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Chapter 1

Introduction

This introductory chapter aims to provide an overview of the arbitrage theory in
models with proportional transaction costs relevant to this thesis and describes its
main results.

1.1 Financial market models with transaction costs

In frictionless financial market models, there are no costs associated with trading.
All assets can be bought and sold at the same price. Of course, these models are an
idealization of the real world as transaction costs are an important feature of financial
markets. Typical types of transaction costs are fixed costs and proportional costs.
Fixed costs pertain to a constant fee, e.g., a brokerage fee, being charged for each
transaction regardless of its size. Thus, fixed costs penalize the frequency of trading.
The transaction costs that arise due to a positive bid-ask spread, i.e., the difference
between the ask price, which is the lowest price an asset is sold for, and the bid price,
which is the highest price offered for an asset, are proportional to the size of each
trade. We refer to such costs as proportional transaction costs. In contrast to fixed
costs, proportional costs penalize the size of the trades. In general, bid-ask spreads are
caused by numerous factors (see, e.g., Harris [39, Chapter 14] and Madhavan [70]). For
example, Glosten and Milgrom [33] show that a positive bid-ask spread can arise due
to adverse selection, i.e., as liquidity providers may lose money to informed traders,
they widen the spread to recover their losses from uninformed traders.

In this thesis, we only consider models with proportional transaction costs (for
models with fixed costs see, e.g., [3, 9, 48]). In usual models of a stock market with
proportional transaction costs and d risky assets (see, e.g., Jouini and Kallal [47]),
there are two d-dimensional processes modeling the bid and ask price of each stock,
and each transaction involves a bank account (or bond), i.e., a frictionless riskless asset
with strictly positive price at any time. In particular, the actions of an investor are
limited to buying and selling an asset in exchange for units of the bank account. After
passing to relative prices, i.e., expressing all prices as multiples of the bank account,
this means that each purchase of a self-financing strategy charges the bank account
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with the ask price, and each sale credits the bank account with the bid price.
As identified by Kabanov [50], the existence of a bank account is unrealistic for a

currency market which, in contrast to a stock market, allows for the direct exchange
of the different assets. Thus, Kabanov [50] introduces a “currency model” with finitely
many assets (see, also, Kabanov and Safarian [55, Section 3.1]). In this general frame-
work, which includes the models described above, a bank account need not exist and
there is no one-dimensional wealth process. Portfolios are expressed in terms of phys-
ical units of the assets. The transaction costs are implicitly modeled by an adapted
cone-valued process whose value at time t models the cone of portfolios available at
price zero at time t. More specifically, in the discrete-time setup of Kabanov’s model
from Schachermayer [85], which we follow in the second chapter of this thesis, the
cone of portfolios available at price zero at time t is induced by a random matrix
whose entries specify the amount of physical units of an asset needed to purchase one
unit of another asset at time t. In this case, a portfolio process is self-financing iff its
increment at time t takes values within the cone of portfolios available at price zero
at time t for each point in time t.

In the case of only two assets, Kabanov’s model is equivalent to the usual model
of a stock market, as described above, where all transfers are made via the bank
account. In the third chapter of this thesis, we consider such a two-dimensional model
in continuous time.

1.2 The discrete-time case

At the foundation of the modern mathematical theory of financial markets is the
principle of no-arbitrage. Loosely speaking, a mathematical model of a financial market
should not allow for any arbitrage opportunities, i.e., a chance to make a profit without
any risk and any net investment. In discrete-time frictionless financial markets models,
the absence of arbitrage opportunities is characterized by the existence of an equivalent
martingale measure, i.e., an equivalent probability measure that turns discounted
prices into martingales. This is known as the fundamental theorem of asset pricing
(FTAP). In the case of finite probability spaces, it goes back to Harrison and Pliska [41]
and its extension to general probability spaces is due to Dalang et al. [21]. The proof
of the later uses finite dimensional separation arguments to obtain the existence of
a martingale measure locally and, subsequently, uses measurable selection to extend
the result to multiple periods. On the other hand, more modern versions of its proof,
see [53, 83], use that the absence of arbitrage opportunities implies the closedness
in probability of the set of hedgeable claims attainable from zero endowment. To
show this, Schachermayer [83] passes to the set of trading strategies “orthogonal” to
all trading strategies resulting in a terminal value of zero. Subsequently, he shows
that any sequence of these strategies, whose associated sequence of terminal values
converges, has to stay bounded by leading a possible explosion to a contradiction. Of
course, this relies, just as the proof of Kabanov and Stricker [53], on the (obvious)
fact that the set of strategies resulting in a terminal value of zero is a vector space
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in a frictionless financial market. To conclude, by no-arbitrage, the set of hedgeable
claims attainable from zero endowment is closed and its intersection with the set of
non-negative random variables reduces to zero. Thus, the Kreps-Yan theorem, i.e.,
a Hahn-Banach-type separation argument, can be applied to obtain an equivalent
martingale measure.

For a finite probability space, Kabanov and Stricker [54] extend the FTAP to Ka-
banov’s model of a currency market. They show that no-arbitrage (NA) is equivalent
to the existence of a consistent price system (CPS), which is a multidimensional mar-
tingale under the objective probability measure taking values within the polar of the
cone of portfolios available at price zero at each point in time. The relationship of a
CPS with the notion of an equivalent martingale measure is apparent in the special
case of a stock market model with a bank account. In this case, a CPS corresponds
one-to-one to a tuple of an equivalent measure and a price process whose components
take values within the bid-ask spread of each asset and which is a martingale under
the equivalent measure (see, e.g., Rohklin [82, Section 3]).

For infinite probability spaces, an analogue of the frictionless FTAP fails. Schacher-
mayer [85] provides an example of an arbitrage-free market that allows for an ap-
proximate arbitrage, i.e., a non-zero and non-negative portfolio that is the limit in
probability of a sequence of portfolios attainable from zero endowment. Consequently,
a CPS cannot exist. This shows that under proportional transaction costs the set
of hedgeable claims attainable from zero endowment may fail to be closed although
(NA) is satisfied. A key observation is that there might be claims attainable from zero
endowment by trading up to some time t that can subsequently be liquidated for sure
which cannot be attained from zero endowment in the subsequent periods. In other
words, although (NA) is satisfied, one may gain an advantage by trading up to time t
since the same terminal position cannot be achieved by starting to trade at time t
and there is no risk associated to the position as it can be liquidated for sure between
t and the terminal time. This advantage may result in the set of hedgeable claims
attainable from zero endowment not being closed and can, in some cases, be exploited
to construct an approximate arbitrage (see, e.g., Schachermayer [85, Example 3.1]).
Thus, there arises the question under which stronger absence of arbitrage conditions
such effects can be excluded.

Schachermayer [85] introduces the robust no-arbitrage property (NAr), i.e., there
have to exist more favorable investment opportunities leading to smaller bid-ask
spreads (for each pair of assets) such that the modified market still satisfies (NA).
Schachermayer shows that, under (NAr), the set of null-strategies, i.e., the increments
of self-financing portfolio processes with vanishing terminal value, is a vector space.
This ensures that the effects discussed above cannot occur. Thus, using the same
idea as in [83], Schachermayer shows that the set of hedgeable claims attainable from
zero endowment is closed in probability and, consequently, the existence of a CPS
follows by the usual separation arguments. In addition, he shows that (NAr) is ac-
tually equivalent to the existence of a strictly consistent price system (SCPS), which
is a martingale taking values within the relative interior of the polar of the cone of
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portfolios attainable at price zero at each point in time.
The alternative absence of arbitrage condition is strict no-arbitrage (NAs) intro-

duced earlier by Kabanov et al. [51]. A market model satisfies (NAs) iff any claim
which is attainable from zero endowment up to some intermediate time t and which
can be liquidated in t for sure, can also be attained from zero endowment by trading
at time t only. Together with efficient friction, i.e., nonvanishing transaction costs,
Kabanov et al. [51] show that (NAs) implies that the only null-strategy consists of not
trading at all. Consequently, the set of hedgeable claims attainable from zero endow-
ment is closed in probability. Combining the closedness with (NAs), they show that
a SCPS exists. The opposite implication also holds true, i.e., under efficient friction,
(NAs) and the existence of a SCPS are equivalent.

In the second chapter of this thesis, we introduce the novel prospective strict no-
arbitrage (NAps) property which is a variant of (NAs). Roughly speaking, the market
model satisfies (NAps) iff any claim which is attainable from zero endowment by
trading up to some time t and which can subsequently be liquidated for sure, can also
be attained from zero endowment by trading between t and the terminal time. This
means that either one cannot obtain an advantage by trading up to time t as the same
terminal position can be achieved by starting to trade at time t, or there is some risk
associated to the position as it cannot be liquidated for sure. This means that (NAps)
is tailor-made to exclude the effect described above and, indeed, (NAps) is weaker as
(NAr) but already guarantees the closedness of the set of hedgeable claims attainable
from zero endowment (see Theorem 2.2.6). In particular, (NAps) implies the existence
of a CPS.

On the other hand, it is important to note that the closedness of the set of hedge-
able claims attainable from zero endowment is not necessary for the existence of a
CPS. In the case of only two assets, Grigoriev [34] shows that (NA) is equivalent to
the existence of a CPS - although the set of hedgeable claims attainable from zero
endowment need not be closed (see, e.g., [34, Example 1.3]). As already mentioned,
this analogy of the frictionless FTAP fails in higher dimensions (see [65, Example 4.6]
for a counterexample with three assets). This means that (NAps) cannot be equivalent
to the existence of a CPS. Therefore, we introduce a weakening of (NAps) which turns
out to be equivalent to the existence of a CPS (see Theorem 2.2.11).

While the closedness of the set of hedgeable claims attainable from zero endowment
is not necessary for the existence of a CPS, it is still a desirable property of the
market model. Similar to the frictionless theory, see, e.g., Föllmer and Schied [32,
Chapter 7], the closedness is needed for superhedging. Thus, just as under (NAr)
(see Schachermayer [85, Theorem 4.1]), a similar superhedging results holds under
(NAps) (see Remark 2.2.23). Even though superhedging may not be applicable from
a practical point of view, it is of enormous theoretical importance, e.g., in the theory
of optimal portfolio selection. Czichowsky et al. [16] use both the closedness of the
set hedgeable claims attainable from zero endowment and the superhedging result to
establish a duality result in analogy to the frictionless case [63, Theorem 2.1 and 2.2]
under transaction costs. That means that they establish the existence of primal and
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dual optimizers and show how the solutions of the primal and the dual problem are
connected. This result is central to answer the question whether a so-called shadow
price, i.e., a fictitious frictionless price process that takes values within the bid-ask
spread of the original market and that leads to the same optimal decisions and trading
gains as under transaction costs, exists. In other words, the question arises whether
the behavior of an agent under transaction costs can be explained by passing to a
suitable least favorable frictionless market. For finite probability spaces Kallsen and
Muhle-Karbe [57] show that the answer is affirmative, i.e., shadow prices always exist.
On the other hand, Czichowsky et al. [16] show that shadow prices do not have to exist
on general probability spaces. However, they also show that if the dual minimizer is a
martingale it corresponds to a shadow price and, conversely, if a shadow price exists
it is necessarily derived from a dual minimizer.

Coming back to the discussion of arbitrage under transaction costs, it was observed
by Rásonyi [76] that under transaction costs an arbitrage opportunity of a second kind,
i.e., a non-solvent portfolio which ends up solvent, can exist even though a strictly con-
sistent price system exists. Thus, Rásonyi [76] introduces the condition of no-arbitrage
of a second kind (NA2), which was originally called no sure gain in liquidation value.
Assuming efficient friction, Rásonyi [76, Theorem 1] characterizes (NA2) by showing
that it is equivalent to the condition of prices consistently extendable (PCE), i.e.,
the existence of strictly consistent price systems with arbitrary (inner) starting points
(see also Denis and Kabanov [26, Section 4] for a complementary result). Interestingly,
there is no analogue of this result for frictionless financial markets where an equiva-
lent martingale measure may fail to exist although (NA2) is satisfied (see Rásonyi [76,
Remark 4]). In contrast to the previously discussed absence of arbitrage conditions for
market models with transaction costs, (NA2) is equivalent to its local version, that
is: A position cannot surely be solvent in the next period, if it is not already solvent
in the current period. Being able to pass from local to global is advantageous as, e.g.,
demonstrated by Bouchard and Nutz [8], who obtain an analogous result under model
uncertainty, where the usual functional analytic approach does not work due to the
lack of a reference measure.

In general, the previously discussed criteria try to establish a link between the
absence of arbitrage, i.e., a property of the financial model, and the existence of a
(strictly) consistent price system. Abstractly speaking, given an adapted sequence of
random sets, the question is whether there exists a process taking values within the
sequence of random sets which is a martingale under an equivalent measure. This more
general point of view is introduced by Rokhlin [79, 80] as the martingale selection
problem (MSP). Thus, the stronger absence of arbitrage criteria can be viewed as
conditions under which the MSP is solvable. Rohklin [81] shows that the framework of
the MSP is useful for models with portfolio constrains and, more recently, Burzoni and
S̆ikić [10] use the relationship between no-arbitrage theory and the MSP to address the
general theory of markets with frictions in a discrete-time setting with no probability
measures.
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1.3 The continuous-time case

To establish a fundamental theorem of asset pricing (FTAP) for continuous-time fric-
tionless financial market models, several difficulties have to be overcome. As already
noted by Harrison and Kreps [40, Section 6], arbitrages arising from doubling strate-
gies need to be avoided by a suitable concept of admissibility, e.g., requiring the
corresponding value process to be uniformly bounded from below. In addition, [22,
Example 7.7] shows that, in arbitrage-free continuous-time models, there can still ex-
ist a sequence of strategies whose payoffs converge towards an arbitrage opportunity
and, consequently, an equivalent local martingale measure does not exist. This is in
contrast to finite discrete time where no-arbitrage already implies the closedness of
the set of hedgeable claims. This need to complement the notion of no-arbitrage with
a topological condition was already noted by Kreps [64]. He introduces the notion of a
free lunch, i.e., a generalized sequence, also called a net, of payoffs converging towards
an arbitrage in a weak sense. Then, no free lunch, which is the absence of free lunches,
is equivalent to the existence of an equivalent local martingale measure (cf. Delbaen
and Schachermayer [24, Theorem 5.2.2]).

The use of nets and a hard to interpret convergence is economically not satisfying
(see Delbaen and Schachermayer [24, Chapter 5] for a detailed discussion). Thus,
Delbaen and Schachermayer [22] introduce the economically meaningful condition of
no free lunch with vanishing risk (NFLVR). Loosely speaking, there should not exist
a sequence of admissible trading strategies whose final payoffs converge almost surely
to an arbitrage opportunity while the associated losses converge to zero uniformly.
For a locally bounded semimartingale price process Delbaen and Schachermayer [22]
show that (NFLVR) is equivalent to the existence of an equivalent local martingale
measure, i.e., they establish the FTAP in continuous time.

Later, Delbaen and Schachermayer [23], see also Kabanov [49], show that the
boundedness assumption on the semimartingale price process is not really needed if
one replaces the term “local martingale” with “sigma-martingale”. It also turns out
that the price process being a semimartingale is not really a restriction. Indeed, already
under the weaker notion of no unbounded profit with bounded risk (NUPBR) for simple
strategies the price process has to be a semimartingale (see Delbaen and Schacher-
mayer [22, Section 7]). This connection between arbitrage and the semimartingale
property of the price process has subsequently been studied in detail by various au-
thors (see, e.g., [2, 6, 60]).

In the FTAP the (NFLVR) condition has to be formulated for general strategies as
otherwise an equivalent martingale measure may fail to exist. Delbaen and Schacher-
mayer [22, Section 7] provide an example of a bounded semimartingale satisfying no
free lunch with vanishing risk for simple strategies, but there is a free lunch with
vanishing risk if one allows strategies to sell before each rational number and buy
back immediately after it. This problem arises as the jumps of the semimartingale do
not occur at predictable stopping times (cf. Schachermayer [84]). Thus, the need for
general strategies and a general theory of stochastic integration is a crucial finding of
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the frictionless investigation.
Jouini and Kallal [47] initiated the study of absence of arbitrage under proportional

transaction costs in the same spirit as Harrison and Kreps [40] and Kreps [64] (cf.
the first paragraph of the current subsection). Considering a stock market model
with proportional transaction costs, they show that no free lunch formulated in L2 is
equivalent to the existence of a consistent price system (CPS), which, in their model,
is a tuple of an equivalent measure and a price process whose components take values
within the bid-ask spread of each asset and which is a martingale under the equivalent
measure.

