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Gutachter: Dr. Tatjana Tchumatchenko

Prof. Dr. Jochen Triesch

Datum der Disputation: 20.09.2021



3

Deutsche Zusammenfassung

Das Ziel dieser Arbeit ist es, die Verteilung von Proteinen und anderen dendritischen Bestandteilen

im Dendritenbaum zu verstehen. Zunächst werde ich einen Überblick über den Aufbau der Ar-

beit bieten und dann die wichtigsten Ergebnisse schildern. Erstens beschreibe ich verschiedene

Transportmechanismen und ermittle für jeden von ihnen die Proteindichte, siehe Abschnitt 2.

Zweitens, in dem dritten Abschnitt, werde ich die Lösungen der in Abschnitt 2 abgeleitete Dif-

fusionsgleichung verwenden, um die minimale Anzahl von Proteinen abzuleiten, die das Neuron

produzieren muss, um mindestens ein Protein in jedem Mikrometer des Dendriten bereitzustellen.

Diese Proteinmenge wurde als ”Proteinbedarf” bezeichnet.

In Abschnitt 3, habe ich gezeigt, dass der ”Proteinbedarf” für einen Dendritenbaum mit

einem einzelnen Ast ein Minimum erreicht für einen bestimmten Wert von R1/R2. Der R1 Wert,

der den Proteinbedarf minimiert, wurde als ”optimaler Radius” definiert. In Abschnitt 4, habe

ich eine explizite Relation gefunden, um die optimalen Radien zu finden. In Abschnitt 5, habe

ich die Morphologie von drei Klassen von Dendriten analysiert: kultivierte hippocampale Neu-

ronen, pyramidale Neuronen aus dem präfrontalen Cortex und stomatogastrische Neuronen des

Krebses. Für jede Dendritenart habe ich die Radienstatistiken in der Umgebung der dendritischen

Verzweigungen untersucht. Dann habe ich die Informationen über die Radien benutzt, um den

Anteil der Proteine zu quantifizieren, die sich vom Soma wegbewegen. Ich habe dies mit einem

Parameter quantifiziert, den ich ”Wahrscheinlichkeitsverhältnis” benannt habe. In Abschnitt 6,

habe ich die Vorhersage des Wahrscheinlichkeitsverhältnisses von kultivierten Neuronen mit dem

Fluoreszenzverhältnis verglichen, das durch die Analyse des Fluoreszenzsignals von zwei Arten

von Proteinen erhalten wurde: GFP und GFP::Nlg. GFP, grün fluoreszierendes Protein, ist ein

lösliches Protein, das im Zytoplasma diffundiert. GFP::Nlg, Neuroligin, assoziiert mit GFP, ist

ein membran-assoziiertes Protein, das auf der Zellenoberfläche diffundiert.

In Abschnitt 7, habe ich die Informationen über die Radien und die Länge des Dendriten

eines pyramidalen Neurons benutzt, um die in Abschnitt 4 erhaltene Optimalitätsregel auf reale
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Morphologien anzuwenden. Ich benutzte diese Relation, um die Verteilung der Diffusionslänge

zu erhalten, für die die Verzweigungen optimisiert sind, und ich verglich diese Verteilung mit

der von existierenden Proteinen. In Abschnitt 8, habe ich die in Abschnitt 2 erhaltene Verzwei-

gungsregel sowie die Optimalitätsregel aus Abschnitt 4 angewendet, um die Verteilung der Pro-

teine im Gleichgewicht für drei Neuronenklassen zu berechnen. Die Simulationen wurden unter

Annahme der in Abschnitt 7 diskutierten Diffusionskoeffizienten und Halbwertszeiten durchgeführt.

In Abschnitt 2, habe ich mehrere dendritische Transportmodelle untersucht und für jedes

eine analytische Lösung und die Verteilung der Proteine im Gleichgewicht angegeben. Das ein-

fachste dieser Modelle beinhaltet rein diffuser Transport, bei dem alle Proteine im Soma syn-

thetisiert werden, siehe Kap 2.1. Anschließend habe ich aktiver Transport miteingeführt; ein von

Nervenzellen benutztes Mechanismus, um schnell Proteine und andere dendritische Komponen-

ten im Dendritenbaum zu transportieren. Dies erfolgt, indem das Neuron molekulare Motore

einsetzt, Enzyme, die chemische Energie in mechanische Arbeit umwandeln, um die moleku-

laren Ladungen entlang der Mikrotubuli zu ziehen. Unter Verwendung der Arbeit von Bressloff

[1] habe ich aktiver Molekültransport entweder als einen erhöhten Diffusionskoeffizienten mod-

elliert oder als einen zusätzlichen Term in der Diffusionsgleichung: v∂ρ

∂x .

Danach habe ich das Verhalten eines Proteins an einer dendritischen Verzweigung model-

liert: Ich stellte die Hypothese auf, dass die Wahrscheinlichkeit, sich in eine der beiden Richtun-

gen zu bewegen, vom verfügbaren Raum in dieser Richtung abhängt, entsprechend:

fi =
Rγ

i

Rγ

0 +Rγ

1 +Rγ

2
, (1)

wobei γ die Anzahl der Dimensionen darstellt, die das Protein bei seiner Diffusion minus eins

erkundet; γ = 1 für die Proteindiffusion auf der Oberfläche des Neurons, γ = 2 für die Proteindif-

fusion im Zytoplasma des Neurons; R0 ist der Radius des Mutterdendriten, und R1, R2 sind die

Radien der beiden Tochterdendriten.

In Abschnitt 3, habe ich die Proteinanforderung als die minimale Anzahl von Proteinen
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definiert, die das Neuron in den Dendriten einbringen muss, damit sich mindestens ein Protein

pro Mikrometer des Dendriten befindet. Ich habe gezeigt, dass Proteinbedarf minimiert wird,

wenn ein Protein nur diffundieren kann und mit einer konstanten Rate in den Dendritenbaum

übersetzt wird. Ein anderes Modell mit einem geringen Proteinbedarf entsteht, wenn die mRNAs

aktiv in Dendriten transportiert werden und das Protein nur diffundiert. Der Vorteil eines gerin-

geren Proteinbedarfs ist jedoch damit verbunden, dass auch die mRNAs im dendritischen Baum

transportiert werden.

Für einen festen Wert der Länge der Tochterdendriten werden L1 und L2 sowie der Pro-

teinbedarf durch ein bestimmtes Verhältnis der Tochterradien minimiert, entsprechend mit

cosh(L1/λ)

cosh(L2/λ)
=

Rγ

1

Rγ

2
, (2)

wobei λ die Diffusionslänge des Proteins ist, wie in Abschnitt 4 diskutiert und analysiert.

Wenn die Radien der Mutter- und der Tochterdrite bekannt sind, kann man mit Hilfe von

Gleichung 1 den Anteil der Proteine berechnen, die sich in jede Richtung bewegen. Wenn die

Gesamtoberfläche nach dem Verzweigungspunkt größer ist als die Gesamtoberfläche vor dem

Verzweigungspunkt, diffundiert mehr Oberflächenprotein in die Tochterdriten. Ähnlich passiert

es, wenn das Gesamtvolumen nach dem Verzweigungspunkt höher ist als das Gesamtvolumen vor

dem Verzweigungspunkt, denn dann diffundieren lösliche Proteine eher vom Soma weg. Ich habe

diese Eigenschaft mit einem Parameter quantifiziert, den ich als ”Wahrscheinlichkeitsverhältnis”

benannt und folgendermaßen definiert habe:

Q γ

P =
Rγ

1 +Rγ

2

Rγ

0
. (3)

Da die Tochterradien für den Proteinbedarf in verzweigten Dendriten sehr wichtig sind,

habe ich in Abschnitt 5 drei Datensätze von Neuronen analysiert, um ihre Radienstatistiken zu

untersuchen und zu verstehen, wie sich das Protein durchschnittlich an ihren Verzweigungen ver-
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haltet. Der erste Datensatz, den ich betrachtete, bestand aus 67 Verzweigungen in kultivierten

Hippocampus-Neuronen. Bilder dieser Neuronen wurden von einer unserer Mitarbeiter, Anne-

Sophie Hafner, erfasst. Der zweite Datensatz enthielt 68 Verzweigungen von pyramidalen Neuro-

nen aus dem präfrontalen Kortex; Bilder dieser Neuronen wurden von unserem Kooperationspart-

ner Ali Karimi erfasst. Der dritte Datensatz ist ein publizierter Datensatz, der 252 Verzweigungen

von Neuronen aus den stomatogastrischen Ganglien des Krebses enthält, [2].

In Abschnitt 6, habe ich das Fluoreszenzsignal von zwei fluoreszierenden Proteinen analysiert:

GFP und GFP::Nlg vor und nach dem Verzweigungspunkt im Dendrit. GFP, grün fluoreszierendes

Protein, ist ein lösliches Protein, das im Zytoplasma diffundiert. GFP::Nlg, Neuroligin, assoziiert

mit GFP, ist ein membran-assoziiertes Protein, das auf der Zellenoberfläche diffundiert.

Die Fluoreszenz der Proteine in der transfizierten kultivierten Nervenzelle wurde in einem

kleinen Intervall um eine Verzweigung herum gemessen und integriert, wodurch ich das Verhältnis

der Fluoreszenz nach und vor der Verzweigung berechnen konnte:

QF =
F1 +F2

F0
. (4)

Dann habe ich das Wahrscheinlichkeitsverhältnis von kultivierten Neuronen verglichen:

1.45 (IQR: 1.27− 1.65) und 1.12 (IQR: 0.87− 1.37) für Oberflächen- bzw. zytoplasmatisches

Protein, mit dem Fluoreszenzverhältnis von kultivierten Neuronen: 1.32 (IQR: 1.08− 1.71) und

1.16 (IQR: 0,88− 1.41) für Oberflächen- bzw. zytoplasmatisches Protein.

In Abschnitt 7, habe ich die Diffusionslänge von 26 existierenden Proteinen mit den Dif-

fusionslängen verglichen, die ich durch der Umkehrung von Gleichung 2 erhalten habe. Diese

Diffusionslängen stellen die Diffusionslänge dar, für die der Verzweigungspunkt optimiert ist. In

Abb. 23 habe ich gezeigt, dass die Verteilung der Diffusionslänge dieser existierenden Proteine

einen höheren Median hat als die optimierten Diffusionslängen besitzen. In Abb. 23-E ist zu

sehen, dass Proteine mit einer größeren Diffusionslänge als optimal, geringere Kosten in Form

von zusätzlich benötigten Proteinen verursachen als Proteine mit einer kleineren Diffusionslänge.
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In Abschnitt 8, habe ich die Diffusion von Oberflächen- und Zytoplasmaproteinen in drei

Arten von dendritischen Morphologien simuliert: Pyramidal-, Purkinje- und Granularzellen. Die

Morphologien wurden der Online-Datenbank ”Neuromorpho” entnommen, [3]. Für jede Zel-

lenart habe ich zwei verschiedene Diffusionslängenwerte erhalten: λ = 109µm und λ = 473µm.

Der erste ist der Median der Diffusionslänge, die aus Gl. 2 für Oberflächenproteine erhalten

wurde, und der zweite ist die Diffusionslänge einer Untereinheit der GABA-Rezeptoren. Für

jede Morphologie habe ich auch zwei Extremalregeln für die Radien in Betracht gezogen: als

Null-Hypothese habe ich angenommen, dass jeder Zweig symmetrisch ist und die Radien der

beiden Tochterdendriten sind: R1 = R2 = 0,74R0. Zuletzt verglich ich den Proteinbedarf für

diese symmetrischen Zweige mit dem, den ich erhielt, indem ich annahm, dass jeder Zweig den

optimalen Radius besitzt. Um die optimalen Radien im gesamten dendritischen Ast zu erhalten,

habe ich die Verallgemeinerung von Gl. 2 verwendet, die in Abschnitt 4.2 beschrieben wird.

Schließlich habe ich den aus den verschiedenen Modellen erhaltenen Proteinbedarf mit

einer Schätzung der Gesamtzahl der Proteine in den Dendriten verglichen: N = 6 109. Dies zeigt,

dass bei der Optimierung von Radien der aktiver Transport ein zuverlässiges Mechanismus ist,

um Proteine in distale Dendriten zu transportieren.

pyramidales 95% Anteil an der Gesamtmenge dendritischer Proteine
λ = 108 Zytoplasma, Symm 2.9 1010 480%
λ = 473 Zytoplasma, Symm 1.2 109 20%
λ = 108 Oberfläche, Symm 4.8 108 8%
λ = 473 Oberfläche, Symm 3.6 106 0.06%
λ = 108 Zytoplasma, Opt 1.7 106 0.03%
λ = 473 Zytoplasma, Opt 6.2 104 0.001%
λ = 108 Oberfläche, Opt 1.2 106 0.02%
λ = 473 Oberfläche, Opt 3.4 104 0.006%

Table 1: Übersicht des Proteinbedarfs, Proteinbedarf zur Versorgung von 95% der pyramidalen
dendritischen Bäume und Anteil an der Gesamtmenge dendritischer Proteine.
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Abstract

Neurons are cells with a highly complex morphology; their dendritic arbor spans up to thousands

of micrometers. This extended arbor poses a challenge for the logistics of neuronal processes:

mRNA, proteins, and organelles have to be transported to dendrites, hundreds of micrometers

away from the soma. This thesis aims to calculate the minimum number of proteins needed to

populate the dendritic trees for different scenarios.

In chapter 2, I analyzed the ability of different mechanisms to populate the dendritic arbor.

I started from the solution of the diffusion equation in Sec. 2.1, then I included the contribution

of active transport in Sec. 2.2 and showed how it could have either the effect of increasing

the effective diffusion coefficient or of introducing a bias in the diffusion process. In Sec. 2.3

I studied the spatial distribution of locally synthesized protein, accordingly with actively and

passively transported mRNA. In Sec. 2.5, I derived the boundary condition for branches showing

a qualitatively different behavior of surface and cytoplasmic proteins induced by the medium’s

dimensionality in which they diffuse.

In chapter 3, I introduced the concept of protein requirement, defined as the minimum num-

ber of proteins that the neuron needs to produce to provide at least one protein to each micrometer

of the dendritic arbor. In Sec. 3.1, I derived the protein requirement for diffusive proteins for

somatic translation and constant translation in the dendritic arbor. In Sec. 3.2, I analyzed numer-

ically the protein requirement in the case of actively transported protein synthesized in the soma,

and, in Sec. 3.3, in the case of actively transported proteins synthesized in the dendritic arbor. In

Sec. 3.4, I analyzed the protein requirement of protein synthesized in the dendrite accordingly

with the distribution of mRNA described in Sec. 3.3 and 3.2. In Sec. 3.5, I derived the protein

requirement for a single branch and purely diffusive proteins.

In chapter 4, I analyzed the relation between the radii of the three afferent dendrites in a

branch, their length, and the diffusion length of a protein. In Sec. 4.1 I derived the optimal ratio

between the radii of the daughter dendrites that minimizes the protein requirement. In Sec. 4.3
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I introduced the 3/2− Rall Rule and in Sec. 4.5 its generalization. Finally, I used those rules to

estimate the fraction of proteins diffusing away from and toward the soma.

In chapter 5, I analyzed the radii distribution for three categories of neurons: cultured

hippocampal neurons in Sec. 5.1, stomatogastric ganglia neuron in Sec. 5.2, and 3DEM recon-

structed prefrontal pyramidal neurons in Sec. 5.3. For each of these three classes, I analyzed

the distribution of radii, Rall exponents, and the probability ratio. For most of them, I found that

the probability of a protein diffusing away from the soma is higher for surface proteins than for

cytoplasmic ones. I quantified this with a parameter called surface bias.

In Chapter 6, I analyzed the fluorescent ratio imaged by our collaborators Anne-Sophie

Hafner, for a surface protein, GFP::Nlg, and a soluble one, GFP, in cultured hippocampal neurons,

and I compared the fluorescent ratio with the probability ratio obtained in 5.1, finding that they

are in good agreement.

In chapter 7, I compared the real dendritic morphologies imaged by one of our collaborators

Ali Karimi with the optimal branching rule obtained in Sec. 4.1 and I calculated the cost for not

having optimal branching radii.

Finally, in Chapter 8, I used the knowledge of the branching statistics gathered in 5.3 to

simulate the protein profile on three different classes of neurons: pyramidal neurons, granule

neuron, and Purkinje neurons. I compared the protein profile for surface and cytoplasmic neurons

for each morphology for two different values of the diffusion length: λ = 109µm and λ = 473µm,

both for optimized radii and symmetrical radii. I showed how the radii optimization reduces the

protein requirement of a factor 104 for pyramidal neurons.
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1 Introduction

Neurons are electrical cells that communicate with each other through a complex network of

axons and dendrites. Axons and dendrite are complex, branched structures that stretch up to

several centimeters the first and hundreds of micrometers the second. Like all other cells, neurons

require a steady stream of protein, mRNA, and organelles to maintain their function. The extreme

elongation of the axonal and dendritic arbor poses an additional challenge to the ability of a

neuron and other dendritic compartments to the whole dendritic arbor.

The half-life of a protein, in the order of five days, [8], is considerably smaller than the

life span of a neuron, which can live as long as a human being. Therefore, during its life, each

protein is replaced thousands of times. Despite this fast protein turnover, the connections between

neurons can retain memories for decades. In this thesis, I approached the problem of how a neuron

can keep providing a steady supply of proteins to each of its compartments.

The three main strategies to have proteins available in distal dendrites are to produce them

in the soma and let them diffuse and explore the dendritic freely, they could be attached to a set

of molecular motor and being actively transported in dendritic trees, or they could be produced

in the dendrites. Having a constant distribution of mRNA in the dendritic trees is the option

that minimizes the protein required by the neuron to populate it, but it opens to the problem of

transporting mRNA in dendrites; mRNAs, when compared to proteins, have a lower half-life, in

the order of few hours.

In sec 1.1 I gave a short description of the principal neuronal components involved in

protein transport, and in Sec. 1.2 I gave an overview of the main mechanisms available to the

neuron to transport proteins, mRNA, and other neuronal components.

1.1 Neuronal components

Neurons and glia are the two primary components the nervous system. The role of glia is mostly

supportive of the neuronal functions, ranging from providing a scaffolding that keeps neurons in
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place to controlling the inflammatory response to providing nutrients to neurons [9, 10]. Neurons

(see Fig. 1) are the main actors responsible for neuronal computation; they are composed of

three main components: the soma, where the nucleus of the cell is, the dendrites, and the axons.

The three components are responsible for three distinct tasks, the soma is needed to produce the

majority of the neuronal machinery, the dendrites to are needed to receive and integrate excitatory

and inhibitory inputs from other neurons, and axons are responsible for transmit the outgoing

signal to other neurons.

Figure 1: Diagram of the Neuronal Structure Diagram of the Neuronal Structure, with the
names of its principal components. Image source: work by BruceBlaus, via Wikimedia Commons
(Creative Commons).

1.1.1 The Soma

The soma is the central compartment of the neuron; it is approximately spherical, with a diameter

of approximately 20µm. A bilipidic layer surrounds the soma, separating it from the external

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
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Figure 2: Dendritic Structure: original drawing Examples of dendritic morphologies, A) Purk-
inje cells, B) Granule cells. Image source: draw by Ramon y Cajal, Madrid 1899.

environment; inside the membrane, there is the cytoplasm, the solution containing nutrients, pro-

teins, and other neuronal structures and organelles. The main neuronal structures in the soma are

the nucleus, the smooth and rough endoplasmic reticulum, and the Golgi apparatus.

The main task of the endoplasmic reticulum is to synthesize lipids and proteins; the exter-

nal side of the rough endoplasmic reticulum is rich in ribosomes. For a long time, it has been

thought to be the only source of proteins in the neuron. At the end of the 90s, evidence started to

accumulate suggesting that proteins were also assembled inside the dendritic arbor [11].

1.1.2 Dendrites

The dendrites are the apparatus that the neuron uses to receive signals from other neurons. It

presents a highly diverse and stereotyped morphology that has been used to classify neurons, see

Fig. 2. Different classes of neurons have different typical dendritic trees: granule cells have

a dendritic arbor spanning a hundred micrometers, while pyramidal neurons can reach up to
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thousands of micrometers. Neurons use different morphologies to collect input from a specific

area of the brain. A typical example are Purkinje cells [12], their dendritic tree is a planar and

highly symmetrical morphology with up to 20-30 consecutive branches [3].

A dendrite is a pipe-like structure where a cylindrical bilipidic layer surrounds the internal

cytoplasm. Mature dendrites present extrusions called spines. there are approximatly 0.5-2 spines

per micrometer, [13]. Spines are almost isolated neuronal compartments that host synapses, the

connection between neurons.

The radius of a dendrite in the brain spans from 0.1µm in granule cells to few micrometers

in basal pyramidal dendrites, [14]. Some classes of neurons, like the neurons in the stomatogas-

tric ganglia of crabs, have a very disordered structure, where some of the radii can reach 50µm

micrometer, [2]. The length of a dendrite can refer to either the distance between the soma and

the dendritic tip or the distance between two consecutive branches. In this thesis, I used the latter

definition of length.

The surface of a dendrite is composed of a bilipidic layer like the one that surrounds the

soma, and inside the cytoplasm contains many of the same organelles and structures. For exam-

ple, the endoplasmic reticulum is the largest structure inside the dendritic tree, followed by the

mitochondria. Other organelles that play an essential role in dendritic functioning are ribosomes,

lysosomes, and proteosomes.

Dendrites integrate the signal from presynaptic neurons and transmit it to the juncture be-

tween the soma and the axon, called axon hillock, where an action potential is initiated and

transmitted to postsynaptic dendrites. To do so, the dendrite needs to stretch and branch to be

able to meet presynaptic axons. The morphology that a neuron can assume to connect to a fixed

set of the presynaptic axon is explored in [15]. The authors explained the different types of mor-

phologies that neurons exhibit by balancing maximizing the signal transmission from the synapse

to the soma and minimizing the wiring cost of the dendrite.
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1.1.3 Axons

Axons, along with dendrites, are a structure unique to neurons. While the role of dendrites is to

receive and integrate the signal, the role of the axons is to transmit action potentials to postsynap-

tic neurons. The axon starts at the soma, in a region called axon hillock. For years the hillock has

been thought to be the place where the somatic action potential was initiated.

After the initial segment, the axon can be surrounded by a protective membrane formed

by astrocytes called myeline. Myeline helps with the physical and electrical insulant from sur-

rounding electric signals. The axon often splits and branches in a complex tree; each sub-branch

is called telodendria. At the end of each telodendrion, there is an axon terminal where synaptic

vesicles containing neurotransmitters are located. The total length of an axonal tree can be even

longer than a meter, like in the human sciatic nerve [16]. In recent years it has been observed that

somatic action potentials are initiated in the initial segment, the area between the axon hillock

and the first unmyelinated segment of the axon.

1.1.4 Endoplasmic Reticulum

The endoplasmic reticulum, ER, in cells is principally responsible for synthesizing lipids and

cholesterols. In neurons, it also assumes an important role in protein transport. The ER is consti-

tuted by an irregular network that effectively connects the whole neurons, from the soma to the

distal dendrites, to the axon, and it even enters in synapses, playing a role in synaptic stabiliza-

tion [17]. The presence of ER in dendrites correlates with the spine density, [18], and it acts as a

reservoir of proteins in dendrites, [19] providing membrane proteins, such as glutamate receptors,

in dendrites [20]. A 3DEM reconstruction of the SER in dendrites is shown in [21].

