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Chapter 1

Introduction and main results

1.1 Introduction

In naturally reproducing populations one usually encounters an average number
of more than one offspring per individual. However, given non-extinction, classi-
cal supercritical branching processes grow beyond all bounds. This is unrealistic
because of bounded resources.

An efficient counteraction to unbounded population growth is achieved by a
population-size dependent regulation of the reproduction dynamics. An example
is the so called logistic branching process (Lambert [23]) in which, in addition to
the “natural” births and deaths in a supercritical branching mechanism, there are
deaths resulting from a competition between any two individuals in the population.
In Feller’s diffusion limit, this leads to a negative drift term which is proportional
to the squared population size. To be more precise, for N > 1 and b,d,~, 5 > 0,
let (Z]);>0 be a pure birth-death process with state space Ny where each particle
splits into two particles at rate § + %, each particle dies at rate 5 + % and each
ordered pair of particles coalesces into one particle at rate 3. All these events

occur independently of each other. If % converges weakly to Zy as N — oo then
N

(Zt_N>t20 converges weakly to (Zt) as N — oo where (Z;)¢> is the solution of

N t>0

(1.1) dZ; = (b—d)Z,dt — yZ? dt + \/287Z,dB;.

Here, (By):>o is a standard Brownian motion. See Section 4.4 for the proof of
a similar convergence. The square in (1.1) prevents the population size from
escaping to co. However, the process (Z;):>o converges weakly to zero as t — oo.

An attempt to combat this extinction is to consider infinite populations mod-
eled by a spatially extended version of the logistic branching process, with sub-
populations living in discrete demes arranged in the d-dimensional lattice Z¢, and
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with a (homogeneous) migration between the demes. This leads to the following
system X = (Xi)i>0 = (X4(4))i>0,ieza of interacting Feller diffusions with logistic
growth where X,(i) € [0,00) denotes the population size of deme i € Z¢ at time
t>0:

dX,(i) =a | Y m(i, j)X,(j) — X,(i) | dt

+ X (i) (K — Xo(i))dt + /28X, (1) dBy(i) i€ Z%

Here, the B(7) are independent standard Brownian motions, m is the transition
matrix of a random walk on Z?, and «, 3,7 are nonnegative constants describing
the rates of migration, branching and competition, respectively. The constant
K > 0is called the capacity; it is the ratio of the coefficient of supercriticality, vK,
and the competition rate . Interacting Feller diffusions with logistic growth are a
prototype example for interacting locally regulated diffusions which we introduce
below.

Models with competition have been studied by various authors: Mueller and
Tribe [26] and Horridge and Tribe [16] investigated an SPDE analogue of (1.2),
with d = 1 and R! instead of Z', and Etheridge [10], motivated by the work of
Bolker and Pacala [3], investigated system (1.2) and its measure-valued analogue
(with Z< replaced by R?). These models also include long range competition. We
emphasize that our methods make use of the fact that the interactions due to
competition are solely within the same lattice site.

A central question of this thesis is whether the solution (X;):>o of (1.2) suffers
extinction as ¢ — oo. First of all, we clarify what we mean by “extinction”. We
say that (X;)i>o suffers local extinction if (X;)i>o converges weakly to the zero
configuration as t — oo. For this, let the topology on [0, oo)Zd be given by the
product topology. Furthermore, we speak of global extinction if (| X;|)¢>0 converges
weakly to zero as t — oo. Throughout the thesis, |z| := >, ;4 z; denotes the

(1.2)

total mass of z € [0, oo)Zd. Notice that global extinction implies local extinction.
Furthermore, the two notions local extinction and global extinction would coincide
if Z¢ was replaced by a finite set. In the context of local extinction, it is typically
assumed that the law of X is translation invariant. For global extinction, we
assume that | X,| < oo almost surely.

Using arguments from oriented percolation, Etheridge [10] shows that system
(1.2) and also similar systems with non-local competition, when started from a
spatially homogeneous initial state, do not suffer local extinction provided the
capacity K is large enough. On the other hand, it was shown in the same paper
by a coupling and comparison with subcritical branching (similar as in Mueller
and Tribe [26]) that a measure-valued analogue of (1.2) with certain non-local
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competition mechanisms suffers local extinction. The question whether lattice-
based systems like (1.2) suffer local extinction for suitably small K remained
open. In Chapter 2, we answer this question in the affirmative for the system (1.2)
(Theorem 2). More precisely, we specify a strictly positive constant K such that
for all capacities K < K system (1.2) suffers local extinction. The constant K is
the unique solution of

(1.3) /0 exp (Kvy — ?gf) -aexp (—ay) dy =1

and depends on the rates «, 3 and 7 of migration, branching and competition,
respectively, but is uniform in all dimensions d and migration matrices m.

The second main result of Chapter 2 concerns convergence of (X;);>o ast — oo.
We construct the maximal process X () which is the solution of (1.2) entering
from infinity at time 0 (Theorem 1). An important property of X (> is that this
process dominates every solution of (1.2) in a stochastic order to be introduced
below. As time tends to infinity, (Xt(oo))tzo converges monotonically in distribution
to the upper invariant measure of (1.2). In Theorem 5, we prove ergodic behaviour
of the process (X;):i>0 as t — oo, that is, the process forgets its initial configuration
as t — oo. More precisely, we show that the solution (X;);> of (1.2), when started
in a translation invariant nontrivial initial state, converges weakly to the upper
invariant measure as t — oo. For the proof, we will exploit the following self-
duality. Let X be the solution of (1.2) with parameters o, 3, > 0 and migration
matrix m and let XT be the solution of (1.2) with parameters a, 3,y and migration
matrix m! which is the transpose of m. Theorem 3 states that

(1.4) E£exp (—%(Xt,@) = EZexp (—%@7 XD) VreE;,ye€ E,:,

where the state spaces E, and E, i will be defined in Section 1.2. Throughout
the thesis, superscripts as in LY, PY or EY refer to the initial configuration of a
process.

Self-duality was used to prove ergodicity by other authors, e.g. Horridge and
Tribe [16] and Athreya and Swart [2]. In the latter paper, self-duality was estab-
lished for the resampling selection model which is the solution of (1.2) where the
Feller term /23X,(i) is replaced by the Fisher-Wright term 1/28X,(:)(1 — X,(i))
and where K < 1. Furthermore, Athreya and Swart study a branching coalesc-
ing particle model which in Feller’s diffusion limit leads to the solution of (1.2).
For both models, they prove existence of the maximal process and of the upper
invariant measure.

We obtain the local extinction result and the result about existence of the
maximal process and of the upper invariant measure for a more general class
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of interacting locally regqulated diffusions. The system of stochastic differential
equations we consider is

dX,(i) =a (Z m(i, §) X, () — Xt@')) dt

+ h(Xi(2))dt + \/2-9(X:(i)) dBy(i), i€ G,

where G is an at most countable Abelian group. Notice that the two models (1.2)
and (1.5) coincide in the case G = Z¢, h(x) = yo(K — z), g(x) = Bz. We will
specify an appropriate state space, namely the Liggett-Spitzer space E, C [0, 00)¢,
in Section 1.2 and sufficient conditions on the regulation function h: [0,00) — R
and on the diffusion function g: [0,00) — [0, 00) for existence and uniqueness of
the process X in Proposition 1.2.1. Figure 1.1 and 1.2 show generic examples for
a regulation function and for a diffusion function, respectively.

(1.5)

h(y) aly) /
0 y f
\I 0 y
Figure 1.1: A generic example for a reg- Figure 1.2: A generic example for a dif-
ulation function. fusion function.

The name “interacting locally regulated diffusions” derives from “interacting
diffusions” which denotes the solution of (1.5) in the case h = 0. Interacting dif-
fusions have been studied by various authors, among others: Cox and Greven [4],
Cox, Fleischmann and Greven [5], Greven, Klenke and Wakolbinger [12]. The
process (X;)i>o is “locally regulated” because the regulation term h(X(i)) de-
pends on X; only through the local population size X, (7). If h(X;(7)) in (1.5) was
replaced by h;(X;) with h;: [0,00)% — R then the regulation would be (possibly)
long-range.

In Theorem 1, we prove existence of the maximal process (Xt(oo))tzo and con-
vergence of (Xt(oo)>t20 to the upper invariant measure as ¢ — oo. For this we
need an assumption which ensures that the drift is “sufficiently negative” for large
values of X;(i) so that the process “comes down from infinity”. We assume for
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Theorem 1 that h is bounded by a function h which is negative and concave on
some interval [zg, 00) and satisfies

(1.6) /OO _711(@ dx < oo.

Then there exists a solution (X*)sg of (1.5) which starts in X (i) = oo,
it € G, and satisfies EXt(OO) (1) <ooforallt>0andie G, see Theorem 1. Notice
that the above condition on h is satisfied in the case of interacting Feller diffusions
with logistic growth with h(z) := ya(K — ).

Theorem 2 specifies conditions on «, h and g under which the solution (X});>¢
of (1.5) suffers local extinction. Let the law of X be any distribution on the state
space E,. Assume that h is concave and is bounded by a function h which is
negative on some interval [z, 00) and satisfies condition (1.6). If

(1.7) /Om%exp(/ly%dx)dygo,

then (X¢):>0 converges weakly to the zero configuration as ¢ — co. We mention
that, in the case h(z) = yo(K — x) and g(x) = [z, condition (1.7) is equivalent
to K < K where K is the solution of (1.3); see Proposition 2.3.1. The proof of
the above local extinction result is achieved by comparing (1.5) with a mean field
model associated with (1.5), given by the solution M = (M;);>q of

(18) th == Oé(EMt - Mt) dt + h(Mt) dt + v/ QQ(Mt) dBt y M() € [O, OO),

where (By);>o is a standard Brownian motion. To be more precise, if h is concave
and if the law of X is translation invariant and associated (to be defined in (1.36)),
then Proposition 1.2.2 shows that

(1.9) Ee M0 > Ee M ¢ A >0, i€,

where My := Xy (7). Consequently, extinction of (M;);>¢ as t — oo implies extinc-
tion of (X:(7))i>0 as t — oo for every i € G. We will see that (M;);>o converges
weakly to zero as t — oo if Jy is the only equilibrium distribution of the mean
field model. In addition, if A has at most one strictly positive root and is negative
in a neighbourhood of infinity, then Proposition 2.3.1 shows that dy is the only
equilibrium distribution of the mean field model if and only if inequality (1.7)
holds. Furthermore, if inequality (1.7) fails to hold, then we obtain in Proposi-
tion 2.3.1 that there exists exactly one nontrivial invariant measure for the mean
field model (1.8).

The following approximation illuminates the appearance of the mean field
model as a comparison model for interacting locally regulated diffusions. For
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N > 1, let Ay :=Z/NZ. Denote by (X¥)i>o the solution of (1.5) with G := Ay
and with m(i,j) := +, 4,j € Ay. Furthermore, let (X{'(4))icz/nz be indepen-
dent and identically distributed with common law p. Then (XN (7)) N> converges
weakly to M; as N — oo for every fixed t > 0 and ¢ € Z where M, has distribu-
tion p. The proof of this assertion is similar to the proof of Theorem 1.4 in [32].
However, we will not work out the details. Loosely speaking, the mean field model
belongs to the closure of the class of interacting locally regulated diffusions and
its migration mechanism spreads out mass as uniformly as possible. Motivated by
the above approximation, we conjecture that if (1.7) fails to hold then there exists
a countable set G and a migration matrix (m(i, j))mE o such that the solution
of (1.5) does not suffer local extinction.

A consequence of the self-duality (1.4) for the solution of (1.2) is that local
extinction is equivalent to global extinction. In Corollary 4, we conclude from the
local extinction result that the solution of (1.2) suffers global extinction whenever
K < K. For the solution of (1.5), however, there is in general no global extinction
result yet. We conjecture that there exists a dominating process for which it is
easier to obtain a criterion for global extinction. However, we will not prove this
conjecture in this thesis. As a candidate for a comparison model, we now introduce
a model which we call Virgin Island Model. For this model, we will prove in
Chapter 3 a global extinction result. In analogy to the local extinction result, a
comparison result of system (1.5) with the Virgin Island Model would lead to a
global extinction result for the system of interacting locally regulated diffusions.
To motivate the Virgin Island Model, consider, for N > 1, the solution (X);>o
of (1.5) with G := Z/N7Z and with m(i,j) := <, i,j € Z/NZ. Furthermore, let
X{(0) := zg € (0,00) and X (i) := 0 for i € Z/NZ\ {0}. The probability that
two emigrants migrate to the same island is equal to %, which tends to zero as
N — oo. In the Virgin Island Model, every emigrant moves to an unpopulated
island.

We characterise the Virgin Island Model by a recursive construction. On the
first island evolves a diffusion Y = (Y;):>0 with state space [0, 00) given by the
strong solution of the stochastic differential equation

(1.10) dY, = —aY,dt + h(Y;) dt + \/29(Y})dB,, Yo =1y >0,

where (B;)>0 is a standard Brownian motion. Notice that Y is equal in distribu-
tion to X (0) if m(i,j) = 0 for all 4,5 € G := Z¢ and if X((0) := y. We assume
that Y is regular on (0,00) and that zero is an exit boundary for this process,
that is, zero is absorbing and is reached in finite time with positive probability.
In Assumption A3 below, we give an equivalent condition for this in terms of «,
h and g.
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Mass emigrates from the first island at rate «, which is modeled by the term
—aYidt in (1.10). An emigrant founding the population on an unpopulated island
has mass zero in the diffusion limit. The law of excursions of Y from the trap zero
is the key ingredient in the construction of the Virgin Island Model. Denote the
set of excursions from zero by

(1.11) U:= {x € C([0,00),[0,00)): Ty € (0,00], xe =0 ¥t € {0} U [To,oo)}

where T, = T),(x) := inf{t > 0: x; = y} is the first hitting time of y € [0, c0).
The set U is furnished with locally uniform convergence. The ezcursion law Qy
is a o-finite measure on U. It has been constructed by Pitman and Yor [28] as
follows: Under Qy, the trajectories come from zero according to an entrance law
and then move according to the law of Y. In Section 3.1, we approximate the
excursion measure with a suitably rescaled law of Y. For this, define

(1.12)  §(2) == exp (_/lzwdx), S

g(m) S(y) = /0 5(2) dz, z,y>0.

Note that S is a scale function, that is,

S(y) = S(a)

(113) PULY) < ) = 54 "5

holds for all 0 < a < y < b < oo, see Section 6 of [21]. In Theorem 6, we will
prove the convergence

1 _
(1.14) tim =BV (V) = [ P0Gy ()
for all bounded continuous F': C([0,00),[0,00)) — R for which there exists an
e > 0 such that F(x) = 0 whenever sup,~, x: < €. Note that the well established
It6 excursion theory does not apply here because zero is no regular point.

The existence of Qy suffices to construct the Virgin Island Model and to formu-
late results. For the proof of a global extinction result for the Virgin Island Model,
however, we need a stronger assertion, namely the convergence stated in (1.17)
below. To obtain (1.17), we assume that

(1.15) PY(Ti(Y) < To(Y)) ~ cy asy — 0

for some constant ¢ € (0,00). Equivalent to (1.15) is that S'(0) exists and is
positive. Assumption A4 below gives a sufficient condition for (1.15) in terms of
a, h and g. Under Assumption A4, we may define
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With this, the convergence (1.14) reads as

(1.17) lim ~BYF(Y) = [ FO0Qr(d)

y—0y

By an abuse of notation, we denote both Qy and Qy as “the excursion measure
of Y.

Employing the excursion measure )y, we now define the Virgin Island Model
on subsequent islands. The first island is called the 0-th generation. The (n+1)-st
generation is the collection of all islands which have been colonised from islands of
the n-th generation, n > 0. We denote the collection of all islands as Virgin Island
Model. Furthermore, we refer to the total mass of the Virgin Island Model as the
Virgin Island process V' = (V});>0 and to the total mass of the n-th generation as

o Let (V) g
distribution £%((Y;),50), * > 0. For a recursive construction, let the total mass
V(™ of the n-th generation, n > 0, be defined. Conditioned on V™, let TI™ be
a Poisson point process on [0, 00) x U with intensity measure aV™ dt ® Qy (dx).
With this, the (n + 1)-st generation process is defined as

the n-th generation process V(" = (V;(n)) be a random path with

(1.18) ymry = /thH(”)(ds,dx) t > 0.

Emigrants leave islands of the n-th generation at the time dependent rate a‘/;(")
and move to unpopulated islands. An island which has been founded at time s
contributes mass y;_s at time t. For definiteness, identify paths y € U with paths
x € C(R,[0,00)) satisfying x; = 0 for all ¢ < 0. The Virgin Island process V is
the total mass of all generation processes:

(1.19) Vo=> V" >0

n>0

The sum in (1.19) has finite expectation and thus is finite almost surely by
Lemma 3.3.1.

There are similarities between the Virgin Island Model and the infinitely-many-
alleles model (see [11]). In the latter model, every mutant is of a new type,
which corresponds to migration to unpopulated islands. The infinitely-many-
alleles model can be characterised by a martingale problem. However, we could
not construct the Virgin Island Model by a martingale problem with respect to an
operator G with G C C,(E) x Cy(E) for some complete and separable metric space
(E,d). Instead, we give a fairly explicit construction for the total mass process in
which the evolution on one single island is incorporated by the excursion law, and
in which the different generations may be studied separately.



1.1. INTRODUCTION 9

There is an inherent branching structure in the Virgin Island Model. One
offspring island together with all its offspring islands is again a Virgin Island Model
but with a typical excursion instead of Y on the first island. This branching
structure is similar to Crump-Mode-Jagers branching processes (see [19] under
”general branching process®) but with continuous mass instead of particles. We
recall that a Crump-Mode-Jagers process is a particle process where every particle
1 gives birth to particles at the time points of a point process &; until its death at
time \;, and (\;, &;); are independent and identically distributed.

In Theorem 7, we identify conditions under which the Virgin Island Model
suffers global extinction. Generally speaking, branching particle processes survive
iff the expected number of offspring per particle is strictly greater than one, e.g.
a Crump-Mode-Jagers process survives iff E¢;[0,\;] > 1. For the Virgin Island
Model, the decisive parameter for survival is a times the expected area under an
excursion

(1.20) //OOO Xe dt Qy (dx).

We denote the expression in (1.20) also as “expected man-hours” of the excursion
law. For the following Theorem 7 and Theorem 8, we assume that the expected
man-hours are finite. In Assumption A5 below, we give an equivalent condition
for this in terms of o, h and ¢g. In Theorem 7, we will prove that the Virgin
Island process suffers global extinction, that is, (V;);>¢ converges weakly to zero
as t — oo, if and only if

(1.21) /Oooﬂexp (/Odeu> dy < 1.

9(y) g(u)

The method of proof is to study an integro-differential equation (see Lemma 3.3.2)
which the Laplace transform of V solves. Furthermore, we will show in Lemma
3.1.5 that « times the expression in (1.20) is equal to the left-hand side of (1.21).

Under Assumption A4, the conditions (1.7) and (1.21) are equivalent, see
Proposition 2.3.1. Consequently, under Assumptions A3, A4 and A5, the mean
field process suffers extinction if and only if the Virgin Island process dies out
globally. We conjecture two more analogies between the mean field model and
the Virgin Island Model. Firstly, the mean field model dominates the system of
interacting locally regulated diffusions in the sense of (1.9) if the law of X is
translation invariant. As mentioned before, we conjecture that the Virgin Island
process dominates the total mass of (X;);>0 in some stochastic order. Secondly,
we mentioned above that there is a sequence (X?)yen of interacting locally regu-
lated diffusions such that (X (i))yen converges weakly to M; as N — oo for every
t > 0,i € Z. For the Virgin Island Model, we conjecture that if X2'(0) = V5 >0
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and X{¥(i) =0 for all i € Z/NZ\ {0} then (|X}¥|)yen converges weakly to V; as
N — oo for every t > 0.

An interesting quantity of the Virgin Island process is the expectation of the
total man-hours, i.e., the expected area under the path of V. In Theorem 8, we
prove that this quantity is finite exactly in the subcritical situation, that is, (1.21)
holds with strict inequality, in which case we give an expression for the expected
man-hours in terms of «, h and g. In addition, in the critical case and in the
supercritical case, we obtain the asymptotic behaviour of the expected man-hours
of V up to time ¢

t
(1.22) / E"V, ds
0

ast — oo for all z > 0.

The Virgin Island Model combines the following two properties. On the one
hand, it incorporates competition among individuals. On the other hand, there
exists a (rather) explicit criterion for the phase transition from extinction to sur-
vival. Thus, the Virgin Island Model might be interesting for applications as it
is more realistic than models with independent branching but simple enough to
bear (rather) explicit formulas.

The self-duality (1.4) is a strong tool for analysing interacting Feller diffusions
with logistic growth. We will prove it in Section 2.5 analytically by means of a
generator calculation. In Chapter 4, we take a different approach by explaining the
dynamics of the processes via basic mechanisms on the level of particles. Thereby,
we obtain a stochastic picture for the self-duality (1.4) which provides insight
into the role of the logistic regulation function va(K — z) in (1.2) for the self-
duality (1.4), and which gives an explanation for the involvement of the function
exp (—%(m, y)) in (1.4). For simplicity, we only consider the non-spatial case, i.e.,
m(l,j) = ]]-z':j for ’L,j S Zd.

In order to state a slightly more general duality than (1.4), let (X};):>0 denote
the strong solution of

(1.23) dX, = ¢ X, dt —yX}? dt + /28X, dB;,

where ¢ € R, 7,6 > 0 and (B;):>o is a standard Brownian motion. We call
this process the logistic Feller diffusion with parameters (s,7, 3). Let (Y;)i>0 be a
logistic Feller diffusion with parameters (s, r3,~/r) for some r > 0. In Section 4.4,
we prove

(1.24) E*[e7 Y] = EY[e "] x,y €[0,00),t > 0.

The approach which we introduce below applies not only to (1.24) but also to
another duality which has been proven analytically by Athreya and Swart [2]. Let
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b,c,d > 0. Denote by X; € Ny the number of particles at time ¢ > 0 of the
branching-coalescing particle process defined by the initial value Xy = n and the
following dynamics: Each particle splits into two particles at rate b, each particle
dies at rate d and each ordered pair of particles coalesces into one particle at rate c.
All these events occur independently of each other. In the notation of Athreya and
Swart [2], this is the (1, b, ¢, d)-braco-process. Its dual process (Y;):>0 is the unique
strong solution with values in [0, 1] of the one-dimensional stochastic differential
equation

(1.25) dY; = (b— d)Y;dt — bY2 dt + \/2cYy(1 = Y;)dB;, Yy =y,

where (B;)i>o is a standard Brownian motion. Athreya and Swart [2] call this
process the resampling-selection model with selection rate b, resampling rate ¢ and
mutation rate d, or shortly the (1, b, ¢, d)-resem-process. They prove the duality

(1.26) E'[(1-y) ™| =E[1-Y)"] VneNyyel0,1],¢t>0.

The duality relations (1.24) and (1.26) include as special cases (see Remark 4.4.2
and Remark 4.4.4) the duality of Feller’s branching diffusion with a deterministic
process, the duality of the Fisher-Wright diffusion with Kingman’s coalescent, and
the duality of the (continuous time) Galton-Watson process with a deterministic
process.

Chapter 4 provides a unified stochastic picture for the duality relations (1.24)
and (1.26). For every N € N, we construct approximating Markov processes
(XtN)tZO and (Y;N)tzo with cadlag sample paths and state space {0, 1} and with
the following properties. The processes (X}),-, and (Y;"),., are dual in the sense
that

(1.27) P XN AyN =0] =PV 2V AYN =0], Va2V gV e{0,1}Y vi>o.