Later, it became more apparent how much the picture changes as soon as transac-
tion costs are introduced. For example, in a frictionless setting the (geometric) frac-
tional Brownian motion with Hurst parameter H 6= 1/2, which is not a semimartin-
gale, allows for arbitrage (see Cheridito [12] and Rogers [78]). However, Guasoni [35]
shows that the addition of arbitrary small transaction costs is sufficient to eliminate
all arbitrage opportunities. Since the fractional Brownian motion has conditional full
support, it is sticky, i.e., it stays within an arbitrary small interval around its current
value with positive probability. Thus, already the transaction costs of an initial trade
may not be recovered. Guasoni et al. [37] show that for continuous processes taken
as the mid-price process conditional full support is sufficient for the existence of a
CPS for arbitrary small transaction costs. Thus, conditional full support is a suffi-
cient condition for the existence of a CPS. But, it is not necessary as shown, e.g., by
Guasoni et al. [38, Appendix A]. For a continuous strictly positive mid-price, Guasoni
et al. [38] provide a corresponding FTAP for arbitrary small transactions. A FTAP
for locally bounded and càdlàg bid-ask processes is established by Guasoni et al. [36].
They show that robust no free lunch with vanishing risk (RNFLVR), which, in their
formulation, implies efficient friction, i.e., nonvanishing transaction costs, is equivalent
to the existence of a strictly consistent price system (SCPS). In their work, a simple
strategy is admissible iff, after every transaction, the current position can be frozen
and, subsequently, be liquidated for a bounded loss at a (possibly) later time. An
important difference from the frictionless theory is that they formulate the condition
of (RNFLVR) in terms of simple admissible strategies only. General admissible strate-
gies are defined as predictable process of finite variation that can be approximated
by simple admissible strategies. Then, under (RNFLV), Guasoni et al. [36] can show
that the set of total variations of simple admissble trading strategies is bounded in
probability. Using this, they show the Fatou-closedness of the set of claims dominated
by outcomes of general admissible strategies. Finally, they use the usual separation
method together with an argument from Jouini and Kallal [47] to deduce the ex-
istence of a SCPS. This improves previous work by Kabanov and Stricker [56] and
Campi and Schachermayer [11] who show for continuous and càdlàg bid-ask processes,
respectively, that efficient friction together with the existence of a SCPS implies the
boundedness in probability of the set of total variations of trading strategies and
deduce Fatou-closedness to establish superreplication theorems.

Efficient friction is a standing assumption in continuous-time financial market
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models with proportional transaction costs. The aim of the second part of this thesis
is to go beyond efficient friction. Considering a model consisting of a bond and one
risky asset whose bid and ask price processes are not necessarily different, we make
a first step in this direction by introducing a reasonable set of general strategies for
which the self-financing condition of the model can be defined. This set has to go
beyond strategies of finite variation as without efficient friction strategies of infinite
variation can make sense.

As an auxiliary result, which is of independent interest, we first show that (NUPBR)
for simple long-only strategies implies the existence of a semimartingale price system,
i.e., a semimartingale taking values between the bid and the ask price process (see
Theorem 3.2.7). It is worth emphasizing that for this neither the bid nor the ask price
process need to be semimartingales. Hence, assuming the existence of semimartingale
price system is not really a restriction.

Since we deal with strategies that can be of infinite variation, we cannot directly
use them as integrators. But we overcome this difficulty by using the semimartingale
price system. Namely, to define the self-financing condition, see Section 3.3, we start
out with bounded and predictable strategies specifying the amount of the risky as-
set. Using that these strategies are integrable with regard to any semimartingale, we
take the semimartingale price system as an integrator to calculate the trading gains.
Subsequently, as the semimartingale price system is more favorable than the original
market with proportional transaction costs, we subtract a cost term to adjust for the
difference. Roughly speaking, if the spread is away from zero the costs are a Riemann-
Stieltjes integral similar to Guasoni et al. [36]. Then, we exhaust the costs when the
spread is away from zero. These costs are always non-negative but can be infinite.
As the trading gains charged in the semimartingale are finite, infinite costs cannot be
compensated. After also subtracting the current stock position evaluated in the semi-
martingale price system, we end up with the corresponding self-financing position in
the bond. Under a mild additional assumption on the behavior of the bid-ask spread
at zero, our approach leads to a well-founded self-financing condition which we justify
by suitable approximations with simple strategies (see Theorem 3.3.19). Especially,
the self-financing condition does not depend on the semimartingale price system used
in its construction.

Finally, we extend the self-financing condition from the set of bounded and pre-
dictable strategies to a maximal set of strategies for which it can be defined in a rea-
sonable way. Roughly speaking, we show that this set consists of all predictable strate-
gies with the following property: there exists an approximating sequence of bounded
predictable strategies such that for some semimartingale price system the associate
sequence of wealth processes is Cauchy w.r.t. uniform convergence in probability,
and the approximation is better than all other pointwise approximations if the stock
position is evaluated in the same semimartingale. The latter is needed as different ap-
proximations may lead to different costs. In the special case of a frictionless financial
market, this maximal set equals the set of predictable processes which are integrable
w.r.t. the semimartingale price process in the usual sense. Hence, we also obtain a
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new view on the frictionless case.
In a nutshell, we define a reasonable set of general strategies in a model beyond

efficient friction by using a semimartingale price system. The existence of the latter
is assumed, but not really a restriction as we show its existence under (NUPBR) for
simple long-only strategies. We emphasize that we do not show a FTAP. However,
as already discussed above, the need for general strategies is already proven in the
special case of frictionless markets. Consequently, under transaction costs but beyond
efficient friction general strategies can become an important tool to guarantee the
existence of a CPS.

The idea to relate trading under transaction costs to a fictitious frictionless market
is not new. In the theory of optimal portfolio selection, a shadow price is a frictionless
pricing systems taking values within the bid-ask spread that leads to the same optimal
decisions and trading gains as under transaction costs. This goes back to Cvitanić and
Karatzas [15] who were the first to apply convex duality to optimization problems
under transaction costs. In an Itô-process model, they show that if the dual optimizer
exists and is a local martingal, then it is a shadow price. Kabanov [50, Section 4]
shows a analogous duality result in a semimartingale currency model. To cite Cvitanić
and Karatzas [15, Remark 6.1], the assumption that the dual optimizer is attained
as a local martingale is a big one. Czichowsky and Schachermayer [17] develop a
general duality theory under transaction costs. They show the existence of a dual
optimizer and a shadow price in an appropiate general sense. In particular, they have
to allow for double jumps. Building on these general results, Czichowsky et al. [19]
show that the theory simplifies for continuous price processes. Specifically, they show
that if the (ask) price process satisfies (NUPBR), a shadow price exists. Czichowsky
and Schachermayer [18] provide a duality result for continuous and sticky processes,
which includes, e.g., (geometric) fractional Brownian motions, for utility functions on
the whole real line that are bounded from above. Subsequently, Czichowsky et al. [20]
show that for utility functions defined on the positive real line the condition of two-way
crossing, i.e., whenever the price process moves, it crosses its current level infinitely
often over arbitrary small intervals, is sufficient for the existence of a shadow price.
In particular, their result implies the existence of a shadow price in the fractional
Black-Scholes model for all utility functions on the positive half-line.

1.4 Overview of the thesis

Each of the chapters is self-contained and introduced separately. Hereby, we knowingly
allowed for redundancies. The thesis is structured as follows.

Chapter 2 corresponds to the article Kühn and Molitor [66]. The new prospective
strict-no arbitrage condition is introduced in Section 2.2. Here, we also present the
main results of the chapter (Theorem 2.2.6 and Theorem 2.2.11). The proofs of the
main results are collected in Section 2.3. At last, in Section 2.4, we give various
examples to illustrate the difference between the various no-arbitrage conditions in
discrete time and highlight the effect of a cascade of approximate hedges.
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Chapter 3 is the preprint Kühn and Molitor [67]. After an introduction to the
chapter, we show, in Section 3.2, that under no unbounded profit with bounded risk for
simple long-only strategies there exists a semimartingale price system. In Section 3.3,
we show how to use a semimartingale price system to define the self-financing condition
of the model. At first, this is done for bounded and predictable processes and we give
a characterization (Theorem 3.3.19). Subsequently, in Section 3.4, we extend the self-
financing condition to a maximal set for which it can be defined in a reasonable way.
Finally, the technical proofs of the chapter are collected in Section 3.5 and Section 3.6

Chapter 4 provides an detailed German summary of the main results of this thesis.



Chapter 2

Prospective strict no-arbitrage
and the fundamental theorem of
asset pricing under transaction
costs

2.1 Introduction

In frictionless finite discrete-time financial market models, the absence of arbitrage op-
portunities is equivalent to the existence of an equivalent probability measure under
which the discounted price processes are martingales. This result is called the funda-
mental theorem of asset pricing (FTAP). In the case of a finite probability space, it
goes back to the work of Harrison and Pliska [41]. The extension to arbitrary proba-
bility spaces is known as the Dalang-Morton-Willinger Theorem [21], whose original
proof was subsequently refined by several authors, see, e.g., [53, 83]. In the later
proofs, the implication that, in frictionless markets, the absence of arbitrage oppor-
tunities implies that the set of hedgeable claims attainable from zero endowment is
closed in probability is identified as the key lemma.

For a finite probability space, Kabanov and Stricker [54] extend the FTAP of
Harrison and Pliska to models with proportional transaction costs. They consider a
general “currency model” with finitely many currencies (assets), which we also follow
in the current chapter. It allows to buy any asset by paying with any other asset. In
this general framework, there need not exist an asset which can play the role of a bank
account, i.e., an asset which can be involved in every transaction at minimal costs.
Kabanov and Stricker show that no-arbitrage (NA) is equivalent to the existence of a
so-called consistent price system (CPS), which is a multidimensional martingale under
the objective probability measure taking values within the dual of the cone of solvent
portfolios at each point in time. For infinite probability spaces, this equivalence fails:
Schachermayer [85] provides an example for an arbitrage-free market which allows



12 Chapter 2. Prospective strict no-arbitrage

for an approximate arbitrage, i.e., a non-zero and non-negative portfolio which is the
limit in probability of a sequence of portfolios attainable from zero endowment, and
consequently a CPS cannot exist (see Example 3.1 therein). There arises the obvious
question under which stronger no-arbitrage conditions the existence of a CPS can be
guaranteed. Schachermayer [85] introduces the concept of robust no-arbitrage (NAr)
– a no-arbitrage condition which is robust with respect to small changes in the bid-ask
spreads. Loosely speaking, if the bid-ask spread (of a pair of assets) does not vanish,
there have to exist more favorable bid-ask prices, leading to a smaller spread, such that
the modified market still satisfies (NA). Schachermayer shows that (NAr) implies that
the set of hedgeable claims attainable from zero endowment, in the following denoted
by A, is closed in probability, and (NAr) is equivalent to the existence of a strictly
consistent price system (SCPS), that is a martingale taking values within the relative
interior of the dual of the cone of solvent portfolios at each point in time.

An alternative condition is the strict no-arbitrage (NAs) property introduced by
Kabanov et al. [51]. Loosely speaking, a market model satisfies (NAs) iff any claim
which is attainable from zero endowment up to some intermediate time t and which
can be liquidated in t for sure, can also be attained from zero endowment by trading
at time t only. (NAs) alone does not imply the existence of a CPS (see Example 3.3 in
[85] for the existence of an approximate arbitrage under (NAs)), but together with the
Penner-condition (2.4.1), due to I. Penner [73], this implication holds (see Theorem 2 of
Kabanov et al. [52]). Loosely speaking, the Penner-condition postulates that any “free-
round-trip” of exchanging assets that can be carried out in the next period for sure –
given the information of the current period – can already be carried out in the current
period. Together with (NAs), it allows to show that the so-called null-strategies, i.e.,
the increments of self-financing portfolio processes with vanishing terminal value, form
a linear space. This is also a crucial argument in [85] to show closedness of A, which
is the main step to show the existence of a CPS. Indeed, it is shown by Rokhlin [82]
that the vector space property of null-strategies is equivalent to (NAr).

A different approach to study the occurrence of an approximate arbitrage is fol-
lowed in Jacka et al. [44]. They provide a necessary and sufficient condition for A
to be closed in probability and construct adjusted trading prices such that the cor-
responding cone of hedgeable claims attainable from zero endowment either contains
an arbitrage or equals the closure of A. Put differently, they postulate the (weak) no-
arbitrage condition for an adjusted trading model instead of postulating a stronger
no-arbitrage condition for the original one (cf. also Remark 2.4.4 below).

Furthermore, it is important to note that the closedness of A is not necessary for
the existence of a CPS. In the case of only two assets (e.g., a bank account and one
risky stock), it is shown by Grigoriev [34] that (NA) already implies the existence of
a CPS – although A need not be closed (see Example 1.3 in [34] and Proposition 3.5
in Lépinette and Zhao [69] for the non-closedness of the set of attainable liquidation
values). This means that already in dimension two, additional conditions are required
to guarantee that the set of attainable liquidation values is closed. For this, Lépinette
and Zhao [69] provide an intuitive and easy to verify condition (Condition E) that
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takes the postponing of trades into consideration. Their proof uses the existence of a
CPS that is guaranteed by Grigoriev [34] in the case of an arbitrage-free model with
two assets. On the other hand, already for three assets, there is a counterexample
showing that (NA) does not imply the existence of a CPS (see Example 4.6 in [65]).
The goal of the current chapter is twofold:

• We want to provide an (easy to interpret) no-arbitrage condition which is as
weak as possible and under which the set A of terminal portfolios attainable
from zero endowment is closed.

• We want to establish a FTAP with CPSs which are not necessarily strict as in
the FTAP of Schachermayer [85].

For this, we introduce a variant of (NAs), that we call prospective strict no-arbitrage
(NAps) and that turns out to be sufficient to guarantee that A is closed in probability
(see Theorem 2.2.6). We say that the market model satisfies (NAps) iff any claim
which is attainable from zero endowment by trading up to some time t and which
can subsequently be liquidated for sure, can also be attained from zero endowment
in the subsequent periods (here, “subsequent” is not understood in a strict sense).
This means that in contrast to the (NAs) criterion, we do not distinguish between a
trade that can be realized at time t and a trade from which we know at time t for
sure that it can be realized in the future. In the special case of efficient friction (i.e.,
positive bid-ask spreads, cf. Definition 2.2.5), (NAps) and (NAs) are equivalent (see
Proposition 2.2.21).

In our proofs, we cannot rely on the vector space property of the null-strategies,
which was central in the arguments of Schachermayer and Kabanov et al. Indeed, it
was shown by Rokhlin [82] that this property is equivalent to (NAr), which is strictly
stronger than (NAps). Our proof relies on a decomposition of the trading possibilities
in “reversible” and “purely non-reversible” transactions at each point in time, where
we call a transaction “reversible” if the resulting portfolio can be liquidated in the
later periods for sure. This decomposition can be seen as a non-linear, only positively
homogeneous generalization of the projection on the set of null-strategies that is used
in the case that the null-strategies form a vector space. Given a trading strategy, we
then consider only the “purely non-reversible” part at each point in time and postpone
the “reversible” part to later points in time, where more information is available. This
is possible by (NAps), and, as it turns out, sufficient to assert that A is closed in
probability. Consequently, (NAps) implies the existence of a CPS.

On the other hand, as described above, a CPS can exist although the set A is not
closed. Consequently, the existence of a CPS cannot be equivalent to (NAps). But,
for a weak version of (NAps), called weak prospective strict no-arbitrage (NAwps), we
have equivalence to the existence of a CPS (see Theorem 2.2.11). A market satisfies
(NAwps) iff there exists an at least as favorable market which satisfies (NAps). Since the
second market need not be strictly more favorable than the original one, (NAps) implies
(NAwps). Hence, we establish a FTAP, which complements those of Schachermayer [85]
and Kabanov et al. [51, 52]. The main difference is that the resulting CPS may lie
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on the relative boundary of the bid-ask-spread. In Section 2.4, Figure 2.1 illustrates a
very simple example for this. Alternatively, one may think of an actually frictionless
market with one risky stock that is written as a model with efficient friction in the
following way. Each point in time is split into two points. Under the same information,
at the first point, the investor can only buy, and at the second point she can only sell
arbitrary quantities of the stock. If the frictionless market satisfies (NA), the artificial
market with friction has a CPS but not a SCPS. Thus, at least from a conceptual
point of view, it is desirable to have a FTAP with arbitrary CPSs as well.

In the case of a finite probability space, (NAwps) is equivalent to (NA), which
means that our version of the FTAP can be seen as a generalization of the above
mentioned FTAP by Kabanov and Stricker [54] (see part 2 of Theorem 1 therein) to
the case of arbitrary probability spaces. Finally, we motivate the (NAwps) condition
by an example which shows that (NAwps) cannot be replaced by a further weakening
of the (NAps) condition (see Example 2.4.3).

