
Supplementary Material: Interpretation of
Point Forecasts with Unknown Directive

Patrick Schmidt*

University of Zurich, Zurich, Switzerland

Matthias Katzfuss
Texas A&M University, College Station, USA

Tilmann Gneiting
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

Karlsruhe Institute of Technology, Karlsruhe, Germany

December 6, 2020

*Address for correspondence: Patrick Schmidt, University of Zurich, Rämistrasse 71, 8006 Zürich, Switzer-
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S1 Identifying moment conditions

Consider the probability space (Ω,A,P), where the elements of the sample space Ω are

tuples that comprise the point forecast X, the realization Y , and a covariate vector Z. We

assume that the information set F is a sub-σ-algebra of A. If no measure is explicitly

mentioned, statements like almost surely refer to P. For random variables R1 and R2, we

simply write R1 = R2 instead of R1 = R2 almost surely. In particular, statements like

X = α(Y | F) denote P-almost sure properties. As defined in Section 2 of the main paper

standard measurability and integrability conditions are denoted R ∈ FQ and R ∈ F .

Before proceeding to our main results on identifying moment conditions, we state an

elementary measure-theoretic equivalence.

Lemma 1 For every integrable random variable U ,

E(U | F) = 0 ⇐⇒ E[UW ] = 0 for all W ∈ FU .

Proof: The implication from left to right is immediate from Theorem 34.3 in Billingsley

(1995). For the reverse implication let W be the indicator function of any event A in the

information set F , to yield
∫
A
E(U | F) dP = 0 for all A ∈ F , which implies E(U | F) = 0

by a standard argument. �

We now consider the τ -quantile functional qτ and the τ -expectile functional eτ , which

includes the special case τ = 1
2

of the mean-functional. The following assumptions ensure

that the functional is single-valued and well defined.

AQ The conditional distribution L(Y | F) is absolutely continuous with a strictly increas-

ing cumulative distribution function almost surely.

AE The conditional distribution L(Y | F) has finite mean and positive variance almost

surely.

Lemma 2 (quantiles) Under condition AQ the function Vτ (x, y) = 1(x ≥ y)− τ identifies

the optimal τ -quantile forecast, i.e.,

X = qτ (Y | F) ⇐⇒ E[(1(X ≥ Y )− τ)W ] = 0 for all W ∈ F .
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Proof: For every ω ∈ Ω the definition of the τ -quantile implies that x = qτ (Y | F)(ω) ⇐⇒

E[Vτ (x, Z)] = 0, where Z ∼ L(Y | F)(ω) ∈ P . In terms of the F -measurable random variable

X this equality can be stated as X = qτ (Y | F) ⇐⇒ E[Vτ (X, Y ) | F ] = 0. The stated

equivalence is now immediate from Lemma 1. �

Lemma 3 (expectiles) Under condition AE the function Vτ (x, y) = |1(x ≥ y)− τ |(x− y)

identifies the optimal τ -expectile forecast, i.e.,

X = eτ (Y | F) ⇐⇒ E[|1(X ≥ Y )− τ |(X − Y )W ] = 0 for all W ∈ FY−X .

The proof is essentially the same as in the case of quantiles. Very similar results are

stated in Section 2 of Elliott et al. (2005) under the further assumption that X is a linear

function in W .

The next and final result in this section is a variant of findings in Steinwart et al. (2014),

and we follow the terminology used in their paper. In particular, topological statements

on the space of probability distributions with bounded Lebesgue measures are with respect

to the metric induced by the L1-norm. The conditions on the functional α are met if it is

defined via a continuous, nontrivial loss function, for continuity follows from the Maximum

Theorem (e.g., Ok 2007, p. 229), and functionals defined via loss functions have convex level

sets (Osband 1985, Gneiting 2011).

Lemma 4 Let P be a convex set of probability measures with bounded Lebesgue densities

such that L(Y | F) ∈ P almost surely, and suppose that the functional α : P 7→ R is

continuous and locally nonconstant with convex level sets. Then there exists a measurable

function Vα that identifies the optimal α-forecast, i.e.,

X = α(Y | F) ⇐⇒ E[Vα(X, Y )W ] = 0 for all W ∈ FVα(X,Y ).