The notation ¥ A 4V denotes component-wise minimum and 0 denotes the zero
configuration. If |X{'| = n, for some fixed n < N, then (|X}V|),., converges
weakly to a branching-coalescing particle process as N — oo. We use the notation
2| == SN @ for x € {0,1}". Assume that the set of cadlag-paths is equipped
with the Skorohod topology (see e.g. [11]). If n = n(N) depends on N such that
n/N — x € [0,1] as N — oo, then (|X}V|/N),-, converges weakly to a resampling-
selection model. If n = n(N) satisfies n/v/N — z > 0, then (|X:Y/N|/\/N)t>o
converges weakly to Feller’s branching diffusion with logistic growth. The process
(V)5 differs from (X}V),., only by the set of parameters and by the initial
condition. -

We will derive the duality (1.26) and the duality (1.24) from (1.27) in the
following way. Let the random variable X} be uniformly distributed over all
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configurations ¥ € {0,1}" with total number of individuals of type 1 equal to
|z = n = n(N) for a given n(N) < N. Similarly, choose Y uniformly in {0, 1}V
with |[Y{V| = k = k(N) for a given k(N) < N. We will prove in Proposition 4.3.1
that property (1.27) implies a prototype duality relation, namely

XN N | ™
(1.28) A}imE[l—ﬁ]‘ TN‘ZthEP—%] L t>0,

under some assumptions — including the existence of both limits — on the two
processes and on the sequence (Tx)ys,; C [0,00). Choosing n fixed, k such that
£ — y>0andlet Ty = 1, we will deduce from (1.28) (and from the convergence
properties of (X}¥);>0 and of (Y;);>0) the duality (1.26) of a branching-coalescing
particle process with a resampling-selection model (cf. Theorem 4.4.1). In order
to obtain the duality (1.24), choose n, k such that \/”—N — x>0, \/LN — 1y > 0 and

Ty = V' N. Notice that (1 — \/Lﬁ)x‘/ﬁ converges to e uniformly in 0 < z,y <=
as N — oo for every £ > 0. This together with the weak convergence of the
rescaled processes will imply

(1.29) lim E[e"X%'y/W} — lim E[e“”"yt%'/ﬁ].

N—o0 N—o0

The approximating processes (X}¥);>o and (Y;")i>o are constructed in the fol-
lowing way. We call every function f: {0,1}* — {0,1}* a basic mechanism. A fi-
nite tuple (f1, ..., fm), m € N, of basic mechanisms together with rates A, ..., \,, €
[0,00) defines a process by means of the following graphical representation, which
is in the spirit of Harris [14]. With every k£ < m and every ordered pair (i,j) €
{1,...,N}? i # j, we associate a Poisson process with rate parameter ). At
every time point of this Poisson process, the configuration of (i,j) changes ac-
cording to fi. For example, if the configuration was (1,0) before, then it changes
to fx(1,0) € {0,1}2. All Poisson processes are independent. In Section 4.2, we
will specify which property (to be called “dual”) of a pair of two basic mechanisms
leads to the duality relation (1.27). Furthermore, we will identify all dual pairs of
basic mechanisms.

1.2 Main results

In this section, we state the main results for the system (X;):>o of interacting
locally regulated diffusions, which solves (1.5), and for the Virgin Island process
(Vi)¢>0, which has been defined in (1.19). First of all, we introduce an appropriate
state space for (X})i>o, namely the Liggett-Spitzer space E,. Then we provide
conditions on the regulation function h: [0, 00) — R and on the diffusion function
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g: [0,00) — [0,00) which guarantee existence and uniqueness of a strong E,-
valued solution of (1.5).

Unless stated otherwise, we will assume for the migration matrix m appearing
in (1.5) that ) ..,m(0,4) = 1, that m is translation invariant, i.e., m(i,j) =
m(0,j — i), and that m is irreducible, i.e., ¥i,j In: m™(i,j) > 0. Let a > 0.
An appropriate state space for (1.2) and (1.5) is provided by a construction going
back to Liggett and Spitzer [25]: For given m, let 0 = (0;);eq be summable and
strictly positive such that

(1.30) > oml(i,j) < Crso;,  jEG,

1eG

for some Crg < co. With this, define the Liggett-Spitzer space

(1.31) E, :={z € [0,00)%: || z||, := Zaﬂxi\ < oo}
i€G
Notice that every translation invariant measure g on [0, 00)” with [ @ pu(dz) < oo
is supported by E,.
The following assumptions on the regulation function and on the diffusion
function guarantee existence and uniqueness of a strong E, — valued solution of
system (1.5).

Assumption Al. The functions h: [0,00) — R and g: [0,00) — [0,00) are
locally Lipschitz continuous in [0,00) and satisfy h(0) = ¢(0) = 0. In addition,
the function h is upward Lipschitz continuous, i.e.,

(1.32) sgn(z —y) (h(z) — h(y)) < Cylz -yl

for all x,y > 0 and for some constant C},. Furthermore, g is strictly positive on
(0,00) and satisfies the growth condition
g(x)

(1.33) limsup ~——+ < o0

r—00 €

Proposition 1.2.1. Assume A1. Then, for any x € E,, the system (1.5) has a
unique strong solution X = (Xy)i>o Starting in x and with paths in E, which are
a.s. continuous with respect to the norm on I, .

This proposition will be proved in Section 2.1. The following theorem, whose
proof will be given in Section 2.2, provides for the existence of a maximal pro-
cess and of a distinguished equilibrium state of (1.5), called the upper invariant
measure. For the proof of Theorem 1, we will exploit the following assumption.
Condition (1.34) ensures that the drift is “sufficiently negative” for large values of
X;(7) so that the process “comes down from oo”.
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Assumption A2. There exists a function h > h such that, for some xg > 0, h is
negative and concave on [xg,00) and satisfies

+oo 1
(1.34) / —— dxr < o0.
z  —h(z)

For the interacting Feller diffusions with logistic growth (1.2), the functions h
and g are of the form

(1.35) hz) =~vx(K — x), g(z) = pz.

In this case, Assumptions Al and A2 are clearly satisfied if v, 3 > 0.

To prepare for Theorem 1, we need a bit of notation. If uy, uo are probability
measures on a partially ordered set .S, then we say that py is stochastically smaller
than or equal to us, and we write g < o, if there exists a random pair (Y7, Y5)
with marginal laws £ (Y;) = p;, ¢ = 1,2 and Y] < Y;. We say that a sequence
of probability measures u, increases stochastically to a probability measure i,
denoted by p; T pieo, if there exists a random sequence (Y;) which a.s. increases
to Y, and has marginal distributions £ (Y;) = u;, @ = 1,2, ..,00. Furthermore, a
probability measure p on S is called associated if

(1.36) /fl'fzdﬂZ /fldﬂ/fzdﬂ

for all bounded, coordinate-wise nondecreasing f1, fo: E, — R.

Theorem 1. Assume A1 and A2. There exists an E,-valued process (Xt(oo))t>0
with the following properties:

a) For each e >0, (Xt(oo))tZE is a solution of (1.5) starting at time t = €.

b) The first moment of || x> |, is finite for every t > 0.

c) Let 2" = (ZEEn))ieg, n=1,2, ..., be an increasing sequence in E, such that for
allte G
(1.37) x,gn) T o0 as n — oo.

If (Xt(n))tzo is the solution of (1.5) starting in x™ € |, at time zero, then

(1.38) L (Xt(n)> L <Xt(°°)> asn | oo (t > 0).
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d) There exists an equilibrium distribution v (called the upper invariant measure )
for the dynamics (1.5) such that

(1.39) c (X§°°>> L5 ast] oo

e) Any E,-valued solution (X;)i>o of (1.5) satisfies
(1.40) L(X) < LX) (t>0).
In particular, any equilibrium v s stochastically smaller than or equal to v.

f) Both the upper invariant measure v and L (Xt(oo)) are translation tnvariant and
associated.

Theorem 2 specifies conditions on «, h and g under which the process (X3)i>o
suffers local extinction. A first glance at system (1.2) might tempt one to believe
that even for small capacities K (and « fixed), a suitably mobile migration m
in the dynamics (1.2) could prevent the system from suffering local extinction.
However, Theorem 2 and condition (1.43) below reveal that this is not the case.

Theorem 2. Assume Al and A2. Denote by X the solution of equation (1.5)
Jor an arbitrarily prescribed initial distribution on E,. If there exists a concave
function h > h which satisfies

(1.41) /Om%exp(/ly%;mdx)dyﬁ(),

then the process suffers local extinction, 1i.e.,
(1.42) L(Xy) =3 ast— oc.
Here, 0 denotes the zero configuration.

In the logistic Feller case (1.35), condition (1.41) simplifies to

(1.43) / exp (Kfyy — ?(y?) - exp (—ay) dy < 1,
0

see the proof of Corollary 2.3.2 at the end of Section 2.3.

The proof of Theorem 2 will be given in Section 2.4. Its main idea is a com-
parison with a mean field model corresponding to (1.5), given by the solution M
of (1.8). We will show that, for every ¢ > 0, the marginal distributions of X;
are bounded by the distribution of M, in the <., — order (where “icv” stands for
“Increasing, concave”, see [30] for this and related notions). More precisely, in
Section 2.4 we will prove the following proposition.
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Proposition 1.2.2. Assume A1 and concavity of h. Let X be a solution of (1.5)
whose initial distribution [i is associated. Assume that the Xo(i),i € G, are iden-
tically distributed and have finite expectation. Let My = (M;(i))icq be a system
of processes coupled through the initial state My(i) = Xo(i), i € G, but follow-

ing independent mean field dynamics, i.e., every M(i) solves equation (1.8) with
standard Brownian motion B(i), where the B(i), i € G, are independent. Then

(1.44) Eff(X) <EFf(M), t>0,

for all bounded, coordinate-wise nondecreasing and concave functions f: E, — R
depending only on finitely many coordinates.

In the following two theorems, we exploit the specific form of the dynamics (1.2)
of the interacting Feller diffusions with logistic growth. As it turns out, the solution
of equation (1.2) has a property of self-duality which is helpful for the investigation
of convergence to equilibria. For the formulation of the self-duality result, write
m! for the transpose of the matrix m, choose a o' satisfying (1.30) with m instead
of m, and recall that £+ denotes the corresponding Liggett-Spitzer space.

Theorem 3. Assume 3 > 0. Let X and X' be solutions of (1.2) with migration
kernels m and m', respectively. Then we have the following self-duality:

(1.45) EZexp (—%(Xt,@) = EYexp (—%@, X))

Jorallz € Es,y € By, t > 0.

A similar (though non-self-) duality for interacting Feller diffusions (also called
super- random walks), that is (1.2) with v = 0, is given by

(1.46) E®exp (—(Xt,g)) = exp (—(z,v)),

where v = (v,(4)) solves the initial value problem

(1.47) Evt(z) = Zm(@aj)(vt(J) - Ut(z)) - Ut(l>27 i €@, Vo =Y,
jea

see e.g. Chapter 4 of [6].

The proof of Theorem 3 is contained in Section 2.5. The main advantage of
the self-duality (1.45) is that instead of starting in a configuration with infinite
total mass we can analyse the evolution of the process started with finite total
mass. For example, choose y = Ady and = with z(7) = const. Then the self-duality
tells us that it makes no difference whether we study the law of X;(0) started in
x, or that of the total mass | X/ := 32, X/ (1) with X1 started in Ady, A > 0. This
leads to the following corollary (see Lemma 2.5.1 together with Theorem 2):
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Corollary 4. Assume 3,7+ > 0. Let the parameters «, 3,v, K be such that in-
equality (1.43) holds. Then the solution X of (1.2) started from an initial state
of finite total mass (i.e., Y, Xo(1) < 00) hits O in finite time a.s.

Theorem 3 will be the principal tool for proving convergence to the upper
invariant measure specified in Theorem 1. This convergence will be the subject
of Theorem 5 below. On an intuitive level, the reason for this convergence is as
follows: There are two forces working against each other, supercritical branching
and individual competition. The third ingredient is migration which is important
for spreading out newly produced mass. Supercritical branching increases mass,
whereas competition amongst the individuals decreases it. If a (local) population
size is large then competition is stronger, whereas, as long as a local population
size is small then competition is negligible in comparison to the mass producing
branching. Thus, there should be some attracting equilibrium state in which the
two forces balance each other. This is the upper invariant measure.

Theorem 5. Assume 3,7 > 0. Let X be a solution of (1.2) and suppose that
L (Xo) > p where p is a measure on B, which is translation invariant and does
not charge the zero configuration 0. Then

(1.48) L(X) =V ast — oo
where U 1s the upper invariant measure.

From this it is clear that the only extremal translation invariant equilibrium
distributions are ¢y and v. They coincide in case of local extinction and differ in
case of survival. Section 2.6 is devoted to the proof of Theorem 5.

Now we turn to the Virgin Island Model which we introduced in Section 1.1. By
Proposition 1.2.1, Assumption Al guarantees existence and uniqueness of the so-
lution (Y};);>0 of (1.10). Furthermore, under Assumption A1, zero is an absorbing
boundary for (1.10), i.e., ¥; = 0 implies Y;;s = 0 for all s > 0. The key ingredient
in the construction of the Virgin Island Model is the law of excursions of (¥};)>0
from the absorbing boundary zero. The excursion measure Qy is a o-finite mea-
sure on U (defined in (1.11)) and has been constructed by Pitman and Yor [28].
Theorem 6 below proves the approximation result (1.14) which will prove useful in
the proofs of our results for the Virgin Island Model. For this approximation, we
additionally assume that (Y;):>o hits zero in finite time with positive probability.
The following assumption formulates a necessary and sufficient condition for this
(see Lemma 6.2 of [21]). Recall the scale function S from (1.12).

Assumption A3. The parameter a and the functions g and h satisfy

. 1
(1.49) /0 S(y)m dy < oo
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for some and then all x > 0.

For example, Assumption A1 and Assumption A3 hold whenever h(y) = oy —vyy?,
v > 0 and g(y) = y" for some 1 < k < 2. Assumption A3 is not met by A = 0 and
g(y) = y? because then 5(z) = 2%, S(y) = y*™'/(a+ 1) and condition (1.49) fails
to hold.
Pitman and Yor [28] describe the o-finite measure they construct “in a prelim-
inary way as”
1

(1.50) lin = (y)cy (Y)

where the limit indicates weak convergence of finite measures on C([0, 00), [0, 00))
away from neighbourhoods of the zero-trajectory. Furthermore, they prove that

(151) Sgy)Ey[S(lé)f(Yt)] [t wsy—o v feco),

where p; is a sub-probability measure on [0,00), t > 0. We prove the exis-
tence of the limit in (1.50) in Theorem 6 below. For this, let the topology on
C([O, 00), [0, oo)) be given by locally uniform convergence. Furthermore, recall
the definition of U from (1.11) and the definition of S from (1.12).

Theorem 6. Assume A1 and AS. Then there exists a o-finite measure Qy on U
such that

N S .
(1.52) tim =BV (V) = [ P0Gy ()

for all bounded continuous F': C([O,oo), [0, oo)) — R for which there exists an
€ > 0 such that F(x) = 0 whenever sup;> x; < €.

For our proof of a global extinction result for the Virgin Island Model, we
need to have that the scaling function S in (1.52) essentially behaves linear in a
neighbourhood of zero. More precisely, we need to assume that S’(0) exists in
(0,0). Looking at the definition (1.12) of S, we see that a sufficient condition for
this is given by the following assumption.

Assumption A4. The integral f; %y};(y) dy has a limit in (—o0,00) as e — 0.

It follows from dominated convergence and from the local Lipschitz continuity of
h that Assumption A4 holds if fol % dy is finite.

Recall the definition of the Virgin Island process (V;):>o and of the n-th gen-
eration process (‘/t(n))tzo from (1.19) and (1.18), respectively. Lemma 3.3.1 shows
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that V4 is finite almost surely for every ¢ > 0. In the next theorem, we give a crite-
rion for extinction of the Virgin Island process. As mentioned in the introduction,
the decisive parameter is the expected area under an excursion of Y. The following
short calculation gives an idea why this is the right quantity. By equation (1.18),
the expected total man-hours of the (n + 1)-st generation are

E” / Vit ds = E® / ( / Yies dt)H(”)(ds,dx)
0 0
(1.53) -w [ ( / xtsdt)czywx)oawmw
0 s
= / / x:Qy (dx) dt-E* / V. ds.
0 0

Thus, « times the expected area under an excursion of Y is equal to the ratio
of the expected area under the path of the (n + 1)-st generation process and the
expected area under the path of the n-th generation process.

For Theorem 7 and Theorem 8, we assume that the expected man-hours of Y
are finite. Lemma 3.1.7 shows that, under Assumptions Al and A3, an equivalent
condition for this is given in Assumption A5 below.

Assumption A5. The parameter o and the functions g and h satisfy

<y
(154) /x 9(y)s(y) 4y < oo

for some and then for all x > 0.

We mention that if Assumptions Al, A3 and A5 hold, then the process Y hits
zero in finite time almost surely (see Lemma 3.1.6 and Lemma 3.1.7). A generic
example for h and g is h(y) = c1y™ — ey, g(y) = c3y™ with ¢1,c9,c3 > 0.
The Assumptions Al, A2, A3, A4 and A5 are all satisfied if ko > k1 > 1 and if
K3 € [1, 2)
For the formulation of the extinction result, we define
* —ax + h(z)

(1.55)  s(z) :=exp <_/o Tdm), S(y) :== /Oy s(z)dz, =z,y>0,

which is well-defined under Assumption A4. Notice that S(y) = S(y)S (0). Recall
the Virgin Island process from (1.19) and the excursion measure Qy from (1.16).

Theorem 7. Assume A1, A3, A} and A5. Then the Virgin Island process (Vi)i>o
started in x > 0 dies out (i.e., converges in probability to zero as t — 00) iff

(1.56) //000 axsds Qy(dy) < 1.
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The expression on the left-hand side may be explicitly expressed in terms of «, h
and g as

(1.57) /Om%dy://omaxsck@y(dx).

In case of survival, V; converges weakly as t — oo to a random wvariable Vi
satisfying

(1.58) P'(Ve=0)=1-P%V,=00) =E"exp (—q/ oY, ds)
0

for all x > 0 and some q¢ > 0.

In the critical case, that is, equality in (1.56), V; converges to zero as t — oc.
However, it turns out that the expected area under the graph of V' is infinite.
Furthermore, we obtain in Theorem 8 the asymptotic behaviour of the expected
man-hours of V' up to time ¢t as t — oo. For this, define

(1.59) w(x) = /000 S(z A z)m dz, x > 0.

If Assumptions A1, A3, A4 and A5 hold, then w(z) is finite for fixed x < oo; see
Lemma 3.1.7.

Theorem 8. Assume A1, A3, A4 and A5. If the left-hand side of (1.56) is strictly
smaller than one, then, for all x > 0, the expected value of the total man-hours of
V' is equal to

Bd)
(5 oxsds)Qvia 1= I 5o

which is finite. Otherwise, the left-hand side of (1.60) is infinite. In the critical
case, that is, equality in (1.56),

(1.60) Ez/ Vsds =
0 1—f

- B (J; Vi du) w(a >
(1.61> ;/0 E*V,ds — f <f0°° o, du>Qy(dX) fooo awy

g(y)s

E [0, 00)

as t — oo where the right-hand side is interpreted as zero if the denominator is
equal to infinity. In the supercritical case, i.e., if (1.56) fails to be true, let 3 > 0
be such that

(1.62) /OOO eﬁu/aquy(dx) du =
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Then the order of convergence of the expected man-hours of V up to time t can be

read off from

fooo e PuE® fou Y. ds du c
Jo7 ue " [ ax,Qy (dx)du

t
(1.63) eﬁt/ E*V,ds — (0, 00)
0

ast — oo for all x > 0.

Remark 1.2.3. The parameter 3 defined in (1.62) is called Malthusian parameter

(see [19]).

1.3 Outline

Fast readers may want to proceed directly to the proof of a specific theorem.
Theorem 1, Theorem 2, Theorem 3 and Theorem 5 will be established in Sec-
tion 2.2, Section 2.4, Section 2.5 and Section 2.6, respectively. The proof of
Proposition 1.2.2 is contained in Section 2.4. Furthermore, we prove Theorem 6,
Theorem 7 and Theorem 8 in Chapter 3, more precisely in Section 3.1, Section 3.4
and Section 3.2, respectively.

The main results of Chapter 2 are the local extinction result for interacting
locally regulated diffusions (Theorem 2) and the convergence result of interacting
Feller diffusions with logistic growth (Theorem 5). In Section 2.1, we obtain the
existence and uniqueness result of Proposition 1.2.1. Furthermore, Lemma 2.1.3
provides for a comparison of two solutions of equation (1.5) which differ in the reg-
ulation function A. This comparison result is an important ingredient in the proof
of the existence of the maximal process (Theorem 1) which is included in Sec-
tion 2.2. Section 2.3 contains an extinction result for the mean field model (1.8).
The main step for this is Proposition 2.3.1 which determines the number — depend-
ing on the parameters — of equilibrium distributions of the mean field model (1.8).
Furthermore, the calculations of Proposition 2.3.1 yield the condition for local
extinction, that is, (1.41). Lemma 2.3.3 exploits the properties of the maximal
process to conclude that the mean field process dies out if there is no nontrivial
equilibrium distribution. Section 2.4 establishes Proposition 1.2.2; that is, the
comparison between the mean field model and the system of interacting locally
regulated diffusions. Together with the results of Section 2.3, this leads to a proof
of Theorem 2. The self-duality stated in Theorem 3 is the key ingredient in our
proof of the ergodicity result of Theorem 5. Section 2.5 contains an analytical
proof of Theorem 3, and Section 2.6 establishes Theorem 5.

The Virgin Island Model is the subject of Chapter 3. Section 3.1 is devoted
to the one-dimensional diffusion (1.10). After proving Theorem 6, we calculate
the explicit formulas of both Theorem 7 and of Theorem 8 in Lemma 3.1.3 and
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in Lemma 3.1.5, respectively. In Section 3.2, we prove Theorem 8 which specifies
the asymptotic behaviour of the expected man-hours of V' up to time ¢ as t — oo.
Section 3.3 contains the key lemma for the extinction result of Theorem 7. More
precisely, we prove in Lemma 3.3.2 that the Laplace transform of the Virgin Island
process satisfies a certain integro-differential equation. This equation will then be
used in Section 3.4 to prove Theorem 7.

In Chapter 4, we obtain a graphical representation of the two duality rela-
tions (1.24) and (1.26). The definition of duality of a pair of basic mechanisms is
contained in Section 4.2. In the same section, we construct processes (X});>o and
(YN);>0, which satisfy equation (1.27), by means of a graphical representation.
From (1.27), the prototype duality (1.28) is derived in Section 4.3. Finally, we
show the convergence of the approximating processes in Section 4.4.



Chapter 2

Local extinction and ergodic
behaviour

The system (X;);>o of interacting locally regulated diffusions is the solution of
equation (1.5). Its state space is the Liggett-Spitzer space E, which has been
defined in Section 1.2. In Section 2.1, we prove Proposition 1.2.1 which claims
existence and uniqueness of a strong solution of (1.5). In the same section,
Lemma 2.1.3 provides for a comparison of two solutions of equation (1.5) which
differ in the regulation function A. This comparison result is the key ingredient in
the proof of the existence of the maximal process (Theorem 1) which we prove in
Section 2.2.

In Section 2.4, we prove the local extinction result of Theorem 2. The main
steps for this are as follows. An application of Theorem 1 will show that we may
assume that £ (X) satisfies the assumptions of Proposition 1.2.2, which we prove
in Section 2.4. Proposition 1.2.2 asserts that (X;);>¢ is dominated by the mean
field model (M;):>o which is the solution of (1.8). Hence, it suffices to establish
an extinction result for (M;);>o which is included in Section 2.3.

The proof of the convergence result of Theorem 5 consists of two steps. First,
we prove the duality relation (1.45) of Theorem 3 in Section 2.5. By Theorem 3,
it suffices to consider the total mass process defined by | X¢| := >, 4 X(7), ¢ > 0.
The second step is to prove that the total mass process with probability one
either converges to zero or converges to infinity, see Lemma 2.6.1. Both the proof
of Lemma 2.6.1 and the proof of Theorem 5 are contained in Section 2.6.

2.1 Preliminaries

For the proof of existence and uniqueness of the solution of equation (1.5), we
need three preliminary lemmas. In the first two of these, we obtain bounds on the

23
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first moment and on the second moment of X. For this, we define

(2.1) bi(z) == a(Zm(i,j)xj — x) +h(z;), z€ B,

jea

where 0 = (0;);cc satisfies (1.30). Denote 2zt := 2z V 0. By inequality (1.30) and
Assumption A1, there exists a finite constant C such that

(2.2) > 0ila—yzo(bi(z) — bi(y)) < Cull (v —y) " ll,,  Vazyek

ieM

for every subset M C G. From inequality (2.2), we will obtain monotonicity in
the initial configuration. This monotonicity is a crucial property which we will
exploit several times. First, we prove boundedness of second moments.

Lemma 2.1.1. Suppose that h and g satisfy Assumption Al. Let (X;) be any
weak solution of equation (1.5) with E| X, ||> < oo, whose paths are continuous
in E,. Then there exists a constant C' < oo such that for each T > 0

(2.3) swpE | X 2 < (1+E || Xo|2)e” < 0.
t<T

Proof. Let Gj be finite subsets of G which monotonically exhaust G as k — oc.

