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Preliminary remarks

(1)

A study was published during the course of this work, which is not part of
this dissertation. Parts of the sections ”Feature Extraction and Preprocess-
ing” and ”Redox Modifications” have been adapted from this study: Keßler,
M., Wittig, I., Ackermann, J. and Koch, I., 2021. Prediction and analysis
of redox-sensitive cysteines using machine learning and statistical methods.
Biological Chemistry, 1 (ahead-of-print)

(2)

Any work concerning Hidden Markov Models, structural invariants near
cysteines and shapemers of proteins were carried out as part of a project
under my supervision. They were part of a Masters thesis by:
Nover, N., 2021. Prediction of Redox Modifications in Proteins using Ma-
chine Learning Methods. Masters Thesis, Department of Informatics and
Mathematics, Goethe University Frankfurt.

(3)

The source code used in this thesis can be found using the following link:
https://github.com/mal099/ExtraRedox

https://github.com/mal099/ExtraRedox
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Zusammenfassung: Reaktive Sauerstoffspezies sind eine Klasse
natürlich vorkommender, hochreaktiver Moleküle, die die Struktur und
Funktion von Makromolekülen verändern. Dies kann oft zu irreversiblen
intrazellulären Schäden führen. Gleichzeitig können sie auch reversible
Veränderungen durch posttranslationale Modifikation von Proteinen be-
wirken, die in der Zelle zur Signalübertragung genutzt werden. Die meisten
dieser Modifikationen treten an spezifischen Cysteinen auf. Welche struk-
turellen und physikalisch-chemischen Eigenschaften zur Sensitivität von
Cysteinen gegenüber Redoxmodifikationen beitragen, ist derzeit unklar.
Hier habe ich den Einfluss von Proteinstruktur- und Sequenzmerkmalen auf
die Modifizierbarkeit von Proteinen und den darin enthaltenen spezifischen
Cysteinen mit statistischen und maschinellen Lernmethoden untersucht.
Ich fand mehrere starke strukturelle Prädiktoren für Redoxmodifikationen,
wie zum Beispiel eine höhere Zugänglichkeit zum Cytosol und eine hohe
Anzahl von positiv geladenen Aminosäuren in unmittelbarer Nähe. Ich
stellte eine hohe Häufigkeit anderer posttranslationaler Modifikationen
wie Phosphorylierung und Ubiquitinierung in der Nähe von modifizierten
Cysteinen fest. Die Verteilung von Sekundärstrukturelementen scheint
eine wichtige Rolle bei der Modifizierbarkeit von Proteinen zu spielen.
Unter Nutzung dieser Eigenschaften erstellte ich Modelle zur Vorhersage
des Vorhandenseins von redoxmodifizierbaren Cysteinen in Proteinen, ein-
schließlich des menschlichen mitochondrialen Komplexes I, der natürlichen
NKG2E-Killerzellrezeptoren und der proximalen Tubuluszellproteine, und
verglich einige dieser Vorhersagen mit früheren experimentellen Ergebnissen.

Abstract: Reactive oxygen species are a class of naturally occurring,
highly reactive molecules that change the structure and function of
macromolecules. This can often lead to irreversible intracellular damage.
Conversely, they can also cause reversible changes through post-translational
modification of proteins which are utilized in the cell for signaling. Most
of these modifications occur on specific cysteines. Which structural and
physicochemical features contribute to the sensitivity of cysteines to redox
modification is currently unclear. Here, I investigated the influence of
protein structural and sequence features on the modifiability of proteins and
specific cysteines therein using statistical and machine learning methods.
I found several strong structural predictors for redox modification, such
as a higher accessibility to the cytosol and a high number of positively
charged amino acids in the close vicinity. I detected a high frequency
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of other post-translational modifications, such as phosphorylation and
ubiquitination, near modified cysteines. Distribution of secondary structure
elements appears to play a major role in the modifiability of proteins.
Utilizing these features, I created models to predict the presence of redox
modifiable cysteines in proteins, including human mitochondrial complex I,
NKG2E natural killer cell receptors and proximal tubule cell proteins, and
compared some of these predictions to earlier experimental results.

1 Introduction

Reactive oxygen species (ROS) are metabolic by-products of cellular pro-
cesses, such as oxidative phosphorylation in mitochondria, or are directly
and deliberately produced by enzymes such as NADPH (nicotinamide ade-
nine dinucleotide phosphate) oxidases [48] in response to specific physiological
stimuli [69], such as in phagocytic cells, where NADPH oxidases can partici-
pate in intracellular and intercellular redox signaling. They can also produce
large quantities of superoxide during respiratory bursts, which contribute to
the elimination of ingested organisms [78]. Among the various ROS, the
comparatively stable hydrogen peroxide (H2O2) and its more unstable pre-
cursor molecule superoxide (O−2 ) are physiologically most relevant [46]. The
superoxide anion is often produced through the leakage of electrons from
redox centers, partially reducing oxygen molecules [104]. An imbalance of
ROS production and consumption may lead to irreversible modifications in
proteins and other macromolecules, including DNA or lipids. This oxidative
stress may give rise to negative physiological consequences such as critical cell
damage and play a role in cardiovascular, metabolic and neurodegenerative
diseases[57].

The cessation of blood flow to the heart or brain often results in hypoxia in
portions of the affected organs, resulting in ischemia/reperfusion injury. This
is the result of the generation of ROS and RNS (reactive nitrogen species),
which have been shown to irreversibly damage the protein complexes of the
respiratory chain as well as enzymes of the Krebs cycle [70].

In diabetic patients, hyperglycemia has been shown to lead to a high
glucose-dependent production of electron transfer donors, increasing the
electron flux through the mitochondrial electron transport chain and the
ATP/ADP ratio. This results in a hyperpolarization of the mitochondrial
membrane, hindering the transport of electrons at complex III and accu-
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mulating electrons at coenzyme Q. This leads to the rapid generation of
O−2 , which is believed to be the main cause of mitochondrial dysfunction in
diabetic patients [70].

The major neurodegenerative diseases, such as Alzheimer’s, Parkinson’s
and Huntington’s, are all characterized by either misfolded, misprocessed or
mutated proteins forming insoluble aggregates and leading to mitochondrial
dysfunction. ROS and RNS generated by such malfunctioning mitochondria
have been implicated in the loss of neurons and glutathionylation of proteins
typical for these diseases, although the exact role of mitochondrial thiols in
their development is not yet fully understood and still subject of ongoing
research[70].

In recent years, a positive role for redox modifications has increasingly
been recognized. They have often been found to have vital biological func-
tions as targeted secondary messengers, acting as a binary or multistate
switch [110]. Functional consequences of ROS-signaling can be involved in
changes in many different pathways, for instance, gene transcription, trans-
lation and protein folding, metabolism, signal transduction, apoptosis and
others [12]. The majority of functional redox modifications occur with redox-
reactive cysteines [105], often leading to structural and/or functional changes
to the protein. While many types of redox modifications are reversible by
reducing proteins such as thioredoxins and glutaredoxins [5, 54], enabling
the formation of non-pathological ROS pathways, others may lead to perma-
nent changes. This may leave the protein damaged or non-functional [88].
More detailed information on the different types of redox modifications can
be found in chapter 2.1.

One early example of a protein gaining function through redox modifi-
cation was OxyR, a peroxide sensitive transcription factor in E. coli. OxyR
induces antioxidant gene expression after its cysteine is oxidized by H2O2 [48].
A role for oxygen sensing has also been found in mitochondria, especially dur-
ing hypoxia. Under these conditions, production of O−2 , most likely by com-
plex III, is elevated, which is then quickly converted to H2O2 and diffused
into the cytosol. Here, it stabilises hypoxia-inducible factor-1α (HIF-1α),
leading to the transcription of genes enabling the cellular response against
the harmful effects of hypoxia [24]. While many early examples of redox
regulation involved stress responses, there is also evidence that redox signal-
ing plays an important role in normal cellular metabolism. Endogenously
generated ROS acts as a second messenger to receptor agonists, such as
growth factors and hormones, enabling their associated metabolic changes.
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They may also modulate the activation of transcription factors, membrane
channels and metabolic enzymes as well as control calcium-dependent and
phosphorylation signaling pathways, having an important influence on the
majority of aspects of cell physiology [108].

Due to the important influence of redox modifications to both benign
and harmful intercellular processes, a large variety of case studies and large-
scale proteomics investigations have been conducted to identify and classify
redox-sensitive proteins, their underlying stimuli and their effects. Examples
include the research by Chouchani et al. on the inhibition of mouse com-
plex I through reversible S-nitrosylation of Cys39 on the ND3 (NADH de-
hydrogenase 3) subunit, which has been shown to be exposed under hypoxic
conditions. This slows the reactivation of mitochondria during reperfusion
of ischemic tissue and stops ROS production in complex I, protecting tissue
from oxidative damage and tissue necrosis caused by ROS imbalance. The
redox-active cysteine was marked through the use of a mitochondria-selective
S-nitrosylating agent, MitoSNO (mitochondria-targeted S-nitrosothiol), and
then identified using SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel
electrophoresis) [21].

Large-scale proteomics studies include the work of Murphy et al. into
S-nitrosated mitochondrial proteins, vicinal dithiols, ROS-sensitive thiols in
general and their implications for mitochondrial function and redox signal-
ing [55, 20, 89]. They identified redox-sensitive cysteines by first targeting
them with a fluorescent tag and then detecting the difference in fluorescence
between the control and treated groups through redox difference gel elec-
trophoresis.

Bleier et al. analyzed generator-specific targets of ROS in rat heart mi-
tochondria through the application of redox fluorescence difference gel elec-
trophoresis analysis, finding that distinctly different subsets of proteins were
modified by ROS which had been produced by the main mitochondrial ROS
generators complex I and complex III. [9] Mart̀ınez-Acedo et al. developed
their new GELSILOX (GEL-based Stable Isotope Labeling of OXidized Cys)
method, which combines a proteomics protocol with a computational ap-
proach to analyze variance at the peptide level, which they used to demon-
strate a significant increase in the status of oxidized thiols induced by hy-
poxia. They were also able to detect thiols that had been redox modified by
ischemia-reperfusion and showed that these reactions were no longer present
in ischemia-preconditioned animals [76]. More detailed information on the
principles of redox proteomics can be found in chapter 2.2.
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Several machine learning approaches have been developed to assist re-
searchers in the identification of redox-active cysteines and similar problems,
reducing the necessary load of time and effort for experimentation, report-
ing differing levels of success. These methods are often hindered by several
factors. For one, redox cysteines and their environment do not appear to
conform closely to any specific recognizable pattern or motif. Additionally,
there are many different types of possible redox modifications which may
result from a variety of stimuli, further complicating the problem.

One approach developed by Marino & Gladyshev used amino acid (AA)
and secondary structure composition, accessibility, active site location and
cysteine reactivity. Applying these features, they attempted to predict the
presence of thiol oxidoreductases, an extensively studied group of enzymes
containing catalytic redox-active cysteines, among proteomes. Testing their
method for the proteome of Saccharomyces cerevisiae, they were able to iden-
tify the majority of known yeast thiol oxidoreductases [73]. In another study,
the group analyzed an extensive dataset of S-nitrosylated proteins, testing
for the influence of a variety of features which had been shown to facilitate
nitosylation in previous studies, such as pKa, sulfur atom exposure, cysteine
conservation or hydrophobicity. The acid dissociation constant pKa denotes
the strength of an acid. This is often thought to play an important role in
the oxidization of thiols. The pKa values used in this study were predicted
using the machine learning-based PROPKA [101] tool. Hydrophobic pro-
tein surfaces may concentrate lipophilic NO and molecular oxygen, enabling
the formation of nitrosylating species close to the cysteine. The conserva-
tion of cysteines among different proteins in their sequence may suggest an
important regulatory role of the residue. High thiol exposure would facili-
tate the approach of nitrosylating agents. The researchers found no evidence
for the hypothesis that S-nitrosylation sites were defined by cysteine pKa as
predicted by PROPKA, exposure, hydrophobicity or cysteine conservation.
They instead discovered that nitrosylation could be predicted by the presence
of a distantly situated, exposed acid-base motif [74].

In 2012, Marino & Gladyshev published a review detailing the current
understanding of the properties and functions of reactive cysteine residues
and the computational methods to analyze them [75]. Focusing first on pKa

and residue exposure, they gave a brief overview of current tools aiding in
their prediction. They found much progress and many new insights pro-
vided by bioinformatics tools in the analysis of catalytic redox cysteines,
metal-binding cysteines, and disulfide bonds, while methods for the investi-
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gation of regulatory cysteines, sites of stable post-translational modifications
(PTMs) and catalytic non-redox cysteines still appeared lacking. They ap-
peared hopeful about the further advances that could be accomplished due
to new experimental methodologies and data, despite continued difficulties
due to the complex nature of the problem of the identification, categorization
and comprehension of redox thiols and the necessary conditions leading to
redox modification.

Passerini & Frasconi have developed an approach applying the support
vector machine algorithm on windows of multiple alignment profiles to
differentiate between cysteines involved in ligand binding and cysteines
forming disulfide bridges. They compared their method to predictions based
on PROSITE pattern hits. PROSITE is a database for the functional
characterization and annotation of proteins, consisting of entries that show
detailed descriptions of protein families, domains and functional sites, as
well as amino acid patterns and profiles in them. Using this approach, they
were able to find the majority of relevant PROSITE patterns, but were also
able to detect signal in the profile sequence PROSITE was not sensitive
to [83]. In a later study, they conceived an approach to predict whether
cysteine exists in a free state, metal bound, or participate in disulfide
bridges. The method uses a two-stage approach consisting of a support
vector machine in the first stage and a bidirectional recurrent neural network
in the second stage. They utilized only sequence information in the form of
position-specific evolutionary profiles and features such as chain length and
amino acid composition of the protein. The approach has achieved similar
results as predictions based on other state-of-the-art methods [84].

1.1 Motivation

Traditionally, redox modifiable cysteines have been identified using biochem-
ical characterization of proteins. In recent years, much progress has been ac-
complished using redox-DIGE (difference gel electrophoresis) and ICAT (iso-
tope coded affinity tag) methods to streamline experimentation and identify
large quantities of reactive thiols. Despite these advances, the experimental
verification of the redox modifiability of cysteines remains a costly and time-
intensive process to this day. Biochemical methods tend to also be insensitive
to proteins with low abundance, such as transcription factors, leading to an
experimental bias towards more abundant target proteins, such as enzymes
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or ribosomal factors [100]. To aid researchers in the process of identifying
redox active cysteines and reduce the required experimental workload, I de-
veloped a novel application of a machine learning approach, which may be
able to predict redox modifiable cysteines. I also hope to expand our under-
standing of the necessary conditions and structural properties that facilitate
redox modification of cysteines.

In the last years, multiple computational methods for the prediction of
cysteine disulfides have been successfully developed. Methods for the predic-
tion of redox cysteines, on the other hand, have been less effective. In their
own study on the characterization of thiol oxidoreductases, enzymes contain-
ing catalytic redox-active Cys residues, Fomenko et al. [40] wrote that the
”[i]dentification and characterization of thiol oxidoreductases is challenging
because of high divergence of protein families that represent these enzymes
and a variety of folds that were adapted by this protein group”. Since then,
many attempts at the statistical and computational characterization of redox
cysteines have been undertaken, yet most approaches have been limited in
scope.

In the aforementioned study by Fomenko et al. [40], the researchers at-
tempted to identify active sites of thiol oxidoreductases by searching for
sporadic Cys/selenocysteine (Sec) pairs in homologous sequences. This ap-
proach, while highly accurate, can only identify a small subset of redox mod-
ifiable cysteines, and will especially show weaknesses for less well-known pro-
teins where fewer sequences are available.

Marino et al.[73] analyzed structural features of redox modifiable cys-
teines in thiol oxidoreductases, such as amino acid and secondary structure
composition, calculating accessibility, active site location, and reactivity of
the cysteine, developing an algorithm for their identification based on these
characteristics. Sanchez et al.[94] developed a classifier based on the distance
of the active cysteine to the nearest cysteine sulfur atom, its solvent accessi-
bility, and its pKa. Both approaches seemed successful, but were only based
on data from a small number of redox active cysteines (75 in the former and
161 in the latter case), limiting their scope and robustness.

Recently, Sun et al.[100] used the large RedoxDB dataset to develop a
classifier based on the support vector machine algorithm to predict redox
sensitive cysteines, utilizing only sequence data in order to offer the broadest
possible application, even when structural data was not available. They fo-
cused on the features of sequential distance of the active cysteine to nearby
cysteines, a Position-Specific Scoring Matrix (PSSM) profile, solvent accessi-
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bility, physicochemical properties and predicted secondary structure of flank-
ing residues.