The remainder of the chapter is organized as follows. In Section 2.2, we introduce
the framework of financial modeling, the prospective strict no-arbitrage condition,
and the weak prospective strict no-arbitrage condition. We relate these properties to
the robust no-arbitrage and the strict no-arbitrage condition and state the main re-
sults of the chapter (Theorem 2.2.6 and Theorem 2.2.11). The proofs can be found in
Section 2.3. In Section 2.4, there are two very simple examples that illustrate the differ-
ences between the above mentioned no-arbitrage conditions and a more sophisticated
example (Example 2.4.3) that shows the effect of a possible “cascade” of approximate
hedges.

2.2 Prospective strict no-arbitrage and consistent price
systems

We now introduce the market model and the relevant notation. We work on a prob-
ability space (Ω,F ,P) equipped with a discrete-time filtration (Ft)Tt=0, T ∈ N, such
that FT = F . The space (of equivalence classes) of Ft-measurable d-dimensional ran-
dom vectors is denoted by L0(Rd,Ft). For a set-valued mapping ω 7→ N(ω) ⊆ Rd,
we denote by L0(N,Ft) := {v ∈ L0(Rd,Ft) : v(ω) ∈ N(ω) for a.e. ω ∈ Ω} the set of
Ft-measurable selectors of N . As usual, the spaces are equipped with the topology of
the convergence in probability, and we write L0(N) := L0(N,FT ).

We work with the market model with proportional transaction costs from Schacher-
mayer [85], where the reader may find a discussion about its economical meaning
and its connection to the models of [51] and [54]. There are d ∈ N traded assets
(one of which may, but need not, be a money market account), and a d × d-matrix
Π = (πij)1≤i,j≤d is called bid-ask matrix if

(i) 0 < πij <∞, for 1 ≤ i, j ≤ d,

(ii) πii = 1, for 1 ≤ i ≤ d,
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(iii) πij ≤ πikπkj , for 1 ≤ i, j, k ≤ d.

The terms of trade of the d assets are specified by a bid-ask process (Πt)
T
t=0, i.e., an

adapted d × d–matrix-valued process such that for each ω ∈ Ω and t ∈ {0, . . . , T},
Πt(ω) is a bid-ask matrix. For each t ∈ {0, . . . , T}, the random matrix Πt = (πijt )1≤i,j≤d
specifies the exchanges available to the investor at time t. More precisely, the entry πijt
denotes the number of units of asset i for which an agent can buy one unit of asset j at
time t. Therefore, the set of portfolios attainable at zero endowment at time t, which,
in this context, consists of Ft-measurable Rd-valued random variables, is modeled by
the convex cone ∑

1≤i,j≤d
λij(ej − πijt ei)− r : (λij)1≤i,j≤d ∈ L0(Rd×d+ ,Ft), r ∈ L0(Rd+,Ft)

 , (2.2.1)

where ei denotes the i-th unit vector of Rd. This means that each portfolio is the result
of an order λ = (λij)1≤i,j≤d ∈ L0(Rd×d+ ,Ft), where λij denotes the units of assets j
ordered in exchange for asset i, and some non-negative amount r ∈ L0(Rd+,Ft), which
corresponds to the decision of the investor to “throw away” some non-negative physical
quantities of each asset. Next, we define for each ω ∈ Ω the polyhedral cone

K (Πt (ω)) := cone

({
πijt (ω)ei − ej

}
1≤i,j≤d

,
{
ei
}

1≤i≤d

)
,

which we abbreviate as Kt(ω) := K(Πt(ω)). In Lemma 2.3.1 below, we briefly ver-
ify the intuitively obvious fact that the set given in (2.2.1) coincides with the set
L0(−Kt,Ft) of Ft-measurable selectors of the set-valued mapping ω 7→ −Kt(ω). We
use this equality throughout the chapter and refer to L0(−Kt,Ft) as the set of
portfolios attainable from zero endowment at time t.

Definition 2.2.1. An Rd-valued adapted process ϑ = (ϑt)
T
t=0 is called self-financing

portfolio process for the bid-ask process (Πt)
T
t=0 if

ϑt − ϑt−1 ∈ L0(−Kt,Ft) for all t = 0, . . . , T, (2.2.2)

where ϑ−1 := 0. Consequently, for each pair (s, t) with s, t ∈ {0, . . . , T} and s ≤ t,
the convex cone of hedgeable claims attainable from zero endowment between s and t
is denoted by Ats and is defined to be

Ats :=

t∑
k=s

L0(−Kk,Fk).

For an alternative bid-ask process (Π̃t)
T
t=0, the corresponding set is denoted by Ãts,

where −K̃t(ω) := −K(Π̃t(ω)) for all ω ∈ Ω and t = 0, . . . , T .
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The primary object of interest in this chapter is the cone AT0 of hedgeable claims
attainable from zero endowment between 0 and T . However, we still need the following
auxiliary notions. The convex cone L0(Kt,Ft) is called the set of solvent portfolios
at time t and the (polyhedral) cone Kt(ω) is called the solvency cone corresponding
to the bid-ask matrix Πt(ω). Indeed, for each portfolio v ∈ L0(Kt,Ft) the portfolio
−v ∈ L0(−Kt,Ft) is attainable at price zero, thus the portfolio v can be liquidated
to zero and, consequently, is solvent. Similarly, let K0

t (ω) := Kt(ω)∩−Kt(ω) for each
ω ∈ Ω, then L0(K0

t ,Ft) denotes the space of portfolios, which are attainable at zero
endowment and are also solvent, i.e., can be liquidated to the zero portfolio.

Before we introduce our new no-arbitrage condition, we recall the concepts of
no-arbitrage from the literature; compare to [52] and [85].

Definition 2.2.2.

(i) The bid-ask process (Πt)
T
t=0 satisfies the no-arbitrage property (NA) if

AT0 ∩ L0(Rd+) = {0}. (2.2.3)

(ii) The bid-ask process (Πt)
T
t=0 satisfies the strict no-arbitrage property (NAs) if

At0 ∩ L0(Kt,Ft) ⊆ L0(K0
t ,Ft) for all t = 0, . . . , T. (2.2.4)

(iii) The bid-ask process (Πt)
T
t=0 satisfies the robust no-arbitrage condition (NAr) if

there is a bid-ask process (Π̃t)
T
t=0 with smaller bid-ask spreads in the sense that

the spread [1/π̃jit (ω), π̃ijt (ω)] is contained in the relative interior of [1/πjit (ω), πt
ij(ω)]

for all 1 ≤ i, j ≤ d, t ∈ {0, . . . , T} and almost all ω ∈ Ω, such that (Π̃t)
T
t=0 satis-

fies the no-arbitrage condition (NA).

We just note that in the case of vanishing bid-ask spreads, the choice of Π̃ =
Π has smaller bid-ask spreads than Π, i.e., frictionless markets are not excluded in
Definition 2.2.2 (iii).

It is well known that although each of the cones L0(−Kt,Ft) is closed with regard
to the convergence in probability, the cone AT0 may fail to be closed. As already men-
tioned, neither (NA) nor (NAs) are strong enough to guarantee that AT0 is closed (see
Examples 3.1 and 3.3 in [85]). This is in contrast to the frictionless case, where (NA) is
sufficient (see, e.g., Theorem 6.9.2 in [24]). In the present context Schachermayer [85]
showed that the robust no-arbitrage condition (NAr) is strong enough to assure that
AT0 is closed. We now introduce a slight weakening of (NAr) called prospective strict
no-arbitrage (NAps), which is still sufficient to guarantee that AT0 is closed.

Definition 2.2.3. The bid-ask process (Πt)
T
t=0 satisfies the prospective strict no-

arbitrage property (NAps) if

At0 ∩ (−ATt ) ⊆ ATt for all t = 0, . . . , T.
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Remark 2.2.4. The (NAps) property has the following interpretation: any claim v ∈
At0 attained by trading up to time t which can be reduced to the zero portfolio in t or
in the subsequent periods, i.e., −v ∈ ATt , has to be attainable by trading between t and
T only, i.e., v ∈ ATt . It is a variant of the (NAs) condition, that postulates that any
claim v ∈ At0 which can be liquidated at time t, i.e., −v ∈ Att, has to be attainable at
time t as well, i.e., v ∈ Att. The only difference is that we do not distinguish between
a trade at time t and a trade from which one knows for sure at time t that it can be
realized in the future.

Put differently, for every t, we review the trading up to time t. Either one does
not gain advantage from the trading since the same terminal position can be achieved
for sure by starting to trade at t. Or, one takes some risk by the trading up to time t
since the position cannot be liquidated for sure in the future.

Definition 2.2.5. The bid-ask process (Πt)
T
t=0 satisfies efficient friction (EF) if

K0
t (ω) := Kt(ω) ∩

(
−Kt (ω)

)
= {0} for all t = 0, . . . , T and ω ∈ Ω.

The bid-ask process (Πt)
T
t=0 satisfies efficient friction if and only if πijt (ω)πjit (ω) > 1

for all 1 ≤ i 6= j ≤ d, t = 0, . . . , T and ω ∈ Ω (see Proposition 2.2.20). Under efficient
friction, the conditions (NAps) and (NAs) coincide (see Proposition 2.2.21). We can
already formulate the first main result of the chapter:

Theorem 2.2.6. If the bid-ask process (Πt)
T
t=0 has the prospective strict no-arbitrage

property (NAps), then the convex cone AT0 is closed with regard to the convergence in
probability.

The theorem above has obvious consequences for the existence of dual variables.
For a given bid-ask matrix Π, the (positive) dual cone K? of the solvency cone K =
K(Π) is defined by K? := {w ∈ Rd : 〈v, w〉 ≥ 0 for all v ∈ K}. For the bid-ask
process (Πt)

T
t=0, this induces the set-valued process (K?

t )Tt=0 of dual cones. We can
now define the notion of consistent price systems, which is dual to the notion of
self-financing portfolio process and plays a similar role as the notion of an equivalent
martingale measure in the frictionless theory. Once again, we refer to [85] for a detailed
discussion of the economical interpretation.

Definition 2.2.7. An adapted Rd+-valued process Z = (Zt)
T
t=0 is called a consistent

price system (CPS) for the bid-ask process (Πt)
T
t=0 if Z is a martingale under P and

Zt ∈ L0(K?
t \{0},Ft), i.e., Zt(ω) ∈ K?

t (ω)\{0} for a.e. ω ∈ Ω and each t ∈ {0, . . . , T}.

We have the following consequence of Theorem 2.2.6.

Corollary 2.2.8. If the bid-ask process (Πt)
T
t=0 satisfies the prospective strict no-

arbitrage condition (NAps), then it admits a consistent price system (CPS). More
generally, for any given strictly positive FT -measurable function ϕ : Ω→ (0, 1], there
is a CPS Z = (Zt)

T
t=0 with ‖ZT ‖ ≤ Mϕ a.s. for some M ∈ R+ \ {0}, where ‖ · ‖

denotes the Euclidean norm on Rd.
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Remark 2.2.9. An abstract version of (NAps) reads: If a strategy up to time t can
be extented to a strategy without losses at T , then any other extension beyond t can
be dominated at T by a strategy that does not trade before t.

This scheme can be formalized in a quite canonical way in diverse market models
including, e.g., capital gains taxes, uncertainty about the execution of limit orders,
or dividend paying assets, where the basic problem from Example 3.1 in Schacher-
mayer [85], can also occur (see, e.g., Example 4.5 in [65]). The arguments of our
proofs may be adapted to these models to show that the set of attainable terminal
portfolios is closed.

For example, in the context of optimal investment problems with utility functions
on the positive real line, this means, roughly speaking, that the set C of non-negative
random variables dominated by the liquidation value of an attainable portfolio (with
a given initial endowment) is also closed in probability. Hence, defining the set of
dual variables D as the polar set of C, the abstract versions of the duality results in
Kramkov and Schachermayer [63, Theorem 3.1 and 3.2] may also be applied to these
models.

The converse of Corollary 2.2.8 fails to be true. More generally, by [55, Section
3.2.4, Example 1], there cannot exist a no-arbitrage criterion that both guarantees
closedness ofAT0 and that is equivalent to the existence of a CPS, cf. also the discussion
in Remark 2.2.14. We can, however, establish an equivalence if we pass from (NAps)
to a weaker notion of prospective strict no-arbitrage.

Definition 2.2.10. The bid-ask process (Πt)
T
t=0 satisfies the weak prospective strict

no-arbitrage property (NAwps) if there is a bid-ask process (Π̃t)
T
t=0 with Π̃t ≤ Πt a.s.

for all t = 0, . . . , T , such that (Π̃t)
T
t=0 satisfies the prospective strict no-arbitrage

condition (NAps).

The (NAwps) condition is obviously a weakening of the (NAps) condition since the
bid-ask process (Π̃t)

T
t=0 in Definition 2.2.10 need not be strictly more favorable than

(Πt)
T
t=0. The difference between the two conditions is illustrated in Example 2.4.2

below; see also Remark 2.2.14. Our second main result is the following fundamental
theorem of asset pricing.

Theorem 2.2.11. A bid-ask process (Πt)
T
t=0 satisfies the weak prospective strict no-

arbitrage condition (NAwps) if and only if it admits a consistent price system (CPS).

Remark 2.2.12. Theorem 2.2.11 extends part 2 of Theorem 1 in Kabanov and
Stricker [54] to the case of infinite probability spaces. Combining these two theorems,
it can be seen that (NAwps) possesses the nice property that it is equivalent to (NA) if
|Ω| <∞.

Remark 2.2.13. In addition, (NA) and (NAwps) coincide in the case of only two
assets on arbitrary probability spaces, which follows from the equivalence of (NA) and
the existence of a CPS, derived by Grigoriev [34].
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Remark 2.2.14. In the following discussion, we identify an “absence of arbitrage”
criterion C with the set of bid-ask processes which satisfy the criterion and call it
monotone if for all bid-ask processes Π̃ ≤ Π, Π̃ ∈ C implies that Π ∈ C. Monotonicity
is obviously satisfied by the simple (NA) condition. The more sophisticated criteria
(NAs), (NAr), and (NAps) are in general only monotone if bid-ask matrices without
efficient friction are excluded from the consideration, i.e., πijπji ≥ π̃ij π̃ji > 1 for all
i 6= j (cf. Proposition 2.2.20). On the one hand, the equivalence to the existence of a
CPS can only hold for a monotone criterion. It follows directly from Definition 2.2.7
that a CPS for Π̃ is also a CPS for Π with Π ≥ Π̃. On the other hand, the closedness of
the set of attainable portfolios does not transfer to a market with a less favorable bid-
ask process (see, e.g., Examples [55, Section 3.2.4, Example 1] and [44, Example 2.1]).
Thus, to guarantee closedness, e.g., in the context of optimal investment problems, the
limitation to monotone criteria would be unnecessarily restrictive.

The (NAwps) criterion can be characterized as the “strongest monotone criterion
which is weaker than (NAps)”, i.e., it follows directly from Definition 2.2.10 that

(NAwps) =
⋂

(NAps)⊆C, C is monotone

C. (2.2.5)

In the special case of a frictionless market, the criteria (NAps) and (NAwps) coincide
(see Proposition 2.2.18).

We stress that the picture cannot be as clear-cut as in the frictionless case. In
discrete-time frictionless markets, (NA) already implies closedness (see Lemma 2.1 in
Schachermayer [83]). In continuous-time frictionless markets, Delbaen and Schacher-
mayer [22] derived closedness in the appropriate topology under the economic mean-
ingful assumption of “no free lunch with vanishing risk” (NFLVR), that is also neces-
sary for the existence of an equivalent martingale measure. Under transaction costs,
the FTAP of Delbaen and Schachermayer [22] cannot hold. Namely, Example 3.1 in
Schachermayer [85] satisfies (NFLVR) defined for multivariate portfolio processes,

i.e., we have AT0
∞
∩ L∞(Ω,FT ,P;Rd+) = {0}, where AT0

∞
denotes the closure of

AT0 ∩ L∞(Ω,FT ,P;Rd) w.r.t. the topology of uniform convergence, but a CPS does
nevertheless not exist.

Definition 2.2.15. An element v ∈ L0(Rd+) with v 6= 0 is called an approximate
arbitrage (in probability) if there is a sequence (vn)n∈N ⊆ AT0 such that vn → v in
probability.

In general, (NA) does not guarantee the absence of an approximate arbitrage,

i.e., AT0 ∩ L0(Rd+) = {0}. On the other hand, even though the (NAwps) property is
not sufficient to assure that AT0 is closed in probability, we have the following easy
consequence of Theorem 2.2.11.

