β subunits of the fungal fatty acid synthase leads to improved production of fatty acids. *Scientific Reports*, 9780. https://doi.org/10.1038/s41598-020-66629-y