My approach applied statistical as well as machine learning methods to
computationally find and highlight redox modifiable cysteines and proteins,
combining structural and sequence data from the RedoxDB dataset. By uti-
lizing a large dataset and additionally considering the structure of the pro-
teins, I wanted to achieve better results than comparable approaches that use
only amino acid sequences. I utilized features like physicochemical properties,
amino acid accessibility, Half Sphere Exposure (HSE) and secondary struc-
ture elements (SSEs), combining them with the new approach of so-called
”shapemers” based on rotation-invariant structural characteristics. When
structural data was not available, I utilized prediction methods and imputa-
tion to fill in the gaps for the features. I applied various supervised machine
learning algorithms, comparing the quality of their models, both for the pre-
diction of redox-sensitive cysteines and proteins. I compared properties of
cysteines and proteins that had been experimentally shown to be modifiable
(hereafter referred to as Cys+) with those suspected to not be modifiable
(hereafter referred to as Cys−) to further researchers’ understanding of the
structural and physicochemical properties influencing the redox modifiability
of cysteines as part of proteins and polypeptides.

I applied my approach to several use cases. I predicted the redox modifia-
bility of the cysteines of human mitochondrial complex I, the largest protein
complex in the respiratory chain responsible for the oxidization of NADH
produced mainly by the Krebs cycle. I compared my predictions to prior ex-
perimental results from the literature to see how well the different algorithms
would perform for an unknown real-life example. I produced new predictions
for the cysteines of a proximal tubule cell dataset which is currently being
used in experimental research by another research group. I used the models
to compare different single nucleotide polymorphism variants of the NKG2E
Natural Killer Cell Receptor to better understand the impact of small mu-
tations on redox modifiability. The method was also used to make novel
predictions of the sequence position of redox modifiable cysteines in proteins
experimentally verified to contain at least one such cysteine.
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2 Biological Foundations

2.1 Redox Modifications

Aerobic metabolism leads inevitably to the production of ROS [48], including
hydrogen peroxide (H2O2) and its precursor molecule superoxide (O−2 ), which
can lead to thiol oxidation, see Figure 1.

Figure 1: The initial ROS formed within cells is often superoxide. It is how-
ever not the primary redox signal, as it is quickly converted to hydrogen
peroxide, which will either lead to thiol oxidation or be regulated by en-
zymes such as peroxiredoxin, which forms a sulfenic acid intermediate while
reducing hydrogen peroxide to water. The active site cysteine is then re-
duced and regenerated in a manner specific to the type of peroxiredoxin [48].
Peroxiredoxin may also serve as an oxidant receptor or sensor, which has
been observed in yeast for the activation of the transcription factor Yap1
by the peroxiredoxin-like protein GPx3. The reaction between GPx3 and
ROS forms a sulfenic acid, which may then form an intermolecular disulfide
bridge with Yap1. Interaction with a second cysteine produces an intramolec-
ular disulfide bridge, recycling GPx3 [108]. Figure adapted from Sullivan et
al. [98].

A number of stimuli can cause an imbalance of ROS production and con-
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sumption. Examples are hypoxia, ischemia/reperfusion injury, inflammation,
environmental pollution, strenuous exercise, smoking, nutrition, and psycho-
logical stress [87, 86]. An elevation of the concentration of ROS may lead
to oxidative stress, damage of virtually all types of macromolecules, such as
DNA, proteins and lipids, and apoptosis, see Figure 2.

Figure 2: ROS generators increase the amount of ROS in the cell, while
ROS scavengers serve to downregulate it. High levels of ROS may lead
to tumorigenic or even cytotoxic conditions in the cell. ROS signaling may
happen both at lower and higher levels of ROS concentration. Figure adapted
from Sullivan et al. [98].

Despite their well-known negative effects, ROS have vital biological func-
tions as targeted secondary messengers. In order to keep the amount of ROS
in the cytosol at a productive level permissible of regular cellular function, a
number of conserved enzymatic and non-enzymatic systems are employed in
both prokaryotic and eukaryotic organisms that detoxify excess ROS as well
as prevent and repair oxidative damage. Examples of such systems include
transcriptional changes mediated by oxidative modification of transcription
factors, such as the expression of catalase, peroxiredoxin, thioredoxin and
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glutaredoxin by the bacterial peroxide sensor OxyR. Other examples include
the activation of stress-specific chaperones and the ROS-mediated change
in metabolic pathways, from energy production towards NADPH genera-
tion [48].

Many oxidative post-translational modifications are reversible and act as
a binary switch. Functional consequences of ROS-signaling can be involved in
changes in many different pathways, for instance, gene transcription, trans-
lation and protein folding, metabolism, signal transduction, apoptosis and
others [12]. The majority of functional redox modifications occur with redox-
reactive cysteines. Oxidation of the thiol forms reactive sulfenic acid and may
establish disulfide bonds with nearby cysteines or undergo further irreversible
oxidation to sulfinic or sulfonic acid, resulting in changes in structure and/or
function of the protein [88], see Figure 3. Oxidation to sulfenic acids and
the formation of disulfide bonds are reversible by reducing proteins such as
thioredoxins and glutaredoxins [5, 54]. Reversibility is a necessary precondi-
tion for redox modified cysteines to function in non-pathological pathways.
Free thiols may also reversibly form nitrosothiols (SNO) or sulfhydrated thi-
ols through S-nitrosylation with nitric oxide and S-sulfhydration with hydro-
gen sulfide, respectively. Sulfenic acids may form glutathionylated thiols or
sulfenamides.
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Figure 3: Different types of cysteine modifications by ROS. After reacting
with hydrogen peroxide, redox-sensitive thiol groups (SH) will form sulfenic
acid (SOH). The sulfenic acid may react with nearby cysteine thiols, forming
disulfide bonds (SS). Alternatively, they may form glutathionylated thiols or
sulfenamides. Free thiols may also undergo protein S-nitrosylation by react-
ing with nitric oxide into nitrosothiols (SNO), or S-sulfhydration by reacting
with hydrogen sulfide into sulfhydrated thiols. All of the aforementioned
modifications are reversible. Further oxidation of sulfenic acids to sulfinic
acids or sulfonic acids is generally irreversible. Figure adapted from Chung
et al. [23].

Recent studies suggest a role of redox signaling in regulating the function
of mitochondria through the redox modification of specific cysteines of res-
piratory chain complexes [24, 32]. Mitochondrial redox balance may also be
controlled by the generation of ROS by respiratory chain complexes, espe-
cially complex I and complex III, through reversible and irreversible redox
modification of specific target proteins involved in both redox signaling and
pathophysiological processes [32]. The importance of mitochondrial redox
signaling has been shown in cases such as the severely myopathic skeletal
muscle-specific COX15 knockout (KO) mice which were crossed with AOX-
transgenic mice [31]. In these mice, complex III and complex IV of the
respiratory chain are bypassed by alternative oxidases (AOXs) by transfer-
ring electrons from coenzyme Q directly to O2. This lead to decreased ROS
production, which impaired AMPK/PGC-1α signaling and PAX7/MYOD-
dependent muscle regeneration, decreasing the lifespan of the mice. Treat-
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ment with the antioxidant N-acetylcysteine had a similar effect on KO mice.
Significant overproduction of ROS by isolated mitochondria results either

when mitochondria are not producing ATP in sufficient quantities and thus
possess a high protonmotive force and a reduced coenzyme Q pool, or when
there is a high NADH/NAD+ ratio in the mitochondrial matrix [80]. It
may be possible to prevent oxidative damage through redox regulation of
respiratory chain activity and S-nitrosylation of complex I [32].

2.2 Redox Proteomics

Redox proteomics is a field that aims to identify redox modified proteins and
investigate the extent and location of oxidative modifications in them. Since
their direct identification through mass spectrometry (MS) is complicated
by their instability and low abundance, a large array of tools have been
developed for their detection, enrichment and quantification.

The first step for the detection of oxidative modifications is to stabilize
the redox status of the sample to avoid the creation of artifacts during
sample preparation, either through rapid protonation and precipitation of
proteins with trichloracetic acid or by blocking free thiols with reagents
such as N-ethyl maleimide (NEM) or iodoacetamide (IAM). Reversible
redox modifications are then reduced, e.g. by dithiothreitol or tris(2-
carboxyethyl)phosphine (TCEP). A secondary thiol label is applied to mark
reversible redox modifications of cysteines, while irreversible modifications
remain unlabeled, see Figure 4. Now, the sample can be analyzed using
either gel-based methods or pure liquid-chromatography (LC)-MS.
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Figure 4: Redox modified cysteine labeling. After proteins are extracted from
tissue or cells, the redox state is stabilized by labeling the free thiols with
N-ethyl maleimide (NEM) or iodoacetamide (IAM) (red x). Reversible redox
modifications are reduced through the application of dithiothreitol (DTT) or
tris(2-carboxyethyl)phosphine (TCEP). Reversible redox modifications are
marked using a second label (green dot). Irreversible redox modifications
remain unlabeled. Figure adapted from Dröse et al. [32].

In gel-based methods, redox modifications are first labeled using fluores-
cent dyes. Proteins are then separated by polyacrylamide gel electrophoresis
(PAGE). Traditionally, 2D isoelectric focusing or sodium dodecyl sulphate
(IEF/SDS) gels are used to separate proteins according to their isoelectric
point in the first dimension, then according to molecular mass in the second
dimension, providing a detailed mapping of redox modifications in the pro-
teome. Recently, newer methods, such as redox difference gel electrophoresis
(redox-DIGE), have been developed, which are used to differentially label
proteins to identify ROS specific targets.

Pure LC-MS based redox proteomics distinguishes between reduced and
oxidized thiols qualitatively after alkylation with reagents such as NEM.
Identification of generator-specific thiols requires quantitative approaches.
Cysteines are labeled using an isotopically light probe in one sample, and
with an isotopically heavy version in the other. After analysis with LC-
MS, the ratios of signal intensities of differentially tagged thiol containing
peptide pairs can be quantified to determine the redox state or the differential
oxidation state under two conditions in the two samples [32].
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OxICAT, another method for the detection of redox modifiable cysteines,
uses the isotope-coded affinity tag (ICAT) technology. The ICAT reagent
consists of the thiol-trapping IAM-moiety (iodoacetamide), a cleavable biotin
affinity tag, and a 9-carbon linker, which exists in an isotopically light 12C-
form and an isotopically heavy 13C-form. Free thiols are first irreversably
labeled with ICAT after denaturation. Reversible redox modifications are
then reduced using TCEP, so the thiols can be tagged with heavy ICAT.
Using LC and MS, it is now possible to not only detect the redox status, but
also to quantify the isotope ratio between modified and unmodified thiols of
any particular peptide [32, 67, 6].

2.3 Amino Acid Sequence and Distance

Conservation of AA sequence has been found to often be of structural or
functional importance in proteins [43, 90]. Residues in the immediate envi-
ronment of active sites as well as charge-charge interactions play a prominent
role in the value of the acid dissociation constant pKa, which has been linked
to redox modifications of cysteines [91]. There has also been research showing
a predisposition towards basic and acidic residues regulating S-nitrosylation
and denitrosylation by altering thiol nucleophilicity, and it has been estab-
lished that deprotonation of thiol to nucleophilic thiolate can be suppressed
and enhanced, respectively, by neighboring acidic and basic groups. Thi-
olates are known to play a role in the formation of many types of redox
modifications of cysteines, such as sulfenic acids, disulfide bridges [50] and
S-nitrosylation [51]. Hydrophobic pockets have additionally been suggested
to present favorable conditions for S-nitrosylation. Such motifs may appear
both in the sequence as well as spatial neighborhood [47, 51].

One of the largest studies on the subject has systematically investigated
4165 S-nitrosylation sites within 2277 proteins, mapping them to PDB (Pro-
tein Data Bank) structures resulting in information of spatial amino acid
composition, solvent-accessible surface area, spatially neighboring AAs, and
side chain orientation for 298 substrate cysteine residues. While the re-
searchers found no significant motif surrounding the sites of S-nitrosylation,
the abundance of positively charged and hydrophilic AAs were enriched,
while the hydrophobic AA cysteine was depleted [19].

Similar investigations were undertaken for the functional sites of sulfenic
acids, where it was shown that, in functional site signatures, the frequency
of charged residues around cysteines modifiable to sulfenic acid were signifi-
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cantly smaller than around other cysteines [93].
There is currently still much disagreement on the importance of such

enriched or depleted areas of specific residues. In a different study, researchers
found that proximal acid-base motif or cysteine pKa could not define the
specificity of S-nitrosylation. They instead proposed a revised acid-base motif
located up to 8 Å from the cysteine with exposed charged groups [74]. The
pKa values used in this study were predicted by PROPKA [101], and it
may be possible that experimentally verified pKa values under physiologically
relevant conditions may show a higher correlation between cysteine pKa and
redox modifiability.

2.4 Secondary Structure

The secondary structure of a protein describes the three-dimensional form
of small repeating sub-segments of the protein. Several common SSEs have
been identified, the most common being α-helices and β-sheets. Secondary
structure has been most commonly defined by the hydrogen bonds between
the amino hydrogen and the carboxyl oxygen in the peptide backbone. The
DSSP (Define Secondary Structure of Proteins) [60] algorithm is often used
to assign secondary structure classification to proteins.

Secondary structure can significantly affect the general structure and
function of both active sites and the protein in general. It has been shown
that the structures of α-helices tend to be more robust to changes in the
amino acid sequence than β-strands, due to the relatively higher number of
inter-residue contacts they possess. Thus, they may accumulate sequence
changes more rapidly than strands within the same domain. Both helices
and strands tend to be more robust than less ordered coil regions [1].

Regarding redox modifications, researchers have found a preference for
both loop and α-helix regions within 6 Å of the active cysteine of thiol
oxidoreductases. β-strands were found to be less common [73]. Another
study investigated the role of SSEs both upstream and downstream of the
redox-active cysteine. A heightened number of β-strands was found upstream
of the cysteines, while α-helices were most commonly found downstream. The
active cysteine itself was often present in loop regions [41]. A larger study
of more than 1500 redox-active cysteines found an over-representation of coil
regions in their vicinity, while helices appeared depleted [100].
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2.5 Acid Dissociation Constant

The acid dissociation constant(pKa) is a method often used to indicate the
strength of an acid. It denotes the negative base-10 logarithm of the acid
dissociation constant (Ka) of a solution:

HA→ A− +H+

Ka = [A−][H+]
[HA]

pKa = −log10(Ka)

where quantities in square brackets represent the concentrations of the
species at equilibrium.

The pKa for the unperturbed cysteine thiol in aqueous solution is com-
monly accepted to be between 8.3 and 8.8, depending on the measure-
ment [79, 63, 91]. However, the pKa values of cysteines in proteins may vary
significantly depending on local environmental factors, such as the presence
of threonine and other polar or charged amino acids, hydrogen bonds or sec-
ondary structure. It has been shown that pKa of some modifiable cysteines
are influenced only by backbone features [93]. Low pKa thiols in proteins are
often called reactive cysteines, and low pKa is thought to be one key factor
in oxidization susceptibility, as the accepted mechanism for the generation
of sulfenic acids through H2O2-mediated oxidation involves initial cysteine
deprotonation, suggesting a lowered thiol pKa. A study calculating cysteine
pKa using the MEAD multiflex package found a shift in pKa from 8.14 for a
control set to 6.9 for a set of modifiable cysteines [93]. Yet, there is a 106-
fold difference in reaction rate constants between peroxiredoxin-2 (pKa=5-6)
and PTP1B (pKa=5.4) [97], despite similar dissociation constants. It ap-
pears that a low pKa alone is not sufficient to explain the redox activity of
thiols. Other factors affecting nucleophilicity, such as solvation, steric hin-
drance, hydrogen bonding and the formation of cyclic transition states may
play an important role [50]. Some redox modifiable cysteines displayed un-
usually high pKa values. One explanation may be a possible modulation of
pKa values through conformational changes and local flexible loops, which is
not captured by the static strucural models underlying pKa calculation [93].
There have also been studies reporting little discernible link between calcu-
lated pKa using PROPKA and propensity for S-nitrosylation [74], suggesting
other structural signifiers may serve as better predictors than pKa, at least
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when calculated using static structures and ML methods.

2.6 Residue Accessibility

Proteins are known to interact with their environment mainly through their
solvent exposed surface. Due to this fact, the exposure of a given residue
can often act as a predictor to its reactivity [36]. This quality is most often
described by the accessible surface area (ASA), although other descriptors,
like half sphere exposure, exist. ASA is typically calculated using the ”rolling
ball” method, where the accessible surface is created by tracing the center
of a small probe sphere, often with a radius of 1.4 Å, as it rolls along the
van der Waals surface of the biomolecule. This value was converted to the
relative surface area (RSA). RSA is defined here as the accessible surface
area divided by the maximum accessible surface area as defined by Tien et
al. [103].

