

Vol. 12, No. 2
The Orthopterists' Society

In tfiis Issue . . .

A New Decticid Katydid from Montana

3 Katydids from Thailand

Orthopteroids in Eastern Ecuador

Adventures with Antitypes and Antitheses

Grasshoppers at the University of Arizona
'Battarigisu'
Bats and Katydids
New Members

9 Changes of Address
Orthopteroid Specialist Group

Notices and
Members" News
Books

A MESSAGE FROM THE EDITOR

In all the years that I have been Editor of Metaleptea, and it has been more years then I care to admit, I cannot remember having completed my task of putting together an issue with more sense of satisfaction than this particular one. It is the furst time, for example, that I didn't have to plead and scrape together an assortment of miscellaneous articles to make the issue big enough to produce. I made a single request to a sampling of our membership for information from them and received (almost immodiately) a very high level of response. The articles and features in this issue are just a portion of that response. For those who sent in articles not appearing in this issue, I just want you to know that they will be in the next one, which should appear sometime in early March, 1991.

§

I have sent in the same envelop along with this Metaleptea information regarding the publication of our new joumal, the Orthopterists" Journal. This is an exciting event. Not since the unfortunate demise of Acrida have orthopterists had a publication devoted exclusively to research in their particular specialty group. However, because of a more sophisticated and enlightened concept of the phylogeny of the Orthoptera, the Orthopterists' Journal encompasses more than nine orders of insects, from the Phasmatodea to Orthoptera sensu stricto. We think the joumal will be a big success. We are beginning on a conservative level, however, and will soon put together the first issue based on solicited papers from several worldrespected authors. Thereafter, issues will appear as the need arises to deal with incoming papers. Dr, Nick Jago will be Editor of this series, and I personally wish him well in his efforts to make the journal a success.

$$
8
$$

Regarding the Proceedings of the Fift Meeting of the Orthopterists' Society, I can say that it is completed. Both you and I await our copies of the Proceedings. I expect its arival to the membership within the next month or so. I must say that I haven't seen the final form of this volume, but I expect that Dr. Jaime Gosalvez has done an excellent job in completing the task of compiling all of the edited drafts which both the authors and I have sent to him.

$$
8
$$

In the near future I hope to assemble the next issue of Metaleptea. As always, but especially now because I am geting excited at the new image of our Society and its publications, I ask each of you to submit any information, jokes, cartoons, il hustrations, short scientific articles or manuscripts, anything pertaining to the orthopteroid insects, that might (even remotely) be interesting to our membership.
§
In the meantime I wish each of you a Happy, Prosperous, and Productive New Year, 1991!

David A. Nickle
Editor, Orthopterists' Society

THE EXECUTIVE DIRECTOR'S COMMENTS

S. K, GANGWERE

6th International Congress

A new monetary Award Proposed...

Endangered Orthopteroids

> A new German Orthopterology Society............

More Finances

I spent lest summer at the biological station that I direct for my university and early autumn on a Tesearch trip to the Balearic Islands, Spain. Though I am continuing on administrative leave for the remainder of the fall semester, I find myself back at my desi confronted by an imposing backlog of society business, professional correspondence, etc. I thank you for bearing with any unseernly delays in responding to your inquiries. Anong items that required emly attention were updeting of the Society's membership rolls and mailing of its Fall 1990 billing and a ballot to approve a $\$ 15$ supplemental publication charge. That done, I now tum to my report for Metaleptea 12(2).

President Otte and I have been engaged in preliminary discussions with individuals from several Pacific rim institutions bidding for the 6th International Congress of the Orthopterists' Society, scheduled for 1992. We expect to make a final decision within a month or two and, assuming approval by the Board of Govenors, will amounce the successful bid in Mesaleptea 13(1).

The Board of Goventors has just approved acceptance of a gifi of money to bestow certificates entitled the "D. C. F. Rentz Award." These certificates will be given, one each, in recognition of outstanding research by either junior or senior orthopterists working in the following areas: systematics, ecology, behavior, and control. The gift will be used to prepare the certificates, and the residue of funds will draw interest and accrue to a second "Recognition" account to which the membership as a whole is invited to make donations. (Remember, the Orthopterists' Society is officially recognized as and-exempt organization by the US Goverument's IRS). According to the plan, the "Rentz Award" will be given to four deserving individuals, one or two of whom will also receive a "Recognition Award" consisting of partial travel to the sociecy's next interntional meeting. The amount of travel to be given will be determined by fund availability. Inasmuch as the "Rentz Certificate". represents qualification for the "Recognition Award" rather than being additional to it, both will foster orthopterological research, yet neither will dilute the impact of the other.

I am informing you of this deserving new award program in hopes that many of you, both of the United States and of other countries, will want to make your donation before the end of Fiscal Year 1990. Simply specify that your contribution is to be used toward the "Recognition Award."

I call your attention to Michael Samways' News Repor No. 1 of the Species Survival Commission of IUCN (The World Conservation Union). The Commission has long enjoyed a leadership role in matters of international conservation through, among other activities, its Red Data Books and Action Plans. There are already Specialist Groups (SG) for a number of insect and mollusc taxa, and Dr. Samways proposes instituting a Specialist Group for Orthopteroidea. He has been in touch with me as your represantative and as someone with e continuing intereat in the Red Dati Books. You may kew that I an senior author of a recently written "Libro Rojo" of the Iberian Peninsula, and I am curretaty in early stages of preparation of such a book for northeastem United States. The Orthopterists' Society is am appropriate formm for the Orthopteroidea SG , so Dr . Samways asks all members interested in serving in the group to be in touch with him.

Dr. Gerhatd Schmidt, of Hennover, Germany, has informed the Orthopterists' Society of formation, on 11 December. 1989. of the Deutsche Gesellschatt fur Orthopterologie. The 1st Annual Meeting of the new society was held at Erlangen, Germany, on 23-25 February, 1990, at which Di. Klaus-Gerhard Heller, of Eriangen, was named first Chairman. President Dan Otte and the other officers and I of the Orthopterists' Society welcome this new organization into our midst because it provides us, with yet another means to stengthen ties with the German scientific community and assists us in furthering the discipline, Orthopterology, that both of our sociecies serve.

The society's bank accounts have been seriously depleted by the recent 5uh Meeting, and other commitments remain to be paid. Our 15 Novenber, 1990, checking acoount balance is onty 53,800,82 and our money market savings account balance only $\$ 3,329,00$. I urge prompt payment of any dues owed. Your help will be appreciated. Kindly direct all payments and financial inquiries to Treasurer Roger Bland (Biology Department, Central Michigan University, Mt. Pleasant, MI 48859). Incidentally, Roger tells me that he occasionally receives foreign checks written on a US bark in US currency but lacking a computer routing code (a series of numbers and symbols). Roger is obliged to retum checks lacking the code because of the necessary collection fee, often costing as much ts the entire dues payment made. Please examine eny check you send us for possession of a routing code.

NEW MONTANAN DECTICID, A GLACIAL RELICT by
Gary Belovsky and Jemiifer Slade
School of Natural Resources University of Michigan
Arin Arbor, MI 48109-1115

We have been sudying the population dy. namics of grasshoppers at the National Bison Range near Molese, Montana since 1981. These studies have inciuded the use of enclosed field populations to assess the importance of food limitation, interspecific competition, and predation in limining grasshoppar populations. In June of 1989, we established experimental grasshopper populations at a new site in the 9000 hat wildlife refuge Unexpectedly, we found an abundance of a large decticid (Tettigoniidae) $\left(3-5 / \mathrm{m}^{2}\right)$ at this site. Because there were insufficient numbers of several grasshopper species for us to initiate experimental populations, we stocked the excess enclosures with the decricid.