1.1.5 Microtubules and Molecular Motors

Microtubules and actins are two types of microfilaments that constitute the cytoskeleton of a

neuron. As such, they are a key component of maintaining the external structure of a cell. In
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Figure 3: Infographic of tubulin and Microtubules dynamic This figure shows the micro-
tubules structure, and its most important parameters. Adapted from Wikipedia Common (Creative
Commons), the data showed are summarized from [22, 23, 24, 25, 26, 27].

addition to that, they play an essential role during dendritogenesis, leading the growth direction

of both dendrites and axons.

Microtubules are a polymer of tubulin α and tubulin β organized in a repetitive pattern, see

Fig. 3. Microtubules show a characteristic orientation, and as shown in Fig. 3, the side with the

β-tubulin exposed is referred to as ”plus-end”, while the other as ”minus-end”. Microtubules are

involved in transporting protein and organelle together with a class of enzymes called molecular

motors.

The two relevant super-families of molecular motors that bind to microtubules are kinesins,

and dyneins [28]. A third family of molecular motors, myosins, binds on actins, another type of

microfilaments. Microtubules are involved in the transport processes across the dendrites and

the axons. For this thesis’s scope, actins are involved only with the active transport inside the

synapses.

As schematized in Fig. 3, the plus-end of a microtubule is highly dynamic, while the

minus-end is much more stable. The growth rate of microtubules is particularly relevant during

https://commons.wikimedia.org/wiki/File:Tubulin_Infographic.jpg
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dendritogenesis, ranging from 0.6 µm/min to 3 µm/min, while the shrinking rate can reach up

to 30µm/min. There are genes for 17 distinct types of tubulin in Humans; further complexity is

achieved by post-translational-modifications, PTMs, like acetylation, that stabilizes the plus-end

of microtubules. Other modifications to the microtubules can be achieved using Microtubule-

associated-proteins MAP; for example, Katanin, Spastin, and Fidgetin cut the microtubule, MAP2

limits the binding of Kinesin-1 to microtubules and its speed, while MAP-7 increases the motility

of Kinesin-7.

In axons, microtubules grow parallel and with the same orientation as the ones already

there. One of the main actor responsible for this alignment is the protein, γ−TuRC. Conversely,

in dendrites, the microtubule orientation is more randomized, with a 50% plus-end-out and 50%

minus-end-out in proximal dendrites [29].

Molecular motors are the second main ingredient necessary to explain the fast transport

of neuronal components in axons and dendrites. In Humans, there are 45 genes that code for

different kinesins, divided into 14 sub-groups. While there are nine families of dyneins in eu-

karyotes [30]. Different molecular motors have different velocities and affinities to microtubules.

In general, kinesins travel to the plus-end of the microtubule and dyneins toward its minus end.

The neuron can use the different specificity of molecular motors to microtubule to ship a

specific cargo. Kinesin-1, for example, does not enter into dendrites, while Kinesin-3 enters both

in dendrites and axons. More information about microtubules and molecular motor properties can

be found in Burute’s review: [28].

1.2 Neuronal Transport

Like every other type of cell, a neuron requires a steady amount of proteins and organelles to

survive and sustain its functions. The total number of proteins in a neuron can be estimated to

16 ·109 proteins in a pyramidal cell. To obtain this value, I multiplied the estimated protein density

found in [31], ρV = 2− 4 · 106 proteins/µm3, with the estimated volume of a pyramidal neuron
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obtained from [32]. 5.3 · 103µm3. I obtained the volume estimation by adding the estimated

volumes of soma, axons, and dendrites.

Under the assumption that the dendrites are ideal cylinders, the dendritic volume is ob-

tained by multiplying their average length, Ld = 3.08mm , and their average radius rd = 0.45µm.

Therefore, the average dendritic volume is: Vd = 2 · 103µm3. Similarly, the average axonal vol-

ume is obtained by the average length, La = 10−40mm and the average radius ra = 0.15, leading

to an average axonal volume of 0.7− 2.8 · 103µm3. Finally, the somatic volume is obtained by

approximating the soma as a sphere of radius 5µm, leading to a somatic volume of Vs = 520µm3.

Because the protein density found in [31], the estimated number of proteins in the soma of a

pyramidal neuron is 1.6 109, in its dendritic tree is 6 109, and in its axonal tree 8.4 109.

Because of the typical half-life of a protein of 4-6 days, [8], each cell has to produce,

traffick and replace, N = Ntot
2T1/2
∼ 1.6 ·104 new proteins every second, of these∼ 7000 are directed

to the dendritic tree. Here I used T1/2 = 5 days and, ρV = 3 106 proteins/µm3.

Given the limited amount of proteins a neuron destinates to the dendrites, is important

to understand the upsides and shortcomings of different transport mechanisms. The three main

pathways for a protein to reach the tip of the dendritic or axonal arbor are:

1. reach that location using diffusion,

2. reach that location using active transport,

3. being synthesized in that location directly.

A new strategy has been suggested for axons in recent years: recruit proteins from external astro-

cytes, [33].

1.2.1 Unbiased Diffusion:

Diffusion was first described by Fick in 1855 [34] while studying the evolution of the concentra-

tion of salt between two water containers. Einstein and Stokes gave a mechanistic interpretation
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to Fick’s second law. They related the diffusion movement to the imbalance of the elastic colli-

sion on a rigid sphere; they proved that the diffusion coefficient of a rigid non-interacting sphere

is inversely proportional to the radius of the sphere. For this reason, small, non-interacting pro-

teins like GFP have a high diffusion coefficient, up to D = 9±2µm2/s, [35]. When describing the

movement of bigger proteins, or an organelle, the diffusion equation does not hold exactly any-

more because space is not homogeneous at the protein scale because of extra dendritic structures

like ER and mitochondria. The same is true for interacting proteins; once they bind to another

protein, the radius of the complex they form is bigger and affects the apparent diffusion coeffi-

cient. For example, Claritin-L, is a protein that plays a major role in the formation of vesicles,

and its diffusion coefficient is D = 0.0096µm2/s, see [36]. This anchoring mechanism is used in

synapses to anchor AMPA receptors to PSD-95, [37], and PSD-95 to α−Actinin [38].

Similarly, organelles and vesicles are also big enough to have a very limited diffusion co-

efficient, approximatively D = 0.0061µm2/s, [39]. The diffusion coefficient, together with the

half-life of a diffusing particle, play an essential role to understand how far it can diffuse before

being recycled: the diffusion length λ =
√

DT1/2
log(2) , represents the average distance traveled by a

protein or another neuronal component before being dismantled.

For a typical half-life of 5 days [8], the diffusion length of a proteins spans from 2500µm

for high diffusion coefficient, (D = 10µm2/s) to 25µm for proteins with low diffusion coefficients

D = 0.001µm2/s; this means that pure diffusion is a simple and suitable process to distribute

small non-interactive proteins in the dendritic tree.

A classic example of surface proteins are the AMPA-channels; an average synapse requires

60 AMPA receptors, and, considering their synaptic dwell time of 3-7 seconds, [40], their lateral

diffusion across the dendrite plays an important role in understanding their availability at the

synapses; in [41] was shown that this lateral redistribution could predict the so-called synaptic

normalization. AMPA receptors can bind an anchor protein in the synapse called PSD95, which

increases the time that an AMPA receptor spend in a synapse up to 2-4 hours, [42]
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1.2.2 Active transport

Large proteins and other dendritic components with small diffusion lengths cannot reach distal

dendritic sites only via diffusion. In order to have access to those components in distal dendrites,

the neuron must make use of other mechanisms. One of them is to use the molecular motors

described in Sec. 1.1.5. As discussed in Sec. 1.1.5, the movement of a cargo transporting either

organelles, proteins or mRNA, is driven by molecular motors. The two main families of molecular

motors have a different preferred direction along each microtubule, and also, the orientation of

the microtubules is not constant along the dendritic arbor, and the microtubules tend to organize

themself in bundles with the same orientation [28]. The resulting movement can be studied by

tagging the cargo with a fluorophore and recording their position in time with a kymograph, as

showed in [43].

Modeling active transport is a complex task, and many models have been proposed in the

past years. The mechanisms of multiple motors pushing and pulling a cargo in different directions

are often referred to as tug-of-war, a metaphor introduced in 1998 in [44] and discussed in detail

in [45, 46].

In this scenario, many molecular motors pull the same cargo in different directions, result-

ing in a chaotic behavior where the net movement alternate from retrograde to immobilized to

antiretrograde. In [47], the authors showed that both the length of a run and the net velocity of a

cargo depend upon the cargo load and the density of ATP.

While active transport has the advantage of speeding up the transport inside the dendrites,

it came with the cost of at least 125 ATP per micrometer per molecular motor [48]. The the

distribution of the length of the distance between two consecutive change of the direction of a

cargo has been modeled, in [49], as a Lèvy walk, and the authors observed that the probability

distribution of the waiting time before two movement is long-tailed.
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1.2.3 Local Translation

The third main pathway available to the neuron to have protein in distal dendrite is to synthesize

them in situ. The first indication that the mRNA found in dendrite is translated into proteins

and is required for synaptic plasticity is described in [11]. Since then, the understanding of

the importance of locally translated proteins and their role in long-term plasticity grew steadily

[50, 51, 52]. As I showed, constant availability of mRNA in the dendritic arbor, and therefore a

constant production of newly synthesized proteins, leads to a flat distribution of proteins in the

dendritic arbor and minimizes the protein requirement in the dendrite.

The minimization of the protein requirement comes with the cost of needing to transport

mRNA into the dendritic arbor. This can happen with the two main methods described above,

either active or passive transport. The additional level of difficulty for mRNA is its lower half-

life; mRNA half-life ranges from 140 minutes for arc mRNA [53], an mRNA transported into a

single tagged synapse, [54], to 7 hours for more stable mRNA, like the b-globin mRNA [55], to

10.5 hours reported in [56].

In [57], the authors explore the problem of how a dendrite can function stably despite the

small number of available mRNA in dendrites and the consequent higher expected variability

in the protein availability. The scarsity of mRNA in dendrites allows only a fraction of spines

to undergo local translation, and they suggested that this would induce a selectivity of which

synapsis have access to long term plasticity.

To understand the local translation in dendrites and synapses is essential to consider the

ribosomes, the machinery needed for protein translation. The amount of ribosomes in synapses

of a hippocampal neuron varies from zero to eight ribosomes per synapse [54], allowing different

synapses to react and adapt to stimuli in distinct ways.
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2 Protein Density

2.1 Diffusion equation

The diffusion equation is a partial differential equation of the first order in time and second order

in space that can be used to describe many different physical phenomena. It was first introduced

by Adolf Fick in 1855 [34] to describe the evolution of the concentration of salt between two

water containers. The First Fick’s Law describes the flux of the soluble salt in water:

Φ(x) =−D
dρ(x)

dx
. (5)

The second Fick’s Law is what today is referred to as diffusion equation, and states the temporal

evolution of the density of a diffusing species in a media:

∂ρ(x, t)
∂t

= D
∂2ρ(x, t)

∂x2 . (6)

An alternative formalization of the diffusion equation starts from the continuity equation:

d
dt

ρ(x) =−∇ ·Φ(x)+K1 (x)−K2 (x) , (7)

where K1 (x) is the source term, while K2 (x) is the sink term.

Integrating Eq. 7 over an interval dx, its left side represents the variation of the density

ρ(x, t), in time, and the right side of it represents how many proteins are entering into x,x+ δx

minus the ones that are leaving the same interval, plus the number of objects that are produced

in it, minus the ones that are destroyed at the same location. By setting K1 = K2 = 0, the second

Fick’s Law can be obtained using the continuity equation and by imposing the flux described in

the first Fick’s law.
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A more general definition of the flux that includes a velocity term is:

Φ(x, t) =−Dρ
′ (x, t)− vρ(x, t) , (8)

leads to more general diffusion equations like the the convection-diffusion equation also called

diffusion with drift.
dρ(x)

dt
= D

d2ρ(x)
dx2 + v

dρ(x)
dx

. (9)

2.1.1 Diffusion on the ER: Fractal and Random Walk Dimensions

One of the main assumptions underlying the diffusion equation is that the space the proteins are

exploring must be isotropic; namely, the ability of a protein to diffuse toward the left or the right

should not be affected by the exact position where the protein is. If this requirement is relaxed, the

problem become more complex, but it allows to study diffusive process on disordered structures,

like discussed in [58]. In [59] the authors shows that the mean square displacement, MSD in the

ER is subdiffusive:

MSD(t)≈ t0.5, (10)

where the exponent is called anomalous diffusion exponent, [60]. Eq.10 is often written in term

of the random walk dimension, dW :

MSD(t)∼ t2/dW . (11)

The anomalous diffusion exponent and the random walk dimension should not be confused

with the fractal dimension, dF , that can be measured using a box-counting algorithm; the authors

in [59] also measured the fractal dimension of the endoplasmic reticulum: d f ≈ 1.6.

The fractal dimension and the random walk dimension are generally not the same, and if
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the graph is smooth, as defined in [61] the two are linked by the relation:

dW = dF +2−dΩ, (12)

where dΩ is the resistance dimension, [61, 62].

How to approach the description of anomalous diffusion is still an open problem, and ac-

cordingly, to the scale one is interested it can be investigated by making use of Continuous-Time-

Random-Walks (CTRW), or the fractional Focker-Planck equation, [63].

Anomalous diffusion with an anomalous exponent smaller than one, as in the diffusion in

the ER, is less efficient at populating the distal dendrites than normal diffusion, so in this thesis,

I focused my attention on normal diffusion. For this reason, in the following, I referred often to

surface proteins and not to membrane-associated protein to refer specifically to the membrane-

associated proteins that are diffusing on the surface of the dendrite.

2.1.2 Dimensionality Reduction

When proteins diffuse in a linear dendrite, they explore it in all three dimensions. Because of the

radial symmetry of a neuronal process, namely axons and dendrites, which can be approximated

to a pipe of diameter diam. 1.5µm and a length up to hundreds of micrometers, I assumed that the

protein density is homogenous in the cross-section of the dendrite. This allowed me to decouple

the diffusion in the cross-section plane from the diffusion along the dendrite and to define the

linear density of proteins as:

ρ(x) =
∫

A
ρ(x,y,z)dydz, (13)

where A is the cross-section of the dendrite for cytoplasmic proteins, or its circumference for

surface proteins. If interested in the surface density for membrane-associated proteins or in the

volumetric density for soluble proteins, one needs to divide the linear density, ρ(x) by the radius
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or radius square of the dendrite, respectively. In the following, I referred to the linear density

ρ(x) as protein density.

While the proteins are diffusing on a linear dendrite, their movement along the x-axis is

affected by the medium only due to the different viscosity of the medium itself, and the shape

and binding rate of the protein, leading to a different diffusion coefficient for each protein, both

classes of proteins follow the same diffusion equation:

∂

∂t
ρ(x, t) = D

∂2

∂x2 ρ(x, t) . (14)

See Eq. 116 in the Appendix for the temporal evolution of this system on an infinite den-

drite if all the proteins were concentrated in a narrow area at t = 0.

The main difference between surface and cytoplasmic proteins is encountered at a branch,

and it is discussed in Sec. 2.5.

2.1.3 Diffusion, Protein Synthesis and Degradation

The first two main ingredients of the model are the production and the degradation of proteins.

If only the production of proteins is included in the model, the overall number of proteins would

grow linearly, and conversely, if only the degradation is included, the number of proteins would

decrease exponentially, and no proteins would be left in the system. A protein synthesis that is

not compensating for protein degradation leads to a transient protein density that can be used to

model a different demand of proteins after STP or STD [6].

Protein synthesis happens when a ribosome translates an mRNA into a protein and degra-

dation where a protein encounters either a lysosome or a proteasome. These three organelles

are discrete objects, but their contribution can be described using a smooth function due to the

uncertainty about their position.

In this work, I assumed that lysosomes and proteosomes distributions are constant and

abundant in the dendritic arbor, and therefore the degradation term can be written as the fraction
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of proteins that are encountering a recycling organelle:

DEG = φ ρ(x, t) . (15)

The proportionality factor, φ, is the inverse of the mean life of a protein, τ, or inversely propor-

tional to the half-life, T1/2:

φ =
1
τ
=

log(2)
T1/2

. (16)

The production term can be written as:

SYNT = β ρmRNA (x, t) , (17)

where ρmRNA (x, t) is the amount of mRNA at position x at time t. In the following, I included all

the information about mRNA abundance, and ribosomes accessibility in a single function ε(x):

SYNT = ε(x, t) . (18)

Including these two terms into Eq. 6 I obtained the diffusion equation with protein degradation

and production:
∂

∂t
ρ(x, t) = D

∂2

∂x2 ρ(x, t)−φρ(x, t)+ ε(x, t) . (19)

If there is no net influx of proteins from either side of the dendrite, A and B, and assuming

that the following limit exists,

lim
t→∞

∫ B

A
ε(x)dx = E, (20)

Eq. 19 allows to calculate the amount of proteins at equilibrium:

Neq =
E
φ

(21)

If proteins are synthesized outside of the dendrite, for example, in the soma, the synthesis
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therm can be described by setting the flux of protein at zero Φ(0) = β; an equivalent way is to set

the flux of proteins at zero to Φ(0) = 0 and adding a synthesis term in zero: βδ(x).

2.1.4 The equilibrium

In this work, I often considered the distribution of proteins at equilibrium, namely the distribution

of proteins after a time that is considerably bigger than all the time scales of the system: in this

work, this means t� T1/2.

Under this condition the distribution of proteins ρ(x, t) doesn’t depend on time and instead

of considering a partial differential equation (PDE), I simplified Eq. 19 into a ordinary differential

equation (ODE):

0 = D
∂2

∂x2 ρ(x)−φρ(x)+ ε(x) . (22)

An ODE of second-order, like Eq. 22, is fully determined by two boundary conditions.

In Appendix, I showed how to obtain the general solution to Eq. 22 in two ways: either by

taking the limit of the general solution of Eq. 19, see Sec. A.2, or by solving Eq. 22 directly, see

Sec. B. The advantage of working directly with the ODE, as I did in Sec. B, is that it allows to

impose the boundary conditions in an easier and more intuitive way.

2.1.5 Boundary conditions

The diffusion equation with degradation and synthesis, Eq. 19, is a partial differential equation

of the first order in t and of the second order in x. Its solution is fully specified, imposing its

initial condition, IC, and two boundary conditions. At the same time, the diffusion equation with

degradation and synthesis, Eq. 22 at equilibrium is a second-order differential equation which

solution is fully determined by two boundary conditions.

Here I focused on the boundary conditions that can be imposed on the diffusion equation

at equilibrium. The general solution to Eq. 22 is given in Appendix in Sec. B. The way the

two boundary conditions are imposed depends on the domain upon which one is solving the
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differential equation, and therefore on the approximation that have been done about the geometry

of the dendrite.

In the first scenario, I considered a dendrite that is significantly longer than the typical

distance explored by the protein of interest, span; and the proteins are synthesized in a localized

area of the dendrite. The first scenario can describe the synthesis of synaptic proteins in a spine or

the burst in translation following synaptic activation, [6]; this can be modeled by considering the

diffusion equation on an infinite support: x∈ (−∞,∞). Furthermore, the two boundary conditions

are obtained by imposing a vanishing abundance of proteins far away from the region where the

proteins are synthesized. The two boundary conditions for the first scenario are:

lim
x→∞

ρ(x) = 0 (23)

and

lim
x→−∞

ρ(x) = 0. (24)

From a practical point, one of the two boundary condition could be replaced by imposing the

number of proteins in the system: ∫
∞

−∞

ρ(x)dx < inf, (25)

because to have a finite integral, vanishing conditions at the infinite are required.

In the second scenario, I assumed that the proteins are produced in the proximity of the

soma, x = 0, and the length of the dendrite is longer than the typical span of the protein of

interest. This can be modeled by considering a semi-infinite dendrite: x ∈ [0,∞). The boundary

conditions for this system are vanishing density at infinite:

lim
x→∞

ρ(x) = 0; (26)
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and the flux of proteins at the soma:

Φ(0) = β = N
log(2)

T1/2
. (27)

From a practical point, one of the two boundary condition could be replaced by imposing the

number of proteins in the system: ∫
∞

0
ρ(x)dx = N. (28)

In the last scenario, I considered dendrites with a length comparable to the typical span of

the protein of interest. In this scenario, I had to consider the finite length of the dendrite. This can

be modeled by imposing the differential equation’s domain: x ∈ [0,L].

To impose the boundary condition at x = L, one has to understand the behavior of the

proteins that reach the termination of the dendrite. If the dendrite is perfectly sealed, no protein

can escape and one can impose a no-flux condition at x = L:

Φ(L) =−D
dρ

dx

∣∣∣∣
x=L

+ vρ(L) = 0 (29)

If the dendrite is still in its growing stage, some of the proteins that reach the dendritic tip

are absorbed and used to expand the dendrite. The limiting case where all the protein are absorbed

can be modeled by imposing an absorbing condition at x = L:

ρ(L) = 0. (30)

Finally, if the dendrite does not finish at x = L, but one wants to focus the analysis only in

the range x ∈ (0,L) they would need to specify the flux at x = L:

Φ(L) = J, (31)

this is the boundary condition I imposed for dendritic branches, in Sec. 2.5.
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Similarly to what I did for the semi-infinite case the first boundary condition could either

be imposed by setting the flux of proteins at x = 0 or by imposing the total number of proteins in

the dendrite:

Φ(0) = Nφ = β, (32)

or ∫ L

0
ρ(x)dx = N. (33)

2.1.6 Diffusion, no local translation

A broad class of proteins is not actively transported in the dendritic tree, and their ability to

populate the dendritic tree is solely based on their diffusion properties and on the location where

the protein synthesis happens.

Here I focused on the case in which the proteins are synthesized in the soma, and they

all diffuse into the dendrite from the same side of the dendrite, as a convention, from the left.

Assuming a finite dendrite of length L, x ∈ (0,L), the boundary conditions are Φ(L) = 0, no-flux

condition at the termination, and Φ(0) = β, influx from the soma. The following differential

equations describe this problem:


D∂2ρ(x)

∂x2 −φρ(x) = 0,

Φ(0) = 0,

Φ(L) = 0,

(34)

and they can be analytically solved, see Appendix Eq. 145:

ρ(x) =
N
λ

cosh
[L−x

λ

]
sinh

[L
λ

] , (35)
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where the number of proteins at equilibrium is N = β

φ
, and λ is the diffusion length defined as

λ =

√
D
φ
. (36)

The dependency of Eq. 35 to its parameters is shown in Fig. 4 in blue.

2.1.7 Diffusion, constant local translation

In the second limiting case, I considered a finite dendrite of length L, with constant local trans-

lation and no influx of proteins from the soma. The constant local translation adds an extra term

to the diffusion equation: +β

L , and the boundary conditions are Φ(L) = 0, and Φ(0) = β. The

following differential equations describe this problem:


D∂2ρ(x)

∂x2 −φρ(x)+ β

L = 0,

Φ(0) = 0,

Φ(L) = 0,

(37)

can be solved analytically, and the protein distribution is intuitively flat, Fig. 4, red; see

Appendix Sec. D.2:

ρ(x) =
β

φL
. (38)
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Figure 4: Protein Distribution: Pure Diffusion In This figure I showed the protein profile in
case of purely diffusive proteins in a dendrite of fixed length L = 200µm, a protein half-life of 5
days and for different values of the diffusion length λ. In red the protein profile obtained by a flat
protein translation is shown, in blue the protein profile obtained in case of somatic translation.