The HSE is defined as the number of Cα-atoms of amino acid neighbors
within two half spheres of a chosen radius, generally around 10 Å, around
the Cα-atoms of the central amino acid [96], see Figure 5.
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Figure 5: Half sphere exposure can be calculated by counting the number of
Cα-atoms in two half spheres of a certain radius, shown here as a blue circle,
around a central Cα atom, marked here as CA. The thick black line shows
amino acid sequences, with edges denoting Cα-atoms. Dashed line shows the
border between the two half spheres, perpendicular to the vector between
the Cα- and Cβ-atoms.

From a physicochemical point of view, cysteine residues can have varying
properties depending on their levels of solvent exposure. While a buried
cysteine may possess hydrophobic features due to the hydrophobic effects of
amino acid packing inside the protein, interactions with H-bond partners of
highly exposed cysteines may lead to considerable polarization, decreasing
its pKa and increasing its reactivity.

Exposed cysteines have been estimated to have a pKa value very close
to the physiological pH when compared to other titratable amino acids.
This may lead exposed cysteines to easily switch their ability to function as
nucleophiles and experience sudden charge shifts and significant electrostatic
changes. High responsiveness to changes in physiological states, leading to
a higher or lower ability to interact with the protein environment or other
charged molecules, offers one explanation why cysteine residues tend to be
comparatively rare, especially on the protein surface, unless employed for a
specific function [75].
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Cysteine exposure has been investigated for its role regulating S-
nitrosylation. One study found that approximately 48% of active cysteines
had an ASA value of more than 1.0 Å2 when a 1.4 Å probe was employed.
This value rose to 65% using a probe with a radius of 1.2 Å to account
for the small size of the NO molecule. This shows that, while redox-active
cysteines tend to be more exposed to the surrounding solvent, high exposure
does not appear to be a clear prerequisite for redox activity. The same
study found that the exposure of other residues in the vicinity of the active
cysteine may also be of importance, as an acid-base motif was discovered
often pointing outward with respect to the cysteine sulfur atom. The
motif was generally found in conserved regions of solvent accessible surface
areas [74].

2.7 Post-translational Modifications

Protein signaling is often controlled by PTMs acting as a binary switch, influ-
encing catalytic activity, turnover and local targeting. Many types of PTMs
exist, such as ubiquitination, acetylation and, most prominently, phospho-
rylation. It has been hypothesized that these types of PTMs may work
in conjunction with redox modifications to further regulate protein activ-
ity. Researchers have studied the cooperation between redox regulation and
phosphorylation/dephosphorylation events both in unicellular and higher or-
ganisms with a particular focus on peroxiredoxins. They found evidence for a
high prevalence of redox control of metabolism and signaling as well as a high
amount of crosstalk between redox-controlled signaling and phosphorylation
cascades. Such regulatory cysteines were found both at and more distant to
the active site of the enzyme [62].

Further examples of such crosstalk include studies of cyanobacterial
protein phosphorylation, where it was found that the Serine/Threonine
kinase SpkB could be inhibited by oxidation and reactivated by thioredoxin-
catalyzed reduction. Mutants lacking the SpkB kinase were unable to
phosphorylate the glycyl-tRNA synthetase β-subunit (GlyS), while purified
SpkB could phosphorylate purified GlyS, showing a link between redox
regulation through modulation of the cysteine redox state and cyanobacterial
phosphorylation. A mutant lacking SpkB kinase showed hypersensitivity to
oxidative stress, displaying severe growth retardation or death in response
to several types of ROS stimuli [77].

The catalytic activity of of the serine/threonine kinase Aurora A could
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be shown to be inhibited by the oxidation of a conserved cysteine residue
lying adjacent to a critical phosphorylation site in the activation segment.
The redox cysteine was found to be highly conserved among serine/threonine
kinases, pointing to an important regulatory mechanism [15].

Activity of signal transducer and activator of transcription 3 (STAT3),
a latent transcription factor promoting cell survival and proliferation
often found active in cancers, has been reported to be modulated by
S-glutathionylation, preventing Janus kinase 2 (JAK2) mediated phospho-
rylation of Tyr705. While the molecular mechanism of this event is as of
yet poorly understood, it has been suggested that glutathionylation may
interfere with tyrosine accessibility, hampering its recognition by JAK2.

Similar results were found for other PTMs, such as in the case of Forkhead
box class O (FoxO) transcription factors, where it was found that ROS can in-
duce the formation of disulfide complexes with p300/CBP acetyltransferase,
and that modulation of FoxO activity by p300/CBP-mediated acetylation
depends on the formation of this redox-dependent complex [30].

Evidence for the role of oxidative stress also exists during the degrada-
tion of rat myosin heavy chain associated with the activation of a ubiquitin-
dependent pathway. Levels of markers for oxidative stress in mice with sus-
pended tails were measured and found to be increased over a period of several
days together with an enhancement of protein ubiquitination. Supplementa-
tion of antioxidative nutrients decreased not only the levels of antioxidative
markers, but also suppressed ubiquitination and fragmentation of the rat
myosin heavy chain protein, suggesting an important role of oxidative stress
in some forms of ubiquitination [56].

2.8 Mitochondrial Complex I

Mitochondrial complex I is with its mass of around 1 MDa the largest protein
complex in the respiratory chain. It is responsible for the oxidization of
NADH produced mainly by the Krebs cycle, transferring electrons to the
ubiquinone pool in the process [109]. The respiratory chain continuously
reduces O2 into H2O, whereby a small amount of ROS in the form of O−2 is
generated. It has also been proposed that ROS formed at complex III could
have a direct feedback on complex I cysteines [66].

Which cysteines are likely targets of such activity could be predicted by
my models.
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I used data for the NDUFS1, MT-ND3 and NDUFA2 subunits of mam-
malian respiratory complex I, based on the structural data from PDB entries
6G2J [2], 6G72 [2], 5LC5 [114], 5LNK [38] and 5XTD [49], as the basis for
the prediction of redox modifiable cysteines.

2.9 Proximal Tubule Cells

The kidney is an organ responsible for the removal of waste products pro-
duced by metabolism into the urine. It also regulates the acid-base balance,
electrolyte concentrations, extracellular fluid volume, and blood pressure. It
secretes hormones regulating blood composition and pressure.

As the kindey is a highly complex organ, many of its functions, as well as
pathologies concerning those functions, are not yet completely understood.
To answer central questions in kidney biology and disease pathogenesis,
single-cell transcriptional profiling has been performed, allowing researchers
to monitor global gene regulation in thousands of individual cells [82]. As a
central question, the role and physiological function of the NADPH oxidase
4 (Nox4) in the kidney has emerged.

Nox4 produces only hydrogen peroxide and is highly expressed in proximal
tubule cells, and may be responsible for maintaining normal kidney function
through redox signaling. It has been considered a potential pharmacological
target for a long time.

To aid in the identification of potential targets, I used machine learning
models to perform predictions of redox active cysteines coded by genes which
are all expressed by proximal tubule cells identified by aforementioned single-
cell profiling, providing a basis for later research on promising candidates for
further experimentation.

2.10 NKG2E Natural Killer Cell Receptor

Natural killer cells respond to abnormal cell activity by monitoring levels of
MH1 protein expression, which is often disrupted during viral infection, in-
flammation or neoplastic transformation. Their activity is controlled in part
by the binding of NKG2x receptors to CD94. NKG2A forms an inhibitory
receptor, while NKG2C and NKG2E serve an activating role [37, 61].

In humans, NKG2E exists in several variants due to single nucleotide
polymorphisms (SNPs). I received data for four variants of this proteins for
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further analysis to better understand the impact of small mutations on redox
modifiability.

3 Methods

3.1 Data

3.1.1 PDB

The Protein Data Bank (PDB, www.rcsb.org) [8] is a database containing 3D
structural data of more than 170.000 macromolecular structures, including
proteins, DNA and RNA. Knowledge and understanding of structural data of
biological macromolecules is necessary in order to comprehend and interpret
their role in both disease and health as well as its function in physiological
processes.

PDB data is obtained through crystallography, NMR (nuclear magnetic
resonance) spectroscopy or cryo-electron microscopy by independent scien-
tists and researchers from all around the world and updated weekly. Pro-
tein structures deposited in the PDB are used as the basis for numerous
other databases and tools, such as the secondary structure assignment tool
DSSP, the protein structural domain classification database SCOP, the pro-
tein structure classification database CATH and PDBsum, a database pro-
viding at-a-glance overviews of macromolecular structures. PDB files are
mainly made up of 3D coordinates of atoms, along with additional data,
such as molecular bonds or methodological data. In my research, structural
data as well as the resolution of the structure were mainly used.

Each structure contained within the PDB can be uniquely identified via
a four-character PDB identifier. Several identifiers may correspond to the
same biomolecule, as different structural files may comprise data for different
environments, ligands, methods or conformations.

3.1.2 RedoxDB

The RedoxDB (http://biocomputer.bio.cuhk.edu.hk/RedoxDB/index.php)
is a manually curated database containing experimentally verified data
of proteins with at least one redox modified cysteine. It consists of two
datasets. Dataset A consists of 1998 redox proteins with verified positions
and modification types of modified cysteines. Dataset B comprises 865
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additional redox proteins, but lacks data on the positions of modified
cysteines. Many, although not all, of the database entries contain a PDB
identifier for structural data of the protein. The database incorporates
additional information, including amino acid sequence, gene name, protein
function, literature references, links to UniProt and taxonomic data. Re-
doxDB represents one of the largest repositories for redox modified proteins
in existence, making it a useful tool for computational analysis of redox
proteomics [99].

3.1.3 UniProt

UniProt is a worldwide database of protein knowledge, incorporating data
for over 120 million proteins, including sequence and functional information.
Over half a million database entries contain detailed annotation extracted
from scientific literature and curated by experts. These annotations are
further supplemented through automated rule-based systems.

UniProt contains data in a variety of categories, including protein func-
tion, subcellular location, taxonomy, pathology, PTMs, domains and many
others. For this study, the presence of PTMs near redox cysteines was used.
Other categories, like subcellular location or taxonomy, may prove useful in
the future [25].

3.1.4 Proximal Tubule Cell Data

I received a set of proximal tubule cell data for analysis and prediction using
machine learning methods. This dataset consists of a list of 122 proteins with
1394 cysteines. PDB entries for 14 of those proteins were found, containing
99 cysteines.

3.1.5 Protein Sets

I used four protein sets to be utilized with different machine learning ap-
proaches. The first one contains structurally resolved proteins, whereas the
second one was extended by proteins with unknown structure. For protein
set 1, 439 redox-active proteins with 644 Cys+ and 1692 Cys− from the
latest update of RedoxDB [99] up to May 2020 were collected. I selected
only proteins with known structure stored in the PDB [8] and at least one
Cys+. To assign SSEs and accessibility to amino acids, I applied the algo-
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rithm DSSP [60]. Protein set 1 included 369 mammalian proteins, 25 plant
proteins and 45 fungal proteins.

For protein set 2, I considered 1097 additional redox-active proteins listed
in the RedoxDB for which no structures were available. I used imputation,
the process of replacing missing data with substituted values, to be able
to use the full set of features. The imputed structural properties of amino
acid residues in proteins, such as, e.g., secondary structure and accessibility,
were calculated using the values from protein set 1. I applied the function
IterativeImputer with Bayesian Ridge estimator [85]. Combined with model
training, I performed imputation separately within each cross-validation fold.
By imputation, the dataset was extended by 834 mammalian proteins, 127
plant proteins, and 136 fungal proteins, such that it consisted of 1536 redox-
active proteins in total. The proteins contained a total number of 2250
Cys+ and 13,373 Cys−. During model training, 55% of randomly chosen
Cys− were removed from the dataset . I removed 80% of Cys− from the
incomplete, imputed protein set to reduce bias towards Cys− in my model.
I balanced the protein sets to consist of 50% of Cys+ for the same reason.

Entries in the UniProt database often possess annotations concerning re-
dox modifications for specific cysteines. I used these annotations to search
through the entire UniProt database to supplement the RedoxDB dataset
with additional data. I categorized all proteins with the feature type ”DISUL-
FID” when coupled with the note ”redox-active” as well as the feature type
”MOD RES” when coupled with any of the notes ”Cysteine sulfenic acid (-
SOH)”, ”Cysteine sulfinic acid (-SO2H)”, ”Cysteine sulfonic acid (-SO3H)”,
”S-nitrosocysteine” or ”S-glutathionyl cysteine”. Only eukaryotic data in the
manually annotated and reviewed Swiss-Prot dataset was considered. Out of
563,972 entries, I found 1149 eukaryotic proteins with known redox modifi-
cations. Out of these, 1026 entries had not been categorized in the RedoxDB
before, including 2148 redox-active cysteines, see Figure 6. The UniProt data
was parsed with a Python script and transformed into the same format used
by RedoxDB so that the two datasets could be combined easily. I added
proteins from Uniprot to both protein sets while removing duplicates with
90% sequence identity applying the cluster fast tool from the USEARCH v11
sequence analysis tool [35]. This brought the numbers up to 2678 cysteines
and 840 proteins for protein set 1 and 26325 cysteines and 2478 proteins for
protein set 2.
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Figure 6: Number and type of redox-active cysteines found in the UniProt
database.

Protein set 3 consists of 400 random eukaryotic redox-active proteins from
the RedoxDB and 400 random eukaryotic proteins from Uniprot.

Protein set 4 adds 3957 proteins from a list of proteins generated with
PISCES [106] to the redox-active proteins of protein set 1, to generate a
set containing a mix of redox-active and non redox-active proteins with re-
solved structures. The PISCES proteins had up to 20% sequence identity,
1.6 Å resolution and a maximum R-factor of 0.25.

3.2 Tools

3.2.1 Define Secondary Structure of Proteins (DSSP)

DSSP [60] is a program mainly designed to standardize secondary struc-
ture assignment. It uses PDB files as the basis for its assignments and also
contains a database of secondary structure assignments for every PDB en-
try. The program calculates the most likely secondary structure assignment
based on the 3D coordinates of the atoms of the protein, as well as a cal-
culation of the H-bond energy between nitrogen atoms and oxygen atoms
of the backbone. All hydrogen atoms present in the PDB file are discarded
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before hydrogen atoms are added by optimally placing them 1.0 Å from the
backbone N in the opposite direction of the backbone C=O bond. The sec-
ondary structure is then assigned by using the two best H-bonds for each
atom. DSSP contains eight different classes of secondary structures:

• α-helix (H)

• 3-helix (G)

• 5-helix (I)

• residue in isolated β-bridge (B)

• extended strand (E)

• hydrogen-bonded turn (T)

• bend (S)

• loop/irregular structure (-)

DSSP files also contain values for the ASA of each amino acid. The ASA is
defined as the residue water-exposed surface in Å2.

3.2.2 PSIPRED

PSIBLAST-based secondary structure PREDiction (PSIPRED) [59, 14] is a
method for predicting SSEs in proteins. The predictions use two feed-forward
neural networks performing an analysis on output from PSIBLAST (Position
Specific Iterated - BLAST).

PSIPRED is able to predict the secondary structure of an unknown amino
acid sequence based on known information regarding evolutionarily related
proteins. These proteins are found using PSIBLAST. They are used to con-
struct a position-specific scoring matrix, which is then further processed by
the neural networks.

The first neural network is fed with a window of fifteen amino acids,
adding additional information indicating the position of the window at the
C or N terminus. The final input layer contains 315 input features, divided
into fifteen groups of 21 features. The network contains a hidden layer of 75
features and three output nodes for the SSEs helix, sheet and coil.
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These secondary structure predictions are filtered by the second network.
The input layer again contains data for the same window of fifteen amino
acids, including features for terminus position and SSE, resulting in 60 fea-
tures in fifteen groups of four. The network contains another hidden layer of
60 units and again has three output nodes for each SSE. Out of these three
nodes, the highest score is chosen as the prediction for the SSE of the central
amino acid.

PSIPRED has achieved a Q3-score of 81.6% for its predictions using strin-
gent evaluation methods [65]. I evaluated PSIPRED together with DSSP and
received similar results, with 80.0% of PSIPRED predictions agreeing with
DSSP secondary structure assignments (data not shown).

3.2.3 ASAquick

ASAquick [36] is a fast approach for predicting the ASA of the AAs in a
single sequence. The program utilizes a neural network to analyze a sequen-
tial window of AAs, as well as global features, such as single residue and
directional two residue composition as well as sequence length of the protein
chain. Based on empirical optimization, this sequential window includes the
data of 21 residues. The neural network contains hidden layers of 31 nodes.

Unlike similar predictors, ASAquick forgoes the use of residue mutation
profiles generated by multiple sequence alignments to known protein struc-
tures. This results in a speed-up of predictions by several orders of magni-
tude, while retaining a similar accuracy to other predictors. This method is
less dependent on sequence similarity and may thus be useful for predicting
the ASA of novel proteins.

ASAquick has been trained using ASA data provided with DSSP, making
it a good substitute when predicting ASA values for proteins with unknown
structure in my investigations.

