Chemistry-A European Journal

Supporting Information

Rethinking Uncaging: A New Antiaromatic Photocage Driven by a Gain of Resonance Energy

Volker Hermanns, Maximilian Scheurer, Nils Frederik Kersten, Chahinez Abdellaoui, Josef Wachtveitl,* Andreas Dreuw,* and Alexander Heckel*

Table of contents

1. General information 2
2.1 Synthesis - Overview 4
2.2 Synthesis - General procedures 5
2.3 Synthesis - Experimental details 6
2. Photochemical Measurements 18
3. Theoretical calculations 26
4. NMR spectra of key compounds 27
5. Mass spectra of key compounds 57
6. References 64

1. General information

All reagents and solvents were purchased from TCI, Acros Organics (Thermofisher), Sigma Aldrich (Merck) and Fluorochem and were used as received. All reactions were performed in dry solvents and under argon atmosphere unless otherwise specified.

For normal and reverse phase TLC pre-coated ALUGRAM ${ }^{\circledR}$ Xtra SIL aluminum sheets from MachereyNagel were used. Visualization was done with UV light (254 and 365 nm). Technical grade solvents were used (EtOAc - ethyl acetate, Cyclohexane, DCM - dichloromethane).

NMR spectra were measured on a Bruker DPX 250, AV 300, AV 400, AV 500 MHz or DRX 600 device. Deuterated solvents (purchased at Eurisotop) were used for sample preparation. Spectra were referenced to the solvent peak. The values used therefore were: $\mathrm{CDCl}_{3}{ }^{1} \mathrm{H} 7.26,{ }^{13} \mathrm{C} 77.16$; DMSO- $d_{6}{ }^{1} \mathrm{H}$ 2.50, ${ }^{13} \mathrm{C} 39.52$; MeCN- $d_{3}{ }^{1} \mathrm{H} 1.94,{ }^{13} \mathrm{C} 1.32$ and 118.2; $\mathrm{CD}_{3} \mathrm{OD}-d_{4}{ }^{1} \mathrm{H} 3.31,{ }^{13} \mathrm{C} 49.00 ; \mathrm{D}_{2} \mathrm{O}{ }^{1} \mathrm{H} 4.79,{ }^{13} \mathrm{C}$ no reference was done. In those cases when solvent mixtures were used (MeCN-d3 + D2O and CD3OD-d4 +D 2 O), spectra were calibrated to the organic solvent signal. Chemical shifts (δ) are reported on a ppm scale. Following abbreviations (or combinations thereof) were used to describe multiplicities: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t, m=$ multiplet, $b r=$ broad. Coupling constants (J) are reported in Hertz (Hz).

Mass spectrometry was performed on ThermoFisher Surveyor MSQ ${ }^{\text {MM }}$ (ESI - Electrospray ionization) and MALDILTQ Orbitrap XL™ (HRMS - High-Resolution Mass Spectrometry) device from Thermo Fisher Scientific.

Microwave reactions were performed in a Biotage ${ }^{\circledR}$ Initiator (Microwave power max. 400 W , Frequency 2450 MHz, 220-240 V, Power, max. 1100 VA).

UV-vis spectra were measured in 1.0 cm quartz fluorescence cuvette (QS) from Hellma-Analytics. Two different spectrometers were used. Ocean Optics USB4000 detector connected via optical fiber and convex lens, mounted in an adapter, to cuvette holder CVH100 (Thorlabs). In the opposed side of cuvette holder DH-mini light source (Ocean Optics) was connected in the same way. The results were evaluated using an in-house programmed software (PHITS; Photoswitch Irradiator Test Suite) based on LabVIEW. For more details see Reinfelds et al.. ${ }^{[1]}$

This setup and software were also used for our chemical actinometry. Reference compound was an indolylfulgide photo-switch. A solution of the fulgide ($500-1000 \mu \mathrm{~m}$) was irradiated with the respective light source (Thorlabs mounted LED, $\lambda_{\max }=365 \mathrm{~nm}$ or 405 nm) in the same setup as for the irradiation experiments to convert the photoswitch from its $1 Z$ form to 1 C or vice versa. The conversion was tracked via absorbtion and fitted with the respective quantum yields to get the photonflux. Afterwards, the caged compound of interest could be irradiated with known photon flux. ${ }^{[1]}$ Steady-state fluorescence emission was recorded using a Hitachi F-4500 spectrophotometer. The optical density (OD) was set lower than or equal to 0.1 for fluorescence spectra. Light induced UV-Vis measurements were performed with Thorlabs LEDs ($\lambda_{\max }=365 \mathrm{~nm}$ and 420 nm) using Specord spectrometer S600 (Analytik Jena). Second spectrometer was JASCO-V650. In both cases spectra were measured with 1 nm steps.

Irradiation experiments were done in 1.0 cm quartz fluorescence cuvette (QS) from Hellma-Analytics equipped with a magnetic stirrer or for small volumes in 0.3 cm quartz fluorescence cuvette (QS) from Hellma-Analytics. Light sources (365 nm LED M365L2, 405 nm LED M405L4, 455 nm LED M455L4) were operated by DC2100 LED driver in external trigger mode (both from Thorlabs). As external trigger was used an in-house programmed software PHITS.

For high-performance liquid chromatography Agilent Technologies 1260 Infinity instrument was used, equipped with quaternary pump, automatic liquid sampler, thermostatted column compartment and diode array detector. Separation was done using MultoKrom ${ }^{\circledR 100-5 ~ C 18 ~ c o l u m n ~(~} 250 \times 4.6 \mathrm{~mm}$) from CS-Chromatographie Service GmbH. Binary solvent mixtures were used for elution. Typical gradients are described in Table S1 and shown in Figure S3.