Denote ||z ||, = > ;cq, oilzil. Applying Itd’s formula, we obtain

X =21 X, Y o (Wt) dt + /29 (X.(0) dBt<z'>)
(2.4) ea
+2 Z 079(Xy(1)) dt.
1€Gy,

Let n € N. The continuous function ¢ is bounded on the interval [0,n/0;] for
every ¢ € G. Thus, the stochastic integrals on the right hand side of (2.4) are Lo-
martingales when stopped at time 7, := inf;>o{|| X; ||, > n}. By path continuity,
we have 7, — 00 as n — oo almost surely. Taking expectations, inequality (2.2)
with y = 0 implies

(25) EH Xt/\Tn

tATh
L SBIXolf,+ 28 [ (01|| X2 + Zafg(xs@)) ds.
0

i€G

By the growth condition (1.33), we know that g(z) < Cy(1+z?) for some constant
(5 < 0. Letting K — oo and using monotone convergence, we obtain

t
(2.6) Bl Xone 2 < BI X0 2 +Cs [ (1 B X, ||i) s
0
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for some constant C3 < oco. Applying Gronwall’s inequality to the function ¢ +—
1+ E|| Xirr, |12, we arrive at

(2.7) E| Xinn |12 < (1 +E| Xo|2)e™ — 1.
Letting n — oo, Fatou’s lemma completes the proof. [

In the proof of Proposition 1.2.1, we need a stronger uniformity than Lemma
2.1.1 provides.

Lemma 2.1.2. Assume Al. Let (X;) be any weak solution of equation (1.5)
satisfying condition (2.3). Then, for each T' > 0, there exists a constant Cp < 00
such that

(2.8) Esug X, <Cr(l+E| Xo|l, +E| Xo|?) < cc.
t<

Proof. Recall the definition of Gy and ||.[|,, from the proof of Lemma 2.1.1.
Multiplying by o; and summing over ¢ € Gy, in (1.5), we obtain for t < T

(2.9) [ Xell,p = 1 Xollor = / Z 0ibi(Xs) ds +/ Z i1/ 29(X (1)) dBy(7)
0 ieG, 0 ieqy

The estimate (2.2) implies that >, 0:bi(Xs) < Cif| X ||,. Thus, denoting the
rightmost term in (2.9) by MF, we obtain

t
@10) sl X, <[ Xoll, + [ Cosup]| X, |, ds + sup ||
u<t 0 r<s u<T

The process (M}) is an Lo-martingale since, by the assumption g(z) < C(1 + 2?)
and condition (2.3), the integrands 1/2¢(X;(7)) in (2.9) are square integrable, and
the second moment E[ME|” = fOT 23 icq, 07 Eg(X,(i)) ds is bounded by Cp(1 +
E|| X, %) for some constant Cp. Thus, using the estimate z < 1+ 22, we conclude
from Doob’s Lo-inequality that

(2.11) Esup |[M*| <1+ E[ME* <1+ Cr(1+E| X, |?).

u<T

Therefore, taking expectations in (2.10) and applying monotone convergence, we
obtain

t
(212) Eswp | X, |, < B X, +C: [ Esup]| X, |, ds+1+Cr(1+E| Xo )
u<t 0 r<s

for all £ < T. Now the assertion follows from Gronwall’s inequality. m
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The following monotone coupling lemma will be an important tool.

Lemma 2.1.3. Let hy, ho and g satisfy Assumption A1, and let B = (B(i))ieG
be a system of independent Brownian motions defined on some filtered probability
space. For v = 1,2, assume that X" s defined on the same probability space,
satisfies equation (1.5) with Brownian motions B(i), drift function h, and initial
configuration z* € E,, and has continuous paths in E,. Then

(2.13) hy < hy together with ! < 22 implies th < Xf Vt>0 as.

Proof. The first part of the proof follows that of Theorem 3.2 in [18]. Let 1 >
ay > -+ >a, > ---> 0 be defined by

1 1 ay 1 Ap—1 1
(2.14) / —du =1, / —du:2,...,/ —du=mn,...
a U ay U an Uu

Notice that a,, — 0 as n — o0o. For every n = 1,2, .., define a continuous function
tp(u) with support in (a,, a,_1) such that

2 an—1
(2.15) 0 <tp(u) < — and / Y (u) du = 1.
nu a
Furthermore, define
x y
(2.16) On(x) == ]lm>0/ dy/ Yp(u)du, x € R.
0 0

These functions satisfy ¢, € C*(R), |¢,(z)| < 1, ¢..(2) = Losotbn(), ¢n(x) < 2t
and ¢, (x)—xT asn — oo. Fix 1 € G and let 7 := inf{t > 0: X} (i) vV X?(i) > k}.
Write Al := X!(i) — X?(i) and let b% be as in equation (2.1) with h replaced by
h,, © =1,2. By It6’s formula,

6u(8,) — ()
= [ [yaalxio) - o) am)
(2.17) i /0 () {b} (x2) - 82 (X?)} ds

1

.l /Om o (A1) {\/zg(xg(i)) - \/Qg(Xf(i))} 2 ds.

As n — oo, the left hand side converges to (A} /\Tk.)Jr — (A6)+ in L; by dominated
convergence and Lemma 2.1.1. In the rest of the proof, C7, (s, ... will be suitably
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chosen finite constants. By Assumption Al, there exists a constant C; such that
g(z) < C1(1 + 2?). Thus, Lemma 2.1.1 implies Eg(X/(i)) < oo and we have by
dominated convergence

(2.18) E/OM (Mz>o én (A )) (\/29 —/29(X )stﬂo

Hence, the first (stochastic) integral on the right hand side converges in Ly to
the same expression with gb;(x) replaced by 1,-¢. For the second integral, notice
that b is globally Lipschitz continuous on {z: z; < k}. Thus, for s < 7, |b5(X})|
is bounded by Cs|| X! ||, which has finite expectation by Lemma 2.1.1, and we
obtain by dominated convergence

tATE
219) [ s (8] - PLOCH - XD ds 0
0

Finally, we consider the third integral on the right hand side of equation (2.17).
The local Lipschitz continuity of g implies that /g is globally 1/2-Holder con-
tinuous on the interval [0,k]. Therefore, the last integral in (2.17) is bounded
by

e 2 2C5t
(2.20) / LAY < 2250 asn— oo,
0 |AZ‘ n

Putting these calculations together, equation (2.17) implies

(8" = (20)" = [ tagoo 203200 - 20(20) | 800
# [t - b?(Xf)} s

for all ¢ < 7, almost surely. By path continuity, we have 7, — oo almost surely
as k — oo and thus, equation (2.21) holds for all ¢ > 0. The stochastic integral
on the right hand side is an Lo-martingale because of g(z) < C;(1 + z?) and
Lemma 2.1.1. Taking expectations, we arrive at

(2.21)

E ZEZgoz-(Ai)“ZGZGUi(Aé)*
(2.22) /E;mwo[ X! - bQ(Xf)} ds

< 04/ EZJ, (A"

1€G
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In the last step, we used b} < b? and inequality (2.2). By Gronwall’s inequality,
we obtain

(2.23) E[(A)7, < [(A)" [l ied.

For later use, we note that this inequality implies

(2.24) E| ALl < [1Ag]l,e7, ied.
if by = by. For this, notice that |z} — 22| = (z! — 22)" + (22 — 11>+ The right
hand side of inequality (2.23) is zero by the assumption z! < x2, which finishes

the proof of the monotonicity result for fixed ¢ > 0. Finally, X} < X? follows for
all t € QQ>o and then by continuity of paths for all £ > 0 almost surely. O

Proof of Proposition 1.2.1. Let B = (B;);cq be a system of independent Brownian
motions, and fix an initial condition z € E,. We will prove existence of a solution
of (1.5) similarly as in [12], where the system (1.5) is studied in the case h = 0.
To this end, for finite A C G and i, j € G, we define m” (4, j) := m(i, j)1; jen and
consider the finite dimensional system

dXMi) =a Y m(i, )X (5) dt — aX i) dt
(2.25) Jen
+ h(XME))dt + 1/2-g(XP(0)) dBy(i), i€ A.

Under Assumption Al, equation (2.25) has a unique solution X* starting in
(z;)ica. We extend X to an infinite sequence (still denoted by the same symbol)
by putting X2(i) := 0 for i € G\ A. Following the arguments in the proof of
Theorem 1 in [12], one can show that there exists a process X = (X,(7)) arising
as the monotone limit

(2.26) XMi) 1 Xy(i) as A T G.

To show that X has a.s. continuous paths in [E,, we first note that for each finite
A C G the process X*, being a finite dimensional diffusion, has a.s. continuous
paths and therefore satisfies

(2.27) limP( sup || X} —X2[,>¢)=0

6=0  “|t_s|<6, 5,t<T

forall e > 0and T > 0.
For all finite A C G, the process X satisfies the assumptions of Lemma 2.1.1,
with m(i, j) in (1.5) replaced by m”(i, j). Consequently, X* also satisfies (2.3),
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where the constant C' can be chosen uniformly in A. Therefore, by the monotone
convergence (2.26), X satisfies (2.3) and, due to Lemma 2.1.2, also (2.8).
Next, we set out to show that for alle >0 and T > 0

(2.28) lim P(sup || X, — X}, >¢) =0.
MG t<T

For this purpose, let G, and || z ||, be as in the proof of Lemma 2.1.1. From (2.26)
together with the a.s. component-wise continuity of X and Dini’s theorem we
conclude that for all T"> 0 and k£ € N:

(2.29) sup || X; — XM ||, — 0as. as AT G.
t<T ’

By (2.8) and dominated convergence we therefore have

(2.30) Esup || X; — X||,, —» 0as. as AT G.
t<T ’

For every finite A C GG and k € N we estimate

2.31) Esup || X; — X} ||, <Esup || X; — X ||, + 2Esup Z 0: X4 (1).
( ) t<T t<T ’ t<T G

The rightmost term in (2.31) does not depend on A and converges to 0, again
because of (2.8) and dominated convergence. Together with (2.30) this implies
that the left hand side of (2.31) converges to zero, and proves (2.28).

For £,0 and T' > 0 we have the estimate

(232) P( sup || Xi— X, > 3e)

[t—s|<9, s,t<T
<P( sup [ X} =X}, >¢)+2P(sup|| X, — XM |, > e).
[t—s|<9, s,t<T t<T

Because of (2.27) and (2.28) the left hand side of (2.32) converges to 0 as ¢ — 0.
This implies almost sure pathwise continuity.

For uniqueness, we proceed as follows. In the situation of Lemma 2.1.3, choose
hy = hy and 2! = 2%. Then pathwise uniqueness follows by applying Lemma 2.1.3
twice. Uniqueness in law and strong existence follow then from a Yamada-Watana-
be type argument (see [31], Theorem 2.2). For the existence of a strong solution, it
remains to show that the dependence of the unique solution on the initial configura-
tion is measurable. This follows from the monotonicity result of Lemma 2.1.3. [

Lemma 2.1.4. Let h and g satisfy Assumption A1. The strong solution X; of sys-
tem (1.5) is monotonically continuous in its initial configuration in the following
sense: Let x™, x € E, be the starting points of Xt(n) and Xy, such that

(2.33) z™ 1 (1) z asnTooc.
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Then
(2.34) x™"q (1) Xy Vt>0 as nloo as.

Proof. In equation (2.24), let ' = h? := h, X} := X; and X2 := X™. Letting
n — oo, this implies L;-convergence of X; — Xt(") for fixed time ¢t > 0. The
monotonicity result of Lemma 2.1.3 finishes the proof. [

2.2 The upper invariant measure. Proof of The-
orem 1

Proof of Theorem 1. To fix notation, let us write £%(X;) for the distribution of
X (the solution of (1.5)) starting from an element z € E,. For N € N we define
the element N € E, by N(i) = N, i € G. Let Xtﬂ be the process started from
N. By Lemma 2.1.3, the sequence XtM is nondecreasing in N for all ¢ > 0; let us
write X° for its a.s. limit.

Now let (™) be a sequence as in Theorem 1(c). For all n € N we conclude
from Lemma 2.1.4 that

(2'35) r (Xt(OO)> N LM(Xt) > ££(7L)AN(X,5) Va Eg(n) (Xt)

N—oo N—o0

Again by Lemma 2.1.4 we obtain for all N € N

(2.36) L2 (X)L (X)

n—oo

Thus, by a diagonal argument, there is a subsequence z™V) of (™ such that

(2.37) LN () £<Xt(°°)>.

N—oo

Together with inequality (2.35) and monotonicity (Lemma 2.1.3), this results in

(2.38) (X)) ooe (X)),

N—oo

As (2(™) is an increasing sequence, (2.38) is equivalent to (1.38).

The next step shows that the limit is finite almost surely. Let h > h be the
function given by Assumption A2. Notice that h may be replaced by h+ C for
every constant C' > 0. Furthermore, h is bounded above. Thus, the function h
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may be modified such that, in addition, h is concave. By Ito’s formula, Lemma
2.1.1 and translation invariance,

d . .
(2.39) EEXtﬂ(i) = Eh(X[(i)) < ER(X[(2)) < h(EX(0)).
For the last step, we applied Jensen’s inequality. Therefore, the expectation is
bounded above by the deterministic function y(t, z) satisfying

d .
(2.40) () = h(y(t,x),  y(0,) = z.

The concave function h(z) converges to —oo as z — oo. Choose zq such that
h is strictly negative for all x > zy. Then for all x > x7 and ¢ > 0 we have
xo < y(t,z) < x. From (2.40) we obtain by separation of variables that the
solution satisfies

v 1 o 1 o 1
(2.41)752—/ - dzg/ - dzl/' ——dz as T — oo.
y(t,x) h(Z) y(t,z) —h<2) lim y(t,x) —h(2’>

r—00

For the monotone convergence, notice that y(¢, z) is nondecreasing in x and that
all integrals are finite by inequality (1.34). Hence, if lim y(¢, ) was infinite for
T—00

t > 0 then we would face the contradiction 0 < ¢t < 0. Therefore, we arrive at

(242) E [ X, = Y o 1 lim EX[ (i) <) o; limy(t,z) <oo, t>0.
ieG °° iec

From Lemma 2.1.4 it is then clear that for all € > 0 the solution of (1.5) which

starts at time ¢ = e from X.™ is the a.s. monotone limit (as N — 00) of the

solutions of (1.5) starting from X® at time e, or equivalently starting from N
at time 0. At the beginning of the proof we defined Xt(oo) as this limit; hence we
have so far proved parts a), b) and c¢) of Theorem 1.

A similar argument as in (2.35) proves that the process with initial measure
is dominated by the maximal process, which is part (e).

To prove part (d), fix 0 < s < t. By part (e),
(243) £ (X)) > 57 (X,).
Using this with r = s, we get the inequality
(2.44) L(XPI) > 57 (X)) =L (Xfm)),

where the last equality follows from the Markov property. We conclude from this
monotonicity that E(Xt(oo)) | 7 for some probability measure v on E,, which by
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continuity in the initial configuration (Lemma 2.1.4) is an equilibrium distribution
of the dynamics (1.5).

Next, we show that the upper invariant measure is translation invariant and
is associated. Both properties are preserved under weak limits. Furthermore, we
will argue that these properties are preserved under the dynamics. The constant
configuration XOM = N is both translation invariant and associated. Hence, both
X~ and Xt(oo) have these properties for all ¢ > 0. Therefore, the claim follows.

The translation invariance of the migration kernel implies that the dynam-
ics (1.5) preserves translation invariance. To prove the preservation of associated
measures, we will argue in a similar way as in [4] where the analogue of (1.5) with
h =0 and [0,1]¢ instead of RS, was treated. We first consider the approximation
scheme (X, A) with finite A C G, used to prove the existence part of Proposition
1.2.1. For fixed A, Theorem 1.1 in [15] together with a uniform approximation
of h and g on compact intervals by smooth and bounded functions h; and g
with inf,>0 gr(x) > 0 shows that, for an associated initial distribution £(Xj), the
projections of £(X) to R4, are associated. Since £(X?}) approximates £(X;) as
A 1 G, the claim follows. O

2.3 The mean field model

In this section we study the dynamics

It can be shown (but will not be required for the subsequent proofs) that (2.45)
arises as the limit of a sequence of processes following the dynamics (1.5), where
G is replaced by a finite set G,, of cardinality n and m™ (i, j) = 1/n for i,j € G,,.
This type of limit is known as mean field or Viasov-McKean limit; we will therefore
address (2.45) briefly as mean field model. Intuitively, a uniform migration which
spreads out mass as far as possible should be good for survival, and conversely, ex-
tinction of (My);>0 governed by (2.45) should imply extinction of (X;)¢> governed
by (1.5). With this motivation in mind, we investigate in this section conditions
on h and g under which the dynamics (2.45) admits a nontrivial equilibrium dis-
tribution.
To this end, we consider the following

Proposition 2.3.1. Suppose that Assumption A1 holds and that
(2.46) Jyy > 0: h}[ojyo} >0 and 0# h|[y0,oo> <0.

There is no nontrivial invariant measure for the dynamics (2.45) if and only if

(2.47) /OOO Zg)) exp (/yy %x)h(x) dx) dy < 0.
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If condition (2.47) is not satisfied then there is exactly one nontrivial invariant
measure. Under Assumption A1 and Assumption A/, condition (2.47) is equiva-
lent to

(2.48) /Om%exp (/j%dlﬂ) dy < 1.

Proof. Let 8 > 0 and consider the process given by

(2.49) dM! = (0 — MP)dt + h(MP)dt + \/29(M?)dB,.

By standard theory (e.g. pages 220f and 241 in Karlin and Taylor [21]), the
equilibrium distribution of (2.49) is

(2.50) Ly(dy) = % exp (/y a(® _gx(?r;_ M) dz) dy =: Cy O(y) dy,

where Cp € (0,00) is the normalising constant. Indeed, existence of an equi-
librium of (2.49) is clear since the drift in zero is positive in zero and becomes
sufficiently negative near oo; formally, this follows from the finiteness of the inte-
gral fooo ®(y) dy, which can be checked easily.

Obviously, (2.45) admits a nontrivial equilibrium if and only of [ yTy(dy) =6
has a positive solution. Hence, all we need to do is to characterise the situations
where

(2.51) 30 >0: f(0):= a/ yc_,eefg(dy) = 0.

We eliminate one occurrence of § on the left hand side of (2.51) by an integration
by parts:

£(0) :/Ooo%exp (/yj%dm) exp (/y:%d:p) dy
oo =t ([T )|

i (o () o (=57 )

We now analyse the two boundary terms on the right hand side of (2.52). In
the following calculations, C; are finite constants. Recall that A is nonpositive for
large arguments. Furthermore, in Assumption Al we assumed g(z) < Cz? for
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some constant C' and all z > y, > 0. With this, the expression coming from the
boundary value 1/¢ tends to zero as ¢ — 0:

(253) exp (/yl/e a0 — ) )+ h(x) dx) < Oy exp </y1/f a0 — ) dm) =0 o

0 g(l’ o VO Cx?

For the other boundary term, we recall that A is nonnegative for small arguments
and estimate

0 < exp (_ / " a(f —;&; h(z) dm) < Cyexp (- / e zz )2 dx)

e—0 (6] 1
— (Csex —0—/ —d:v).
3P ( 2 Jot 9()

By assumption, g is locally Lipschitz continuous in zero and thus g(z) < Cyz in a
neighbourhood of zero. Together with # > 0, this implies that all boundary terms
vanish. Notice that the expression coming from the boundary value € does not
need to be zero in case 6 = 0.

At this point we have seen that f can be rewritten as

w1 0= 58 o[ 50 o [ 55020

for > 0. We will show that f is strictly decreasing and continuous in § > 0. For
this, consider the function

(2.56) 6 — h(y) (eXp (/y: ﬁ dx)>9

for fixed y > 0. If y < yo then h(y) > 0 and the integral is negative. If y > y, then
h(y) < 0 and the integral is positive. In both situations, the function in (2.56) is
non-increasing. Furthermore, there is an interval [y, y2] with yo < 1 < yo where
h(y) < 0 and where the function in (2.56) is strictly decreasing and converging
to —oo. The integral over [0, 1] on the right hand side of (2.55) is continuous
and non-increasing in # > 0, and bounded in # > 1. This follows from dominated
convergence and the fact that the integral over [0, ] on the right hand side of (2.55)
is bounded above by

[t (] s o) e (|| 26555 00)

gexp(/j%dx)s

(2.54)

(2.57)

-C < o0
0
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for all @ > @ > 0, where ¢ > 0 is such that |ax — h(z)| < af/2 for all + < . By
monotone convergence, the integral over [y, c0) on the right hand side of (2.55)
is continuous and strictly decreasing in € > 0, and decreases to —oo. Thus, the
function f is continuous and strictly decreasing in # > 0 with f(c0) = —o0.
Hence, condition (2.51) is satisfied if and only if limy_o f(¢) < 0. Note that by
strict monotonicity of f, there is at most one nontrivial invariant measure.

For the limit # — 0 in equation (2.55), we use monotone convergence (for the

2" part) and dominated convergence (for the fyzo part). Thus, we have

(2.58) lim £(6) = /Ooo % exp (/yj %ﬂc)}lm dx) dy

Therefore, limg_o f(0) < 0 is equivalent to condition (2.47).
Now, additionally assume that lim._o [ % dx exists in (—oo, 00]. Then

reversing the calculation in (2.52) with 6 = 0, we arrive at

If the limit on the right hand side is oo then limy_ f(#) > 0 and a nontrivial
invariant measure exists. The assertion is true in this case because the left hand
side of (2.48) is co. Otherwise, the limit on the right hand side of (2.59) is
finite. Then multiply the equation with exp ( e %;;(x) dz) and merge the two
integrals [/ and fyyo into one integral. Hence, we see that (2.47) and (2.48) are
equivalent. [

(2.59)

We now specialise this result to the logistic Feller case, where condition (2.48)
can be simplified.

Corollary 2.3.2. Consider the mean field model (2.45) with h(z) = vz (K — x)
and g(z) = Bx. Assume a,v,3 >0 and let K > 0 be uniquely determined by

(2.60) /0 exp (Kvy — ?ﬁ) -aexp (—ay) dy = 1.

There is no nontrivial invariant measure for (2.45) if and only if 0 < K < K.

Proof. First of all, convince yourself that Assumptions Al and A2 hold. Thus,
Proposition 2.3.1 applies if K > 0. After an integration and a change of variables
(y — By), condition (2.48) takes the form (1.43). The left hand side in (1.43)
is strictly increasing in K, tends to co, is continuous in K by monotone conver-
gence and is smaller than one for K = 0. Hence, K exists and is unique. By
monotonicity, condition (1.43) holds if and only if K < K. O



36 CHAPTER 2. LOCAL EXTINCTION AND ERGODIC BEHAVIOUR

For example, in the case « = v = 3 = 1 formula (2.60) gives the numerical
value K = 0.6973....

The following extinction result for the mean field dynamics is a fairly direct
consequence of Proposition 2.3.1.

Lemma 2.3.3. Consider the mean field model given by (2.45). Suppose that
Assumptions A1, A2 and condition (2.46) hold. Then inequality (2.47) implies
local extinction:

(2.61) L (M) = 0 (ast — o0)
for any initial law.

Proof. Paralleling the arguments in Section 2.2, one infers the existence of the
maximal process M (> for the dynamics (2.45), which obeys £(Mt(oo)) > L (My).
Again, this maximal process converges to an invariant measure. However, by
Proposition 2.3.1 and condition (2.47), the trivial measure ¢y is the only invariant
measure. This implies the assertion. [

2.4 Comparison with the mean field model.
Proof of Theorem 2

The main idea for the proof of Theorem 2 is the assertion that the interacting
locally regulated diffusions are dominated by the mean field model. The intuition
behind this is that a uniform spread of mass reduces competition and therefore
is good for survival, and that the mean field model arises as a limit of uniform
migration models (see Section 2.3).

We proceed in two steps to prove Theorem 2. Firstly, we establish a comparison
between the system of interacting locally regulated diffusions (1.5) and the mean
field model (2.45) which implies that it is more likely for the latter to survive. Then
we exploit the fact (proved in Section 2.3) that for some parameter configurations
not even the mean field model survives.

The proof of the comparison result will first treat the case where the functions
h and g satisfy the following assumptions.

Assumption A6. The set I is a closed finite interval of the form [0,¢|, 0 < ¢ <
oo. The functions h: I — R and \/g: I — R are twice continuously differentiable
on I and satisfy h(0) = g(0) = g(c) = 0 > h(c). Furthermore, g is strictly positive
on (0,c¢).