3.2.4 PROPKA

The protein pKa prediction tool PROPKA [101] was developed by the Jensen
Research Group of the University of Copenhagen and is one of the most com-
monly used empirical pKa predictors. Unlike many other tools, its predictions
are not based on molecular dynamics or the Poisson-Boltzmann equation, but
instead entirely on empirical rules relating to protein structure based on PDB
entries. This allows for both accurate and rapid prediction of pKa values in
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proteins.
The most current version of the program is PROPKA 3.4. This new ver-

sion of PROPKA has a number of advantages over its predecessor, PROPKA
2.0. Specifically, it enables modeling of interactions between ligand groups
and implements methods for modeling of both covalently and noncovalently
coupled titrational events. In their own testing, the Jensen Group found
significant improvements in the root-mean-square deviation (RMSD) values
for Asp, Glu, Tyr, Lys and His residues [81]. Despite these advances, studies
have suggested that PROPKA 2.0 may enable superior predictions in the case
of cysteine residues [91]. Calculations could be further improved by energy
minimizing the raw X-ray structures using CHARMM [13]. In this study, I
compared the value of the predictions of PROPKA 2.0 to PROPKA 3.4 for
the purposes of the prediction of redox-active cysteines. I did not prepare
the structures using CHARMM due to time constraints and the large size of
the dataset.

3.2.5 ConCavity

I characterized functional sites and surface cavities applying the ConCav-
ity algorithm [16]. ConCavity uses sequence conservation estimates and
structure-based methods to predict small molecule binding sites. By com-
bining these two approaches, ConCavity is able to outperform similar tools
and has been shown to possess high accuracy at the identification of drug
targets as well as ligand binding sites. It can be suspected that redox-active
cysteines may be located within similar surface cavities in proteins, since
there is evidence that they tend to be situated in more highly accessible ar-
eas [75, 74]. I used the ConCavity algorithm on the dataset of redox-active
proteins to compare the prediction values between Cys+ and Cys−.

3.2.6 UCLUST

UCLUST is an algorithm that divides sequences into clusters by identity. It
is part of the USEARCH [35] software package. Clusters are defined by one
representative sequence, also called the centroid. Each sequence that is part
of the cluster must have sequence identity above a certain threshold with the
centroid. UCLUST is a greedy algorithm which assigns any sequence as a
new centroid that can not be assigned to an existing cluster. Consequentially,
the order of sequences in an input file matters. I arranged input sequences
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by sequence length in descending order. I applied the cluster fast variant of
UCLUST.

3.2.7 Geometricus

Geometricus [33] is an approach that translates the 3D structure of protein
fragments into a set of four 3D moment invariants to then discretize these
fragments into shapemers, easily comparable and countable vectors. These
vectors can then be used for a number of different tasks, such as structure
similarity search, unsupervised clustering, supervised machine learning and
structure classification.

The fragments used in this approach can either be sequential k-mers,
i.e. a sequence fragment of fixed length, or radius-based around a central
residue. The k-mer method is generally preferable for describing structures
that are sequential in nature, such as α-helices and loops, while the radius-
based method tends to excel when longer ranged structural contacts are of
importance, such as in the case of β-sheets, PTMs and enzyme active sites.

The 3D moment invariants are computed using the formula for the central
moment µ as defined below:

µpqr =
c∑
i=1

(xi − x̄)p(yi − ȳ)q(zi − z̄)r

where (x̄, ȳ, z̄) is the centroid and (xi,yi,zi) is the coordinates correspond-
ing to the Cα of the i-th residue of the radius or k-mer-based structural frag-
ment. The three second-order rotation invariants O3, O4 and O5 as described
by Mamistvalov [71] and the third-order rotation invariant F as described by
Flusser [39] are defined below:

O3 = µ200 + µ020 + µ002

O4 = µ200 · µ020 + µ200 · µ002 + µ020 · µ002 − µ2
110 − µ2

101 − µ2
011

O5 = µ200 ·µ020 ·µ002 +2µ110 ·µ101 ·µ011−µ2
110 ·µ002−µ2

101 ·µ020−µ2
011 ·µ200

F = 15µ2
111 + µ2

003 + µ2
030 + µ2

300 − 3µ102 · µ120 − 3µ021 · µ201 − 3µ030 · µ210

−3µ102 ·µ300− 3µ120 ·µ300− 3µ012 · (µ030 +µ210)− 3µ003 · (µ021 +µ201)
+6µ2

012 + 6µ2
120 + 6µ2

201 + 6µ2
210 + 6µ2

102 + 6µ2
021

Any structural fragment thus corresponds to a vector of four values, and
similar structural features will correspond to similar vectors. These values
can be used as a feature for machine learning, or discretized into shapemers,
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enabling researchers to easily find important structural features by simply
finding the most abundant shapemers.

The moment invariants O3, O4, O5 and F calculated through Geomet-
ricus are discretized into shapemers by multiplying them with a resolution
parameter m. The resulting value is then rounded down, as seen in the
following formula:

(O′3, O
′
4, O

′
5, F

′) = (bm× ln(O3)c , bm× ln(O4)c , bm× ln(O5)c , bm× ln(F )c)

The resolution parameter m defines the coarseness of the discretization,
with higher values leading to a finer separation of the shapemers. We chose
a relatively low value of 0.5. We calculated the shapemers for protein set 4.

3.2.8 Machine Learning Tools

I applied the SVC, GradientBoostingClassifier, ExtraTreesClassifier and
RandomForestClassifier functions of the package scikit-learn 0.22 [85] in
Python version 3.7 for the Support Vector Machine (SVM), Gradient
Boosting (GB), Extra Trees (ET) and Random Forest (RF) algorithms. For
more details, see Section 3.4.1: Machine Learning Approaches.

All values were scaled using the StandardScaler function of scikit-
learn [85], which standardizes features by subtracting the mean and dividing
by variance of the feature using the following formula:

z = (x− u)/s
where z is the standardized value, x is the original value, u is the mean

of the training samples and s is their standard deviation.
I applied feature selection using the SelectFromModel function of scikit-

learn [85]. This method utilizes the classification algorithm itself to eliminate
all features displaying a lower feature importance than the mean.

3.3 Statistical Methods

I performed statistical analyses of the environment of both Cys+ as well
as Cys− to show that the chosen features should theoretically enable the
models to make useful predictions. I performed all statistical tests on protein
set 1 before preprocessing. The neighborhood of residues is one of the
main predictors of post-translational modifications and catalytic activity of
residues [10]. Good results have been obtained for the prediction of disulfide
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bridges [83]. No specific amino acid sequence motifs around Cys+ have
been found [74, 47]. For all features, the set of values for Cys+ in either the
sequence or Euclidean neighborhood of Cys+ was compared to the set of
values in the neighborhood of Cys− by dividing their mean values.

I applied the Mann-Whitney U test [72], which examines the null
hypothesis that randomly selected values X and Y from two populations
have equal chance for X > Y as for Y > X, to test for significance.
When testing multiple hypotheses, it becomes more likely to observe a
seemingly significant result by chance. I corrected for multiple testing using
Bonferroni correction, which divides the cutoff value for significance by
the number of tests to avoid spurious positives.

I used the Poisson standard deviation to estimate a lower bound for
the error rate, applying the following equation:

σ =

√
ACys+

ACys−

where σ is the Poisson standard deviation and ACys+ and ACys− are the
means over the values of one feature for Cys+ and Cys− respectively.

Gini coefficient was applied to assess the quality of data splits per-
formed by tree based machine learning methods. It is calculated according
to the formula:

Gini = 1−∑C
i=1 p

2
i

where Gini is the Gini coefficient, pi is the proportion of the i-th class
(here Cys+ and Cys−) after the split and C is the total number of classes.
An even distribution of two classes would have a value of 0.5, while a
completely perfect classification produces a value of 0.

Feature importances of protein set 3 were compared by computing the
ANOVA F-value. ANOVA is a statistical test for determining whether
the means of two or more samples of data came from the same distribution
or not. ANOVA was applied as it can be used when the feature data is
numeric, while the prediction is categorical. We seek to confirm or reject
the null hypothesis that, for the tested feature, the mean value for Cys+
or Cys− is significantly different from the overall mean value. This is
accomplished by calculating the sum of squares within samples and between
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samples. We then calculate the F-value from the sums. The sum of squares
is calculated according to the following formulae:

SSB =
∑m
j=1 n · (gj −X)2

and

SSE =
∑n
i=1(xi − g)2

where SSB is the sum of squares between groups and SSE within
groups. m denotes the number of groups, n the number of data points, X
the average across all data points, g the average within a specific group, xi
the value of one observation.
The F-value is calculated according to the formula:

F = SSB/(m−1)
SSE/(n−1)

The F-value can then be compared to a minimum value depending on
the confidence value to either accept or reject the null hypothesis.

I used a two sample sequence logo for a clear graphical representation
of the differences between the sequence neighborhoods of Cys+ and Cys−.
Two sample t-test was used to check for significance. Bonferroni correction
was used again.

3.4 Machine Learning

The aim of machine learning is to utilize algorithms to analyze, categorize
and classify data that is too complex for humans alone to comprehend.
Using machine learning methods and tools, complex relationships between
hundreds of features can be used mathematically to gain new knowledge.
A large amount of clean, noiseless data is a necessary precondition for this
endeavor. I tried out several algorithms resting on different theoretical
foundations to find the one best suited for this problem. All of the methods
used are supervised machine learning algorithms for classification and
regression, using labeled data, i.e. we know whether the training data comes
either from a Cys+ or a Cys−. The algorithm attempts to learn different
features corresponding to one of the two groups, and will be able to classify
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new data from the test dataset or an unknown dataset. These methods can
be contrasted to unsupervised machine learning algorithms, where training
data is unlabeled and the algorithm attempts to find categories within the
data on its own. I used four different machine learning methods which I will
explain in the current chapter.

3.4.1 Machine Learning Approaches

For modeling and prediction of Cys+, I utilized the following machine
learning techniques: Hidden Markov Models (HMM) [7], SVM [27], GB [42],
RF [52] and ET [45]. I chose these algorithms because they cover a variety
of different approaches to the problem of classification while being state of
the art methods for dealing with noisy, incomplete or small datasets. It is
generally not possible to predict in advance how well any machine learning
algorithm will perform on any specific problem due to the complexity of the
learning process.

Hidden Markov Models are statistical Markov models, where the
underlying system is assumed to be a stochastic process with hidden states
and emissions specific to each state. Transitions from one state to another
conform to the Markov property, meaning the probability of a transition is
only dependent on the most recent state of the model. We used the data
from the sequential and 3D environment of cysteines to produce a Profile
HMM [34] for Cys+. Here, the hidden states are Cys+ and Cys−. These
states depend on observations, or emissions, of the 20 different types of
residues found in most living organisms. Instead of observing the transitions
between hidden states, we compare the two hidden states to each other.
Using the datasets of Cys+ and Cys−, we can calculate an observation
probability matrix given the state of the cysteine, i.e. the probability of an
observed residue given the sequence position. This means that the HMM
is not homogenous, i.e. the emission probabilities change in each step.
From these probabilities, we calculate a score for each individual position
according to the formula:

Score = ln([AA]iCys+/[Cys+])− ln([AA]iCys−/[Cys−])

where [AA]iCys+ is the total count of a specific residue at position i in the

34



neighborhood of Cys+, [Cys+] is the total number of Cys+ in the dataset,
equivalently for Cys−. The final score for each cysteine equals the sum
of all individual AA scores. A high score is more likely to correspond to Cys+.

Support Vector Machine [27] is a classifier method that attempts
to construct a hyperplane to optimally separate data points belonging to
different classes in a high-dimensional space. The separating hyperplane is
constructed in such a way that it has the highest possible distance, generally
referred to as the ”margin”, to the data points of the training dataset, see
Figure 7. New data points can then be mapped to the high-dimensional space
and predicted to belong to a class depending on which side of the hyperplane
they fall [27].

Originally, the maximum-margin hyperplane algorithm constructed a lin-
ear classifier. Later, it was proposed to create nonlinear classifiers using the
kernel trick [3]. Here, the data points are mapped using a nonlinear function
into the transformed high-dimensional space. While the classifier is still a
hyperplane in the transformed space, it may be nonlinear in the original
feature space, see Figure 8. Common kernel functions include polynomial
and radial basis function (RBF) kernels. I decided to use the RBF kernel for
my models, which includes two important parameters: the cost parameter C
and the reach parameter γ. C represents a tradeoff between misclassification
of training data and the smoothness of the decision surface. A low value may
not grasp the complexity of the classification problem, while a high value is
likely to lead to overfitting. γ can be seen as the inverse of the radius of in-
fluence of a single training example. If this radius is too small, each training
sample will only influence itself, leading to overfitting. If the radius is too
large, the model will be too constrained, behaving similarly to a linear model.
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Figure 7: Simplified illustration of three different hyperplanes separating
training data with the widest possible margin. Red and blue dots correspond
to data points belonging to two different classes, x- and y-axes correspond to
arbitrary features. The green hyperplane does not classify all training data
points correctly. The orange hyperplane classifies correctly, but only has a
small margin to some data points, potentially leading to new data being
wrongly classified. The teal hyperplane would be chosen by the SVM, as it
separates the training datasets correctly and by a large margin, leading to a
high likelihood of correct classification on new data. Adapted from Coqueret
& Guida [26].
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Figure 8: Simplified illustration of the kernel trick. Feature space is trans-
formed in such a way that the two classes of training data points can be
linearly separated with a wide margin by a flat hyperplane, shown here as a
straight red line. This leads to faster computation. Adapted from Bock et
al. [11].

Random Forest (RF) is a classification method based on the construc-
tion of a multitude of randomly varying decision trees. Classification of a
data point is based on the class chosen by the largest subset of trees [52], see
Figure 9. Trees are trained using bagging, i.e. in a parallel way.
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Figure 9: Illustration of an example for a machine learning method based
on a multitude of randomly varying decision trees, such as RF and ET,
using a bagging method, i.e. only using a subset of the training set for the
construction of each tree. The algorithm constructs many decision trees with
varying splits, represented here as nodes, using the training data. Each split
shows a decision point in the model, which can be compared to a feature
for a prediction. Green nodes are the path chosen for the specific features
of a data point, blue nodes the decisions points not reached for the data
point, numbers show a prediction at the end of each possible path. Each tree
reaches a prediction on a new data point. The result chosen by the highest
number of trees is returned as the final prediction.

Classifiers using only a single decision tree will split a dataset at nodes
to arrive at a classification at the leaves of the tree. The main problem with
the use of a single tree is that it tends to overfit the training data, causing
it to perform badly on new datasets. This problem can be solved using
multiple randomly varying trees with low correlation. This is accomplished
by the method of bagging, i.e. only using a subset of the training set for
the construction of each tree. Random forest algorithms use an additional
method called feature bagging, i.e. the random selection of only a subset of
the features at each split in the construction of decision trees. This decreases
the correlation further, as it prevents features that are very strong predictors
for the classification to be chosen for too many trees.
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The optimal amount of trees, as well as the optimal numbers of features
used at each split, differs for each problem and must be tuned using
cross-validation or other methods.

Extremely Randomized Trees, or extra trees (ET), is a bagging classi-
fier and works very similarly to random forest. Both algorithms are composed
of a large multitude of trees, choosing the classification of data points based
on the largest subset of trees making the same prediction [45]. Their methods
for constructing decision trees are also very similar, with a few differences.

While random forests use only a subset of the original dataset for the
construction of each tree, extra trees uses the entire dataset, reducing bias.
Additionally, the cutoff point where nodes split is chosen randomly for
extra trees, instead of being calculated optimally. Once the split points are
selected, the best one between the subsets of features is accepted. This step
reduces the variance. Since extra trees chooses its split points randomly, it is
computationally faster than random forests. See Figure 10 for a comparison
between RF and ET.

Figure 10: Comparison between RF and ET methods for splitting a node.
D1 to D4 are data points, F1 to F3 are features, colored dots are meant to
represent different values of features for different data points.

Gradient Boosting (GB) is another tree-based classifier, but instead
of bagging, it utilizes boosting. This means that trees are not trained in a
parallel manner, but instead consecutively, learning from the errors of their
predecessors. GB begins by training a single decision tree on a dataset, then
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uses that tree to make predictions. It will then calculate the residual error
of this decision tree and use this error as the new target value for prediction.
This process is repeated until a predetermined number of trees has been
constructed, after which the final prediction is made, see Figure 11.

Figure 11: Illustration of the GB method. a: A decision tree is trained,
then used for predictions. The residual error is used as the new target value.
This process is repeated until the final prediction is reached. b: GB makes a
prediction on the test dataset by adding up the predictions of all trees from
the training step. Adapted from towards data science [18].

3.4.2 Feature Extraction and Preprocessing

Cysteine Features
Protein set 1 was preprocessed by two methods. The first method processed
amino acid residues in the sequence, while the second method utilized the
3D neighborhood in the structure.