2.2 Synthesis - General procedures

General procedure A-reduction

The respective carbonyl compound (1 eq) was dissolved in 3-5 mL ethanol under argon atmosphere and ambient temperature. Afterwards sodium borohydride (2-3 eq) was added in small portions and the reaction mixtures was stirred at room temperature until the starting material was completely consumed (5-60 minutes). After dilution with water, the mixture was extracted three to five times with DCM. The combined organic phase was washed with water and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. In most cases no further purification was necessary.

General procedure B - Grignard-reaction

A solution of the individual carbonyl compound dissolved in 3-6 mL abs. THF under argon atmosphere was cooled down to $0^{\circ} \mathrm{C}$. Then the respective Grignard solution (0.5 M ethynylmagnesium bromide or 1 M phenylmagnesium bromide, $1.0-2.0 \mathrm{eq}$) was added dropwise. After full addition, the reaction mixture was allowed to warm up to room temperature and was stirred additional 3-5 hours. After that water was added and the mixture was extracted with DCM three to five times. The combined organic phases was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified via column chromatography (DCM:cyclohexane 2:1 to DCM).

General procedure C - acetylation

Under argon atmosphere the respective alcohol (1 eq) was dissolved in 2-6 mL pyridine and acetic acid anhydride ($8-30 \mathrm{eq}$) was added. After stirring under light exclusion for 6-24 hours, the reaction progress was checked via TLC. When the reaction was completed, saturated NaHCO_{3} solution and water were added to the mixture. Extraction with DCM was done three to five times, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. With deactivated silica gel (1\% $\mathrm{Et}_{3} \mathrm{~N}$), the residue was purified isocratic via column chromatography (cyclohexane:EtOAc 100:5).

General procedure D - Suzuki-Cross-Coupling

2,6-Dibromo-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-one (1 eq), $\mathrm{K}_{2} \mathrm{CO}_{3}(8.1 \mathrm{eq})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.07$ eq) and the respective boronic acid (phenylboronic acid, 4-methoxy-phenylboronic acid, 4-nitrophenylboronic acid) were suspended in a mixture of 4 mL toluene, 2 mL EtOH and 2 mL water under argon atmosphere. The mixture was heated to reflux for 24-72 hours until the starting material was consumed and diluted with water. Extraction was performed three to five times with DCM and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification was done with column chromatography (DCM: cyclohexane 2:1 to DCM).

2.3 Synthesis - Experimental details

Synthesis of 2,2'-Dibromo-3, 3^{\prime}-Dithiophene (S2)
Synthesis was done as described in literature. ${ }^{[2]}$ Starting from compound S1 ($885 \mathrm{mg}, 5.32 \mathrm{mmol}, 1 \mathrm{eq}$), 1.305 g (84%) of product S2 was obtained as colorless solid.

Yield: $1.305 \mathrm{~g}(84 \%)$
TLC (cyclohexane): $\mathrm{R}_{\mathrm{f}}=0.60$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right)$ ppm.
$\underline{{ }^{1} \mathrm{H}-\mathrm{NMR}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.31\left(\mathrm{~d},{ }^{3} \int_{\mathrm{H}-\mathrm{H}}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right) \mathrm{ppm}$.

Synthesis of 7H-Cyclopenta[1,2-b:4,3-b']dithiophene-7-one (S3)
Synthesis was done similar as described in literature. ${ }^{[3]}$ Starting compound S2 ($843 \mathrm{mg}, 2.6 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in diethylether and cooled down to $-78^{\circ} \mathrm{C}$, n-butyllithium ($2.19 \mathrm{~mL}, 2.5 \mathrm{M}, 5.46 \mathrm{mmol}$, 2.1 eq) was added dropwise. After stirring for one hour at $-78^{\circ} \mathrm{C}$, dimethylcarbamoylchlorid (0.26 mL , $2.9 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added slowly. The mixture was allowed to warm up to room temperature and was stirred overnight. Dilution with water and sat. ammonium chlorid solution and extraction with EtOAc were done. After washing the combined organic phases with water and sat. sodium chlorid solution and drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, purification via column chromatography was performed (DCM/cyclohexane, 2:1) resulting in $0.195 \mathrm{~g}(39 \%)$ of product S3.

Yield: $0.195 \mathrm{~g}(39 \%)$
TLC (DCM:cyclohexane 2:1): $R_{f}=0.57$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=8.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right)$ ppm.

Synthesis of 7H-Cyclopenta[1,2-b:4,3-b']dithiophene-7-ol (S4)
Synthesis was done as described in general procedure A. Starting from compound S3 (50 mg, $0.26 \mathrm{mmol}), 50 \mathrm{mg}(99 \%)$ of product S4 was obtained as colorless solid.

Yield: $0.050 \mathrm{~g}(99 \%)$
TLC (cyclohexane:EtOAc 9:1): $\mathrm{R}_{\mathrm{f}}=0.14$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right)$, $6.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}\right), 5.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}\right) \mathrm{ppm}$.

Synthesis of 7H-Cyclopenta[1,2-b:4,3-b']dithiophene-7-yl-acetate (ortho-derivative, 4)
Synthesis was done as described in general procedure C. Starting from compound S 4 (50 mg , $0.257 \mathrm{mmol}), 45 \mathrm{mg}$ (75%) of product 4 was obtained.

Yield: $0.045 \mathrm{~g}(75 \%)$
TLC (DCM:cyclohexane 2:1): $\mathrm{R}_{\mathrm{f}}=0.49$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right)$, 6.22 (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$), 2.14 (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 6.17$ (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$), 2.18 (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.56,144.50,142.74,130.89,118.39,71.14,21.08 \mathrm{ppm}$.
MALDI-MS: m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+}$235.99657, found 235.86930 .

Synthesis of 4,4'-Dibromo-3,3'-bithiophene (S6)

Synthesis was done as described in literature. ${ }^{[4]}$ Starting from compound S5 ($3.9 \mathrm{~g}, 16.12 \mathrm{mmol}, 1 \mathrm{eq}$), $2.07 \mathrm{~g}(79 \%)$ of product S 6 was obtained as a beige solid.