2.2 Active Transport

As described in the introduction, the two key components of active transport in dendrites are

microtubules and molecular motors.
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The first represents the infrastructure network along which molecular motors move protein,

vesicles, and organelles in dendrites and axons. The two families of molecular motors active

in axons and dendrites are Kinesin and Dynein. The first travels toward the plus-end of the

microtubule, and the second toward the minus-end. In axons, all the microtubules are aligned

with the plus-end out, while in dendrites, they present a more complex disposition [28].

As discussed in [1], the dynamics of a vesicle transported by molecular motors can be

modeled by a three-state system, schematized in Fig. 5; the vesicle can move either toward the

end of the dendrite or toward its beginning with velocity v, or being in a rest state. Other than the

velocity, the other three additional parameters needed for the models are the retrograde-to-rest

and antiretrograde-to-rest rates K− and K+, respectively, and the transition rate from rest to either

retrograde or antiretrograde movement: K0.

Figure 5: Active Transport: Scheme of the three-state system Active transport can be modeled
as a three-state system where cargos could move retrogradely toward the soma (top line), stay
still (center line), or toward the end of the dendrite (bottom line). In Bressloff [1], they showed
how a rate from retrograde to immobilized different from antiretrograde to immobilized results
in a net effective velocity.

Because of the stochastic nature of the retrograde/antiretrograde motion, the behavior of the

transported cargo, for times bigger than the time scales of the transition rates, can be described
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using an effective velocity veff and an effective diffusion coefficient Deff:

veff =
v
ζ

(
1

K+
− 1

K−

)
(39)

Deff =
(v− veff)

2

ζK2
+

+
(v− veff)

2

ζK2
−

, (40)

where

ζ =
1

K+
+

1
K−

+
1

K0
. (41)

If the transition rates K+ and K− are identical, the system can be described by the diffusion

equation discussed in the previous paragraphs but with a higher diffusion coefficient.

In this case, the fraction of time spent in the retrograde and antiretrograde state is the same.

Knowing the typical time spent in the movement state τ, and the average length of a run l it is

possible to identify l2 as the mean squared displacement after a time τ, and therefore

D =
l2

2τ
. (42)

Using this simplified relations one can describe the active transport of arc mRNA, [53], as an

increased diffusion coefficient: the mean length of a run is l = 7.3 µm and the mean time spent in

it is τ = 25.7 s, resulting in an effective diffusion coefficient D = 0.97 µm2/s.

In this section, I focused on that class of proteins and other actively transported dendritic

components in the dendrites; more specifically, where the time spent in antiretrograde movement

(toward the tip of the dendrite) is different from the time spent in retrograde movement, resulting

in a non-zero effective velocity. In the following, for simplicity, I denoted the effective velocity

with v.

∂ρ

∂t
= D

∂2ρ

∂x2 − v
∂ρ

∂x
−φρ+ ε(x) . (43)

A negative value of v represents a retrograde drift, and a positive velocity an antiretrograde move-
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ment toward the dendritic tips.

2.2.1 Active transport and translation at the soma

I first considered the limiting case where all the mRNA are localized at the soma, and therefore the

soma is the only source of proteins in the system. This can be modeled by setting the source term

ε(x) in Eq. 43 to zero, and imposing the no-flux boundary condition at the end of the dendrite, in

x = L, and an influx β of protein from the soma in x = 0:



∂ρ

∂t = D∂2ρ

∂x2 − v∂ρ

∂x = 0,

Φ(0) = β,

Φ(L) = 0,

(44)

The solution at the equilibrium of Eq. 44 can be obtained using the methods described in the

Appendix, see Eq.153. Its functional form is relatively complex, so I chose a set of biologically

plausible values of the diffusion coefficient and half-life, and I showed the protein profile in Fig.

6, blue.

2.2.2 Active transport and translation in dendrites

The other limiting case I discussed is when the mRNA distribution is flat throughout the whole

dendritic arbor. This scenario is described by the following set of diffusion equations:



∂ρ

∂t = D∂2ρ

∂x2 − v∂ρ

∂x +
β

L = 0,

Φ(0) = 0,

Φ(L) = 0,

(45)

The complete analytical expression is in Appendix, in Sec. D.5; here, I chose a set of biologically

plausible values of the diffusion coefficient and half-life, and I showed the protein profile in Fig.



Chapter 2 PROTEIN DENSITY 43

6, red.

In section 3.3 and 3.2, I discussed the implications of those protein profiles in terms of the

number of proteins that the neuron needs to produce to sustain the whole dendrite.
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Figure 6: Protein Distribution: Active Transport In this figure, I show the protein profile in the
case of active transport for a dendrite of fixed length L = 200µm, a protein half-life of 5 days, and
for different values of v and D. In red, the protein profile obtained by a flat protein translation is
shown; in blue, the protein profile obtained in the case of somatic translation.

In Fig. 6-B, the protein profile increases exponentially toward the dendritic tip. This arises
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when the diffusion coefficient is insufficient to compensate for the active transport, and almost all

the proteins accumulate at the dendritic tip.

This accumulation of proteins at the end of the dendrites, is due to the fact that the chosen

diffusion coefficient is not big enough to compenesate for the active transport. Trapping mecha-

nisms, like the one discussed in [49], could compensate this accumulation also without increasing

the effective diffusion coefficient. I am currently working on the hypothesis that the protein intake

into synapses could also reduce the accumulation of proteins in dendritic terminations.

2.3 mRNA Translation

In the previous paragraphs, I considered mRNA translation to happen either only at the soma or

constant throughout the dendrite. This second model relies on the assumption that the availability

of mRNA and ribosomes is independent of the distance from the soma, but this might be difficult

for the dendrite to achieve. The mRNA is first transcripted in the soma and then trafficked in the

dendrite, often via active transport. A better approximation for its availability in the dendritic tree,

ρmRNA (x), is obtained by assuming a similar profile to what I obtained in Eq. 153, and shown in

blue in Fig. 6. The protein density profile is therefore obtained by solving:



DProtein
∂2ρ(x)

∂x2 −φProteinρ(x)+KρmRNA (x) = 0,

Φ(ρProtein (0)) = 0,

Φ(ρProtein (L)) = 0,

DmRNA
∂2ρ(x)

∂x2 − vmRNA
∂ρmRNA(x)

∂x −φmRNAρ(x) = 0,

Φ(ρmRNA (0)) = βmRNA,

Φ(ρmRNA (L)) = 0,

(46)

The system of equations 46 can be analytically solved, see Eq. 162 in Appendix. While the

mRNA distribution is susceptible to the velocity of the active transport and can vary up to several
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orders of magnitude for the chosen set of parameters, the protein distribution is considerably

more stable across the dendritic arbor for a wide range of parameters. The profile of the protein

distribution for different choices of Dp and vm is shown in Fig. 7.
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Figure 7: Protein Distribution: Local translation of actively transported mRNA In this fig-
ure, I showed the protein profile in case of active transport for an mRNA, and then it is translated
into proteins in the dendritic tree. The mRNA and protein profiles are shown in red and blue,
respectively. The length of the dendrite is kept fixed at L = 200µm. I set the parameters de-
scribing the dynamic of the proteins to Dp = 0.01µm2/s and T1/2 = 5days. I varied the diffusion
coefficient and velocity of mRNA from 0.01µm2/s to 0.1µm2/s and from 10−3µm/s to 10−5µm/s
respectively, and I fixed its half-life to 12 hours. The production rates βm and βp are chosen such
that Np = Nm = 1.
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2.4 Discrete Approach

Solving the differential equation and obtaining an analytical solution is often the best approach to

understanding the protein profile in a dendrite but is not always viable. In the case of non-constant

velocity or a dendritic tree with a high number of branches, an explicit solution of the differential

equation might not be known.

An approach that allows incorporating discontinuities more simply is to discretize the time-

dependent diffusion equation and let the system evolve to its equilibrium point. This approach

is slower than solving the steady-state equations directly, but it allows the visualization of the

temporal evolution of the protein profile. This numerical procedure allows to include branches,

spines, and multiple populations of diffusive and actively transported particles in the same neu-

ron; it only requires to know for each compartment of the dendritic tree the fraction of protein

moving in it from each of its adjacent compartment. These information can be obtained by dis-

cretizing the diffusion equation; therefore, this method only requires knowing the morphology of

the neuron, and the values of the parameters in it, usually half-life, velocity, and diffusion coeffi-

cient. Furthermore, understanding how to discretize a dendritic arbor correctly is a powerful way

to get insight into a diffusive protein’s behavior in different scenarios.

The idea behind the numerical approach is to discretize the diffusion equations and then

follow step-by-step its temporal evolution using a forward Euler scheme, see [64]. For simplicity,

I neglected the production term, which can be easily added later.

Let’s start from the diffusion equation:

∂ρ(x, t)
∂t

= D
∂2ρ(x, t)

∂x2 − v
∂ρ(x, t)

∂x
−φρ(x, t) . (47)

I can use finite difference approach to discretize the derivatives in Eq. 47:

f ′ (x) =
f (x+∆x)− f (x)

∆x
+O (∆x) =

f (x+∆x)− f (x−∆x)
2∆x

+O
(
∆x2) , (48)
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f ′′ (x) =
f (x+∆x)+ f (x−∆x)−2 f (x)

∆x2 +O
(
∆x2) . (49)

Eq. 47 becomes:

ρ(x, t +∆t) = ρ(x, t)+∆t [D
ρ(x+∆x, t)+ρ(x−∆x, t)−2ρ(x, t)

∆x2

− v
ρ(x+∆x, t)−ρ(x−∆x, t)

2∆x
−φρ(x, t)

]
. (50)

Doing so I embedded the dendrite into a lattice with distance δx between nodes in the x

direction, and δt, in time. For simplicity I assumed that δx and δt are constant. The biggest value

of ∆t that can be chosen without incour in numerical instabilities is:

∆t =
∆x2

2D
, (51)

Using it, I simplified Eq. 50 into

ρ(x, t +δt) =+
1
2
[ρ(x+δx)+ρ(x−δx)]+

vδx
4D

(ρ(x+δx)−ρ(x−δx)) . (52)

Using Eq. 51, simplifies considerably the equations and the code, but it introduces a saw tooth

noise, described in [65]. For this reason, I averaged every measurement over an even number of

compartments, usually 2.

The interpretation of Eq.52 is the follow: at time t +δt the number of proteins in x is equal

to half the sum of the molecules present at time t in the first neighbor of x: x+δx and x−δx, plus

a little bias toward positive or negative x, accordingly with the sign of v. A positive velocity v

implies a bias toward positive x and a negative v a bias toward negative x.

An equivalent approach to this is summarized in Fig. 8: instead of describing for each com-

partment where it gets protein from, I assigned to each compartment a set of rules that instruct

it to how many proteins it would transfer to adjacent compartments, in Fig. 8-A the schematiza-

tion of a linear dendrite. The fraction of proteins moving toward an adjacent compartment can
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be interpreted as the probability of a single protein moving in such a compartment. For a linear

dendrite, these probabilities are:

P(x→ x+δx) =
1
2
+δx

v
4D

(53)

P(x→ x−δx) =
1
2
−δx

v
4D

. (54)

Using a similar argument on terminal branches, one can discretize Eq. 29 and show that:

P(L→ L) =
1
2
+δx

v
4D

(55)

P(L→ L−δx) =
1
2
−δx

v
4D

, (56)

, which is the same set of equations of the linear dendrite, but the proteins that would have moved

to the compartment in x = L+δx will stay in x = L.

2.5 Branches and boundary condition

The differential equations I presented so far are well defined when the considered dendrite is a

simple cylinder. The majority of the dendritic arbor contains many consecutive branches, and

the total length of the dendrites can be above 10 mm. It is therefore essential to understand how

to include the presence of branching structures in the model. In this work, I labeled the mother

dendrite, the one closer to the soma, with the subscript 0, and the two daughter dendrite with the

subscripts 1 and 2, furthermore I oriented the dendrite in such a way that the compartment closest

to the soma is at x = 0.

The first simplification to tackle the problem is to consider the distribution of proteins at

equilibrium, which allows me to work with an ordinary diffusion equation of the second-order
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A

B C

Figure 8: Discretization Schematization In this figure, I showed the fraction of protein moving
toward the adjacent dendritic compartment in case of diffusion with active transport. In A), the
case of a linear dendrite is shown; in B), a termination is shown; in C), a bifurcation is shown. In
all these three subplots, the compartment more to the left is assumed to be the one closest to the
soma. The values of f0, f1 and f2, and how they are linked to the radii is discussed in Sec. 2.5.

and not with a partial differential equation. I solved many ODEs on a linear dendrite in the

previous sections by imposing two appropriate boundary conditions. The effect of a branch in

a dendritic tree is to link the three otherwise independent differential equations that describe the

protein density in the mother and in the two daughter dendrites.

Once three dendrites are linked together, each of the three afferent dendrites loses one of

its boundary condition: the no-flux boundary condition cannot be used anymore for the mother

dendrite at x = L, and the incoming flux for the two daughter dendrites at x = 0 now depends on

the whole system.

If I assume that both the daughter dendrites are terminal dendrites, which are not followed

by any other daughter dendrites, I can retrieve the first two boundary conditions:

D
∂ρi=1,2

∂x
(x)
∣∣∣∣
Li=1,2

= vρ(x, t) . (57)
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Then I imposed that the flux of proteins from the soma, Φ [0] = β = Nφ, this flux to brings N

proteins in the branch:
3

∑
i=1

∫ Li

0
ρi (xi)dxi = N. (58)

The remaining three boundary conditions are related to the interplay between the three dendrites

at the branch. The first boundary condition is obtained by making use of the continuity equation:

∑Φin = ∑Φout , (59)

namely, the total incoming flux of protein must be equal to the total outgoing flux of proteins, the

continuity equation should also include a degradation term that takes into account the particles

that are dismantled in the branch compartment, but in the limit of small branch size, that term can

be set to zero.

In case of v = 0, the first new boundary condition become:

∂ρ0

∂x
(x)
∣∣∣∣
L0

=
∂ρ1

∂x
(x)
∣∣∣∣
0
+

∂ρ2

∂x
(x)
∣∣∣∣
0
. (60)

The other two boundary conditions can be determined by imposing what is the ratio of proteins

at the branch:

ρ1 (0) = f1ρ0 (L0) (61)

ρ2 (0) = f2ρ0 (L0) . (62)

In the case of multiple consecutive branches, I repeated this argument iteratively. Every

branch added to a dendrite adds four new degrees of freedom, two for each daughter dendrite, and

it removes the no-flux boundary conditions of the mother dendrite but introduces three boundary

conditions for the branch and two for the no-flux boundary conditions of the daughter dendrites.
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2.5.1 Diffusion on the Surface and in the Cytoplasm

If the movement is purely diffusive, and the diffusion length is much longer than the length of

the dendrite, the surface and volumetric density of protein are constant, and therefore the number

of proteins in either compartment is proportional to the available space in that compartment. The

same is true if the diffusion length is not considerably longer than the dendrite length, but one

focuses on a small segment of dendrite. For this reason, one can assume that the surface and

volumetric density of proteins immediately before and after a branch is constant.

The immediate consequence of this is the fact that the total number of protein immediately

before and after a branch is proportional to the available space in that compartment, which is equal

to Si = 2πri∆x, for surface proteins, like Nlg and ion channels, and Vi = πr2∆x for cytoplasmic

ones, like β-actin, GFP and Kamk2, and ∆x is a short interval around the branch.

If the chosen interval ∆x is small enough the density of protein per unit of space is constant

and the ratio between the number of proteins in dendrite i and dendrite j is determined by the

ratio between the γ−power of the radii, where γ = 1 in case of surface diffusion and γ = 2 in case

of cytoplasmic diffusion:

fi =
Rγ

i

Rγ

2 +Rγ

1 +Rγ

2
(63)

Interestingly, Eq. 63, does not depend on the actual values of Ri and R j, but only on their

ratio. I, therefore, expressed the radii in terms of the radius of the mother dendrite:

Ri = riR0; (64)

where ri is denoted as normalized radius. Therefore, I obtained the dependency of the last two

boundary conditions on the dendrites’ radii by plugging Eq. 63 into Eq. 62.

I show the complete analytical solution for a dendrite with a single branch in the Appendix,

see Eq. 172.

In Sec. 2.1.1, I mentioned how the ER has a non-integer fractal dimension d f . Therefore,
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the available space on its surface scales as the d f power of its radius, which is smaller than the

radius of the dendrite. Assuming that the Radius of the ER in the dendrites is proportional to the

radius of the dendrite itself, Eq. 63 still holds with γ = 1.6. The ER at the branch point would

have properties that are intermediate between surface and cytoplasmic diffusion.

2.6 Brief Summary

In this section I calculated the protein profile for several transport models, obtaining the predicted

protein profile for each of them. Here I modeled both passive diffusion and active transport. Using

the work of Bressloff [1], I described active transport either as an increased diffusion coefficient,

and as velocity term in the diffusion equation. In the case of the velocity term, I showed how for

relatively small values of the velocity there is an accumulation of proteins at the dendritic tips.

Finally, I derived a rule for how to split the flux of proteins at a dendritic branch, discovering

two qualitatively different rules for surface and cytoplasmic proteins.
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3 Protein Requirement

A steady supply of proteins is necessary to maintain normal synaptic functions. For example, the

number of AMPA receptors per synapse is estimated between 60 and 190, [66, 67, 68], consid-

ering the typical half-life of an AMPA receptor, in average, a new channel has to be substituted

every 30 to 90 minutes. Under the assumption that the intake into synapses is proportional to the

number of proteins in the dendrite, it is possible to use the protein profiles found in sec. 2, to

calculate the minimum number of proteins that the neuron needs to produce to provide enough

proteins to all synapses. The solutions of the diffusion equations are, due to its linearity, pro-

portional to the production rate β, see Eq. 145, (in case of somatic translation and no active

transport), Eq. 148 (in case of constant dendritic translation and no active transport), Eq. 151 (in

case of mix of constant dendritic and somatic translation, and no active transport), Eq. 153 (in

case of somatic translation and active transport), Eq. 155 (in case of in case of constant dendritic

translation and active transport) and Eq. 162 (in case of dendritic translation induced by actively

transported mRNA, and no active transport).

Therefore, given the minimum number of proteins per micrometer Nmin that the dendrite

needs, one can infer the production rate needed to supply the whole dendrite (or dendritic tree)

with the corresponding model, obtaining the total amount of proteins that the neuron needs to

produce. In the following, I referred to the number of proteins that the neuron needs to produce

to provide at least Nmin = 1 protein per micrometer, as protein requirement: NReq.

Except for the two simplest cases, where the protein can only diffuse, or it is strictly de-

creasing with the distance from the soma, the analytical value of the protein requirement is not

known. However, it can be obtained via numerical methods, by imposing the normalization∫ L
0 ρ(x) = 1, and looking at the inverse of its minimum over the whole dendritic arbor:

NReq =
1

minx (ρ(x))
(65)
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3.1 Protein Requirement: No Active Transport

If the protein can only diffuse, and all the mRNA are localized in the soma, the protein profile

follows Eq. 35, and it is strictly decreasing. Therefore the protein requirement is given by the

inverse of 35, evaluated at x = L:

NReq = λ sinh
(

L
λ

)
. (66)

If the translation happens with a constant rate throughout the dendrite, the protein density

is constant, as I showed in Eq. 38. This means that the protein requirement is defined as the

inverse of the protein profile in any of its point:

NReq =
1
L
. (67)

The behavior of these two cases is summarized in Fig. 9.

Because the protein requirement is defined as the inverse of the minimum density, the

smaller the variability of the protein profile is, the smaller the protein requirement; among all the

possible models, a constant translation is the one that minimizes the protein requirement for every

dendritic morphology.

Because of this property the protein requirements in Figures 10, 11, and 12 are shown

normalized to the protein requirement resulting from constant translation.

In the case of more complex protein densities, the value of the protein requirement is ob-

tained numerically. To simplify the comparison of different models, in the following, I fixed the

length of each dendrite to 200 µm and varied the other parameters.
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Figure 9: Protein Requirement: Pure diffusion In this figure I showed the dependency of the
protein requirement Nr onto the diffusion length for a three fixed values of the length of the
dendrite, from left to right L = 50,200, and 400µm. The same data are shown in the bottom row,
normalized by the protein requirement in case of constant translation, N(0)

r .

3.2 Protein Requirement: Active Transport and Somatic Translation

A more broad phenomenology appears when active transport is included, as seen in Fig. 6, blue:

the slope of the protein density could be monotonically increasing if the effective velocity is

high enough, monotonically decreasing if the velocity points toward the soma, be convex with

a minimum between 0 and L. This minimum of the protein distribution inside the dendrite is a

direct consequence of the boundary conditions.

Fig. 10 shows the protein requirement for different choices of the three parameters of

the model. Unsurprisingly, when I increased the diffusion coefficient (see top row), the protein

requirement decrease, meaning that the protein distribution became more homogeneous. The

impact of the other two parameters, velocity, and half-life, is not equally straightforward. In the

middle row, I showed the effect of velocity on the protein requirement, and I saw that the value at

which Nreq is minimized depends both on the half-life and on the diffusion coefficient. Velocities

slower than the optimal velocity are not sufficient to move the distribution’s peak away from the
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beginning of the dendrite, while velocities faster than the optimal velocity accumulate protein at

the end of the dendrite. In the bottom row, I showed the effect of the half-life upon Nreq, noticing

that for a high value of the velocity, when proteins would tend to accumulate at the end of the

dendrite, a smaller value of the half-life could compensate the accumulation.

It is important to point out that minimizing the protein ratio by reducing the half-life of a

protein could be a suboptimal strategy for the neuron because, as seen in Fig.10-G,H,I in yellow

the value of the half-life that minimizes it is particularly small, and the neuron would need to

produce that type of protein constantly.

3.3 Protein Requirement: Active Transport and Local Translation

In the previous section, I discussed how a constant translation in the dendritic arbor without

active transport is the optimal strategy that the neuron could apply for proteins. Any increase in

the velocity due to the active transport would move the system away from the global minimum of

protein requirement.

Fig. 6 shows the slope of the protein density for different sets of parameters. Because of

the symmetry of this system, a positive or negative velocity have the same impact on the protein

requirement. In the case of negative velocity, the proximal dendrite would show an accumulation

of proteins, while in the case of positive velocity, the accumulation would happen in distal den-

drites. For this reason, in Fig. 10, I showed only the protein requirement for positive values of

v.

When the velocity is different from zero, the value of the diffusion coefficient and of the

half-life that minimizes the protein requirements are the ones that made the protein distribution

as flat as possible. For this reason, the higher the diffusion coefficient, the more the system can

counteract the effect of the active transport, and the lower is the protein requirement. Similarly,

the shorter is the half-life of a protein, the less time it has to accumulate toward one of the

extremities of the dendrite, resulting in a smaller protein requirement.
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Figure 10: Protein Requirement: Active Transport and Somatic Translation This figure
shows the ratio between the protein requirement of different choices of the diffusion length,
half-life, and velocity, normalized by the minimal protein requirement possible. The length of
the dendrite is fixed to 200µm. In the top row, I varied the diffusion coefficient; in the second, I
varied the velocity, and in the third, the half-life of the protein.