Proof: By Theorem 8 in Steinwart et al. (2014) there exists a function Vα such that for all

P ∈ P it holds that t = α(P ) ⇐⇒ EY∼P [Vα(t, Y )] = 0. Using the same arguments as in

the proof of Lemma 2, we see that

X = α(Y | F) ⇐⇒ E[Vα(X, Y ) | F ] = 0,

and an application of Lemma 1 completes the proof. �
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S2 Asymmetric and state-dependent functionals

We argue that the commonly used mean functional is unsatisfactory in many situations, and

that there is a need for asymmetric and state-dependent functionals.

The work of Ehm et al. (2016) attaches economic meaning to quantiles and expectiles: An

agent facing the decision whether or not to invest in a certain project can identify the profit-

maximizing strategy with knowledge of only a quantile or expectile of the profit distribution.

Asymmetry arises e.g. in the context of tax credits for losses. If the level of tax reduction

depends on profits or other time-dependent covariates, the optimal decision is a function of

a state-dependent expectile. In household consumption, Andersen et al. (2008) find state-

dependent risk preferences with respect to personal finances. Patton & Timmermann (2007b)

argue that the Greenbook gross domestic product (GDP) forecasts are optimal with respect

to an asymmetric loss function, where the level of asymmetry depends on the current growth

level.

There is a vast literature arguing for the use of asymmetric loss functions (e.g., Skouras

2007, Christoffersen & Diebold 1996, 1997). For general classes of data-generating processes

that allow for varying conditional means and variances but assume a constant shape of the

innovation distribution, Patton & Timmermann (2007a) show that asymmetric loss leads to

an optimal point forecast that is a quantile of the predictive distribution. If we allow that

the shape of the innovation distribution varies, the level of the quantile may depend on a

state variable.

Another source of asymmetric and state-dependent functionals is asymmetric informa-

tion. Even under the symmetric mean-forecast, asymmetric information may lead to asym-

metric and state-dependent functionals relative to the information set of the forecast user.

As an example, consider the data-generating process

Yt = Zf
t + Zu

t + εt,

where the value of the random variable Zf
t is known exclusively to the forecaster. The random

variable Zu
t has a mean of zero, and its value is known exclusively to the forecast user. The

innovation εt has distribution F with a mean of zero, and its value is unknown to both
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agents. All three variables are independent. The forecaster issues the optimal mean-forecast

Xt = E[Yt | Zf
t ] = Zf

t .

Under the information set of the forecast user, which is generated by Zu
t and Xt, the point

forecast Xt can be interpreted as a state-dependent quantile at level

P(Yt ≤ Xt | Zu
t , Xt) = P(Zf

t + Zu
t + εt ≤ Zf

t | Zu
t , Xt)

= P(εt ≤ −Zu
t | Zu

t )

= F (−Zu
t ).

Therefore, under asymmetric information even a standard mean-forecast may become asym-

metric and state-dependent.

Finally, optimal point forecasts that are asymmetric and state-dependent can arise through

transformations. For a simple example, consider a mean-forecast X = E[Y ] for a strictly

positive variable, which undergoes a logarithmic transformation and is communicated to the

forecast user as X ′ = logX. It is well known that the transformed forecast X ′ does not

constitute an optimal mean-forecast for Y ′ = log Y , as E[Y ′] = E[log Y ] < log (E[Y ]) = X ′

by Jensen’s inequality unless the law of Y is a point measure. The asymmetry level of the

optimal mean-forecast for Y ′ depends on the spread of the predictive distribution, and so it

can become asymmetric and state-dependent.

S3 State-dependent quantiles and expectiles

State-dependent quantile and expectile forecasts arise implicitly in essentially universal ways.

Suppose that L(Yt | Ft) is continuous with a strictly positive density on its support. Irre-

spectively of any rationality assumptions, for any forecast Xt that is Ft-measurable and in

the support of L(Yt|Ft), there exists an Ft-measurable function τt such that

Xt = qτt(Yt | Ft). (S1)
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The same argument can be applied to the expectile model, in that there exists an Ft-

measurable function υt such that

Xt = eυt(Yt | Ft). (S2)

While in general τt and υt remain implicit, they can be made explicit under additional

assumptions.

Specifically, let Fµ,σ denote a probability measure with cumulative distribution function

(CDF)

Fµ,σ(x) = Φ

(
x− µ
σ

)
for x ∈ R, where Φ is the CDF of a fixed random variable with mean zero and variance one.