Yield: 2.07 g (79\%)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.81\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.69\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right)$ ppm.

Synthesis of 7H-Cyclopenta[1,2-c:3,4-c']dithiophene-7-one (S7)
Compound S 6 ($173 \mathrm{mg}, 0.543 \mathrm{mmol}, 1 \mathrm{eq}$) was solved in dry diethylether and cooled down to $-78^{\circ} \mathrm{C}$. Now n-butyllithium ($0.44 \mathrm{~mL}, 2.5 \mathrm{M}, 1.1 \mathrm{mmol}, 2.1 \mathrm{eq}$) was added dropwise and the mixture was stirred for three hours. After that time, carbonyldiimidazole ($314 \mathrm{mg}, 1.94 \mathrm{mmol}, 3.6 \mathrm{eq}$) was added slowly at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 30 minutes and allowed to warm up to room temperature. Saturated ammonium chlorid solution was added and diluted with water. After extraction with ethyl acetate, purification was done via column chromatography (DCM/cyclohexane, 2:1).

Yield: 0.010 g (8\%)
TLC (DCM:cyclohexane 4:1): $\mathrm{R}_{\mathrm{f}}=0.53$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.77\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.09\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right) \mathrm{ppm}$.

Synthesis of 7H-Cyclopenta[1,2-c:3,4-c']dithiophene-7-ol (S8)

Synthesis was done as described in general procedure A. Starting from compound S7 (50 mg, $0.26 \mathrm{mmol}), 50 \mathrm{mg}$ (99\%) of product S 8 was obtained.

Yield: $0.050 \mathrm{~g}(99 \%)$
TLC (cyclohexane:EtOAc 9:1): $\mathrm{R}_{\mathrm{f}}=0.09$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.43-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}), 5.40\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}\right) \mathrm{ppm}$.

Synthesis of 7H-Cyclopenta[1,2-c:3,4-c']dithiophene-7-yl-acetate (meta-derivative, 3)
Synthesis was done as described in general procedure C. Starting from compound 58 (60 mg , $0.309 \mathrm{mmol}), 25 \mathrm{mg}$ (34\%) of 3 was obtained as a brown solid.

Yield: 0.025 g (34\%)
TLC (cyclohexane: DCM 5:1): $R_{f}=0.18$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.31\left(\mathrm{dd},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.2 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.13\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\right.$ H), 6.36 (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$), 2.13 (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.51,150.05,139.96,122.00,113.45,67.67,21.29 \mathrm{ppm}$.
MALDI-MS: m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+} 235.9966$ found 235.8632 .

Synthesis of 4H-Cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (para-derivative, 11a, S10a)
Synthesis was done as described in general procedure A. Starting from compound S 9 (100 mg, $0.521 \mathrm{mmol}), 105 \mathrm{mg}$ (98\%) of 11a was obtained.

Yield: 0.105 g (98\%)
TLC (cyclohexane: EtOAc 9:1): $\mathrm{R}_{\mathrm{f}}=0.15$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right.$), $7.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right.$), 5.72 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}\right), 5.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}\right) \mathrm{ppm}$.

Synthesis of 4H-Cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (para-derivative, 1a)

Synthesis was done as described in general procedure C. Starting from compound S10a (90 mg, $0.45 \mathrm{mmol}), 84 \mathrm{mg}$ (77%) of product 1a was obtained as an orange solid.

Yield: 0.84 g (77\%)
TLC (DCM): $\mathrm{R}_{\mathrm{f}}=0.63$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right)$, 6.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$), 2.12 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 6.18$ (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$), 2.16 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.47,148.91,139.98,125.77,123.84,69.90,21.16 \mathrm{ppm}$.
MALDI-HRMS: m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 237.00385$, found 237.00408 ($\Delta \mathrm{m}=0.00023$, error 1.0 ppm).

Synthesis of 4H-Cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-1H-imidazole-1-carboxylate (S11)
Compound S10a ($90 \mathrm{mg}, 0.46 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in 3 mL dry DCM and 1'-Carbonyldiimidazole (CDI) ($150 \mathrm{mg}, 0.93 \mathrm{mmol}, 2 \mathrm{eq}$) was added in a microwave vial under argon atmosphere. The vial was placed in a microwave reactor and stirred at $45^{\circ} \mathrm{C}(100 \mathrm{~W})$ for 60 minutes. The reaction mixture was
then diluted with water, extracted three times with DCM and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. No further purification was done and the product S 11 ($133 \mathrm{mg}, 0.44 \mathrm{mmol}$) was directly used for the next synthesis step.

Synthesis of 4H-Cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-(2-(5-hydroxy-1H-indol-3-yl)ethyl)carbamate (22)

Compound S11 ($133 \mathrm{mg}, 0.44 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in 4 mL dry DMF and triethylamine (223 mg , $2.2 \mathrm{mmol}, 5 \mathrm{eq})$ and serotonin-hydrochlorid $\left(5-\mathrm{HT}^{*} \mathrm{Cl}\right)(187 \mathrm{mg}, 0.88 \mathrm{mmol}, 2 \mathrm{eq})$ were added in a microwave vial under argon atmosphere. The vial was placed in a microwave reactor and stirred at $50^{\circ} \mathrm{C}(100 \mathrm{~W})$ for 45 minutes. After dilution with water and extraction with DCM, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was removed under reduced pressure and purification was performed via column chromatography (cyclohexane/EE, 2:1). Compound 22 (151 mg, 87\%) was obtained as a brown solid.

Yield: $0.151 \mathrm{~g}(87 \%)$
TLC (Cyclohexane: EE 1:1): $\mathrm{R}_{\mathrm{f}}=0.5$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): \delta=10.48(\mathrm{bs}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{OH}), 8.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\underline{\mathrm{H}}), 7.48\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ar-H), $7.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.14-7.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.05\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.85$ $\left(\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.59\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 6.11(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 3.31(\mathrm{~m}$, overlaid with $\mathrm{H}_{2} \mathrm{O}$ signal, Alkyl-H), $2.78\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Alkyl-H) ppm.