3.4 Protein Requirement: No Active Transport and Local Translation of

actively transported mRNA

The previous section showed that a constant distribution of mRNA originates the model that

requires the least overall amount of proteins. Therefore, it is intuitive that increasing the amount
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Figure 11: Protein Requirement: Active Transport and Constant Dendritic Translation This
figure shows the ratio between the protein requirement of different choices of parameters normal-
ized by the minimal protein requirement possible, obtained in the constant dendritic translation
scenario. I fixed the length of the dendrite to 200µm and varied the other parameters. In the top
row, I varied the diffusion coefficient; in the second, I varied the velocity, and in the third, the
half-life of the protein.

of mRNA in dendrites would decrease the protein requirement closer to its minimum. Fig. 12

shows the normalized protein requirement for different choices of the diffusion coefficient, half-

life, and velocity of the mRNA, for a protein with a reduced motility. The half-life and the

diffusion coefficient of the protein are 5 days and 0.005 µm2/s respectively, leading to a diffusion

length of 55.8 µm.
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Figure 12: Protein Requirement: Local Translation of actively transported mRNA In this
figure, I showed the ratio between the protein requirement of different choices of parameters
divided by the minimal protein requirement possible, obtained in the constant dendritic translation
scenario. I fixed the length of the dendrite to 200µm and varied the other parameters. In the top
row, I varied the diffusion coefficient; in the second, I varied the velocity, and in the third, the
half-life of the protein.

3.5 Protein Requirement: Single dendritic branch, purely diffusive pro-

teins

In Sec. 2.5, I described a procedure to obtain the protein distribution in the case of purely diffusive

proteins in a branching dendrite. Following the same argument I used for obtaining Eq. 66,

because of the monotonically decreasing protein distribution in a dendritic branch, the protein

requirement, Nreq is equal to the inverse of the minimum of the protein density at the end of one

of the two daughter dendrites:

Nreq =
1

mini=1,2 ρi (Li)
, (68)
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where ρi (Li) are derived in 172. Exploring the full parameter space is rather complex, because of

its high dimensionality, six parameters are needed for its full description: three for the length of

the mother dendrite, L0 and the two daughter dendrites L1 and L2, one for the diffusion length λ,

and two for the fraction of proteins moving from the branch toward the daughter dendrites: f1 and

f2. The fraction that is moving to the mother dendrite is determined by imposing 1 = f0+ f1+ f2.

In Fig. 13, top I showed that the normalized protein requirement decreases when increasing the

diffusion length, as happened with the single dendrite, without branches, while once the radius of

one of the two dendrites is fixed, in the case of Fig. 13, bottom R1 = 0.5 R0, there is a specific

value of R2 that minimize the protein requirement. I referred to that value of the radius as the

optimal radius. Interestingly, The normalized protein requirement in Fig- 13-A does not decrease

to one with λ→∞. The reason is that the radius of the daughter dendrites is smaller than the radius

of the mother dendrite. Therefore, in the limit of λ→ ∞, the surface, and the volumetric density

became constant in the dendritic arbor, but the density of proteins in each dendritic compartment

did not.

3.6 Brief Summary

In this section, I introduced the concept of protein requirement, defined as the number of proteins

that a neuron needs to produce to bring at least one protein in each dendritic compartment. I then

calculated the protein requirement for all the transport models described in Sec. 2. I showed

that the model that minimizes the protein requirement is when the proteins are synthesized in the

dendrite at a constant rate; this model solves the problem of transporting proteins but creating the

problem of transporting mRNA.

Finally, I explored the protein requirement for dendrites with a single branch in the case of

pure diffusion. I showed that there is a single value of the ratio of the daughter dendrites radii that

minimize the protein requirement.
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Figure 13: Protein Requirement: Single Branch, Diffusive Proteins A,B) The protein require-
ment, divided by the minimum protein requirement, where all the dendrites are provided with
exactly 1 proteins per micrometer, is shown as a function of the diffusion length λ. In A) Both the
length of the daughter dendrites are fixed to 50µm, and the radii of the two daughter dendrites to
R1 = R2 = 0.5R0. In B) I imposed the same radii, but L2 = 200µm; C,D) The normalized protein
requirement is shown as a function of the normalized radius r1, while r2 is kept fixed at 0.5. In
C) both the daughter dendrites have the same length, and the optimal radius r1 is r1 = r2 = 0.5;
in D) where the dendrite 2 is four times longer than dendrite 1, the optimal r1 is smaller than r2.
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4 Optimal Branching Radii

In Fig.13-B, I observed that once the daughter radius of dendrite 1 is fixed to R1, there is a single

value of R2 that minimize the Proteins Requirement, and I called that optimal radius. I showed

that the optimal radius Ropt
2 is not an intrinsic propertiy of the neuronal morphology, but it is also

a function of the other radius, of the diffusion length λ, and of the dimensionality of the explored

space, γ: Ropt
2 = Ropt

2 (R1,γ,L1,L2,λ).

4.1 Optimal Branching Radii

The fractions fi, defined Eq. 63, represent the fraction of proteins that from the branch compart-

ment flow toward the i− th dendrite, and these are defined as the γ−power of the radius of the

i− th dendrite, divided by the sum of the γ-power of the radii of the three dendrites. Therefore,

the neuron can tune how many proteins are diffusing in either direction simply by increasing or

decreasing the radius of that dendrite.

The value of the optimal radius is obtained by equalizing the protein density at the termi-

nation of both daughter dendrites. By imposing ρ1 (L1) = ρ2 (L2), in 172, and that f1 and f2 are

defined by Eq. 63 I discovered that the Optimal Radius R2 must satisfy the following equation:

cosh(L1/λ)

cosh(L2/λ)
=

Rγ

1

Rγ

2
, (69)

where γ = 1 for diffusion at the surface, and γ = 2 for diffusion in the cytoplasm. In Fig. 14-A

one can see that for a fixed value of L2 = 50µm the optimal normalized radius, r2, decreases if

the length of the opposite dendrite is increased, in this way less protein would flow toward the

dendrite 2, increasing the protein going to the dendrite 1; conversely, in Fig. 14-B I showed that

the optimal normalized radius increases with the length of the its own dendrite.

In Fig. 14-C, D I observed for different choices of L1 and L2 that when the diffusion

length grows, the optimal normalized radius r2 tends to r1; this is due to the distribution inside
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each dendrite becoming increasingly flat, and therefore proportional to the fraction of proteins

entering the dendrite: fi. This is why in Fig. 13, the protein requirement never decreased to

the optimal protein requirement, which could only happen for infinitely large values of λ, and

R0 = R1 = R2.

In Fig. 14-D,E I showed the dependency of the normalized optimal radius r2, on the ratio

between L1/L2, for two distinct values of λ. In Fig. 14-G,H I showed the logarithm of the optimal

dendritic ratio r1/r2 varying both L1/λ and L2/λ, the colorcode is in logarithmic scale.

4.2 Optimal Consecutive Branches

In Sec. 4.1, I found the rule to obtain the optimal radii for every given diffusion length for a

fixed value of the two dendritic daughter lengths. But Eq. 69 only works for terminal branches.

An iterative procedure to assign an optimized normalized radius to each dendritic segment is

needed for multiple consecutive branches. A protein traveling toward the tip of cortical pyramidal

neurons can cross more than 20 consecutive branches before reaching the dendritic tip.

To optimize the radii of multiple consecutive branches, I followed an iterative algorithm

that resembles the one described in [69]. The idea of the algorithm is that starting from the

terminal branches, one collapses the mother dendrite and the two daughter dendrites into a single

dendrite of effective length Leff and radius equal to the radius of the mother. Doing so for each

terminal branch, transform second-to-terminal branches into terminal branches, and the length of

the two terminal branches is equal to the effective length of those branches. Proceeding by step:

1. for every terminal branches I calculated r1 and r2, as described in Sec. 4.1.

2. knowing (r1, r2, λ, L0, L1, L2, and γ), I calculated Leff using Eq. 71.

3. I considered the effective morphology where the three terminal dendrites are replaced by a

single dendrite with effective lengths Leff;

4. repeat from point 1, until all the dendrites attached to the soma have no branches.
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The whole procedure is schematized in Fig. 15.

4.2.1 Effective length

The idea that underlies finding the effective lengths is relatively simple. If the radii are optimized

for a certain diffusion length, the density of proteins at both dendritic tips must be the same:

ρ1(L1) = ρ2(L2). I could therefore analyze the decay of the protein density from the begin of the

mother dendrite ρ0(0) to the end of either daughter dendrites:

DECAY =
ρ0(0)
ρ1(L1)

. (70)

I can then wonder how long a dendrite should be to incur in the same decay; Using Eq. 70,

and the solution for diffusive proteins with somatic translation, Eq. 145:

Leff = λ arccosh
[

ρ0 (0)
ρ1 (L1)

]
(71)

.

In Appendix, see Eq. 172, I found a closed solution for ρi (x), that allows to find a numerical

value for Leff.

4.3 3/2- Rall’s Rule

Rall’s Rule, introduced by Wilfrid Rall [70, 71], explains how to collapse two daughter dendrites

of the same length into a single dendrite with the same electrical conductance of the sum of

the two collapsed ones. This allows determining the optimal branching radius to maximize the

electrical signal collected at the soma coming from distal dendrites. In [69], the authors proved

that the optimal tapering for dendrites is the quadratic tapering and described an algorithm that

allows collapsing a dendritic tree with daughter dendrites of different lengths into an equivalent

dendrite. The Rall’s Rule sets a relation between the radius of the mother dendrite and the sum
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of the radii of the two daughter dendrites:

R3/2
0 = R3/2

1 +R3/2
2 , (72)

or in terms of normalized radii:

1 = r3/2
1 + r3/2

2 . (73)

In the following, I referred to these equations as the 3/2-Rall’s Rule. In Fig. 16-A the

dependency of r2 upon r1 is shown. Recalling the definition of the fi, in Eq. 63, and imposing

the 3/2-Rall’s Rule, I expressed the fraction of proteins moving toward the dendrite i-th only as

a function of the normalized radius r1. By doing so, I obtained the probability of moving toward

dendrite i as a function of the radius of the dendrite 1:

fi (r1) =
rγ

i

1+ rγ

1 + rγ

2
=

rγ

i

1+ rγ

1 +
(

1− r3/2
1

)2γ/3 . (74)

As a consequence of Eq. 72, both the radii of the daughter dendrites must be smaller than the

radius of the mother. The profile of f0, f1, and f2 can be seen in Fig. 16-B,C,D. I also described

the probability of diffusing away from the soma, namely f1 + f2, in Fig 16-E.

In Fig. 16- E, one can observe that the probability of surface proteins to move away from

the soma is always higher than 1/2, while the probability of cytoplasmic proteins to move away

from the soma is always smaller than 1/2. This is a direct consequence of the geometry of the

system. For a 3/2- Rall exponent, the surface of two segments of the same length ∆x after the

branch is bigger than the surface of a segment of the same length before the branch

2πR0∆x≤ 2π(R1 +R2)∆x, (75)

while the volume immediately after the branch is smaller than the volume in the same short
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interval before the branch

πR2
0∆x≥ π

(
R2

1 +R2
2
)

∆x. (76)

4.4 Probability Ratio and Surface Bias

In Eq. 76, and 75 I showed that when the for a Rall exponent α = 3/2, surface proteins are more

likely to diffuse away from the soma at a branch, while cytoplasmic proteins are more likely to

move toward the soma.

This properties can be quantified via the probability ratio defined as:

QP =
Rγ

1 +Rγ

2

Rγ

0
. (77)

The probability ratio represents the relative increase in protein after each branch. If QP > 1, the

total number of proteins in the first compartment of the two daughter dendrites is higher than the

number of proteins in the last compartment of the mother dendrite.

To compare the probability ratio of surface and cytoplasmic proteins I made use of the

surface bias defined as:

Q S/C
P =

Q S
P

Q C
P
−1. (78)

Recalling the assumption of cylindrical dendrites Eq. 78 can be simplified into:

Q S/C =
r1 + r2

r2
1 + r2

2
−1. (79)

While the single values of the probability ratio Q S and Q C provides information relative to

the bias toward distal dendrites compared to the mother dendrite, the surface bias represents the

increase of the relative abundance of surface and cytoplasmic proteins immediately before and

after the branch.
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4.5 Generalized Rall Rule

For almost all real dendritic tree, the assumption of the 3/2 Rall exponent, is too restrictive. The

3/2 Rall exponent was introduced for mathematical simplicity, not in accordance to experimental

data. In [72] Ascoli et al. reported the values of the Rall exponent in different classes of neurons:

• α = 2.36±1.2 in Purkinje cells,

• α = 2.24±1.2 in stellate neurons,

• α = 2.58±1.8 in granule cells,

• α = 1.69±0.48 in motoneurons,

• α = 2.28±0.89 in basal pyramidal neuron,

• α = 1.69±0.48 in apical pyramidal neurons.

To be able to describe a more broad range of possibilities, I changed the parameter 3/2 in

Eq. 72, to a generic value α, as was done also in [2], doing so I obtained the generalized Rall

rule:

Rα
0 = Rα

1 +Rα
2 , (80)

or, as I did for the 3/2 case, I expressed it in terms of normalized radii:

1 = rα
1 + rα

2 . (81)

If both the radii R1 and R2 are smaller than the mother dendrite, the value of the Rall

exponent is positive: α ∈ (0,∞) if they are both smaller than the mother dendrite α < 0, and if

one of the two is bigger than the mother dendrite, and the other smaller, Eq. 81 does not have a

real solution for α.

I divided the values of α in categories, that leads to different behaviors: α < 0, 0 < α < 1,

1 < α < 2, α > 2, and α 6∈ R. See Fig. 18-A.
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4.5.1 Rall Exponent α < 0

A negative Rall exponent, to be consistent with Eq. 80, can be obtained if both the radii of the

daughter dendrites are bigger than the mother dendrite.

In Fig. 17-A I showed the dependency of r2 upon r1. One can see that the radius of the

second dendrite decreases by several orders of magnitude with a small variation of r1; despite that,

both daughter dendrites have a bigger radius of the mother dendrite, and therefore the available

space at the surface and in the cytoplasm after the branch is higher than the available space before.

In Fig. 17-B, C I showed the dependency of the probability of going back to the soma as a function

of the radius of one of the two dendrites, and both for surface (blue) and cytoplasm proteins (red),

this is smaller than 1/2. Therefore,

0≤ fC
0 ≤ f S

0 ≤
1
2

; (82)

and it can be shown that the probability ratio of cytoplasmic proteins is bigger than the probability

ratio of surface proteins, 17-C, with:

2 < QS ≤ QC. (83)

This range of α corresponds to r1 ≥ r2 ≥ 1, white in Fig. 18-A;

4.5.2 Rall Exponent 0 < α < 1

A positive Rall exponent, to be consistent with Eq. 80, can be obtained only if both the radii of

the daughter dendrites are smaller than the mother dendrite.

In Fig. 17-A I showed the dependency of r2 upon r1. One can observe that the radius of the

second dendrite goes to zero very rapidly when r1 goes to 1; its decrease is small enough to have

both for surface and for cytoplasmic diffusion less available space after the branch than before.
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The probabilities of going back to the soma, as shown in Fig. 17-E follow:

1
2
≤ f S

0 ≤ fC
0 ≤ 1. (84)

This range of α correspond to r2 < 1− r1, darkest gray in Fig. 18-A.

4.5.3 Rall Exponent 1 < α < 2

The range 1 < α < 2, behaves similarly to the 3/2-Rall’s rule described in Sec. 4.3. For a fixed

value of α = 3/2, the dependency of r2 upon r1 is shown again in Fig. 17-G, the probability of

moving backward to the soma in Fig. 17-H, and the probability ratio in 17-I. It is trivial to show

that

1−
√

2≤ f S
0 ≤

1
2
≤ fC

0 ≤
2
3
, (85)

and that:
1
2
≤ Q C

P ≤ 1≤ Q S
P ≤
√

2. (86)

For these values of α, surface proteins are more likely to move away from the soma, while

cytoplasmic proteins are more likely to move back to the soma. This range of α corresponds to

1− r1 < r2 <
√

1− r2
1, dark gray in Fig. 18-A;

4.5.4 Rall Exponent α > 2

In the range α > 2, the probability of moving back to the mother dendrites is smaller than 1
2 both

for surface and cytoplasmic diffusion:

1
2
≥ fC

0 ≥ f S
0 ≥

1
3
. (87)

In the limit, α→∞ the radii of one of the daughter dendrites tends to be equal to the radius of the

mother dendrite. The dependency of r2 upon r1 is shown again in Fig. 17-G, the probability of
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moving backward to the soma in Fig. 17-H, and the probability ratio in 17-I. It’s trivial to show

that

1−
√

2≤ f S
0 ≤

1
2
≤ fC

0 ≤
2
3
, (88)

and that:
1
2
≤ Q C

P ≤ 1≤ Q S
P ≤
√

2. (89)

In this range of α, both surface and cytoplasmic proteins are more likely to move away

from the soma than toward it, but surface proteins are more likely than cytoplasmic proteins to do

so.

This range of α corresponds to r2 >
√

1− r2
1, gray in Fig. 18-A;

4.5.5 Rall Exponent < α 6∈ R

When one of the two daughter dendrites is bigger than the mother dendrite, and the other is

smaller, no real value of α can be used to fulfill Eq. 80. In this scenario, if one of the two

daughter dendrites is bigger than the mother dendrite,

0≤ f X
0 <

1
2
, (90)

but nothing can be said about whether f S
0 > fC

0 or f S
0 < fC

0 .

In this range of α, both surface and cytoplasmic proteins are more likely to move away

from the soma than toward it, but nothing can be said about which of them is more likely to do

so. This range of α corresponds to r1 > r0 > r2, lightest gray in Fig. 18-A;

4.6 Brief Summary

In this Section, I introduced the probability ratio, defined as the ratio of the available space after

the branch point divided by the available space before the branch point; because of Eq. 62, the

probability ratio is also equal to the ratio of the proteins after the branch divided by the protein
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before it. Fig. 18-B shows an overview of the lower and upper bounds on the probability of

moving backward to the soma for α ∈ (−5,5).

In Fig. 17 I showed an overview of the values that the probability ratio can assume for four

values of α, and in Fig. 18-C I showed the upper and lower bound that Q S
P , and Q C

P can have for

α ∈ (−5,5); and in Fig. 18-D I did the same for the surface bias.
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Figure 14: Optimal Radii: Single Branch In this Figure the dependency of the optimal nor-
malized radius r2 upon different parameters is explored. In A) the optimal normalized radius is
plotted against the length of dendrite 1 divided by the diffusion length. λ is kept fixed to λ= 50µm
and L2 = 50µm. B) The optimal normalized radius is plotted against the length of dendrite 2 di-
vided by λ, with L1 = λ = 50µm. C,D) The optimal normalized radius r2 is plotted against the
diffusion length λ. E,F) The Optimal normalized radius r2 is plotted against the ratio of the den-
dritic lengths: L1/L2. G,H) The ratio of the optimal dendritic radii ratio Roptimal

1 /R2 is shown as
function of the rescaled lengths of the daughter dendrites: Li/λ. The colormap is in logarithmic
scale.
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Figure 15: Optimal Radii: Reduction Scheme In this Figure I showed a schematization of the
algorithm for reducing a dendritic tree to a single dendrite with equivalent length.
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Figure 16: 3/2 Rall Rule A) the dependency of r2 on r1 is shown. B) The probability of diffusing
toward the mother dendrite, f0 is shown as a function of the radius of one of the two daughter
dendrites, r1. C) The probability of diffusing toward the dendrite 1 is shown as a function of its
normalized radius. D) The probability of diffusing toward the dendrite 2 is shown as a function
of the normalized radius of the other dendrite. E) The probability of diffusing in one of the
daughter dendrites is shown as a function of the radius of one of the two daughter dendrites. F)
The probability ratio is defined as in Eq. 77 is shown as a function of one of the normalized radius
of one of the two daughter dendrites. From B to F, blue lines represent the values in the case of
diffusion on the surface, and red lines the values in diffusion in the cytoplasm.
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Figure 17: Generalized Rall Rule A generalization of what shown in Fig. 16 for α = 3/2 is now
shown for four different values of α: α = −1

2 (first row), α = +1
2 (second row), α = 3

2 (third
row), α = 5

2 (forth row). In the left column, the dependency of r2 upon r1 is shown for different
value of α. In the central column the probability of moving back toward the soma, f0 is shown
as function of r1, both for surface proteins (blue) and cytoplasmic proteins (red). In right column
the probability ratio QP is shown as function of r1 both for surface protein (blue) and cytoplasmic
protein (red).
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Figure 18: Generalized Rall Rule: Overview In A) The range of values that of the Rall exponent
as a function of the two normalized radii, on the left a summary table of the probability ratios and
surface bias. B) For every value of α ∈ (−5,5) I showed the upper and lower bound of the
probability of moving toward the mother dendrite for surface proteins (blue) and for cytoplasmic
ones (red), in gray the overlap between the two. C) for every value of α ∈ (−5,5) I showed the
upper and lower bound of the probability ratio of surface proteins (blue) and for cytoplasmic ones
(red), in gray the overlap between the two. D) for every value of α ∈ (−5,5) I showed the upper
and lower bound of the probability ratio of surface bias (green).
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5 Measured Branching Radii

In this section, I used data from three different datasets to calculate the Rall exponent, the proba-

bility ratio, and surface bias for the three classes of neurons: cultured rats hippocampal neurons,

three-dimensional electron microscopy (3D-EM) reconstructed pyramidal neuron from mice’s

Prefrontal Cortical, and crab’s stomatogastric ganglia neurons (STG).

5.1 Cultured Hippocampal Neurons

The first class of neurons I analyzed are cultured rat hippocampal neurons.

Our collaborator Anne-Sophie Hafner prepared two sets of dishes of cultured hippocampal

neurons, following the procedure explained in Sec. F.1. The first set of these dishes contained

neurons transfected with GFP, while the second set of neurons transfected with GFP::Nlg-1. The

first is a soluble fluorescent protein, called Green Fluorescent Protein, and it is diffusing in the

cytoplasm, the second a membrane-bound protein, called Neuroligin-1 associated to the same

fluorescent protein, and it is diffusing on the neuronal surface.

For each of these neurons, I focused on clean branches. A clean branch is a branch com-

posed of one mother dendrite and two daughter dendrites, with low background noise, where

all three afferent dendrites do not present overlap with other dendrites or axons and do not have

synaptic spines in the proximity of the branch, see 31

For each of these clean branches, the radius of the afferent dendrites was measured follow-

ing the procedure described in Sec. F.4.

5.1.1 Radii Statistic

The first thing I analyzed is the Radii statistic for cultured neurons. In Fig 19-A I showed the full

distribution of the 67 measured branches, from left to right of R0, R1 and R2; Where I defined R1

to be the bigger of the two daughter dendrites. The average radii are: E[R0] = 0.84± 0.32 µm,

E[R1] = 0.69±0.25 µm, and E[R2] = 0.51±0.14 µm. It is important to notice that this does not



78 Chapter 5 MEASURED BRANCHING RADII

represent the average radius of mother or daughter dendrites in cultured neurons because small

dendrites were not considered due to the limited optical precision. For reference the range of

measured radii spans from Rmin = 0.34µm to Rmin = 1.95µm. The complete distribution of the

normalized radii, pulling together all the daughter normalized radii, is shown in Fig 19-D.

5.1.2 Cultured Neurons: Rall Exponent

Knowing the normalized radii for both daughter dendrites, as shown in Fig 19-B, I calculated the

value of of the Rall exponent of each branch, see Fig 19-C, and Fig 19-E for the full distribution

of the Rall exponents.

The mean Rall exponent for the cultured neurons that I analyzed is E [α] = 2± 4, but,

because of the high variability, and asymmetry of the distribution, is more meaningful to use its

median: E [α] = 2.0 (IQR: 1.5− 2.9).