Corollary 2.2.16. If a bid-ask process (Πt)
T
t=0 satisfies the weak prospective strict

no-arbitrage condition (NAwps), then we have AT0 ∩ L0(Rd+) = {0}.
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The short proof is also deferred to Section 2.3.

Remark 2.2.17. (NAwps) postulates the existence of a bid-ask process (Π̃t)
T
t=0 such

that Π̃t ≤ Πt a.s. for all t = 0, . . . , T and

Ãt0 ∩
(
−ÃTt

)
⊆ ÃTt for all t = 0, . . . , T. (2.2.6)

One may ask if one can replace this condition with the following slightly weaker con-
dition: there exists a bid-ask process (Π̃t)

T
t=0 satisfying (NA), such that Π̃t ≤ Πt a.s.

for all t = 0, . . . , T and

At0 ∩
(
−ÃTt

)
⊆ ÃTt for all t = 0, . . . , T (2.2.7)

Indeed, by Proposition 2.2.18, (2.2.6) implies that Π̃ satisfies (NA), which means that
the second condition is a weakening of the first one. In condition (2.2.7), the position
at time t is achieved by trading in the original market, only its “evaluation” is made in
the more favorable market model Π̃. But, maybe surprisingly, it turns out that (2.2.7)
does not exclude the existence of an approximate arbitrage and thus a CPS need not
exist (see Example 2.4.3 below).

Proposition 2.2.18. We have the following implications

(NAr)⇒ (NAps)⇒ (NAwps)⇒ (NA). (2.2.8)

Remark 2.2.19. All implications in (2.2.8) are strict (see Examples 2.4.1 and 2.4.2
below; for (NA) 6⇒ (NAwps), consider an arbitrage-free model with an approximate
arbitrage, Example 3.1 in [85], and apply Corollary 2.2.16).

Proof of Proposition 2.2.18. Ad (NAr) ⇒ (NAps). Assume that the bid-ask process
(Πt)

T
t=0 satisfies (NAr) and let v ∈ At0 such that −v ∈ ATt . We have to show v ∈ ATt .

According to our assumption, we have v =
∑t

s=0 ξ̃s with ξ̃s ∈ L0(−Ks,Fs) for s =

0, . . . , t and −v =
∑T

s=t ξ̂s with ξ̂s ∈ L0(−Ks,Fs) for s = t, . . . , T . Hence, we define
ξs ∈ L0(−Ks,Fs) by

ξs :=


ξ̃s, s < t,

ξ̃s + ξ̂s, s = t,

ξ̂s, s > t,

and notice that
∑T

s=0 ξs = v − v = 0. From Lemma 3.2.12 in [55], it follows that

ξs ∈ L0(K0
s ,Fs) for all s = 0, . . . , T . In particular, we have ξ̂s ∈ L0(Ks,Fs) for s > t.

In addition, we have ξ̂t = −ξ̃t + ξt ∈ L0(Kt,Ft) + L0(Kt,Ft) = L0(Kt,Ft). This im-
plies v =

∑T
s=t(−ξ̂s) ∈ ATt , which concludes the proof of the first implication.

Ad (NAps) ⇒ (NAwps). Obvious.
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Ad (NAwps) ⇒ (NA). Assume that the bid-ask process (Πt)
T
t=0 satisfies (NAwps),

i.e., there exists a bid-ask process (Π̃t)
T
t=0 with Π̃t ≤ Πt a.s. for all t = 0, . . . , T and

(Π̃t)
T
t=0 satisfies (NAps). Let v ∈ AT0 ∩L0(Rd+) ⊆ ÃT0 ∩L0(Rd+). This obviously implies

that −v ∈ L0(−K̃T ,FT ) and hence, by (NAps) of Π̃, v ∈ L0(−K̃T ,FT ). Together with
(−K̃T (ω)) ∩ Rd+ = {0} for each ω ∈ Ω, which holds by the properties of a bid-ask
matrix, this implies v = 0 a.s. Thus, the bid-ask process (Πt)

T
t=0 satisfies (NA).

Proposition 2.2.20. The bid-ask process (Πt)
T
t=0 satisfies efficient friction (EF) if

and only if

πijt (ω)πjit (ω) > 1 for all 1 ≤ i 6= j ≤ d, t = 0, . . . , T and ω ∈ Ω.

Proof. If πijt (ω)πjit (ω) = 1 holds for some 1 ≤ i 6= j ≤ d, t ∈ {0, . . . , T} and ω ∈ Ω,
we find

ej − πijt (ω)ei +
1

πjit (ω)

(
ei − πjit (ω) ej

)
=

1

πjit (ω)

(
1− πijt (ω)πjit (ω)

)
ei = 0.

This implies ej − πijt (ω)ei = − 1

πjit (ω)
(ei − πjit (ω)ej) ∈ (−Kt(ω))∩Kt(ω) and thus effi-

cient friction is not satisfied. This shows that efficient friction implies πijt (ω)πjit (ω) > 1
for all 1 ≤ i 6= j ≤ d, t = 0, . . . , T and ω ∈ Ω.

To show the reverse implication, we assume πijt (ω)πjit (ω) > 1 for all 1 ≤ i 6= j ≤ d,
t = 0, . . . , T , and ω ∈ Ω. Suppose that efficient friction does not hold, i.e., for some
t ∈ {0, . . . , T} and ω ∈ Ω there is v ∈ (−Kt(ω)) ∩ Kt(ω) with v 6= 0. By definition
of −Kt(ω), we have v =

∑
1≤i 6=j≤d λ

ij(ej − πijt (ω)ei) −
∑d

i=1 β
iei with λij , βi ≥ 0.

Let π1
t (ω) := (π11

t (ω), . . . , π1d
t (ω))T and note that π1

t (ω) ∈ K?
t (ω) by property (iii) of

the bid-ask matrix. We have 〈v, π1
t (ω)〉 = 0 as v ∈ (−Kt(ω)) ∩Kt(ω). Property (iii)

of a bid-ask matrix implies λij(π1j
t (ω) − π1i

t (ω)πijt (ω)) ≤ 0 for all 1 ≤ i 6= j ≤ d,
which yields 0 = 〈v, π1

t (ω)〉 =
∑

1≤i 6=j≤d λ
ij(π1j

t (ω)−π1i
t (ω)πijt (ω))−

∑d
i=1 β

iπ1i
t (ω) ≤

−
∑d

i=1 β
iπ1i
t (ω) and thus βi = 0 for all i = 1, . . . , d. Therefore, v 6= 0 implies λkl > 0

for at least one pair 1 ≤ k 6= l ≤ d. Applying the same arguments with πlt(ω) :=
(πl1t (ω), . . . , πldt (ω))T ∈ K?

t (ω), we get

0 = 〈v, πlt(ω)〉 =
∑

1≤i 6=j≤d
λij(πljt (ω)− πlit (ω)πijt (ω))

≤ λkl(πllt (ω)− πlkt (ω)πklt (ω)) = λkl(1− πlkt (ω)πklt (ω)) < 0,

which is a contradiction.

Proposition 2.2.21. Assume that the bid-ask process (Πt)
T
t=0 satisfies efficient fric-

tion (EF). Then, we have the equivalence

(NAps)⇔ (NAs). (2.2.9)
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Remark 2.2.22. In general, (NAs) is neither necessary nor sufficient for (NAps).
Indeed, (NAps) 6⇒ (NAs) is straightforward and (NAs) 6⇒ (NAps) follows from Exam-
ple 3.3 in [85].

But, it is also well-known that under efficient friction (NAr) and (NAs) are equiv-
alent (cf. Theorem 1 in [51] and Theorem 1.7 in [85]). Thus, in this case (NAr),
(NAs), and (NAps) coincide.

Proof of Proposition 2.2.21. In view of Proposition 2.2.18 and the preceding remark,
it is sufficient to show (NAps)⇒(NAs). Hence, we assume that (NAps) holds. Let us
show by a backward induction on t = T, T − 1, . . . , 0 that At0 ∩ L0(Kt,Ft) = {0}.
Let t = T and v ∈ AT0 ∩ L0(KT ,FT ), then (NAps) implies v ∈ L0(−KT ,FT ), i.e.,
v ∈ L0(KT ∩ (−KT ),FT ), which, under (EF), is tantamount to v = 0 a.s.

For the induction step t+ 1 t, we let t < T and assume As0 ∩ L0(Ks,Fs) = {0}
for s = t + 1, . . . , T . Given v ∈ At0 ∩ L0(Kt,Ft), we may write v =

∑T
s=t ξs for

ξs ∈ L0(−Ks,Fs) by (NAps). Since −v ∈ L0(−Kt,Ft) and −v +
∑T−1

s=t ξs = −ξT ,

we obtain −v +
∑T−1

s=t ξs ∈ AT0 ∩ L0(KT ,FT ). Thus, by the induction hypothesis,

−v +
∑T−2

s=t ξs = −ξT−1. Hence, −v +
∑T−2

s=t ξs ∈ A
T−1
0 ∩ L0(KT−1,FT−1) and, again

by the induction hypothesis, −v +
∑T−3

s=t ξs = −ξT−2. Continuing inductively, we get
−v + ξt = 0, but this means v ∈ L0(Kt ∩ (−Kt),Ft) and thus v = 0 a.s. by (EF).

Remark 2.2.23. With Theorem 2.2.6, the superhedging result in Schachermayer [85]
(see Theorem 4.1 therein) and its proof hold one-to-one under the slightly weaker
assumption that (Πt)

T
t=0 satisfies (NAps) instead of (NAr) – only without the statement

with “strictly consistent price systems” in the brackets.

2.3 Proofs of the main results

This section is devoted to the proof of Theorem 2.2.6. The other results of Section 2.2
are standard consequences of AT0 being closed and thus we mainly refer to the known
results in the literature and highlight the minor adjustments. The latter is postponed
to the end of the section.

The main hurdle in the proof of Theorem 2.2.6 is that we do not have at hand that
the null-strategies, i.e., the elements of (ξ0, . . . , ξT ) ∈ L0(−K0,F0)×· · ·×L0(−KT ,FT )
with

∑T
t=0 ξt = 0 a.s., form a linear space. Namely, it is shown by Rokhlin [82] that

the implication

T∑
t=0

ξt = 0 a.s. with ξt ∈ L0(−Kt,Ft)⇒ ξt ∈ L0(K0
t ,Ft) for all t = 0, . . . , T (2.3.1)

is equivalent to (NAr), which is strictly stronger than (NAps). Thus, in the following
we propose a new proof method which overcomes this hurdle.

Before starting with the main proof, we show that L0(−Kt,Ft) coincides with the
set given in (2.2.1). This allows us to argue directly with orders λ ∈ L0(Rd×d+ ,Ft) and
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vectors r ∈ L0(Rd+,Ft) instead of the resulting elements of L0(−Kt,Ft). In order to
ease notation, we define for all t = 0, . . . , T the mapping

Lt : L0(Rd×d+ ,Ft)→ L0(Rd,Ft)

by

Lt(λt) =
∑

1≤i,j≤d
λijt (ej − πijt ei) for all λt = (λijt )1≤i,j≤d ∈ L0(Rd×d+ ,Ft).

Lemma 2.3.1. Let Π = (Πt)
T
t=0 denote a bid-ask process. Then, we have

L0(−Kt,Ft) =
{
Lt(λt)− rt : λt ∈ L0(Rd×d+ ,Ft), rt ∈ L0(Rd+,Ft)

}
(2.3.2)

for all t = 0, . . . , T and, consequently, we have

Ats =

{
t∑

k=s

Lk(λk)− r : λk ∈ L0(Rd×d+ ,Fk), k = s, . . . , t, r ∈ L0(Rd+,Ft)

}
(2.3.3)

for all 0 ≤ s ≤ t ≤ T .

Proof. For each λt ∈ L0(Rd×d+ ,Ft) and rt ∈ L0(Rd+,Ft) the random vector Lt(λt)−rt is
an element of L0(−Kt,Ft). Hence, we only have to show that for each v ∈ L0(−Kt,Ft),
we can find λt ∈ L0(Rd×d+ ,Ft) and rt ∈ L0(Rd+,Ft) such that v = Lt(λt)− rt a.s.

For this, let v ∈ L0(−Kt,Ft), i.e., v(ω) ∈ −Kt(ω) for each ω ∈ Ω \ N , where
N ∈ Ft is a set of measure zero. Then ṽ := 1Ω\Nv ∈ L0(−Kt,Ft) satisfies ṽ = v
a.s. and ṽ(ω) ∈ −Kt(ω) for all ω ∈ Ω. Next, we define the set-valued mapping ω 7→
P (ω) ⊆ Rd×d × Rd by

P (ω) :=

(λ, r) ∈ Rd×d × Rd : λ, r ≥ 0,
∑

1≤i,j≤d
λij
(
ej − πijt (ω)ei

)
− r = ṽ(ω)

 .

We have P (ω) 6= ∅ for each ω ∈ Ω by virtue of ṽ(ω) ∈ −Kt(ω) for each ω ∈ Ω.
In addition, the mapping ω 7→

∑
1≤i,j≤d λ

ij(ej − πijt (ω)ei) − r is Ft-measurable for

each (λ, r) ∈ Rd×d+ ×Rd+, and the mapping (λ, r) 7→
∑

1≤i,j≤d λ
ij(ej − πijt (ω)ei)− r is

continuous for each ω ∈ Ω. Hence, we may apply Theorem 14.36 in [77] to find λt ∈
L0(Rd×d+ ,Ft) and rt ∈ L0(Rd+,Ft) such that (λt(ω), rt(ω)) ∈ P (ω) for all ω ∈ Ω. This

yields ṽ(ω) =
∑

1≤i,j≤d λ
ij
t (ω)(ej − πijt (ω)ei)− r(ω) for each ω ∈ Ω and, consequently,

we have v = Lt(λt)− rt a.s. At last, (2.3.3) follows directly from (2.3.2).

Definition 2.3.2. For any t ∈ {0, . . . , T−1}, we define the (convex) cone of reversible
orders at time t by

Rt := {λ ∈ L0(Rd×d+ ,Ft) : −Lt(λ) ∈ ATt+1}.
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The following lemma establishes a suitable decomposition of the elements of
L0(Rd×d+ ,Ft) into reversible and “purely non-reversible” orders. For the decomposi-
tion, one needs that Rt is closed in probability. To achieve this, the lemma assumes
that ATt+1 is closed in probability, a property that is not yet shown at this place.

Lemma 2.3.3. Let t ∈ {0, . . . , T − 1} and assume that ATt+1 is closed in probability.

Then for any λ ∈ L0(Rd×d+ ,Ft) there is a unique pair (up to null sets) λ1 ∈ Rt and

λ2 ∈ L0(Rd×d+ ,Ft) with λ = λ1 + λ2 such that for any decomposition λ = λ̃1 + λ̃2 with

λ̃1 ∈ Rt, λ̃2 ∈ L0(Rd×d+ ,Ft), we have

‖λ2‖ ≤ ‖λ̃2‖ P-a.s., (2.3.4)

where the inequality is strict on {λ2 6= λ̃2} P-a.s. and ‖ ·‖ denotes the Euclidean norm
on Rd×d. In addition, the mappings

pt : L0(Rd×d+ ,Ft)→ Rt and qt : L0(Rd×d+ ,Ft)→ L0(Rd×d+ ,Ft)

defined by pt(λ) = λ1 and qt(λ) = λ2 have the following properties:

(i) For all λ ∈ L0(Rd×d+ ,Ft) and all non-negative Ft-measurable scalars µ we have
pt(µλ) = µpt(λ),

(ii) Image(qt) = {λ ∈ L0(Rd×d+ ,Ft) : qt(λ) = λ},

(iii) Image(pt) ∩ Image(qt) = {0}.

We refer to pt(λ) and qt(λ) as the reversible and the purely non-reversible part of
the order λ ∈ L0(Rd×d+ ,Ft), respectively. The following continuity of the decomposition
is the last ingredient for the proof of Theorem 2.2.6.

Lemma 2.3.4. Let t ∈ {0, . . . , T − 1} and assume that ATt+1 is closed in probabil-

ity. Let (λn)n∈N ⊆ L0(Rd×d+ ,Ft) converge P-a.s. to some λ ∈ L0(Rd×d+ ,Ft). Then,
pt(λn) → pt(λ) and qt(λn) → qt(λ) P-a.s. for n → ∞. Especially, Image(qt) is closed
in probability.