Suppose that the shape of the correctly specified predictive distribution is time-invariant, so

that

L(Yt | Ft) = Fµt,σt , (S3)

where µt and σt are real-valued and strictly positive Ft-measurable random variables, respec-

tively. In other words, the conditional distributions L(Yt | Ft) are all members of a given

location-scale family.

In the case of quantiles we suppose furthermore that Φ is absolutely continuous with a

strictly positive density. If (S3) holds and Xt is in support of L(Yt | Ft), then

τt = Φ

(
Xt − µt
σt

)
(S4)

in (S1). For a particularly instructive example, suppose that the time series Yt is generated by

a stationary autoregression with mean µ, autoregressive parameters α1, . . . , αp, and Gaussian

innovation with variance σ2. If the point forecast Xt is the mean of the predictive distribution

under the correct autoregressive specification and order, but using incorrectly specified (e.g.,

estimated) parameters µ̂, α̂1, . . . , α̂p, and σ̂2, then Xt is a state-dependent quantile under a

specification model that is linear in the most recent observations Yt−1, . . . , Yt−p with a probit

link function. If the autoregression is of order p = 1 then Yt−1 and Xt are affine functions of

each other, and the model is linear in either of these variables.
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Generally, suppose that the specification model is linear in the point forecast, so that

τt = Φ(θ0 + θ1Xt) for time-independent constants θ0 and θ1. We can then solve (S4) for the

point forecast Xt, to yield the closed form solution

Xt =
µt + θ0σt
1− θ1σt

, (S5)

provided that θ1σt 6= 1. This relation can be employed usefully to simulate from the linear

specification model as exemplified in Section S8 below.

In the case of expectiles, if (S3) holds and Xt is in support of L(Yt | Ft) then

υt = Ψ

(
Xt − µt
σt

)
in (S2), where the function Ψ can be expressed in terms of the standardized CDF Φ as

Ψ(x) =
P (x)− xΦ(x)

2(P (x)− xΦ(x)) + x

for x ∈ R, with P (x) =
∫ x
−∞ z dΦ(z) being the partial moment function. Interestingly,

Jones (1994) showed that Ψ is also a CDF, whence every state-dependent quantile is a

state-dependent expectile for a transformed conditional distribution and vice versa.

S4 Consistency of the GMM estimator

In order to establish consistency for the GMM estimator (3) in Section 3 of the main paper,

we extend the probability space (Ω,A,P) to the dynamic prediction space setting of Strähl &

Ziegel (2017) and apply classical GMM theory (Hansen 1982). As noted, statements about

all time points t ∈ Z are typically written without subscripts. We define u = (x, y, s) and

denote the identification function by V (u, θ), where V (u, θ) = 1(y ≤ x)−m(s, θ) in the case

of quantiles and V (u, θ) = |1(y ≤ x)−m(s, θ)|(x− y) in the case of expectiles.

We employ the following assumptions.

B1 The stochastic process (Ut,Wt) is strictly stationary and ergodic.

B2,Q The components of the instrument vector W have finite first moment.
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B2,E The components of the vector (X − Y )W have finite first moment.

B3 The parameter space Θ ⊆ Rp is compact, and the specification model m(s, θ) is con-

tinuous on Θ for all s and Borel measurable for each θ ∈ Θ.

B4 The specification model is uniquely identified by the instrument vector W , i.e.,

E[V (U, θ)W ] = 0 ⇐⇒ θ = θ∗.

B5 The weighting matrix MT converges almost surely to a constant matrix with full rank.

Concerning the unique identification condition B4, general insights apply, in that a speci-

fication model with p parameters calls for an instrument vector of dimension q ≥ p. Consider

for example a univariate model m(s, θ) that is strictly monotone in θ for all s. As the identi-

fication functions of quantiles and expectiles are oriented, the trivial (constant) instrument

suffices for unique identification; cf. Elliott et al. (2005, Proposition 1).

For another example, let

m(s, θ) = θ′s =

p∑
i=1

θisi

for s = (s1, . . . , sp)
′ with components that are pairwise uncorrelated and have positive vari-

ances. This näıve linear specification model operates under severe constraints on the domain

of the parameters and the state variables, but is attractive from the perspective of inter-

pretation. Under the quantile model the identification function satisfies V (u, θ) = 1(y ≤

x)−m(s, θ) and so it holds that E[V (U, θ) | F ] = (θ∗ − θ)′S and, consequently,

E[V (U, θ)W ] = 0 ⇐⇒ (θ∗ − θ)′ E

[(
p∑
i=1

Si

)
W

]
= 0.