Synthesis of 4-Ethynyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (11b, S10b)

Synthesis was done as described in general procedure B with ethylnylmagnesium bromide as grignard agent. Starting from compound $\mathrm{S} 9(100 \mathrm{mg}, 0.52 \mathrm{mmol}), 80 \mathrm{mg}(70 \%)$ of product S 10 b was obtained.

Yield: 0.08 g (70\%)
$\underline{T L C}(D C M): R_{f}=0.51$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right)$, $6.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}), 3.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.

Synthesis of 4-Ethynyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (1b)
Synthesis was done as described in general procedure C. Starting from compound S10b (86 mg, $0.39 \mathrm{mmol}), 30 \mathrm{mg}$ (31\%) of product 1 b was obtained as a red solid.

Yield: 0.03 g (31\%)
TLC (cyclohexane: DCM 5:1): $R_{f}=0.75$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right)$, 3.60 (s, 1H, C-Hㅏ), 2.06 (s, 3H, C-H) ppm.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 2.47$ (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 2.10$ (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.78,150.09,139.03,126.12,124.22,79.29,71.91,29.85,21.55$ ppm.

ESI-MS: m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$261.00, found 261.09.

Synthesis of 4-Phenyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (11c, S10c)
Synthesis was done as described in general procedure B with phenylmagnesium bromide as grignard agent. Starting from compound S9 ($100 \mathrm{mg}, 0.52 \mathrm{mmol}), 135 \mathrm{mg}(96 \%)$ of product S10c was obtained.

Yield: $0.135 \mathrm{~g}(96 \%)$
$\underline{T L C}(D C M): R_{f}=0.52$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.29-7.19$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 6.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}) \mathrm{ppm}$.

Synthesis of 4-Phenyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (1c)
Synthesis was done as described in general procedure C. Starting from compound S10c (120 mg, $0.44 \mathrm{mmol}), 130 \mathrm{mg}$ (94\%) of product 1c was obtained.

Yield: $0.130 \mathrm{~g}(94 \%)$

TLC (DCM: cyclohexane 2:1): $\mathrm{R}_{\mathrm{f}}=0.56$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.36-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}}\right.$ $\mathrm{H}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\underline{\mathrm{H}}), 2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), 7.32-7.27(m,3 H, Ar-H$), 7.15-7.12(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-$ H), 2.11 (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.75,152.66,139.57,138.64,128.82,128.08,125.72,124.94$, 124.69, 84.05, 21.86 ppm.

MALDI-HRMS: m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+} 312.02787$, found 312.02769 ($\Delta \mathrm{m}=0.00018$, error 0.6 ppm).

Synthesis of 5H-Cyclopenta[1,2-b:5,4-b']dipyridine-5-ol (S13a)
Synthesis was done as described in general procedure A. Starting from compound S12 (10 mg, $0.55 \mathrm{mmol}), 8 \mathrm{mg}(74 \%)$ of product S13a was obtained as yellow solid.

Yield: 0.08 g (74\%)
TLC (EtOAc:cyclohexane 10:1): $\mathrm{R}_{\mathrm{f}}=0.11$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=8.65\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.05 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 8.04$ (dd, ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.62 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-$ H), $7.42\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.52 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.63 \mathrm{~Hz}, 1 \mathrm{HOH}\right), 5.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.88 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\right.$ H) ppm .

Synthesis of 5H-Cyclopenta[1,2-b:5,4-b']dipyridine-5-yl-acetate (2a)

Synthesis was done as described in general procedure C. Starting from compound S13a (5 mg, 0.2 mmol), 3 mg (51\%) of product 2 a was obtained as colorless solid.

Yield: $0.003 \mathrm{~g}(51 \%)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=8.53\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.77 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 1^{\prime}\right), 7.91\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.43 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 3^{\prime}\right)$, 7.37 (dd, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.64 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 2{ }^{\prime}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 5) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=171.1,158.1,151.1,137.5,134.0,123.8,70.5,20.7 \mathrm{ppm}$.
MALDI-HRMS: m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$227.082053, found $227.08193(\Delta \mathrm{~m}=0.000123$, error 0.5 ppm).

Synthesis of 5-Ethinyl-5H-cyclopenta[1,2-b:5,4-b']dipyridine-5-ol (S13b)

Synthesis was done as described in general procedure B with ethylnylmagnesium bromide as grignard agent. Starting from compound S12 ($500 \mathrm{mg}, 2.74 \mathrm{mmol}$), 190 mg (33%) of product S13b was obtained.

Yield: 0.19 g (33\%)
$\underline{\text { TLC }}(E t O A c): R_{f}=0.32$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): \delta=8.69\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right.$), $8.10\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.7\right.$ $\mathrm{Hz},{ }^{4}{ }_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), $7.48\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 6.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}), 3.52(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.

Synthesis of 5-Ethinyl-5H-cyclopenta[1,2-b:5,4-b']dipyridine-5-yl-acetate (2b)

Synthesis was done as described in general procedure C. Starting from compound S13b (70 mg, 0.34 mmol), 56 mg (67%) of product 2 b was obtained.

Yield: $0.056 \mathrm{~g}(67 \%)$
TLC (DCM: $\mathrm{MeOH} 50: 1$): $\mathrm{R}_{\mathrm{f}}=0.06$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$) : $\delta=8.74\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right.$), $8.21\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.8\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.51\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 3.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 2.04(\mathrm{~s}, 3$ H, C-브) ppm.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.75\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right.$), 8.20(dd, ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}$, ${ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), 7.34 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), $2.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 2.08(\mathrm{~s}, 3 \mathrm{H}$, C-H) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.72,157.80,152.32,138.98,134.26,124.23,78.86,74.84$, 74.71, 21.59 ppm .

