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Motivation

Recently, a new class of systems for shared and

collaborative data management has gained

more and more traction. Examples of such sys-

tems include Veritas (Allen et al., 2019),

BlockchainDB (El-Hindi et al., 2019), FalconDB

(Peng et al., 2020), and Spitz (Zhang et al., 2020).

Compared to classical database management

systems (DBMSs) that are designed to be used

by a single party, these systems enable multiple

parties to manage a shared database (DB) in a

collaborative manner. For example, think of a

shared database for medical patient records. It

would allow hospitals and doctors to directly

share and modify patient data to keep track of

diagnoses and treatments a patient received.

Clearly, shared DBs provide many opportunities

not only in the medical domain (e.g., for large-

scale epidemic studies), but also for many other

fields where access to a shared DB enables

more effective collaboration or new use cases

(e.g., in the financial domain or supply chains).

However, unlike classical DBMSs, systems for

shared data need to provide additional guaran-

tees to ensure the integrity of data and transac-

tion execution, called verifiability guarantees.

The main reason for this is that when manipu-

lating a shared DB in a collaborative way, there

is often mutual distrust between the different

parties that jointly access the shared DB since

they often have different interests (e.g., think of

an insurance company and a hospital that use a

shared database for medical records). Hence,

the goal of the verifiability guarantees is to gov-

ern the shared database, i.e., to guarantee that

the shared database is only modified based on a

predefined and agreed upon set of transactions

that every party adheres to and that none of the

parties can tamper with the data.

If we now look at how existing systems for

shared data (such as those mentioned at the

beginning) provide verifiability, we can observe

that these systems typically take a very imple-

mentation-centric approach and often do not

integrate well with the ACID guarantees of clas-

sical DBMSs. Also, the concrete verifiability

guarantees that existing systems provide vary

significantly and are hard-baked into their exe-

cution model.

Vision

In this paper, we propose to take a more princi-

pled and more database-centric approach to

provide verifiability for shared data systems. We

present the main concept behind our system,

TRUSTDTBLE, which is to extend the ACID prop-

erties used by classical DBMSs with a new

verifiability component resulting in the ACID-V

properties. Similar to the other components in

ACID, such as the well-known isolation property,

TRUSTDBLE allows to specify the guarantees of

verifiability in a declarative manner using differ-

ent verification levels (i.e., strict or more loose).

We believe that extending the ACID properties

with verifiability is not only a natural fit and gives

applications well-defined guarantees, but it also

enables a new class of shared DBMSs that

decide based on the verification level what opti-

mizations and concrete execution strategies are

required for the desired guarantees.

From ACID to ACID-V

Adding the V to ACID. In classical databases,

transactions are governed by the ACID proper-

ties. As mentioned before, the concrete proper-

ties that should be satisfied can be defined

declaratively and are implemented by databas-

es in various ways. For example, for the I(sola-

tion) in ACID, a user can declare the specific

isolation level (e.g., read committed, serializ-

able) that a transaction should run under. This

isolation level is, then, guaranteed by a data-

base through its concurrency control scheme

(e.g., optimistic or pessimistic). Similarly, we

propose to add a new verifiability property that a

user can specify declaratively and that database

systems can implement in different ways.

Looking at verifiability from a conceptional per-

spective allows to reason about the guarantees

a system provides independent from imple-

mentation details.

To add the V to ACID, we extend the classical

transaction state model of ACID-compliant

DBMSs by a verified state. For simplicity, Figure 1

visualizes the extended state model for ACID-V

for the case in which all nodes in a shared

DBMS act honestly. We will discuss malicious

behavior in follow-up work. In our state model,

a transaction can only reach the verified state

after it reached the committed state.
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Modeling verified as a state that follows the com-

mitted state has several advantages. First, since

verification is typically an expensive step, the

model leaves some freedom when the transition

from committed to verified happens (i.e., directly

after the commit or deferred). Moreover, it en -

ables the user to declare which state is allowed

to be read by other transactions (e.g., if commit-

ted, but unverified can be read or if all state must

be verified before becoming visible). Second, the

verified state is an optional state as shown in

Figure 1, i.e., not all committed transactions need

to be verified, which allows partial verification to

reduce the overhead introduced by verification.

Verification Levels. While a formal definition of

ACID-V and a more complete discussion of pos-

sible verification levels are out of scope for this

paper, in the following, we show how a first set of

different verification levels can be defined based

on the state model we introduced before. Based

on this, we will discuss what implications differ-

ent verification levels can have on the integrity of

data/execution and a system’s performance.

Strict Verification (SV): This verification level

requires that all transactions need to be verified.

Moreover, all transactions are allowed to read

only verified state. A similar guarantee can be

provided by the online verification schemes of

existing systems such as Veritas and Block -

chainDB which guarantee that the result of a

transaction is verified before becoming visible to

other transactions. In terms of transaction exe-

cution, this level implies that transactions

should transition from the committed state to

verified as fast as possible. Otherwise, this can

lead to low performance or in worst case starva-

tion (i.e., if there are too many unverified trans-

actions). Clearly, strict verification, thus, has a

high overhead and might lead to inferior per-

formance when compared to more relaxed levels

that we discuss below.

Unstrict Verification / full (UV-f): Compared to

the previous level, UV-f is a more relaxed verifi-

cation level since it allows transactions to read

from committed but not yet verified state. That is,

even if the verification of a transaction is still

pending, other transactions can access its com-

mitted state. However, all transactions are still

being verified (hence, it is called full) and unsuc-

cessful verification in case of malicious behavior

needs to be handled. In contrast to the SV level,

though, this makes room for different optimiza-

tions. Most importantly, transactions are not

blocked by potentially expensive verification pro-

tocols since verification can be executed in

batches and in a deferred manner. This is similar

to deferred verification schemes available in

existing systems.

Unstrict Verification / partial (UV-p): This verifi-

cation level relaxes the guarantees of the previ-

ous level (UV-f) even further. Similar to UV-f,

transactions are allowed to access committed,

but unverified state. Further, in partial unstrict

verification (UV-p), we do not enforce that all

transactions need to be verified. Consequently,

this verification level assumes that verified is an

optional state of a transaction. In this level, a

user can, thus, explicitly request to verify only a

subset of transactions. Hence, UV-p could be

used to limit the verification overhead to some

(e.g., important) transactions or to provide prob-

abilistic guarantees by verifying only a sample of

all transactions.

Conclusion and Future Directions

In this paper, we presented our vision for TRUST-

DBLE as an ACID-V-compliant DBMS for data

sharing. As a core contribution, we propose to

specify the guarantees of verifiability in a declar-

ative manner and let the DBMS decide what opti-

mizations and concrete execution strategies are

best suited to meet the guarantees of a particular

verification level. We think that the model of ACID-

V-compliant DBMSs can trigger many follow-up

work. For example, the verification levels pro-

posed in this paper are just an initial direction

and a more profound discussion of what levels

data sharing applications actually need is

required. Further, similar to isolation levels that

have triggered different implementation strate-

gies, we think ACID-V will also enable a wide

variety of different implementation strategies to

achieve the desired guarantees of verification.
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Figure 1: Simplified State Model for ACID-V (the classical transaction state model is extended with a verified state)
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