5.1.3 Cultured Neurons: Probability Ratio

The other two quantities I calculated knowing the normalized radii are the probability ratio for

surface and cytoplasmic proteins (see Fig. 19-F blue and red respectively). The mean probability

ratio for surface proteins is E
[
Q S

p
]
= 1.5± 0.3, its standard error of the mean is 0.03, and the

median is E
[
Q S

p
]
= 1.45 (IQR: 1.27− 1.65).

The mean probability ratio for cytoplasmic proteins I measured are E
[
Q C

p
]
= 1.17±0.43,

its standard error of the mean is 0.05, and the median is E
[
Q C

p
]
= 1.12 (IQR: 0.84− 1.38).

5.1.4 Cultured Neurons: Surface Bias

The last quantity I calculated starting from the normalized radii is the surface bias that represents

the relative increase in the ratio of surface and cytoplasmic protein after and before each branch,

see Fig. 19-G. The average surface bias is E
[
Q S/C

p

]
= 0.31±0.16, and the standard error is 0.1,

while its median isE
[
Q S/C

p

]
= 0.28 (IQR: 0.20− 0.46).
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mean, std (s.e.m) median (IQ1,IQ3)
Rall exponent α 2±4 (0.27) 2.0 (1.5, 2.9)

Q S
P 1.48±0.28 (0.03) 1.45 (1.27, 1.65)

Q C
P 1.17±0.43 (0.05) 1.12 (0.84, 1.38)

Q S/C
P 0.32±0.18 (0.10) 0.28 (0.20, 0.46)

Table 2: Cultured Neurons: Overview In this table, I summarized the mean, standard deviation,
standard error of the mean, median, and first and third interquartiles of the Rall exponent, the
probability ratio of surface and cytoplasmic proteins surface bias.

5.2 STG Neurons: Stomatogastric Ganglia

The second dataset I analyzed is composed of 252 branches of crab stomatogastric ganglia neu-

rons, or STG neurons, and was published in [2]. These neurons belong to four different sub-

groups, but I decided to analyze them together to make the results more readable. The STG neu-

rons are located in the crab stomach; therefore, they are not affected by the same tight packing

and spatial constraints of cortical neurons. This reflects into a much more disordered distribu-

tion of the radii, or to use the word that the authors used in the article’s title where this data was

published, ”sloppy”.

5.2.1 STG: Radii distribution

The first thing I analyzed is the radii statistic for crab’s STG neurons published in [2]. in Fig

20-A I showed the full distribution of the 252 measured branches, from left to right of R0, R1

and R2 where R1 > R2. The average Radii are: E[R0] = 5.0± 5.8µm, E[R1] = 4.6± 5.8µm, and

E[R2] = 1.8± 2.5 µm. For reference the range of measured radii spans from Rmin = 0.05 µm

to Rmin = 41.6 µm. The complete distribution of the normalized radii, pulling together all the

daughter normalized radii, is shown in Fig 20-D.
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Figure 19: Real Neurons Radii: Cultured Hippocampal Neurons A) Scatterplot of all the
measured radii, in order of the mother dendrite R0, of the bigger daughter dendrite R1, and of
the smaller daughter dendrite R2; B) Scatterplot of all the normalized radii, in order of the big-
ger daughter dendrite r1 and of the smaller daughter dendrite r2; C) Phase diagram of the radii
distribution. The color code represents the range of values of alpha, as discussed in Sec. 4.6; D)
Normalized radii distribution; E) Rall exponent distribution; F) Probability ratio distribution, in
blue for surface proteins, in red for soluble proteins; G) Surface bias distribution. From A) to G),
the black errorbars represent the mean and the standard error, while the rectangles the median,
IQ1 and IQ2.
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5.2.2 STG: Rall Exponent

Knowing the normalized radii for both daughter dendrites, see Fig 20-B, I calculated the value of

of the Rall exponent of each branch, see Fig 21-C, and Fig 20-E for the entire distribution of the

Rall exponents.

The mean Rall exponent for STG neurons that we measured is E[α] = 0.88±2.27, because

of the high variability, and asymmetry of the distribution, is more meaningful to observe its

median: E[α] = 1.00 (IQR: 0.72− 1.47).

5.2.3 STG: Probability Ratio and Surface Bias

The other two quantities I calculated knowing the normalized radii are the probability ratio for

surface and cytoplasmic proteins (see Fig. 20-F blue and red respectively. The mean probability

ratio for surface proteins is E[Q S
p ] = 1.58± 2.00, with s.e.m=0.12 and its median is: E[Q S

p ] =

1.23 (IQR: 0.94− 1.68). The mean probability ratio for cytoplasmic proteins is E[Q C
p ] = 1.20±

0.41 with s.e.m.=2 and its median is: E[Q C
p ] = 0.93 (IQR: 0.52− 1.58).

The last quantity I calculated is the Surface bias, see Fig. 20-G. The average surface bias is

E[Q S/C
p ] = 0.56±1.14, with s.e.m=0.2 while its median is: E[Q S/C

p ] = 0.34 (IQR: 0.23− 0.78).

mean, std (s.e.m) median (IQ1,IQ3)
Rall exponent α 0.88±2.27 (0.17) 1.0 (0.72, 1.47)

Q S
P 1.58±2.00 (0.12) 1.23 (0.94, 1.68)

Q C
P 5±36 (2) 0.92 (0.52, 1.58)

Q S/C
P 0.4±0.4 (0.2) 0.34 (0.10, 0.67)

Table 3: STG Neurons: Overview In this table, I summarized the mean, standard deviation,
standard error of the mean, median, and first and third interquartiles of the Rall exponent, the
probability ratio both of surface and cytoplasmic proteins, and the surface bias.
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Figure 20: Real Neurons Radii: Stomatogastric Ganglia Neurons A) scatterplot of all the
measured radii, in order of the mother dendrite R0, of the bigger daughter dendrite R1, and of
the smaller daughter dendrite R2; B) scatterplot of all the normalized radii, in order of the big-
ger daughter dendrite r1 and of the smaller daughter dendrite r2; C) phase diagram of the radii
distribution. The color code represents the range of values of alpha, as discussed in Sec. 4.6; D)
normalized radii distribution; E) Rall exponent distribution; F) probability ratio distribution, in
blue for surface proteins, in red for soluble proteins; G) surface Bias distribution. From A) to G),
the black error bars represent the mean and the standard error, while the rectangles the median,
IQ1, and IQ2.
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5.3 PPC Neurons: Cortical Pyramidal Neurons

The third dataset of neurons I analyzed contained 68 branches of pyramidal neurons in the pre-

frontal cortex. This dataset was provided to us by one of our collaborators, Ali Karimi; the dataset

and the methodology used to obtain it was previously published in [73]. These branches were re-

constructed using 3D electron microscopy, which allowed us to have very accurate information

about the radii of each branch.

5.3.1 PPC: Radii Statistic

The first thing I analyzed is the Radii statistic. in Fig 21-A I showed the full distribution of the

68 measured branches, from left to right of R0, R1 and R2 where R1 > R2. The average Radii

are: E[R0] = 0.61±0.20 µm, E[R1] = 0.52±0.20 µm, and E[R2] = 0.38±0.10 µm. It’s important

to notice that this doesn’t represent the average radius of mother or daughter dendrites in PPC

pyramidal neurons, because our sampling was biased toward terminal dendrite. For reference the

range of measured radii spans from Rmin = 0.119 µm and Rmax = 1.196 µm.

The average radius of a normalized daughter radius is E [r] = 0.75±0.19, and the standard

error of the mean is 0.02, while the median of the normalized radii is: E [r] = 0.74 (IQR: 0.63−

0.87) The complete distribution of the normalized radii, pulling together all the daughter normal-

ized radii, is shown in Fig 21-D.

5.3.2 PPC: Rall Exponent

Knowing the normalized radii for both daughter dendrites, see Fig 21-B, I calculated the value of

of the Rall exponent of each branch, see Fig 21-C, and Fig 21-E for the full distribution of the

Rall exponents.

The mean Rall exponent for pyramidal neurons is E[α] = 2.6± 1.8, with s.e.m.= 0.24,

because of the high variability, and asymmetry of the distribution, is more meaningful to observe

its median: E[α] = 2.3 (IQR: 1.8− 3.3).
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This value is compatible with the one previously reported in literature, see [72]: α= 2.28±

0.89 for basal dendrites, and α = 1.69±0.48 for apical dendrites.

5.3.3 PPC: Probability Ratio and Surface Bias

The other two quantities I calculated are the probability ratio for surface and for cytoplasmic

proteins, see Fig. 21-F blue and red respectively. The mean probability ratio for surface proteins

is E[Q S
p ] = 1.50±0.26, with s.e.m.=0.03, and its median is E[Q S

p ] = 1.5 (IQR: 1.3− 1.6). The

mean probability ratio for cytoplasmic proteins is E[Q C
p ] = 1.20±0.41, with s.e.m.=0.04 and its

median is E[Q C
p ] = 1.14 (IQR: 0.95− 1.37).

The last quantity I calculate using the normalized radii is the surface bias, see Fig. 21-

G. The average surface bias is E[Q S/C
p ] = 0.29± 0.12, with s.e.m.=0.07, while its median is

E[Q S/C
p ] = 0.29 (IQR: 0.20− 0.38).

mean, std (s.e.m) median (IQ1,IQ3)
Rall exponent α 2.56±1.78 (0.24) 2.3 (1.8, 3.3)

Q S
P 1.50±0.26 (0.03) 1.49 (1.35, 1.65)

Q C
P 1.20±0.41 (0.05) 1.14 (0.95, 1.37)

Q S/C
P 0.29±0.12 (0.07) 0.29 (0.20, 0.38)

Table 4: Pyramidal Neurons: Overview In this table, I summarized the mean, standard devia-
tion, standard error of the mean, median, and first and third interquartiles of the Rall exponent,
the probability ratio of surface and cytoplasmic proteins, and the surface bias.

5.4 Brief Summary

In this section I analyzed three datasets of neurons to study their branching statistics. I applied the

definition of Rall exponent, probability ratio, and surface bias derived in the previous sections,

a summary of the median values of those quantities for the three types of neurons analyzed is

shown in 5
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Figure 21: Real Neurons Radii: PPC 3D-EM Reconstructed Pyramidal Neurons A) Scatter-
plot of all the measured radii, in order of the mother dendrite R0, of the bigger daughter dendrite
R1, and of the smaller daughter dendrite R2; B) Scatterplot of all the normalized radii, in order of
the bigger daughter dendrite r1 and of the smaller daughter dendrite r2; C) Phase diagram of the
radii distribution. The color code represents the range of values of alpha, as discussed in Sec. 4.6;
D) Normalized radii distribution; E) Rall exponent distribution; F) Probability ratio distribution,
in blue for surface proteins, in red for soluble proteins; G) surface bias distribution. From A)
to G), the black error bars represent the mean and the standard error, while the rectangles the
median, IQ1, and IQ2.
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median (IQ1,IQ3) Cultured Pyramidal STG
α 2.0 (1.5, 2.9) 2.3 (1.8, 3.3) 1.0 (0.72, 1.47)

Q S
P 1.45 (1.27, 1.65) 1.49 (1.35, 1.65) 1.23 (0.94, 1.68)

Q C
P 1.12 (0.84, 1.38) 1.14 (0.95, 1.37) 0.92 (0.52, 1.58)

Q S/C
P 0.28 (0.20, 0.46) 0.29 (0.20, 0.38) 0.34 (0.10, 0.67)

Table 5: Overview of the three classes of neurons analyzed, for each of them I showed the
median value and the interquartile range of: Rall exponent, probability ratio and surface bias.
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6 Protein Fluorescence in Cultured Neurons

In this chapter I analyzed the fluorescence of two diffusive proteins, one is a fluorescent soluble

proteins called GFP, and the other is a surface protein GFP::Nlg, a surface protein associated with

GFP. Analyzing the intensity of the fluorescence I calculated the ratio of proteins before and after

the branch, and I compared those fractions with the fraction predicted by the radii statistics of

cultured neurons derived in Sec. 5.

Our collaborator, Anne-Sophie Hafner, imaged 22 individual neurons, half of which were

transfected with GFP, Green Fluorescence protein and half with GFP::Nlg, Neuroligin associated

with GFP, the first is a cytoplasmic fluorescent protein, and the second a surface protein associ-

ated with a surface protein. Having two populations of neurons transfected with proteins of two

different species allowed me to compare the fluorescence intensity before and after each branch.

Using FIJI, an open software that allows measuring the luminosity of each recorded voxel,

I analyzed the sum of the projected intensities on the X-Y plane, see Fig. 22-A. Once the three-

dimensional image was reduced to a bi-dimensional one, I identified all the clean branches and

selected a narrow area around them. I referred to this area as the region of interest or RoI. The

RoI was selected to be as close as possible to the edges of the dendrite to minimize the effect

of the background noise but big enough to include all the fluorescent signal of the dendrite.

The definition of clean branch and a detailed description of how I selected the branches are in

Appendix, see Sec. F.3. Measuring the fluorescence in FIJI allowed me to express it as a function

of the distance from the beginning of the region of interest. As a convention, all the RoI were

oriented such that x = 0 was the closest point to the soma. The signal fi (x) that I obtained was

then integrated over the interval x ∈ (m,m+∆):

Fi (m,∆) =
∫ m+∆

m
f (x)dx. (91)

For a schematization, see Fig. 22-B.

Following the assumption that the fluorescence of a protein is proportional to the abundance
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of the protein itself, Fi = KNi; limiting the analysis to a narrow interval around the branch, I

assumed that the proportionality constant K is the same in the three connected dendrites.

In Fig 22-C and D, I showed the individual values of the point-wise fluorescence ratio

defined as:

f (x) =
f1 (x)+ f2 (x)

f0 (x)
. (92)

The error bars represent the mean and standard deviation of the point-wise fluorescence ratio for

each of the branches. The main limitation of this approach is the high fluctuation of the point-wise

fluorescence ratio. To limit them, I decided to consider the integrated fluorescent ratio, defined as

Q X
F (m,∆) =

F1 (m,∆)+F2 (m,∆)

F0 (m,∆)
. (93)

Both Eq. 93, and Eq. 77, quantify the expected ratio of protein after and before the branch.

The first uses the intensity of the fluorescence of the protein to calculate that ratio, and the second

the radii of the dendrites.

In Fig. 22-E, I showed the integrated fluorescence ratio for different choices of m and

∆. The error bars show the mean and the standard error of the mean for each set of m and

∆. The shaded area is the expected mean and standard error of the mean of the probability

ratio, as obtained in Sec. 5.1.3. The high value of the fluorescence ratio for Nlg protein and

m = 1,∆ = 1 is due to two outlier in the fluorescence of two of the daughter dendrites; due to

the small integration interval, their impact is easily noticeable. The reason that the standard error

of the mean increases with m+∆, is due to the fact that Eq. 93 can be applied only to branches

with min(L0,L1,L2) > m+∆. The complete distribution of the Fluorescence ratio for different

choices of m and ∆, is shown in Appendix, see Fig. 32.

In Fig. 22-F, I showed the mean and the standard error of the mean of the fluorescence
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surface bias, defined, analogously to the surface bias in Eq. 78:

Q S/C
F =

Q S
F

Q C
F
−1. (94)

The fluorescent surface bias cannot be calculated directly from the fluorescent signals of the two

proteins, for this reason, for each value of m and ∆, I defined it as:

Q S/C
F (m,∆) =

Q S
F (m,∆)

Q C
F (m,∆)

−1. (95)

6.1 Summary of Protein Fluorescence

As I predicted, both the measured probability ratio and fluorescence ratio are in good agreement,

see Table 6, the same is true also for the surface bias and fluorescence surface bias.

mean ± std, S.E.M. median, (1st - 3rd IQ)
Q S

F 1.57±1.17, / 1.32 (1.08− 1.71)
Q S

P 1.48±0.28, (0.03) 1.45 (1.27− 1.65)
Q C

F 1.24±0.45, / 1.16 (0.981− 1.41)
Q C

P 1.17±0.45, (0.05) 1.12 (0.84− 1.37)

Q S/C
F 0.22±0.65, / 0.24 (0.17− 0.26)

Q S/C
P 0.36±0.28, (0.03) 0.28 (0.17− 0.53)

Table 6: Overview of the fluorescence ratio and of the probability ratio for surface (S) and
cytoplasmic (C) proteins. And also of the fluorescence surface bias. For each quantity the mean,
standard deviation, median and first to third interquartile (IQ) range are specified. For the values
obtained from the radii, I calculated also the standard error of the mean, s.e.m.
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Figure 22: Fluorescence of Cultured Hippocampal Neurons A) In this figure, I showed two
examples of cultured neurons, one for a surface protein: GFP::Nlg, and one for a cytoplasmic
protein: GFP. B) The schematization on how the fluorescent signal is extracted from an image,
integrating it from a distance m to a distance m+∆ from the soma. C,D) mean and standard devi-
ation of the fluorescence ratio for each of the branches. The individual dots are the fluorescence
ratio of the signal at distance d from the branch: f1(d)+ f2(d)

f0(d)
, and the errorbar is the average over

d, and the standard deviation. E) mean integrated fluorescence ratio and standard error of the
mean for different values of m and ∆. G) mean integrated surface bias and its standard error of
the mean for different values of m and ∆. Subplots A), B) are adapted from [7].
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7 Optimal Branching In Real Morphologies

In this section, I analyzed the relationship between the radii of 28 pyramidal branches with the

length of their daughter dendrites. I inverted the equation found in Sec. 4 to associate to every

branch the type of protein whose diffusion is optimized by the branch itself. Then, I compared

the distribution of the diffusion length of those proteins, with the diffusion lengths of real proteins

and I calculated the cost for deviating from those optimal diffusion lengths.

Our collaborator, Ali Karimi, provided us with 68 branches of cortical pyramidal neuron

data. In Sec. 5.3 I analyzed the statistics of their radii. 28 of those 78 branches were terminal,

and that allowed me to invert Eq. 69 and obtain the optimized diffusion length for each branch.

Then I compared the distribution of optimized λ with the distribution of the diffusion length of

26 proteins finding that the peaks of the two distributions overlap. Furthermore, the distribution

of the diffusion lengths of real proteins is higher than the distribution of the optimized diffusion

lengths, both for surface and cytoplasmic proteins. Therefore, I analyzed the cost for a protein

not to have the optimized diffusion length, and I found that, in average, the percentage cost, in

terms of how many extra proteins each branch needs to produce grows faster for smaller diffusion

lengths than for higher ones.

7.1 Optimized Diffusion Length

The 28 terminal branches are the only ones where the argument used to obtain Eq. 69 can be

applied. This is because the no-flux condition must be imposed on both daughter dendrite termi-

nation to obtain Eq. 69, and it can be applied only to terminal branches. The dependency of L2

on L1 is shown in Fig. 23-A.

In the following, I assumeed that L1 ≥ L2. If R1 > R2 I obtained, numerically, the value

of λ that solves Eq. 69, and I called it optimized diffusion length. In 9 of the 28 branches, the

longer dendrite is associated with the smaller radius, so there is no real value of λ that satisfies Eq.

69. In these cases, I defined the optimized diffusion length as the value of the diffusion length
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that minimizes the protein requirement for the branch. In Fig. 23-B, I plotted the dependency

of the protein requirement on the diffusion length for all these irregular branches, showing that

the protein requirement decreases monotonically with λ; the optimized diffusion length of these

irregular branches is, therefore, λ = ∞.

In Fig. 23-C, I showed the distribution of the optimized diffusion length for surface and

cytoplasmic proteins, in blue and red, respectively. Restricting the analysis only to the finite

values of λ, the median values of the optimized λ are 109 µm for surface proteins and 65 µm for

cytoplasmic proteins.

For each branch, the optimized diffusion length for diffusion at the surface is higher than

the optimized diffusion length for diffusion in the cytoplasm because of the power γ in Eq. 69.

7.2 Real diffusion lengths

From Eq. 69, I obtained the distribution of the optimized diffusion lengths; here, I wanted to com-

pare such distributions with the distribution of the diffusion lengths of real proteins. To obtain the

diffusion length of a real protein, I needed two parameters: the half-life and the diffusion coeffi-

cient. I took the majority of the value of the half-life from [8], and I searched in the literature for

the diffusion coefficients. The principal techniques used to measure the diffusion coefficients of

dendritic proteins are FRAP, fluorescence recovery after photobleaching, FCS fluorescence cor-

relation spectroscopy, and SPT, single particle tracking. For an explanation of these techniques,

see Appendix, Sec. G.4, Sec. G.3, and G.2 respectively.

The distribution of the diffusion length of real proteins is shown in 23-C, yellow, and the

median of that distribution is λ = 329 µm. For the complete list of the diffusion lengths of den-

dritic proteins, see Table 11 in Appendix.
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7.3 Costs for deviating from optimality

Each branch is optimizing for a different value of the diffusion length, and the distribution spans

across multiple order of magnitude; the same is true for the diffusion length of real proteins.

The question that arises naturally is how high is the cost the system has to pay for not following

Eq. 69? First, I used the information about the lengths of the dendrite, and check the cost for a

percentage deviation from the optimal radii, then I used both the information about the lengths

of the daughter dendrites and the radii of the daughter dendrites, and I calculated the percentage

increase in the protein requirement as a function of λ.

7.3.1 Cost For Non-optimal Radii

The first thing I checked was the extra percentage cost for non-optimal radii. I fixed the length of

the daughter dendrites to their measured value, and the value of λ = 329 µm, the median from the

protein distribution, and the value of one of the normalized radii r2 = 0.74.

Fig. 23-D shows that the protein requirement increases more rapidly when one of the two

radii is smaller than its optimal value than when it is bigger. This is easily understandable from

Eq. 63: decreasing r1 affects the protein requirement of dendrite 1 while when the radius of the

dendrite 1 is increased, the other two dendrites would contribute together to compensate for the

increased demand.

The protein requirement for r1 = roptimal
1 +50%= 1.5 roptimal

1 is 2-8 times smaller than r1 =

roptimal
1 −50% for surface protein and 3-90 times smaller for cytoplasmic proteins. Furthermore,

the same deviation, in percentage, from the optimal radius implies a much higher extra cost in

cytoplasmic diffusion than in the case of surface diffusion.

7.3.2 Cost For Non-optimal diffusion length

In Fig. 23-E, I checked the extra percentage cost as a function of the diffusion length for the

radii not to be optimal. In this scenario, I imposed one of the normalized radii to be equal to
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the typical value of the normalized radii in pyramidal neurons and the other to be the optimal

radius for a fixed value of λ. I compared the protein requirement of such a system with the

protein requirement obtained from the measured values of the radii. I observed that increasing

the diffusion length above 100µm leads to a small increase in the extra cost for not optimal radii,

compared to smaller diffusion lengths, resulting in faster growth in the protein requirement.

7.4 Summary

In this section, I analyzed 29 dendritic branches, and I used their radii and their length to invert Eq.