MALDI-HRMS: m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 251.08150$, found 251.08165 ($\Delta \mathrm{m}=0.00015$, error $0.6 \mathrm{ppm})$.

Synthesis of 5-Phenyl-5H-cyclopenta[1,2-b:5,4-b']dipyridine-5-ol (S13c)

Synthesis was done as described in general procedure B with phenylmagnesium bromide as grignard agent. Starting from compound S12 ($500 \mathrm{mg}, 2.74 \mathrm{mmol}$), $291 \mathrm{mg}(41 \%)$ of product S 13 c was obtained.

Yield: $0.291 \mathrm{~g}(41 \%)$
$\underline{\text { TLC }}(E t O A c): R_{f}=0.31$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): \delta=8.65\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.73\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.7\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.36\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.31-7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}})$, 6.67 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}$) ppm.

Synthesis of 5-Phenyl-5H-cyclopenta[1,2-b:5,4-b']dipyridine-5-yl-acetate (2c)

Synthesis was done as described in general procedure C. Starting from compound S13c (100 mg, $0.38 \mathrm{mmol}), 87 \mathrm{mg}$ (75%) of product 2 c was obtained as a colorless solid.

Yield: $0.087 \mathrm{~g}(75 \%)$
$\underline{\text { TLC }}(E t O A c): R_{f}=0.48$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): \delta=8.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.90\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.7\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.40\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.37-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\underline{H})$, 2.11 (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.72\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.79\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.7 \mathrm{~Hz}\right.$, $\left.{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.26-7.23(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 2.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.
$\left.{ }^{13}{ }^{\mathrm{C}\{ }{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.16,158.43,151.52,141.62,139.09,133.18,128.98,128.45$, 124.89, 123.90, $85.33,21.79$ ppm.

MALDI-HRMS: m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$303.11280, found 303.11282 ($\Delta \mathrm{m}=0.00002$, error 0.1 ppm).

Synthesis of 2,6-Dibromo-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-one (6, S14)
Synthesis was performed similar to literature. ${ }^{[5]}$ Compound S 9 ($100 \mathrm{mg}, 0.52 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry tetrahydrofuran under argon atmosphere and cooled down to $0^{\circ} \mathrm{C}$. Then N -bromosuccinimide was added in small portions over two minutes. After stirring for half an hour the mixture was diluted with water and extracted three times with dichloromethane. Purification was performed via column chromatography (CH 100 -> CH/EtOAc, 100:6). 6 (184 mg, 98\%) could be obtained as dark violet crystals.

Yield: 2.02 g (98\%)
TLC (DCM:cyclohexane 1:1): $\mathrm{R}_{\mathrm{f}}=0.56$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.25(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}) \mathrm{ppm}$.

Synthesis of 2,6-Dibromo-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (12a, S23a)
Synthesis was done as described in general procedure A. Starting from compound S14 (100 mg, $0.29 \mathrm{mmol}), 100 \mathrm{mg}$ (98\%) of product 12a was obtained.

Yield: 0.1 g (98\%)

TLC (cyclohexane:EtOAc 9:1): $\mathrm{R}_{\mathrm{f}}=0.19$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.27(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}\right), 5.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.

Synthesis of 2,6-Dibromo-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (17a)
Synthesis was done as described in general procedure C. Starting from compound S23a (46 mg, $0.13 \mathrm{mmol}), 30 \mathrm{mg}$ (58\%) of product 17a was obtained as colorless solid.

Yield: 0.03 g (58\%)
TLC (cyclohexane:EtOAc 20:1): $\mathrm{R}_{\mathrm{f}}=0.39$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): \delta=7.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 2.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 2.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.16,146.76,139.71,126.77,112.42,70.26,21.01 \mathrm{ppm}$.
MALDI-MS: m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+} 391.82$, found 392.04.

Synthesis of 2,6-Dibromo-4-ethinyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (12b, S23b)
Synthesis was done as described in general procedure B with ethylnylmagnesium bromide as grignard agent. Starting from compound S14 (100 mg, 0.29 mmol$), 79 \mathrm{mg}(68 \%)$ of product 12 b was obtained.

Yield: 0.073 g (68\%)
TLC (DCM): $\mathrm{R}_{\mathrm{f}}=0.5$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$) : $\delta=7.29(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 3.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.

Synthesis of 2,6-Dibromo-4-ethinyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (17b)
Synthesis was done as described in general procedure C. Starting from compound S23b (60 mg , $0.16 \mathrm{mmol}), 65 \mathrm{mg}$ (97%) of product 17b was obtained as off-white solid.

Yield: 0.065 g (97\%)
$\underline{\text { TLC }}(D C M): R_{f}=0.86$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 2.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.54,147.92,138.72,127.09,112.90,78.11,72.81,72.01,21.40$ ppm.

MALDI-MS: m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+} 415.82$, found 416.16.

Synthesis of 2,6-Dibromo-4-phenyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (12c, S23c)
Synthesis was done as described in general procedure B with phenylmagnesium bromide as grignard agent. Starting from compound S14 ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$), $109 \mathrm{mg}(89 \%)$ of 12 c was obtained as yellow crystals.

Yield: $0.109 \mathrm{~g}(89 \%)$
TLC (DCM): $R_{f}=0.73$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$) : $\delta=7.38-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.54$ (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.

Synthesis of 2,6-Dibromo-4-phenyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (17c)
Synthesis was done as described in general procedure C. Starting from compound S23c (100 mg, $0.23 \mathrm{mmol}), 105 \mathrm{mg}$ (95%) of 17 c was obtained.

Yield: 0.105 g (95\%)
TLC (DCM): $\mathrm{R}_{\mathrm{f}}=0.93$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.14(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 2.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.52,150.60,138.11,129.05,128.51,127.43,124.73,112.51$, 84.49, 29.85, 21.73 ppm .