The proof of Proposition 1.2.2 is based on the following lemma.
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Lemma 2.4.1. Let h and g satisfy Assumption A6. Suppose that h is concave
and that the set A is finite and nonempty. Then the semigroup of the solution of
equation (2.25) preserves the function cone

0 o?

axlf—o VZ, 8xlaxjf—0 VZ,]},

(2.62) F = {f € Cj(RL:
where C},(R,) denotes the space of all bounded C2- functions f : RY, — R with
bounded first partial derivatives.

Proof. This lemma is an addendum to Proposition 17 in [5]. There, the preser-
vation of F was proved for & = 0 and matrices m with .., m(i,j) = 1 for all
1 € A. This proof also works for more general matrices m which only satisfy
> jeam(i,j) < 1fori € A To extend the argument to the case h # 0, let y(t, x)
be the solution of

(2.63) %y(t,x} = h(y(t,z)) y(0,x) =z € 1.
This defines a deterministic Markov process whose semigroup is given by S, f(z) :=
f(y(t,x)). Similar as in [5] we only need to establish that this semigroup preserves
F if h is twice continuously differentiable. A little calculation shows that it is
enough to prove that y(¢,x) is increasing and concave in x. To show concavity,
notice that differentiating equation (2.63) results in

260 gt = (ot (Gutn) )+ 1 00 (),

For fixed z, write (2.64) as z, = a; + by-2, with zy = 0. The solution for this is

t t S
(2.65) 2 = exp (/ b ds)/ exp (—/ b, dr) asds.
0 0 0

Since h(x) is concave, a; is negative, implying the claimed concavity. A similar,
even simpler argument shows monotonicity. [

Proof of Proposition 1.2.2. We make use of the approximation scheme X* defined
in the proof of Proposition 1.2.1; recall that X* is the solution of (2.25). Since
XA 1 Xy, it suffices to show the inequality (1.44) with X, replaced by X/, and f
depending only on the coordinates x; with i € A.

Furthermore, we assume for the rest of the proof that h and g satisfy Assump-
tion A6. The general case follows then by approximating h and g pointwise by
functions hy and gy, satisfying Assumption A6. See Lemma 19 of [5] for the details.
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In addition, we may assume that f € F; otherwise approximate f by func-
tions in F' and use dominated convergence. Denote by S; the strongly continuous
semigroup of X* defined on C(I A). When applied to ¢ € F, the generator of X*
takes the form (see e.g. Theorem 7.3.3 of [27])

266) Gole) = 3 [ mli ey — 1) - + ha) e + ) | ol

i€EA JEA i

By Proposition 1.1.5 ¢) of [11], we know that
d
(2.67) %Stf =G5S, f.

~ Let M; = (M,(i))sea be a system of processes coupled through the initial state
My (i) = Xo(i), i € A, but following independent mean field dynamics:

(E“Mt( ) — My(i) + h(Mt(i))> dt

(2.68) ZEA
+Z 2f (M) g (M, (0) dt+za—f My)\/29(My(i)) dBy (i),
zEA ieA

where B(7);ep are independent Brownian motions. Write ji; := £ (Mt); for brevity
we suppress in this notation the dependence on A. By equation (2.68) the evolution
of 1; is given by

Lif =0y [Eﬁ[(EﬂMt@ - M) (5 ) (1)

(2.69) icA 52
+ mlh) e f + o)) .

Integration by parts yields

trd _ ¢ bod
(270) /0 (EUS) St—sf ds = [MsSt—sf]O _/0 Ns%st—sf ds.

In view of (2.67) this reads as

brd
(2.71) firf — pSif = /0 (%MS - usg) St—sf ds.

We will show that the integrand is nonnegative. From Lemma 2.4.1, we know
that ¢ := S;_sf (for 0 < s < t fixed) is an element of F. By equations (2.66)
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and (2.69),
(2.72)
d
(s = 1:9) ¢
— 0 Y BPIL(E (o) (0] — 0 Y (VB [3) () ()]
> oy EFM(i)EF [(% J(M)] —a Y m(i,j>EﬂMt(j>Eﬂ[(8?@)(1\@}.
i€A t i,jEA !

Note that under the assumptions on fi we have £ (M(i)) = £ (M(0)) for all
i € A. The right hand side of (2.72) is nonnegative because of 3, m(i,7) < 1.

To see the inequality in (2.72), notice that —a%igp is bounded and component-wise
increasing by Lemma 2.4.1. The claimed inequality thus follows from the fact
that £ (Mt) is associated, which we now prove. Independent real-valued random
variables are associated (see p.78 of [24]), and [ is associated by assumption.
Hence

EF[f(M)g(M,)]
273) ~ Ef {E [f(Mt>g(Mt)|M0]} > EF [E[ F(M) | Mo E [g(M) | Mo]
> B B[00 V] | B* o011 | = B[00 & g0,

showing that £ (Mt) is associated. [

Proof of Theorem 2. As in the proof of Theorem 1, we may w.l.o.g. assume that
the function & from Assumption A2 is concave. Furthermore, w.l.o.g. we may
assume that h itself is concave and satisfies both (1.34), with h replaced by h,
and (1.41), with & replaced by h. Otherwise, by Lemma 2.1.3, (X;);>0 is dominated
by the solution of (1.5) with h replaced by the concave function kA which satisfies
both (1.34) and (1.41).

Let yo := max{y > 0 : h(y) = 0}. Assume for the moment that yo > 0.
The measure ji := E(Xl(oo)) is associated, shift invariant and its first moment is
finite by Theorem 1. Let (M;) be the solution of (2.45) with initial distribution

=L <X1(°°)(0)>. Theorem 1(e), (a) and Proposition 1.2.2 imply
(274) Ee*)\XH_l(i) > Ee*)\Xt(j_ol)(i) _ Eﬁe*)\XEOO)(Z') > Euef)\Mt'

It follows from Lemma 2.3.3 that, under the stated assumptions, Ee "t — 1 for
all A > 0 as t — oo. This proves the assertion for the case y, > 0.
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If yo = 0 then h(z) = (h(z) — h(1)) A O satisfies b < h < 0 because h is
concave. Let X be the solution of (1.5) with A replaced by h and with the same
family of Brownian motions. By the previous step, X suffers local extinction.
Lemma 2.1.3 implies X < X which completes the proof. O

2.5 Self-duality. Proof of Theorem 3

In the rest of the paper, we exploit the specific form of the dynamics (1.2) for
the interacting Feller diffusions with logistic growth. Theorem 3 states that the
process is “dual to itself” via

(2.75) E” exp (—%(Xt, y)) = EVexp (—%(az‘, XJ))

We will prove this for the solution X* of (2.25). By (2.27), we know that the
process X* monotonically approximates X. Hence, the assertion follows by dom-
inated convergence.

For the rest of the proof, we consider X*. We write X instead of X* and z,y
instead of 2, y*. The duality function is H(z,y) = exp (—% (z,y)). Recall the def-

inition of CZ,(R%,) from Section 2.4. Define the linear operator G*: C},(R%,) —

C(Réo) by

(2.76)

G5 ) = 3 o ST iy — a0 ) L i — ) Dp v e
xT) = — @] jEAm Z,j fﬂj ZT; 81‘1 '}/fﬂl ZT; axl :C’Lax? .

By It6’s formula, the process (X;); is a solution of the martingale problem for
(QX, C3, (]R/go). In order to apply Theorem 4.4.11 of [11] (with the choice a, 3 = 0),
we will show that

(2.77) GXH(y)(x) =G H(z,")(y) Va,yeRL,.

We prove equation (2.77) by considering the different parts of (2.76) separately.
Since H is a function p((z,y)) of the scalar product, it is easy to see that the
migration terms of both sides are equal. To establish equation (2.77), it remains
to show that

2

0 0
vy (K — xi)%H(% y) + 5%@]’[(% Y)
(2.78) : i

a 2
— (K — y)—H 2 H
i (K — ) oy (:r,y)+ﬁyzay3 (z,y)

)
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for all i« € A. Observe that this equation is symmetric in x and y. Consider the
left hand side of equation (2.78) divided by H (z,y):

v 22 VK Voo
—=ui) + By (3) = ——F—xivi + Zxy + iy

5" () =t gty
The right hand side of (2.79) is symmetric in x and y and therefore, by interchang-
ing the roles of = and y, is also equal to the right hand side of equation (2.78)
divided by H(z,y).

Theorem 4.4.11 of [11] is applicable if we prove that

(2.80) sup |GY H (X, X))

s,t<T

(2.79) v (K —x;)(

is integrable for all T < oo where X and X' are independent. It is not hard to
see that

(2.81) GXH (z,y)| < O(|ly| + |2] + [y]), Vz,yeRE,

for a finite constant C. For this, use that zexp(—z) is bounded in z > 0. Inte-
grability of (2.80) therefore follows from the independence of X and X' and from
Lemma 2.1.2. [l

Let us write M,(Z4) for the set of configurations in Rg) with finite support.
As a consequence of the self-duality, we prove the following characterisation of the
upper invariant measure in terms of the finite mass process.

Lemma 2.5.1. Assume (,v > 0. The upper invariant measure v of (1.2) is
uniquely determined by

(2.82) /exp (=3 ) #(da) = PA(Et = 0 such that X[ =0),  |A < %,

where X1 is the solution of (1.2) with the transpose migration matriz m'.

Proof. Fix a configuration A € M,.(Z%) and consider the process (Xt(")) started
in the constant configuration n(i) = n. This process converges to the maximal
process as n — 0o. Therefore, the self-duality implies for t > 0

E exp (—1<Xt(o<>)7 /\>) = lim Eexp (_1<Xt(n)’ )\>)
(2.83) p oo 3

For the second equality, we used monotone convergence. Letting ¢t — oo, the
assertion follows from Theorem 1(d). For general A with |A\| < oo, use monotone
convergence. O
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2.6 Convergence to the upper invariant measure.
Proof of Theorem 5

Proof of Theorem 5. Let u be a translation invariant distribution on Z? which
satisfies ¢(0) = 0. For analysing the long-term behaviour of the interacting Feller
diffusion with logistic growth started in u we can assume without loss of generality
that u has finite first moment and satisfies p(zg = 0) = 0. Otherwise we let the
system run for a little time £ > 0, obtaining

(2.84) lim £ (X,) = lim £ (%) (x,).
A comparison with the maximal process (see Theorem 1 (e), (b)) yields E#X.(0) <
oo. Furthermore, after a fixed positive time ¢ > 0 every component is strictly
positive almost surely (see Lemma 2.6.2).

Let X and X be solutions of (1.2) with migration matrix m and its transpose
mf, respectively. In Lemma 2.6.1 we will show that the total mass hits zero in
finite time or tends to infinity. Hence, we get by self-duality (Theorem 3)

oxp (7 t = z ML oxp (— Lz, X7
(2.85) B exp (~5(Xe 0) /“(C”(E [ix oo 3P (=5 (2 X))

+E [135,: X1 ©XD (—%(x, XZ>)] )

We treat the two terms on the right hand side separately and begin with the first
term. Apply Holder’s inequality to the integral with respect to u. For this, let
1/p; = X[ (i)/|X]| if this is positive. Thus, we obtain

E) {1X§lqm/u(d$)exp (—%(rv,XD)}

xf @)

i€z

= E {1X§|_>OO/M(d$)eXp (—%deﬂ)] —0 ast— 0.

The equality is a consequence of the translation invariance of pu. The last ex-
pression tends to zero because of dominated convergence and the assumption
u(xg = 0) = 0. As to the second term on the right hand side of (2.85), dom-
inated convergence gives

(2.87) /,u(dm)E)‘ [135;X§296XP (—%(w,Xb)} — /,u(dx)E’\[las:Xzzo}
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as t — oo. Using Lemma 2.5.1 we arrive at

lim B exp (—%(Xt, A)) =P3t>0st. X[ =0)= /exp (—%(x, A)) v(dz).
Starting in £ (Xo) > u, the process £ (X;) is bounded below by £# (X;) (Lemma

2.1.3) and is bounded above by E(Xt(oo)) (Theorem 1(e)) which both converge to
v. This concludes the proof of Theorem 5. [

We have to append

Lemma 2.6.1. Assume 3 > 0. Let X be a solution of (1.2) starting in x € E,
with finite total mass |x| < co. Then with probability 1 either

e there is at > 0 such that X, =0 for all s >t or
o | Xi| — 00 ast— oo.

Proof. The intuition behind this is the following. The process always has a positive
probability of hitting the lower trap. Whenever the total mass stays bounded, the
process will seize its chance.

This is made precise in Theorem 2 of [20]. In order to apply this result, we only
need to verify that there always is the risk of extinction in the following sense:

(2.88) Vy: inf P*(3t: X, =0) > 0.

|lz|<y
Let Y; be a solution of (1.5) with G = Z% h(x) = yKz and g(x) = Bz. By
Lemma 2.1.3, X and Y may be coupled such that X; is bounded above by Y;
almost surely. Furthermore, |Y;| is equal in distribution to Feller’s branching
diffusion F; with super-criticality vK started in |z|. The extinction probability

of F; is strictly positive, see e.g. Appendix 6.2 of [7]. Therefore condition (2.88)
follows from

(289) P*(3t>0: X, =0)>PM(3t>0: F=0)>P¥(3t>0: [, =0) >0
for every x with |z| < y. O

Lemma 2.6.2. Suppose that h and g satisfy Assumption Al. Let X be a solution
of (1.5). If its initial law p is translation invariant and does not charge the zero
configuration 0, then, for every fixed time ty > 0,

(2.90) X)) >0 Vied P* — a.s.
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Proof. Assume, that h < 0. Otherwise, compare X; with the process defined with
h A 0 instead of h.
Let h(0) = —af + h(#). For € > 0, define the solution of

(2.91) dY;S" = aedt + h(Y")dt +1/29(Y")dB], Y5 >0,

on the same probability space as X by using the same system of Brownian motions.
This system satisfies P*(Y;"" > 0) = 1 for all ¢ > 0. Otherwise, continuity in the
initial value would imply that there is a ¢ > 0 and a 6, such that P%(Y " =
0) > 0 for all & < 6,. Integrating this with the equilibrium distribution I'. (see
equation (2.50), it exists because of h < 0) yields I'.(0) > 0 which is false. Thus,
we have

(2.92) V™ 50 Vee (0,1)NQ Ve (0,1)NQ Vi, jst. m(i,j) >0 as.

Denote the event {X;(j) > ¢ YVt € [to — d,tp]} by Acs. On A.s we compare X
with the solution of (2.91):

X,(i) = Xpy_s(i) + /t K > mli, k)X, (k) ds

(2.93) + /t té h(X,(3)) ds + /t ta \/29(X(i)) dB(3)

0

> /t:5am(¢,j)eds+/t5ﬁ(xs(i)) ds+/t:6\/29(Xs(i)) dB(1).

to

for all t € [tg — 0,t0]. By standard comparison results (e.g. Theorem (V.43.1)
in [29] and a stopping argument), this implies Xy, (i) > Yém(i’j)‘5 on A.s a.s. By
path continuity, A.s approximates {X;,(j) > 0} as J,e — 0. It follows that on
Xi,(j) > 0 we have Xy (i) > 0 for all ¢ such that m(i,5) > 0 a.s. With the
migration kernel being irreducible every site can be reached from j. By induction
we conclude that every component of Xy, is positive a.s. given X;,(j) > 0.
Starting in a nontrivial translation invariant measure the system a.s. never hits
0. Therefore, there is a location 7 with Xy, (7) > 0 a.s. This proves the lemma. O



Chapter 3

The Virgin Island Model

Chapter 3 is devoted to the Virgin Island process (V;):>o which has been defined
in (1.19) as total sum over all n-th generation processes (Vt(n))tzo, n > 0. The 0-th
generation process is the one-dimensional diffusion (Y;);>o which is the solution
of (1.10). The key ingredient in the construction of the Virgin Island process is the
law Qy of excursions of (;);>o from the absorbing boundary zero. The excursion
measure Qy is defined through Theorem 6 which we prove in Section 3.1. In
addition, Section 3.1 contains a number of preliminary lemmas. Fast readers may
want to proceed directly to Section 3.2.

Section 3.4 includes our proof of the extinction result (Theorem 7). The key
step for this proof is Lemma 3.3.2 which asserts that the Laplace transform of
the Virgin Island process satisfies a certain integro-differential equation. This key
equation is related to a concave function which is studied in Lemma 3.4.1. The
concavity of this function is the second important observation in the proof of
Theorem 7.

In Section 3.2, we prove Theorem 8 which specifies the asymptotic behaviour
of the expected man-hours of V' up to time ¢t as t — co. We will show that the
expression in (1.22) satisfies a renewal equation, see equation (3.72). Thus, the
main part of the proof of Theorem 8 consists of known results from renewal theory.
The explicit formulas in (1.60) and in (1.61) are derived in Lemma 3.1.3 and in
Lemma 3.1.5.

3.1 Excursions from a trap of one-dimensional
diffusions. Proof of Theorem 6

Recall the Assumptions A1, A3, A4 and A5 from Section 1.2. The process (Y;):>o,
the scale function S and the excursion set U have been defined in (1.10), in (1.12)

45
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and in (1.11), respectively.

In this section, we define the excursion measure Qy and prove the convergence
result of Theorem 6. We follow Pitman and Yor [28] in the construction of the
excursion measure. Under Assumptions Al and A3, zero is an absorbing point for
Y. Thus, we cannot simply start in zero and wait until the process returns to zero.
Informally speaking, we instead condition the process to converge to infinity. One
way to achieve this is by Doob’s h-transformation. Note that (S’(YMTS))DO is a
bounded martingale for every ¢ > 0, see Section V.28 in [29]. In particular,

(3.1) EY[S(Yirr)] = S(y)

for every y < ¢ by the optional stopping theorem. For £ > 0, consider the diffusion
(YtT’E)tZO on [0,00) — to be called the 7-diffusion stopped at time 7. — defined by
the semigroup (77 ):>o

(32) Ti fy) = —y>Ey [SYinr) f(Yirr)],  y > 0,¢>0.

U

1
(
The sequence of processes ((Yf’e)tzo, € > 0) is consistent in the sense that

(3.3) (Vi) = v (v

for all y,£,6 > 0. Therefore, we may define a process Y = (Y;T)ogthm which
coincides with (YtT’e)tZO until time 7} for every € > 0. Note that the T-diffusion
possibly explodes in finite time.

The following important observation of Williams has been quoted by Pitman
and Yor [28]. Because we assume that zero is an exit boundary for the 0-diffusion,
zero is an entrance boundary but not an exit boundary for the T-diffusion. Indeed,
the T-diffusion started at its entrance boundary zero and run up to the last time it
hits a level y > 0 is described by Theorem 2.5 of Williams [33] as the time reversal
back from Ty of the |-diffusion started at y, where the |-diffusion is the 0-diffusion
conditioned on 7T < oco. Hence, the process (Y;T) may be started in zero but
takes strictly positive values at positive times.

Pitman and Yor [28] define the excursion measure Qy as follows. Under

(3.4) Qv (|T: < Tp),

that is, conditional on “excursions reach level €”, an excursion follows the T-
diffusion until time 7. and then follows the O-diffusion. With this in mind, define
a process Y°© := (Yf) 1> Which satisfies

(35) ‘Cy(OA/;:\TE)tZQ) = Eg((}/;T7€)t20)

(36) ‘Cy(<YI§E+t>tZQ) = ‘CE((Y;)tZO)

t>0
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for y > 0. In addition, (YF,t <T.) and (YF,t > T.) are independent. Define the
excursion measure (Jy on U by

_ 1 N
(3.7) 17«1, Qy (dx) = =—P°(Y* € dx), e>0.
S(e)
This is well-defined if
1 . 1 .
(3.8) lr,, <1 =—P(Y* €dy) = =—P°(Y*" e dy)

5(e) S(z+9)

holds for all €,6 > 0. The critical part here is the path between T. and T.,s.
Therefore, (3.8) follows from

1 1

(3.9) S'(e)EE [F(Y)1r. 4<m] = m]ﬁ)& [F(Y)|Tets < To
| 1 ‘[F(ve I I T
TSEry FOE) = e [F(VEL)]-

The first equality follows from equation (1.13) witha = 0, y = ¢ and b = e+4. The
last equality is the strong Markov property of Y19 The last but one equality is
the following lemma.

Lemma 3.1.1. Assume A1 and A3. Let 0 <y <e. Then
(3.10) LYY |T. < Tp) = LY(Y*).

Proof. We begin with the proof of independence of (l}f, t <T.)and of (}A/ts,t >T.).
Let F' and G be two bounded continuous functions on the path space. Denote by
Fr. the o-algebra generated by (Y;)i<r.. Then

EY [F<YT5/\.)G<YT8+.) |T8 < T()]
(3.11) =EY|F (YA )EY[G(Yis) | Fr]|T: < Ty
= EY[F(Yn.a)|T: < To|E°[G(Y))].

The last equality is the strong Markov property of Y. Choosing F' =1 in (3.11)
proves that the left-hand side of (3.10) satisfies (3.6). In addition, equation (3.11)
proves the desired independence. For the proof of

(3.12) PY((Y,"),50) = PY((Yinr)ezol Tt < Tp),

we exploit the fact that

w19 eI1A009)] = 5[50 T
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for bounded, continuous functions fi, ..., f, and time points 0 < t; < ... < t,. By
equation (1.13) with a := 0,

(3.14) S(Yyrr.) = S(e)PYn ™ [T, < Ty = S(e)EY [1g.<my | Front |

PvY-almost surely where F; 1. is the o-algebra generated by (Y)s<¢,a7.. Insert
this identity in the right-hand side of (3.13) to obtain

y : e I s .
(3.15) E D}f(Yt )} =BT <To)E {Jlndogfl(nm)].

This proves (3.12) because finite dimensional distributions determine the law of a
process. O

Now we prove convergence to the excursion measure Qy .

Proof of Theorem 6. Let F': C([0,00),[0,00)) — R be a bounded continuous
function for which there exists an € > 0 such that F(x)1lp<r. = 0 for every path
X. Let 0 <y < e. With Lemma 3.1.1, we obtain

1 ” B 1 ,
5P ) = somm e B 0]

1 ~ 1 .
= —E'F(Y?) = —E°F(Y: ).
S(E) ( ) S(&‘) ( Ter-)
The last equality is the strong Markov property of the T-diffusion. The random
time T}, converges to zero almost surely as y — 0. Another observation we need
is that every continuous path (x:):>o is uniformly continuous on any compact set
[0, T]. Hence, the sequence of paths ((XTy+t) s Y > 0) converges locally uniformly

to the path (Xt)
theorem implies

(3.16)

£>0 almost surely as y — 0. Therefore, the dominated convergence

(3.17) lim E°F(V5,, ) = E lim F(V, . ) = E"F (V7).

y—0 y—0

Putting (3.16) and (3.17) together, we arrive at

1
lim ——EYF(Y) =

y—0 S(y) EOF(YE) = /F(X>1TE<TOQY((1X)

(3.18) 5(e) )

= [ F(x)Qy(dx),

which proves the theorem. [



3.1. EXCURSIONS FROM A TRAP 49

We require the convergence (1.52) of Theorem 6 to hold for functionals F
which are not included in the assertion of Theorem 6. For example, we will prove
in Lemma 3.1.5 together with Lemma 3.1.7 that

(3.19) ll/ii%g(ly)Ey(/ooonds) :/</Oooxsds>Qy(dX):/ooomdz

provided that Assumptions Al, A3 and A5 hold. The first equality in equa-
tion (3.19) cannot be concluded directly from Theorem 6 because the functional
(Xs)s>0 — fooo Xs ds is neither bounded nor is it equal to zero whenever sup,q x; <
e for some € > 0. The following lemmas prepare for the proof of (3.19).

Lemma 3.1.2. Assume Al and A3. Let the continuous function f have compact
support in (0,00). Furthermore, let the continuous function ¢: [0,00) — [0,00) be
either nonnegative and nondecreasing, or Lebesque-integrable. Then

a0 B[ o) — [ ([T o) e -0

for every b < oo.

Proof. Let € > 0 be such that ¢ < infsupp f and let y < £. W.l.o.g. we assume
f > 0. Using Lemma 3.1.1, we see that the left-hand side of (3.20) is equal to

| [ ot = o] [Tl
- o= nyr0i s 2 [ [T o100 a5t n@ri

The second equality is the strong Markov property of Y and the change of
variable s — s — T,. For the convergence, we applied the dominated conver-
gence theorem or the monotone convergence theorem, respectively, depending on
whether ¢ is Lebesgue-integrable or not. [

The explicit formula on the right-hand side of (3.19) originates in the explicit
formula (3.21) below, which we recall from the literature. The proof of the second
equality in (3.19) is essentially contained in Lemma 3.1.5 below.