We postpone the proofs of the two lemmas to make some comments on their
use. By the prospective strict no-arbitrage (NAps) property, reversible orders can be
postponed to later periods s ∈ {t + 1, . . . , T}. Thus, any order at time t can be
replaced by its purely non-reversible part at time t. On the other hand, if a sequence
in ATt converges, we can show that the sequence of purely non-reversible orders at
time t has to stay bounded by leading a possible explosion to a contradiction. The
mapping pt plays the role of the projection of an arbitrary self-financing strategy onto
the set of null-strategies in [85]. There, the null-strategies form a linear subspace,
which implies that the orthogonal part is automatically self-financing. This property
is not available here, and thus we cannot argue with a projection, but with a more
complicated decomposition.
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Alternatively, the decomposition in Lemma 2.3.3 could also be defined on the level
of portfolio changes ϑt−ϑt−1 ∈ L0(Rd,Ft). But, in the proof of Lemma 2.3.4, we have
to argue directly with the orders λ.

For the convenience of the reader, we recall a lemma on the existence of a mea-
surable subsequence that is applied several times in the following proofs (see, e.g. [85]
and [53]).

Lemma 2.3.5 (Lemma A.2 of [85]). Let t ∈ {0, . . . , T}. For a sequence (fn)n∈N ⊆
L0(Rd×d+ ,Ft), there is a random subsequence (τk)k∈N, i.e., a strictly increasing se-
quence of N-valued Ft-measurable random variables such that the sequence of random
variables (gk)k∈N given by gk(ω) := fτk(ω)(ω), k ∈ N, converges a.s. in the one-point-

compactification Rd×d+ ∪{∞} to a random variable in f ∈ L0(Rd×d+ ∪{∞},Ft). In fact,
we may find the subsequence such that

‖f‖ = lim sup
n→∞

‖fn‖, P-a.s.

where ‖∞‖ =∞.

Proof of Lemma 2.3.3. First, we show the existence and uniqueness of the decompo-
sition satisfying (2.3.4). Fix λ ∈ L0(Rd×d+ ,Ft) and define the non-empty set

Xλ :=
{
λ̃ ∈ Rt : λ− λ̃ ∈ L0

(
Rd×d+ ,Ft

)}
,

which consists of the first components of the possible decompositions of λ. Under
the assumptions made, the convex cone Rt is closed in probability and closed under
multiplication with non-negative Ft-measurable scalars. This implies that Xλ is closed
in probability and closed under measurable convex combinations. We have to show
that

x := ess inf
λ̃∈Xλ

‖λ− λ̃‖

is attained and the minimizer is unique. Thus, notice that the set of random variables
{‖λ − λ̃‖ : λ̃ ∈ Xλ} is downward directed. Indeed, for each λ1, λ2 ∈ Xλ, one has
‖λ− λ3‖ = ‖λ− λ1‖ ∧ ‖λ− λ2‖, where

Xλ 3 λ3 := 1{‖λ−λ1‖≤‖λ−λ2‖}λ1 + 1{‖λ−λ1‖>‖λ−λ2‖}λ2.

Hence, there is a sequence of random variables (λn)n ⊆ Xλ such that ‖λ − λn‖ → x
P-a.s. for n → ∞. From the parallelogram law (see, e.g., Lemma 6.51 in [1]) of the
Euclidean norm on Rd×d and the convexity of Xλ, we obtain

‖λn − λm‖2 = 2‖λ− λn‖2 + 2‖λ− λm‖2 − 4‖λ− λn + λm
2

‖2

≤ 2‖λ− λn‖2 + 2‖λ− λm‖2 − 4x P-a.s. (2.3.5)
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(2.3.5) implies that (λn)n∈N converges P-a.s. to some element of L0(Rd×d+ ,Ft). By the
closedness of Xλ, one derives the existence. Uniqueness in the postulated sense also
follows from the estimate (2.3.5).

This means that the mappings pt and qt are well-defined and it remains to show
that they satisfy the properties.

Ad (i): Let µ ≥ 0 be a Ft-measurable random variable. As a consequence of Rt
and L0(Rd×d+ ,Ft) being closed under multiplication with non-negative Ft-measurable

random variables, we have Xµλ = {µλ̃ : λ̃ ∈ Xλ}. Then, the assertion follows from
the construction of pt from above.

Ad (ii): Let λ ∈ L0(Rd×d+ ,Ft). We have pt(λ) + pt(qt(λ)) ∈ Rt + Rt ⊆ Rt and

λ − (pt(λ) + pt(qt(λ))) = qt(λ) − pt(qt(λ)) ∈ L0(Rd×d+ ,Ft) by definition of pt, thus in
particular

pt(λ) + pt
(
qt(λ)

)
∈ Xλ. (2.3.6)

On the other hand, one has

‖λ−
(
pt(λ) + pt

(
qt(λ)

))
‖ = ‖qt (λ)− pt

(
qt(λ)

)
‖

≤ ‖qt(λ)‖ = ‖λ− pt (λ)‖ P-a.s.,
(2.3.7)

where the inequality holds since pt(qt(λ)) is the optimal reversible part of qt(λ). By
(2.3.7), (2.3.6), and the uniqueness of the optimal reversible part in the decomposition
of λ, it follows that pt(λ) + pt(qt(λ)) = pt(λ) P-a.s. and thus

Image(pt ◦ qt) = {0}. (2.3.8)

The assertion immediately follows from (2.3.8).

Ad (iii): Follows immediately from (ii).

Proof of Lemma 2.3.4. We have to show that

λn → λ P-a.s. =⇒ pt(λn)→ pt(λ) P-a.s. (2.3.9)

The property that Image(qt) is closed in probability immediately follows from
Lemma 2.3.3 (ii) and (2.3.9) by passing to an almost surely converging subsequence.
To show (2.3.9), we define for each n ∈ N the Ft-measurable real-valued random
variable

µn(ω) := 1 ∧ inf
1≤i,j≤d

pt(λ)ij(ω)>0

λijn (ω)

pt(λ)ij(ω)
. (2.3.10)
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One has that µnpt(λ) ∈ Rt and λn − µnpt(λ) ∈ L0(Rd×d+ ,Ft), i.e., µnpt(λ) ∈ Xλn .
This means that we compress the transfer matrix pt(λ) to use it for a (in general not
optimal) decomposition of λn into a reversible and a non-reversible part. Note that
in the trivial case that pt(λ)ij(ω) = 0 for all (i, j), the compression is irrelevant, here
one has µn(ω) = 1. As pt(λn) is the optimal reversible part of λn, it follows that

‖λn − pt(λn)‖ ≤ ‖λn − µnpt(λ)‖ P-a.s. ∀n ∈ N. (2.3.11)

In addition, by λij ≥ pt(λ)ij ≥ 0 for all i, j = 1, . . . , d and λn → λ, we have that
µn → 1 P-a.s. Combining this with the triangle inequality of the Euclidean norm, we
arrive at

lim sup
n→∞

‖λ− pt(λn)‖ = lim sup
n→∞

‖λn − pt(λn)‖

≤ lim sup
n→∞

‖λn − µnpt(λ)‖ = ‖λ− pt(λ)‖ P-a.s.,

where the inequality follows from (2.3.11). Since pt(λ) is the optimal reversible part
of λ, this just means that

‖λ− pt(λn)‖ → ‖λ− pt(λ)‖, n→∞, P-a.s. (2.3.12)

To complete the proof, we define the Ft-measurable random variable

ε(ω) := sup {1/k : k ∈ N, ‖pt (λn)− pt (λ) ‖(ω) ≥ 1/k for infinitely many n}

that is strictly positive on the set A := {pt(λn) 6→ pt(λ)} ∈ Ft. Then, we construct
the random subsequence (τk)k∈N recursively by τ0 := 0 and τk := inf{n ∈ N : n >
τk−1, ‖pt(λn)−pt(λ)‖ ≥ ε} on A and τk := k on Ω\A. By construction, we have that

P
[
‖pt(λτk)− pt(λ)‖ ≥ ε, ∀k ∈ N

∣∣ A] = 1. (2.3.13)

By λn → λ and 0 ≤ pt(λn)ij ≤ λijn , one has supn∈N ‖pt(λn)‖ ≤ supn∈N ‖λn‖ <∞ P-a.s.
Thus, by Lemma 2.3.5, there exists a random subsequence (τ̃k)k∈N of (τk)k∈N and an
f ∈ L0(Rd×d+ ,Ft) s.t. pt(λτ̃k) → f P-a.s. Together with (2.3.12), this implies that
‖λ − f‖ = ‖λ − pt(λ)‖ P-a.s.. In addition, we have f ∈ Xλ. On the other hand, by
(2.3.13), f 6= pt(λ) on A P-a.s. Since pt(λ) is the unique optimal reversible part of
λ in the sense of Lemma 2.3.3, these two properties can only hold simultaneously if
P[A] = 0 and we are done.

Remark 2.3.6. We note that for the proof of Theorem 2.2.6, we only need the weaker
assertion that Image(qt) is closed in probability. To show this assertion, one can re-
strict oneself to sequences with λn = qt(λn), i.e., pt(λn) = 0, for all n ∈ N, and the
above proof would already be completed with (2.3.12).

We are now in the position to prove Theorem 2.2.6. As in Kabanov et al. [52] we
argue by induction on the periods. The key difference is that reversible orders are
postponed to later periods, instead of being executed and compensated in the same
period. The later is not possible since the null-strategies do not form a linear space.
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Proof of Theorem 2.2.6. Assume that the bid-ask-process (Πt)
T
t=0 satisfies (NAps). Let

us prove by a backward induction on t = T, T−1, . . . , 0 thatATt is closed in probability.
The induction basis t = T is trivial since ATT coincides with L0(−KT ,FT ) which is
closed in probability.

Induction step t + 1  t: We assume that ATt+1 is closed in probability for some
t ≤ T −1 and have to show that ATt is closed too. Therefore, let (ξn)n∈N be a sequence
in ATt which converges to some ξ ∈ L0(Rd) in probability. Obviously, we may assume
that ξn → ξ almost surely by passing to a subsequence. We have to show that ξ ∈ ATt .

Step 1. According to Lemma 2.3.1, we may write

ξn =
T∑
s=t

Ls(λ
n
s )− rn, n ∈ N, (2.3.14)

where (λns )n∈N ⊆ L0(Rd×d+ ,Fs) for each s = t, . . . , T and (rn)n∈N ⊆ L0(Rd+). Recall
that L0(Rd+) = L0(Rd+,FT ) by convention. Under the induction hypothesis that ATt+1

is closed in probability, we apply Lemma 2.3.3 in order to decompose λnt into pt(λ
n
t )+

qt(λ
n
t ) and thus

Lt(λ
n
t ) = Lt

(
pt(λ

n
t )
)

+ Lt
(
qt(λ

n
t )
)
,

where pt(λ
n
t ) is reversible and qt(λ

n
t ) is purely non-reversible. This means that

Lt
(
pt(λ

n
t )
)
∈ At0 ∩

(
−ATt+1

)
.

The prospective strict no-arbitrage (NAps) property implies that At0 ∩ (−ATt+1) ⊆
At+1

0 ∩ (−ATt+1) ⊆ ATt+1 and thus Lt(pt(λ
n
t )) ∈ ATt+1. This allows us to rewrite (2.3.14)

as

ξn = Lt
(
qt(λ

n
t )
)

+ Lt
(
pt(λ

n
t )
)

+

T∑
s=t+1

Ls(λ
n
s )− rn =: Lt

(
qt(λ

n
t )
)

+ xn

with xn ∈ ATt+1. Hence, from now on we can assume w.l.o.g. that (λnt )n∈N ⊆ Image(qt).
Step 2. Our next goal is to show that

P[A] = 0, where A :=

{
lim sup
n→∞

‖λnt ‖ =∞
}
. (2.3.15)

By Lemma 2.3.5, we may pass to a measurable subsequence (τk)k∈N such that for

a.e. ω ∈ A we have λ
τk(ω)
t (ω) 6= 0 for all k ∈ N and limk→∞ ‖λ

τk(ω)
t (ω)‖ = ∞. Then,

by the stability of Image(qt) under multiplication with non-negative Ft-measurable

scalars (see Lemma 2.3.3 i), we find that λ̃nt :=
λτ
n

t

‖λτnt ‖
1A belongs to Image(qt) and, in

addition, we define

λ̃ns :=
λτns
‖λτnt ‖

1A ∈ L0(Rd×d+ ,Fs) for s = t+ 1, . . . , T and r̃n :=
rn

‖λτnt ‖
1A ∈ L0(Rd+).
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We have
∑T

s=t Ls(λ̃
n
s ) − r̃n = 1Aξτn/‖λτnt ‖ → 0 a.s. Now, we may apply once again

Lemma 2.3.5 to find a measurable subsequence (σk)k∈N such that

λ̃t := lim
k→∞

λ̃σkt (2.3.16)

exists and ‖λ̃t‖ = lim
k→∞

‖λ̃σkt ‖. Consequently, Lt(λ̃
σk
t )→ Lt(λ̃t) and thus the sequence(

T∑
s=t+1

Ls(λ̃
σk
s )− r̃σk

)
k∈N

⊆ ATt+1

converges to −Lt(λ̃t). Since ATt+1 is closed and due to Lemma 2.3.1, the limit can be

written as
∑T

s=t+1 Ls(λ̃s)− r̃, i.e., we have

Lt(λ̃t) +

T∑
s=t+1

Ls(λ̃s)− r̃ = 0 P-a.s.

with λ̃s ∈ L0(Rd×d+ ,Fs) and r̃ ∈ L0(Rd+,Fs). Thus we have that λ̃t is reversible, i.e.,

λ̃t ∈ Rt = Image(pt). However, on the other hand, the sequence (λ̃σkt )k∈N belonged to

Image(qt), thus, by Lemma 2.3.4, λ̃t ∈ Image(qt). Therefore λ̃t ∈ Image(pt)∩Image(qt),
hence λ̃t = 0 a.s. according to Lemma 2.3.3 (iii). Since P[A] = P[λ̃t 6= 0], this is only
possible if P[A] = 0, i.e., (2.3.15) holds true.

Step 3. According to step 2, we can apply Lemma 2.3.5 to find a measurable
subsequence (τk)k∈N such that λτkt → λt ∈ L0(Rd×d+ ,Ft) P-a.s. for k → ∞ and,

consequently, Lt(λ
τk
t ) → Lt(λt) a.s. Hence,

∑T
s=t+1 Ls(λ

τk
s ) − rτk converges a.s. to

ξ − Lt(λt), which, by the induction hypothesis, belongs to ATt+1. This implies that
ξ ∈ ATt .

Finally, we finish up the remaining proofs. Notice that every result is a standard
consequence of the set AT0 being closed in probability under the (NAps) condition,
hence we only give the respective references and point out where some changes are
needed.

Proof of Corollary 2.2.8. It suffices to repeat the arguments on page 29 between lines
5-33 of the proof of Theorem 2.1 in [85] with AT0 (instead of ÃT ), which is closed by
Theorem 2.2.6.

Proof of Theorem 2.2.11. (NAwps)⇒ ∃ CPS: According to the (NAwps) condition
there is a bid-ask process (Π̃t)

T
t=0 with Π̃t ≤ Πt a.s. for all t = 0, . . . , T satisfying

(NAps). Corollary 2.2.8 implies that (Π̃t)
T
t=0 admits a CPS, which is obviously a CPS

for (Πt)
T
t=0 as well.

∃ CPS ⇒ (NAwps): It is again sufficient to repeat the arguments on page 30
between lines 1-12 of the proof of Theorem 2.1 in [85] to define a frictionless bid-
ask process (Π̃t)

T
t=0, i.e., π̃ijt = 1/π̃jit , with Π̃t ≤ Πt a.s. for all t = 0, . . . , T satisfying
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(NA), which in the frictionless case coincides with (NAps) by Proposition 2.2.18. Thus
(Πt)

T
t=0 satisfies (NAwps).

Proof of Corollary 2.2.16. This is a well known consequence of the existence of a
consistent price system. Indeed, we may use Proposition 3.2.6 in [55] to see that the

existence of a consistent price system implies AT0 ∩ L0(KT ,FT ) ⊆ L0(∂KT ,FT ). To
complete the proof, we observe that ∂KT ∩ Rd+ = {0}. Indeed, by πij < ∞, the
existence of a v ∈ Rd+ \ {0} and a sequence (vn)n∈N ⊆ Rd \KT (ω) with vn → v can
easily be led to a contradiction.

Remark 2.3.7. Our results can be extended to the Kabanov model as defined in
Subsection 3.2 of [55], which, in addition to the barter market considered here, also
covers a wider range of models, e.g., models of a barter market where a bank account
is charged the transaction costs and models where baskets of assets are exchanged. To
see this, we briefly highlight the minor adjustments. On the other hand, the proofs of
Lemmas 2.3.3 and 2.3.4 are heavily based on the polyhedral structure of the solvency
cones. The key argument that µn defined in (2.3.10) converges to 1 does not work for
general closed solvency cones.