MALDI-MS: m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+} 467.85$, found 468.02.

Synthesis of 2,6-Diphenyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-one (7, S15)
Synthesis was done as described in general procedure D with phenylboronic acid. Starting from compound S14 ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$), 75 mg (76%) of 7 was obtained.

Yield: $0.075 \mathrm{~g}(76 \%)$
TLC (cyclohexane:EtOAc 5:1): $\mathrm{R}_{\mathrm{f}}=0.53$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.58-7.50(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.45-7.36(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-$ H), 7.23 (s, $2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$) ppm.

Synthesis of 2,6-Diphenyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (13, S18)

Synthesis was done as described in general procedure A. Starting from compound S15 (35 mg , $0.1 \mathrm{mmol}), 44 \mathrm{mg}$ (90%) of 13 was obtained.

Yield: $0.044 \mathrm{~g}(90 \%)$
TLC (cyclohexane:EtOAc 9:1): $\mathrm{R}_{\mathrm{f}}=0.07$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$): $\delta=7.71-7.56(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), 7.47-7.38(m,4H, Ar-H), 7.34-7.27(m, 2 H , Ar-He), 5.89 (s, $1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}$), 5.34 (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.

Synthesis of 2,6-Diphenyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (19)
Synthesis was done as described in general procedure C. Starting from compound S18 (35 mg , $0.1 \mathrm{mmol}), 40 \mathrm{mg}$ (90%) of product 19 was obtained as yellow solid.

Yield: 0.04 g (90\%)
TLC (DCM:cyclohexane 1:1): $R_{f}=0.43$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}\right): \delta=7.67\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.54(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.43\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.3\right.$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), 7.32 (t, ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), 6.34 (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$), 2.18 (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.38\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.34$ (s, $2 \mathrm{H}, \operatorname{Ar-H}$), 7.28 ($\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), 6.25 (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$), 2.21 (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.52,149.10,145.83,139.24,134.74,129.16,127.68,125.47$, 119.89, 70.54, 21.20 ppm .

MALDI-HRMS: m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+} 388.05917$, found 388.05834 ($\Delta \mathrm{m}=0.00083$, error $2.1 \mathrm{ppm})$.

Synthesis of 2,6-Bis(4-methoxyphenyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-one (9, S16)
Synthesis was done as described in general procedure D with 4-methoxyboronic acid. Starting from compound S14 ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$), 170 mg of product 9 with small impurities was obtained.

Yield: 0.17 g (with small impurities)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.09(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=\right.$ $7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), 3.84 (s, $6 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$) ppm.

Synthesis of 2,6-Bis(4-methoxyphenyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (15, S19)
Synthesis was done as described in general procedure A. Starting from compound S16 (150 mg, $0.37 \mathrm{mmol}), 50 \mathrm{mg}$ (33\%) of 15 was obtained.

Yield: 0.05 g (33\%)
$\underline{T L C}(D C M): R_{f}=0.24$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right.$), $7.45(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=\right.$ $8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 5.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}\right), 5.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}\right), 3.79(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}})$ ppm.

Synthesis of 2,6-Bis(4-methoxyphenyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (20)
Synthesis was done as described in general procedure C. Starting from compound S19 (50 mg, $0.12 \mathrm{mmol}), 40 \mathrm{mg}$ (73%) of 20 was obtained as yellow solid.

Yield: 0.04 g (73\%)
TLC (DCM:cyclohexane 2:1): $R_{f}=0.44$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.38(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=\right.$ $8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), 6.29 (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 3.79$ (s, $6 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 2.17$ (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8\right.$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), 6.22 (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$), $3.84(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.54,159.38,148.76,145.50,138.37,127.67,126.78,118.86$, 114.57, 70.60, 55.54, 21.22 ppm.

MALDI-HRMS: m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+} 448.08030$, found $448.07886(\Delta \mathrm{~m}=0.00144$, error 3.2 ppm).

Synthesis of 2,6-Bis(4-nitrophenyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-one (10, S17)
Synthesis was done as described in general procedure D with 4-nitroboronic acid. Starting from compound S14 ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$), $75 \mathrm{mg}(60 \%)$ of 10 was obtained as red-brown solid.

Yield: $0.075 \mathrm{~g}(60 \%)$
$\underline{\text { TLC }}(\mathrm{DCM}): \mathrm{R}_{\mathrm{f}}=0.65$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.43$ (s, $2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$) ppm.

Synthesis of 2,6-Bis(4-nitrophenyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (16, S20)
Synthesis was done as described in general procedure A. Starting from compound S17 (70 mg, $0.16 \mathrm{mmol}), 30 \mathrm{mg}$ (43%) of 16 was obtained.

Yield: $0.03 \mathrm{~g}(43 \%)$
$\underline{T L C}(D C M): R_{f}=0.08$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta=8.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 8.00-7.91(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 6.04$ (d, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\underline{\mathrm{H}}\right), 5.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}\right) \mathrm{ppm}$.

Synthesis of 2,6-Bis(4-nitrophenyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (21)
Synthesis was done as described in general procedure C. Starting from compound S20 (30 mg, $0.07 \mathrm{mmol}), 6 \mathrm{mg}$ (18%) of 21 was obtained.

Yield: $0.006 \mathrm{~g}(18 \%)$
TLC (cyclohexane:EtOAc 2:1): $\mathrm{R}_{\mathrm{f}}=0.48$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.54$ (s, $2 \mathrm{H}, \operatorname{Ar}-\underline{\mathrm{H}}$), 6.29 (s, $1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$), 2.23 (s, $3 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.40,150.54,146.79,140.63,127.93,125.50,124.80,122.54$, 114.16, 70.25, 21.11 ppm.

MALDI-MS: m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+} 478.03$, found 477.98.