Our encounter with the decticid was serendipitous because we had been studying another site 100 m away on the other side of a rock outcrop for the previous 5 years without encountering them. To our surprise, the decticid is a now species of the genus Steiroxys (David Lightoot is examining specimens). Adult fomales are large, attaining a body size of $1000-1400 \mathrm{mg}$ fresh mass. More surprising, since finding this species, we have captured more then 1000 individuals without finding a male. The females are diumally active, flightless, and slow-moving. We have searched without success for males at other times of the day and in the sumrounding vegetation types. Furthermore, all of the recently emerged nymphs that we have captured are females. Female nymphs reared in the laboratory do deposit eggs as adults. Currenily, we are rying to hatch the eggs to assess their viability and to determine whether any males are produced. But it appears that this species is parthenogenetic.

Since initially finding this species, we have located populations at three other sites on or near the Bison Range. John Henry has found a population approximately 35 km to the north, and Ieff Moorehead has found the species 50 km to the east in the Mission Mountains. The populations occur at elevations above 1300 m in lush meadows on north or northwest hillsides. These meadows are in small depressions (artea less than 0.5 ha) where deep organic soils accumulate. Here the decticid feeds principally on forbs, such as lupine yarrow, and dandelion (90% of crop contents).

Interestingly, all of these populations, ex-
cept in the Mission Mountains, are found on hills that were islands in Pleistocene glaciallake Missoul. Furthermore, the shoreline of this Pleistocene Inke was just below 1300 m , the lowest elevation at which the decticid is found. The distribution of this new species appears to have been shaped by this 550 m deep lake that covered most of westem Montana more than 12,000 yeurs 180 .

One might think that the habitat of this species is restricted to areas with microclimate conditions like those found in the Pleistocene. Using experimental populations of the species eatablished in other habitats, we know this is not the case, since the decticid grows and survives better in habitats where it does not namrally occur. Competition with other Orthoptera cannot account for the decticid's habitat distribution, because it is a superior competitor reducing densities of grasshoppers in our experimental populations by $33-91 \%$.

However, using tethered individuals, we found that this slow-moving and soft-bodied decticid is preyed upon by birds 3-4 times more havily in the habitats where it does not occur. These arens have $40-70 \%$ bare-ground, while the inhabited areas are at most 20% bare. We believe that individuals of this decricid require vegetation cover to escape birds. Do predators limit the distribution of this locally successful herbivore?

We do not believe that predators alone limIt the decticid's distribution. Does the availability of owiposition sites limit distribations? Conld disonses, parasites or parasitoids limit
distributions? What are the implications of parthenogenesis for this species? This new and unique species raises many interesting questions.

FOREST FLOOR KATYDIDS OF THALLAND by
 Sigfrid Ingrisch
 Entomologisches Institut ETH-Zentrum, CH-8092 Zurich, SWITZERLAND

Despite a great diversity of katydids which become active during the night, searching for Tettigonioidea in a tropical forest in the daytime is rather discouraging. Acridoidea gather at the forest edge or in larger clearings, but Tettigonioidea are hardly ever seen. An exception are species of the genus Liporactes Brunner 1898 (Tympanophorinae) in southeast Asia, which already atracted my altention on my first visit to Thailand in April 1985. They live on the forest floor, usually on sparsely covered grounc, where they are often found sitring on scattered herbs and grasses rising slightly above the litter.

I found two species: L. montanus Ingrisch 1990 in the mountains of northern and central Thailand and L. silvestris Ingrisch 1990 in lowland forests near the Cambodian border (Fig. 1). These rather matll, brownish katy-

Flyure 1. The adult female of Lipotactes silvestris Ingrisch 1990 (Tympanophorinae)
dids (8-14 and 13-21 mm body length, respectively) with reduced wings are striking for their large, triangular heads with voluminous eyes. They are hunters. Moving prey are fixed with the great eyes in a manner similar to the behaviour of mantids. It is interesting to watch them turning their beads toward flies ronning or flying nearby. If the fly becomes motionless for a white, Lipotactes quickly loses interest, but if it comes close enough and continues moving, Liposactes will run to or jump on its prey from a distance of up to 20 cm , and grab it with the mandibles. It also uses the forelegs to hold larger insects. In the laboratory, I could breed larvae from hatchlings to adults, using Drosophila as the only food. Houseflies were also captured by the adults, and even pieces of Tenebrio larvae were readily eaten when given by forceps.

Stridulation is similar in both species. It is a continuous song, close to or in the ultrasonic range: a very faint "sssssss", which I was able to hear no farther than half a meter away.

The eggs, also similar in both species, are black, long-ovoid, and about 3 mm long. The surface of the chorion is stippled and bears a network of polyhedra with prominent borderlines. The eggs were readily laid in pieces of polystyrol standing vertically in the cages, a behavior usually found in species that oviposit in plant stems.

The eggs of L. situestris developed, at 24° C and on moist filter paper, in about two months ($65+5$ days). Larvae of this species were bred in cages of $43 \times 25 \times 40 \mathrm{~cm}$ with a 60 -Wan lamp as a source of light and warnth. Up to 26 young or 12 mediumsized larvae to gdults could be kept in the same cage without cannibalism occurring. Plants stood in the cages for structural diversity or as hiding places but were never eaten by Lipotactes. Male larvate moulted seven times, female larvae eight times before becoming adults. Development time from hatching to imago varied between five and eight months (151-206 days in males, 185233 days in females). Adding two months for egg development, total development takes seven to ten months, thus leaving two to five months for imaginal life. There is obviously only one generation per year. Since in addition I travelled to Thailand in different seasons, I collected information on the phenology in the field, which agrees with the breeding data. I found adults of L. montanus from April to June, young larvae in September and October, older larvae (mean $=$ second to last instar) in January and February, and a few last instar larvae together with adults in April and May. (From the months not men-
tioned above no observations exist). Adults of L. silvestris were also found from April to June but not in Octobers.

From the above presentations as well as resules from additional katydids of other subfamilies, I conclude that in tropical Asia many Teutigonioidea do not breed continuously, but only have one generation per year with e distinct phenology. Studying the factors that regulate seasonality might thus be as promising as with species from the temperate zone.

> ORTHOPTEROLOGICAL STUDIES IN EASTERN ECUADOR (Pert I) by
> Klaus Riede
> Zoologisches Institut Albertsw. 21a W-7800

> Freiburg, F.R.G.

Despito itt small ares, Ecuador is a country of megadiversity and must be considered a real laboratory of evolution. Besides the well-known Galapagos Islands, the mainland contains an archipelago of "habilat inlands", mainly determined by microclimate and altitude. Two Andean chains separate the great blocks of Pacific and Amazon rainforest, including all the ecological gradients from upper montane to lowland forest. The Amazonian part of Ecuador comprises 48% of the national territory. The area was nearly forgoten until 1967, when the discovery of oil stimulated the "development" of the region. Since then. public interest has shifted to the "Oriente", roads were built and boomtowns came into being. With six indigenous lowland tribes, among them the warlike Wsorani, the region is still considered to be wild and dangerous, and certaninly the naturalist hopes that this will remain so.