Lemma 3.1.3. Assume Al and A3. If f € Cy[0,00) or if f € C([0,00), [0, 00)),
then

(3.21) EY (/OTOATb F(Y5) dS) = /Ob (f(Z)S(b) _Sz()y & j(%?(j) *

for every 0 <y < b.
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Proof. See e.g. Section 15.3 of Karlin and Taylor [21]. O

Let (Y;)i>0 be a Markov process with cadlag sample paths and state space E
which is equipped with a Polish topology. For an open set O C E, denote by 7
the first exit time of (Y;)i>o from the set O. Notice that 7 is a stopping time. For
m € Ny, define

(3.22) W (y) == EY (/0 SmF(Y,) ds), y€E,

for a given function f € C(O, [0, oo)) In the following lemma, we derive expres-
sions for w; and wy for which Lemma 3.1.3 is applicable.

Lemma 3.1.4. Let (Y;)i>0 be a time homogeneous Markov process with cadlag
sample paths and state space E which is equipped with a Polish topology. Let w,,
be as in (3.22) with an open set O C E and with a function f € C(O, 0, oo))
Then

T

(3.23) EY (/0 sf(Yy) ds) :Ey(/0 wo(Y) ds)
(3.24) Ey</0 S2F(YS) ds) :Ey</07 2w, (Y,) ds)

forally € E.

Proof. Let y € E be fixed. For the proof of (3.23), we apply Fubini to obtain

i) =B/( [ [aryas) e ([ [ rvyasar)

- / Ey(ﬂ-r<7'/ ]]-s+r<’rf()/s+r)d8> dr
0 0

The last equality follows from Fubini and a change of variables. The stopping
time 7 can be expressed as 7 = F ((Yu)uzo) with a suitable path functional F.
Furthermore, 7 satisfies

(3.25)

(3.26) {r<rin{s+r<t}={r<7}n{s < F((Yurr)uzo)}

for r, s > 0. Therefore, the right-hand side of (3.25) is equal to

/0 7 (LU /0 ) L p(ipryng) T Vo) ds) dr
- /OOO Ey(ﬂme [/OOO loer f(Y) ds]) dr — EY (/Or wn(¥.) dr).

(3.27)
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The last but one equality is the Markov property of (Y;):>o. This proves (3.23).
For the proof of (3.24), break the symmetry in the square of ws(y) to see that
ws(y) is equal to

Ey(/on(n)/os /OSQILTSUdvdrds> - 2Ey</OT TT(s —r)f(y;)dsdr>
_9 /0 h B(1,cr /0 T F(Veir)ds ) dr = B ( /O ' 2un(Y;)dr).

This finishes the proof. O

(3.28)

The following lemma proves the second equality in (3.19). For this, denote the
monotone limit lim, ., S(y) by S(co) and define

(3.29) w(z) = /000 f(u)% du, z>0

for f € C([0,00),[0,00)). If S(00) = oo, then w(z) is the monotone limit of the
right-hand side of (3.21) as b — oo.

Lemma 3.1.5. Assume A1, A3 and S(o<) = oo. Let f € C([0,00),[0,00)). Then

(3.30) [ ([ rooas)astwo= [ e
a3 [ s aran= [ ee) o
If (3.30) is finite, then (3.30) is equal to

(3.32) /OOO f(z)m dz = %@Ey( Ooof(Ys)ds)

If (3.31) is finite, then (3.31) is equal to

(3.33) /Omw(z)m dz = 5%@]3?/(/000 sf(YS)ds).

Proof. Choose f. € C([0,0),[0,00)) with compact support in (0, 00) for every
e > 0 such that f. T fase — 0. Fixe > 0 and b € (0,00). Lemma 3.1.2 proves
that

(3.34) %g(ly)}zy( OTb £(Y2) ds) - / ( OTb fs(xs)ds>Qy(dx).
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Lemma 3.1.3 provides us with an expression for the left-hand side of equation
(3.34). Hence,

J ([ eta)arta —hm—/ e S

The last equation follows from dominated convergence and Assumption A3. Notice
that 75 ((xt),59) — o0 as b — oo for every continuous path (x¢),s,. Letting b — oo
and ¢ — 0, apply monotone convergence to arrive at equation (3.30).

Now we prove (3.32). By the monotone convergence theorem, the right-hand
side of (3.32) is equal to

N S o Lo Sy Az
liny s Jim B 109 s) = iﬁ%m/ I (2>g<z>5<z> ”
lim=—S(y A 2)

[ e [ i

The first equality is Lemma 3.1.3 and monotone convergence. The second equality
follows from dominated convergence and the assumption that (3.30) is finite.
Similar arguments prove (3.31) and (3.33). Instead of (3.34), consider

(3.35)

(3.36) lim

e [ )= ([ osporn

which is implied by Lemma 3.1.2. Furthermore, instead of applying Lemma 3.1.3
to equation (3.34), apply equation (3.23) together with equation (3.21). O

We will need that ()/t)t_z[) dies out in ﬁni_te time. The following lemma gives a
condition for this. Recall S(c0) := lim, . S(y).

Lemma 3.1.6. Assume Al and A3. Lety > 0. Then the solution (Y;)i>o of
equation (1.10) hits zero in finite time almost surely if and only if S(o0) = oco. If
S(c0) < 00, then (Y;)is0 converges to infinity as t — oo on the event {Ty = oo}
almost surely.

Proof. On the event {Y; < K}, we have that
(3.37) PY(3s: Y, =0) > P*(Tj < 00) >0

almost surely. The last inequality follows from Lemma 15.6.2 of [21] and Assump-
tion A3. Therefore, Theorem 2 of Jagers [20] implies that with probability one
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either (Y};);>0 hits zero in finite time or converges to infinity as t — oco. With
equation (1.13), we obtain

(338)  P(fim ¥ = )  fim PY(Y bits b befone 0) — fim S0 — SO0

This proves the assertion. [

The following lemma provides sufficient conditions under which the expected
area under (Y;);>o and the expected area under an typical excursion of (Y)i>0 are
finite. Recall (Y})i>0 and Qy from (1.10) and Theorem 6, respectively.

Lemma 3.1.7. Assume Al and A3. Assumption A5 holds if and only if
(3.39) Ey</ sts) <0 Vy>o0
0

If Assumption A5 holds, then S(o0) = oo,

(3.40) /(/Oooxsds)Qy(dx) - /Ooomdz <

and

(3.41) Ey</oooﬂds>:/0m§(y/\z)wzg(z)dz<oo
for all y > 0.

Proof. In equation (3.21) with f(z) := z, let b — oo and apply monotone conver-
gence to obtain

wr( [ ) = [ G- ) -

Y S(2) - / oz

< st [ E
Hence, if Assumption A5 holds, then Assumption A3 implies that the right-hand
side of (3.42) is finite and thus the left-hand side of (3.42) is finite. Further-
more, (Y;);>0 does not converge to infinity with positive probability as ¢ — oc.
Lemma 3.1.6 implies S(co) = co. Thus, the equality in (3.42) implies (3.41). The
equation (3.40) follows from Lemma 3.1.5 with f(y) :=v.

Now we prove that Assumption A5 holds if the left-hand side of (3.42) is finite.
Again, Lemma 3.1.6 implies S(0co) = oo. Using monotonicity of S, we obtain for
x>0

 z 1 [ S@az)
(3.43) /I g(z)g(z)d = S(x)/o g(z)E(z)d'

(3.42)
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The right-hand side is finite because the left-hand side of (3.42) is finite. Therefore,
Assumption A5 holds. O

The convergence (1.52) of Theorem 6 also holds for (xs)s>0 — f(xz), t fixed,
if f(y)/y is a bounded function. For this, we first estimate the first two moments
Of (Y;f)t20~

Lemma 3.1.8. Assume Al. Let (Y;)i>o be a solution of equation (1.10) and let
T be finite. Then there exists a constant Cp such that

(3.44) sup EY [K’/\t} <Cry, EY [SUP Yt2] < Cr(y+y°)
t<T t<T
for all y > 0 and every stopping time T.

Proof. We begin with the proof of the second inequality in (3.44). Let 7 be an
arbitrary stopping time and choose Cj, such that h(y) < Cpy for all y > 0. The
process (Y;)¢>o is almost surely bounded by the solution (Z;)¢>o of

(345) dZt == Cth dt + v/ 29(Zt) dBt, ZQ =1,

where (By):>0 is the same Brownian motion as in (1.10). See Lemma 2.1.3 for this
comparison. By Ito’s formula,

(3.46) dZ? =2Z,CpZy dt + 29(Z,) dt + 2Z,\/29(Z;) dB,.

The stochastic integral on the right-hand side is a martingale when stopped at
the stopping time 7 := inf{t > 0: Z, > K}, K > 0. By Assumption Al, g(y) <
C,(y +y?) for all y > 0 and for some constant C; < co. Taking expectations, we
obtain for every t < T

EZ?

tATATK

t t
2 2
(3.47) S /0 E[QCthATATK} ds + /0 E29(Zonrnre ) ds

¢
< y* +2C,Tsup EZgprprye + 2(Ch + Cy) / EZZ\ pr ds.
0

s<T

By Gronwall’s inequality and the first inequality in (3.44), we conclude
(348) EZtQ/\T/\TK S (y2 + éTy)e2(Ch+Cg)T

for some finite constant C’T. Notice that 7 — oo as K — oo almost surely.
Apply Fatou’s lemma and Doob’s Ls-inequality to the submartingale (Ziary )i>0
to obtain
2 .. 2 .. 2
510 EY [ilgl? V] <EY [hKHL 1or<1>f 32713 Zie ] < hKHL 1or<1>f EY [igg Zine]
' <liminf4EY[Z2, ] < Cr(y +4?)

K—ox
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for some finite constant C'r. The last inequality is (3.48).

The proof of the first inequality in (3.44) is similar to the proof of inequal-
ity (3.48). Instead of considering (3.46), stop equation (3.45) at 7x and take
expectations. ]

Lemma 3.1.9. Assume A1, A3 and A4. Let f:[0,00) — R be a continuous
function such that Cy := sup,> 0|f( W < 50. Then

EYf(Vy) = B[ f(V, ) Lo ] < o0

(3.50) /fxt@ydw—hms() S

for all t > 0.

Proof. W.l.o.g. we may assume f > 0. Choose f. € C([O, 00), [0, oo)) with com-
pact support in (0,00) for every € > 0 such that f. T f pointwise as ¢ — 0. By
Theorem 6,

1
(351) [ £00)@r () = lin BV
v=05(y)
The left-hand side of (3.51) converges to the left-hand side of (3.50) as ¢ — 0
by the monotone convergence theorem. Hence, the first equality in (3.50) follows
from (3.51) if the limits lin% and hH(l] interchange. For this, we prove the second
£e— y—

equality in (3.50).

Let b € (0,00). The 7-diffusion is a strong Markov process. Thus, by equa-
tion (3.2),

. , )
(3.52) ZI’%S@)E )L =S s Sy )MTJ
| Cone T) o
= E gy ] =B gy e

The second equality follows from the dominated convergence theorem because

(3.53) sup M < Cf sup Y .

0<y<b S(y) = o<y<r S(y)

For the last equality in (3.52), we used right-continuity of the function ¢
it
S(YT)
obtain

Ticr,. Now we let b — oo in (3.52) and apply monotone convergence to

v

3.54 lim lim—= —
(354 S(Y;)

b—o0 y—0 (y)

EV[f(Yy)Li<r,] = E°]

t<Tocj| :
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The following estimate justifies the interchange of the limits lim and lim

b—oo y—0

1 1
|11/1£>%S(y) EYf(Y:) blgilo ;%g(y)E [f(Y;)]lt<Tb} |

) 1
(355) S Cfbliglo ?};11) WEy [}/t]]-supsgt YSZb}

1 Y 1

< Cflim — sup =— sup —~EYsup Y2 = 0.

= VS ey
The last equality follows from S'(0) € (0,00) and from Lemma 3.1.8. Putting
(3.55) and (3.54) together, we obtain

1 o Fv)
3.56) lim=—EY[f(Y;)] = lim lim=——EY[f(V})1;cr,| = E° [ 1 :
( ) yIH(IJS(y) [f( t)] bg?oyz%S(y) [f( t) t<TJ [S(Y;T) t<Too]
Note that (3.56) is finite because of f(y) < Cyy, Lemma 3.1.8 and because of
5'(0) € (0, 00).
We finish the proof of the first equality in (3.50) by proving that the limits lim

e—0

and lin% on the right-hand side of (3.51) interchange.
y—)

|lim hm,LEny(Yt) - hm,LEyf(Yt)\
S y—0

By ) )
(3.57) 1 1 7
< lli%llfi%g(y)E [f(Yt) fa(Yt)} = lﬁoE [ 51(}/?) ﬂt<Too] 0.

The first equality is (3.56) with f replaced by f — f.. The last equality follows
from the dominated convergence theorem. The function f./S converges to f/S
for every y > 0 as ¢ — 0. Note that YtT > 0 almost surely for t > 0. Integrability

/(%) -
of TYJ)HKTOO follows from the finiteness of (3.56). O

We have settled equation (3.19) in Lemma 3.1.5 and in Lemma 3.1.7. A con-
sequence of the finiteness of this equation is that liminf;_ f x:dQy = 0. In
the proof of the extinction result for the Virgin Island Model, we will need that
[ x dQy converges to zero as t — oo. This convergence will follow from equa-
tion (3.19) if [0,00) 2t — [ x4 dQy is globally upward Lipschitz continuous. We
first prove that this function is bounded in ¢. Lemma 3.1.9 implies this bounded-
ness if the right-hand side of (3.50) with f(y) = y is bounded. Thus, we need to
prove boundedness of the function y — y/S(y).

Lemma 3.1.10. Assume A1, A3, A} and A5. Then

Y
(3.58) sup =— < 00.
y€(0,00) S(y)
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S(y) y
Y

Proof. It suffices to prove liminf, > (0 because 50 is locally bounded in

(0,00) and S'(0) € (0,00) by Assumption A4. By Assumption Al, g(y) < Cyy?
for all y > 1 and a constant C; < oo. Together with A5, this implies

o Y 1 [ 1
(3.59) > /1 9(y)s(y) W = 59/1 y5(y) -

The function R 3 z — ¢(z) := 1 — (1 —2)* A 1 is continuous. From the esti-
mate (3.59), we see that

(3.60) o> [Ty z [T wist)

The last inequality follows from i > 1,<1 > 1—1(y). Consequently,
ytwdy o Ly(s(2))
e = lim =¥——-

~YP(S
z
1
z

3.61 1=1 =

= lim ¢ (5(z)).

Z—00

The proof of the second equation in (3.61) is similar to the proof of the lemma of
L’Hospital. From (3.61), we conclude liminf, .. 5(y) > 1 which implies

Joswdy

(3.62) lim inf 1.
Z—00 z
This finishes the proof. O
Lemma 3.1.11. Assume A1, A3, A and A5. Then
(3.63) tim [ Qr () =0

Proof. We will prove that the function [0,00) 3 ¢ — [ x:dQy is globally upward
Lipschitz continuous; see Assumption Al for a definition of this notion. The
assertion then follows from the finiteness of the integrals in equation (3.40). Let
T = inf{t > 0:Y, > K}, K >0, let Cs be the upper bound from Lemma 3.1.10
and choose a constant C}, such that h(y) < Cpy for all y > 0. From (1.10), we
obtain for y > 0 and 0 < s <t
(364) B (Vi) - =B (Yorr) < Ch / L my)dn

S(y) S(y) - ) SW)
Letting K — oo and then y — 0, we conclude from the dominated convergence
theorem, Lemma 3.1.8 and Lemma 3.1.9 that

_ _ t Y!
(3.65) /Xt Qy(dx)—/xs Oy (dy) < ch/ B Trer] 4 < ChCslt =
The last inequality follows from Lemma 3.1.10. Inequality (3.65) implies upward
Lipschitz continuity which finishes the proof. m
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Fix \,k,t >0 and f € Cb([O, o0), [0, oo)) In the following lemma, we obtain
the convergence (1.52) of Theorem 6 for the functional

(3.66) C([0,00),[0,00)) 2 (xs)s>0 — 1 — exp (—)\Xt — /f/ot Xsf(8) ds)

which is bounded and continuous but for which there is no € > 0 such that the
functional vanishes whenever sup,~,x: < €. Furthermore, Lemma 3.1.12 is an
essential step in establishing equation (3.93), which is the key equation for the
proof of the extinction result of Theorem 7.

Lemma 3.1.12. Assume A1, A3 and A4. Let \,x > 0, let Y = (Y;)i>0 be as
in (1.10) and let Qy be as in (1.16). Then

d t
I y—o B exp (—/\Yt - li/o Y. f(s) ds)

:/ [1 — exp <_)\Xt - n/ot Xsf(8) dS)}QY(dX)

for every f € Cy([0,00),[0,00)) and for all t € [0, 00).

Proof. Let ¢. € C*(R>¢) be such that ¢.(z) =0 for all x < ¢, ¢.(x) = x for all
x > 2¢ and ¢.(z) T x as € — 0. By Theorem 6 and equation (1.16), we know that

(3.67)

—d%\yoEy exp (—Acba(Yt) - %/Ot 9:(Y5) f(s) d5>

= [ [ (3600 = [ 601051 ds) @ lan)

The right-hand side of (3.68) converges to the right-hand side of (3.67) as ¢ — 0
by the monotone convergence theorem. We will prove that the left-hand side
of equation (3.68) converges to the left-hand side of equation (3.67) as ¢ — 0.
Define ¢, := = — ¢.(r) > 0. The absolute difference of the left-hand sides of
equations (3.68) and (3.67) is bounded by

(3.68)

i sup éEy [exp (~A0-(¥0) — r /0 5.V ds)
~exp (- m_ﬂ/tm) J]

1
<11m—Ey )\quY}, —f-li/ gba

y—0y

(3.69)

= [ 6.0)Qv (@) + / / B-(x0s) Qv (dX) £ (5) ds.
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The last step follows from the dominated convergence theorem together with
Lemma 3.1.8 and from Lemma 3.1.9 because the function ¢.(z)/S(x) is bounded
by Assumption A4. The integrand of the second summand on the right-hand side
of (3.69) is bounded by xCyy, uniformly in € > 0, for some upper bound C; of
f, which is integrable with respect to ds ® Qy(dyx) by Lemma 3.1.8. Thus, we
are allowed to apply dominated convergence. Letting ¢ — 0 in inequality (3.69)
finishes the proof. O

3.2 Proof of Theorem 8

Recall (Vi)z0, (V" )is0, (Yi)ezo and Qy from (1.19), (1.18), (1.10) and (1.16),
respectively. Fix x > 0. A calculation similar to (1.53) shows that

t t t—u
(3.70) / E*V " ds :/ /aquy(dx)/ E*V." ds du
0 0 0

forn > 0 and t > 0. Summing over n > 0, this results in

t t t t—u
(3.71) / E*V,ds = / E*Y, ds + / /OéXqu(dX) / E*V,ds du
0 0 0 0

for t > 0. Define

(3.72) () ::/0 E*Vids, f(t) ::/0 E*Y,ds, p(du) ::/aquy(dx) du

for t > 0. In this notation, equation (3.71) reads as renewal equation

(3.73) x(t) = f(t) + /Otx(t —u)pu(du), t>0.

From this, (1.63) and the first equation in (1.60) follow from Theorem 5.2.8 and
Theorem 5.2.9 of Jagers [19], respectively. Lemma 3.1.7 implies the second equa-
tion in (1.60). The denominator on the right-hand side of (1.63) is finite because
of ue 9 < %6*1, u > 0, and Lemma 3.1.7.
For the proof of (1.61), define 6 := [ upu(du). Corollary 5.2.14 of [19] with
¢:= f(00) < 0o and n := 0 implies that
1 c

(3.74) E:L“(t) —3 (as t — 00).

Note that the assumption 6 < oo of this corollary is not necessary for this conclu-
sion. By Lemma 3.1.6, we know that lim, .., S(y) = co. Lemma 3.1.7 and equa-
tion (3.31) with f(y) := y show that 7 is equal to the right-hand side of (1.61).

This finishes the proof. [
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3.3 Recursion for the Virgin Island process

Recall the definition of (Y;)>0 and of (V;(k))tzo, k > 0, from (1.10) and from (1.18),
respectively. We mentioned in the introduction that there is an inherent branching
structure in the Virgin Island Model. One offspring island together with all its
offspring islands is again a Virgin Island Model but with a typical excursion instead
of (Y;)¢>0 on the first island. In this section, we exploit this branching structure to
obtain a recursive equation for the Laplace transform of the Virgin Island process
in Lemma 3.3.2 below. This recursive equation is the key equation for the proof
the extinction result of Theorem 7.

For the proof of Lemma 3.3.2, we will need a bound on the first moment of the
Virgin Island process (V;)i>o.

Lemma 3.3.1. Assume Al and A4. For every T < oo, there exists a constant
Cr < 0o such that

oo

1
sup —Eth(k) < Cp.

1
(3.75) sup sup —E*V, < sup
x>0 T

T
t<T x>0 t<T =5

Consequently, the Virgin Island process (V)i>o is finite for finite time points almost
surely.

Proof. Let Cp be the constant of Lemma 3.1.8. Recall from Section 1.1 that —
conditioned on (Vt(n))tzo — II™ is a Poisson point process with intensity measure

aVi™ dr @ Qy(dy). Using the definition (1.18) and Lemma 3.1.8, we obtain for
t<T

n

1 MR 1
> sup BV < Cp S sup 1B [, 16 (ar )
k=1

iy >0 x —, *>0 X
- n 1 t
(3.76) <Cr+), sup o [/ (CW}(’“) /Xt—r Qy(dx)) dr}
k=0 * 0

t n
- - 1

< Cr+aCr / Z sup —EmVT(k) dr.
0 =0 >0 T

By Gronwall’s lemma, this implies

n

1 1 ~ -
(3.77) supsup —E*V; <supsup » sup —Ex\/,;(k) < CpecrT,
t<T >0 T t<T n>0 3 —) >0 x

which proves the lemma. [
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In Lemma 3.3.2, we establish an equation for the Laplace transform of the
Virgin Island process. This equation will then be used in Section 3.4 to prove the
extinction result of Theorem 7.

Lemma 3.3.2. The Laplace transform v(t,x) := E*exp (—/\Vt), A >0, of the
Virgin Island process is differentiable in x = 0 for every t > 0. Furthermore, it
solves the equation

¢
d
(3.78) v(t,x) = E" exp (—)\Y; + a/ Ysﬁv(t —5,0) ds>
0

for all \,;t,z > 0.
Proof. Fix A > 0 and define

(3.79) Un(t, x) := E¥exp <—)\Z Vt(l)>, t,x >0, n e Np.

We will prove by induction on n that

(380) _%Un(ta O) = QY(dX) [1 — €Xp (_/\Xt + a/o dr Xr%vn—l(t - 0))}

for all t > 0 and that for every 0 < m <n and all t,z > 0

d
(3.81)  wu(t,z) = E®exp ( A Z v 4 a/ ds ‘/S(n_m)%vm—l(t — s, O))

where v_; = 0. If n = 0, then (3.80) follows from Lemma 3.1.12 with x := 0
and (3.81) is trivial. For the induction step, suppose that (3.80) and (3.81) hold
forall0 <n <n-—1,n>1. We prove (3.81) by induction on m, 0 < m < n. The
case m = 0 is trivial. Let m > 1. Assume that (3.81) is true for all 0 < m < m—1.
By the induction hypothesis and (1.18), we have for ¢,z > 0

Un(t, )
n—(m—1)

t
e [ (k) (n—(m-1)) 4 _
E exp( A Z V; —I—a/o ds (V; dazvm_z(t 3,0)))
*exp ( A Z v - / Xt I (dr, d)
a/ ds </ Yoy I (drr dX)iUm_z(t -5 O)) :
0 J dx Y

(3.82)
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Condition on (V(’)) _____ n—m and rewrite the Laplace transform of the Poisson
point process 1) to conclude that v, (¢, z) is equal to

<exp< A 2 Vt ) [exp(/ [—)\XH
(3.83) = exp( A Z V- —a/ dr V™)
/Qy(dx) [1 — exp (_/\thr +« /Ot ds XST%UmQ(t —s, 0))D

n—m

exp( A Vt + /dr(V” m)%vm_l(t—r,()))).

k=0

n—m

In the last step, we substituted s — r — s and applied the induction hypothe-
sis (3.80) with n and ¢ replaced by m — 1 and t — r, respectively. Equation (3.83)
proves (3.81) which finishes the induction on m. For the proof of (3.80), notice
that we have just shown (m = n)

t d
(3.84) v (t,x) = E¥ exp (—)\Yt + 04/ ds Ys%vn,l(zﬁ — s, O))
0

Lemma 3.1.12 with £ := « and f(s) := —<£uv,_;(t — s,0) implies (3.80). This
concludes the induction on n.
Finally, let n — oo in equation (3.84) and use monotone convergence to obtain

t 1 -1
Efe Vi — 7 exp (—)\Yt — a/ ds Y, lim lim— Ex<1 — eXp Z ))
0 nﬂooxﬂ()x k=0

for t,x > 0. Lemma 3.3.1 implies that the limits on the right-hand side may be
interchanged. This proves the assertion. [

3.4 Extinction and survival in the Virgin Island
Model. Proof of Theorem 7

Recall the definition of (Y});>0 from (1.10). As we pointed out in Section 1.2, the
expected area under an excursion of (Y;):>o play an important role. The following
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lemma provides us with some properties of the modified Laplace transform k(z)
of the total man-hours. We will see later that these properties are crucial for our
proof of Theorem 7. Recall from Section 1.1 the excursion measure (Jy of the
solution (Y;)¢>o of equation (1.10).