Synthesis of 2-Bromo-6-(4-methoxyphenyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-one (8, S21)
Synthesis was done as described in general procedure D with 4-methoxyboronic acid. Starting from compound S14 ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$), $30 \mathrm{mg}(28 \%)$ of product 8 was obtained.

Yield: 0.03 g (28\%)
TLC (DCM:cyclohexane 2:1): $\mathrm{R}_{\mathrm{f}}=0.61$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}})$, $6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.

Synthesis of 2-Bromo-6-(4-methoxyphenyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-ol (14, S22)
Synthesis was done as described in general procedure A. Starting from compound S21 (30 mg, 0.08 mmol), 27 mg (71%) of product 14 was obtained.

Yield: $0.027 \mathrm{~g}(71 \%)$
TLC (cyclohexane:EtOAc 9:1): $\mathrm{R}_{\mathrm{f}}=0.05$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.58\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right.$), $7.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-$ H), 6.99 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), $5.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\underline{H}\right), 5.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-\underline{H}\right)$, 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$) ppm.

Synthesis of 2-Bromo-6-(4-methoxyphenyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (18)
Synthesis was done as described in general procedure C. Starting from compound S22 (27 mg, $0.06 \mathrm{mmol}), 8 \mathrm{mg}$ (33\%) of product 18 was obtained.

Yield: $0.008 \mathrm{~g}(33 \%)$
TLC (cyclohexane:EtOAc 8:1): $\mathrm{R}_{\mathrm{f}}=0.31$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=7.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right.$), $7.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right.$), $7.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}$), $6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}\right), 6.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\underline{\mathrm{H}}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.36,159.56,148.73,146.66,146.23,140.65,137.43,127.41$, 126.89, 126.78, 118.81, 114.61, 111.57, 70.44, 55.55, 21.11 ppm.

MALDI-HRMS: m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrO}_{3} \mathrm{~S}_{2}[\mathrm{M} \cdot]^{+} 419.94895$, found 419.94814 ($\Delta \mathrm{m}=0.00081$, error 1.9 ppm).

3. Photochemical Measurements

Molar absorption coefficient measurements

A stock solution of each compound was prepared by weighing a small amount of each sample (approx. 1.0 mg) in a glass vial and dissolving it in 2 mL of a $20 \% 0.1 \mathrm{M}$ PBS-buffer $80 \% \mathrm{MeOH}$ mixture. Then a dilution series from this stock solution was prepared. Absorbance spectra in wavelength range $300-$ 800 nm were measured for all solutions. The data analysis was started by baseline correction. This was done by subtracting the average value of the baseline shift in the wavelength range where the sample does not absorb (in this case $600-800 \mathrm{~nm}$) from the entire spectra. Then the linearity of the measured data was checked by plotting absorbance vs. concentration.

Live-tracking of Photolysis behavior

Several $10-150 \mu \mathrm{M}$ solutions ($80 \% \mathrm{MeOH}$: $20 \% 0.1 \mathrm{M} \mathrm{PBS}$ Buffer) were irradiated at 365 nm (700 mA , 11.2 mW) or at $455 \mathrm{~nm}(9.9 \mathrm{~mW}, 1000 \mathrm{~mA}$) and its absorption was "live" tracked during irradiation via our in house system PHITS for selected compounds. Left side: absorption spectra before (black) and after irradiation (red). Right: Absorption change during irradiation monitored at different wavelengths.

Figure S1: Photolysis and absorption behavior for selected compounds during irradiation at $310 \mathrm{~nm}, 365 \mathrm{~nm}$ or 405 nm .

4-Phenyl-4H-cyclopenta[1,2-b:5,4-b']dithiophene-4-yl-acetate (1c) was irradiated for 1.5 h (365 nm, $700 \mathrm{~mA}, 11.2 \mathrm{~mW}$) in a mixture of $\mathrm{MeOD}-\delta_{4}$ and $\mathrm{D}_{2} \mathrm{O}$ und (4:1). Red: bevor irradiation. Blue: After irradiation. It showed no thermal degradation after 2 days in the dark in the same solvent mixture.

Figure S2: Photolysis observed via ${ }^{1} \mathrm{H}$ NMR (left) and color change after photolysis in NMR tube (right).

Determination of the Quantum yields

Table S1: HPLC-solvent gradients used for determination of the quantum yields.

Gradient 1		Gradient 2	
Time (min)	Solvent A (\%)	Time (min)	Solvent A (\%)
0 to 3	70	0 to 5	5
3 to 13	70 to 100	5 to 10	5 to 80
13 to 25	100	10 to 20	80 to 100
		20 to 22	100

Gradient 1: Solvent A - MeCN; solvent B - ultra pure water $+0.1 \%$ TFA
Gradient 2: Solvent A - MeCN; solvent B - ultra pure water + 0.1\% TFA

Gradient 1

Gradient 2

Figure S3: HPLC gradients.

Three stock solutions of each compound were prepared by weighting small amounts of each sample (approx. 1.0 mg) in three different glass vials and dissolving each probe with 2 mL dimethylsulfoxide. An aliquot of each stock solution was dissolved with 0.1 M PBS -buffer ($13.7 \mathrm{mM} \mathrm{NaCl}, 0.27 \mathrm{mM} \mathrm{KCl}$, $1 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 0.18 \mathrm{mM} \mathrm{KH} \mathrm{PO}_{4}$) and if precipitation occured, additional DMSO was added. From each sample (three samples for each compound), $50 \mu \mathrm{~L}$ were taken and irradiated at nine different irradiation times ($t=0 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 20 \mathrm{~s}, 45 \mathrm{~s}, 90 \mathrm{~s}, 180 \mathrm{~s}, 360 \mathrm{~s}, 720 \mathrm{~s}$) with the respective LED (see General information) resulting in 27 different irradiated solutions. The photon flux for this setup was determined with a robust fulgide-derivative as described in literature. ${ }^{[1]}$ The photolysis of the starting material was analyzed via RP-HPLC as the ratio of the peak areas of the internal standard and the starting material (detection at 254 nm) related to literature. ${ }^{[6]}$ Uridine was used as an internal standard. An example is shown in figure S4 and S5.