When I first visited the Oriente in 1983, I planned to study communication behavior in Acridoidea, Finanoed by the department of Prof. Huber at the Max Planck Institute for behavioral physiology in Seewiesen, my project and my background were ethology and behavioral physiology. Having been imprinted with a European image of a grass-feeding, stridulating gomphocerine grasshopper, I found my frrst encounter with forest grasshoppers frustrating. Most species of Amazonian "grasshoppers" live up in the canopy, thus in no way confined to "grass", but feeding on dicotyledonous trees and epiphytes. Many species are brachypterous or apterous, with big eyes and long tarsi. Their inabilit to
stridulate made my taping equipment superfluous, and I was quite happy when I finally found Peruvia nigromarginata, which is one of the few gomphocerine species and has a complex courtship behavior comprising optical and acoustical elements, similar to its well-known Old World relatives. This species inhabits riversides and patches of secondary growth. These "light gaps" are generated by fallen trees and go through a characteristic succession of plarits-and grasshoppers! This fauna of pionedr species is much less diverse than that of the canopy, but several interesting species wore represented with. sufficient abundance for behavioral studies. Buck in Europe, I contacted Christiane Amedegnato in Paris to determine voucher specimens from my behavioral sudies and some other grasshoppers found in the ofd field communities and in the tops of freshly cut trees. To our surprise, this material contained several undescribed species and was distinctly different from the Peruvian material collected by C. Amedegnato and Marius Descamps. We realized that there were a lot of endemisms to expect in Ecuador which stimulated my hunling fever. Since then, on each field trip to Ecuador I dedicated some time to looking for unknown grasshoppers in the tree tops. There are lots of possibilities for getting material from there. Descamps collected systematically by cutting a hectare of forest. However, this is too expensive for a one-man expedition. Besides, it seemed senseless to cut trees in an area under heavy environmental stress, where new roads were being built daily. I therefore concentrated on searching in freshly cut trees along moads or in fields made for subsistence farming by the indigenous population.

Ecuadorian Amazonia is far from homogeneous. Several volcanoes rise above the Amazon lowland forest, and their specific mountain forests harbor a great wariety of unknown enderic species. The alditudinal border for canopy grasshoppers is not known exactlyI collected specimens up to 1200 m which would mean that a lot of endemisms are to be expected in isolated molhtain forests like those which girdle the volcanoes !ike Sangay, Sumbaco, and Reventador, or the sub-Andeen mountain chain of the Cordillera de Cutucu.

In the following contributions to this miniseries I will describe my experience during several field trips between 1983 and 1989, especially with indigenous people of the SionaSecoya tribe, and give preliminery reports about the material collected and analyzed. For anyone interested, most of this material is now deposited in the Museum Nationale d'Histoire Naburelle de Paris, and duplicates con be found in the laboratory of the PUCE,
the Pondifica Universidad Catolica del Ecuador, Quib, and at the Senckenberg Museum, FrenlfurtM, F.R.G. Most of them are Acridoidea, but a considerable number of Tetrigoniidae have been collected also.

ADVENTURES WITH ANTITYPES AND ANTTTHESES by
 Kemeth C. Shaw
 Departument of Zoology and Genelics Iowa State University Ames, IA 50011

My most recent lab and Gied adventures have been with two atypical species. The first species, whose acoustic behavior I described at the 5th International Mesting of the Orthopterists' Society in Segovia, Spain this last summex, was encountered during our search for chorusing katydids that would sing and mate in the laboratory. Amblycorypha parvipernis (Fig. 1) males chorus in a unique fashion; pairs of males altemate plrasea frequently overlapping the end of the other's phrases and, where phrases overlap, they syn-

 (Inotimaion by D. A. Niello)
chrorize phonntomes (sounds produced by single wingstrokes). Amblycorypha parvipennis males produce much longer phrases ($4-5 \mathrm{~s}$) and much shorter intervals between phrases ($3-4$ s) than typical members of the subfamily Phameropterinae (Shaw et al, 1990).

Like females of other phaneropterines, A. porsipennis females advertise their presence by clicking at species-identifying intervals following the end of male song units. In most species, female clicks follow relatively short male phrases. Amblycorypha parvipernis females aitemate $\mathrm{t}-17(\mathrm{x}=3.2$) clicks with male phonatomes withirn a male's phrase. However, 75% of male ticks fall approximately equally just before or after the last phonatome of a malo's phrase (Shaw et al. 1990). 1987)

After observing the aggressive and submistive displays of many animal species, Darwin stated his principle of antithesis. Amblycorypha parvipensis expresses antithesis in intratexulal as compared to intersexual communication and in response to hypotheses concerning its behavior. Amblycorypha porvipemis males compete for space by decreasing rave of sound output An analysis of chorusing by pairs of cassed males 3.3 m and 40 cm apert showed that males at 40 cm int creased intervals betwean phrases as well as decreasing the degree of phrase overlap. In contrast when clicking females were piacod equidistant between the males, the rate of sound output increased because of decreasing phrase intervals, while phrase oveilap increased (Galliart and Shaw, submitted).

One antithesis in this swody was that eventual winners overlapped losers more when females were aboent but less when females were preeent We had predictod that the maie that would win the female's "foot" would overlap the ends of the other male's phrases more not less. Mire Greenfield (1990) suggosted that the nature of chorusing exhibited by each species was the result of maies competing to keep the most informative portion of their song phrases free from overlap by the phrases of other males. The most informative portion of A. parvipennis male phrases would appear to be the end because the terminal phonacomes are louder than the initial ones. In addition, the female clicks occurring inmediately before of efter the last phonatome of a male's phrase usually are "jammed" by the phomatomes of an overiapping maie The phonatomes of overlapped and overlapping males slip out of phase because of slowing of phonatome rate by the male tuminating his plarse. In lien of our prediction, A. porvipernis males did the opposite, at least in the presence of the female

The other atypical species I have become interested in is Pterophyllo beltrani, (Fig. 2) the "migratory" katydid of northesstern Mexico. This apecies was the topic of a paper presented at the Segovia meeting by Dr. Ludivina Barrientos. I met Ludivina and P. bultrant on a trip to Mexico in 1985. Since then, I have published a paper on the scoustic behavion of this species (Shaw and Gailiart

For those of you unfamiliar with this genus, Pterophylia males typically sing at night from the tallest trees at intermale dis-
tances of $15 \mathrm{~m}_{4}$ and females are rarely seen. Pterophylla belirani males sing day and night, and males and females form dense aggregations at the ends of branches of relatively small live oak trees in the eastern Sierre Madre. Unlike any other Prerophylla species with which I am familiar, this species has two color phases (purple and green) which

Pgoae 1. Prerephylla helerami Boliver, odul male (Nugeration by D. A. Niclle)
are density dependent. Rearing two or more individuals in a caye recults in the purple phase, whereas insects reared in isolation are green. Like migratory looust, this species may produce very dense populations. Populations exploded in 1970 and 1980 and the inseces defoliated $1,200,000$ hectares of forest in the eastem Siera Madre in 1980 (Barrient tos 1988).

Ending on an anticimactic note, populations of P. beltrani, like those of P. camsilifolia, sxhibit differences in song and morphology (Alexander 1967, 1968; Shaw and Carlson 1969; North and Shaw 1975). Using these differences, Ludivina (Barrientos 1988) has idencified four populations of P. beltrani, after collecting over a small portion of the probable range of this species. Using these same differences, she clarified taxonomic confusion between two sibling species, P. bellronit and P. robertsi. The ease with which these Mexican species are collected and the remarkable and easily detected population differeatiaxion have stimulated Ludivina and me to seok funding to extend her morphological, acoustic and initial breeding studies as well as iniliating molecular generic studies. As with P. camallifolic, we hope to encounter contact zones and evidence of interbreeding between P. beltrani populations and even between P. belirani and P. robertsi. A preliminary isozyme analysis of 56 specimens from one popslation of P. beltrani resolved thirty presumptive gene loci with 43% of these loci polymorphic (Krasfur and Shaw, unpublished). The lovel of average gene diversity ($\mathrm{H} 8=0.16$) is high enough to support intexpopulation hyoridization (Barton and Hewitt 1985).