69 and find the diffusion length that each branch is optimizing for. I showed how the optimized

diffusion length is smaller than the ones from real proteins and that the increase of the protein

requirement for λ > λopt increases more slowly than the protein requirement of protein with

λ < λopt.
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Figure 23: Optimal and Real Diffusion Lengths This figure compares the distributions of opti-
mized diffusion lengths obtained from the morphologies to the protein diffusion length and shows
the cost for non-optimal diffusion lengths and radii. A) The lengths of the two daughter dendrites
are plot one against the other. The Red circles are branches where R1 > R2, and the blue circles
branches where R1 < R2. B) When R1 < R2, λ cannot be calculated, here I showed that increasing
the value of λ reduces the protein requirement for these branches. C) The comparison of optimal
inferred λ and the real λ is shown. The optimal inferred one is obtained for the red circled dots
of A) using Eq. 69. D) The percentage cost for non-optimal radii is shown as a function of the
percentage deviation from the optimal r1 E) proteins with small diffusion lengths have a higher
cost for not fulfilling Eq. 69, than proteins with a high diffusion length. Panel C) and E) are
adapted from [7]
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8 Complete Neuronal Morphologies

In the previous sections, I first derived a set of instructions to understand how the protein flux

splits at a dendritic branch. I predicted a different behavior at a branch for surface and cytoplasmic

proteins, and I tested this prediction using fluorescent proteins. Then I derived an equation to find

the optimal radii ratio for each value of the diffusion length and analyzed the cost for a deviation

from the optimal radii ratio. This chapter builds upon that model by applying what I just described

to a complete dendritic arbor. I obtained the reconstructed morphologies of three categories of

neurons, hippocampal pyramidal neurons, like the one in Fig. 24-A, cerebellum Purkinje neurons

like the one in Fig. 24-B, and granule cells like the one in Fig. 24-C from the online database

Neuromorpho [3]. Then I simulated the diffusion equation on those graphs, and I analyzed both

the protein distribution, and the protein requirement for each of them.

A B C

Figure 24: Overview of the Dendritic Morphologies This figure shows the three classes of
dendritic morphologies I used in the simulations. A) Cortical pyramidal neuron, morphology
adapted from [74]. The scale is 200 µm. B) Purkinje neuron, morphology adapted from [75]. The
scale is 100 µm. C) Granule cell, morphology adapted from [76]. The scale is 20µm.
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8.1 Simulation details

In this section, I described the algorithm I followed to simulate the protein dynamic in the re-

constructed morphologies. The morphologies found in Neuromorpho are in the SWC format. An

SWC file contains an N× 8 matrix, where every line encodes the information of a single com-

partment. The first column is an increasing number that labels each compartment. The second is

the structure identifier, 1 represents soma, 2 axon, and 3 and 4 proximal and distal dendrites. The

4− 6-th columns the x-y-z position, the 7th column the radius, and 8th column the index of the

parent compartment (−1 for the starting point of the graph).

The time step of the simulations have been fixed in Eq. 51: ∆t = ∆x2

2D . This requires that

all the compartments are equally spaced one from the other. To achieve that, I identified the be-

ginning and end of each dendrite, and I regularized it by merging and splitting the compartments

into compartments of length ∆x. In the following simulations, ∆x = 1 µm.

At time zero, I inserted 1 protein in the soma, and I followed the fraction of proteins in each

compartment in time. At each time step, a fraction φ∆tρ(x) of proteins are removed from each of

the neuronal compartments, including the soma, representing the fraction of dismantled proteins

in each compartment. Then, I moved all the proteins from each compartment to the adjacent

ones accordingly with the methods described in Sec. 2.4, see Eq. 51 for linear dendrites, Eq.

62 in branches, and Eq. 56 for terminal compartments, these three equation were used with the

assumption of no velocity induced by active transport: v = 0. Finally, I added N = φ∆t proteins

to the soma to compensate for the decayed one; this kept the total number of proteins constant

in time. Because of the linearity of the system, I set the N = 1. The simulations stop when the

system has reached the equilibrium with a precision θ; this means that the maximum relative

difference between two consecutive time step (200 hours) is smaller than θ:

θ > max
x

(
|ρ(x, t)−ρ(x, t +δt)|

ρ(x, t)

)
. (96)
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8.1.1 Radii Selection

One of the major shortcomings of this database is the unreliability of many of the measured radii.

In Neuron Purkinje-slice-ageP37-5.CNG, [77], for example each compartment has exactly the

same diameter. For this reason, I decided not to rely on the reported radii and to assume that each

branch follows the Rall’s rule, with the same exponent α = 2.3 found for pyramidal neurons in

Sec. 5.3. The Rall exponent by itself is not sufficient to fully determine the normalized radii of

the two daughter dendrites: I also needed the value of their ratio.

Here I wanted to explore the impact of the optimality rule I described in Sec. 4.1. To do so,

I compared the protein profile and protein requirement in the case of symmetrical branches, where

the ratio of the normalized radii is r1
r2
= 1, and optimal branches, where the ratio of the normalized

radii is determined by Eq. 69. The optimal radius is also dependent on the diffusion length and

on the medium where the protein are diffusing (surface or cytoplasm). For this reason, I studied

both surface and cytoplasmic proteins for two values of the diffusion length λ: λ = 109 µm, and

λ = 473 µm. The first is the median of the distribution of the diffusion lengths that the measured

branches are optimizing for, as discussed in Sec. 7.1, and the second is the diffusion length of one

of the subunits of the GABA receptors, an inhibitory ion channel involved in synaptic plasticity

[78, 79].

8.2 Real Morphologies: Pyramidal Neurons

Pyramidal neurons are among the most studied types of neurons and can be found in several

brain areas, including the cortex, the hippocampus, and the amygdala. Their structure is easily

recognizable (see Fig. 24-A) because of their polarized structure. One of the dendrites stemming

from the soma extends for several hundreds of micrometer in a straight direction, and it is called

apical dendrite, while the others, from 3 to 5, shorter than the apical one, are called basal dendrites

and collect inputs from areas closer to the soma. The length of the apical dendrites is dependent on

the area of the brain and the animal species; human pyramidal neurons are usually twice as long
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as rat pyramidal neurons, [3]. I selected 64 reconstructed morphologies following the protocol

explained in Sec. E.

8.2.1 Protein Distribution and Protein Requirement

Fig.25 shows the Protein distribution of surface and cytoplasmic protein both in the case of sym-

metrical branches, A-D and in the case of optimized branches, E-H. It can be noticed that the

protein distribution of surface protein is higher than the one of cytoplasmic protein in distal den-

drites and vice-versa. This is a direct consequence of the probability rule, discussed in Sec. 2.5.

In Fig. 25-A, B, I showed the protein profile in the eight scenarios described before. The

box in the color bar alongside shows the minimal and maximal protein density in each compart-

ment. That shows that increasing the diffusion length four times has a limited impact on the

protein density while changing the diffusion medium from surface to cytoplasmic, or the radii

rule from symmetrical to optimized, has a much more significant impact. This can be better ob-

served in Fig. 26, In the left column, I showed the average number of proteins at a distance x

from the soma, while on the right side, I showed the number of proteins needed to populate a

percentage f of the whole dendric arbor. In each subplot, the red color represents symmetrical

radii, while the blue line optimized radii.

The numbers on the side show the protein needed to populate the 100% (95%) of the den-

dritic arbor. These results for the eight scenarios are summarized in Table 4. Recalling the

estimated number of proteins in the dendritic arbor of a pyramidal neuron, Nd = 6 109, [32, 31],

in Table 4, I showed that completely populate the dendritic arbor in case of symmetrical branches

would require an unreasonably high number of proteins. In contrast, in the case of perfectly op-

timized radii, even cytoplasmic protein with a relatively low diffusion length requires fewer than

the 0.01% of the protein pool to populate the 95% whole dendritic arbor. I showed both in the

figure and in the table the protein requirement for the 95% of the dendritic trees, because the

100% treshold contains a single point, and is much more subject to fluctuations.
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PYR 100% % for 100% PYR 95% % for 95%
λ = 109 µm, (C,S) 4.7 1014 7.8 106 2.9 1010 480
λ = 473 µm, (C,S) 3.6 1012 6 104 1.2 109 20
λ = 109 µm, (S,S) 3.6 1011 6 103 4.8 108 8
λ = 473 µm, (S,S) 2.1 108 3.5 3.6 106 0.06
λ = 109 µm, (C,O) 9.6 108 16 1.7 106 0.03
λ = 473 µm, (C,O) 1.0 106 0.02 6.2 104 0.001
λ = 109 µm, (S,O) 1.2 108 2 1.2 106 0.02
λ = 473 µm, (S,O) 1.8 105 0.003 3.4 104 6 10−4

Table 7: Pyramidal Neurons: Protein Requirement Overview: Protein requirement for the
100% and the 95% of the pyramidal dendritic arbor, and percentage of the total dendritic pro-
tein available. (C,S) stands for cytoplasmic diffusion and symmetrical radii; (C,S) stands for
cytoplasmic diffusion and symmetrical radii; (C,O) stands for cytoplasmic diffusion and optimal
radii; (S,S) stands for surface diffusion and symmetrical radii; (S,O) stands for surface diffusion
and optimal radii.

8.3 Purkinje Neurons

Purkinje neurons are cells located in the cerebellum, and they receive input from the granule

neurons, which are described in Sec. 8.4. Purkinje were the first neurons to be identified by Jan

Evangelista Purkyně in 1832. I selected 32 complete morphologies from Neuromorpho [3], and

for each of those, I run the same set of simulations that I described in Sec. 8.2.

In the selected morphologies, the median maximal distance from the soma together with the

50% confidence interval is MD = 0.23 ( IQR: 0.23) mm, while the median length of the dendritic

arbor is TL = 6.00+0.93
−0.95 mm. When compared to a pyramidal neuron, MD = 0.90+0.28

−0.14 mm, and

TL = 14.4+3.1
−3.2 mm, Purkinje are more localized and fill the plane much more densely: while

the maximal length of Purkinje cells is four times smaller than the maximal length of pyramidal

neurons, the total length is just its half. This is due to the higher number of branches in Purkinje

cells than in pyramidal neurons: 340+70
−50 compared to 92+12

−7 . In addition to the higher density

of branches, the dendritic arbor of Purkinje cells is planar, while pyramidal neurons extend and

branch in all three directions.
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8.3.1 Protein Distribution and protein Requirement

Analogously to what I did for pyramidal neuron, I simulated both for cytoplasmic and surface

proteins, for two values of the diffusion length and symmetrical and optimized radii. To maintain

a direct comparison of the simulated morphologies, I used the same branching rule I imposed for

pyramidal neurons also for Purkinje cells: R1 = R2 = 0.74, and α = 2.3

Because of the higher number of branches, Purkinje cells have a protein requirement of a

similar magnitude of pyramidal neurons, although they are considerably shorter than pyramidal

neurons. Fig. 27, shows the protein distribution in all the eight scenarios analyzed. The color

code is in a logarithmic scale, and the box in the bar alongside each figure shows the maximum

and minimum density of protein in each compartment. In Table 8, I summarized the protein

requirement obtained for Purkinje cells in the different scenarios.

8.4 Granule Neurons

Granule was a name used to indicate multiple types of neurons with a common trait; they possess

a short dendritic tree and a small soma. Here I focused my analysis on the granule neurons

in the cerebellum. Granule neurons are the most abundant types of neurons in the brain [80],

they receive inputs from the mossy fibers, and they project their output to Purkinje cells. The

average length of a granule cell is considerably shorter than pyramidal and Purkinje neurons,

having a median maximal length of MGra
L ∼ 148 µm compared to the MPyr

L ∼ 897 µm of pyramidal

neurons. Because their morphological properties are highly different from the ones of pyramidal

and Purkinje neurons and their abundance in the brain, I decided to test my model on this class of

neurons.

8.4.1 Protein Distribution and Protein Requirement

As I did for pyramidal and Purkinje neurons, I run the same set of simulations on granule cells. I

selected 143 granule neurons, and I showed the average protein distribution and protein require-
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ment in Fig. 29 and in Fig. 30. As was expected, the total number of proteins needed to populate

a granule cell is significantly smaller than for pyramidal and Purkinje neurons. The protein re-

quirement for the 95% and 100% of the dendritic arbor are shown both in 30, right column, and

summarized in Table, 8.

8.5 Brief Summary

In this section, I simulated the protein distributions for three types of neurons and analyzed the

number of proteins needed to populate a certain percentage of their dendritic arbor. I repeated this

process for 64 distinct dendritic morphologies in the case of pyramidal neurons, 32 morphologies

for Purkinje neurons, and 143 for granule neurons. For each of those morphologies, I simulated

two values of the diffusion length: λ = 109 µm and λ = 473 µm, and two rules for the branch-

ing radius: symmetrical with R1 = R2 = 0.74R0, and optimal, accordingly with the procedure

described in Sec. 4.2. The summary of the protein requirement for a specific percentage of the

dendritic arbor is summarized in Table 8.

For pyramidal branches, I compared the protein requirement with the total number of dendritic

proteins, as estimated in the introduction: Nd ∼ 6 109, and I expressed the protein requirement

in terms of percentage of the total dendritic proteins, see Table 7. I showed that optimizing the

radii reduces the fraction of proteins needed to match the protein requirement below the 0.1% for

every type of proteins with a relatively low diffusion length λ≥ 109µm.
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PYR 100% PYR 95% PUR 100% PUR 95% GRA 100% GRA 95%

λ = 109 µm, (C,S) 4.7 1014 2.9 1010 1.2 1019 1.4 1011 5.5 105 4.8 103

λ = 473 µm, (C,S) 3.6 1012 1.2 109 7.9 1018 1.0 1011 4.3 104 3.4 103

λ = 109 µm, (S,S) 3.6 1011 4.8 108 1.2 1011 1.3 107 6.7 103 1.8 103

λ = 473 µm, (S,S) 2.1 108 3.6 106 4.0 1010 6.3 106 3.7 103 1.2 103

λ = 109 µm, (C,O) 9.6 108 1.7 106 9.5 109 7.4 105 3.3 103 1.9 103

λ = 473 µm, (C,O) 1.0 106 6.2 104 3.0 109 4.0 105 1.9 103 1.4 103

λ = 109 µm, (S,O) 1.2 108 1.2 106 1.9 107 8.4 104 1.8 103 1.2 103

λ = 473 µm, (S,O) 1.8 105 3.4 104 2.3 106 3.2 104 1.2 103 910

Table 8: Protein Requirement overview: for 100% and 95% of the dendritic arbor. For the three
classes of real morphologies analyzed. (C,S) stands for cytoplasmic diffusion and symmetrical
radii; (C,S) stands for cytoplasmic diffusion and symmetrical radii; (C,O) stands for cytoplasmic
diffusion and optimal radii; (S,S) stands for surface diffusion and symmetrical radii; (S,O) stands
for surface diffusion and optimal radii.
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Figure 25: Pyramidal Neurons: Overview In this figure I showed the distribution of somatic
and diffusive proteins at the equilibrium in eight different scenarios. In A,B,C,D) I imposed sym-
metric branches, where R1 = R2 = 0.74 R0; In E,F,G,H) I imposed the optimal radii as described
in Sec. 4.2; in A,C,E,G) I imposed a diffusion length λ = 109µm, as obtained from the median
of the optimized diffusion length in Fig. 23-C, and in B,D,F,H) I imposed the diffusion length
λ = 473µm that I found for AMPA receptors, see Table 11. The errorbar is the scale of the neu-
ron, and is 200µm long. The colorcode represents the density of proteins in each compartment
(∆x = 2µm). The box on the side of each neuron shows the lower and the higher density of
proteins in each compartment.
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Figure 26: Pyramidal Neurons: Protein Density and Protein Requirement In this figure,
I showed the average density of proteins at a distance x from the soma, left column, and the
number of proteins required to have at least 1 protein per micrometer in a certain percentage of
the dendritic arbor in the right column. I repeated the plot four times, two values of λ and two
diffusion modes, surface, and cytoplasm. Each plot contains two subplots, namely the profiles
obtained for symmetrical branches in red and the ones obtained for optimized branches in blue.
The numbers on the right side of the right column are the number of proteins needed to bring at
least one protein in each compartment in each scenario.
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Figure 27: Purkinje Neurons: Overview In this figure I showed the distribution of somatic and
diffusive proteins at the equilibrium in eight different scenarios. In A,B,E,F) I imposed symmetric
branches, where R1 = R2 = 0.74 R0; In C,D,G,H) I imposed the optimal radii as described in
Sec. 4.2; in A,C,E,G) I imposed a diffusion length λ = 109µm, as obtained from the median
of the optimized diffusion length in Fig. 23-C, and in B,D,F,H) I imposed the diffusion length
λ = 473µm that I found for AMPA receptors, see Table 11. The errorbar is the scale of the
neuron, and is 100µm long. The colorcode represents the density of proteins in each compartment
(∆x = 2µm). The box in the bar alongside each figure, shows the lower and the higher density of
proteins in each compartment.
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Figure 28: Purkinje Neurons: Protein Density and Protein Requirement In this figure, I
showed the average density of proteins at a distance x from the soma, left column, and the num-
ber of proteins required to have at least 1 protein per micrometer in a certain percentage of the
dendritic arbor in the right column. I repeated the plot four times: for two values of λ and two
diffusion modes, surface, and cytoplasm. Each plot contains two subplots, namely the profiles
obtained for symmetrical branches in red and the ones obtained for optimized branches in blue.
The numbers on the right side of the right column are the number of proteins needed to bring at
least one protein in each compartment in each scenario.
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Figure 29: Granule Neurons: Overview In this figure I showed the distribution of somatic and
diffusive proteins at the equilibrium in eight different scenarios. In A,B,C,D) I imposed sym-
metric branches, where R1 = R2 = 0.74 R0; In E,F,G,H) I imposed the optimal radii as described
in Sec. 4.2; in A,C,E,G) I imposed a diffusion length λ = 109µm, as obtained from the median
of the optimized diffusion length in Fig. 23-C, and in B,D,F,H) I imposed the diffusion length
λ = 473µm that I found for AMPA receptors, see Table 11. The errorbar is the scale of the neu-
ron and is 20µm long. The color code represents the density of proteins in each compartment
(∆x = 2µm). The box on the color bar alongside each neuron shows the lower and the higher
density of proteins in each compartment.
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Figure 30: Granule Neurons: Protein Density and Protein Requirement In this figure, I
showed the average density of proteins at a distance x from the soma, left column, and the number
of proteins required to have at least 1 protein per micrometer in a certain percentage of the den-
dritic arbor in the right column. I repeated the plot four times, two values of λ and two diffusion
modes, surface, and cytoplasm. Each plot contains two subplots, namely the profiles obtained for
symmetrical branches in red and the ones obtained for optimized branches in blue. The numbers
on the right side of the right column are the number of proteins needed to bring at least one protein
in each compartment in each scenario.
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9 Conclusion

In this section, I summarized the main results obtained in this dissertation in Sec. 9.1, as well as

the main limitations and the potential solutions to those issues in Sec. 9.2.

9.1 Main Results

Here, I summarized the main results I obtained in this work. Obtaining the protein profile for

different transport mechanisms is the first step to understanding the number of proteins needed

to populate the dendritic arbor. I defined the protein number as the average number of protein

that a neuron needs to produce to have a minimal density of 1 protein/µm; Knowing the protein

number for many different models, I showed that the optimal protein numbers happens when the

mRNA translation happens throughout the whole dendritic arbor at a constant rate. That leads

to a constant protein profile. I used that as a benchmark to understand how expensive the other

models are for populating a linear dendrite.

Understanding the protein requirement for each morphology and for each transport mech-

anism is important to understand how the dendrite can populate reliably the dendritic arbor, but it

is only a part of the story. In Sec. 2 I discussed how proteins can be translated in the dendrites,

opening the problem of transporting mRNA in dendrites. I am currently working on a more gen-

eral problem, where instead of considering the protein requirement of a model, it considers its

whole energy requirement in terms of ATP.

The main contributions to the energy requirement are the protein translation, the mRNA

transcription, which can be obtained also from the model explained in this thesis, and the cost for

keeping the proteins and mRNA in the active state.

9.1.1 Branch Rule

The next level of complexity arises when diffusive proteins meet a branch. I showed that the

probability of a protein diffusing in an afferent dendrite depends on the available space in that
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dendrite:

P(Branch→ Dendritei) =
Rγ

i

Rγ

0 +Rγ

1 +Rγ

2
, (97)

where γ = 1 in case of a protein diffusing on the surface, and γ = 2 in case of a protein diffusing

in the cytoplasm. The protein distribution I’ve found in this section relies on the assumption that

on long time-scale the dynamic of the diffusive proteins is diffusive; many example of anomalous

diffusion in neurons have shown that the anomalous diffusion behavior happens on a relatively

short time scale, a couple of seconds in [81].

9.1.2 Radii Statistics

To understand the consequence of the branch rule in different real neurons, I analyzed three

distinct datasets of neurons, A published dataset of crab STG neurons, [2], and two previously

unpublished ones, one for cultured hippocampal neurons and one of 3D-EM Prefrontal pyramidal

neurons. For these three datasets, I obtained the radii distribution for the mother and both daughter

dendrites, and using it, I calculated the distribution of the Rall exponent α. The Rall exponent is

a helpful indicator for the behavior of each branch; for positive values of α, the higher is the Rall

exponent, the bigger are the two daughter dendrites.

The median values of the Rall exponent and 50% confidence intervals I obtained for the

three types of neurons are

1. E [α] = 2.3 (IQR: 1.8− 3.3) for pyramidal nuerons;

2. E [α] = 2.0 (IQR: 1.5− 2.9) for cultured neurons;

3. E [α] = 1.0 (IQR: 0.72− 1.47) and for STG neurons.

The value of the Rall Exponent of pyramidal neurons is compatible with the previously

published one: α = 2.28±0.89 for basal dendrites and α = 1.69±0.48 for apical dendrites[72].
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9.1.3 Probability Ratio and Surface Bias

It is possible to evaluate the impact of branches on the protein distribution if the radii are known.

Because of the high variability in the normalized daughter radii that I showed in Sec. 5, the

fraction of proteins moving into each daughter dendrite is not the same for each branch. To have

an understanding of the behavior of surface and cytoplasmic proteins, I defined the probability

ratio as:

QP =
Rγ

1 +Rγ

2

Rγ

0
, (98)

where γ is the dimensionality of the media where the proteins are diffusing. γ = 1 for surface

proteins, γ = 2 for cytoplasmic proteins.

In Fig. 17 I showed the dependency of the probability ratio upon the radius of one of the

two daughter dendrites for four values of α. I showed that as long as α > 0 the probability ratio

of surface proteins, in blue (γ = 1), is higher than the probability ratio of cytoplasmic proteins, in

Red (γ = 2). Fig. 19, 20, 21-F show the distribution of the probability ratio of surface (blue) and

cytoplasmic proteins (red), for cultured, STG and cortical pyramidal neurons respectively. For

pyramidal and cultured neurons, most of the analyzed daughter dendrites have a smaller radius

than the mother dendrite. Therefore the probability ratio of surface proteins is higher than the

probability ratio of cytoplasmic ones. Therefore, surface proteins are more likely to move away

from the soma when they encounter a branch than cytoplasmic proteins.

This behavior is characterized in Fig. 19, 20, 21-G using the Surface Bias:

Q S/C
P =

Q S
P

Q C
P
−1. (99)

The surface bias represents the relative increase in the abundance of surface proteins over cyto-

plasmic protein after the branch.
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9.1.4 Fluorescence Ratio

Once I knew the probability ratio of cultured neurons, that represents the average increase in the

number of proteins after each branch, I analyzed the data provided us by one of our collaborators,

A.S. Hafner. There I measured the increase in integrated fluorescence after each branch:

QF =
F1 (m,∆)+F2 (m,∆)

F0 (m,∆)
, (100)

as shown in Fig. 22-E for several values of m and ∆. Averaging over m and ∆ leads to a Fluores-

cence ratio for surface and cytoplasmic proteins as summarized in Table 9.