The first method extracted 413 features for each cysteine. I considered
the twenty closest amino acids in the sequence, according to a threshold
adapted from Passerini et al. [83].

The second method extracted 69 features for each cysteine. The fea-
tures were intended to describe physical properties and were computed for
each cysteine and each of the thirteen amino acid residues in its closest 3D
neighborhood (Euclidean distance). Preliminary statistical tests showed that
statistical significance decreased with larger neighborhood (data not shown).

Only the first method was used for the imputed protein set 2, since the
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3D neighborhood of cysteines was unknown for the proteins with unknown
structure.

For each amino acid, I computed 22 features:

• Seventeen values of physicochemical properties of the side chain (ab-
breviations in parentheses): molecular mass (Mass), volume (Vol), sur-
face area (Area), three values for the likelihood of either large, regu-
lar or small solvent exposed area (SEA1, SEA2, SEA3), three values
of propensities for the SSEs, α-helix, β-strand, or turn (Alpha, Beta,
Turn), and eight binary values for the chemical classification, which are
polar, non-polar, charged, positive, tiny, small, aromatic and aliphatic
(Polar, Non-P, Charge, Positive, Tiny, Small, Aromatic, Aliphatic).
I adopted standard values for the physicochemical properties for the
amino acids from Lin et al. [68].

• Half Sphere Exposure values HSE1 and HSE2: I applied the function
HSExposure of BioPython in version 1.74. The HSE is defined here
as the number of amino acid neighbors within two half-spheres with
a radius of 12 Å. The sphere is divided into two halves by a plane
perpendicular to the Cβ-Cα vector.

• Relative accessibility: To determine the accessibility from the 3D struc-
ture, I applied DSSP [60]. The accessible surface area is defined as the
residue water-exposed surface in Å2. Relative accessibility is defined
here as the accessible surface area divided by the maximum accessible
surface area as defined by Tien et al. [103].

• Two binary values to assign an SSE to the residue according to DSSP:

– α-helix (H), 3-helix (G), 5-helix (I), which were counted as ”helix”

– residue in isolated β-bridge (B), extended strand (E), hydrogen-
bonded turn (T), which were counted as ”strand”

– bend (S)

– loop/irregular structure (-)

For the sequence-based method, the residues were treated separately and
in sequence order. The seventeen physicochemical properties plus the HSE1,
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HSE2 and relative accessibility for each of the twenty closest residues sum
up to 400 values.

The vectors for the SSE assignments were added together into two values.
I used the residue score for ligand binding sites calculated by ConCavity as
an additional feature. PROPKA 2.0 and PROPKA 3.4 were used to calcu-
late two features for the predicted pKa value of the cysteine. The number
of known PTMs (phosphorylation, acetylation or ubiquination) of residues
among the twenty closest residues of the investigated cysteine were also used
as three separate features. The set of values was completed by the five fea-
tures of the cysteine itself (HSE1, HSE2, accessibility, two values for SSEs),
not including the redundant seventeen physicochemical properties of the cys-
teine.

For method 2, I added all values for any of the physicochemical properties
together into one value for each of the seventeen properties to avoid the
introduction of a sequential arrangement into the data, as amino acids in
a spatial neighborhood are not ordered consecutively. The vectors for the
SSE assignments were again also added together into two values. HSE and
relative accessibility were treated separately for each residue, resulting in 39
additional features. Together with the values for ligand binding sites, PTMs
and the secondary structure, HSE and relative accessibility for the cysteine
itself, this sums up to 69 features.

I collected 3D positions of residues from the PDB files of highest reso-
lution. For the imputed dataset, all data, except for the seventeen physic-
ochemical properties of the 20 neighboring residues and the PTMs, were
imputed. All values were scaled using the StandardScaler function of scikit-
learn [85].

When building machine learning models, it is often unclear which features
from the available data will prove to be useful for predictions. Too many
features may not only slow computation down significantly and unnecessarily,
but may even reduce the accuracy of the classifier. The model may more
easily be able to fit the training data perfectly, but due to overfitting, it
may not generalize to unfamiliar samples and perform less favorably on new
data. A simple model is also preferable when compared to an unnecessarily
complex one to explain a problem, as the best explanation is the one which
makes the fewest assumption. I decreased the number of required features by
applying feature selection. I utilized the SelectFromModel function of scikit-
learn [85]. This method was chosen because it showed better performance
than competing methods, like SelectKBest with F-score or Boruta, across
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all machine learning algorithms used in this study. Feature selection was
performed independently within each cross-validation fold. Mean feature
importance was used as a threshold for the selection.

Protein Features We used Shapemers [33], CTD values (Composition,
Transition, Distribution) of residues/SSEs and autocovariance [112] values of
amino acids’ physicochemical properties/accessibility as features to predict
redox-active proteins.

Table 1: Grouping of amino acids for CTD values

Group 0 1 2 3 4 5 6

AA A, G, V C D, E F, I, L, P H, N, Q, W K, R M, S, T, Y
NOTE: Grouping for composition, transition and distribution according to You et al. [112].

I divided the 20 amino acids into seven groups based on the dipoles and
volumes of the side chains according to Table 1 [112] and the SSEs into
coil, helix and strand to calculate CTD values. Composition represents the
proportion of AA or SSE groups of the protein sequence, resulting in seven
AA and three SSE features. Transition denotes the frequency with which one
member of a group is followed by a member of a different or the same group,
resulting in 49 AA and nine SSE features. Distribution shows the distribution
patterns along the protein by indicating the location before which we find
the first member as well as 25%, 50%, 75% and 100% of the members of a
group. This results in 35 AA features and 15 SSE features, bringing the total
to 118 features.

The protein is divided into seven regions for the calculation of these fea-
tures. The regions represent first and second half, all quarters and the middle
50% of the sequence, resulting in an 826-dimensional feature vector.

I used autocovariance to transform the physicochemical properties of
residues and their ASA into uniform matrices. Autocovariance can be
used to show interactions between residues that are a specific number of
positions apart, taking neighboring effects into account. Any protein P of
length L can be represented by values calculated using the following equation:

AC(lag, j) =
L−lag∑
i=1

(Pi,j − 1
L

L∑
i=1

Pi,j)× (P(i+lag),j − 1
L

L∑
i=1

Pi,j)/(L− lag)
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Here, lag is the distance between residues, j is the j th physicochemical
property, i is the position in the sequence. This results in a feature vector of
lagmax×q dimensions, where q is the number of physicochemical properties
and lagmax is the maximum lag distance. I chose a maximum lag of four,
resulting in a 52-dimensional vector. CTD and autocovariance features were
calculated for protein set 3.

3.4.3 Parameter Optimization

Values for the RBF parameters γ and C were chosen empirically using a grid
search algorithm for all SVM predictions.

I tested values of γ in the range of γ = 2i, i = −15,−14, . . . , 0 and
values of the cost C in the range of C = 2i, i = −5,−4 . . . , 5, using the
GridSearchCV function of scikit-learn. For each of the 15× 10 possible com-
binations, I performed test runs for the final dataset of features. I obtained
preferable prediction results, i.e., high values of positive predictive value and
sensitivity, for the combination γ = 2−7 and C = 20.

For RF and ET, grid search was applied to find the most promising values
for the parameters of the number of estimators or trees in the forest, the
maximum number of features to consider for each split and the minimum
number of samples required to split a node. Increasing the number of trees
will usually allow the model to better learn the data. However, a number of
trees that is too high may considerably slow down the process and even lead
to suboptimal outcomes. A high maximum number of features considered
for each split in the tree may lead to overfitting in some cases. Conversely,
a high minimum number of samples required to split an internal node may
lead to underfitting, as each tree is constrained by having to consider more
samples at each node.

I tested values for the number of estimators in the range of
n(estimators) = 500 × i, i = 1, 2, 3, values of the maximum number
of features in the range of featuremax = 5× i, i = 2, 3, 4 and values for the
minimum sample split in the range of splitmin = 2× i, i = 1, 2, 3. For each of
the 3× 3× 3 possible combinations, I performed test runs for the final set of
features. I obtained preferable prediction results, i.e., high values of positive
predictive value and sensitivity, for the combination n(estimators) = 1000,
featuremax = 20 and splitmin = 4.

For all algorithms, I applied 5-fold cross-validation to guard against over-
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fitting: the dataset was split randomly into five subsets, each containing 20%
of the dataset. I used four of those subsets, comprising 80% of the dataset,
as training data, which were used to train the model containing predictive
features for both Cys+ and Cys−. I then used the remaining 20% of the
dataset to test the performance of the model.

3.4.4 Evaluation

To evaluate the algorithms, I used the Area Under the Curve (AUC) value
for the Receiver Operating Characteristic (ROC) curve, which displays the
True Positive Rate (TPR) against the False Positive Rate (FPR) at different
thresholds for a positive prediction. TPR is the ratio between the number of
accurately predicted Cys+ divided by the full number of Cys+ in the dataset.
FPR is the ratio between the number of Cys− which were falsely predicted
as Cys+ divided by the full number of Cys− in the dataset. The AUC is
the probability that the algorithm will rank a randomly chosen Cys+ higher
than a randomly chosen Cys−. A value of 1 would be a perfect score, while
a value of 0.5 signifies a completely random classification.

4 Results

4.1 Statistics

I studied the differences between composition of residues in the 3D and se-
quence neighborhood of Cys+ and Cys− to better understand and evaluate
the usefulness of different features used in the machine learning models. I
considered the twenty nearest residues in Euclidean space or sequence. Sig-
nificance values are indicated as followed: * p < 0.05; ** p < 0.01; ***
p < 0.001.
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Figure 12: Relative frequencies of residues in the 3D neighborhood of Cys+.
Green bars indicate significantly elevated frequencies and red bars signif-
icantly reduced frequencies. The error bars are 3 × σ with σ being the
Poisson standard deviation for the total number of counts. The frequencies
of the amino acids cysteine (C), glycine (G), proline (P) and serine (S) are
significantly elevated. The relative frequencies of leucine (L) and valine (V)
significantly reduced.
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Figure 13: Relative frequencies of residues in the sequence neighborhood of
Cys+. Green bars indicate significantly elevated frequencies and red bars
significantly reduced frequencies. The error bars are 3× σ with σ being the
Poisson standard deviation for the total number of counts. The frequencies
of the amino acids alanine (A), glycine (G), isoleucine (I), and lysine (K) are
significantly elevated. The relative frequencies of cysteine (C), leucine (L),
methionine (M) and glutamine (Q) significantly reduced.

Figure 12 shows the deviation of the composition of residues in the spa-
tial neighborhood of Cys+ from the composition of residues in the spatial
neighborhood of Cys− of protein set 1, which only contains proteins with
resolved 3D structures. The frequencies of cysteine, glycine, proline and ser-
ine are significantly elevated, while the frequencies of leucine and valine are
significantly reduced. In protein set 2, which contains additional proteins
with unknown structure, elevated frequencies of alanine, glycine, isoleucine
and lysine in the sequence neighborhood of Cys+ were found, while the fre-
quencies of cysteine, leucine, methionine and glutamine were reduced, see
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Figure 13. It has been suggested [102] that serine and threonine may be in-
volved in the formation of sulfenyl esters together with sulfenic acids formed
by the oxidation of cysteines, while lysines and histidines may be involved
in the formation of sulfenamides, such as in the case of Protein Tyrosine
Phosphatase 1B (PTP1B) [92, 95], which may be a possible explanation for
the relative abundance of these amino acids. The frequency of leucine and
valine are significantly reduced.

Figure 14: Physicochemical properties of residues in the 3D neighborhood of
a Cys+. The values are averaged over the twenty closest residues and are
given relative to the corresponding mean value of residues close to a Cys−.
For example, the elevated first value of solvent exposed area (SEA1) indicates
free space around the cysteine that may make it vulnerable to a modification
by ROS, see text.
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Figure 15: Physicochemical properties of residues in the sequence neighbor-
hood of a Cys+. The values are averaged over the twenty closest residues
and are given relative to the corresponding mean value of residues close to a
Cys−.

When grouped for their features, significant differences could be found in
the Euclidean neighborhood of cysteines between Cys+ and Cys− for most
features, see Figure 14. I found the most significant differences for the like-
lihood of expressing specific SSEs as well as the presence of aliphatic side
chains, according to the Mann-Whitney U test. The sequence neighborhood
showed few significant differences, most significantly for non-polar and posi-
tively charged sidechains. While there is much overlap between the data for
modifiable and unmodifiable cysteines, these significant differences may be
one important piece of the puzzle when trying to predict modifications.

I created sequence logos [28] of the different frequencies of the closest
amino acids in the Euclidean and sequence neighborhood of the cysteines in
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the two groups of protein set 1 and 2, respectively, as seen in Figure 16 to 19.
Sequence logos are a useful way to clearly visualize enriched and depleted
amino acids at specific locations in sequences of the same length and help in
the identification of sequence motifs. Logos are shown both with and without
Bonferroni correction, which accounts for multiple hypotheses being tested.
In a sequence logo, this type of correction may often hide general trends that
hold true over the entire sequence. For example, the hydrophobic leucine (L)
is reduced in nearly the entire Euclidean neighborhood and upstream in the
sequence neighborhood of Cys+, especially and significantly at position -1.
This is not visible in the Bonferroni corrected logo.

Positively charged amino acids like lysine (K) and arginine (R) are largely
unaffected in the direct sequence neighborhood of Cys+, but are enriched in
the further sequence neighborhood, i.e., for more than four positions away
from the cysteine, confirming the results of Chen et al. [19], who also found
an abundance of positively charged residues around S -nitrosylation sites and
a reduced occurrence of C. The polar residues glycine (G) and serine (S) are
enriched in the close Euclidean neighborhood of Cys+. Glycine is likewise
enriched in the close sequence neighborhood, while serine is depleted in a
distance of more than five positions away from the central cysteine, see Fig-
ure 19.
I was unable to confirm the presence of an acid-base motif which was found
in some previous studies on smaller datasets [47, 51]. Marino et al. [74] pro-
posed the presence of a modified acid-base motif, consisting of a positively
charged residue in close proximity to the cysteine and a negatively charged
amino acid up to eight Å away.
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Figure 16: Sequence logo [28] of differences between the residues in the Eu-
clidean neighborhood of Cys+ and Cys− in protein set 1. Only differences
with a p-value < 0.05 according to the t-test after Bonferroni correction are
shown. Distance order in relation to cysteine can be found on the x-axis,
percentage difference of Cys+ in relation to Cys− on the y-axis. Enriched
residues around Cys+ are illustrated at the top, depleted residues at the
bottom. Size of symbols is proportional to the difference between the two
samples.
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Figure 17: Sequence logo [28] of differences between the residues in the Eu-
clidean neighborhood of Cys+ and Cys− in protein set 1. Only differences
with a p-value < 0.05 according to the t-test are shown. Bonferroni correc-
tion was not applied. Distance order in relation to cysteine are shown on
the x-axis, percentage difference of Cys+ in relation to Cys− on the y-axis.
Enriched residues around Cys+ are shown at the top, depleted residues at
the bottom. Size of symbols is proportional to the difference between the
two samples.
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Figure 18: Sequence logo [28] of differences between the residues in the se-
quence neighborhood of Cys+ and Cys− in protein set 2. Only differences
with a p-value < 0.05 according to the t-test after Bonferroni correction are
shown. Sequence position in relation to cysteine are shown on the x-axis,
percentage difference of Cys+ in relation to Cys− on the y-axis. Enriched
residues around Cys+ are shown at the top, depleted residues at the bottom.
Size of symbols is proportional to the difference between the two samples.

53



Figure 19: Sequence logo [28] of differences between the residues in the se-
quence neighborhood of Cys+ and Cys− in protein set 2. Only differences
with a p-value < 0.05 according to the t-test are shown. Bonferroni correc-
tion was not applied. Sequence position in relation to cysteine are shown on
the x-axis, percentage difference of Cys+ in relation to Cys− on the y-axis.
Enriched residues around Cys+ are shown at the top, depleted residues at
the bottom. Size of symbols is proportional to the difference between the
two samples.

A higher abundance of phosphorylated residues was detected in the
sequence neighborhood of Cys+ than Cys− in protein set 2 according
to Uniprot [25] annotations. On average, each Cys+ had around 0.089
phosphorylated serines, threonines and tyrosines in its neighborhood of
ten residues upstream and downstream, while only 0.046 phosphorylated
residues around Cys− were observed, making phosphorylation about 1.91
times more common around Cys+ (data not shown). Modulation and
crosstalk between phosphorylation sites and redox modifiable cysteines
has been found in previous studies [62]. Similar results were found for
ubiquitination near cysteines. I located an average of 0.14 ubiquitination
sites around modified cysteines, while I only detected an average of 0.06
ubiquitination sites around unmodified cysteines. These results were statis-
tically significant even when corrected for the different abundances of serines
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and lysines around Cys+ in the case of phosphorylation and ubiquitination
with a p-value < 0.001 according to the Mann-Whitney U test. I did not
find significant differences in the rate of acetylation near cysteines.