As E[S2
i ] +

∑k
j=1,j 6=i E[SiSj] = E[S2

i ] > 0 for i = 1, . . . , p, condition B4 is satisfied when

W = S.

Generally, a specification model is uniquely identified if the instrument vector W gen-

erates the information set F and m(S, θ) = m(S, θ∗) only if θ = θ∗. To see this, note

that

E[(V (U, θ)− V (U, θ∗))W ] = E[E[V (U, θ)− V (U, θ∗) | F ]W ] = 0
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in concert with σ(W ) = F implies E[V (U, θ) − V (U, θ∗)) | F ] = 0. For quantile models it

holds that E[V (U, θ)− V (U, θ∗) | F ] = m(S, θ)−m(S, θ∗), so θ = θ∗, which implies B4. For

expectile models E[V (U, θ) − V (U, θ∗) | F ] = (m(S, θ) − m(S, θ∗))E[X − Y | F ], whence

θ = θ∗ under the further condition that X is not the optimal mean-forecast.

For a first step estimator with the identity matrix as weighting matrix condition B5 is

trivially satisfied. Corollary 1 in Section S5 provides sufficient conditions for the consistency

of the HAC estimator (Newey & West 1987) of the covariance matrix of the moment function,

which implies B5 for a sub-sequence of the inverse of the HAC matrix in the efficient two-step

procedure.

Theorem 1 (Consistency) If Xt is an optimal state-dependent quantile, i.e.,

Xt = qm(St,θ∗)(Yt | Ft)

with some Ft-measurable state variable St, conditions AQ, B1, B2,Q, B3, B4, and B5 guarantee

existence and almost sure convergence of the GMM estimator. Analogously, if Xt is an

optimal state-dependent expectile, conditions AE, B1, B2,E, B3, B4, and B5 yield existence

and almost sure convergence.

Proof: It suffices to verify the conditions of Theorem 2.1 in Hansen (1982), namely, As-

sumptions 2.1–2.5, (i), (ii), and (iii). Assumption 2.1 follows from B1 as g(θ) = V (u, θ)w is

a function of finitely many, jointly stationary and ergodic variables. Assumptions 2.2 and

2.3 are immediate from B3, Assumption 2.4 is guaranteed by B2,Q or B2,E along with B4 as

|g(θ)| is bounded by |w| in the case of quantiles and |(x − y)w| in the case of expectiles,

and Assumption 2.5 follows from B5. Finally, an application of Lemma 2.1 in Hansen (1982)

under B2,Q or B2,E establishes (i), B3 yields (ii), and B4 and B5 guarantee (iii). �

S5 Asymptotic normality of the GMM estimator

Drawing again on well established GMM theory (Hansen 1982), we proceed to state suffi-

cient conditions for consistent covariance estimation and asymptotic normality of the GMM
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estimator. As before, we consider the function g(θ) = V (u, θ)w as a mapping from Θ ⊆ Rp

into Rq. Consistency is now understood in the sense of convergence in probability.

C1 The stochastic process (Ut,Wt) is strictly stationary with mixing coefficients αm of

order O(m−s) for some s > 2.

C2,Q There exists δ > 0 such that the components of the instrument vector W have finite

absolute moment of order 4 + δ.

C2,E There exists δ > 0 such that the components of the vector (X − Y )W have finite

absolute moment of order 4 + δ.

C3 The true parameter value θ∗ is in the interior of Θ.

C4 The derivative m(θ)(s, θ) exists is bounded and locally Lipschitz continuous at θ∗ uni-

formly in s, i.e. there exists δ > 0 such that |m(θ)(s, θ) −m(θ)(s, θ∗)| ≤ K|θ − θ∗| for

all s and all θ with |θ − θ∗| < δ.

C5 The matrix G = E[g(θ)(θ∗)] exists, is finite, and has full rank.

C6 The weighting matrix MT converges in probability to a constant matrix M with full

rank.

C7 The matrix E[1(X 6= Y )WW ′] exists, is finite, and has full rank.

As compared to the assumption of stationarity and ergodicity in B1, condition C1 en-

forces stationarity and α-mixing, which implies ergodicity (White 2014, Proposition 3.44).