Q S
P Q C

P Q S/C
P

Cortical pyramidal neurons 1.49 (1.35−1.65) 1.14 (0.95−1.37) 0.28 (0.2−0.38)
STG neurons 1.23 (0.94−1.68) 0.92 (0.52−1.58) 0.34 (0.10−0.67)

Cultured neurons -Radii 1.45 (1.27−1.65) 1.12 (0.84−1.38) 0.28 (0.2−0.46)

Q S
F Q C

F Q S/C
F

Cultured Neurons -Fluorescence 1.48±0.15 1.23±0.08 0.22±0.03

Table 9: Overview of the median, and first-to-third interquartile of the probability ratio of surface
proteins, probability ratio of cytoplasmic proteins, and surface bias, for cultured, cortical and
STG neurons. For the fluorescence signal I reported the mean and standard error of the mean.

9.1.5 Optimality Rule

After analyzing every branch’s behavior, I returned to the original problem of studying the impact

of each branch on the protein requirement of diffusive proteins. Because the amount of protein

diffusing toward each of the two daughter dendrites depends on their radius, I searched the radius

that minimizes the protein requirement, calling it optimal radius. The optimal radius must follow

the following relation:
cosh

(
L1
λ

)
cosh

(
L2
λ

) =
Rγ

1

Rγ

2
. (101)
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In [69], the authors explored the branch rule and the tapering that optimizes the transmission of

electric signals from the dendrites to the soma, imposing a similar rule:

L3/2
1

L3/2
2

=
R1

R2
. (102)

9.1.6 Effective length

The previously discussed equation gives a method to find the optimal radii ratio only for terminal

branches, where both L1 and L2 are known. However, if the dendritic morphology has multi-

ple consecutive branches, that equation cannot be applied directly; in Sec. 4.2 I described the

algorithm to optimize the radii of an arbitrary morphology. In brief, it assigns to each terminal

branches an effective length, Leff as defined in Eq. 71, and it replaces the mother and two daughter

dendrites with a single dendrite of length Leff and radius equal to the mother dendrite radius. I

repeat this procedure until a single linear dendrite replaces the whole dendritic arbor.

9.1.7 Real Diffusion lengths and Optimized diffusion length

The equation described to obtain the optimal radii can be inverted and applied to real morpholo-

gies where both the lengths of the dendrites and their radii are known. In that scenario, I used it to

infer the value of the diffusion length that each branch is optimizing for. In Fig. 23, I showed the

distribution of the diffusion length obtained in that way in Blue for surface proteins and in Red

for cytoplasmic proteins. In yellow, I overlayed the distribution of diffusion length of real protein

obtained from the literature.

The median value of the optimized diffusion length of surface proteins, and the 50% con-

fidence interval are 109 (57− 164), for cytoplasmic proteins are 65 (32− 132) and for the

measured diffusion length are 329 (104− 986).
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9.1.8 Cost for Non-Optimality

As shown in Fig. 23-C, the typical diffusion length of real proteins is higher than the diffusion

length that the dendrites are optimizing for. In Fig. 23-E I showed that the percentage cost for non-

optimality increases more slowly for protein with a higher diffusion length than for proteins with

a lower one. Understanding the cost for non-optimality in different scenarios is important when

one wants to compare two models. In [69], the authors explore the impact of radii and tapering

upon current transfer from the dendrites to the soma. I am currently working in a collaboration

to compare the two models, and the two predicted predicted optimal branching rules. To do so, a

weight function that consider the cost for the deviation from the optimal radii must be introduced.

9.1.9 Protein Requirement for Real Morphologies

The final thing that I showed in this work is the average protein requirement for three classes of

neurons: pyramidal, Purkinje, and granule neurons. I chose two diffusion length values, and I cal-

culate the protein density and requirement for each neuron. Then, I repeated for both symmetric

and optimized branch radii and both for surface and cytoplasmic proteins.

In the case of pyramidal neuron, I roughly estimated the total number of protein that it can

contain to be Ntot = 1.6 1010, Ndend = 6 109 of which are dendritic proteins. I then compared that

with the protein requirement obtained in Fig. 26, right column. I showed that in case of sym-

metrical branches, diffusion requires a very high number of proteins to provide enough proteins

to the 95% of the dendritic arbor. With the sole exception of diffusion at the surface and high

diffusion length. While in case of optimized morphology the protein requirement is relatively

small compared to the total pool of proteins available to the neuron, as summarized in Table 10:

This shows that diffusion, together with radii optimization, is sufficient to transport highly

diffusive proteins, λ > 400, and it might be enough to transport protein with an average diffusion

length λ ∼ 100. Only protein with high diffusion lengths can populate distal dendrites with less

than the 0.1% of the dendritic budget if the radii are symmetrical.
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PYR 95% Percentage of the dendritic pool
λ = 109 Cyto, Symm 2.9 1010 480
λ = 473 Cyto, Symm 1.2 109 20
λ = 109 Surf, Symm 4.8 108 8
λ = 473 Surf, Symm 3.6 106 0.06
λ = 109 Cyto, Opt 1.7 106 0.03
λ = 473 Cyto, Opt 6.2 104 0.001
λ = 109 Surf, Opt 1.2 106 0.02
λ = 473 Surf, Opt 3.4 104 0.0006

Table 10: Pyramidal Neurons: Protein requirement overview, Protein requirement for the 95%
of the pyramidal dendritic arbor, and percentage of the total dendritic protein available.

In [82], the authors estimate an average of 140 GABA receptors per synapse. Assuming that

all the receptors diffusing in the dendrite are available to the adjacent synapses, and a density of

synapses of 1 synapse/µm, the the typical dendritic arbor needs to synthetize N = 5×140×N95∼

23 106 GABA receptors to populate the 95% of the pyramidal dendritic tree, where 5 is the

number of subunits composing a GABA receptor.

9.2 Main Limitations

Here, I explored the main limitations of the models, both in terms of predictions of the model

that are inconsistent with current experimental observations like in Sec. 9.2.1, and in terms of

important components of dendritic transport that are not included in the model.

9.2.1 Active transport leads to accumulation at dendritic tips even for low velocities

In Sec. 2, I calculated the protein profile in case of active transport in a dendrite of length L =

200µm. There I showed that even for effective velocities much smaller than the measured ones,

there is an accumulation of proteins toward the end of the dendrite, see Fig. 6 A, B. A trapping

mechanism that slows down the active transport could compensate and prevent this accumulation.

There are indications that microtubules in distal dendrites have a more parallel orientation than
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the ones in proximal dendrites, [29], tuning the number of dyneins attached to each cargo could

regulate the velocity of the cargo itself.

Another mechanism that could play a role in preventing this accumulation is to expand the

argument made in Sec. 2.2, to derive an effective velocity by introducing a long-tailed waiting

time, as observed, and modeled, in [49] for mRNP. I am currently investigating the trapping effect

due to synaptic intake.

9.2.2 Crowding problem

In Fig. 25, I showed the predicted protein profile in the case of purely diffusive proteins in pyra-

midal neurons. In a soluble protein with a low diffusion length, the difference in concentration

is over seven orders of magnitude. That would lead to not having enough protein in distal den-

drites or having an extremely high density of proteins close to the soma. This extreme gradient of

proteins cannot be described using the methods I explained in this thesis because the underlying

assumption of the diffusion equation is that the medium must be isotropic. However, this gradient

in concentration could be modeled by considering the space occupied by each protein and the

available space remaining for diffusion, resulting in an effective velocity of proteins toward distal

dendrites.

9.2.3 Non-constant radii

The main assumption I made in this thesis is that the dendrites have to be cylindrical. Tapering

plays an important role in maximizing the transmission of the signal received in dendrites toward

the soma, [70, 71, 69]. Similarly, the cross-section of dendrites undergoes random fluctuations in

its radius due to the presence of other external dendrites, axons, astrocytes, and blood vessels.

I am currently studying how to model the effect of a decreasing radius using an effective

velocity toward the beginning of the dendrite. Doing so would allow comparing directly the

optimality rule I derived in this thesis with the one derived in [69].
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9.2.4 Distribution of diffusion coefficient

In experiments in which the diffusion coefficient is estimated using single-particle tracking, the

authors often show the distribution of the diffusion coefficient of different proteins. The range

of the measured diffusion coefficient often spans multiple orders of magnitude, [83]. Often, the

two range of diffusion coefficients are referred to as mobilized and immobilized proteins. This

is because proteins interact with their environment and can be anchored to other proteins. In

the case of ion channels in synapses, one of these anchor proteins is called PSD-95, [84]. In this

dissertation, I used the median of such distribution, but a more complex dynamic can be explored.

For example, this immobilization could be used to explain the lack of accumulation of proteins at

the dendritic tip in case of active transport, as discussed in 9.2.1.

9.2.5 Anomalous diffusion in dendrites: ER and active transport

In dendrites there are at least two sources of anomalous diffusion, the sub-diffusive behavior of

membrane associated proteins diffusing in the ER, and the super-diffusive behavior of mRNP

cargo moving on microtubules.

The endoplasmic reticulum, is a fractal-like structure inside the dendritic tree; because of

that, it has been shown that the movement of proteins in it displays anomalous diffusion (sub-

diffusion). The dimensionality of the space they are exploring is dictated by the fractal dimension

d f = 1.6 [59]. This sub-diffusive behavior is another candidate to compensate for the protein

accumulations at the dendritic tip due to active transport.

In a recent paper, [49], the authors showed that mRNP displays a Lévy-walk type of sub-

ballistic super-diffusion with a mean square displacement that scales as t1.8, before being immo-

bilized with a long-tailed waiting time. A Lèvy-walk allows mRNP to move quickly away from

the soma before being immobilized and cannot be modeled using the diffusion equations I used in

this thesis but requires more sophisticated tools, like the fractional Fokker-Planck, or continuous

time random walk (CTRW).
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9.2.6 Completely Reconstructed Morphologies

In the last chapter of this dissertation, I explore the protein requirement in reconstructed mor-

phologies where the radii are obtained by assuming the Rall rule. This is due to the radius of the

dendrite being often comparable, or smaller than the optical limit. Using 3D-EM reconstructed

morphology, would solve this problem, but it is currently extremely challenging. The main tech-

nological limitations are the high amount of memory required to image the whole extent of the

dendritic arbor of pyramidal neurons, on the order of 1mm× 400µm× 400µm, while state-of-

the-art datasets have a size of on the order of 100×100×60µm [85], and the complexity of the

algorithms needed to reconstruct the neurons, for a discussion on these limitations, see [86].
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Appendices

A General solution of the diffusion equation on an infinite line

In this section I summarized the general solution to the generalized diffusion equation. This is a

known solution of the generalized diffusion equation:

∂

∂t
ρ(x, t) = D

∂2

∂x2 ρ(x, t)− v
∂

∂x
ρ(x, t)−φρ(x, t)+ ε(x, t) . (103)

Here v represents a drift term, φ the degradation rate and ε(x, t) the translation rate.

A.1 Reduction to a simpler problem

For simplicity I expressed Eq. 103 in a more compact way:

ρt = Dρxx− vρx−φρ+ ε. (104)

where the subscripts x and t represent the derivative in space or in time respectively. It is possible

to express Eq. 104 in terms of f (x):

ft = D fxx + fx (2DA− v)+ f
(
DA2−Av+B−φ

)
+

ε

eAx−Bt , (105)

where

ρ(x, t) = f (x, t)eAx−Bt , (106)

and A, and B are free parameters,

It is possible to choose A and B such that the coefficients of fx and f are equal to zero. This

is possible by setting

A =
v

2D
(107)
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and

B =+
v2

4D
+φ. (108)

Eq. 104 can be therefore rewritten as

ft = D fxx +η (109)

where η = ε

eAx−Bt .

A.2 General Solution for known initial conditions using Fourier Transform

To solve Eq. 109, with initial conditions f (x,0) = ψ(x) and inhomogenous term η(x, t) set to

zero, one applies the Fourier transform:

f̂t−D f̂xx = f̂t−D(ik)2 f̂ = 0; (110)

with initial condition

f (k,0) = f̂ (k) . (111)

Multiplying Eq.110 by eDk2t , it can be rewritten as

∂

∂t

[
f̂ eDk2t

]
= 0; (112)

and therefore f̂ eDk2t is independent of t.

That allowed me to identify ψ(k) with f̂ (k,0), and f̂ (k, t) = ψ̂e−Dk2t . Knowing that e−Dk2t

is the Fourier transform of

F −1
[
e−Dk2t

]
= S (x, t) =

1√
4πDt

e−x2/4Dt , (113)
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I used the convolution theorem, and the analytical expression of f (x, t) is:

f (x, t) =
1√

4πDt

∫ +∞

−∞

e−(x−y)2/4Dt
ψ(y)dy. (114)

A more general solution, that includes the inhomogeneous term η(x, t) dependent on time and

space can be found in [87]:

f (x, t) =
∫

∞

−∞

S (x− y, t)ψ(y)dy+
∫ t

0

∫
∞

−∞

S (x− y, t− s)η(y,s)dy ds, (115)

where ψ(x) are the initial conditions, and η(x,y) contains both the constant degradation and the

production terms

A.3 No active transport, no degradation, no translation

If one considers a system without a directional active transport, v = 0µm/s, without protein trans-

lation, ε = 0, without degradation φ = 0 and where all the proteins are at x = 0 at time t = 0,

ψ(x) = δ(x), Eq. 115 becomes:

ρ(x, t) =
1√

4πDt
e−x2/4Dt . (116)

A.4 No active transport, degradation, and translation only in the soma

A system without a directional active transport, v = 0µm/s, with protein translation only at the

soma, ε = βδ(x), where all the proteins are at x = 0 at time t = 0, ψ(x) = δ(x), but with degrada-

tion constant in the dendritic arbor, can be reduced to the same problem of Eq. 109 by imposing:

A = 0, B = φ; (117)
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and rescaling ε = βδ(x)→ η = βδ(x)e−φt . Eq. 115 becomes:

f (x, t) =
e−x2/(4Dt)
√

2πDt
+β

∫ t

0

e−x2/4D(t−s)e−φs√
4Dπ(t− s)

ds, (118)

which, in terms of ρ reads as:

ρ(x, t) = f (x, t)e−φt =

[
e−x2/(4Dt)
√

2πDt
+β

∫ t

0

e−x2/4D(t−s)e−φs√
4Dπ(t− s)

ds

]
e−φt . (119)

B General solution for the stationary case

The majority of the results I obtained in this thesis are related with the distribution of proteins at

the equilibrium, therefore it’s useful to find the steady-state solution of Eq. 103. Applying the

transformation in Eq. 106, I derived the solution of Eq. 109, as described in Eq. 115. The steady

state solution can be obtained by taking the limit of limt→inf (ρ(x, t)).

The first term of Eq. 115, that depends on the intial condition, goes to zero in the limit,

simplifying it to:

f (x) = lim
t→∞

∫
∞

−∞

dy
∫ t

0
S (x− y, t− s)η(y,s)ds. (120)

by imposing the inhomogenous term to be constant, that ensures to have a well defined

limit: η(x, t) = ε(x)e−AxeBt , Eq. 120 became

f (x) =
∫

∞

−∞

dy ε(y)e−Ay lim
t→∞

1√
4πD

∫ t

0

e−(x−y)2/4D(t−s)eBs√
(t− s)

ds. (121)

I performed the following change of variables:

g =
|x− y|√
4D(t− s)
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I expressed the nested integral of Eq. 121 as:

1√
4πD

∫ t

0

e−(x−y)2/4D(t−s)eBs√
(t− s)

ds =
|x− y|eBt

2D
√

π

∫ g(t)

g(0)

e−g2
e−K/g2

g2 dg (122)

where K = B|x−y|2
4D > 0. The integral in Eq. 122 is solvable and it is equal to:

∫ g(t)

g(0)

e−g2
eK/g2

g2 dg =
e−2
√

K√π

(
−2+Erfc

[√
k

g −g
]
+ e4

√
kErfc

[√
k

g +g
])

4
√

K

∣∣∣∣∣∣
g(t)

g(0)

= G(g)|g(t)g(0)

(123)

At this point calculated the left side of 123 for s = 0:

G(g(0)) =

e−
√

B
D |x−y|√

π

(
−2+Erfc

[
2Dt
√

B
D−|x−y|

2
√

Dt

]
+Erfc

[
2Dt
√

B
D+|x−y|

2
√

Dt

])
2
√

B
D |x− y|

(124)

I could not evaluate 123 directly at s = t, because s = t is a discontinuity point, I therefore looked

at the limit for s→ t:

lim
s→t

G(g(s)) = 0. (125)

Therefore, I evaluated the limit for t→ ∞ of Eq. 123:

lim
t→∞

G(g)|g(t)g(0) =−
e−
√

B
D |x−y|√

π√
B
D |x− y|

(126)

Finally, plugging Eq. 126 into Eq. 122, and Eq. 122 into 121, lead to:

f (x) =−eBt
∫

∞

−∞

dy ε(y)e−Ay e−
√

B
D |x−y|

√
4DB

(127)
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Finally I used Eq. 106 to express Eq. 127 in terms of ρ:

ρ(x, t) = f (x, t)eAx−Bt (128)

which lead me to:

ρ(x) =
−eAx
√

4DB

∫
∞

−∞

dy ε(y)e−Aye−
√

B
D |x−y| (129)

B.1 No active transport, constant degradation, and translation at the soma

I applied Eq. 129 to a simple system, without a directional active transport, v = 0, with degrada-

tion constant throughout the whole dendrite, φ = log(2)
T1/2

, and protein translation only at the soma,

ε(x) = βδ(x). Which translates to B = φ, A = 0, and Eq. 129 becomes:

ρ(x) =
−1√
4Dφ

∫
∞

−∞

dy βδ(y)e−
√

φ

D |x−y|
. (130)

Integrating over the y leads to:

ρ(x) =
−βe−

√
φ

D |x|

2
√

Dφ
. (131)

C Alternative approach for the stationary case

In this thesis I am mostly interested in the stationary solution; for this reason, instead of finding

a solution to Eq. 103 and then take the limit for big t, it’s often easier to take the limit directly

of Eq. 103. This allows to simplify the problem from a partial differential equation (PDE) to an

ordinary differential equation (ODE):

0 = D
∂2

∂x2 ρ(x)− v
∂

∂x
ρ(x)− φ̃ρ(x)+ ε(x) . (132)
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Using standard methods, I derived the general solution of 132:

ρ(x) = c1exKm + c2exKp +
e−xKm

∫ x
1 e−tKmdt− exKp

∫ x
1 e−tKpdt√

v2 +4Dφ
(133)

where

Kp =
v+
√

v2 +4Dφ

2D
, (134)

and

Km =
v−
√

v2 +4Dφ

2D
. (135)

C.1 No active transport, constant degradation, and translation at the soma

I now considered the same system of the previous paragraph: a system without an active direc-

tional transport, with degradation constant throughout the whole dendrite and protein translation

only at the soma: v = 0, and φ = log(2)
T1/2

. Which translates to A = 0 and ε(x) = βδ(x). Eq. 133

becomes:

ρ(x) =
e−
√

φ

D x√
4dφ

(
2
√

Dφ

(
c1e2x

√
φ

D + c2

)
+βΘ(x)

(
1− e2x

√
φ

D

))
(136)

where Θ(x) is the Heaviside step function and c1 and c2 are free parameters determined by the

boundary conditions:

lim
x→∞

ρ(x) = 0 (137)

lim
x→−∞

ρ(x) = 0. (138)

imposing those two boundary fixes the free parameters:

c1 =−
β

2
(139)

c2 = 0 (140)
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and Eq. 133 becomes:

ρ(x) =−βe−|x|
√

φ

D

√
4Dφ

, (141)

which is the same results I obtained in the previous section.

D Equilibrium solution for the stationary case on a finite domain

The main advantage of working directly with the diffusion equation at the equilibrium is that it

allows handling different problems and boundary conditions in an easier and more intuitive way.

For my purposes, I needed to consider the solution of the diffusion equation on a finite

domain, x ∈ (0,L), because the length of a dendrite is often of the same order of magnitude of the

diffusion length approximating the dendrite to an infinite one would be incorrect. While working

on a linear dendrite without branches, or on a terminal dendrite I imposed a no flux-boundary

condition at x = L:

Φ(L) =−D
dρ(x)

dx

∣∣∣∣
x=L

+ vρ(L) = 0. (142)

and a flux at the beginning of the dendrite equal to the income of proteins from the soma:

Φ(0) = β (143)

D.1 No active transport, constant degradation, and translation at the soma

If the proteins are synthetized in the soma, ε(x) = 0, Φ(0) = β, they are not actively transported,

v = 0, and they are recylced with constant rate throughout the dendritic arbor, φ = log(2)
T1/2

, the

problem is described by the following system of differential equations:


D∂2ρ(x)

∂x2 −φρ = 0

Φ(0) = β

Φ(L) = 0.

. (144)
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This system can be solved using standard methods:

ρ(x) =
β

φλ

cosh [(L− x)/λ]

sinh [(L)/λ]
(145)

where β is the somatic production rate. The number of proteins at the equilibrium in this

scenario is:

N =
β

φ
. (146)

D.2 No active transport, constant degradation, and translation in the dendrite

If the proteins are synthetized in the dendritic arbor with a constant translation rate: ε(x) = β

L ,

no directional active transport v = 0, and constant degradation rate proportional to the protein

density, φ = log(2)
T1/2

, the problem is described by the following system of differential equations:


D∂2ρ(x)

∂x2 −φρ+ β

L = 0

Φ(0) = 0

Φ(L) = 0.

. (147)

This problem can be solved intuitively by observing that there is no flux at both termination

of the dendrite, and that there are no terms in it that depends on the position, therefore the protein

density ρ must be constant:

ρ =
β

Lφ
. (148)

where the number of proteins in the dendrite is given by N = β/φ.
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D.3 No active transport, constant degradation, and local and central translation

If a fraction of the proteins is synthetized in the soma, and the ramining in the dendritic arbor,

Φ(0) = βs and ε(x) = βd
L , with no direactional active transport v = 0, and constant degradation

rate proportional to the protein density, φ = log(2)
T1/2

, the problem is described by the following

system of differential equations:


D∂2ρ(x)

∂x2 −φρ+ βd
L = 0

Φ(0) = βs

Φ(L) = 0

. (149)

where the total production rate is β = βd +βs.

The problem can be written as a linear combination of the two problem descibed in Sec.

D.1 and Sec. D.2, also its solution is a linear combination of the two:

ρ(x) =
βd

φ
+

βs

φλ

cosh [(L− x)/λ]

sinh [(L)/λ]
. (150)

by calling fd = βd/β and fs = βs/β, I expressed its solution in terms of the total production rate:

ρ(x) =
β

φ

(
fd +

fs

λ

cosh [(L− x)/λ]

sinh [(L)/λ]
.

)
. (151)

where, once again the total number of proteins in the dendrite is N = β/φ.

If one imposes βd = 0 they would be in the limit where all the proteins are synthetized in

the soma, Eq. 151 became to 145, conversely when all the proteins are syntetized in the dendrite,

βs = 0 and Eq. 151 becomes Eq. 148.
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D.4 Active transport, constant degradation, and translation in the soma

If the proteins are synthetized in the soma, Φ(0)= β, ε(x)= 0, if they are recycled with a constant

degradation rate φ = log(2)
T1/2

, and they are actively transported resulting in an effective velocity v,

the problem is described by the following system of differential equations:


D∂2ρ(x)

∂x2 − v∂ρ(x)
∂x −φρ = 0

Φ(0) = β

Φ(L) = 0.