It appears likely that highly accessible cysteines would be easier to
reach for and thus more reactive to ROS. I explored the accessible surface
area as predicted by the algorithm DSSP [60] as well as HSE in the 3D
neighborhood of cysteines in protein set 1. Cys+ showed a higher accessible
surface area than Cys− with distributions that differed with high statistical
significance (p-value < 3 * 10−6), despite much overlap in the range of
values, see Figure 20. This appears reasonable, as an exposed cysteine
should be assumed to be more easily accessible to ROS. HSE showed similar
results, see Figure 21 and Figure 22. I also tested the accessibility and HSE
of residues in the 3D neighborhood of Cys+. Again, both DSSP and HSE
showed that residues around Cys+ were significantly more accessible.
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Figure 20: DSSP accessibility of Cys+ and Cys− as well as their Euclidean
and sequence amino acid neighborhood. Orange bar signifies the median,
green triangle the mean. Central rectangle spans the first quartile to the
third quartile. Whiskers show the minimum and maximum, individual points
are outliers.
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Figure 21: HSE1 of Cys+ and Cys− as well as their Euclidean and sequence
amino acid neighborhood. Orange bar signifies the median, green triangle
the mean. Central rectangle spans the first quartile to the third quartile.
Whiskers show the minimum and maximum, individual points are outliers.
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Figure 22: HSE2 of Cys+ and Cys− as well as their Euclidean and sequence
amino acid neighborhood. Orange bar signifies the median, green triangle
the mean. Central rectangle spans the first quartile to the third quartile.
Whiskers show the minimum and maximum, individual points are outliers.

I examined the relative frequencies of SSEs in the neighborhood of
Cys+ in protein set 1, as SSEs can significantly affect the structure and
function of active sites in proteins. Some SSEs have been found to occur
more frequently near redox modifiable cysteines. In the 3D neighborhood
of Cys+, I found the frequencies of bends and unstructured loop regions to
be significantly elevated and α-helices reduced, see Figure 23. Statistical
significance could not be found for the other SSEs, often due to their low
frequency of occurrence in general. This differs from the results of Marino
& Gladyshev [73], who found a marked preference for both α-helical and
loop geometries around thiol oxidoreductases, testing a more limited dataset
of 75 structures. I found that Cys+ themselves had a much higher chance
than Cys− to be present in loop structures, and found a higher incidence of
β-strands upstream and α-helices downstream from Cys+ than the reverse,
while the ratios for Cys− were more balanced, confirming the findings of
Fomenko et al. [41].
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Figure 23: Relative frequencies of SSEs in the Euclidean neighborhood of
Cys+. Green bars indicate significantly elevated frequencies of occurrences,
red significantly reduced. SSEs were predicted by the DSSP [60] algorithm.
In the Euclidean neighborhood of Cys+, the frequencies of the loop and bend
structures are significantly elevated, α-helix structures reduced.
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Figure 24: Relative frequencies of SSEs in the sequence neighborhood of
Cys+. Green bars indicate significantly elevated frequencies of occurrences,
red significantly reduced. SSEs were predicted by the DSSP [60] algorithm.
In the sequence neighborhood of Cys+, the frequency of the β-strands is
significantly elevated.

I created a heatmap of the Pearson correlation coefficient between the
features in protein set 1, see Figure 25. This shows which features are highly
correlated with the target value, i.e. redox modifiability, as well as each other.
Features that are highly correlated with another feature are less useful for
the purposes of machine learning, as they are essentially duplicates with little
new information. The heatmap showed a high negative correlation between
accessibility and HSE, as both features display related physical properties,
whereby HSE shows a stronger correlation to cysteine redox-sensitivity. Fea-
tures of residues closer to the investigated cysteine tended to have a stronger
correlation to its redox-sensitivity than those of more distant residues. The
most highly correlated features were SSE and HSE of the cysteine.
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Figure 25: Heatmap of Pearson correlation coefficient between the features
used in protein set 1. From top to bottom and left to right, cysteine fea-
tures and number of PTMs, as well as physicochemical features, secondary
structures, HSE and accessibility of neighboring amino acids are depicted.
The last row and column indicate the correlation to the cysteine sensitiv-
ity. Green squares show highly correlated features, red squares show a high
negative correlation, yellow squares are not highly correlated.

I used protein set 1 to compare the predictions of PSIPRED and
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ASAquick to the SSE and ASA assignments by DSSP to justify the use
of both tools when no PDB entry was available for a protein. In the case
of PSIPRED, I found that 80.0% of its predictions agreed with the SSE
assignments by DSSP. More specifically, 82.1% of helices, 79.5% of strands
and 78.3% of unassigned (often coil) regions out of 5096 predictions were
predicted correctly by PSIPRED. The proportion of SSEs in the full dataset
were also very similar, with 40.0% and 40.2 % of AAs being assigned as
coil or unassigned, 19.2% and 20.5% being assigned as strand, and 40.7%
and 39.2% being assigned as helix by DSSP and PSIPRED, respectively.
Comparing the ASA predictions by ASAquick to the assignments by DSSP,
I calculated a Pearson correlation coefficient of 0.64 between the ASA of all
AAs in the dataset. Mean ASA was similar for both tools, see Table 2.

Table 2: Statistical values for ASA

Tool Mean Median St. Dev. IQR

ASAquick 49.9 41.9 32.0 48.5

DSSP 46.0 32.0 47.1 70.0
NOTE: ASA values predicted/assigned by ASAquick and DSSP.

I compared the pKa predictions by PROPKA 2.0 and PROPKA 3.4 be-
tween the 20 AAs closest in Euclidean space to Cys+ and Cys− to evaluate
the usefulness of both tools, as pKa is often seen as one of the main pre-
dictors of cysteine reactivity. I found significant differences according to the
Mann-Whitney U test [72] between the distributions of pKa predictions of
most types of AAs, except for glutamic acid and histidine for PROPKA 2.0
and histidine for PROPKA 3.4. Arginine, cysteine and tyrosine showed the
most significant differences, despite similar median values and interquartile
ranges, see Table 3, Table 4, Figure 26 and Figure 27. PROPKA 3.4 showed
more significant differences for all AAs except arginine.
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Table 3: Median pKa values predicted by PROPKA 2.0

Residue Median Cys+ IQR Cys+ Median Cys− IQR Cys− p-valuea

Arg 12.29 0.42 12.15 0.49 7.1 · 10−23

Asp 3.72 0.65 3.62 0.71 1.4 · 10−5

Cys 8.89 2.14 9.09 2.66 6.2 · 10−20

Glu 4.50 0.26 4.50 0.42 1.8 · 10−1

His 6.43 0.28 6.43 0.97 1.6 · 10−1

Lys 10.43 0.21 10.43 0.21 8.3 · 10−3

Tyr 10.08 1.26 10.56 2.08 1.2 · 10−16

NOTE: ap-value according to Mann-Whitney U test [72].

Table 4: Median pKa values predicted by PROPKA 3.4

Residue Median Cys+ IQR Cys+ Median Cys− IQR Cys− p-valuea

Arg 12.33 0.39 12.39 0.53 6.5 · 10−13

Asp 3.77 0.62 3.86 0.64 5.2 · 10−9

Cys 11.23 2.85 11.77 1.99 1.3 · 10−24

Glu 4.58 0.47 4.58 0.46 2.9 · 10−2

His 5.81 0.94 5.82 1.12 3.2 · 10−1

Lys 10.37 0.29 10.40 0.29 4.0 · 10−8

Tyr 11.06 1.79 11.67 2.53 7.9 · 10−24

NOTE: ap-value according to Mann-Whitney U test [72].
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Figure 26: Distribution of pKa values predicted by PROPKA 2.0. Data
shown has had 25% of data points removed as outliers. Green triangle shows
average value, orange line median. Boxes denote the second and third quar-
tile, whiskers the first and fourth quartile, circles remaining outliers. X-axis
shows AAs, with 0 denoting an AA close to a Cys− and 1 denoting an AA
close to a Cys+. Y-axis shows pKa values.
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Figure 27: Distribution of pKa values predicted by PROPKA 3.4. Data
shown has had 25% of data points removed as outliers. Green triangle shows
average value, orange line median. Boxes denote the second and third quar-
tile, whiskers the first and fourth quartile, circles remaining outliers. X-axis
shows AAs, with 0 denoting an AA close to a Cys− and 1 denoting an AA
close to a Cys+. Y-axis shows pKa values.

I evaluated the mutual information between the features and cysteine
modifiability using the mutual info classif method to compare the feature
importances based on the imputed protein set 2, see Table 5. A higher
score signifies that the feature is more dependent in the target variable, i.e.
the redox activity of the cysteine, and thus more useful for the purposes of
machine learning. In general, features concerning the HSE and accessibility
were found to show a high impact on redox modifiability, especially in AAs
close to the central cysteine.
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Table 5: Mutual information of the top 10 features

Rank Feature Sequence position MI value

1 Accessibility CYS 0.025639

2 Accessibility -1 0.025442

3 Accessibility -3 0.019240

4 Accessibility -2 0.018683

5 Accessibility -4 0.016576

6 Accessibility -6 0.016560

7 AA mass -10 0.015928

8 HSE1 4 0.015545

9 Accessibility 3 0.014753

10 Accessibility 6 0.014726

I calculated the ANOVA F-values and corresponding p-values for the
CTD and autocovariance scores of the proteins in protein set 3. Out of 878
features, I found 86 having a p-value below 0.05 after Bonferroni correction,
while 454 features possessed an ANOVA F-score above the critical value of
3.01. The distribution of SSEs, especially of strands, were overrepresented
among predictive features. The composition of amino acids, especially from
the AGV group (small sidechains with low dipole moment), as well as the
distribution of cysteines, were also highly predictive, see Table 6.
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Table 6: ANOVA F-values for the top 20 features

Rank Feature Residues/SSEs Region (Distribution) F-value p-valuea

0 Composition FILP 1st quarter 43.11 8.08·10−8

1 Distribution Strand 3rd quarter (75%) 39.50 4.68·10−7

2 Distribution Strand 3rd quarter (100%) 39.44 4.83·10−7

3 Distribution C 1st quarter (75%) 37.86 1.04·10−6

4 Distribution Strand 1st quarter, (75%) 36.77 1.78·10−6

5 Distribution C 1st quarter (100%) 36.49 2.05·10−6

6 Distribution Strand 1st quarter (100%) 36.32 2.23·10−6

7 Distribution Strand 1st quarter (50%) 34.59 5.21·10−6

8 Distribution Strand Center half (100%) 34.45 5.57·10−6

9 Distribution Strand 3rd quarter (50%) 34.16 6.44·10−6

10 Transition Strand to Strand 4th quarter 32.92 1.18·10−5

11 Composition AGV 2nd quarter 32.72 1.31·10−5

12 Transition Coil to Strand 4th quarter 32.71 1.32·10−5

13 Distribution Strand 4th quarter (100%) 32.62 1.37·10−5

14 Transition Strand to Strand 1st quarter 32.52 1.45·10−5

15 Distribution C 1st quarter (50%) 31.99 1.88·10−5

16 Composition FILP 3rd quarter 31.35 2.58·10−5

17 Composition AGV right half 31.20 2.78·10−5

18 Composition AGV 1st quarter 30.95 3.15·10−5

19 Composition AGV 3rd quarter 30.55 3.84·10−5

NOTE: ap-value according to Mann-Whitney U test [72], Bonferroni corrected.

I proceeded by looking at some of the more interesting features in de-
tail. The group of residues F, I, L and P, which possess large side chains
and low dipole moments, appear less frequently in redox-active proteins, see
Figure 28. Residues A, G and V, possessing small side chains and low dipole
moments, can be observed more frequently in several regions, see Figure 29.
This may indicate that it is not the dipole moment of residues, but a different
measure that is important to redox-activity in proteins.
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I detected a lower number of strand-to-strand transitions in random
Uniprot proteins than in RedoxDB proteins, see Figure 30. Distribution
values often indicated a complete absence of strands in Uniprot protein re-
gions, see Figure 31. Both results indicate a higher presence of β-strands in
redox-active proteins, agreeing with the higher presence of strands close to
redox-active cysteines that were found.

Figure 28: Amount of the residues F, I, L and P in RedoxDB and Uniprot
proteins in the first quarter of the sequence. Orange bar signifies the me-
dian, green triangle the mean. Boxes denote the second and third quartile.
Whiskers show the minimum and maximum, individual points are outliers.
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Figure 29: Amount of the residues A, G and V in RedoxDB and Uniprot
proteins in the second quarter as well as the second half of the sequence.
Orange bar signifies the median, green triangle the mean. Boxes denote
the second and third quartile. Whiskers show the minimum and maximum,
individual points are outliers.
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Figure 30: Amount strand-strand transitions in RedoxDB and Uniprot pro-
teins in the fourth quarter of the sequence. Orange bar signifies the me-
dian, green triangle the mean. Boxes denote the second and third quartile.
Whiskers show the minimum and maximum, individual points are outliers.
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Figure 31: Distribution values of strands in RedoxDB and Uniprot proteins
in the third quarter of the sequence. y-value shows if a certain number of
strands could be found near the beginning (y = 0) or end (y = 1) of the
protein region. y = −1 indicates no presence of strands. Orange bar signifies
the median, green triangle the mean. Boxes denote the second and third
quartile. Whiskers show the minimum and maximum, individual points are
outliers.

4.2 Machine Learning

4.2.1 Proteins

I calculated CTD values and autocovariance of all proteins in protein set 3.
After selecting the 30 best features with the scikit-learn SelectKBest func-
tion [85], a model for the prediction of redox-active proteins was produced
by applying the ET algorithm, achieving an AUC value of 0.75, see Fig-
ure 32. The RedoxDB contains a higher percentage of mammalian proteins
than Uniprot (60% and 34% in the data, respectively), leading to worries of
either a potential bias in the model, or that the model may actually merely
predict mammalian proteins. I investigated this potentiality, and found that
the difference between prediction values for mammalian and non-mammalian
proteins were smaller than the difference between redox-active and other pro-
teins, see Table 7. Mammalian proteins did not display much higher predic-
tion values than non-mammalian proteins, showing that the model does not
erroneously learn to always predict them as redox-active. A difference in
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average sequence length between datasets may also bias results. My inves-
tigations showed that this was also not a factor, as the average length for
predicted redox-active proteins closely matched the average length of redox-
active proteins in the training data, see Table 8. The methods used in this
section will be applied to predict Cys+ containing proteins in chapter 4.3

Figure 32: ROC curve of the ET algorithm for the protein set 3. Red line
shows a completely random prediction.

Table 7: Average prediction for redox-active and random Uniprot proteins

Redox-active Random Uniprot

Mammal 0.59 0.51

Non-mammal 0.67 0.41

Table 8: Average length of redox-active and random Uniprot proteins

Redox-active Random Uniprot

Training 523.16 451.66

Predicted 518.13 461.55
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We applied the Geometricus tool to assign shapemers to protein set 4.
These shapemers were utilized as features to train another model with the
ET and RF algorithms to predict redox-sensitive proteins. We used both
radius-based and sequence based structural fragments as a foundation for
the calculations, with a radius of 16 Å and a sequence length of 16 AAs,
respectively. The method found 20,450 shapemers when using structural
fragments based on sequence and 12,110 when based on radius with a reso-
lution parameter of 0.5. The radius-based method achieved an AUC value of
0.78 for both the RF and ET algorithms, see Figure 33. The sequence-based
method achieved an AUC of 0.81 and 0.82 for RF and ET, respectively, see
Figure 34. See Figures 35 and 36 for the structure of one sequence-based
shapemer typical for proteins containing Cys+, both on its own and as part
of the full protein structures. We can see that Cys+ often appear to be clus-
tered closely around the shapemer. See Figure 37 for the sequences of the
shapemers.

Figure 33: ROC curve of the ET algorithm for the protein set 4 using radius-
based shapemers. Blue line shows a completely random prediction.
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Figure 34: ROC curve of the ET algorithm for the protein set 4 using
sequence-based shapemers. Blue line shows a completely random prediction.
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Figure 35: Aligned structure of a shapemer typical in proteins contain-
ing Cys+, found in PDB entries 2Q8K [64] (blue), 2HQM [113] (yellow),
1U8F [58] (magenta), 2QRJ [4] (cyan) and 6DFP [Kim et al., to be pub-
lished] (orange).
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Figure 36: Structure of five proteins using PDB entries 2Q8K [64] (blue),
2HQM [113] (yellow), 1U8F [58] (magenta), 2QRJ [4] (cyan) and 6DFP [Kim
et al., to be published] (orange), with one shapemer typical for Cys+ aligned
(multiple colors, upper left). Cysteine atoms are shown as spheres, with the
Cα-atoms colored green for Cys+ and red for Cys−. The aligned shapemers
are opaque, while the rest of the protein is transparent. When a protein
contains multiple instances of the shapemer, unaligned shapemers are shown
with lower transparency. We can see that Cys+ often seem clustered around
the shapemer.
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Figure 37: Sequence of a shapemer typical in proteins containing Cys+, found
in PDB entries 2Q8K [64], 2HQM [113], 1U8F [58], 2QRJ [4] and 6DFP [Kim
et al., to be published]. Residues are colored according to chemical properties,
with polar residues being colored in green, neutral in purple, basic in blue,
acidic in red and hydrophobic in black.