The stronger condition is essential, as asymptotic normality fails generically under data gen-

erating processes with long memory (Beran 1994). Assumptions B1 and C1 are satisfied if

the forecast and the state variable are functions of finite inputs only (e.g., based on rolling

windows of data), subject to the respective stationarity and mixing conditions (cf. Giacomini

& White 2006). The moment constraints in C2,Q and C2,E can be weakened at the expense

of stronger mixing conditions (Hansen 1992), as generally any loosening of the regularity

conditions tends to require balancing.
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Theorem 2 (Asymptotic normality) For an optimal state-dependent quantile and a con-

sistent GMM estimator of the form in (3), conditions AQ, C1, C2,Q, C3, C4, C5, and C6

guarantee asymptotic normality with asymptotic covariance matrix

(
GM−1G′

)−1 (
GM−1ΣM−1G′

) (
GM−1G′

)−1′
. (S6)

Analogously, for an optimal state-dependent expectile and a consistent GMM estimator con-

ditions AE, C1, C2,E, C3, C4, C5, and C6 yield the same conclusion.

Proof: The assumption of consistency along with C4 guarantee that the GMM estimator θ̂T

in (3) satisfies Definition 3.1 of Hansen (1982). Therefore, it suffices to verify the conditions

of Theorem 3.1 of Hansen (1982), namely, Assumptions 3.1–3.6, with conditions C1, C3,

and C4 covering Assumptions 3.1, 3.2, and 3.3, respectively. Conditions C2,Q or C2,E along

with C4 and C5 imply Assumption 3.4. Lemma 3.2 in Hansen (1982), C5, and C6 yield

Assumption 3.6.

We proceed to verify Assumption 3.5. For ease of notation, let gt = gt(θ∗) and let It−j
be the σ-algebra generated by gt−j, gt−j−1, . . . Then E[gtg

′
t] exists and is finite by C2,Q or

C2,E respectively. The same conditions along with the mixing inequalities in Lemma 1.3 of

Ibragimov (1962) or Theorem 14.2 of Davidson (1994), applied with p = 2 and q = 4, imply

that E[gt | It−j] → 0 as j → ∞ in mean square. Letting vj = E[gt | It−j] − E[gt | It−j−1],

it remains to be shown that
∑∞

j=0 E[v′jvj]
1/2 is finite, which follows from the aforementioned

mixing inequality in concert with the triangle and Hölder’s inequalities.

We may now invoke Theorem 3.1 of Hansen (1982), which shows that
√
T (θ̂T − θ∗) →

Np(0, V ) as T →∞, where V = (GM−1G′)−1 (GM−1ΣM−1G′) (GM−1G′)−1
′
, as stated. �

In particular, Theorems 1 and 2 guarantee the consistency and asymptotic normality of

the first step GMM estimator, for which the unit matrix serves as weighting matrix. We

proceed to apply the latter result in order to demonstrate the asymptotic distribution (4)

of the efficient two-step GMM estimator θ̂T based on a consistent first step estimator θ̂1T

and an associated heteroskedasticity and autocorrelation consistent (HAC, Newey & West

1987) estimator ΣT of the covariance matrix Σ, with Σ−1T serving as weighting matrix. This
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requires condition C7, which in the case of quantiles reduces to the standard assumption that

the matrix E[WW ′] has full rank, given that AQ implies X 6= Y almost surely. In the case

of expectiles C7 generally is neither necessary nor sufficient for E[WW ′] to have full rank.

Corollary 1 (Two-step GMM with HAC covariance estimator) For an optimal

state-dependent quantile and a consistent GMM estimator θ̂1T , conditions AQ, C1, C2,Q,

C3, C4, and C5 guarantee the consistency of the HAC estimator ΣT that is based on θ̂1T .

If furthermore condition C7 holds true, the two-step GMM estimator θ̂T is asymptotically

normal with asymptotic covariance matrix (GΣ−1G′)
−1

.

Analogously, for an optimal state-dependent expectile and a consistent GMM estimator

θ̂1T , conditions AE, C1, C2,E, C3, C4, and C5 guarantee the consistency of the HAC estimator.

If furthermore condition C7 holds true, the two-step GMM estimator θ̂T is asymptotically

normal with asymptotic covariance matrix (GΣ−1G′)
−1

.