. (152)

This system can be solved using standard methods, and lead to:

ρ(x) =
β

φ

e−
x(v+∆)

2D

(
2Dφ

(
e

L∆

D + e
x∆

D

)
+ ve

L∆

D (v+∆)
)

D
(
eL∆/D−1

)
(v+∆)

, (153)

where ∆ =
√

v2 +4Dφ, and the total number of proteins in the dendrite is: N = β

φ
.

D.5 Active transport, constant degradation, and constant local translation

If the proteins are synthetized in the dendritic tree with a constant translation rate, Φ(0) =, ε(x) =

β, if they are recylced with constant degradation rate, φ = log(2)
T1/2

, and they are actively transported

with in an effective velocity v, the problem is described by the following system of differential

equations: 
D∂2ρ(x)

∂x2 − v∂ρ(x)
∂x −φρ+ β

L = 0

Φ(0) = 0

Φ(L) = 0.

. (154)

This system can be solved using standard methods, and the protein distribution is:

ρ(x) =
e−

(v+∆)(L+x)
2D

φL(v+∆)
(A+B+C) , (155)
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where

A =−2βve
Lv+∆x

2D (156)

B =+βe
(v+∆)(L+x)

2D (v+∆) , (157)

C =−2βe
L(v+∆)+∆x

2D

∆− v

(
e

Lv−L∆

2D −1
)

vcosh
[

L∆

2D

](
∆cosh

[
∆(L− x)

2D

]
+ vsinh

[
∆(L− x)

2D

])
(158)

and ∆ =
√

v2 +4Dφ.

D.6 mRNA Translation

In the previous sections, I assumed that the mRNA translation happened only at the soma by

imposing


ε(x) = 0

Φ(0) = β

. (159)

or only in the dendritic arbor with constant translation rate by imposing


ε(x) = β

L

Φ(0) = 0
. (160)

The first assumption follows the idea that all the mRNA are localized in the soma, and

the second that they have a constant distribution in the dendrite. Here I studied a more general

problem where the mRNA are actively transported in dendrites and the protein translation happens

in the dendrites with a rate proportional to the mRNA density. This problem is descibed by the

following set of differential equations:
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Dp
∂2ρp(x)

∂x2 −φpρp (x)+βpρm (x) = 0

Φ(ρp (0)) = 0

Φ(ρp (L)) = 0

Dm
∂2ρm(x)

∂x2 − vm
∂ρm(x)

∂x −φmρm (x) = 0

Φ(ρm (0)) = βm

Φ(ρm (L)) = 0

. (161)

where the subscript p is the label for protein and m for mRNA. I solved first the differential

equation for the mNRA, as I did in Eq. 153, and then I plugged it into the differential equation

for the protein distribution. The total number of mRNA in the dendrite is Nm = βm
φm

, while the

number of protein is Np =
Nmβp

φp

The set of Eqs. 161 is analytically solvable, but its solution is not easily readable:

e
− x

λp
− (L+x)(∆m+vm)

2Dm

2φm

(
e

L∆m
Dm −1

)
((Dpφm−Dmφp)2−Dpφpv2

m)
A (162)

where:

A =
B1 +B2

2
(

e
L∆m
Dm −1

) +βmke
L∆m
2Dm (C1 +C2 +C3) , (163)

∆m =
√

v2
m +4Dmφm, (164)

B1 = D
(

e
L∆m
Dm −1

)(
2Dpφ

2
m−φp

(
2Dmφm + v2

m
))

, (165)

B2 = D

2φpvm∆me
L
(

2Dm 1
λp

+∆m−vm

)
2Dm −φpvm∆me

L∆m
Dm −φpvm∆m

 , (166)

C1 =−2vm

√
Dpφp (4Dmφm + v2

m)e
(L+x)∆m+vmx

2Dm +L 1
λp , (167)

C2 =−Dpφm

(
(∆m− vm)e

L∆m
Dm +(∆m + vm)e

x∆m
Dm

)
e

Lvm
2Dm +x 1

λp , (168)
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C3 = Dmφp

(
(∆m + vm)e

L∆m
Dm +(∆m− vm)e

x∆m
Dm

)
e

Lvm
2Dm +x 1

λp , (169)

and

D = βmkλp

(
e

2L
λp + e

2x
λp

)(
coth

(
L
λp

)
−1
)(

e
L(3∆m+vm)+x(∆m+vm)

2Dm − e
(L+x)(∆m+vm)

2Dm

)
. (170)

D.7 Single branch

In this section I showed the explicit solution for the diffusion equation of a branched dendrites,

with a single branch. In Sec. 2.5 I derived the six boundary conditions for a branching dendrite:



Φ [ρ0 (0)] = β,

Φ [ρ1 (L1)] = 0,

Φ [ρ2 (L2)] = 0,

Φ [ρ0 (L0)] = Φ [ρ1 (0)]+Φ [ρ2 (0)] ,

ρ1 (0) =
f1
f0

ρ0 (0) ,

ρ2 (0) =
f2
f0

ρ0 (0) ,

. (171)

where fi =
Rγ

i
Rγ

0+Rγ

1+Rγ

2
, and γ = 1 for surface diffusion, and γ = 2 for cytoplasmic diffusion.

Assuming that the proteins don’t have any net effective velocity, Φ [ρi (x)] =−D∂ρ(x)
∂x , and

the solution for the three dendrites are:

ρ0 (x) = N
f0 cosh

[
L0−x

λ

]
λ

(
f0 sinh

[
L0
λ

]
+ f1 tanh

[L1
λ

]
+ f2 tanh

[
L2
λ

]) ,
ρ1 (x) = N

f1 cosh
[

L1−x
λ

]
λ

(
f1 sinh

[
L1
λ

]
+ cosh

[
L1
λ

](
f0 sinh

[
L0
λ

]
+ f2 tanh

[
L2
λ

])) ,
ρ2 (x) = N

f2 cosh
[

L2−x
λ

]
λ

(
f2 sinh

[
L2
λ

]
+ cosh

[
L2
λ

](
f0 sinh

[
L0
λ

]
+ f1 tanh

[
L1
λ

])) . (172)
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E Full Neuron Simulation: swc Selection

To select the 64 pyramidal neurons I used in these simulations, I used the following protocol:

1. I selected all the rat hippocampal pyramidal neurons with reconstructed dendrites, 5813

morphologies,

2. I selected only morphologies where the distal dendrites were densely reconstructed, by

imposing to have at least 75 branches after d = 900 µm.

3. For a similar reason, I imposed that the total length of the pyramidal neurons was at least

1500 µm,

4. At least 10% of the total length of the dendrite is located in the final 10% of the dendrite.

Following these requirements, I reduced the total number of pyramidal morphologies from more

than 5813 to 64.

Selecting the morphologies for Purkinje and granule neurons was easier; due to their more

limited spatial extension, having completely reconstructed neurons is more common, and I di-

rectly selected the morphologies I used.

F Cultured Hippocampal Neurons

In this section, I explained the methods used by our collaborator A.S. Hafner to image the fluo-

rescence of GFP and GFP::Nlg-1 in cultured hippocampal neurons. Then I explained the protocol

I used to analyze the fluorescence in the surrounding of a dendritic branch.

F.1 Cultured Neurons: Preparation

The detailed description of the methods used to prepare the hippocampal cultures, see [88, 89].

Here I shortly summarized it.
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Our collaborator first dissected the hippocampus from both male and female rat pups of 0

to 1 days old. The neurons were dissociated using papain (Sigma) and placed on a plate with a

density of 30 to 40 ×103cells/cm2, on Petri-dishes whose bottom-glass was coated with poly-

d-lysine. The neurons in the dishes were kept in a humidified atmosphere at 37°C, and 5%

CO2 for 8 days. The neuron was kept in the growth medium Neurobasal-A, with two common

neuronal cell supplements: B27 and GlutaMAX-I. After seven days of this in vitro preparation,

half of the hippocampal neurons were transfected, using the Effectene (QIAGEN) guidelines, with

plasmids coding for GFP (Green Fluorescent Protein), and the other half with plasmids coding

for GFP::Nlg-1 (Neuroligin-1, a surface protein that mediates the creation and maintenance of

neuronal synapses).

After 13 hours, the cells were fixated in vitro using paraformaldehyde. Additionally, to

ease the imaging, the nuclei were stained for 1 minute in PBS with DAPI. The fixated cells have

been kept at 4 C in PBS for less than four days after fixation before being imaged.

F.2 Selection of Hippocampal Branches

The images provided to us by our collaborator are structured as overlayed layers, stacks. The

number of stacks varies from neuron to neuron, from 27 to 34. These images were analyzed

using the image processing package Fiji.

I summed the fluorescence across the stacks to get its projection on the (horizontal) X-Y

plane, see Fig. 31-A. Then, from the projection of the fluorescence, I extracted the two categories

of information that I needed, the radii of the dendrites and the fluorescence in the proximity of

each branch.

F.3 Branching Fluorescence and Fluorescence Ratio

For each branch, I identified ordered triplets of mother and two daughter dendrites, and among

them, I identified 31 clean branches for GFP-expressing neurons and 39 for the GFP::Nlg-1 ones.
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Clean branches, see Fig. 31-B, are branches that don’t fall in the following categories:

• Have excessive background noise, see Fig. 31-C

• Have synaptic buttons too close to the dendrite, see Fig. 31-D, but not Fig. 31-B, in B the

spine is far enough from the dendrite.

• Have more than 2 daughter dendrites, see Fig. 31-E

• Have overlapping dendrites or axons, see Fig. 31-F.

I isolated a narrow area around the dendrite for each clean branch, which I referred to as

ROIs. Measuring the ROIs allowed me to quantified the spatial dependency of the fluorescence

for each branch. All the ROIs have been selected with the same orientation for consistency,

pointing away from the soma.

The measure for each of the three ROIs is the spatial fluorescence f (x), where x ∈ (0,Li).

For obvious reasons, the maximum value of Li varies from dendrite to dendrite, and to compare

the fluorescence signal, I limited my analysis to the smaller of the three, which I referred to as L.

Because of the tapering that happens immediately after the branch, one might be interested

in limiting the analysis to the dendrites distant m from the center of the branch, and due to the

dendritic tapering that it occurs at long distances, one might want to limit the analysis to dendrtitic

compartment that are close to the center of the branch. I called the distance from the center of

the dendrite m+∆. Analyzing these results for different choices of these two parameters allows

checking the robustness of the analysis.

I therefore measured the integrated fluorescence between m and m+∆:

Fi (m,∆) =
∫ m+∆

m
fi (x)dx. (173)

In Eq. 93, I defined the fluorescent ratio as the ratio of the integrated fluorescence as defined

in Eq. 173. In Fig. 32 I showed the distribution of QF for multiple choices of m and ∆. In Fig.

22-E I showed the mean and s.e.m. of both Q S
F and Q C

F for multiple choices of m and ∆.
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F.4 Branching Radii

To extract the radius of each mother and daughter dendrite, I started from the Z-stacked image,

like the one in 31-A, and for each of the three dendrites, I measured the diameter four times at

regular intervals, orthogonally to the dendrite, and defined the radius as the half of the mean of

those four measurements.

G Table: Protein Diffusion length

In this section, I discussed the listed diffusion length for different proteins of interest, and we

discuss the main techniques used to determine their diffusion coefficient and half-life. A review

of the strengths and weaknesses of the different techniques can be found here [90].

G.1 Stokes-Einstein Relationship: SER

The first method in the list used to determine the diffusion coefficient is to extrapolate it ac-

cordingly to the Stokes-Einstein Relationship, [91]. The SER sets the following relations for the

diffusion coefficient:

D =
kBT

Cπησ
, (174)

where kB is the Boltzman constant, η is the shear viscosity of the medium, and σ is the diameter of

the diffusing particle. The main limitation of this equation is that it is defined for non-interacting

and perfectly spherical particles, while proteins often interact with each other, and they are not

spherical. For this reason, other techniques are to be preferred to measure the diffusion coeffi-

cient. The most common are single-particle tracking, fluorescence correlation, and fluorescence

recovery after photobleaching.



138 APPENDICES

G.2 Single Particle Tracing: SPT

Single-particle tracing is the most direct way to determine the diffusion coefficient of a protein.

First, one needs to make that protein visible and traceable, for example, using quantum dots,

and record its position over time. Then, analyzing its trajectory, one can determine the mean

square displacement, and if it scales linearly with time, it can be used to determine the diffusion

coefficient of the protein of interest. For more details about the quantum dots technique used to

trace single proteins in dendrites, see [92, 83].

G.3 Fluorescence Correlation: FCS

Fluorescence Correlation Spectroscopy, FCS, is a technique introduced in the first half of the

1970s in [93, 94]. The underlying idea is to record with a high temporal resolution the fluores-

cence signal of a mobile population of proteins over a time of tens of seconds. The autocorrelation

of the fluorescence is used to determine the rate of protein to move out, and in the recording area

and therefore the diffusion coefficient:

De f f =

√
ω2

0
4τD

. (175)

where ω0 represents the radius of the laser used to excite the fluorophores, and τD the decay time

of the autocorrelation function.

G.4 Fluorescence Recovery After Photobleaching: FRAP

Confocal fluorescence recovery after photobleaching is an easy method to estimate the mobility

of diffusive proteins as described in [95] and first introduced in [96]. In synthesis during the

FRAP procedure, a segment of the cell, or in this case of the dendrite, is photobleached, and the

evolution of the out-of-equilibrium fluorescence profile is analyzed in time. The profile is then

fitted against the 1, or 2-dimensional diffusion equation with initial condition depending on the
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intensity profile of the laser used to photobleach the fluorophores to obtain the best estimation of

the diffusion coefficient.
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A B

C D

E F

Figure 31: Examples of clean and not clean Branches In this figure I showed an example of a
clean branch and of several not-clean branches. A) Overview of a cultured neuron, with clean and
not-clean branches. B) Clean Branch, despite the synaptic button attached to the mother dendrite,
its distance from it is enough to allow me to select only the mother dendrite. C) Not-Clean branch
because the background noise is too high. D) Not-Clean branch, the synaptic button is too close
to the mother dendrite to be isolated. F) Not-Clean branch: the branch splits into more than two
daughter dendrites. F) Not-Clean branch: there is an overlap of neuronal processes, and it is not
possible to isolate one of them from the other.
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Figure 32: Cultured Neurons: overview of the protein ratio distribution In this figure
I showed the distribution of the protein ratio for multiple choices of m = 0,1,2,3,4µm and
∆ = 1,2,3,4µm. In the title of each subplot there is the value of m and ∆ is specified and also the
number of GFP and NlG branches that are long enough to be considered is specified.
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λ[µm2] Protein Name τ1/2 Half-Life Link D[µ2/s] Diffusion Link Technique
687 Peroxiredoxin (half-life -3, diffusion -4) 7.3 [8] 0.52 [97] SER
451 Plexin-A 6.5 [8] 0.25 [98] FCS
97 Grm5 (Metabotropic glutamate receptor 5) 3.0 [8] 0.025 [99] SPT
314 CamKII 7.2 [8] 0.111 [100] SPT
76 Synaptophysin 9.2 [8] 0.005 [36] FCS
313 L1CAM (Neural cell adhesion molecule L1) 7.1 [8] 0.11 [101] SPT
104 Clathrin-L (b for half-life, c for Diffusion coeff.) 9.1 [8] 0.0096 [36] FCS

111.6 GluA1-AMPAR 2.0 [102] 0.005 [103] SPT
473 GABAAR subunit alpha 2 5.0 [8] 0.36 [103] SPT
78 potassium channel Kv1.3 0.2 [104] 0.31 [103] SPT
891 Syt7 (Synaptotagmin 7) 7.0 [8] 0.91 [105] SPT
73 Neurexin 3.6 [8] 0.012 [106] SPT
168 AChE (acetylcholinesterase) 2.8 [107] 0.08 [108] FRAP
345 VAMP2–pHluorin 6.8 [8] 0.14 [109] SPT

3361 Calbindin 4.5 [8] 20 [110] FRAP
2138 GAP43(S41A) (Neuromodulin) 17.5 [8] 2.09 [111] FCS
6163 Microtubule-Associated Protein Tau 101.6 [8] 3 [112] FRAP
987 Phosphatidylserine 22.0 [113] 0.355 [114] FRAP and SPT
204 Actin 8.4 [8] 0.04 [115] FRAP

4256 Rho-associated protein kinase 2 5.6 [8] 26 [116] FCS
103 GABA-A subunit α1 3.9 [8] 0.022 [117] SPT
302 GABA-A subunit α5 7.6 [8] 0.097 [118] SPT
15 GluN2B 3.4 [8] 0.00053 [119] SPT

2111 Phosphoinositide phospholipase C 8.5 [8] 4.2 [120] FCS
3710 Glutamine synthetase 3.5 [8] 32 [121] FCS
583 Vesicle-associated membrane protein 2 6.8 [8] 0.4 [122] SPT

Table 11: Protein diffusion length: The first column contains the diffusion length, the second the name of the protein, the third and fourth contain the half-life
and relative reference. In the fifth and sixth columns, the diffusion coefficient and relative reference. The last column is the technique used to measure the
diffusion coefficient: Stokes-Einstein Relationship (SER), Fluorescence Correlation Spectroscopy (FCS), or Single Particle Tracking (SPT)
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[99] A. Sergé, L. Fourgeaud, A. Hémar, and D. Choquet, “Receptor activation and homer dif-

ferentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal

membrane,” Journal of Neuroscience, vol. 22, no. 10, pp. 3910–3920, 2002.

[100] H. E. Lu, H. D. MacGillavry, N. A. Frost, and T. A. Blanpied, “Multiple spatial and kinetic

subpopulations of camkii in spines and dendrites as resolved by single-molecule tracking

palm,” Journal of Neuroscience, vol. 34, no. 22, pp. 7600–7610, 2014.



154 BIBLIOGRAPHY

[101] O. D. Gil, T. Sakurai, A. E. Bradley, M. Y. Fink, M. R. Cassella, J. A. Kuo, and D. P.

Felsenfeld, “Ankyrin binding mediates l1cam interactions with static components of the

cytoskeleton and inhibits retrograde movement of l1cam on the cell surface,” The Journal

of cell biology, vol. 162, no. 4, pp. 719–730, 2003.

[102] K. Archibald, M. J. Perry, E. Molnár, and J. M. Henley, “Surface expression and metabolic

half-life of ampa receptors in cultured rat cerebellar granule cells,” Neuropharmacology,

vol. 37, no. 10-11, pp. 1345–1353, 1998.

[103] L. Mikasova, P. De Rossi, D. Bouchet, F. Georges, V. Rogemond, A. Didelot, C. Meis-

sirel, J. Honnorat, and L. Groc, “Disrupted surface cross-talk between nmda and ephrin-b2

receptors in anti-nmda encephalitis,” Brain, vol. 135, no. 5, pp. 1606–1621, 2012.

[104] B. S. Colley, K. Biju, A. Visegrady, S. Campbell, and D. A. Fadool, “Neurotrophin b re-

ceptor kinase increases kv subfamily member 1.3 (kv1. 3) ion channel half-life and surface

expression,” Neuroscience, vol. 144, no. 2, pp. 531–546, 2007.

[105] J. K. Vasquez, K. Chantranuvatana, D. T. Giardina, M. D. Coffman, and J. D. Knight, “Lat-

eral diffusion of proteins on supported lipid bilayers: Additive friction of synaptotagmin 7

c2a–c2b tandem domains,” Biochemistry, vol. 53, no. 50, pp. 7904–7913, 2014.

[106] C. Neupert, R. Schneider, O. Klatt, C. Reissner, D. Repetto, B. Biermann, K. Niesmann,

M. Missler, and M. Heine, “Regulated dynamic trafficking of neurexins inside and outside

of synaptic terminals,” Journal of Neuroscience, vol. 35, no. 40, pp. 13629–13647, 2015.

[107] R. Wenthold, H. Mahler, and W. Moore, “The half-life of acetylcholinesterase in mature

rat brain,” Journal of neurochemistry, vol. 22, no. 6, pp. 941–943, 1974.

[108] H. B. Peng, D.-Y. Zhao, M.-Z. Xie, Z. Shen, and K. Jacobson, “The role of lateral migration

in the formation of acetylcholine receptor clusters induced by basic polypeptide-coated

latex beads,” Developmental biology, vol. 131, no. 1, pp. 197–206, 1989.



BIBLIOGRAPHY 155

[109] M. Joensuu, P. Padmanabhan, N. Durisic, A. T. Bademosi, E. Cooper-Williams, I. C. Mor-

row, C. B. Harper, W. Jung, R. G. Parton, G. J. Goodhill, et al., “Subdiffractional tracking

of internalized molecules reveals heterogeneous motion states of synaptic vesicles,” Jour-

nal of Cell Biology, vol. 215, no. 2, pp. 277–292, 2016.

[110] H. Schmidt, B. Schwaller, and J. Eilers, “Calbindin d28k targets myo-inositol monophos-

phatase in spines and dendrites of cerebellar purkinje neurons,” Proceedings of the Na-

tional Academy of Sciences, vol. 102, no. 16, pp. 5850–5855, 2005.

[111] A. Gauthier-Kemper, M. Igaev, F. Sündermann, D. Janning, J. Brühmann, K. Moschner,

H.-J. Reyher, W. Junge, K. Glebov, J. Walter, et al., “Interplay between phosphorylation

and palmitoylation mediates plasma membrane targeting and sorting of gap43,” Molecular

biology of the cell, vol. 25, no. 21, pp. 3284–3299, 2014.

[112] S. Konzack, E. Thies, A. Marx, E.-M. Mandelkow, and E. Mandelkow, “Swimming against

the tide: mobility of the microtubule-associated protein tau in neurons,” Journal of Neuro-

science, vol. 27, no. 37, pp. 9916–9927, 2007.

[113] L. W. Hayes and F. B. Jungalwala, “Synthesis and turnover of cerebrosides and phos-

phatidylserine of myelin and microsomal fractions of adult and developing rat brain,” Bio-

chemical Journal, vol. 160, no. 2, pp. 195–204, 1976.

[114] J. G. Kay, M. Koivusalo, X. Ma, T. Wohland, and S. Grinstein, “Phosphatidylserine dynam-

ics in cellular membranes,” Molecular biology of the cell, vol. 23, no. 11, pp. 2198–2212,

2012.

[115] E. Hannezo, B. Dong, P. Recho, J.-F. Joanny, and S. Hayashi, “Cortical instability drives

periodic supracellular actin pattern formation in epithelial tubes,” Proceedings of the Na-

tional Academy of Sciences, vol. 112, no. 28, pp. 8620–8625, 2015.



156 BIBLIOGRAPHY

[116] L. Truebestein, D. J. Elsner, E. Fuchs, and T. A. Leonard, “A molecular ruler regulates

cytoskeletal remodelling by the rho kinases,” Nature communications, vol. 6, no. 1, pp. 1–

13, 2015.

[117] J. Muir and J. T. Kittler, “Plasticity of gabaa receptor diffusion dynamics at the axon initial

segment,” Frontiers in cellular neuroscience, vol. 8, p. 151, 2014.

[118] T. J. Hausrat, M. Muhia, K. Gerrow, P. Thomas, W. Hirdes, S. Tsukita, F. F. Heisler,

L. Herich, S. Dubroqua, P. Breiden, et al., “Radixin regulates synaptic gaba a receptor

density and is essential for reversal learning and short-term memory,” Nature communica-

tions, vol. 6, no. 1, pp. 1–17, 2015.
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