4.2.2 Cysteines

We built an HMM by calculating matrices out of a random training subset of
the data from protein set 1, using both sequence neighborhood and Euclidean
space to determine the closest amino acids to Cys+ and Cys−, see Table 9
and 10. These matrices enabled us to assign a score to every cysteine
dataset. We used this score as a feature for the RF and ET algorithms to
build predictive models with a tree depth of 1. Applying these models to the
remaining test set, we were able to achieve an AUC of 0.72 and 0.68 for the
sequence method using RF and ET, respectively, and an AUC of 0.69 and
0.65 for the Euclidean method, likewise. See Figures 38 and 39 for the ROC
curves and Figures 40 and 41 for the decision trees of the models.
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Figure 38: ROC curve of the RF and ET algorithms for the protein set 1 using
HMM data applying the sequence method. Blue line shows a completely
random prediction.

Figure 39: ROC curve of the RF and ET algorithms for the protein set 1 using
HMM data applying the Euclidean method. Blue line shows a completely
random prediction.
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Figure 40: Decision tree of the RF algorithm for the protein set 1 using
HMM data applying the sequence method. X[0] shows the cutoff value for
the prediction of redox-activity, gini the Gini coefficient, samples the number
of cysteines in the group and value the number of experimentally verified
Cys− and Cys+ among the samples. The upper box shows the full dataset,
the lower left box shows the cysteines predicted by the model as Cys−, the
lower right box as Cys+.

Figure 41: Decision tree of the RF algorithm for the protein set 1 using HMM
data applying the Euclidean method. X[0] shows the cutoff value for the
prediction of redox-activity, gini the Gini coefficient, samples the number of
cysteines in the group and value the number of experimentally verified Cys−
and Cys+ among the samples. The upper box shows the full dataset, the
lower left box shows the cysteines predicted by the model as Cys−, the lower
right box as Cys+.

I applied the SVM, RF, ET and GB algorithms after preprocessing and
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feature selection to protein set 1 and 2 to be able to infer redox-sensitive
cysteine sites in proteins and compared their results. The best AUC value
for the ROC curve was 0.72 for the imputed dataset using the ET and SVM
algorithms, see Figure 42 and Table 11. The ROC curves depict average
values over the different cross-validation folds. The models created in this
step will be used for the prediction of redox cysteines in Chapter 4.3: Use
Cases.

Table 11: AUC of the three different algorithms

SVM RF ET GB x̄b dataset

Structure 0.66 0.69 0.7 0.67 0.68

Sequence 0.69 0.70 0.71 0.69 0.70

Imputation (Seq.) 0.72a 0.71 0.72a 0.71 0.72

x̄b algorithm 0.69 0.70 0.71 0.69 0.70

NOTE: ahighest result underlined, b average.
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Figure 42: ROC curves of the SVM (upper left), RF (upper right), ET (lower
left) and GB (lower right) algorithms for the imputed dataset. Red line shows
a completely random prediction. The ROC curve shows average values over
the different cross-validation folds.

I trained models using different numbers of neighboring AAs to assess
which AAs were the most relevant for training and prediction. For the im-
putation method, I investigated the closest ten to twenty AAs found in the
primary structure. For the Euclidean method, I investigated the closest seven
to nineteen AAs in Euclidean space. I repeated this assessment using differ-
ent proportions of protein set 1 and 2 to understand if a larger amount of
data would lead to better results. For both methods, I investigated 50% to
100% of the protein set. I applied the SVM algorithm with the imputation
method and the ET algorithm with the Euclidean method, as they previ-
ously resulted in the most accurate results. Predictions were made both on
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a random test set and on complex I. The random test set was used due to its
large size, resulting in more reliable results. The complex I set was used to
test the models on data originating from a different source than the rest of
the data. Due to its small size, results may be less reliable and more prone
to outliers.

I found that, using the imputation method, a larger number of AAs con-
sidered would slightly improve results using the test set, while predictions
stayed roughly the same for the Euclidean method. I found strong improve-
ments for the predictions of complex I using the imputation method for a
higher number of AAs, while the Euclidean method showed the most promis-
ing results for 13 or 15 AAs, see Figures 43 and 44.

The Euclidean methods showed strong improvements when considering
a larger proportion of the protein sets when predicting complex I cysteines.
but no improvement on the test set. The imputation method showed small
improvements predicting the test set, but no improvement on complex I, see
Figures 45 and 46.

Figure 43: AUC values for different numbers of closest AAs in the sequence
around the central cysteine, applying the SVM algorithm. Thick blue line
shows AUC for test dataset, thick orange line for complex I. Thin lines are
trendlines. R2 the coefficient of determination, i.e. how well the trendline
corresponds to the data.
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Figure 44: AUC values for different numbers of closest AAs in Euclidean
space around the central cysteine, applying the SVM algorithm. Thick blue
line shows AUC for test dataset, thick orange line for complex I. Thin lines
are trendlines. R2 the coefficient of determination, i.e. how well the trendline
corresponds to the data.
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Figure 45: AUC values using the imputation method for different amounts of
data, with x = 1.0 denoting the full dataset and x = 0.5 50% of the dataset,
applying the SVM algorithm. Thick blue line shows AUC for test dataset,
thick orange line for complex I. Thin lines are trendlines. R2 the coefficient
of determination, i.e. how well the trendline corresponds to the data.
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Figure 46: AUC values using the Euclidean method for different amounts of
data, with x = 1.0 denoting the full dataset and x = 0.5 50% of the dataset,
applying the SVM algorithm. Thick blue line shows AUC for test dataset,
thick orange line for complex I. Thin lines are trendlines. R2 the coefficient
of determination, i.e. how well the trendline corresponds to the data.

We utilized the Geometricus tool to turn the local neighborhood of cys-
teines into structural moment invariants, basing the calculations on either
the sequence neighborhood of 16 AAs or the Euclidean neighborhood with a
radius of 16 Å. These invariants were then used as features for the ET and
RF algorithms, creating models for the predictions of Cys+. Models created
with the RF algorithm were able to produce superior predictions with the
test dataset. The sequence-based method showed better performance than
the radius-based method, which was only marginally better than chance,
see Figure 47 and 48. It may be beneficial to incorporate sequence-based
invariants as a feature into other models.
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Figure 47: ROC curve of the RF and ET algorithms for the protein set
1 using sequence-based moment invariants. Blue line shows a completely
random prediction.

Figure 48: ROC curve of the RF and ET algorithms for the protein set 1
using radius-based moment invariants. Blue line shows a completely random
prediction.
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4.3 Use Cases

4.3.1 Complex I

After using different algorithms to create models for the prediction of
redox-sensitive cysteines, I applied the models to generate predictions for
the NDUFS1, MT-ND3 and NDUFA2 subunits of mammalian respiratory
complex I, based on the structural data from PDB entries 6G2J [2], 6G72 [2],
5LC5 [114], 5LNK [38] and 5XTD [49].

Due to their high AUC value on the test set, I applied the models trained
with the ET and SVM algorithms to complex I, using the parameters and
training data detailed in the previous sections. Training was accomplished
using the protein sets 1 and 2, respectively. For illustration, I used the PDB
entry with the accession number 5XTD of mitochondrial complex I [49], as
it is the most complete structure of human origin.

Figure 49: ROC curves of the ET (left) and SVM (right) algorithms for
complex I trained on the Euclidean and imputed dataset, respectively. Red
line shows a completely random prediction. The ROC curve shows average
values over the different cross-validation folds.
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Figure 50: 3D structure of human complex I using PDB entry 5XTD [49].
The subunits NDUFS1, MT-ND3 and NDUFA2 are colored yellow, cyan
and blue, respectively. Green dots indicate the positions of experimentally
verified [21] Cys+. Red dots indicate the positions of Cys−.

I compared the predictions of the SVM and ET algorithms to the
experimental results from Chouchani et al. [21]. 77% of the cysteines of the
relevant subunits were predicted correctly by ET and 72% by SVM. For
the predictions of PDB entry 5XTD, see Table 12. For the 3D structure
of complex I with cysteines experimentally validated to be modified, see
Figure 50. For a closer look at the structural features of CYS367, CYS554
and CYS564 in subunit NDUFS1, see Figure 51.
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Table 12: Experimental data of Cys+ in human complex I compared to
predictions of PDB entry 5XTD

Validationa ETb SVMc SU/CYSd

- - - NDUFS1/53

- - - NDUFS1/64

- - + NDUFS1/75

- - - NDUFS1/78

- - - NDUFS1/92

- - - NDUFS1/128

- + - NDUFS1/131

- - - NDUFS1/137

- - - NDUFS1/176

- - - NDUFS1/179

- - - NDUFS1/182

- - - NDUFS1/226

+ - - NDUFS1/367

- - + NDUFS1/554

+ + - NDUFS1/564

- - - NDUFS1/710

+ + - MT-ND3/39

- + + NDUFA2/24

+ - + NDUFA2/58

NOTE: ”+” for Cys+, ”-” for Cys−, aexperimental validation, bET trained on protein set

1, cSVM trained on protein set 2, dsubunit/cysteine sequence position.
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Figure 51: a: Three Cys+, CYS367, CYS554 and CYS564, in subunit
NDUFS1 of human complex I represented by red balls. All three cysteines
are found in loop regions (blue). Other SSEs are shown in green. The nine
closest amino acids to CYS564 are also shown as large balls. PDB entry
5XTD [49] was utilized for visualization of the structure. b: Structural fea-
tures of CYS564 and its surrounding amino acids for comparison. Innermost
circle shows the cysteine (C) with its secondary structure below and the
experimental validation to the right. The half spheres show HSE1 (upper)
and HSE2 (lower), a green half sphere signifies a lower number of proxi-
mate residues and a red one a higher number. The middle circle shows the
surrounding residues, in the order of closeness, starting at the top, going
clockwise. The outer circle shows the corresponding SSE assignments. A
green symbol signifies a feature which is statistically more likely to occur in
or near a Cys+, a red symbol in or near a Cys−, and a black symbol has a
roughly equal likelihood for both.

4.3.2 NKG2E Natural Killer Cell Receptor

I trained a model on dataset 2 using the imputation method and used it
to predict redox-activity in NKG2E to examine the impact of SNPs on my
method.

I investigated four different variants for this purpose, which are combina-
tions of wild type (WT) and alternative (ALT) forms:
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• WT rs2682489 and WT rs286266404

• ALT rs2682489 and ALT rs28626640

• ALT rs2682489 and WT rs28626640

• WT rs2682489 and ALT rs28626640

These variants differ at two positions, only one of which is close enough
to a cysteine to be relevant in my model, see Figure 52.

Only the cysteine at sequence position 235 was predicted to be more likely
to be redox-active than not. All cysteines received very similar prediction
values for both variants, see Table 13. The cysteine at position 129, which
is located close to the SNP, showed by far the greatest difference between
prediction values.

Figure 52: Amino acid sequence around the two SNPs of four NKG2E
variants. Residues are colored according to chemical properties, with po-
lar residues being colored in green, neutral in purple, basic in blue, acidic
in red and hydrophobic in black. SNPs highlighted in yellow, cysteine in
orange. First line shows wildtype/wildtype variant, second shows alterna-
tive/alternative, third shows alternative/wildtype and fourth shows wild-
type/alternative.
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Table 13: Average prediction values of NKG2E variants

Sequence position Prediction value Difference

76 0.29 3.31 · 10−4

95 0.17 1.17 · 10−4

129 0.35 1.36 · 10−2

132 0.36 2.08 · 10−3

143 0.44 2.66 · 10−3

160 0.29 3.15 · 10−4

170 0.25 2.91 · 10−4

222 0.35 4.12 · 10−4

235 0.54 4.11 · 10−4

280 0.45 1.46 · 10−3

282 0.41 7.56 · 10−4

NOTE: aprediction values range from 0 (not redox-active) to 1 (redox-active), bdifference

between the predictions of variant 1/3 and 2/4.

4.3.3 Investigation of Proximal Tubule Cell Proteins

Using a model trained with the ET algorithm on the protein set 2, I predicted
the redox modifiability of all cysteines in the imputed proximal tubule cell
dataset to test the models and provide novel predictions for this dataset, see
Table 14. The dataset was provided and is currently being researched by a
research group led by Dr. Flávia Rezende to find the physiological function
of the NADPH oxidase 4 in the kidney. The average and median prediction
scores were 0.33 and 0.32, respectively, see Figure 53. I repeated the process
for any proteins with a PDB entry, using the Euclidean method instead of
imputation. The average and median prediction scores were 0.40 and 0.41,
respectively, see Figure 54. The Pearson correlation coefficient between the
two methods for the same set of cysteines was 0.29. See Figure 57 for the
differences between prediction scores between the Euclidean and imputation-
based methods.
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Figure 53: Frequency of predictions by the ET algorithm for the proximal
tubule cell dataset. The model was trained on the protein set 2. A higher
prediction score corresponds to a higher likelihood of a cysteine being a Cys+.
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Figure 54: Frequency of predictions by the ET algorithm for the proximal
tubule cell dataset. The model was trained on the protein set 2. Only
proteins with PDB entry are included. A higher prediction score corresponds
to a higher likelihood of a cysteine being a Cys+.

I took a closer look at some specific proteins to gain a better understand-
ing of the reasons behind the different predictions by the two methods I used
to analyze proteins with a PDB entry. Folate receptor alpha with the PDB
ID 4KM6 [107] shows a relatively complete structure, with 208 out of 257
amino acid positions known. Cysteines in loop regions on the surface of the
protein tended to receive a very high prediction score using the PDB and
DSSP files, while cysteines that were part of an SSE or in the interior of the
protein got lower scores, see Figure 55. In this case, the method using PDB
and DSSP data is likely superior to the imputed method.

Low-density lipoprotein receptor-related protein 2 with the PDB ID
2M0P [29] shows a very incomplete structure, with only 52 out of 4655 amino
acid positions known. All cysteines appear on the surface of this incomplete
structure. As they are also found in loop regions, prediction values for all
cysteines are very high, see Figure 56. These predictions are based on false
data in respect to close AAs, SSEs and accessibility, so the imputed method
is likely superior for very incomplete structures as well as cysteines close
to a missing part of the structure in the PDB entry. After removing all

98



proteins with less than 90% of the sequence being represented in the PDB
entry, the Pearson correlation coefficient between the two methods rose to
0.42. See Figure 58 for the differences between prediction scores between
the PDB-based and imputation-based methods when lower-quality PDB
files were removed.

Figure 55: Structure of PDB entry 4KM6 [107] in cartoon representation.
Cysteines with a prediction value higher than 0.7 are green, between 0.5
and 0.7 are yellow, below 0.5 are red. It appears that cysteines with a high
prediction value tend to be on the surface of the amino acid. They also tend
to be part of loop regions.
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Figure 56: Structure of PDB entry 2M0P [29] in cartoon representation. All
cysteines had a prediction value higher than 0.7 and are shown in green.
Since the PDB entry is missing most of the structure, all cysteines appear to
be on the surface, leading to high prediction values.
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Figure 57: Difference between prediction scores for cysteines using the PDB-
based (PDB) and imputation-based (SEQ) methods.
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Figure 58: Difference between prediction scores for cysteines using the PDB-
based (PDB) and imputation-based (SEQ) methods when lower-quality PDB
files are removed.