The Kabanov model is defined as follows. Let ((Xi
t)
T
t=0)i∈N be a sequence of adapted

Rd-valued processes, such that for all t and ω the set {i ∈ N : Xi
t(ω) 6= 0} is non-empty

and finite, and set

Kt(ω) := cone
(
−Xi

t (ω) : i ∈ N
)
.

In this case, K = (Kt)
T
t=0 is called a cone-valued process. In addition, we assume

Rd+ \ {0} ⊆ intKT (ω) for all ω (which corresponds to the possibility to freely dis-

pose of assets and πijT < ∞ for all i, j in the base model) and −KT (ω) ∩ Rd+ = {0}
(which corresponds to πijT ≤ πikT π

kj
T and πiiT = 1 for all i, j, k). The cone of hedge-

able claims attainable from zero endowment by trading between s and t is given by
Ats =

∑t
k=s L

0(−Kk,Fk), s ≤ t. The (NA) and (NAps) conditions are defined ac-
cordingly. We now sketch how the arguments of the previous proofs can be applied
in this more general setting. Let It(ω) := sup{n ∈ N : Xn

t (ω) 6= 0} for ω ∈ Ω and
t = 0, . . . , T . The assumptions above guarantee that It is a N-valued Ft-measurable
random variable. By Ω =

⋃
I∈N{It = I}, the arguments from Lemmas 2.3.1, 2.3.3,

and 2.3.4 can be separately applied on the sets {It = I} for I ∈ N. In particular,
portfolio changes can be represented by Lt(λt) :=

∑It
i=1 λ

i
tX

i
t , where λit ∈ L0(R+,Ft).

The Euclidean norm on Rd×d that is used for the decomposition of an order into the
reversible and the purely non-reversible part is replaced by

‖λ‖ :=

√√√√ I∑
i=1

(λi)2 on {It = I}.

With these adjustments, Theorem 2.2.6 extends to the Kabanov model by arguing along
the lines of the original proofs. We note again that it is crucial that for fixed ω, only
linear combinations from finitely many Xi

t(ω) have to be considered.
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At last, we say that K = (Kt)
T
t=0 satisfies the (NAwps) property if there is a cone-

valued process K̃ = (K̃t)
T
t=0 with the (NAps) property such that Kt(ω) ⊆ K̃t(ω) for

all ω and t. Then, Theorem 2.2.11 holds true in the Kabanov model as well. Indeed,
(NAwps) implies the existence of a consistent price system for K = (Kt)

T
t=0 and, on

the other hand, given a CPS Z = (Zt)
T
t=0, the cone-valued process K̃ = (K̃t)

T
t=0 defined

by K̃t(ω) := (R+Zt(ω))? satisfies (NAps) and Kt(ω) ⊆ K̃t(ω) for all t and ω, i.e., K
satisfies (NAwps).

In addition, our reasoning to show the closedness of AT0 can also be applied to
models with incomplete information such as those considered in [7, 27], where arguing
on the level of orders is quite natural.

2.4 (Counter-)Examples

We start with two very simple examples that illustrate the difference between (NAr),
(NAps), and (NAwps) and the need to consider CPSs which do not lie in the relative
interior of the bid-ask spread.

Example 2.4.1 ((NAps) 6⇒ (NAr)). We consider a deterministic two-asset one-period
model with the bid-ask process given by

Πt =

(
1 St

1/St 1

)
, t = 0, 1,

where the deterministic processes (St)t=0,1 and (St)t=0,1 are illustrated in Figure 2.1
below. This is just a two-asset model with a bank account that does not pay interest
and one stock with bid-price (St)t=0,1 and ask-price (St)t=0,1.

t = 0 t = 1

Price = 1/2

Price = 1

Figure 2.1: Deterministic model satisfying (NAps) and (NAs), but not (NAr). At t = 0
the bid-price S0 equals 1/2 and the ask price S0 equals 1; at t = 1 the market is
frictionless with price S1 = S1 = 1.

Here, we have Kt = cone(Ste
1 − e2, e2 − Ste

1, e1, e2), and its dual is given by
K?
t = {(Y 1, Y 2) ∈ R2

+ : StY
1 ≤ Y 2 ≤ StY

1} for t = 0, 1. Since Ω is a singleton,
a CPS has to be constant in time. Thus, the market admits the unique (up to scalar
multiples) CPS Z = (Z1

t , Z
2
t )t=0,1 given by Zt = (1, 1) for t = 0, 1.

Recall that a strictly consistent price system (SCPS) is a CPS with Zt ∈ L0(riK?
t ,Ft)

for all t, where riK?
t denotes the relative interior of K?

t , and that (NAr) is equiva-
lent to the existence of a SCPS (see Theorem 1.7 in Schachermayer [85]). We have
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riK?
t = {(Y 1, Y 2) ∈ intR2

+ : Y 2/Y 1 ∈ ri[St, St]} for t = 0, 1 (see, e.g., equation (3.2)
in Roklin [82]). Thus, Z is not a SCPS since Z2

0/Z
1
0 = 1 /∈ (1/2, 1). Hence, the model

cannot satisfy (NAr). Also the Penner-condition

L0(K0
t ,Ft−1) ⊆ L0(K0

t−1,Ft−1) for all t = 1, . . . , T. (2.4.1)

is not satisfied. On the other hand, we have that A0
0 ∩ (−A1

1) = cone(e2 − e1) ⊆
cone(e2− e1, e1− e2,−e1,−e2) = A1

1, i.e., only a long stock position built up at time 0
can be liquidated without losses at time 1, but the purchase of the stock (asset 2) can
also be postponed to time 1. Thus the model satisfies (NAps).

Example 2.4.2 ((NAwps) 6⇒ (NAps)). We consider a variant of Example 2.4.1, where
the processes (St)t=0,1 and (St)t=0,1 are given in Figure 2.2 below.

t = 0 t = 1

Price = 1/2
Price = 1

Price = 2

Figure 2.2: Deterministic model satisfying (NAwps) but not (NAps). One has S0 = 1/2,
S0 = 1, S1 = 1, and S1 = 2.

The market still admits the unique (up to scalar multiples) CPS Zt = (1, 1) for
t = 0, 1, but now fails (NAps) since A0

0 ∩ (−A1
1) = cone(e2 − e1) 6⊆ cone(e2 − 2e1, e1 −

e2,−e1,−e2) = A1
1. On the other hand, the model satisfies (NAwps) since the more

favorable bid-ask process in Figure 2.1 satisfies (NAps).

Finally, we provide an example showing that (NAwps) cannot be replaced by the
“next weaker” condition that there exists a more favorable market, i.e., a bid-ask
process (Π̃t)

T
t=0 with Π̃t ≤ Πt for each t = 0, . . . , T , such that (Π̃t)

T
t=0 satisfies (NA)

and

At0 ∩
(
−ÃTt

)
⊆ ÃTt for all t = 0, . . . , T (2.4.2)

(cf. Remark 2.2.17). We show that there is a bid-ask process (Πt)
3
t=0 with four assets

satisfying condition (2.4.2) which allows for an approximate arbitrage (see Defini-
tion 2.2.15). Hereby, in the spirit of the basic Example 3.1 of Schachermayer [85],
which can be used to achieve an approximate arbitrage, the example is based on the
idea of two consecutive approximate hedges. An approximate hedge is a sequence of
trading strategies that hedge a given portfolio position in the limit. There exists a
more favorable bid-ask process (Π̃t)

3
t=0 s.t. (2.4.2) holds, but which only turns the

first approximate hedge into a perfect hedge and thus the model still satisfies (NA).
The example highlights the importance of a possible “cascade” of approximate

hedges, which is, to the best of our knowledge, a phenomenon not discussed in the
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previous literature. It is also of interest for the discussion of adjusted bid-ask processes
as introduced in Jacka et al. [44](see Remark 2.4.4).

Example 2.4.3 (A cascade of approximate hedges). Let T = 3, Ω = N2×{−1/2, 1/2}2,
F = 2Ω and all states have positive probability. In addition, the information structure
is given by F0 = {∅,Ω},

F1 = σ
({
{(n,m, i, j) : (m, i, j) ∈ N× {−1/2, 1/2}2} : n ∈ N

})
,

F2 = σ

({{
(n,m, i,−1/2), (n,m, i, 1/2)

}
: (n,m, i) ∈ N2 × {−1/2, 1/2}

})
,

and F3 = 2Ω = F . This means n is revealed at time 1, m and i are revealed at time 2
and, at last, j is revealed at time 3. Next, we define a bid-ask process (Πt)

3
t=0 depending

on parameter a > 0 for t = 0, 1 as follows

Π0 =


1 1 1 1
a 1 · ·
a · 1 ·
a · · 1

 , Π1 ≡


1 a a a
a 1 · ·
a · 1 ·
1 · · 1


and for t = 2, 3 depending on the state (n,m, i, j) ∈ N2 × {−1/2, 1/2}2 as

Π2(n,m, i, j) =


1 a a a
a 1 · ·
1

1+i · 1 ·
1

1− i
n

· · 1

 , Π3(n,m, i, j) =


1 a a a
1

1+ 1
4

+j
1 · ·

1
1+i

1
1− j

m

· 1 ·
a · · 1

 .

The missing entries are specified via the direct transfer over the first asset, i.e., πijt :=
πi1t π

1j
t for 2 ≤ i 6= j ≤ 4. This means that the first asset plays the role of a money

market account and the assets 2,3, and 4 represent risky stocks. Finally, we choose the
parameter a prohibitively high such that the corresponding transfers are unattractive,
more precisely, we set a := 5 > 4.

The market is actually frictionless with special short- and long-selling constraints.
Asset 2 yields the random return 1/4 + j, j ∈ {−1/2, 1/2}. It can be approximately
hedged, yielding an extra profit, by the return −j/m of asset 3 between time 2 and
time 3. On the other hand, asset 3 has to be bought already at time 0 which leads to
the prior random return i, i ∈ {−1/2, 1/2}. The latter return can be approximately
hedged by asset 4. This means that there is a cascade of approximate hedges – hedge
asset 2 by asset 3 and asset 3 by asset 4 – leading to an approximate arbitrage.

To exclude an arbitrage, it is crucial that assets 2, 3, and 4 have to be bought
already at time 0, without the knowledge of n and m. If n and m were known at
time 0, the return of asset 3 between time 0 and time 2 could be perfectly hedged by
asset 4 with hedging ratio n, and then, asset 2 could be perfectly hedged by the return
of asset 3 between time 2 and time 3 with a hedging ratio exploding with m.
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On the other hand, asset 4 can be sold at its initial purchasing price at time 1,
after n is revealed, and the same with the portfolio of one asset 3 and n assets 4 at
time 2, after m is revealed. Thus, one can buy large quantities of assets 4 and 3 at
time 0 and sell the units which are not needed later on at their initial prices. But,
since there is no a priori upper bound for n and m, there remains the risk that one
does not have enough quantities of assets 4 and 3. Thus, buying more and more units
at time 0 only leads to an approximate arbitrage.

The extension from Π to Π̃ in (2.4.3) allows the investor to postpone the purchase
of assets 3 and 4 by one period to time 1. This means that she can now use her
knowledge of n to perfectly hedge the return of asset 3 up to time 2 by asset 4. On
the other hand, m is still not known at the time assets 2 and 3 have to be purchased.
Thus, the extension only turns the first of the two consecutive approximate hedges
into a perfect hedge. This is the reason why (2.4.2) holds and Π̃ satisfies (NA). In the
following, these ideas are worked out in detail.

Step 1. Let us show that (Πt)
3
t=0 allows for an approximate arbitrage, i.e., A3

0 ∩
L0(R4

+) ) {0}. Therefore, we define for fixed k ∈ N the following strategy. For t = 0,
we set

ξk0 = e2 − e1 + k(e3 − e1) + k2(e4 − e1) ∈ −K0.

For t = 1, we define

ξk1 (n,m, i, j) =
(
k2 − (k ∧ n) k

) (
e1 − e4

)
∈ −K1(n,m, i, j).

For t = 2, we define

ξk2 (n,m, i, j) = (k ∧ n) k

(
1− i

n

)(
e1 − 1

1− i
n

e4

)

+

(
k − m

1 + i
∧ k
)

(1 + i)

(
e1 − 1

1 + i
e3

)
∈ −K2(n,m, i, j).

Finally, at t = 3 we liquidate the remaining positions in the assets 2 and 3. Thus, we
define

ξk3 (n,m, i, j) =

(
1 +

1

4
+ j

)(
e1 − 1

1 + 1
4 + j

e2

)

+

(
m

1 + i
∧ k
)

(1 + i)

(
1− j

m

)(
e1 −

1

1 + i

1

1− j
m

e3

)
,

which belongs to −K3(n,m, i, j). Thus vk = ξk0 + ξk1 + ξk2 + ξk3 belongs to AT0 and we
have

vk(n,m, i, j) =

(
1

4
+ ik

(
1− n ∧ k

n

)
+ j

(
1− 1 + i

m

( m

1 + i
∧ k
)))

e1.
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Finally, letting k →∞, we obtain v ∈ AT0 given by

v(n,m, i, j) = lim
k→∞

vk(n,m, i, j) =
e1

4
,

which is the desired asymptotic arbitrage. Hence, the model cannot admit a CPS (see
Proposition 3.2.6. in [55]).

Next, we introduce the bid-ask process (Π̃t)
3
t=0 given by Π̃0 = Π0, Π̃2 = Π2, Π̃3 =

Π3, and

Π̃1 ≡


1 a 1 1
a 1 · ·
a · 1 ·
1 · · 1

 , (2.4.3)

which satisfies Π̃t ≤ Πt for all t = 0, 1, 2, 3. We want to show that (Π̃t)
3
t=0 has the

(NA) property and satisfies At0 ∩ −ÃTt ⊆ ÃTt for t = 0, 1, 2, 3.

Step 2. We start with the (NA) property for (Π̃t)
T
t=0. Let ṽ ∈ Ã3

0 with ṽi = 0 for
i = 2, 3, 4 and ṽ1 ≥ 0 a.s. We have to show that this already implies ṽ1 = 0 a.s.
We may pass to a v ∈ Ã3

0 with vi = 0 for i = 2, 3, 4 a.s. and v1 ≥ ṽ1 s.t. v can be
represented solely by transfers

λ1j
t with π1j

t < a and λj1t with πj1t < a. (2.4.4)

Indeed, purchasing an asset i ∈ {2, 3, 4} at price a = 5 or short-selling it at price 1/a =
1/5 (in terms of the asset 1) leads to a sure loss after liquidating this position after-
wards. Hence, we only need to consider v = ξ0+ξ1+ξ2+ξ3 ∈ Ã3

0, where ξ0 ∈ cone(e2−
e1), ξ1 ∈ L0(cone(e3− e1, e4− e1),F1), ξ2 ∈ L0(cone(e1− π̃3,1

2 e3, e1− π̃4,1
2 e4),F2), and

ξ3 ∈ L0(cone(e1 − π̃2,1
3 e2, e1 − π̃3,1

3 e3),F3) with the additional restrictions ξ3
1 + ξ3

2 ≥ 0
a.s. and ξ4

1 + ξ4
2 = 0 a.s. Under the assumptions above, we get

0 ≤ v1(n,m, i, j) ≤ ξ2
0 · (j + 1/4) + i ·

(
ξ3

1(n)− ξ4
1(n)

n

)
+
(
ξ3

1(n) + ξ3
2(n,m, i)

)
· −j
m

(1 + i)

(2.4.5)

for each state (n,m, i, j) ∈ Ω with ξ2
0 ≥ 0, ξ3

1(n) ≥ 0, ξ3
2(n,m, i) ≤ 0 and ξ4

1(n) ≥ 0.
Hereby the notation highlights the required measurability of the random variables; for
instance, we write n 7→ ξ3

1(n) since the value of the F1-measurable random-variable
ξ3

1 can only depend on n. We have ξ3
1(n) + ξ3

2(n,m, i) ≤ ξ3
1(n), i.e., the investment in

asset 3 between t = 2 and t = 3 is bounded from above by the F1-measurable random
variable ξ3

1. Consequently, the third summand in equation (2.4.5) becomes arbitrarily
small for large m ∈ N. But, this implies that the sum of the first two terms, i.e.,

ξ2
0 · (j + 1/4) + i ·

(
ξ3

1(n)− ξ4
1(n)

n

)
,
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that does not depend on m, has to be almost surely non-negative, which is only possible
if

ξ2
0 = 0 and ξ3

1(n) =
ξ4

1(n)

n
for each n ∈ N. (2.4.6)

But then (2.4.5) reduces to

0 ≤ v1(n,m, i, j) ≤
(
ξ3

1(n) + ξ3
2(n,m, i)

)
· −j
m

(1 + i).