Figure S4: Analytical RP-HPLC chromatograms of selected compounds.

Figure S5: Photolysis observed for compound 1b via HPLC after several irradiation times.

Figure S6: Amount of starting material (\%) at different irradiation times and corresponding decay function.

Figure S7: Absorption spectra in MeOH before and after 8 minutes of illumination at 365 nm for P7a and 10 and 420 nm for 8 (normalized to the main peak of the dark spectrum @ 327 nm and 405 nm respectively).

4. Theoretical calculations

Figure S8: Illustration of computational screening procedure for fluorenol-like (FOH) compounds adapted from Winter et al.. ${ }^{[7]}$ A productive photocage a) is photoexcited $\left(\mathrm{FOH}^{*}\right)$ from the electronic ground state SO to the first singlet excited state S 1 and arrives in the product state $\left(\mathrm{F}^{+}+\mathrm{OH}^{-}\right)$via a conical intersection (Cl). This is possible due to a stabilized excited state and an energetically high lying product state. As such, the vertical absorption energy of the product, $\Delta \mathrm{E}_{\text {vert, }}$, is expected to be rather small. On the contrary, an unproductive photocage b) with an energetically low product does not have a Cl between S 0 and S 1 and will consequently show a large $\Delta \mathrm{E}_{\text {vert }}$. Thus, the smaller $\Delta \mathrm{E}_{\text {vert }}$, the more likely is the existence of a productive Cl channel for efficient uncaging.

Table S2: Calculated vertical excitation energies of cationic species in water.

Compound	Vertical Excitation Energies [eV]
3a (meta-Thio-cation)	2.0984
2a (Azo-cation)	1.8029
Fluorenyl-cation	1.6131
4a (ortho-Thio-cation)	1.2141
1a (para-Thio-cation)	0.7282

Table S3: NICS(0) calculations performed at the CAM-B3LYP/def2-SVP level of theory.

Compound	NICS(0) outer rings [ppm]	NICS(0) inner ring [ppm]
fluorenyl cation	7.79	29.39
2a cation	6.97	30.69
1a cation	22.67	96.83
3a cation	0.13	15.79
4a cation	7.13	46.97

5. NMR spectra of key compounds

\infty}\infty\infty\infty\infty\infty\infty\infty\infty\infty\infty\dot{~
\infty}\infty\infty\infty\infty\infty\infty\infty\infty\infty\infty\dot{~

\downarrow

∞
\bullet
\vdots

6
\cdots
\cdots
\cdots
\cdots

 11

6. Mass spectra of key compounds

C:IUserl...|2021119.01.2021 INK27_F11
NK27_F11\#1-11 RT: 0.00-0.45 AV: 11 NL: 2.77E6
T: FTMS + p MALDI Full ms [200.00-600.00]

C:IUserl...|2021\19.01.2021\NK53_G12
NK53_G12\#1-15 RT: 0.00-0.63 AV: 15 NL: 1.97E6
T: FTMS + p MALDI Full ms [200.00-600.00]

NK03_D2\#1-20 RT: 0.00-0.85 AV: 20 NL: 5.55E3
T: FTMS + p MALDI Full ms [200.00-600.00]

C:IXcalibur|datalNK09

NK22_D6 \#1-17 RT: 0.00-0.72 AV: 17 NL: 7.90E4
T: FTMS + p MALDI Full ms [200.00-600.00]

NK18_D5 \#1-15 RT: 0.01-0.64 AV: 15 NL: 6.79E5
T: FTMS + p MALDI Full ms [200.00-600.00]

NK36_F12\#1-16 RT: 0.00-0.68 AV: 16 NL: 1.24E6
T: FTMS + p MALDI Full ms [200.00-600.00

NK41_G4 \#1-12 RT: 0.00-0.50 AV: 12 NL: 9.74E5
T: FTMS + p MALDI Full ms [200.00-600.00]

C:IUserl...|2021\14.01.2021 WK49_D11 1/14/2021 6:12:52 PM NK49 mit HCCA gemessen.
NK49_D11 \#1-14 RT: 0.00-0.59 AV: 14 NL: 5.89E5

C:IUserl...|2021\14.01.2021\NK54_E1
1/14/2021 6:15:49 PM NK54 mit HCCA gemessen.
NK54_E1 \#1-12 RT: 0.00-0.48 AV: 12 NL: 8.73E4
T: FTMS + p MALDI Full ms [200.00-600.00]

7. References

[1] M. Reinfelds, V. Hermanns, T. Halbritter, J. Wachtveitl, M. Braun, T. Slanina, A. Heckel, ChemPhotoChem 2019, 3, 441-449.
[2] C.-J. Sun, P.-F. Wang,H. Wang, B.-H. Han, Polym. Chem. 2016, 7 (31), 5031-5038.
[3] J. Shi, W. Zhao, L. Xu, Y. Kan, C. Li, J. Song, H. Wang, J. Phys. Chem. C 2014, 118 (15), 78447855.
[4] A. Rajca, M. Miyasaka, M. Pink, H. Wang, S. Rajca, J. Am. Chem. Soc. 2004, 126 (46), 1521115222.
[5] P. Willot; L. De Cremer, G. Koeckelberghs, Macromol. Chem. Phys. 2012, 213 (12), 1216-1224.
[6] M. Reinfelds, J. v. Cosel, K. Falahati, C. Hamerla, T. Slanina, I. Burghardt, A. Heckel, Chem. Eur. J. 2018, 24, 13026-13035.
[7] A. T. Buck, C. L. Beck, A. H. Winter, J. Am. Chem. Soc. 2014, 136, 8933-8940.