GRASSHOPPERS AT THE UNIVERSITY OF ARIZONA

Reg Chapman
Division of Neurobiology
University of Arizona Tucson. AZ 85721

Liz Bemays and I arrived in Tucson about 18 months ago, and we thought others might be interested to hear about work on grasshoppers in our labs. All the work is more or less directed towards our long term interest in food selection and feeding behavior of grasshoppers.
Liz Bemays has been working mainly on various aspects of learning in relation to food selection. She already has shown that Schistocerca exhibits food aversion learning, that is, if the insect has a bad experience after eating a particular food, it subsequently avoids that food. She also has shown food aversion to a particular plent, spinach. When it first encoumters spinach, the insect takes a good meal, but on second and subsequent encounters it eats leas and less, until finally it rejects spinach altogether (can you blame it?). However, if it encounters another type of food, it will eat readily enough. So this is a specific association with spinach. But we had no idea what was wrong with spinsch. Recently, however, Don Champagne joined the lab as a post-doc. He did his Ph.D. in Vancouver with Neil Towers, a very well-known plant chemist. Don dug out the information that one of the peculiar things about spinach is its sterols. All insects require a dietary source of sterols because they cannot manufacture them and, many years ago, Rex Dadd, now at Berkeley, showed that locusts could use only certain types of sterol. The sterols of spinach were amongst those that Rex had shown were not utilizable, So adding two plus two to make five, Don suggested that perhaps this was the basis of the food aversion learning Liz had found. And believe it or not, they found that the addition of cholesterol or other usable steroids to spinach made it perfectly acceptable; the meal size did not decline and the insects just kept eating it
So apparently the insect can detect the lack of ant essential dietary constituent after just one meal and soon comes to reject the inappropriate food altogether. This is important because, in a natural situation it would result in the insect moving to mother plant which, probably, would have the right balance of sterols. It also gives us some ideas about why these insects are polyphagous, and clearly it is much more complex than just geting the right amounts of proteins and carbohydrate. We do not know if similar mechanisms operate with respect to other essential dietary constimuents, but they probably do; even slugs are known to exhibit food aversion leaming to a food with the wrong balance of amino acids. If slugs can do it, surely grasshoppers can!?

Of course, the question we all want to answer is "What happens in the field?" Most grasshoppers are very sensitive about being watched and either disappear out of sight or freeze for long periods, so it is impossible to build up a picture of their normal behavior, except very indirectly. We decided that the answer might be to look at the aposematic species. We assumed that these insects were designed to be visible, and our previous work in Africa with an aposematic species, Zonocerus variegatus, had shown that it was easy to observe without disturbance. So we looked around for a suitable subject in Arizona. At first we started on Dactylofum, but our most extensive studies have been on the horse lubber, Taeniopoda eques. Although I say "we," nearly all the work has been done by a visiting grad student from Oxford University, Dave Raubenheimer. Dave has remarkable stamina and has been able to spend whole days, from dawn to dusk, recording the activities of individual grasshoppers so that we know everything
that individual did in every minute of the day. Recordings were made on a hand-held computer used as an event recorder. The data sets are impressive, but so far Dave has done litule more than take the creann off the data. One interesting point is that though these insects are known to eat a wide range of plants, in the course of a day an individual rejects or only takes small meals on nearly all the plants it encounters. Most individuals had only one or two full meals during the day, although they sampled a large number of plants, Interestingly, it was also true for most plant species that the insects ate progressively less on each successive encounter-just like Schistocerca on spinach! We think we have a lot to leam from these observations.

Another post-doc, Jerry Howard, is looking at what affects food selection by individual grasshoppers. We know, of course, that some species are polyphagous, but are all the individuals that make up the species equally polyphagous? It seems not, because Jerry finds that some individuals show distinct preferences for a subset of the plants ealen by the species as a whole, while others are more generalized. This is true for Taeniopodo eques, Schistocerca albolineata and Melanoplus differentialus, on which most of his work has been done. Interestingly, though, the insects on mixed plants always do better, in terms of survival and growth rates, than insects on single plants, even though they may prefer to eat a single plank.

Much to his relief, Jerry is approaching the end of a mastive experintent in which he is examining the genetic component underlying different patterns of food selection in M. differentialis. He is rearing 27 pairs of families with the same father, but different mothers. The feeding preferences of the adults are known, and then the behavior and performance of the offspring are examined. So far it appears that all farnilies, regardless of any preferences expressed by the parents, perform best on mixed diets. In some families, but not in all, the diet may be modified by experience, but so far it is not possible to say if this is related to the preferences of the parents.

My own principal interest is in sensory physiology and with a postdoc, Ann Ascoli-Christensen, I have been working on the physiology of chemoreceptors on the tibia and tarsus. The chemoreceptors of grasshoppers seem to differ from those of other insects that have been studied in having nerve cells that are relatively unspecialized. For example, the same cells apparently respond to sodium chioride as to sucrose, despite the fact that the chemicals produce opposite behavioral effects at higher concentrations. We also know that a different cell responds to nicotine and our recent work has attentpted to answer the more general question how gasshopper chemoreceptors respond to chemicals that from behavioral observations, are phown to be feeding deterrents. Working with compounds from several different chemical classes, we conclude that deterients may have their effects by stimulating a specific cell that presumably signals unpalatability. In addition, or instead, the deterrent compounds may inhibit the activity of other cells so that, if sucrose is present, for example, the input from the sugar-sensitive cells is suppressed. Consequently, the insect is not even aware that it has encountered something palatable. Interaction between receptors seems to be a very common phenomenon and probably is especially important when the insect encounters mixtures of chemicals as it does when feeding on a plant.

Most of this work has been done on Schistocerca spp. which are polyphagous, but we have recently extended our work to ask the question "is the difference in food acceptance by closely related grasshoppers with different feeding habits a consequence of differences in their sensory systems, or do their sensory systems provide basically similar information that is then interpreted differently within the central nervous system?" To answer this question we are looking at the behavioral and physiological responses of three gomphocerines, Cibolacris parviceps (polyphagous), Syrbula montezuma (graminivor-
ous) and Bootettix argentatus (monophagous on creosote bush). We are part-way through this work, but so far the analysis of the sensory input is not far enough advanced to make any predictions.
As in any lab, these main lines of research are surplemented by a variety of other related minor projects carried out by ourselves with surdents. We are lucky to have an excellent undergraduate research program, and this gives us the chance to interact with some very bright young people.
We are not the only people here working on grasshoppers. Ed Arbas in the Division of Neurobiology is interested in the changes in neural mechanisms that occur when grasshoppers become brachypterous, and Bill Bowers, in Entomology, uses them extensively in his search for compounds that inhibit juvenile hormone. Several people in the Department of Biochemistry also use grasshoppers in some of their work, so overall there is a lot of interest in grasshopper biology.

'BATTARIGISU'

Sinzo Masaki Laboratory of Entomology Faculty of Agriculture Hirosaki University, Japan

This is a synthetic word created by the (Japanese) Society for the Study of Orthoptera to name its publication. 'Batta' means grasshoppers. 'Gisu' is the suffix for katydid names derived from 'Kirigirisu' which stands for Gampsacleis burgert, the most conspicuous (in both size and song) of the katydids in Japan. These two parts are connected by 'ri' to unite Caelifera and Ensifera, and also to make a five syllable word that sounds comfortable as a Japanese word.