Lemma 3.4.1. Assume A1, A3, A4 and A5. The function

(3.85) k(z) := /1 — exp <—za /000 Xs dS)Qy(dX), 2z >0,

15 concave with at most two fixed point. Zero is the only fized point iff

(3.86) k(0) = a// Xs dsQy (dy) < 1.
0
Denote by q the mazximal fixed point. Then we have for all z > 0:
(3.87) 2<k(z) = 2<gq
(3.88) z2>2k(z))ANz2>0 = z>q.

Proof. The function k has finite values because of 1 — e ™ < ¢, ¢ > 0, and
Lemma 3.1.7. Concavity of k is inherited from the concavity of x — 1 — e™%¢,

¢ > 0. Using dominated convergence (with Lemma 3.1.7), we see that

k(z) _ / 1 —exp (—za [;7 xsds)

(3.89) Qy(dy) == 0.

z z

In addition, dominated convergence (with Lemma 3.1.7) implies

(3.90) K (2) = / [/Ooo axs ds exp (—za /OOO Xe ds)}Qy(dX) 2> 0.

If a > 0, then k is strictly concave. Thus, k£ has a fixed point which is not zero if
and only if £ (0) > 1. The implications (3.87) and (3.88) follow from the concavity
of k. O

The method of proof (cf. Section 6.5 in [19]) of the extinction result for a
Crump-Mode-Jagers process (J;)i>o is to study an equation for (Ee ™), .
The Laplace transform (Ee ), ; converges monotonically to P(J; = 0) as
A — 00, t > 0. Furthermore, P(J; = 0) = P(3s < t: J; = 0) converges monotoni-
cally to the extinction probability P(3s > 0: J; = 0) as t — oco. Taking monotone
limits in the equation for (Ee=*’) 1>0.>0 Tesults in an equation for the extinction
probability. In our situation, there is an equation for the modified Laplace trans-
form (L);~0>0 as defined in (3.91) below. However, the monotone limit of L} as
A — oo might be infinite. Thus, it is not clear how to transfer the above method
of proof. The following proof of Theorem 7 directly establishes the convergence of
the modified Laplace transform.
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Proof of Theorem 7. Recall the definition of ¢ from Lemma 3.4.1. In the first
step, we will prove

1
(3.91) L; =L} := lim~E” (1 - e_’\vt> —q (as t — 00)

x—0

for all A > 0. It follows from Lemma 3.3.1 that (L;);<r is bounded for every finite
T. By Lemma 3.3.2, the Laplace transform v(t, z) := E* exp (—)\V;) of the Virgin
Island process satisfies

t
d
(3.92) v(t,x) = E®exp (—)\Yt + a/ Y;%v(t —5,0) d3>
0

for all A\, ¢,z > 0. Notice that L, = —=v(¢,0). Take derivatives in (3.92) with
respect to z in x = 0 and apply Lemma 3.1.12 to arrive at

(3.93) L, = / [1 — exp <—>\Xt — oz/ot XsLt—stﬂ Qy (dx).

Based on (3.93), the idea of the proof of (3.91) is as follows. The term Ay, vanishes
as t — oo. If L; converges to some limit, then the limit has to be a fixed point of
the function

(3.94) k(z) = / [1 — exp <—za /000 Xs ds)} Qy (dx).

By Lemma 3.4.1, this function is concave. Therefore, it has exactly one attracting
fixed point. Furthermore, this fact forces L; to converge as t — oo.

We will need the finiteness of L., := limsup,_,, L:. Seeking for a contradiction,
we assume L., = co. Then there exists a sequence (t,,),en with ¢, — oo such that
Ly, = maxy<;, L. We estimate

L, < / [1 — exp (—)\th — /000 Xs sup L, ds)] Qy (dx)

r<tn

(3.95) < k(L) + /exp (—a/ooo XsLt, ds) (1 — e—/\th>Qy(dx)
<h(L) + [ M, Qr(@v),

The last summand is bounded in n by Lemma 3.1.11. Inequality (3.95) leads to
the contradiction

k(L C

(3.96) 1 < lim (Le,) + lim — = 0.

n—oo tn n— oo Ltn
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The last equation is a consequence of (3.89) and the assumption L., = co. Using
boundedness of L;, we prove Lo, < ¢q. Let (t,)nen be such that lim, . L, =
L., < oco. Then a calculation as in (3.95) results in

lim ;, < lim sup/ [1 — exp (—a/ (xs sup Lt,s) ds)] Qy (dx)
n—0o0 n—00 0 t>ty,

(3.97)
+timsup [ X, Qv(@),

n—oo

The last summand is equal to zero by Lemma 3.1.11. The first summand on the
right-hand side of (3.97) is dominated by

(3.98) (s;;%) Lt) / (/OOO s ds) Qy (dy) < 0.

Applying dominated convergence, we conclude that L., is bounded by

(3.99) / [1 — exp (—a /000 (Xs t@o Lt_s) ds)} Qy(dx) = k:(LOO).

Thus, Lemma 3.4.1 implies limsup,_,,, L; < g. This proves Theorem 7 in the case
of ¢ =0.

Assume ¢ > 0 and suppose that m := liminf, .., L; = 0. Let (t,),en be such
that L;, = min,<;, Ly — 0 as n — oo and ¢, < t,41 — co. We estimate

L, > / 1—exp(-a /0 v (x. jnf Li) ds) |Qy(dy)

> / [1 —exp (—a /0 . (xsLt,) ds)]Qy(dx)

for all n > ny. By Lemma 3.4.1, there is a ng such that [ fg"“ axs dsQy (dy) > 1.
Using dominated convergence, the assumption m = 0 results in the contradiction

1> lim LL/ [1 — exp <—Ltn /Otno QXs ds)} Qy (dx)

n—od t
n

_ / (/Ot ax. ds ) Qy(dy) > 1.

In order to prove m > gq, let (f,)nen be such that lim, .., L;, = m > 0. An
estimate as above together with dominated convergence yields

(3.100)

(3.101)

tn
m = lim L;, > lim [1 — exp (—a/ (xs tigltf L) ds)] Qy (dx)
O —tn

n—oo n—oo

(3.102) o
= / [1 — exp (—a/o (Xslitlgglth) dS)]QY(dX) = k(m).
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Therefore, Lemma 3.4.1 implies liminf, ., L; = m > ¢, which yields (3.91).
Now we finish the proof of Theorem 7. Using Lemma 3.3.2 and the first step,
we see that

(3.103)

t e}
E”e™ " = E® exp (—)\Y} - a/ YLy ds) — E” exp <—qa/ Y, d5>
0 0

as t — oo. For this, we used dominated convergence and the fact that Y; — 0
almost surely as t — oo (see Lemma 3.1.6). Hence, the Virgin Island process
(Vi)i>o started in x > 0 converges weakly as ¢ — oo to a random variable VZ
which only takes values in {0, 00} and satisfies

(3.104) P(VZ =0) =E®exp (—qa/ Y ds).
0

Thus, the Virgin Island Model dies out iff ¢ = 0 which by Lemma 3.4.1 is the case
iff £'(0) < 1. This is condition (1.56). Equation (1.57) follows from Lemma 3.1.7
and from @y = 5(0)Qy. This proves Theorem 7. O



Chapter 4

Graphical representation of two
duality relations

4.1 Introduction

The self-duality (1.4) of interacting Feller diffusions with logistic growth is the
key ingredient in the proof of the ergodicity result of Theorem 5. Because of
this, we wish to gain more insight into (1.4). In this chapter, we complement the
analytical proof of Section 2.5 with a stochastic picture for the self-duality (1.4).
As mentioned in the introduction, only the non-spatial case is considered, that is,
m(i,i) = 1 for all i € Z?. In the rest of the chapter, we refer to the slightly more
general duality (1.24).

Two processes (X;)i>0 and (Y;)i>o with state spaces E; and Es, respectively,
are called dual with respect to the duality function H if H: £} x £ — R is a
measurable and bounded function and if E*[H (X, y)] = EY[H(z,Y;)] holds for
all x € By, y € Ey and all t > 0 (see e.g. [24]). Superscripts as in P* or in E*
indicate the initial value of a process. In this chapter, F; and F5 will be subsets of
[0, 00) or will be equal to {0,1}". We speak of a moment duality if H(z,y) = y*
or Hz,y) = (1 —y)*, x € By C No, y € [0,1], and of a Laplace duality if
H(z,y) =exp (=A\z-y), x,y € E; = Ey C [0,00), for some A\ > 0.

We provide a unified stochastic picture for the moment duality (1.26) and
for the Laplace duality (1.24). In Section 4.2, we construct Markov processes
(XM)i>0 and (Y,Y);>0 with cadlag sample paths and state space {0, 1}" by means
of a graphical representation such that

41) P XN AYN =0 =P [N AYN =0] VaV,yV e {0,1}Y V>0

for every N > 1. The notation 2™ A 4" denotes component-wise minimum and 0
denotes the zero configuration. In Proposition 4.3.1, we prove that property (4.1)

67
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implies a prototype duality relation namely

xn N | ™
(4.2) &imE[l—%]‘ TNLthEP—%] >0

under some assumptions — including the convergence of both sides — on the two
processes and on the sequence (T)y~,; C [0,00). This prototype duality — to-
gether with certain convergence properties of the processes (XM)i>0 and (VY )i>0
— will lead to the duality relations (1.24) and (1.26).

For the construction of the approximating processes, we interpret the elements
of {1,..., N} as “individuals” and the elements of {0,1} as the “type” of an in-
dividual. In the terminology of population genetics, individuals are denoted as
“genes”, whereas in population dynamics, the statement “individual 7 is of type 1
(resp. 0)” would be phrased as “site i is occupied (resp. not occupied) by a parti-
cle”. Throughout the paper, we assume that in any change of the configuration at
most two individuals are involved. We call every function f: {0,1}*> — {0,1}* a
basic mechanism. A finite tuple (f1, ..., fm), m € N, of basic mechanisms together
with rates A, ..., A\, € [0, 00) defines a process with state space {0,1}" by means
of the following graphical representation, which is in the spirit of Harris [14]. With
every k < m and every ordered pair (i,j) € {1,..., N}?, i # j, of individuals, we
associate a Poisson process with rate parameter \,. At every time point of this
Poisson process, the configuration of (7, j) changes according to fi. For example,
if the pair of types was (1,0) before, then it changes to fi(1,0) € {0,1}*. All
Poisson processes are independent. This construction can be visualised by draw-
ing arrows from ¢ to j at the time points of the Poisson processes associated with
the pair (7,7) (cf. Figure 4.1).

As an example, consider the following continuous time Moran model (M)
with state space {0,1}". This is a population genetic model where ordered pairs
of individuals resample at rate §/N, § > 0. When a resampling event occurs at
(1,7), individual ¢ bequeaths its type to individual j. Thus, the basic mechanism
is f® defined by

(4.3) R, = (1,1), ££0,-) = (0,0).

Figure 4.1 shows a realisation with three resampling events. At time ¢, the pair
(2,1) resamples. The arrow in Figure 4.1 at time ¢; indicates that individual 2
bequeaths its type to individual 1. Furthermore, individual 5 inherits the type
of individual 3 at time t3. The dual process of the Moran model is a coalescent
process. This process is defined by the coalescent mechanism f¢ given by

(4.4) fO)=(0,1), f9U2) =2, x€{(0,0),(0,1)},
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Figure 4.1: Three resampling events. Type 1 is indicated by black lines, absent lines
correspond to type 0.

and by the rate §/N. To put it differently, the coalescent process is a coalesc-
ing random walk on the complete oriented graph of {1,...,N}. In Section 4.2,
we will specify in which sense f% and f¢ are dual, and why this implies (4.1)
(see Proposition 4.2.3). More generally, we will identify all dual pairs of basic
mechanisms.

Our method elucidates the role of the square in (1.23) for the duality of the
logistic Feller diffusion with another logistic Feller diffusion. We illustrate this
by the Laplace duality of Feller’s branching diffusion (F});>0, which is the logistic
Feller diffusion with parameters (0,0,3), 8 > 0. Its dual process (y)i>o is the
logistic Feller diffusion with parameters (0, 3,0), i.e., the solution of the ordinary
differential equation

d
(4.5) T=—0y, =y el000)
The duality relation between these two processes is E*[e "] = =¥ ¢ > (0. In
Theorem 4.4.3, we prove that the rescaled Moran model (|Mt]:f/ﬁ|/\/N)t>0 con-

verges weakly to (F}),», as N — oo. To get an intuition for this convergence,
notice that (|M}N|);o is a pure birth-death process with size-dependent transi-
tion rates (“birth” corresponds to creation of an individual with type 1, whereas
“death” corresponds to creation of an individual with type 0). It remains to prove
that the birth and death events become asymptotically independent as N — oo. It
is known, e.g. Section 2 in [9], that the dual process of the Moran model (M}Y);>,
N > 1, is a coalescing random walk. Furthermore, the total number of particles
of this coalescing random walk is a pure death process on {1,..., N} which jumps
from k to k — 1 at exponential rate %k(k —1),2 <k < N. This rate is essentially
quadratic in k for large k. We will see that a suitably rescaled pure death process
converges to a solution of (4.5); see Remark 4.4.5. The square in (4.5) originates

in the quadratic rate of the involved pure death process; see the equations (4.35)
and (4.23) for details.
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In the literature, e.g. [24], the duality function H(z",y") = Lyv,n, 2™,y €

{0,1}¥, can be found frequently, where 2% < yV denotes component-wise com-
parison. Processes (X )i>o and (Y,V);>o with state space {0,1}" are dual with
respect to this duality function if they satisfy

(4.6) P XN <y =P [N <YM vaN N e {0, 1}V, >0

The biased voter model is dual to a coalescing branching random walk in this sense
(see [22]). Property (4.6) could also be used to derive the Laplace duality (1.24)
and the moment duality (1.26).

dualities mentioned in this introduction. In fact, the two properties (4.1)
and (4.6) are equivalent in the following sense: If (XY )0 and (Y,V);>¢ satisfy (4.1)
then (X¥);50 and (1 — Y,V);>0 satisfy (4.6) and vice versa. In the configuration
1 every individual has type 1 and 1 — y denotes component-wise subtraction.
The dynamics of the process (1 — Y,"N),., is easily obtained from the dynamics of
(YN);0 by interchanging the roles of the types 0 and 1.

4.2 Dual basic mechanisms

Fix m € N and let (X}V)i>0 and (Y,V);>0 be two processes defined by basic mecha-
nisms (f1, ..., fm) and (g1, ..., gm ), respectively. Suppose that the Poisson processes
associated with £ < m have the same rate parameter A\, > 0, k =1,...,m. We
introduce a property of basic mechanisms which will imply (4.1).

Definition 4.2.1. Let f,g : {0,1}* — {0,1}* and for x = (x1,13) € {0,1}? let
2" := (z9,71). The basic mechanisms f and g are said to be dual iff the following
two conditions hold:

I
—~
=

=

A7) Va,ye{0,1}%: yA(f@) =000 = gy Aal
(48)  Va,ye{0,1}% zA(9() =(0,00 = fl@)ry' =(0,0).

To see how this connects to the duality relation in (4.1), we illustrate this
definition by an example.

Example 4.2.2. The resampling mechanism f# and the coalescent mechanism
f¢ defined in (4.3) and in (4.4), respectively, are dual. We check condition (4.7)
with f = f® and g = f¢ by looking at Figure 4.2. The resampling mechanism acts
in upward time (solid lines), the coalescent mechanism in downward time (dashed
lines). There are three nontrivial configurations for z, i.e., (1,1), (1,0) and (0, 1).
In the first two cases, we have ff(z) = (1,1). Then only y = (0,0) satisfies

YA (fR(:c))T = (0,0). In the third case, every y satisfies y A (f7(0, 1))Jr = (0,0)
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.0 0 0 0 0 0
|(" 3 ,(_____, (._
1 0

0 1 10 01 00 01

Figure 4.2: The resampling mechanism and the coalescent mechanism sat-
isfy (4.7)

and has to be checked separately. We see that whenever the configuration y is
disjoint from (f(z))', i.e., y A (f(z))" = (0,0), then g(y) is disjoint from z. The
coalescent mechanism is the natural dual mechanism of the resampling mechanism.
Type 1 of the coalescent mechanism “traces back” the lines of descent of type 0
of the resampling mechanism. The “birth event” (0,1) + (0,0) of an individual
of type 0 results in a coalescent event of ancestral lines.

Figure 4.3 is useful to verify condition (4.8). Again, the coalescent mechanism
is drawn with dashed lines. Here, the coalescent process is started in the nontrivial
configurations (1,1), (1,0) and (0,1). In any case we obtain (fc(y))T = (1,0).
Hence, all admissible z are of the form (0,-). Condition (4.8) then follows from

£7(0,-) = (0,0).

1 1 1 1 1 (o] (o} 1 Io) 0
(o] (o] o . o 0 0 (o] , (¢} ? ?

<---- 3 <---- > :4 ----- ) :4 ----- ) < ----

1o %5 o 04 o ° 10 o ° 10 ? ?

Figure 4.3: The resampling mechanism and the coalescent mechanism sat-
isfy (4.8)

The following proposition shows that two processes are dual in the sense of (4.1)
if their defining basic mechanisms are dual (cf. Definition 4.2.1). The proofs of
both Proposition 4.2.3 and Proposition 4.3.1 follow similar ideas as in [13].

Proposition 4.2.3. Let m € N and let the processes (X}N)i>0 and (YN )i>o be
defined by basic mechanisms (f1, ..., fm) and (g1, ...,gm), respectively. Suppose that
the Poisson processes associated with k € {1,...,m} in (XN)i>0 and in (YN)i>o
have the same rate parameter A\, > 0. If f. and gy are dual for everyk =1,...,m,
then (X))o and (YN )i>0 satisfy the duality relation (4.1).
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Proof. Fix T > 0 and initial values X', Y{¥ € {0,1}". Assume for simplicity that
m = 1and let f := f1, g := g1. Define the process (}A/tN)O<t<T in backward time in
the following way. Reverse all arrows in the graphical representation of (X});o.
At (forward) time T, start with a type configuration given by V¥ := YN. Now
proceed until (forward) time 0: Whenever you encounter an arrow, change the
configuration according to g. Recall that the direction of the arrow indicates the

order the involved individuals. We show that the processes (X}V);>0 and (Y;Y)o<i<r
satisfy

(4.9) XVAYY =0 = XPAYY =0 vXV, YN e{01},

for every realisation. We prove the implication “=" by contradiction. Hence,
assume that for some initial configuration there is a (random) time ¢ € [0, T] such
that

(4.10) XY AYY =0and XN AYY, #£0.

There are only finitely many arrows until time 7" and no two arrows occur at the
same time almost surely. Hence, there is a first time 7 such that the processes
are disjoint before this time but not after this time. The arrow at time 7 points
from i to j, say. Denote by (z;,z;) € {0,1}* and (z;7,2]) the types of the
pair (i, ) € {1,..., N}? according to the process (X}¥);>o immediately before and
after forward time 7, respectively. By the definition of the process, we then have
flay,x;) = (zf, :vj) Furthermore, denote by (y;,y; ) the types of the pair (j, )
according to (Y;V);>o immediately before backward time T'— 7. We have chosen

7,4, J such that

(411) (27, 27) A (9lyr.w7) = (0,00 and  (aF,27) A (y7,y7) # (0,0).

However, this contradicts the duality of f and g. The proof of the other implication
is analogous.

It remains to prove that Y and Y, are equal in distribution. The assertion
then follows from

PX)'AYY =0] = P[XJ AV =]

(4.12) (4.9) .
= PP AYY =0] = P[X7 A YT =0].

If a Poisson process is conditioned on its value at some fixed time 7" > 0, then
the time points are uniformly distributed over the interval [0,7]. The uniform
distribution is invariant under time reversal. In addition, the Poisson processes
of (V)0 nd (X} )i>0 have the same rate parameter. Thus, (V;")o<i<r and
(YM)o<t<r have the same one-dimensional distributions. O
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We will now give a list of those maps f : {0,1}* — {0, 1}* for which there exists
a dual basic mechanism (see Definition 4.2.1). The maps f and g in every row of
the following table are dual to each other. As in Example 4.2.2, it is elementary
to check this.

N° | £(0,0) [ f(0,1) | f(1,0) | f(1,1) || 9(0,0) | 9(0,1) | g(1,0) | g(1,1) |
) | (00) | (00) | (1,1) | (1,1) | (0,0) | (0.1) | (0,1) | (0,1)
i) | (0,00 | (0,1) | (L) | (1,1 | (0,00 | (0,1) | (LI) | (1,1)
i) | (0,00 | (0,00 | (0,1) | (0,1) | (0,00 | (0,0) | (0,1) | (0,1)
v) [ (0,00 | (0,1) | (1,00 | (L) | (0,00 | (0,1) | (1,0) | (1,1)
v) | (00) | Y | L) | @Y | 00 | (11 | 11 | (1,1)
vi) | (0,00 | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0) | (0,0

Check that the pair (f,g) is dual if and only if the pair (ff,g") is dual where
fi(z) == (f(z"))!. Furthermore, the pair (f,g) is dual if and only if (f, §!) is dual
where f(z) := f(z!) and §i(z) = (g9(x))! for x € {0,1}2. Thus, for each of the
listed dual pairs (f, g), the pairs (fT, g"), (f, g") and (fT,f]) are also dual. Modulo
this relation, the listing of dual basic mechanisms is complete. The proof of this
assertion is elementary but somewhat tedious and is thus omitted.

Of particular interest are the dualities in i)-iii). The first of these is the dual-
ity between the resampling mechanism and the coalescent mechanism, which we
already encountered in Example 4.2.2. The duality in ii) is the self-duality of the
pure birth mechanism
(4.13)

840,132 — {0,1}2, (1,0) = (1,1) and = +— 2 Yz € {(0,0),(0,1),(1,1)}

and iii) is the self-duality of the death/coalescent mechanism
(4.14) P {0,1}* = {0,1}% (1,-) = (0,1) and (0,-) ~ (0,0).

We are only interested in the effect of an basic mechanism on the total number
of individuals of type 1. The identity map in iv) does not change the number
of individuals of type 1 in the configuration. The effect of v) and vi) on the
number of individuals of type 1 is similar to the effect of ii) and iii), respectively.
Furthermore, both f and f have the same effect on the number of individuals of
type 1 as f.

Closing this section, we define processes which satisfy the duality relation (4.1).
These processes will play a major role in deriving the dualities (1.26) and (1.24)
in Section 4. For u,e,v,8 > 0, let (XN);>0 = (XtN’(u’e’%ﬁ))tZO be the process on
{0, 1} with the following transition rates (of independent Poisson processes):

e With rate %, the pure birth mechanism f” occurs (cf.(4.13)).
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e With rate <, the death/coalescent mechanism fP¢ occurs (cf. (4.14)).
e With rate %, the coalescent mechanism f€ occurs (cf. (4.4)).
o With rate £ the resampling mechanism [ occurs (cf. (4.4)).

Together with an initial configuration, this defines the process. The processes
(X Ve By o and (X]0%7),50 are defined by the basic mechanisms ( f2, fPC,
¢, %) and (fB fPC fE, fY), respectively. Proposition 4.2.3 then yields the fol-
lowing corollary.