Proof: We first show that the HAC estimator ΣT is consistent for Σ by verifying the

conditions of Theorem 2 in Newey & West (1987), namely, Assumptions (i), (ii), (iii), (iv),

and (v). Assumptions (i) and (ii) are guaranteed by C2,Q or C2,E along with C4. Assumption

(iii) is immediate from C1, and to verify (iv) we apply Theorem 2. By our implementation

choices, (v) is trivially satisfied. Thus, the HAC estimator is consistent for Σ. In the case

of expectiles we have Σ = E[(1(Y ≤ X)−m(S, θ∗))
2 (X − Y )2WW ′]. If δ′Σδ = 0 for some

δ ∈ Rq, then (1(Y ≤ X)−m(S, θ∗))
2(X − Y )2|W ′δ|2 = 0 almost surely, which implies δ = 0

in view of condition C7, whence Σ has full rank. In the case of quantiles a similar argument

applies.

Therefore, Σ−1T is consistent for Σ−1, and we may apply Theorem 2 to the efficient two-step

estimator θ̂T with weighting matrix MT = Σ−1T . Invoking (S6) we see that θ̂T is asymptoti-

cally normal with asymptotic covariance matrix (GΣ−1G′)
−1

. �
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S6 Conditional distributions under information rigidi-

ties

Under the data-generating process (7) in Section 4 of the main paper,

Yt = 1
2
Yt−1 + σtεt = 1

4
Yt−2 + 1

2
σt−1εt−1 + σtεt.

Conditioning on It−2 yields E[Yt | It−2] = 1
4
Yt−2. Furthermore, L(Yt | It−2) is symmetric, so

q1/2(Yt | It−2) = E[Yt | It−2] = 1
4
Yt−2.

S7 State-independent forecasts under different infor-

mation sets: Additional results

In this section, we provide additional results under the simulation setting in Section 4.1 of

the main paper.

First, we assess the finite-sample relevance of the asymptotic distribution (4) of the

GMM estimator, as discussed in Sections 3.2 and S5. Specifically, consider the linear quantile

specification model with the point forecast Xt of eq. (8) as state variable. The true parameter

values in this setting are θ0 = 0.10 and θ1 = 0.25. Figure S1 illustrates the empirical

distribution of the GMM estimates based on sample paths of size T = 100, 250, and 1000,

respectively. There is good agreement with the large sample approximation.

Figure S2 is the equivalent of Figure 3 in the main paper, except that our tests are now

based on expectile models. Figure S3 shows results from the same experiment, but with the

quantile- and expectile-based tests now using the same high-dimensional instrument vector

as for the spline approach. While we discourage doing so in small samples, the quantile- and

expectile-based tests show the desired asymptotic behaviour, whereas the spline test does

not.

Similarly, Figure S4 is the equivalent of Figure 4 in the main paper, but our tests are now

based on quantile models. State-dependent optimality allows for a broad class of forecasting

behavior, and therefore the linear test can be expected to detect suboptimal forecasts at
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Figure S1: Empirical distribution of the GMM estimate under the linear quantile specifica-

tion model based on sample paths of size T = 100, 250, and 1000 from (7) and (8). The

scatterplot shows estimates of θ = (θ0, θ1)
′ along with the respective 90% ellipsoids from

the large sample approximation. The true parameter values are at the center of the cross.

The boxes at top and right range from the 5th to the 95th percentile of the estimates, as

compared to the large sample approximation (bars).

a constant level less often than the more specific constant test. Perhaps surprisingly, in

this setting the additional degree of freedom in the state-dependent linear test does not

lead to a decrease in finite-sample power. Finally, Figure S5 shows the results from the same

experiment, but with the quantile- and expectile-based tests using the same high-dimensional

instrument vector as for the spline approach. While at small sample sizes, the quantile- and

expectile-based tests are undersized and less powerful than under the three-dimensional

instrument vector, they exhibit much higher size-adjusted power than the spline-based test.

S8 State-dependent quantile forecasts in terms of Xt

In Section 4.2 of the main paper we construct optimal state-dependent quantile-forecasts

based on break, linear, and periodic specification models in the state variable Yt−1, and we

investigate the size and power of overidentifying restrictions tests for forecast optimality

under the respective models. Table S1 in this supplement considers the case where the
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Figure S2: Same as Figure 3 in the main paper, but with our tests now based on expectile

models: Size of optimality tests for the one-step ahead forecast. The horizontal line is at the

nominal level of 0.10.
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Figure S3: Same as Figures 3 and S2, but with the quantile- and expectile-based tests now

using the same seven-dimensional instrument vector as for the spline test.
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Figure S4: Same as Figure 4 in the main paper, but with our tests now based on quantile

models: Size and size-adjusted power of optimality tests for the two-step ahead forecast.