Taking j = 1/2, this implies ξ3
1(n) = −ξ3

2(n,m, i) and, consequently, v1 ≡ 0. Hence

(Π̃t)
3
t=0 satisfies (NA).

Step 3. Let us now show At0 ∩ −ÃTt ⊆ ÃTt for t = 1, 2, 3, 4 (for t = 0, there is
nothing to show). This is akin to the proof in step 2. As in (2.4.4), we can restrict
to portfolios which can be represented by transfers that do not trade at price a = 5.
Indeed, since we only consider positions that can be liquidated for sure, the cancellation
of a transfer at price a (with re-transfer at a later time to asset 1), would lead to a
strict improvement and thus an arbitrage. Since this would contradict to the (NA)
property of (Π̃t)

3
t=0 shown in Step 2, we can exclude such silly trades in the following

considerations.
By the arguments leading to (2.4.6), it follows that e2 − e1 6∈ −Ã3

1. Consequently,

we have A1
0 ∩ −Ã3

1 = cone(e3 − e1, e4 − e1) + L0(cone(e1 − e4),F1) ⊆ Ã3
1.

Now consider the case t = 2. Let w ∈ A2
0 ∩ −Ã3

2, i.e. we may write w = ξ0 +

ξ1 + ξ2 = −ξ̃2 − ξ̃3 for ξ0 ∈ cone(e2 − e1, e3 − e1, e4 − e1), ξ1 ∈ L0(cone(e4 − e1),F1),
ξ2, ξ̃2 ∈ L0(cone(e1 − π31

2 e
3, e1 − π41

2 e
4),F2) and ξ̃3 ∈ L0(cone(e1 − π21e2, e1 − π31e3),

F3) with the restrictions ξ3
0 + ξ3

2 + ξ̃3
2 ≥ 0, ξ4

0 + ξ4
1 ≥ 0 and ξ4

0 + ξ4
1 + ξ4

2 + ξ̃4
2 = 0.

Indeed, this is a consequence of (NA) and the avoidance of silly trades. But, then we
may consider v := w − w = ξ0 + ξ1 + ξ2 − (−ξ̃2 − ξ̃3). Note that we have vi = 0 for
i = 2, 3, 4, which uniquely determines v1 as

v1(n,m, i, j) = ξ2
0 · (j + 1/4) + i ·

(
ξ3

0 −
ξ4

0 + ξ4
1(n)

n

)
+
(
ξ3

0 + ξ3
2(n,m, i) + ξ̃3

2(n,m, i)
) −j
m

(1 + i).

On the other hand, we also have v1 = 0. Since the first two terms do not depend on
m ∈ N, we must have that

ξ2
0 · (j + 1/4) + i ·

(
ξ3

0 −
ξ4

0 + ξ4
1(n)

n

)
= 0.

Considering j = −1/2 and i = ±1/2, ξ2
0 ≥ 0 implies that ξ2

0 = 0 and

ξ3
0 −

(
ξ4

0 + ξ4
1(n)

)
/n = 0 for all n ∈ N.
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Hence, ξ4
0 = −ξ4

1(n) for all n ∈ N and ξ3
0 = 0. Consequently, we also have ξ3

2(n,m, i) =

ξ̃3
2(n,m, i) = 0. But, then we have shown w = 0, which is tantamount to A2

0 ∩−Ã3
2 =

{0} ⊆ Ã3
2.

The same arguments apply for t = 3 and thus A3
0 ∩ −Ã3

3 = {0} ⊆ Ã3
3.

Remark 2.4.4. Example 2.4.3 also allows us to discuss the following related question:
Does the existence of a bid-ask process (Π̂t)

T
t=0 with Π̂t ≤ Πt a.s. for all t = 0, . . . , T

such that (Π̂t)
T
t=0 satisfies (NA) and

T∑
t=0

ξt = 0 a.s. with ξt ∈ L0(−Kt,Ft)⇒ ξt ∈ L0(K̂0
t ,Ft) for all t = 0, . . . , T (2.4.7)

already imply the absence of an approximate arbitrage, i.e. AT0 ∩L0(Rd+) = {0}? Hereby
(2.4.7) means that each transaction which is involved in a null-strategy in the original
model is carried out at frictionless prices in the adjusted market.

It turns out that the answer to the question is negative. Indeed, in the setting of
Example 2.4.3, we define the adjusted bid-ask process (Π̂t)

3
t=0 by

Π̂0 =


1 1 1 1
a 1 · ·
a · 1 ·
1 · · 1

 , Π̂1 =


1 a a 1
a 1 · ·
a · 1 ·
1 · · 1

 ,

Π̂2 = Π2 and Π̂3 = Π3. Then, we have Π̂t ≤ Πt a.s. for all t = 0, 1, 2, 3. In addition,
the previously considered adjusted bid-ask process (Π̃t)

3
t=0 satisfies (NA) and yields

better terms of trade than (Π̂t)
3
t=0, i.e., ÂT0 ⊆ ÃT0 . Consequently, (Π̂t)

3
t=0 inherits the

(NA) property. In addition, the only (up to multiplication with non-negative scalars)
null strategy in the original market is (ϑt − ϑt−1)3

t=0 = (e4 − e1, e1 − e4, 0, 0). Thus,

condition (2.4.7) is satisfied, but, as we have shown, AT0 ∩ L0(Rd+) ) {0}.
The key observation is that the bid-ask process (Π̂t)

3
t=0 satisfies (2.4.7) but not

(2.3.1). This means, a transfer ξs ∈ L0(−Ks,Fs), s ∈ {0, . . . , 3}, which can be ex-
tended to a null-strategy (ξ0, . . . , ξ3) in the original market (Πt)

3
t=0 is frictionless in

the better market (Π̂t)
3
t=0, i.e., ξs ∈ L0((−K̂s) ∩ K̂s,Fs). On the other hand, by the

extension of the market from (Πt)
3
t=0 to (Π̂t)

3
t=0, additional null-strategies occur, and

their transfers need not be frictionless.
The bid-ask process Π̂ is obtained by the following adjustment of the trading prices:

π̂ijt =
1

πjit
1
Bjit

+ πijt 1Ω\Bjit
, (2.4.8)

where Bji is given by

1
Bjit

= esssup{1B : B ∈ Ft with − (ei − πjit ej)1B ∈ AT0 }, (2.4.9)
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with the essential supremum w.r.t. the σ-algebra Ft. This means, if the transfer (ei −
πjit e

j)1B, B ∈ Ft can be compensated by trades during {0, . . . , T}, the adjusted price
π̂ijt allows to compensate it by trading at time t only. In this special example, one has
1B14

0
= 1, 1B41

1
= 1 and 1

Bjit
= 0 for all other triplets (j, i, t).

The adjustment (2.4.8)/ (2.4.9) ensures that the null-strategies in the original mar-
ket are frictionless in the extended market (see the arguments on pages 592 and 593 of
Jacka et al. [44]). But, it was a finding by Jacka et al. [44] (see the paragraph before
Definition 3.2 therein) that the latter is not sufficient to obtain closedness of the set ÂT0
of attainable portfolio values in the extended market. Thus, they define their “adjusted
trading prices” slightly different from (2.4.8)/(2.4.9) with AT0 replaced by its closure

in probability AT0 . Example 2.4.3 shows that the price adjustment (2.4.8)/ (2.4.9) with

AT0 instead of AT0 does not imply that the set ÂT0 of attainable portfolio values is
closed. Thus the example justifies the approach by Jacka et al. [44].

On the other hand, in Example 3.3 of [44] with T = 1, the adjustment (2.4.8)/ (2.4.9)
with AT0 already yields that the set ÂT0 of attainable portfolio values is closed. In-
deed, in Example 3.3 of [44], the price adjustment (2.4.8)/ (2.4.9) consists of chang-
ing π12

0 to π̂12
0 = 1 = 1/π21

0 and π21
1 to π̂21

1 = 1 = 1/π12
1 on Ω, which makes the

null-strategy (e1 − e2, e2 − e1) of the original market frictionless in the extended
market. Considering the scenario ω = 2, it can easily be seen that Â0

0 ∩ (−Â1
1) =

cone(e1 − e2, e2 − e1, e3 − e4), which is contained in Â1
1. From this one can easily

deduce that the extended market Π̂ satisfies (NAps). Consequently, Â1
0 is closed by

Theorem 2.2.6.



Chapter 3

Semimartingale price systems in
models with transaction costs
beyond efficient friction

3.1 Introduction

In frictionless markets, asset price processes have to be semimartingales unless they
allow for an “unbounded profit with bounded risk” (UPBR) with simple strategies (see
Delbaen and Schachermayer [22]). With semimartingale price processes, the powerful
tools of stochastic calculus can be used to construct the gains from dynamic trading. A
trading strategy specifying the amounts of shares an investor holds in her portfolio is a
predictable process that is integrable w.r.t. the vector-valued price process. Strategies
can be of infinite variation since in the underlying limiting procedure, one directly
considers the (book) profits made rather than the portfolio rebalancings.

On the other hand, under arbitrary small transaction costs also non-semimartingales
can lead to markets without “approximate arbitrage opportunities”. Guasoni [35] and
Guasoni, Rásonyi, and Schachermayer [37] derive the sufficient condition of “condi-
tional full support” of the mid-price process, that is satisfied, e.g., by a fractional
Brownian motion, and arbitrary small constant proportional costs. Guasoni, Rásonyi,
and Schachermayer [38] derive a fundamental theorem of asset pricing for a family of
transaction costs models.

Under the assumptions of efficient friction, i.e., nonvanishing bid-ask spreads, and
the existence of a strictly consistent price system, Kabanov and Stricker [56] and
Campi and Schachermayer [11] show for continuous and càdlàg processes, respectively,
that a finite credit line implies that the variation of the trading strategies is bounded in
probability. A similar assertion is shown in Guasoni, Lépinette, and Rásonyi [36] under
the condition of “robust no free lunch with vanishing risk”. An important consequence
for hedging and portfolio optimization is that the set of portfolios that are attainable
with strategies of finite variation is Fatou-closed. For a detailed discussion, we refer
to the monograph of Kabanov and Safarian [55].
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In this chapter, we consider càdlàg bid and ask price processes that are not nec-
essarily different. The ask price is bigger or equal to the bid price. The spread, which
models the transaction costs, can vary in time and can even vanish. The contribu-
tion of this chapter is twofold. First, we show that if the bid-ask model satisfies “no
unbounded profit with bounded risk” (NUPBR) for simple long-only strategies, then
there exists a semimartingale lying between the bid and the ask price process. This
generalizes Theorem 7.2 of Delbaen and Schachermayer [22] for the frictionless case.
The proof in [22] is very intuitive. Roughly speaking, it first shows that an explo-
sion of the quadratic increments of the price process along stopping times would lead
to an (UPBR). Then, it considers a discrete-time Doob decomposition of the asset
price process and shows that an explosion of the drift part as the mesh of the grid
tends to zero would lead to an (UPBR). This already yields that under (NUPBR),
the asset price process has to be a good integrator and thus a semimartingale by the
Bichteler-Dellacherie theorem. More recently, Beiglböck, Schachermayer, and Veliyev
[6] provide an alternative proof of the Bichteler-Dellacherie theorem combining these
no-arbitrage arguments with Komlós type arguments. Kardaras and Platen [60] fol-
low a quite different approach that only requires long investments. They construct
supermartingale deflators as dual variables in suitable utility maximization problems
under a variation of (NUPBR) for simple long-only strategies. Bálint and Schweizer [2]
assume that asset prices are expressed in a possibly nontradable accounting unit. In
their setting there need not exist an asset with a strictly positive price process that
can be used as a numéraire. They show that if there exists a portfolio with strictly
positive value process then, under a discounting invariant form of absence of arbi-
trage, which generalizes the condition used in [60], the asset prices discounted by the
portfolio value are semimartingales. Since in transaction costs models it is natural to
start with the relative prices of the tradable assets, there is no obvious analogy of
discounting by a portfolio value. In our model, we implicitly assume the existence of
an asset with strictly positive price process that serves as a reference asset.

In the bid-ask model, we consider a Dynkin zero-sum stopping game in which the
lower payoff process is the bid price and the upper payoff process the ask price. The
Doob decomposition of the dynamic value of the discrete-time game along arbitrarily
fine grids is used to identify smart investment opportunities. The crucial point is that
the drift of the Dynkin value can be earned by trading in the bid-ask market. This we
combine with the brilliant idea in Lemma 4.7 of [22] to control the martingale part. We
complete the proof by showing that under the assumptions above, the continuous-time
Dynkin value has to be a local quasimartingale.

In the second part of the chapter, we show how a semimartingale between the bid
and the ask process can be used to define the self-financing condition of the model
beyond efficient friction. Without efficient friction, strategies of infinite variation can
make sense since they do not produce infinite trading costs. This of course means
that we cannot use them as integrators without major hesitation. In the first step,
we only consider bounded amounts of risky assets. Thus, the trading gains charged
in the semimartingale are finite. Then, we add the costs caused by the fact that
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the trades are carried out at the less favorable bid-ask prices. Roughly speaking, if
the spread is away from zero the costs are a Riemann-Stieltjes integral similar to
Guasoni, Lépinette, and Rásonyi [36]. Then, we exhaust the costs when the spread is
away from zero. The crucial point is that these costs are always nonnegative, and the
semimartingale gains are finite. Especially, infinite costs cannot be compensated and
lead to ruin. Under a rather mild additional assumption on the behavior of the spread
at zero (see Assumption 3.3.18), that goes at least far beyond the frictionless case
and the case of efficient friction, this approach leads to a well-founded self-financing
condition. Especially, the self-financing risk-less position does not depend on the choice
of the semimartingale we use in the construction (see Corollary 3.3.22).

A self-financing condition for general strategies has to be justified by suitable
approximations with simple strategies. With transaction costs, this is a delicate is-
sue. Namely, under pointwise convergence of the strategies alone, one should not
expect that portfolio processes converge. By the strict Fatou-type inequality (see The-
orem A.9(iv) of [36]), some variation/costs can disappear in the limit. Thus, roughly
speaking, we postulate the following: first, the limit strategy is better than all (almost)
pointwise converging simple strategies and second, for each strategy there exists a spe-
cial sequence of approximating simple strategies s.t. the wealth processes converge (see
Theorem 3.3.19).

In the second step, we extend the self-financing condition from the bounded strate-
gies to the maximal set of strategies for which it can be defined in a “reasonable” way.
In the special case of a frictionless market, this maximal set coincides with the set of
predictable processes which are integrable w.r.t. the semimartingale price process in
the classic sense (see, e.g., [46]). Thus, we also provide a further characterization of
this ubiquitous set.

In the no-arbitrage theory, the need for general strategies is already proven in the
special case of frictionless markets. Indeed, Delbaen and Schachermayer [22, Lemma
7.9 and Lemma 7.10] provide an example with a bounded asset price process show-
ing that no free lunch with vanishing risk (NFLVR) for simple strategies does not
imply the existence of an equivalent martingale measure (EMM). Consequently, un-
der transaction costs general strategies can become an important tool to guarantee
the existence of a consistent price system (CPS), which plays a similar role as an
EMM in the frictionless theory, under an appropriate no-arbitrage condition. On the
other hand, in general a CPS does not exist even though (NFLVR) for multivariate
portfolio processes is satisfied. This can already be seen in discrete time (see Schacher-
mayer [85, Example 3.1]) with the observation that general strategies as described in
Definition 3.4.1 coincide with simple strategies if the time is discrete.

In a nutshell, we provide a well-founded self-financing condition for models be-
yond efficient friction by relating the original trading gains under transaction costs
with the gains in a fictitious frictionless market defined by a semimartingale and sub-
tracting the appropriate costs. The idea to relate markets under transaction costs
with fictitious frictionless markets is not new. It is already widely used in the the-
ory of portfolio optimization. Here, shadow price processes, i.e., fictitious frictionless
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pricing systems that lead to the same optimal decisions and trading gains as under
transaction costs, are utilized to determine optimal trading strategies. The existence
of shadow prices and their relationship with a suitable dual problem goes back to
Cvitanić and Karatzas [15]. In discrete time, Kallsen and Muhle-Karbe [57] show that
on finite probability spaces shadow price processes always exist as long as the original
problem has a solution, and Czichowsky et al. [16] provide counterexamples on infinite
probability spaces. Conditions for the existence of a shadow price process in a semi-
martingale model are established by Czichowsky et al. [19] and starting with Kallsen
and Muhle-Karbe [58] various explicit constructions of shadow prices processes have
been given in Black-Scholes type models. Even in non-semimartingale models this dual
approach is successfully applied (see, e.g., [17, 18, 20]) under efficient friction. In the
proof of Theorem 3.4.5, we provide a direct connection between our work and shadow
price processes for particular optimization problems.