The Battarigisu Society was founded in April, 1978, and on the list of members distributed several months later were 28 people, including school children, university students, public officials, shop owners, school teachers, and local museum curators. There are many societies of amateur entomologists in Japan, but in most cases the members of these socicties tend to be involved in collecting beautiful butterflies, moths, bizarte beetles, or watching bees, wasps, ants, etc. The Battarigisu Society seems, at least to my limited knowledge, to be the first group of non-professional Orthopterists in the history of entomology in Jadan and perhaps also in the world, although listening to insect songs is (was?) one of the traditional seasonal entertainments in aubunn. The Society grew rapidly, and more than 100 people are on the member list issued in 1988. You will find several professional scientists in the list, including myself, who are not necessarily Or thopterists but want to support the Society because of its sound activities making meaningful contributions.

The Battarigisu is published irregularly. It started as an 11-page brochure of xerox-copied hand-written articles mainly on collecting trips, tecords of distribution and discoveries of undescribed or poorly kenown species of Othoptera. It has growm in both size and quality, though its informal nature and format have been intentionally retained. Some articles are reminiscent of those appearing in the Metaleptea. Among others, M. Kawai and Y. Kano, who are both public workers int Nara and Osaka, respectively, have devoted most of their free time to editing and distributing each issue of the Battarigisu. By the end of the last year, the Battarigisu attained a total of 84 issues with 3089 pages. indicating the great efforts of the two enthusiastic Onthopterists.

The Battarigisu is not a place for formal descriptions of newly recognized species or other original observational and experimental data, but it offers most useful columns for exchange of hot news. Discoveries of such and such forms which might be previously unknown appear from time to time, stimulating efforts for further research. As a result, more than 10 species of crickets and katydids have been properly named and described in appropriate scientific journals by members of the Battarigisu Society. Many others that have already been reported in the Battarigisu are waiting for formal publication.

One of the notable activities of the Battarigisu Society is the annual field meeting. This is regularly held in autumn for the obvious rea-son-the best season to collect mature crickets and katydids and listen to their songs. Through this excursion, the late Ichiro Matsura played a leading role and had a great impact on the scientific development of the Society. He was an acoustic engineer by profession but his real interest seemed to be in singing insects, particularly crickets and katydids. He travelled widely not only in this country but also in southeast Asia and recorded songs of many species of crickets. His collection covers almost all the known (including unidentified) species of crickets in Japan. He showed the importance of songs in identifying crickets and katydids and the method of recording songs. He contributed short notices to the Battarigisu from time to time, but published a long series of papers on Japanese crickets in an entomological journal and illustrated oscillograms of most species. He had been a coworker of the late Professor F. Ohmachi, who pioneered the study of karyotypes of Gryllidae. Matsuuta had, however, never studied the chromosomes of crickets. He listened to the songs and discovered that different species were intermingled under single names in Teleogryllus and Loxoblemmus. He gathered biological data by rearing such species, observed developmental characteristics, carried out crossing experiments and reached the conclusion in a very scienttific way.

He was an inexhaustible source of information about the Japanese crickets, and always willing to offer much help to anyone, including myself, who sudies Orthoptera. Sonagrams and oscillograms appearing in articles by Battarigisu members were provided by Matsuura. Everyone who knew him must have felt painfuil sorrow hearing of his death last autumn at the age of 78. The Battarigisu Society compiled his writings which amounted to 377 pages.

Matsuura left two enommous manuscripts on his desk, apparently intended to be published as separate books. Although the author himself could no longer open the pages, the two books have appeared this year. One is entitled "Natural History of Singing Insects" and the other "Why Do Insects Sing?-Science of Insect Sounds". The first one not only deals with the general biology of various species of crickets but also cites "Haiku" and "Waka" poems or old classic stories referring to crickets. The second one describes the song characteristics, geographic distributions and seasonal prevalence of various species of crickets and katydids, and discusses the mechanisms of sound production and thermal effects on the carrier frequency. This book is amply illustrated with many oscillograms, and about 32 forms of katydids and 75 of crickets are more or less referred to. In spite of its scientific value, it is written in Japanese of a rather informal style, and for that reason may attract more attention of laymen than professional scientists.

Because of the language barrier, the usefulness of these books is restricted. I believe, however, they would have long-lasting impacts on members of the Battarigisu Society and other interested people, and would help to develop able scientists who can make substantial contribunions to our understanding of the poorly known fascinating world of Orthoplera.

Symbol mark of the 'Battarigisu' Society was designed by Miss Yasumi Fujita.

BATS AND KATYDIDS: REMARKING ON OBSERVATIONS BY OTTE AND ALEXANDER IN MALAYA

D.C.F. Rentz
CSIRO, Division of Entomology
GPO Box 1700 Canberra,
ACT 2601, AUSTRALLA

As one of the perpetrators of the "bat predation on rainforest tetigoniids" hypothesis, (see Rentw, Entomological News, 1975, 86: 129-140), I feel I must urge a bit of caution on the scope of its applicability. The idea that bat feeding activity might be responsible for the general lack of continuous stridulation on the part of Costa Rican rainforest katydids at Finca La Selva was prompted by the contrast between the generally continvous acoustic activity of other species on the outside of the forest, sometimes only a few meters distant, and the lack of such activity within the forest, even though the diversity of species in the forest was much greater. Discussion with a number of bat-people revealed that there were "leaf-gleaning" bats that scooped such creatures as lizards, frogs, and insects from the surface of leaves within the forest. When I asked whether these bat species flew outside the forest, the answer was negative, they were restricted to the rainforest alone. That was when I started to feel that the erratic, sporadic nature of the stridulatory activity within the rainforest might be a defensive device to reduce the chances of an acoustically-oriented organism homing in on a stationary sound source. Concomitant with this I suggested the generally longer antennae of rainforest katydids, usually presented drooping (see figure 1 in the above publication) might be useful in detecting the wind generated by the beat of bat wings and the usually longer claws of such katydid species which are often "dug into" the tissues of leaves when disturbed might also be an adaptation to prevent a bat on-the-wing from picking off the unsuspecting katydid.

The above was meant to help explain the situation in the La Selva rainforest. But it cannot be the explanation for katydid activity everywhere. I suspect there are a great many other factors responsible for tettigoniid acoustic behaviour and that the bat-predation explanation should not apply in all situations. But having suggested caution with regard to making blanket explanations regarding katydids, I report on the situation in Australian tropical rainforests where there are apparenly no leaf-gleaning bats. Interestingly, the rainforest katydids here have continuous stridulatory activity similar to those outside the forest. They also prominerily display themselves on leaves and branches. I have no idea what the explanation is for the situation in the Malaysian rainforests that Otre and Alexander report [see Mealeptea 12(1)] where a wide range of frequencies and a generally noisy situation was observed. But I don't think bats can be invoked to explain every situation.

As an addendum to what Otte and Alexander reported on the Malaysian rainforests, I can state that Australian tropical rainforests are generally depauperate for Orthoptera. There are few grasshoppers, only a few pyrgomorphs and a biroelline eumastacid genus or two, no tree-top species and no litter acridoids. The dominant group is the crickets; among tettigoniids, probably the phaneropterines are the most numerous, followed closely by the agraeciine conocephalines. And the numbers are very low compared to the situation in New World rainforests.