Corollary 4.2.4. Let u,e,~,3 > 0. Then the two processes (thv’(u’e’%ﬁ))tzo and
(XN weBDy o satisfy the duality relation (4.1).

4.3 Prototype duality

In this section, we derive a prototype duality from (4.1). The main idea for this is
to integrate equation (4.1) in the variables 2V and y"™ with respect to a suitable
measure. Furthermore, we will exploit the fact that drawing from an urn with
replacement and without replacement, respectively, is almost surely the same if
the urn contains infinitely many balls.

Proposition 4.3.1. Let (X} );>0 and (Y, )¢>o be processes with state space {0, 1}V
for every N > 1. Assume that (X))o and (YN)i>o satisfy the duality rela-
tion (4.1). Choose n,k € {0, ..., N} which may depend on N. Define pY (z") :=
(g)_lﬂ‘xm:n for every o™ € {0, 1} where |2V | = val x;' 1s the total number of
individuals of type 1. Assume L (X§') = p and L (YY) = pf. Suppose that the
process (X} )iso satisfies

E[| XY
(4.15) %—>O and %

where ty > 0. Then

(4.16) lim E

N—oo

(- 0)") = g [(1- 23]

under the assumption that the limits exist.

Proof. A central idea of the proof is to make use of the well known fact that the
hypergeometric distribution Hyp(V, R, 1), R,l € {0, ..., N}, can be approximated
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by the binomial distribution B(/, %) as N — oo provided that [ is sufficiently small
compared to N. In fact, by Theorem 4 of [§],

(4.17) ’B(l, £)[{0}] = Hyp(N, R, 1) [{0}] ‘

4-1
S dTV(B(L%)tup(NuR’Z)) S W VR’Z S Na

where dry is the total variation distance. By assumption (4.15), we have (with
R:=kl:= |XtN

. E{<1_%)|ngq B|B(|x . &) (0]

B [Hyp(N, k, [ X ) [{0}]] +o(1)

as N — oo. Similarly, we have (with R := l:=n)

T O L S
= B[Hyp(V. [v23]n) [(0}]] + 0

as N — oo. For fixed ¢t > 0, Hyp(N, |Y;"],n)[{0}] is the probability of drawing
no individual 4 with Y,V (i) = 1 when picking n individuals at random without
replacement. Thus, it follows that

Dol =(N) T 1

N |zN|=n

:u,]y[xN:xN/\Y;N:Q].

Hyp (N

(4.20)

By the same argument as before, we also obtain

(4.21) Hyp (N, k, | X)) [{0}] = Hyp(N, [ X}"], k) [{0}]
| =l [yV: XN Ay = 0]

We denote by P*" the law of the process (X¥);= started in the fixed initial
configuration z%V € {0,1}". Starting from the left-hand side of (4.16), the above
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considerations yield

(4.18)

g
}+0

B[(1- N) B[Hyp(V. k. [ X)) [{0}]

(4.20)

0]
In[{oﬂ] ‘“*”E[(l ‘W')} (1),

which proves the assertion. [

E [Hyp

4.4 Various scalings

Recall the definition of the process (X;""“""),5o from the end of Section 4.2.

Define XN = XtN’(u’e’%ﬁ) and Y,V = XtN7(u7e’B’7) for t > 0 and N € N. Notice
that the Poisson process attached to the resampling mechanism in the process
(YY);>0 has rate 7. By Corollary 4.2.4, the two processes (X} );>0 and (Y,V);>0
satisfy the duality relation (4.1). Let £ (X{') = p and £ (V") = pj for some
n,k € N to be chosen later, where u” is defined in Proposition 4.3.1. In order
to apply Proposition 4.3.1, we essentially have to prove existence of the limits
n (4.16). Depending on the scaling, this will result in the moment duality (1.26)
of a resampling-selection model with a branching-coalescing particle process and in
the Laplace duality (1.24) of the logistic Feller diffusion with another logistic Feller
diffusion, respectively. Both dualities could be derived simultaneously. However,
in order to keep things simple, we consider the two cases separately.

Theorem 4.4.1. Assume b,c,d > 0. Let Xo = n € Ny and Yy = y € [0,1].
Furthermore, denote by (Xi)i>0 and (Yi)iso the (1,b,c,d)-braco-process and the
(1,b, ¢, d)-resem-process, respectively. Then

(4.22) E"[(1-y)*] =EY[(1-Y)"], t>0.

Remark 4.4.2. In the special case b = 0 = d and ¢ > 0, this is the moment
duality of the Fisher-Wright diffusion with Kingman’s coalescent. Furthermore,
choosing ¢ = 0 and b,d > 0 results in the moment duality of the Galton-Watson
process with a deterministic process.

Proof. Choose u,e, 3 > 0 and v = v(N) such that b = u+ 3, d = e + [ and
v/N — ¢ as N — oo. In the first step, we prove that the process (|XV|)i>o of
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the total number of individuals of type 1 converges weakly to (X;):>o. The total
number of individuals of type 1 increases by one if a “birth event” occurs (f?
or ff) and if the type configuration of the respective ordered pair of individuals
is (1,0). If the total number of individuals of type 1 is equal to k, then the
probability of the type configuration of a randomly chosen ordered pair to be
(1,0) is %% The number of Poisson processes associated with a fixed basic
mechanism is N(N — 1). Thus, the process of the total number of individuals of
type 1 has the following transition rates:

(4.23) k—k+1: S N(N-1). £2=E
T hokoln NIV -1 SRS NN - D) - 5

where £ € Ny. Notice that the coalescent mechanism produces the quadratic term
k(k — 1) because the probability of the type configuration of a randomly chosen

ordered pair to be (1, 1) is £ £=L if there are k individuals of type 1. The transition

rates determine the generator GV = GN(we7) of (| XN|);>0, namely

GV (k) =" 2 KN — ) (F(k+ 1) — £(8)
(1.24) + RN ) (70 1) = £(0)
It k(k—1)- (f(k—1)— f(k)), ke{0,...,N},

for f:{0,...,N} — R. The (1,u+ g, c, e+ 3)-braco-process (X;):>o is the unique
solution of the martingale problem for G (see [2]) where

Gf(k) i= (ut Bk (f(k+1) = f(K) + (e + 8) + ek = 1)k (f(k = 1) = f(K)),
for k € Ny and for f: Ny — R with finite support. Letting N — oo, we see that
(4.25) GNflk) — Gf(k) as N — oo, k€ Ny,

for f: Ny — R with finite support. We aim at using Lemma 4.5.1 which is
given below (with Ey = {0,...,N} and E = Ny), to infer from (4.24) the weak
convergence of the corresponding Markov processes. A coupling argument shows
that (JX|)i>0 is dominated by (ZN )50 = (|XtN’(u’O’O’B)|)tZO. The process (ZN)i>o
solves the martingale problem for GN:(“9.9%)  Thus, we obtain

t t
(4.26) zN -z = / G w00B ZN s 4 ON = / wZNNZL g 4 N
0 0

where (CV)i>0 is a martingale. Hence, (Z});>0 is a submartingale. Taking expec-
tations, Gronwall’s inequality implies

(4.27) E[Z)] < E[Z)]e", Vit>0.
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Let Sy = Ty = 1, sy = u and recall |X}'| = n. With this, the assumptions of
Lemma 4.5.1 are satisfied. Thus, Lemma 4.5.1 implies that (|X}¥]);>o converges
weakly to (X¢)i>0 as N — 0. Let k =kyx €{0,...,N} be such that k/N — y as
N — oco. For every i € N, (1 — £)™ converges umformly inn<nto(l—y)"as
N — oo. In general, if the sequence (Xn)n@N of random variables with complete
and separable state space converges weakly to X and if the sequence (fu)nen, fn €
Cy, converges uniformly on compact sets to f € Cy, then E[f,(X,)] — E[f(X)]
as n — 0o. Hence,

(4.28) E" [(1 - y)Xt] - &@WE{@ - N> e l}'

The next step is to prove that the rescaled processes (|Y;¥|/N),s, converge
weakly to (Y;)i>0 as N — oo. The generator of (|Y;N|/N),, is given by

gN(we,B,v)f(%)
_ w% FO5R) + 75 =2/ (%)
(4.29) _ -
b SR () - () + e S (10 - ()

FRRE =) (105 - F(5)). ke 0N,

for f € C%([0,1]). Choose k = ky < N such that £ — y € [0,1] as N — oo.
Notice that

(430)  NE(F(5 1) - 2f($) = S(y) as N oo
As N — oo, the right-hand side of (4.29) converges to

cyl—y) - f )+ m—eyd—y) fy)—(e+B)y f )
=(w—ey-fy)—w+pB)y f ) +eyl—y) - f (y) = Gfly)

for every f € C?([0,1]). Athreya and Swart [2] show that the (1,b, ¢, d)-resem-
process (Y;)¢>o solves the martingale problem for G and that this solution is unique.
Let By = {0,1,...,N}, E = [0,1], Zz¥ = |x,V“%%)| Sy = N and Ty = 1.
With this, the assumptions of Lemma 4. 5 1 are satisfied and we conclude that
(JY,V|/N)i>o converges weakly to (V;);>o. It follows that, for k = ky € {0,..., N}
with k/N — vy,
[N
(1-5)

(4.31)

(4.32) lim E

N—oo

—E|(1-%)"].
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This proves existence of the limits in (4.16) with ¢y := ¢. Inequality (4.27) and
| X' = n << N imply condition (4.15). Thus, Proposition 4.3.1 establishes
equation (4.16). The assertion follows from equations (4.28), (4.16) and (4.32). O

Next, we derive the Laplace duality of a logistic Feller diffusion with another
logistic Feller diffusion. Recall that the logistic Feller diffusion with parameters
(¢,7, ) solves equation (1.23).

Theorem 4.4.3. Suppose that ¢,v,3 >0, r >0 and Xg =2 > 0,Yy =y > 0.
Let (Xi)i>0 and (Yi)i>o be logistic Feller diffusions with parameters (s,7,3) and
(s,703,7v/r), respectively. Then

(4.33) E* [e—T’Xt'y] — R [e—m%]
for allt > 0.

Remark 4.4.4. (a) For 3,7 > 0 and v = /3, Theorem 4.4.3 yields the self-
duality of the logistic Feller diffusion.

(b) For¢c =0,v=0,r=1 and > 0, Theorem 4.4.3 specialises to the Laplace
duality of Feller’s branching diffusion.

Proof. Choose u = uy > 0 and e = ey > 0 such that (u —e)vV/N — ¢ as N — oo.
We prove that the rescaled process (|Y |/(r\/_))t>0 converges weakly to (Y;)i>0
as N — o0o. The generator of the rescaled process is given by (cf. (4.29))

VNGN ()
VW kB (s () -2 ()
(4.34) +‘/N“N'k(Nz; . (R 16
+ VNey R (- ( )>
V(e 0) D e R (i) - (),

for k € {0,...,N} and for f € C?*([0,0)). Let k = k(N) € {0,..., N} be such
that k/(rv/N) — y. Letting N — oo, the right-hand side converges to

(4.35) Ty W)ty fly) = Bry? fly) = Gf(y)

for every f € C?([0,00)). Notice that the quadratic term y? originates in the
quadratic term k(k — 1). Hutzenthaler and Wakolbinger [17] prove that (Y;):>0 In
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Section 2.5, we proved — in the case = 1 — that (Y})>0 is the unique solution of the
martingale problem for G. The proof for general r > 0 is analogous. Let |Y| =
k = k(N) be such that k/(rv/N) — y € [0,1] as N — co and define Z := k. As
before, (ZN)=0 1= (| XV"“%)]),50 is a submartingale which dominates (Y, )i=q
and which satisfies

(4.36) S%p ﬁE[Zt]Y/N] < Sl;fp ﬁE[ZéV]e“NNN < 00, Vit>0.

Let Exy :={0,...,N}, E:=[0,00), sy := uy, Sy := VN and Ty := v/N. The
assumptions of Lemma 4.5.1 are satisfied and we conclude that (\Y;]\\}N\ /(rvVN)) =0
converges weakly to (Y;);>o. This also proves that (|X ;Y/N| JVN)i=o converges
weakly to (Xy)eso if | X2'| = n = n(N) is such that n/v'N — z as N — oo. It is
not hard to see that, for every z > 0,

(4.37) (1 - MO Y e and (1- rﬁ)“ﬁ\/ﬂ_ﬁ T

uniformly in 0 < 2z < Z as N — oo. Together with the weak convergence of the
rescaled processes, this implies

VN-XN _//N
T ,—TAge . n T tvVN
a3) = e (1) T
and
YN rVN)\ ™
439 Jim [ (1= | e

for t > 0. This proves existence of the limits in (4.16) with ¢y := tv/N. Inequal-
ity (4.36) and |X}¥] = n << N imply condition (4.15). Thus, Proposition 4.3.1
establishes equation (4.16). The assertion follows from equations (4.38), (4.16)
and (4.39). O

Remark 4.4.5. Assume u = e = v = ¢ = 0 and r = 1 in the proof of The-
orem 4.4.5. Then (|Y;"|),s, is a pure death process on {1,..., N} which jumps
from k to k — 1 at exponential rate %k(/{: —1), 2 <k < N. Furthermore, (Yi)t>0
is a solution of (4.5). We have just shown that the rescaled pure death process
(|Y;]\\/[N|/\/N>t>0 converges weakly to (Yi)i>0 as N — oo.

4.5 Weak convergence of processes

In the proofs of Theorem 4.4.1 and Theorem 4.4.3, we have established conver-
gence of generators plus a domination principle. In this section, we prove that this
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implies weak convergence of the corresponding processes. For the weak conver-
gence of processes with cadlag paths, let the topology on the set of cadlag paths
be given by the Skorohod topology (see [11], Section 3.5).

Lemma 4.5.1. Let E C R>q be closed. Assume, that the martingale problem for
(G,v) has at most one solution where G: C*(E) — Cy(E) is a linear operator and
v is a probability measure on E. Furthermore, for N € N, let Exy C R>o and
let (YN)i>0 be an En-valued Markov process with cadlag paths and generator GV .
Let (Sy)nex and (Tn)nen be sequences in Rsq with y~ /Sy € E for all y™ € Ey
and N € N. Suppose that

(4.40) o~ € EN,]\}im % =y € FE implies TNng(%) — Gf(y) as N — oo,

for every f € C2(E). Assume that, for N € N, (Y,N);>0 is dominated by a process
(ZN)is0, d.e., YN < ZN for all t > 0 almost surely, which is a submartingale
satisfying E[ZN] < B[Z)]e!*~ for all t > 0 and some constant sy. In addition,

N
suppose that limsupy_,., SNIy < o0 and limsupy_, %}\?} < oo. IfY{/Sn
converges weakly to v as N — oo, then

(4.41) (0 /5W) o) = £7((W) ) 05 N — 00

where (Y3)i>0 is a solution of the martingale problem (G, v) with initial distribution
v.

Proof. We aim at applying Corollary 4.8.16 of Ethier and Kurtz [11]. For this,
define

(4.42) Ey = {%: yN € Ex}, GNfN) = TNng(%) N e BN,

yN=gN SN

for f € C2(E) and let ny: EN — B be the embedding function. The process
(YtTN /S N) 150 has state space Ey and generator GV. Now we prove the compact
containment condition, i.e., for fixed ¢,¢ > 0 we show

YN
(4.43) (3K > 0) (¥N € N) Plsup > < K| 21—«
s<t SN

Using YV < ZV ¢ > 0, and Doob’s Submartingale Inequality, we conclude for all
NeN

1
P[squ;T > KSN] <P [SupZSA}N > KSN] < —E[Z%N]

(4 44) s<t s<t KS
' 1 E[Z)] C
< — sup - exp (t~ sup (SNTN)) = —.
K nen  Sn NeN K
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Thus, choosing K := g completes the proof of the compact containment condition.

It remains to verify condition (f) of Corollary 4.8.7 of [11]. Condition (4.40)
implies that for every f € C? and every compact set K C F

(4.45) sup |GV f(y) —Gf(y)| =0  as N — oo
yeKNEN

Choose a sequence Ky such that (4.45) still holds with K replaced by Ky. This
together with the compact containment condition implies condition (f) of Corollary
4.8.7 of [11] with Gy = Ky N Ex and fn = f|E‘N- Furthermore, notice that
C?(E) is an algebra that separates points and E is complete and separable. Now
Corollary 4.8.16 of Ethier and Kurtz [11] implies the assertion. O

Open Question: Athreya and Swart [2] prove a self-duality of the resem-
process given by (1.25). We were not able to establish a graphical representation
for this duality. Thus, the question whether our technique also works in this case
yet waits to be answered.
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Deutsche Zusammenfassung

In Populationen mit natiirlicher Fortpflanzung ist die durchschnittliche Zahl an
Nachkommen pro Individuum iiblicherweise strikt grofler als eins. Bedingt auf
Uberleben wachsen klassische superkritische Verzweigungsmodelle jedoch iiber al-
le Grenzen. Dies ist unrealistisch, da Ressourcen wie beispielsweise Nahrung be-
schrankt sind.

Eine effektive Gegenmafinahme gegen unbeschrinktes Populationswachstum
ist eine Regulierung der Dynamik in Abhéngigkeit von der Populationsgrofie. Ein
Beispiel hierfiir ist der sog. logistische Verzweigungsprozess, bei dem, zusétzlich zu
den ,natiirlichen“ Geburten und Todesféllen eines superkritischen Verzweigungs-
prozesses, Todesfélle aus dem Konkurrenzkampf zwischen je zwei Individuen einer
Population resultieren. Dies fiihrt in Fellers Diffusionslimes zu einem negativen
Driftterm, welcher proportional zur quadrierten Populationsgrofie ist. Um dies zu
prézisieren, betrachte, fiir N > 1 und b,d,~, 3 > 0, einen reinen Geburts-Todes-
Prozess (Z}¥)i>o mit Zustandsraum Ny, bei dem sich jedes Teilchen mit Rate ﬁ—i—%
in zwei neue Teilchen spaltet, jedes Teilchen mit Rate § + % stirbt und jedes ge-

ordnete Paar von Teilchen mit Rate % zu einem Teilchen verschmilzt. Alle diese
N

Ereignisse geschehen unabhéngig voneinander. Falls ZTO in Verteilung fiir N — oo

N
gegen 7, konvergiert, so konvergiert (Zt—N in Verteilung fir N — oo gegen

N )tzo
(Zt) 1500 Wobei (Z1)1>0 die stochastische Differentialgleichung

(Z.1) dZ; = (b—d)Zydt — v Z? dt + \/2BZ,dB;

16st. Dabei bezeichnet (B;):>o eine Standard-Brownsche Bewegung. Das Quadrat
in (Z.1) verhindert ein unbeschranktes Anwachsen der Populationsgrofie. Leider
konvergiert (Z;);>o in Verteilung fiir ¢ — oo gegen Null und ist somit als Popula-
tionsmodell nur bedingt geeignet.

Um dem Aussterben entgegenzuwirken, betrachtet man eine rdumlich erweiter-
te Version des logistischen Verzweigungsprozesses. Dabei leben Teilpopulationen
auf raumlich isolierten ,Inseln“, welche im d-dimensionalen Gitter Z¢ angeord-
net sind und durch einen (homogenen) Migrationsmechanismus verbunden sind.
Dies fiihrt zu folgendem System X = (Xi)iz0 = (Xi(i))i>0.4ez¢ von wechselwir-

87
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kenden Feller-Diffusionen mit logistischem Wachstum, wobei X;(i) € [0,00) die
PopulationsgroBe auf der Insel i € Z? zur Zeit t > 0 bezeichnet:

dX,(i) =a | Y mi, /) Xu(j) — X (i) | dt

+ X (0) (K — X, (i) dt + /28X, (i) dBy(i) i € Z°.

Dabei sind B(i) unabhiingige Standard-Brownsche Bewegungen, m ist die Uber-
gangsmatrix einer Irrfahrt auf Z¢ und a, 3, sind nichtnegative Konstanten, die
die Raten von Migration, Verzweigung beziehungsweise Kompetition beschreiben.
Die Konstante K > 0 nennt man Kapazitit. Die Migrationsmatriz m sei eine
translationsinvariante, irreduzible stochastische Matrix. Wechselwirkende Feller-
Diffusionen mit logistischem Wachstum sind ein generisches Beispiel fiir ein System
wechselwirkender lokal requlierter Diffusionen (engl. interacting locally regulated
diffusions). Im Mittelpunkt dieser Arbeit steht das folgende System stochastischer
Differentialgleichungen:

(Z.2)

dX,(i) =a (Z m(i, §) X, () — Xt@')) dt

jeG

(2.3)
+ h(Xe(0))dt + £/2-9( X4 (1)) dBy(1), i €@,

wobei GG eine hochstens abziahlbare Abelsche Gruppe ist. Es sei bemerkt, dass die
zwei Modelle (Z.2) und (Z.3) iibereinstimmen, falls G = Z%, h(x) = yz(K — x),
g(z) = px gilt. Die folgenden Figuren 4.4 und 4.5 zeigen generische Beispiele fiir
eine Regulierungsfunktion h beziehungsweise fiir eine Diffusionsfunktion g.

h(y) aly)

| 0 y

Abbildung 4.4: Ein generisches Beispiel Abbildung 4.5: Ein generisches Beispiel
fiir eine Regulierungsfunktion. fiir eine Diffusionsfunktion.

Einen geeigneten Zustandsraum fiir das System (Z.3) erhélt man durch folgen-
de Konstruktion, welche auf Liggett und Spitzer [25] zuriickgeht. Wéhle zu gege-
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bener Migrationsmatrix m eine summierbare und strikt positive Folge 0 = (0;)icq,
fiir die

(Z.4) > oml(i,j) < Crso;,  jEG,
1€G

fiir eine Konstante Cpg < oo gilt. Definiere hiermit als Zustandsraum den Liggett-
Spitzer-Raum

(.5) E, :={z €[0,00)%: ||z, =) ailz;| < o0}.
€G

Der Liggett-Spitzer-Raum hat die wichtige Figenschaft, dass jedes translationsin-
variante Maf§ auf [0, 00)% mit [ 2y u(dz) < oo Triger in E, hat. Die folgenden
Annahmen an die Regulierungsfunktion A und an die Diffusionsfunktion g garan-
tieren die Existenz und die Eindeutigkeit einer Losung von Gleichung (Z.3).

Annahme A1l. Die Funktionen h: [0,00) — R und g: [0,00) — [0, 00) sind lokal
Lipschitz stetig und erfiillen h(0) = 0 = ¢(0). Desweiteren ist h nach oben global
Lipschitz stetig, d. h., es gilt sgn(z —y) (h(z) — h(y)) < Chlz — y| fir alle z,y > 0
und eine Konstante C), < oo. Die Funktion g ist strikt positiv auf (0,00) und
erfillt g(z) < Cy(1+ 2?) fiir alle x > 0 und ein C; < co.

Unter diesen Annahmen zeigt Proposition 1.2.1, dass das System (Z.3) eine ein-
deutige starke Losung mit Werten in £, hat.

In Theorem 1 wird der Maximalprozess X (> konstruiert, welcher der Glei-
chung (Z.3) gehorcht und welcher zur Zeit Null von unendlich , herunter kommt*.
Hierfiir wird eine Bedingung an h benétigt, die sicher stellt, dass die Drift , hinrei-
chend negativ* fiir grofle Werte von Xt(oo) (7) ist. Diese Bedingung wird in folgender
Annahme formuliert.

Annahme A2. Es existiert eine Funktion h > h derart, dass h fir ein xg > 0
auf [xg,00) negativ und konkav ist und

(Z.6) /+<><> —Bl(x) dr < oo

erfillt.

Die entscheidende Eigenschaft von X () ist, dass dieser Prozess jede Losung
von (Z.3) in einer stochastischen Ordnung dominiert, welche nun vorgestellt wird.
Sind p1, e Wahrscheinlichkeitsmafle auf der partiell geordneten Menge E,, dann
heisst 1 stochastisch kleiner oder gleich po, geschrieben als p; < o, falls ein
zufilliges Paar (Y7,Y3) mit Randverteilungen £ (Y;) = p;, @ = 1,2, existiert, fiir
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welches Y7 < Y5 fast sicher gilt. Desweiteren sagt man, dass eine Folge (i;)ien
von Wahrscheinlichkeitsmaflen stochastisch gegen das Wahrscheinlichkeitsmaf fi,
anwdchst, falls eine zuféllige Folge (Y;);en existiert, welche fast sicher monoton
steigend gegen Y., konvergiert und welche £ (Y;) = p;, @ = 1,2,..., 00, erfiillt.
Man schreibt hierfiir p; T ftoo. In dieser Notation lésst sich die Existenz des Maxi-
malprozesses wie folgt formulieren.