The horizontal line is at the nominal level of 0.10. The solid lines represent size for tests

with properly lagged instruments. The dashed lines represent size-adjusted power for tests

with nonlagged instruments.
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Figure S5: Same as Figures 4 and S4, but with the quantile- and expectile-based linear tests

now using the same seven-dimensional instrument vector as for the spline test.
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Table S1: Rejection rates of optimality tests based on quantile specification models in the

state variable Xt, when the true model is linear. The nominal level is 0.10, and the test

uses the instrument vector Wt = (1, Yt−1, Xt)
′ or Wt = (1, Yt−1, Yt−2)

′, respectively. Settings

where the null hypothesis is naturally satisfied are marked in gray.

hypothesized model

sample Wt = (1, Yt−1, Xt)
′ Wt = (1, Yt−1, Yt−2)

′

size linear break periodic linear break periodic

T = 100 0.10 0.18 0.17 0.10 0.09 0.09

T = 250 0.11 0.34 0.43 0.10 0.10 0.10

T = 1000 0.12 0.74 0.94 0.10 0.10 0.11

state variable in the linear quantile specification model is the point forecast Xt, rather than

the most recent outcome, Yt−1, while all other facets of the data generating process, the

GMM estimator and the test are retained. Optimal state-dependent forecasts at a level that

depends on Xt are generally defined implicitly only. However, under the linear specification

model simple closed form expressions are available, as detailed in equation (S5). Again,

the optimality test is well calibrated and depends crucially on the choice of the instrument

vector.

S9 State-dependent forecasts under different specifica-

tion models: Results for tests based on expectiles

As noted, Section 4.2 of the main paper considers optimal state-dependent quantile-forecasts

based on break, linear, and periodic specification models in the state variable Yt−1. In

this supplementary section, we retain the data generating process, and the hypothesized

specification models are still the break, linear, and periodic models, but now expressed in

terms of expectiles rather than quantiles.
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Table S2: Rejection rates of expectile and quantile optimality tests in the setting of Section

4.2 with instrument vector Wt = (1, Yt−1, Xt)
′. Settings where the null hypothesis is satisfied

are marked in gray.

true model hypothesized model

sample quantile expectile quantile

size linear break periodic linear break periodic

linear 0.09 0.30 0.38 0.10 0.23 0.36

T = 100 break 0.35 0.12 0.07 0.28 0.11 0.08

periodic 0.73 0.37 0.06 0.65 0.30 0.07

linear 0.10 0.63 0.83 0.11 0.42 0.87

T = 250 break 0.65 0.12 0.16 0.52 0.10 0.15

periodic 0.99 0.71 0.07 0.96 0.58 0.09

linear 0.10 0.98 0.99 0.11 0.86 1.00

T = 1000 break 0.99 0.10 0.68 0.96 0.10 0.44

periodic 1.00 1.00 0.09 1.00 0.99 0.10

Results for both the expectile- and quantile-based tests of forecast optimality with in-

strument vector Wt = (1, Yt−1, Xt)
′ are presented in Table S2. If the type of the model is

correctly specified, the quantile-forecasts do not get rejected by the expectile-based tests;

in fact, the expectile tests are nearly as calibrated as and slightly more powerful than the

quantile tests.

As shown in Section S3, for any given distribution, the quantile at a given level is simply

an expectile at another level. For state-dependent forecasts this implies the existence of a

specification model m′(s) such that qm(s)(Y | F) = em′(s)(Y | F). The transformation from

m to m′ depends on the conditional predictive distribution, but remains the same within

location-scale families (Yao & Tong 1996, Proposition 1), such as in our simulation setting,

where all conditional distributions are Gaussian. Therefore, the transformation is static,

and for the break model, which specifies two levels only, the choice of quantiles versus ex-
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pectiles affects the implementation of the test, but not the model itself. Jones (1994) notes

that the expectiles for the standard normal distribution are closely approximated by the

quantiles of a normal distribution with standard deviation 2
3
. Thus, the linear and periodic

quantile forecasts are approximately linear and periodic expectile forecasts with scaled pa-

rameters. Generally, increased flexibility in the specification model makes the distinction

between models in terms of quantiles and expectiles harder and potentially superfluous.
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