NEW OR REINSTATED MEMBERS
 as of 13 November 1990

Stuart M. Fulletton
469 S. Central Ave.
Oviedo, FL 32765 USA
Dr. Said Ghaout
Direction de la Protection des Vegetaux
B. P. 1308

Rabat, MOROCCO
Dr. Irina G. Kazakova
Entomology, Peabody Museum
Nat. Hist. Yale University
New Haven, CT 06511 USA

Dr. Kenneth H. L. Key
Division of Entomology, CSIRO
GPO Box 1700
Canberra, ACT 2601
AUSTRALIA
Mr. John Paul
104 Southfield Park
Bartlemas Close
Oxford, OX4 2BA
UNITED KINGDOM
Ms. Mary Richards
School of Biological Sciences
Victoria University of Wellington
P.O. Box 600, Wellington

NEW ZEALAND

Mr. C. Shrinivasan
18 Narasimna Puram
Mylapore
Madras, INDLA
Dr. Leigh W. Simmons
Department of Zoology
University of Western Australia
Nedlands, Perth WA 6009
AUSTRALIA
Dr. Stephen A. Woods
USDA Rengeland Insect
Laboratory
c/o Montana State University
Bozeman, MT 59717 USA

Prof. R. D. Alexander Insect Division, Museum of Zoology University of Michigan Ann Arbor, MI 48109 USA
Srta. Ara Lucia Nunes
Trav. Monte Alegre 1003 Jurunas
Belem, Para 66000 BRAZIL
Sr. Eduardo Rivera Garcia Instituto de Ecologia, A. C. Apdo. Postal 632
Durango, Dgo. 34100
MEXICO

RECENT ACTIVITIES OF VIC VICKERY

Past-President, Orthopterists' Society Coordinator-Editor, Field Guide Project

I have not been known as one who is a regular meeting attender, although I had managed to attend all meetings of the PAAS-OS from 1976 to 1989. In 1989, I also attended the anmual meeting of the Enrtomological Society of Canada in St. Johns', Newfoundland, and also the meeting of the Entomological Society of America in San Antonio, Texas. These were in addition to our meeting in Valsain, Spain. My wife and I considered driving from Montreal to San Antonio as we hat done the year before to the E.S.A. meating in Louisville, Kentucky, but we decided that winter conditions made that a bit nisky.

Now-just to let you know that I have not become too dectepitmy wife and I have just returned from an 8000 km (5000 miles for you Americans) trip by car to attend the Entomological Society of Canada meeting in Banff, Alberta, Canada. My attempt to collect more specimens of the elusive Grylloblatta were frustrated by a heavy snowfall in the mountains. We managed the snow on the roads better than some other travellers we saw. Enough is enough, so we decided not to go to New Orleans for the Entomological Society of America meeting in Decenber.

We touched base at several universities en route across Canada, and I was able to make some identifications for them and to solve some taxonomic problems.

Don't let anyone tell you that retirement means a life of ease. I suppose it could be, but I have been just as busy since I retired in 1986 as I was before-perhaps more so. I now have a computer in my office at Macdonald College (ditto at home), and my briefcase usually holds diskettes that I can work on at either end. I am also becoming known as a genealogist.

The printing firms that are dealing with the Orhopterists' Society Field Guides requested diskettes in WordPerfect so I had to make the transition from Wordstar 2000 (that I still use for many things) to WordPefect, version 5.1. I seldom have problems switching from one to the other now, though at first it was difficult.

As I have mentioned the Field Guides, I expect a note on progress is in order. The first seven Field Guides (A1E, C2E, C2F, C7E, C7F,

C8E, C8F)-see the last issue of Metalepted (12(1): 5.7) for titlesshould be printed within three weeks. More than 20 others have been edited. The edited versions, cleared by authors, are on diskettes, and diskettes and hard copies are in the hands of printers that are preparing "set-up" copies, or are ready for the printers.

The funds allocated in the original contract with CIDA (Canadian Intemational Development Agency) will not be sufficient to publish the entire series, and I will soon be soliciting additional funds.

A number of authors who had agreed to write papers for the Field Guide series have not sent manuscripts to me, even though some of these were promised for last June. I hope these people will soom produce these papers. I don't expect to live beyond the age of 100 , and I would like to have the project completed in 1991, not 2021.

Research-I still have time for some research, I am revising the genus Timema, the strange, small stick-insects that ere known only from southwestern North America. The project is nearing completion. I thought it was nearly finished some time ago but since then have been sent two more undescribed species. I have three new ones now, one of which may be parthenogenetic. I have to wait until collections in 1991 either confirm this or reveal the males.

I completed a paper on the mantids of Baja Califomia and am making progress on two more papers, one on the stick-insects of Baja Calfornia and the other on the crickets (other than Gryllus) of the same region.

Most orthopterists don't know that I have entomological interests other than orthopteroid insects. As a matter of fact I have worked with honey bees, both in research and in practical matters, for many years, longer than I have been involved with orthoptercid insects. I taught Agriculture for many years. I have now completed a book on honey bees. This was requested by my students (numbering in the thousands) over the years. The book, The Honey Bee: A Guide for Beckeepers, although it was published only late in September of this year, has already received excellent reviews and is showing signs of becoming a best-seller, at least among Canadian beekeepers. It has already been adopted as a text by several colleges and universities.

CHANGES OF ADDRESS

as of 13 November 1990
Mr. Ulf Carlberg
Atlasvagen 45,
2 S-131 34
Nacke, SWEDEN
Dr. Colin Ferris
School of Biological Sciences
University of Eest Anglis
Norwich 7TJ ENGLAND

Dr, John Hilliard
Dept. Biological Sciences
Sam Houston State Univ.
Hunteville, TX 77341 USA
Dr. Richard Y. Lamb
333 S. East Ave.
\#305 Oak Parle IL 60302 USA
Dr. Christian Lange
Institut fir Zoologie Friedrich-Alexander Univ, 8520 Erlangen Staudstrasse 5 FEDERAL REPUBLIC OF GERMANY

Dr. M. H. Laumois-Luong CIRAD/PRIFAS
BP 5035-35032
Montpellier Cedex 01
FRANCE
$D_{\text {r }}$. Werner Loher
Department of Entomology
University of California
Berkeley, CA 94720 USA
Dr. Charles MacVean
P.O. Box 661447

Univ. del Valle
Miami Springs, FL 33166 USA

Mr. M. V. Srinivasa
1152 Brahmin's Street
Malur, Kolar, Kamataka
Pin 563 130, INDIA
Ms. Nina Wedell
Depertment of Zoology
University of Stockholm
S-106 91 Stockholm, SWEDEN
Mr. Jeng-Tze Yang
Department of Eitiomology
National Chang Hsing Universiry
4027 Tuiching, Triwn CHINA

NOTICE

ORTHOPTEROIDEA SPECIALIST GROUP

Species Survival Commission - IUCN

News Report No. 1

Many Orthopterists are concerned with the abundant and notorious species. Other specialists are interested in the curious or stridulatory, and yet others are interested in the threatened ones. It is to those of you who are interested in endangered Orthopteroidea that I appeal.

Firstly, let me introduce the Species Survival Commission. It is a component of IUCN (The World Conservation Union) and is a network of the world's most qualified specialists in species conservation who serve on a voluntary basis. Since is formation in 1956, the Commission has consistently provided international leadership for the conseryation of species, their diversity and their habitats. It publishes Red Data Books and Action Plants, and provides biological information for instigating conservation measures. Among the invertebrates there are already Specialist Groups (SG) for Odonata, Anls, Lepidoptera, Cave Species, and Molluscs.

In view of the scarcity-and in the case of the Antioch Katydid, the extinction-of many orthopteroids, it wast considered appropriate to consider a Specialist Group for Orthoptera sensu lato. Last year I wrote to several specialists who I thought might be active participants, and I really do thank them for the trouble they took to pass back to me their comments. Overwhelmingly, the feeling was that it should be an Orthopteroidea SG rather than an Orthoptera SG.