Theorem 1. Die Annahmen A1l und A2 seien erfillt. Dann existiert ein IE,-
wertiger Prozess (Xt(oo))t>0 mit den folgenden FEigenschaften:

a) Fir jedes ¢ > 0 ist (Xt(oo))tZE eine Liosung von (Z.3), welche zur Zeit t = €
startet.

b) Das erste Moment von || X\° || ist fir jedes t > 0 endlich.

g

c) Sei xz™ = (sz(n)>ieg, n = 1,2, ..., eine monoton steigende Folge in E, mit der
FEigenschaft, dass fir allei € G

(Z.7) xﬁn) T o0 fiir n — oc.

Falls (Xt(n))tzo die Losung von (Z.3) mit Startpunkt 2™ € B, zur Zeit Null
i1st, dann

(Z.8) c (Xﬁ’”) 1L (X§°°>> firnloo  (t>0).

d) Es existiert eine Gleichgewichtsverteilung v (bezeichnet als oberes invariantes
MaB) fiir die Dynamik (Z.3), sodass

(2.9) c (X§°°>> Lo firt? oo

e) Jede E,-wertige Losung (X;)i>o von (Z.3) erfillt
(Z.10) LX) <LX™)  (t>0).

Insbesondere ist jede Gleichgewichtsverteilung v stochastisch kleiner oder gleich

V.

Sowohl der Maximalprozess als auch das obere invariante Mafl spielen fiir die
folgenden Resultate eine wichtige Rolle.

Eine zentrale Frage dieser Arbeit ist, ob (X;)>¢ fiir ¢ — oo ausstirbt oder iiber-
lebt. Zuerst klaren wir, was wir unter ,,Aussterben® verstehen. Wir sprechen von
lokalem Aussterben, falls (X;);>o in Verteilung fiir ¢ — oo gegen die Nullkonfigura-
tion konvergiert. Hierfiir sei die Topologie auf [0, 00)¢ gleich der Produkttopologie.
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Desweiteren sprechen wir von globalem Aussterben, falls (| X;|):>o fiir t — oo gegen
Null konvergiert. Die gesamte Arbeit hindurch wird mit |z| := .. x; die Ge-
samtmasse von z € [0,00)¢ bezeichnet. Es sei bemerkt, dass globales Aussterben
lokales Aussterben impliziert. Dariiberhinaus stimmen diese beiden Eigenschaften
iberein, falls G eine endliche Menge ist. Im Zusammenhang mit lokalem Ausster-
ben wird typischerweise Translationsinvarianz der Verteilung von X, angenom-
men. Fiir globales Aussterben wird im Allgemeinen angenommen, dass fast sicher
| Xo| < oo gilt. Von lokalem beziehungsweise globalem Uberleben sprechen wir, falls
das System nicht lokal beziehungsweise nicht global ausstirbt.

Mit Hilfe von Argumenten aus der Perkolationstheorie zeigt Etheridge [10],
dass das System (Z.2) und ebenso &hnliche Modelle mit nichtlokaler Kompetition
nicht lokal ausstirbt, falls die Kapazitéit grof§ genug ist und falls die Anfangsvertei-
lung translationsinvariant ist. Dartiberhinaus wurde in derselben Arbeit mit Hilfe
einer Kopplung und eines Vergleiches mit subkritischer Verzweigung (dhnlich wie
in Mueller und Tribe [26]) bewiesen, dass ein mafiwertiges Analogon zu (Z.2) mit
gewissen nichtlokalen Kompetitionsmechanismen lokal ausstirbt. Die Frage, ob
Systeme wie (Z.2), die auf Gitter beruhen, fiir sehr kleine Werte von K lokal aus-
sterben, blieb unbeantwortet. In Kapitel 2 wird diese Frage fir das System (Z.2)
mit Ja beantwortet. Genauer gesagt wird eine strikt positive Konstante K spezi-
fiziert, so dass das System (Z.2) fiir jedes K < K lokal ausstirbt. Die Konstante
K ist die eindeutige Losung der Gleichung

(Z.11) /0 exp (Kvy — §y2) -aexp (—ay) dy =1

und héngt von den Parametern a, 3 und v der Migration, der Verzweigung be-
ziehungsweise der Kompetition ab, ist jedoch uniform in der Dimension d und in
der Migrationsmatrix m. Fiir das allgemeinere Modell (Z.3) wird ein Kriterium
fiir lokales Aussterben in Theorem 2 formuliert.

Theorem 2. Die Annahmen Al und A2 seien erfillt. Sei X eine Lésung der
Gleichung (Z.3) mit einer beliebigen Anfangsverteilung auf ;. Falls eine konkave
Funktion h > h existiert, welche

(2.12) /Ooo%exp</ly%x)ﬁ<x)dx)dy§0

erfillt, dann stirbt der Prozess X lokal aus, d. h.,
(Z.13) L(Xy) = fiirt— oo.

Dabei bezeichnet 0 die Nullkonfiguration.
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Im Fall h(z) = yo(K — x) und g(x) = Bz ist die Bedingung (Z.12) mit h := h
dquivalent zu K < K, wobei K die Gleichung (Z.11) 16st.

In den folgenden beiden Theoremen wird die spezielle Form der Dynamik (Z.2)
von wechselwirkenden Feller-Diffusionen mit logistischem Wachstum ausgenutzt.
Das zweite Hauptresultat von Kapitel 2 beweist Ergodizitat der Losung (X;)i>o
von Gleichung (Z.2) fiir ¢ — oo, das heisst, der Prozess vergisst seine Anfangsver-
teilung im Grenziibergang t — oco. Genauer gesagt konvergiert (X;):;>o in Vertei-
lung gegen das obere invariante Maf fiir ¢ — oo wann immer der Prozess in einer
translationsinvarianten und nichttrivialen Anfangsverteilung startet.

Theorem 5. Sei 5,7 > 0. Desweiteren sei X = (X)i>o die Losung der Glei-
chung (Z.2). Es gelte £L(Xo) > p, wobei pu ein translationsinvariantes Wahr-
scheinlichkeitsmaf$ auf I, ist, welches keine Masse auf die Nullkonfiguration legt.
Dann

(Z.14) L(Xy)=v  firt— oo,
wobei v das obere invariante Maf ist.

Im Beweis von Theorem 5 spielt folgende Selbstdualitét eine zentrale Rolle. Sei
X die Losung von (Z.2) mit Parametern «, 3,y > 0 und Migrationsmatrix m, und
sei X1 die Lésung von (Z.2) mit Parametern «, 3,y > 0 und Migrationsmatrix
m', welches die transponierte Matrix von m ist. Desweiteren sei E,+ ein zu m!
passender Liggett-Spitzer-Raum.

Theorem 3. Es gelte 8 > 0. Seien X und X' Lésungen von (7.2) mit Migrati-
onsmatrizen m beziehungsweise m'. Dann gilt die folgende Selbstdualitiit:

(2.15) EZ exp (—%(Xt,@) = Eexp (—%@, x{))

fiir alle z € Eq,y € Eyi, t > 0.

Beispielsweise fiihrt die Wahl y = Adp und z = x zu der Gleichung
po _1 _ Ao _1 T
(Z.16) EZexp ( 5/\Xt<0>) =E M exp ( ﬁK’Xt )

fiir alle \, ks > 0, wobei &, die Punktmasse in 0 € Z? bezeichnet. In Abschnitt 2.6
wird gezeigt, dass |X1tT | mit Wahrscheinlichkeit eins fiir ¢ — oo entweder gegen Null
oder gegen unendlich konvergiert. Dies impliziert die Konvergenz der rechten Seite
von Gleichung (Z.16). Lemma 2.5.1 zeigt den Zusammenhang des Grenzwertes der
rechten Seite von (Z.16) mit dem oberen invarianten Ma$3.
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Eine direkte Konsequenz von Theorem 3 ist, dass ein System wechselwirken-
der Feller-Diffusionen mit logistischem Wachstum genau dann lokal ausstirbt wenn
es global ausstirbt. Dies verhélt sich bei wechselwirkenden lokal regulierten Dif-
fusionen anders. Hierfiir gilt Theorem 3 im Allgemeinen nicht. Bisher ist kein
allgemeines Kriterium fiir globales Aussterben des Systems (Z.3) bekannt. Wir
stellen nun das Virgin Island Modell vor. Fiir dieses Modell wird in Theorem 7
ein Kriterium fiir globales Aussterben hergeleitet. Desweiteren vermuten wir, dass
das Virgin Island Modell die Losung von (Z.3) in einer geeigneten stochastischen
Ordnung dominiert. Zusammen mit Theorem 7 wiirde diese Vermutung zu einer
Bedingung fiir globales Aussterben fiir das System (Z.3) fiihren.

Wir charakterisieren das Virgin Island Modell durch eine rekursive Konstruk-
tion. Auf der ersten Insel entwickelt sich eine Diffusion Y = (Y})¢>0 mit Zustands-
raum [0, 00), welche gegeben wird durch die stochastische Differentialgleichung

(Z.17) dY; = —aYydt + h(Y,) dt + \/29(Y,)dB,, Yy =1y > 0.

Dabei ist (B;)i>o eine Standard-Brownsche Bewegung. Der Prozess Y sei regulir
auf (0,00) und Null sei ein Austrittsrand, das heisst, Null ist ein absorbierender
Rand und wird mit positiver Wahrscheinlichkeit in endlicher Zeit erreicht. Aqui-
valent hierzu ist die folgende Bedingung an «, h, g.

Annahme A3. Der Parameter o und die Funktionen g und h erfiillen

. 1

fiir ein und damsit fir alle x > 0, wobei

(2.19)  S(y) = /Oy 5(z)dz, §(z):=exp (— /12 %@h(m) dm), y,z > 0.

Beispielsweise gelten Al und A3, falls h(y) = oy — yy?, v > 0, und g(y) = y*~ fiir
ein 1 < k < 2. Annahme A3 ist jedoch nicht erfiillt im Fall » = 0 und g(y) = v?,
denn dann ist 5(z) = 2%, S(y) = y*™'/(a + 1) und Bedingung (Z.18) ist verletzt.

Masse emigriert von der ersten Insel mit Rate a. Dies wird durch den Term
—aY;dt in (Z.17) modelliert. Jeder Emigrant landet auf einer unbesiedelten Insel.
Im Diffusionslimes hat ein Emigrant Masse Null. Allerdings kann die von einem
Emigranten gegriindete Population im Diffusionslimes nach positiver Zeit positiv
sein. Das Gesetz der Exkursionen von Y vom Rand Null ist deshalb ein wichtiger
Bestandteil der Konstruktion des Virgin Island Modells. Die Menge der Exkursi-
onspfade von Null sei bezeichnet mit

(2.20) U := {X € C([0,00),0,00)): Ty € (0,00], ys =0 ¥t € {0}U [To,oo)}
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wobei T, = T, (x) := inf{t > 0: x; = y} die erste Treffzeit von y € [0, 00) sei. Die
Menge U sei versehen mit uniformer Konvergenz. Das Ezkursionsmafl )y ist ein
o-endliches Maf} auf U. Wir definieren es durch Theorem 6. Hierfiir benotigen wir
eine weitere Voraussetzung. Wir nehmen an, dass

(Z.21) PY(T1(Y) < To(Y)) ~ cy firy —0

fiir eine Konstante ¢ € (0,00) gilt. Genauer gesagt setzen wir die Giiltigkeit der
folgenden etwas stiarkeren Annahme voraus.

Annahme A4. Das Integral f; %y};(y) dy hat einen Grenzwert in (—oo, 00) fir
e — 0.

Theorem 6. Die Annahmen Al, A3 und Aj seien erfillt. Dann existiert ein
o-endliches Mafl Qy auf U, sodass

1

(2.22) lim - B'F(Y) = [ P0Gy (@Y
y—0y

fiir alle beschrinkten, stetigen Funktionen F': C([O, 00), [0, oo)) — R fiir die ein

e > 0 emistiert so dass F(x) = gilt wann immer sup;>q X: < €.

Mit Hilfe des Exkursionsmafles definieren wir nun das Virgin Island Modell
auf den nachfolgenden Inseln. Die erste Insel bezeichnen wir als 0-te Generation.
Die (n + 1)-ste Generation ist die Menge aller Inseln, welche von Inseln der n-ten
Generation besiedelt worden sind. Die Menge aller Inseln schliefllich bezeichnen
wir als Virgin Island Modell. Desweiteren verstehen wir unter dem Virgin Island
Prozess den Prozess der Gesamtmasse aller Inseln des Virgin Island Modells. Sei
(V;(O))tzo ein zufélliger Pfad mit Verteilung £7((Y;) ), > 0. Fiir jedes n > 1 de-

finieren wir nun rekursiv einen Prozess V() = (Vt(n))tzo- Dies ist die Gesamtmasse
aller Inseln der n-ten Generation. Gegeben V(™ sei II™ ein Poisson Punktprozess
auf [0,00) x U mit IntensitdtsmaB th(n) dt ® Qy (dy). Hiermit wird (Vt(n+1))t20
definiert durch

(Z.23) /AGRR S /XtSH(”)(ds,dx) t>0.

Emigranten verlassen Inseln der n-ten Generation mit der zeitabhingigen Rate
od/;(n) und landen auf unbesiedelten Inseln. Eine Insel, welche zur Zeit s > 0
besiedelt wurde, trigt zur Zeit t > 0 Masse x;_s zur Gesamtmasse bei. Der Virgin
Island Prozess ist die Gesamtmasse aller Generationen:

(Z.24) Vi=> VW >0

n>0
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Nach Lemma 3.3.1 ist der Erwartungswert dieser Summe endlich.

In Theorem 7 identifizieren wir Bedingungen an «, h und g, unter welchen das
Virgin Island Modell global ausstirbt. Der entscheidende Parameter ist hierbei die
erwartete Fliache unter einer Exkursion

(2.25) //OOO Xe dt Qy (dx).

Fiir die folgenden Theoreme 7 und Theorem 8 nehmen wir an, dass der Ausdruck
in (Z.25) endlich ist. Falls die Bedingungen A1, A3 und A4 erfiillt sind, ist hierzu
die folgende Bedingung an «, h und g dquivalent.

Annahme A5. Der Parameter o und die Funktionen g und h erfiillen

Ty
(Z.26) L mdy<oo

fiir ein und damit fir alle x > 0, wobei

(2.27) s(y) := exp (— /O?J %ﬂj)h@) dx), y > 0.

Ein generisches Beispiel fiir h und g ist h(y) = ;9™ — 2y™, g(y) = c3y"™ mit
c1,Co,c3 > 0. Die Annahmen Al, A2, A3, A4 und A5 sind alle erfiillt, falls ko >
k1 > 1 und k3 € [1,2) gilt.

Theorem 7. Die Annahmen Al, A3, A4 und A5 seien erfillt. Dann stirbt der
Virgin Island Prozess (Vi)i>o fir jeden Startpunkt x > 0 global aus genau dann
wenn

(2.28) / /0 " axeds Qy(dy) < 1

gilt. Der Ausdruck auf der linken Seite ist gleich

(2.29) | o= [ [ axadsorian.

Im Falle des Uberlebens konvergiert (Vi)i>0 in Verteilung fiir t — oo gegen eine
Zufallsvariable Vo, deren Verteilung charakterisiert wird durch

(Z.30) P*(Ve=0)=1—-P%(V, =00) = E"exp (—q/ aY, ds)
0

fiir alle x > 0 und ein ¢ > 0.
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Eine interessante Grofle des Virgin Island Prozesses ist die erwartete Flache
unter dem Graphen von (V});>0. In Theorem 8 wird die Asymptotik der erwarteten
Fldche unter dem Graphen von (V;)s<; fiir ¢ — oo ermittelt. Definiere

* z
7.31 w(x ::/ S(x A z)———dz
750 = J, SN
fur x > 0.
Theorem 8. Die Annahmen Al, A3, A4 und A5 seien erfillt. Falls die linke

Seite von Ungleichung (Z.28) strikt kleiner als eins ist, dann ist, fir jedes x > 0,
die Fliche unter dem Graphen von (V)i>o gleich

Ea:(f(fﬂ@ds) B w(z) »
1—f (fooo s ds> Qy (dx) I 0@ 4%

(Z.32) E/ V,ds = 0,00).
0

Andernfalls ist die linke Seite von (Z.32) gleich unendlich. Im kritischen Fall, das
heisst Gleichheit in (7.28), gilt

L E*( [V, du
po b DU
0 J (fo uaxudU)Qy(dx) 0 s

fiirt — oo, wobei die rechte Seite als Null interpretiert wird, falls der Zihler gleich
unendlich ist. Im superkritischen Fall, das heisst, falls Ungleichung (Z.28) nicht
erfillt ist, sei 8 > 0 die eindeutige Lisung von

(Z.34) /OO e_ﬁ“/aquy(dx) du = 1.
0

Damit kann die Konvergenzordnung der erwarteten Fldche unter dem Pfad von
(Vi)s<t abgelesen werden von

fooo e PuE® fou Y. ds du
Jo 7 ue [ ax,Qy (dx)du

t
(7.35) eﬁf/ E*V,ds — € (0, 00)
0

fiirt — oo fiir alle x > 0.

Das Virgin Island Modell vereinigt auf sich die folgenden zwei Eigenschaften.
Einerseits beinhaltet es Kompetition unter Individuen. Andererseits existiert ein
explizites Kriterium fiir den Phaseniibergang von Aussterben zu Uberleben. Somit
ist das Virgin Island Modell méglicherweise interessant fiir Anwendungen, denn es
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ist realistischer als klassische Verzweigungsmodelle, ist aber noch so einfach, dass
es explizite Formeln hat.

Die Selbstdualitdt (Z.15) ist ein starkes Werkzeug, um wechselwirkende Feller-
Diffusionen mit logistischem Wachstum zu untersuchen. Abschnitt 2.5 beinhal-
tet einen analytischen Beweis dieser Selbstdualitéit, welcher auf einer Generator-
rechnung beruht. In Kapitel 4 verfolgen wir einen anderen Ansatz, wobei wir die
Dynamik der Prozesse durch sogenannte Grundmechanismen auf der Ebene von
Teilchen darstellen. Dadurch erhalten wir ein stochastisches Bild fiir die Selbst-
dualitdt (Z.15), welches das Verstédndnis der Rolle der logistischen Regulierungs-
funktion vz (K — ) in (Z.2) fiir die Selbstdualitit (Z.15) vertieft und welches eine
Erklarung fiir das Auftreten der Dualitétsfunktion exp (—%(x, y)) in (Z.15) liefert.
Der Einfachheit halber betrachten wir nur den nichtrdumlichen Fall, das heisst,
m(i, j) = 1, fiir 4,5 € Z°.

Fiir eine etwas allgemeinere Dualitét als (Z.15) betrachten wir die starke Lo-
sung (X;)s>0 von

(7.36) dX; = ¢X;dt —yX?dt + /28X, dB;,

wobei (Bi);>o eine Standard-Brownsche Bewegung ist. Wir bezeichnen den Pro-
zess (Xi)i>o als logistische Feller-Diffusion mit Parametern (g,~, ). Sei (Yi)i>o0
eine logistische Feller-Diffusion mit Parametern (g, r(3,~/r) fiir ein r > 0. In Ab-
schnitt 4.4 beweisen wir

(2.37) Ef[e™ Y] = EY[e™™]  x,y €[0,00),t > 0.

Der Ansatz, den wir im Folgenden vorstellen, ist nicht nur auf (Z.37) anwend-
bar, sondern auch auf eine andere Dualitét, welche analytisch von Athreya und
Swart [2] bewiesen wurde. Seien b, ¢, d > 0. Es bezeichne X; € Ny die Anzahl der
Teilchen zur Zeit t > 0 eines Verzweigungs-Verschmelzungs-Teilchenprozesses, wel-
cher durch die anfingliche Anzahl Xy = n und durch folgende Dynamik definiert
wird: Jedes Teilchen spaltet sich mit Rate b in zwei neue Teilchen, jedes Teilchen
stirbt mit Rate d und jedes geordnete Paar von Teilchen verschmilzt mit Rate ¢ zu
einem Teilchen. Alle diese Ereignisse geschehen voneinander unabhéngig. Athreya
und Swart [2] bezeichnen diesen Prozess als (1, b, ¢, d)-braco-Prozess. Dessen dua-
ler Prozess (Y;);>0 mit Zustandsraum [0, 1] ist die eindeutige starke Losung der
stochastischen Differentialgleichung

(7.38) dY; = (b—d)Y;dt — bY2dt + \/2c¢Y;(1 = Y,)dB;, Yo =vy.
Athreya und Swart [2] beweisen die Dualitét

(Z.39) E'[1-y)M] =E[1-Y)"] VneNyyel0,1],¢t>0.
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Spezialfille der Dualitéten (Z.37) und (Z.39) sind (siche Remark 4.4.2 und Re-
mark 4.4.4) die Dualitdt von Fellers Verzweigungsdiffusion mit einem deterministi-
schen Prozess, die Dualitiat der Fisher-Wright Diffusion mit Kingmans Coalescent
und die Dualitdt des Galton-Watson Prozesses (in kontinuierlicher Zeit) mit einem
deterministischen Prozess.

Kapitel 4 zeichnet ein einheitliches Bild fiir die Dualitéten (Z.37) und (Z.39).
Fiir jedes N € N konstruieren wir Prozesse (X} );>o und (Y;");>0 mit Zustands-
raum {0,1}". Je nach Reskalierung approximieren die Prozesse (X}¥);>o und
(Y V)50 fiir N — oo einen (1, b, ¢, d)-braco-Prozess, eine logistische Feller-Diffusion
oder einen (1, b, ¢, d)-resem-Prozess. Desweiteren sind (XV)i>o und (YY) fiir je-
des N € N dual zueinander. Im Abschnitt 4.4 werden wir aus dieser Dualitéit — je
nach Reskalierung — im Grenziibergang N — oo die Dualitét (Z.39) beziehungs-
weise die Dualitét (Z.37) folgern.

Der Prozess (X}V)io wird durch folgende graphische Repriisentation konstru-
iert, welche im Geiste von Harris [14] ist. Als Grundmechanismus bezeichnen wir
jede Funktion f: {0,1}*> — {0,1}2. Ein endliches Tupel (fi,..., fn), m € N,
von Grundmechanismen und ein Tupel (Aq,..., ;) € [0,00)™ von Raten defi-
nieren wie folgt einen Prozess. Mit jedem k£ < m und jedem geordneten Paar
(i,7) € {1,...,N}? i # j, wird ein Poisson-Prozess mit Rate \; assoziiert. Zu
jedem Zeitpunkt dieses Poisson-Prozesses dndert sich die Konfiguration von (i, )
geméf fr. War die Konfiguration zuvor beispielsweise gleich (1,0), so dndert sie
sich in f;(1,0) € {0,1}?. Alle Poisson-Prozesse sind voneinander unabhéngig. Der
Prozess (Y,N);>0 wird mit Hilfe derselben Poisson-Prozesse definiert, jedoch in
umgekehrter Zeit. Ob (X}¥);50 und (V;")i>o dual zueinander sind, erkennt man
somit durch Verfolgen von Vorwiérts- und Riickwartspfaden. Dies fiihrt zu einer
Dualitédtsbedingung an korrespondierende Paare von Grundmechanismen. Diese
Dualitatsbedingung stellen wir in Abschnitt 4.2 vor. Desweiteren identifizieren
wir in Abschnitt 4.2 alle dualen Paare von Grundmechanismen.

Wie in der Literatur bekannt ist, ist das Moran Modell dual zu Kingmans
Coalescent. In der Sprache der Grundmechanismen besagt diese Dualitét, dass der
Resampling-Mechanismus dual zum Coalescent-Mechanismus ist. Es stellt sich her-
aus, dass es im Wesentlichen diese Dualitét ist, aus der man die Dualitét (Z.37) fol-
gern kann. Der Resampling-Mechanismus fiithrt dabei im Diffusionslimes zum Term
V23X, dB; in Gleichung (Z.36). Die Gesamtanzahl der Teilchen eines Coalescent-
Prozesses ist ein reiner Todesprozess, welcher von k nach k£ — 1 mit exponentieller
Rate {zk(k — 1), k > 2, springt. Diese Rate ist im Wesentlichen quadratisch in
k fiir groBe k und fiihrt im Diffusionslimes zum quadratischen Term vX?2dt in
Gleichung (Z.36).
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