I applied the model created using the ET algorithm trained with protein
set 3 to the proximal tubule cell dataset to predict the likelihood of redox-
activity of the proteins. Out of 119 proteins, 60 received a prediction value
greater than 0.5, see Table 15. The mean prediction was 0.48 and the median
0.50 with a standard deviation of 0.14. For the structures of PDB entry 5AM2
of the bifunctional epoxide hydrolase 2 (EPHX2), which was predicted to
likely be redox-active, and PDB entry 6M17 of the solute carrier family 6
member 19 (SLC6A19), which was predicted to likely not be redox-active,
see Figures 59 and 60. It may be possible to combine predictions for redox-
active proteins and cysteines for more accurate results.
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ID P ID P ID P ID P
LDHD 0.77 ACY3 0.58 4931406C07RIK 0.49 UGT2B38 0.39
FBP1 0.74 SLC4A4 0.57 GHR 0.49 HSPE1 0.39
LAP3 0.74 KCNJ15 0.57 SLC13A3 0.48 DEFB29 0.38
SORD 0.72 PIPOX 0.56 ASS1 0.48 TMEM106A 0.38
PDZK1 0.70 CALML4 0.56 SLCO1A6 0.48 TTC36 0.38
ACAA1B 0.70 LRP2 0.56 CAR14 0.48 SLC7A7 0.38
AKR1A1 0.69 HAO2 0.56 CELA1 0.47 GSTZ1 0.38
UPB1 0.69 NEU1 0.56 FOLR1 0.47 GUCA2B 0.35
KHK 0.69 UGT3A2 0.56 TCN2 0.46 MIOX 0.35
AKR1C21 0.69 PRSS8 0.55 THEM7 0.46 SLC47A1 0.34
GPX1 0.68 HSD3B2 0.55 UGT3A1 0.45 SLC22A30 0.33
SCP2 0.67 SLC22A12 0.54 TMEM174 0.45 CDA 0.33
SLC27A2 0.66 RAB11FIP3 0.54 SLC5A8 0.45 SNHG11 0.32
ACOX3 0.66 PECR 0.54 GLYAT 0.45 GM11128 0.32
ACSM2 0.66 PCK1 0.53 HRSP12 0.44 CML1 0.32
AKR7A5 0.65 MEP1A 0.53 CES1F 0.44 NAT8 0.32
ALDH6A1 0.65 GM10804 0.53 CES1D 0.43 SLC37A4 0.32
DNASE1 0.63 0610011F06RIK 0.52 SLC6A19 0.43 SLC17A3 0.30
GPD1 0.62 SLC6A18 0.52 G6PC 0.43 FTH1 0.30
FMO2 0.62 ECI3 0.52 NUDT19 0.42 SLC22A18 0.30
GCDH 0.61 HYKK 0.52 SLC34A1 0.42 SLC7A13 0.28
MACROD2 0.61 SLC6A20B 0.51 SLC22A6 0.42 CYP2D26 0.28
AK4 0.60 CAT 0.51 CCDC107 0.41 CYP2E1 0.27
CNDP2 0.60 FUT9 0.51 SLC22A28 0.41 CYP2J5 0.23
PRODH2 0.59 INMT 0.51 ERRFI1 0.41 SLC22A8 0.23
PRODH 0.59 BDH2 0.50 DNAJC12 0.40 TNFAIP8 0.21
ASPDH 0.59 FAH 0.50 4833439L19RIK 0.40 SLC17A1 0.19
EPHX2 0.59 ACOX1 0.50 SLC22A1 0.40 KEG1 0.14
TRIM7 0.59 NOX4 0.50 TMEM150A 0.39 D630029K05RIK 0.12
XYLB 0.59 ASL 0.50 MPV17L 0.39

Table 15: Uniprot ID (ID) and prediction value (P) of proteins predicted as
redox-active using ET. Model was trained on protein set 3.
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Figure 59: Structure of PDB entry 5AM2 [115] in cartoon representation.
Cysteines shown in green. This structure was predicted to likely be redox-
active.

104



Figure 60: Structure of PDB entry 6M17 [111] in cartoon representation.
Cysteines shown in green. This structure was predicted to likely not be
redox-active.

4.3.4 Modifiable Cysteines in Redox Proteins

The ET algorithm was trained on protein set 2, using imputation to make
novel predictions for cysteine sensitivity in a new protein set. These proteins
were collected from dataset B of the RedoxDB and are suspected to contain
redox-sensitive cysteines. They were not used for training as the sequence
positions of the redox-sensitive cysteines are not known. The list included
130 proteins with 620 cysteines. I ran the predictions ten times for more
robust results. Out of the 130 proteins, 62 included cysteines with a pre-
diction score larger than 0.45, which I applied as a threshold for a cysteine
likely being a Cys+. I chose this value, instead of the usual value of 0.50,
since the algorithm tends to strongly underestimate the number of Cys+
due to the large number of Cys− in the dataset. It is likely that some of
the investigated proteins in the dataset did not contain any redox-active cys-
teines in their PDB entries due to incomplete data. 15% of the cysteines
were predicted as Cys+. For the full list of positively predicted cysteines,
see Table 17 to Table 19. I compared the predictions with known data of
post-translational modifications from the UniProt [25] database. I found that
two of my predictions, CYS37 and CYS40 in PDB file 1X5D (available at
https://www.rcsb.org/structure/1x5d) of protein disulfide-isomerase A6, are
known to form a redox-active disulfide bond according to UniProt. None
of the other examined cysteines were known locations of redox activity ac-
cording to UniProt. These findings reflect positively on the reliability of my
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methods. Redox activity in disulfide bridges not known to be redox-active
were predicted in several more proteins, such as CYS120 and CYS127 in
PDB file 1B56 [53] for fatty acid-binding protein 5, where CYS120 was pre-
dicted as CYS+, as well as CYS105 and CYS137 in PDB file 3POW [22] for
calreticulin, where only CYS137 was predicted to be CYS+. These results
do not seem unexpected and may even be a positive outcome, as disulfide
bridges are one of the redox modifications we aim to predict, and not all
disulfide bridges that are known to be redox-active according to RedoxDB
are marked as such in other databases like UniProt. Several other proteins
contained disulfide bridges, which were not predicted as redox-active, like
prothrombin (3HK3 [44]) and the cytochrome b6-f complex iron-sulfur sub-
unit (1RFS [17]).

Figure 61: Structure of PDB entry 1X5D (available at
https://www.rcsb.org/structure/1x5d) in cartoon representation. Both
cysteines had a prediction value higher than 0.7 and are shown in green.

Table 16: !!

!! NOTE: a!!
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5 Discussion

Statistics

I applied statistical methods to characterize the close neighborhood
of Cys+, both in the sequence and in Euclidean space. I found that the
occurrence of several AAs were significantly enhanced or depleted. In the
Euclidean neighborhood, small AAs like proline, glycine and the polar cys-
teine and serine were found more frequently. In the sequence neighborhood,
the frequencies of alanine, glycine, isoleucine and lysine were increased. The
aliphatic AA leucine was depleted in both datasets. Similar findings could
be repeated by an investigation of the physicochemical properties of close
AAs to Cys+, where I found a high enrichment of small and a depletion of
aliphatic AAs in the Euclidean neighborhood of Cys+, while the sequence
neighborhood showed an enhanced frequency of aromatic and positively
charged AAs.

Through the use of sequence logos, I found that leucine is mainly
depleted in the upstream sequence of Cys+. The relative scarcity of leucine
may simply be explained by the fact that non-polar residues tend to be
found more often on the inside of proteins, while polar residues occur
more on the surface. Positively charged AAs like lysine and arginine
are enriched more than four positions away from the central cysteine,
confirming the results of Chen et al. [19], who found a higher abundance of
positively charged residues around S -nitrosylation sites, which may aid in
the regulation of redox modification. Polar residues like glycine and serine
showed an enhanced frequency in the close Euclidean neighborhood of Cys+.

Significant differences were found in the makeup of SSEs near Cys+.
In the Euclidean neighborhood, helices appeared at a lowered frequency,
while disordered regions and bends were more common. In the sequence
neighborhood, β-strands were found to be enriched. A high incidence of
β-strands upstream and α-helices downstream from Cys+ was detected,
confirming the findings of Fomenko et al. [41], who found that this property
could be used to differentiate redox cysteines from metal-binding cysteines.
They theorized that the downstream α-helix may be used to stabilize the
reactive thiolate.

111



Taken together, the results concerning the frequency of AAs and SSEs
confirm the position that the Euclidean neighborhood of Cys+ differs in
unique and important ways from Cys− and can be treated as another class
of features for machine learning methods, as it is not just redundant data
when already considering sequence neighborhood.

I investigated the influence of accessibility, both of the cysteine and
its neighboring AAs, on redox modifiability, comparing the two measures
RSA and HSE. In both cases, I found that, while there was much overlap
between Cys+ and Cys−, Cys+ its neighborhood tended to be significantly
more accessible in the known PDB structures. It should be noted that these
structures are static do not show the full range of shapes a protein may take
in vivo. These results may indicate that interactions with other proteins or
PTMs, which are known to often change the 3D structure of proteins, could
have a significant regulatory effect on redox modifications. HSE provided
slightly better differentiation than RSA, especially for the AA sequence
neighborhood.

I predicted the pKa of cysteines and other AAs by applying PROPKA
2.0 and PROPKA 3.4. I found significant differences in the predicted pKa

values of most AAs in the Euclidean neighborhood of cysteines between
Cys+ and Cys−, except for glutamic acid and histidine. A low pKa

value leads to higher reactivity in thiols, facilitating the establishment of
redox modifications. PROPKA 3.4 provided better differentiation between
the datasets for most AAs. There was overlap in the range of values
between Cys+ and Cys− for all AAs, confirming earlier studies showing
that, while pKa may play a large role in redox modifiability, many other
factors appear to have a stronger predictive value [97], at least when using
pKa values predicted by computational tools based on static PDB structures.

I compared SSEs and RSA predicted using the PSIPRED and ASAquick
tools to assignments by the DSSP algorithm in order to supplement
structural data with sequence-based predictions without having to rely
too heavily on traditional imputation methods. Both tools showed high
accuracy, with PSIPRED agreeing with 80% of DSSP assignments, while
ASAquick and DSSP had a Pearson correlation coefficient of 0.64, justifying
their inclusion in my methods.
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I calculated the CTD values for AAs and SSEs as well as the autoco-
variance scores of physicochemical properties for a protein set consisting
of both Cys+ proteins from the RedoxDB and a random set of proteins
from Uniprot. I was able to confirm that a large number of these values
differed significantly enough between the two parts of the dataset to be
useful features for the classification of proteins containing Cys+ according
to the Bonferroni-corrected p-value and the ANOVA F-score. Among the
most useful features were the distribution of SSEs, the composition of AAs
and the distribution of cysteines.

Machine Learning

Utilizing the CTD values and autocovariance scores as features, I built
and tested a model for the prediction of Cys+ containing proteins by applying
the ET algorithm. The model achieved an AUC score of 0.75. I tested the
model to see if the dataset biased it in terms of length or taxonomy, and
found only a very small influence at most.

We applied the recently developed Geometricus tool to find shapemers
in a dataset consisting of Cys+ containing proteins from the RedoxDB and
a random set of proteins collected through PISCES from the PDB. We uti-
lized the shapemers as features to build models by applying the RF and
ET algorithms. RF achieved an AUC value of 0.78 and 0.81 using radius-
based shapemers and sequence-based shapemers, respectively. ET achieved
an AUC value of 0.78 and 0.82 using radius-based shapemers and sequence-
based shapemers, respectively.

Both the approach based on CTD and autocovariance values and the
approach based on shapemers produced reasonably succesful models and
could be used to help researchers identify proteins of interest for further
experimentation. It may prove useful in the future to combine both
approaches for higher accuracy.

We implemented a profile HMM with AA data from the Euclidean
and sequence environment of cysteines in the RedoxDB. We calculated
probability matrices for each position and AA to build a model for the
prediction of Cys+ in proteins. The models achieved an AUC of 0.69 for the
Euclidean method and 0.72 for the sequence method.

Data from the AA environment, SSEs, RSA, HSE, pKa and PTMs was

113



used together as features to build robust models by applying the SVM, ET,
RF and GB algorithms, comparing their performance in the process. We
utilized a Euclidean and a sequence method while enhancing the sequence
dataset using imputation. AUC ranged from 0.66 to 0.72, with the most
promising results being achieved using an imputed sequence dataset, showing
that the payoff for using imputed and predicted data was worthwhile. The
algorithms all showed similar performance on the test dataset.

I tested the SVM algorithm for the use of different amounts of AAs
considered for the feature set as well as different amounts of cysteines
in the training set. The tests were run using both a set of proteins
taken randomly from the training set as well as data from mitochondrial
complex I as a use case. I found that the number of AAs that was chosen
showed the most favorable performance for both the Euclidean and the
imputed sequence method among the tested values, although it may be
possible to improve sequence-based models further by testing for a higher
amount of AAs. The imputation method showed only marginally worse
performance for lower amounts of training data, while the Euclidean
method showed strong improvements for the use case, but not for the
larger test set. It appears that a greater amount of training data will, on
average, not result in much improvement for the performance of this method.

We calculated structural moment invariants of cysteines with the Geo-
metricus tool to use them as a redox cysteine classification feature. either
using a sequence-based or radius-based neighborhood. We produced models
by applying the RF and ET algorithms to the data. The sequence-based
method resulted in an AUC of 0.62 and 0.61, the radius-based method in an
AUC of 0.58 and and 0.54, for RF and ET, respectively. Moment invariants
and HMMs, especially using the sequence-based method, may prove to be a
useful additional feature for redox models.

Use Cases

I applied the models I had developed earlier to several different use
cases. After predicting the Cys+ for mitochondrial complex I, I compared
the output to the results of earlier experimental research, achieving an
AUC of 0.71 and 0.67 by utilizing using the Euclidean method with ET
and the imputed sequence method with SVM, repectively. For human
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mitochondrial complex I, the majority of Cys− and a large percentage of
Cys+ were assigned correct predictions. Most notably, Cys39 of the ND3
subunit was predicted as redox modifiable by the ET algorithm, but not
the SVM algorithm. This cysteine has been shown to become exposed
under conditions of hypoxia, resulting in low complex I activity [21], and
can inhibit complex I function. The static PDB structure underlying the
predictions did not contain the protein structure under hypoxic conditions.
It appears that, despite this, the algorithms were able to identify Cys39 as a
possible point of interest, as they were trained on a dataset that may have
also contained cysteines that similarly only become exposed under specific
conditions.

I compared different variants of the NKGE2 natural killer cell receptor,
differing only in two SNPs. One cysteine was close enough to the SNPs
to be affected by the difference in residues in their local environment in
the context of my methods. Applying the imputed sequence method with
SVM, the difference between the prediction values between the variants was
around 0.01 (for a value between 0 and 1), more than an order of magnitude
larger than the usual inaccuracy due to the randomness of machine learning
methods that were observed for the other cysteines. One single SNP appears
to rarely cause a major difference in prediction values, unless the SNP causes
a major reorganization regarding the structure of the protein. I found only
one cysteine that was predicted to be redox modifiable in NKG2E, which
was not close to the SNPs.

I made predictions for a dataset of proteins from proximal tubule cells.
These predictions are currently being used by another group of researchers
lead by Dr. Flávia Rezende to find the physiological function of the NADPH
oxidase 4 in the kidney, a potential pharmacological target in kidney fibrosis.
Their results may also be able to confirm the validity of my methods.
I compared the predictions for this dataset using the imputed sequence
method to the Euclidean method. Some proteins showed very different
prediction values depending on the method used. After some investigation,
I found that many of the greatest differences occurred for proteins with
very incomplete PDB entries. It may be important in future studies to
automatically or manually curate PDB datasets to contain only PDB entries
displaying very high completeness.
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I applied the imputation-based sequence method with the ET algorithm
to make predictions on a dataset containing redox-active proteins from the
RedoxDB, where the exact location of the Cys+ was not yet known. About
15% of the cysteines in the dataset were predicted as Cys+. I compared
my predictions to annotations from the Uniprot database. I found only one
cysteine which was annotated as containing a redox-active disulfide bridge
in the dataset. Both of the cysteines participating in the disulfide bridge
were predicted as Cys+ by my method.

Outlook

In future studies, we would like to add many of our newer features, like
moment invariants and profile HMM values, to the general Cys+ prediction
model to improve results. We would similarly like to combine the CTD and
autocovariance method with shapemers as a feature for improved predictions
of Cys+ containing proteins. We would like to explore additional features,
such as AA conservation, subcellular location, taxonomy or redox stimuli.

We will perform more statistical analyses of new and existing features,
such as shapemers, CTD values and autocovariance, to gain a better under-
standing of how exactly the environment of Cys+ differs from Cys− on a
molecular level, identifying specific structural characteristics.

Applying the prediction of Cys+ in tandem with the prediction of Cys+
containing proteins may yield superior performance for both on datasets
without any confirmed redox activity.

We would like to continue working together with experimental researchers
to help identify redox-active targets, in turn testing the validity of the ma-
chine learning methods.

In this study, all types of redox modifications were treated as equivalent.
As the amount of data grows, it will almost certainly be advantageous to cat-
egorize different redox modifications into different groups, developing models
that can differentiate between them. Training data was collected from many
different species. While this didn’t appear to make a large difference in the
quality of the predictions, it may still prove beneficial to separate data from
different sources. Eventually, different datasets for a variety of redox stimuli
as well as cellular compartments could be developed, shining further light on
the very specific conditions that enable redox modification.

The machine learning and data analysis tools exist in the form of a Python
script executable from the command line. In the future, this script could be
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developed into a program with a graphical user interface for easier use by
researchers without a programming background.

My results indicate that a machine learning approach may be a valuable
tool for the prediction and analysis of redox-sensitive cysteines, while fur-
ther research may be able to improve the robustness and performance of my
models.
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