Also, I wrote to Professor Gangwere as it seemed right to ally the Orthopteroidea SG with the Orthopterists' Society. Also, the group has to be ratified by the IUCN General Assembly. For that it was necessary to send a brief draft proposal, a copy of which you can see in this issue of Metaleptea. I really do thank everyone who replied, and Professor Gangwere for his help with the draft proposal.

Originally I wrote to several specialists of whom I knew personally or who I thought might represent their geographic areas. But please, ANYONE WHO IS INTERESTED IN PARTICIPATING PLEASE LET ME KNOW. The Orthopteroid Specialist Group is not meant to be exclusive. If you wish to participate, please let me know. Once the General Assembly has agreed to its inception I shall send you the registration forms and then we shall be underway. The inicial aims would be to draw up a Red List and perhaps to produce a volume on Threatened Orthopteroids of the World. Let me krow your ideas. In the meantime, I shall continue to report the group's progress through a news item in Melaleptea. Let's keep in touch.

[^0]
ORTHOPTEROID SPECIALIST GROUP OF THE SPECIES SURVIVAL COMMISSIONA PROPOSAL

What constitutes "Orthopteroids"?

The general consensus of opinion of leading orthopterists on the formation of an Orthopteroid Specialist Group (ORSG) is that the Group should focus on the Superorder Orthopteroiden (i.e. Polyneoptera), and not just on the Order Orthopters. The following taxa would then be encompassed:

Mantodea-mantids
Blatrodea-cockroaches
Cylindrachetidae-cylindrachetids
Eumastacoidae-monkey grasshoppers
Acridomorphoidea-grasshoppers
Tetrigoidea-tetrigids or pygmy grasshoppers
Tridactyloidea-pygmy mole crickets
Gryilacridoidea-dune crickets, leaf-rolling crickets, camel crickets, cave crickets, king crickets
Grylloiden-true crickets, tree crickets
Gryllotalpidae-mole crickets
Cooloolidae-Cooloola monsters
Tettigonioidea-Bush crickets or katydids
Grylloblattodea-grylloblattids
Dermaptera--earwigs
Plecoptera-stoneflies
Embioptera-embiopterans or web spinners
Phasmatodea-stick- and leaf insects
Isoptera-lermites
Zoraptera-zorapterans

Significance of Orthopteroids

About 40,000 Orthopteroids have been described, including many fossils. Still many remain to be discovered. Many are large, conspicuous species that grace the landscape and have featured strongly in tolklore.

A total of 64 species have already been listed in the 1988 IUCN Red List of Threatened Animals, and 10 species have been described in the IUCN Invertebrate Red Data Book. Several countries extend legal protection to certain orthodteroid soecies.

Although some species, particularly in the Acridomorphoidea and Isoplera, are widespread and sometimes serious pests, many species are localized. Some geographical areas show very|high percentage endemism at the species level-even South Africa on the southern tip of a continent has 75% endemism among its tettigoniids, while most oceanic islands have almost total endemism.

With their often distinct habitat preferences, somptimes associated with threatened biotopes, e.g., streams for stoneflies, caves for some Gryllacridoidea, moist tropical forest for some Tettigonioiden, they are good "indicator" or "flag" species. This is especially so as many "sing", making them readily identifiable without capture or disturbance.

Representation within an Orthopteroid Specialist Group

From the circular sent to prominent orthopterists, there is a clear indication that there is a need for such a Specialist Group. There is certainly a core of specialists willing and able to participate, either on a taxonomic or geographical basis. Although most specialists are centred in the north-temperate countries, many are undertaking research in the tropics. Conservation appraisals by such specialists are invaluable.

As with all IUCN Specialist Groups, the level of activity of the participating members determines the particular Group's success. Also, it must represent the general world opinion on the particular fauna in question. For Orthopteroids, the activities of the Orthopteroid Specialist Group would coincide with those of the Orthoplerists' Society, a renowned international organization to which most leading specialists belong. Such members, representing approximate taxonomic groups, and/or geographic areas, would be invited to participate.

Aims of an Orthopteroid Specialist Group

Aims would include revising the IUCN Red Data List, developing an Action Plan, and producing a workable handbook of "Threatened Orthopteroids of the World". This would include species, habitats and biotopes. Reviews, taxonomic and/or regional, would be important contributions.

Conclusions

Discussions with invertebrate conservationists field conseryation officers and specialists has clearly identified the need for an Orthopteroid Specialist Group, especially as many orthopteroid species are large and have restricted distributions. The international Othopterists' Society would be closely consulted.

As it is now timely to instigate such a Group, it is requested here that the IUCN General Assembly seriously consider ratifying an official Orthopteroid Specialist Group.

NOTICE

Members needing additional copies of past Pan American Acridological Society or Orthopterist' Society publications (Metaleptea, Pro ceedings, Occasional Papers) and new members having current publications but not past ones are reminded that a small number of virtually all volumes and numbers is on hand at the Secretariat. Prices (in US currency) are as follows: Metaleptea $\$ 1.50$ per number or $\$ 3.00$ per volume consisting of 2 numbers; Proceedings $\$ 10.00$ per volume; and Occasional Papers $\$ 4.40$. Please advise of the volumes and numbers desired and send remittance to: Prof, S. K. Gangwere, Executive Secretary, Orthopterists' Society, c/o Departnent of Biological Sciences, Wayne State University, Detroit MI 48202, USA. Orders may also be placed by invoice; simply ask to be billed.

NEWS FROM ANDREW HARVEY IN AFRICA

I was based in Kabul, Afghanistan, from April through August, 1990, on an FAO/UNOCA project to organise control of locusts and Sunn pest (Pentatomidae) in northem Afghanistan. Moroccan locust (Dociostaurus maroccanus) and, to a lesser extent, Italian locust (Calliptamus italicus) have always been pasts on the dry land wheatgrowing areas on the foothills above the valley of the Amu Darya (Oxus River). Since 1935, there have been annual control campaigns, assisted by Soviet experts and equipment, but this was interrupted by the wat. As a result of this and perhaps other ecological factors, locust numbers have buiit up to a disastrous level and are threatening the area, once a wheat-exporting region, with famine.

It is reckoned that half a million hectares will have to be reared against Sum pest and locust if shortages are to be prevented Since most of the affected ares lies outside government control, a converntional campaign is out of the question. Instead, locally recruited extension workers are to be trained in the use of hand-held ULV sprayers and provided with supplies of insecticide. This will also have the advantage of phasing out BHC dust, which has been used up until now, and of raducing the enormous logistical problems of distribution.

WANTED: INFORMATION ON REARING TECHNIQUES

The Cincinnari Zoo has 30 species of Orthopteroid and Dictyopteroid insect species in its inventory. It is seeking from anyone interested in insect rearing lechniques information reganding food plant preferences and oviposition requirements for the species they rear. For a list of those species, send name and address to Erie R. Eaton, Insectarium, Cincinnati Zoo and Botanical Garden, 3400 Vine Street Cincinati, OH 45220 . The Zoo is also interested in acquiring additional species for exhibits.

From Christian Lange

I have been working with Prof. v. Halversen on the bioacoustics and ecology of Acrididae and together we are preparing a book on songs of most of the European Gomphocerinae. In Auguse I went to northem Greece and Romania (Carpathes) to sturdy endenic species and their songs.

From Nina Wedell
 Dept. of Zoology, University of Stolkholm, Sweden

Presently I am working on studies of pareurity assurance, sperm compitition, and male investment in the tetigonitds. I received a grant from the Royal Swedish Academy of Sciences for my Ph.D. project, "Comparative studies of the evolution of Orthopteran mating systems."

Figures, line drawings or graptics of your favorite grasshoppers, crickets, katydids, or other orthopteroid insect. These wifl appear as fillers in future issues of Metaleptea. Send them to David \mathcal{A}. Noickle, Editor.

The Orthopterists' Society (formerly Pan American Acridological Society) is an international scientific organization devoted to facilitating communication among those interested in Orthoptera and their allies. Research and publication are fostered in all aspects of the biology of these insects from ecology and taxonomy to physiology, endocrinology, cytogenetics, and control measures.
The Society was founded in 1978 by some 50 orthopterists meeting at San Martin de los Andes, Argentina. Its constitution and by-laws were adopted in 1979, and it was accorded tax-exempt status by the United States government shortly thereafter. The meetings held since San Martin have been at Bozeman (United States), Maracay (Venezuela), Saskatoon (Canada), and Valsain, Segovia (Spain). The next meeting will be in 1992 at a site to be selected in 1991.

Sympoain, round table discussiont, and research papers presented at the Socialy meatings are published to the Proceedings of the Orthopterists' Sociely, and a newsletter, Metaleptea, is issued semi-annually. Information regarding these publications can be obtained from the editor, Dr. D. A. Nickle, USDA, c/o National Museum of Natural History, NHB 168, Smithsonian Institution, Washington, D.C. 20560, USA.

The 1990-1994 Governing Board comprises President Daniel Otte (United States), President-elect R. F. Chapman (United Kingdom), Past President V. R. Vickery (Canada), Treasurer Roger Bland (United States), Regional Representatives Aiola Richards (Australia), Al B. Ewen (Canada), and B. Bacetti (Italy), Executive Secretary S. K. Gangwere (United States), Editor, D. A. Nickle (United States), and Editor of the new Orthopterists' Journal, N. D. Jago (United Kingdom).
Society business and finances are handled by the Executive Secretary, Prof. S. K. Gangwere, Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.

All consppondance relating to Metalieptea or the Procsedings of the Orthopteritte' Sociesy thould be addressed to the Editor, Dr. Divid A. Nickle, USDA, Systematic Entomology Iaboratory, c\% U.S. National Museurn of Natural History, Smithsonian Institution NHE-168, Washington, D.C. 20560 USA.
Correspondance and information regarding the new joumal series, Orthopterists' Journal, should be addressed to Dr. N. D. Jago, Overseas Development Administration, Tropical Development and Research Instituion, College House, Wrights Lane, London W8 5JS, United Kingdorn.

MEETINGS: Meelings of the Orthopterists' Society are held on a triennial basis, in the United States, Latin America, Canada, of other location, wolldwide, in rokation Syroposia, reseach papors, and business conducted at the Meetings are published in the Proceedings of the Orthopterists' Society.

MEMBERSHIP: Membership is open to anyone expressing an interest in Orthoptera and related orders. Annual dues for members are US $\$ 15$ for Active Members and US \$7 for students. Members receive all publications of the Society.

PUBLICATIONS: The Society's publications include a newrletier, Metaleptea, which is published as newn becomes available, but on at lead a biannual basis, the Procradings of the Orthopterivers Sociepy, which is putblished tremnially in conjumetion with the Meeings, Oceasional Papers, an imogularly published jommal for medium to large-sized papers desling with resenreh on any wapect of Orthoptervid orders, and a new joumal series, the Orthopierisis' Jownal, a refenied joumal deroted to research anticles of a malil to medium size. For information togarding any of these publications, contact the Editor, Dr. David A. Nickle, USDA, Systematic Entomolosy Laboratory, co U.S. National Museum of Natural Ifitory, Smithsonian Institution NHB-168, Washingtop, D.C. 20560 USA.

RAINFORESTS: A GUIDE TO RESEARCH AND TOURIST FACILITIES AT SELECTED TROPICAL FOREST SITES IN CENTRAL AND SOUTH AMERICA

A book by James L. Castner, Ph.D. with foreword by Dr. Peter H. Raven
Available through: FELINE PRESS
P.O. Box 7219-SI
Gainesville, FL 32605

Price: $\$ 14.95$ (Florida reridents plemse add . 99 salet tux) plus $\$ 1.50$ shipping (please add 30 for ench addirional booth)
Tropical rainforesta are being destroyed at the rate of approximately 100 acres per minute. Ench day more of the ine-
 rests has prompted govenment support of tropical forest conservation and encouraged biologists to conduct research in those minforests jernining. Yet to dute, there have been no referenoes available evaluating and desoribing tpocific
 beaty and biological divorxity, The book RAINFORESTS: A GUIDE TO RESEARCH AND TOURIST' FACLLITIES AT SEIECTED TROPICAL FOREST SITES IN CENTRAL AND SOUTH AMEIRICA attempts to fil that empty 'literary niche'.

RAINFORESTS deals strictly with the New World tropics, treating sites in seven of the most accessible countries. The author methodically describes and evaluates select locations in each country. Data are provided on location, logistics, seasonality, forest types, trail systems, and costs. Additional information allows readers to contact lodge owners and field station directors or their representatives directly. Following the description of sites evaluated in each country is information regarding books, maps, tourist information sources, conservation organizations, and scientific organizations/institutions.
In addition, RAINFORESTS contains a partially amouted bibliography of ove 200 titles dealing with tropical junfles and the plant and animal life within them. These books ase conveniently clascified into sections for laymea, biol-
 On' Organizations that allow laymen and biologists to work and study in the field together. The final chapter discusses Sources of Funding available to biologists and other individuals interested in conducting research in rainforest habitats. Appendices contain information about traveling in Latin America, provide a useful list of specialized vocabulary in Spanish and English, and also present a list of the major companies, organizations, and institutions that offer natural history tours.

TO ALL PERSONS INTERESTED IN GRASSHOPPERS IN AFRICA

New Field Guide, Nymphs of the Sahelian Grasshoppers, by George B. Popov, is available for free upon request. This volume is a full-color mamal meant for use in the fied to assist. in the easy recognition of the hopper stage of the main Sahelian grasshopper species. The manual was recently princed with partial funding from A.I.D. (AFR/TR/ANR -- AELGA Project).

Nymphs of the Sahelian Grasshoppers: An Illustrated Guide

published in 1989 by the Overseas Development Natural Resources Institute (ODNRD), U.K. This $11 \times 18 \mathrm{~cm}$, 150 page manual with a sturdy paperback binding, describes and illustrates -- in paintings and photographs -- 78 grasshopper nymphs (hoppers) judged fo be the rrost important of the over 300 species in the Sahel. Useful synoptic information is provided for all species ont survival strategies, number of generations, habitat choice, hopper development, and practical recommendations on hopper identification.

Copies may be obtained (also available in French as Les Larves de Criquets du Sahen) from Walter I. Knausenberger, AID, Bureau for Africa, Office of Technical Resources, Washington, DC 205.23-1515, or through David A. Nickle, U.S. National Museum of Narural History, Washington, DC 20560. Outside of North America, it is available for a $\$$ fee through ODNRI, Publications Officer, Central Ave., Chatham Maritime, Chatham, Kent MEA TB, United Kingdom; PRIFAS, Acridologie Operationelle, B.P. $5035, ~ F-34032$ MontpellierCeex 1 Francet Department de Formation en Protection des Vegetetaux, B. P. 12625, Niamey, Niger; or CILSS-INSAH, UCTR/PV, B.P. 1530 Bamako, Mali.

[^0]: Michael J. Samways
 IUCN (The World Conservation Union)