The chapter is organized as follows. In Section 3.2, we show the existence of a semi-
martingale price system (Theorem 3.2.7). In Section 3.3, we construct the cost process
which allows us to introduce the self-financing condition for bounded strategies, which
is justified by Theorem 3.3.19 and Corollary 3.3.22. In Section 3.4, the extension to
unbounded strategies is established (Proposition 3.4.2). In addition, the special case
of a frictionless market is considered (Proposition 3.4.3) and the separate convergence
of trading gains and cost terms of the approximating bounded strategies is discussed
(Theorem 3.4.5). Technical proofs are postponed to Section 3.5 and Section 3.6.

3.2 Existence of a semimartingale price system

Throughout the chapter, we fix a terminal time T ∈ R+ and a filtered probability
space (Ω,F , (Ft)t∈[0,T ],P) satisfying the usual conditions. The predictable σ-algebra
on Ω × [0, T ] is denoted by P, the set of bounded predictable processes starting at
zero by bP. To simplify the notation, a stopping time τ is allowed to take the value
∞, but [[τ ]] := {(ω, t) ∈ Ω × [0, T ] : t = τ(ω)}. Especially, we use the notation
τA, A ∈ Fτ , for the stopping time that coincides with τ on A and is infinite other-
wise. Varba(X) denotes the pathwise variation of a process X on the interval [a, b]. A
process X is called làglàd iff all paths possess finite left and right limits (but they
can have double jumps). We set ∆+X := X+ − X and ∆X := ∆−X := X − X−,
where Xt+ := lims↓tXs and Xt− := lims↑tXs. For a random variable Y , we set
Y + := max(Y, 0) and Y − := max(−Y, 0).

The financial market consists of one risk-free bond with price 1 and one risky asset
with bid price S and ask price S. Throughout the chapter, we make the following
assumption.

Assumption 3.2.1. (St)t∈[0,T ] and (St)t∈[0,T ] are adapted processes with càdlàg paths.

In addition, St ≤ St for all t ∈ [0, T ] and S is locally bounded from below.

In this section, we only consider simple trading strategies in the following sense.
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Definition 3.2.2. A simple trading strategy is a stochastic process (ϕt)t∈[0,T ] of the
form

ϕ =
n∑
i=1

Zi−11KTi−1,TiK, (3.2.1)

where n ∈ N is a finite number, 0 = T0 ≤ T1 ≤ · · · ≤ Tn = T is an increasing sequence
of stopping times and Zi is FTi-measurable for all i = 0, . . . , n− 1.

The strategy ϕ specifies the amount of risky assets in the portfolio. The next
definition corresponds to the self-financing condition of the model. It specifies the
holdings in the risk-free bond given a simple trading strategy.

Definition 3.2.3. Let (ϕt)t∈[0,T ] be a simple trading strategy. The corresponding
position in the risk-free bond (ϕ0

t )t∈[0,T ] is given by

ϕ0
t :=

∑
0≤s<t

(
Ss(∆

+ϕs)
− − Ss(∆+ϕs)

+
)
, t ∈ [0, T ]. (3.2.2)

Definition 3.2.4. Let (ϕt)t∈[0,T ] be a simple trading strategy. The liquidation value

process (V liq
t (ϕ))t∈[0,T ] is given by

V liq
t (ϕ) := ϕ0

t + (ϕt)
+St − (ϕt)

−St, t ∈ [0, T ]. (3.2.3)

If it is clear from the context, we write (V liq
t )t∈[0,T ] instead of (V liq

t (ϕ))t∈[0,T ].

We adapt the notion of an unbounded profit with bounded risk (UPBR) from
Bayraktar and Yu [4] to the present setting of simple long-only trading strategies.

Definition 3.2.5. We say that (St, St)t∈[0,T ] admits an unbounded profit with bounded
risk (UPBR) for simple long-only strategies if there exists a sequence of simple trading
strategies (ϕn)n∈N with ϕn ≥ 0 s.t.

(i) V liq
t (ϕn) ≥ −1 for all t ∈ [0, T ] and n ∈ N,

(ii) The sequence (V liq
T (ϕn))n∈N is unbounded in probability, i.e.,

lim
m→∞

sup
n∈N

P
(
V liq
T (ϕn) ≥ m

)
> 0. (3.2.4)

If no such sequence exists, we say that the bid-ask process (S, S) satisfies the no
unbounded profit with bounded risk (NUPBR) condition for simple long-only strategies.

Remark 3.2.6. The admissibility condition (i) is rather restrictive, e.g., compared to
[36], see Definition 4.4. therein, which means that the present version of (NUPBR) is
a weak condition. But, for the following first main result of the chapter, it is already
sufficient.
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Theorem 3.2.7. Let (St, St)t∈[0,T ] satisfy Assumption 3.2.1 and the (NUPBR) condi-
tion for simple long-only strategies. Then, there exists a semimartingale S = (St)t∈[0,T ]

s.t.

St ≤ St ≤ St for all t ∈ [0, T ]. (3.2.5)

A semimartingale S satisfying (3.2.5) we call a semimartingale price system. The
remaining part of the section is devoted to the proof of Theorem 3.2.7. As a first
step, we will show that it is actually sufficient to prove the following seemingly weaker
version of the theorem.

Theorem 3.2.8. Suppose that 0 ≤ S ≤ S ≤ 1, and that (NUPBR) for simple long-
only strategies holds. Then there exists a semimartingale S = (St)t∈[0,T ] s.t.

St ≤ St ≤ St for all t ∈ [0, T ].

Proposition 3.2.9. Theorem 3.2.8 implies Theorem 3.2.7.

Proof. We assume that Theorem 3.2.8 holds true.
Step 1: Let S be locally bounded from below, S ≤ 1, and (S, S) satisfies (NUPBR).

Thus, there is an increasing sequence (σn)n∈N of stopping times with P(σn =∞)→ 1

s.t. S ≥ −n on J0, σnK for all n ∈ N. With (S, S), a fortiori ((Sσ
n

+n)/(n+ 1), (S
σn

+
n)/(n + 1)) satisfies (NUPBR). By Theorem 3.2.8, there is a semimartingale Sn for

each n ∈ N s.t. (Sσ
n

+ n)/(n + 1) ≤ Sn ≤ (S
σn

+ n)/(n + 1). Therefore, the process
S :=

∑∞
n=1 1Jσn−1,σnJ((n + 1)Sn − n), where σ0 := 0, lies between S and S. S is a

local semimartingale and, thus, a semimartingale. Consequently, Theorem 3.2.8 holds
true under the milder condition that S is only locally bounded from below instead of
nonnegative.

Step 2: Let S be locally bounded from below and (S, S) satisfies (NUPBR) for
simple long-only strategies. Consider the stopping times τn := inf{t ≥ 0 : St > n},
n ∈ N. One has that P(τn = ∞) = P(St ≤ n ∀t ∈ [0, T ]) → 1 as n → ∞. With
short-selling constraints, liquidation value processes that are attainable in the market

((Sτ
n
/n) ∧ 1, (S

τn
/n) ∧ 1) can be dominated by those in (S, S). Indeed, for t < τn,

one has (S
τn

t /n)∧1 = St/n, and a purchase at time τn cannot generate a profit in the

market ((Sτ
n
/n)∧1, (S

τn
/n)∧1). Thus, ((Sτ

n
/n)∧1, (S

τn
/n)∧1) satisfies (NUPBR)

with simple long-only strategies and by Step 1 there exist semimartingales Sn with

(Sτ
n
/n)∧ 1 ≤ Sn ≤ (S

τn
/n)∧ 1 for all n ∈ N. Then, S :=

∑∞
n=1 1Jτn−1,τnJnS

n, where
τ0 := 0, shows the assertion.

For the remainder of the section, we work under the assumptions of Theorem 3.2.8.
More specifically we assume the following.

Assumption 3.2.10. We assume 0 ≤ S ≤ S ≤ 1 and that (S, S) satisfies (NUPBR)
for simple long-only strategies for the remainder of the section.
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In addition, we set w.l.o.g. T = 1. We now proceed with the proof of Theorem 3.2.8.
The candidate for the semimartingale will be the value process of a Dynkin zero-
sum stopping game played on the bid and ask price, i.e., let (St)t∈[0,1] be the right-
continuous version of

St := ess sup
τ∈Tt,1

ess inf
σ∈Tt,1

E
[
Sτ1{τ≤σ} + Sσ1{τ>σ} | Ft

]
= ess inf

σ∈Tt,1
ess sup
τ∈Tt,1

E
[
Sτ1{τ≤σ} + Sσ1{τ>σ} | Ft

]
,

(3.2.6)

where Tt,1 is the set of [t, 1]-valued stopping times for t ∈ [0, 1]. The existence of such
a process and the non-trivial equality in (3.2.6) is guaranteed by Théorème 7 & 9 and
Corollaire 12 in [68]. Obviously, S = (St)t∈[0,1] satisfies S ≤ S ≤ S. Thus, we only
have to show that (NUPBR) for simple long-only trading strategies implies that S is
a semimartingale. We note that all arguments remain valid for a different terminal
value of the game between S1 and S1.

The arguments below also provide a financial interpretation of the value process S
of this Dynkin game. In the special case that the terminal bid- and ask price coin-
cide, a discrete-time approximation of S can be interpreted as a shadow price for a
utility maximization problem with a risk-neutral investor and the constraint that her
dynamic stock position has to take values in [−1, 1]. Put differently, in the bid-ask
market, an investor can earn the same expected profit as via an optimal strategy in the
frictionless market with price process S (besides a finite deviation caused by different
liquidation values).

Next, we recall the notion of a quasimartingale and Rao’s Theorem (see, e.g.,
Theorem 17 in [74, Chapter 3] or Theorem 3.1 in [5]).

Definition 3.2.11. Let X = (Xt)t∈[0,1] be an adapted process s.t. E(|Xt|) < ∞ for
all t ∈ [0, 1]. Given a deterministic partition π = {0 = t0 < t1 < · · · < tn = 1} of [0, 1]
the mean-variation of X along π is defined as

MV (X,π) := E

[∑
ti∈π

∣∣E [Xti −Xti+1 | Fti
]∣∣]

and the mean variation of X is defined as

MV (X) := sup
π
MV (X,π).

Finally, X is called a quasimartingale if MV (X) <∞.

Theorem 3.2.12 (Rao). Let X be an adapted right-continuous process. Then, X is
a quasimartingale if and only if X has a decomposition X = Y − Z where Y and Z
are each positive right-continuous supermartingales. In this case, the paths of X are
a.s. càdlàg.
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Remark 3.2.13. Usually, Rao’s theorem is formulated for an adapted càdlàg process
X. However, to show that X can be written as the difference of two right-continuous
supermartingales, the existence of the finite left limits of X is not needed (see the proofs
of Theorem 8.13 in [42] or Theorem 14 in [74, Chapter 3]). On the other hand, right-
continuous supermartingales possess a.s. finite left limits (see Theorem VI.3 in [25]).
This means that the theorem can be formulated for an a priori only right-continuous
quasimartingale that turns out to be càdlàg.

If we can show that the right-continuous process S is a local quasimartingale, Rao’s
theorem (in the version of Theorem 3.2.12) yields that S can locally be written as the
difference of two supermartingales, and it admits a càdlàg modification. Thus, S is a
semimartingale by the Doob-Meyer-Theorem (Case without Class D) [74, Chapter 3,
Theorem 16]. Hence, we now want to show that S is a local quasimartingale.

For this, we consider a discrete-time approximation Sn = (Snt )t∈Dn of S on the set
Dn := {0, 1/2n, . . . (2n − 1)/2n, 1} of dyadic numbers defined by Sn1 = S1 and

Snt := min
(
St,max

(
St,E

[
Snt+1/2n | Ft

]))
, t ∈ Dn, t < 1. (3.2.7)

Indeed, it is well-known (see, e.g., [72, Proposition VI-6-9]) that

Snt = ess sup
τ∈T nt,1

ess inf
σ∈T nt,1

E
[
Sτ1{τ≤σ} + Sσ1{τ>σ} | Ft

]
= ess inf

σ∈T nt,1
ess sup
τ∈T nt,1

E
[
Sτ1{τ≤σ} + Sσ1{τ>σ} | Ft

]
, t ∈ Dn,

(3.2.8)

where T nt,1 denotes the set of all {t, t+1/2n, . . . , 1}-valued stopping times. The following
proposition generalizes Kifer [61, Proposition 3.2] from continuous processes to right-
continuous processes.

Proposition 3.2.14. Let m ∈ N and t ∈ Dm. Then, we have

lim
n→∞
n≥m

Snt = St P−a.s.

Proof. Let n ∈ N with n ≥ m and t ∈ Dm. The pair of {t, t + 1/2n, . . . , 1}-valued
stopping times

τnt := inf{s ≥ t : s ∈ Dn, S
n
s = Ss},

σnt := inf{s ≥ t : s ∈ Dn, S
n
s = Ss}

is a Nash equilibrium of the discrete-time game started at time t, i.e.,

E [R(τ, σnt ) | Ft] ≤ Snt ≤ E [R(τnt , σ) | Ft] for all τ, σ ∈ T nt,T , (3.2.9)

where R(τ, σ) := Sτ1{τ≤σ}+Sσ1{τ>σ}. This follows from [72, Proposition VI-6-9] and
its proof with the observation that in finite discrete time the assertion also holds for
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ε = 0 by dominated convergence. For any τ ∈ Tt,T , we let Dn(τ) := inf{t ≥ τ : t ∈ Dn}
and

ηn(τ)(ω) := sup
s∈(τ(ω),τ(ω)+1/2n)

max
(
|Ss(ω)− Sτ (ω)| ,

∣∣Ss(ω)− Sτ (ω)
∣∣) , ω ∈ Ω.

This yields the estimates

R(τ,Dn(σ))− ηn(τ) ≤ R(Dn(τ), Dn(σ)) ≤ R(Dn(τ), σ) + ηn(σ) (3.2.10)

for all τ, σ ∈ T0,T . Let ε > 0. For the continuous-time game, the pair of stopping times

τ∗t := inf{s ≥ t : Ss ≤ Ss + ε},
σ∗t := inf{s ≥ t : Ss ≥ Ss − ε}

is an ε-Nash equilibrium, i.e.,

E [R(τ, σ∗t ) | Ft]− ε ≤ St ≤ E [R(τ∗t , σ) | Ft] + ε, for all τ, σ ∈ Tt,T . (3.2.11)

This is shown in Corollaire 12 and its proof in [68]. Combining the first inequality in
(3.2.9) with τ = Dn(τ∗t ), the first inequality in (3.2.10) and the second inequality in
(3.2.11) yields

Snt ≥ E [R (Dn(τ∗t ), σnt ) | Ft]
≥ E [R(τ∗t , σ

n
t ) | Ft]− E [ηn(τ∗t ) | Ft]

≥ St − ε− E [ηn(τ∗t ) | Ft] .

Similar, applying the second inequality (3.2.9) with σ = Dn(σ∗t ), the second inequality
in (3.2.10) and the first inequality in (3.2.11), yields the corresponding upper estimate
on Snt . Putting together, we get

St + ε+ E [ηn(σ∗t ) | Ft] ≥ Snt ≥ St − ε− E [ηn(τ∗t ) | Ft] .

Finally, as ηn(τ∗t ) → 0 and ηn(σ∗t ) → 0 a.s. by the right-continuity of S and S, the
dominated convergence theorem for conditional expectations implies

St + ε ≥ lim sup
n→∞
n≥m

Snt ≥ lim inf
n→∞
n≥m

Snt ≥ St − ε P−a.s.,

which is the assertion as ε > 0 is arbitrary.

In the following, we will consider the discrete-time Doob-decomposition of the
processes (Sn)n∈N, i.e., we write Snt = Sn0 +Mn

t +Ant with

Ant :=
∑

ti∈Dn,0<ti≤t
E
[
Snti − S

n
ti−1
| Fti−1

]
, (3.2.12)

Mn
t :=

∑
ti∈Dn,0<ti≤t

(
Snti − S

n
ti−1
− E

[
Snti − S

n
ti−1
| Fti−1

])
(3.2.13)
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for t ∈ Dn. In particular, we have (with a slight abuse of notation)

MV (Sn, Dn) := E

 ∑
ti∈Dn

∣∣∣E [Snti+1
− Snti | Fti

]∣∣∣
 = E

 ∑
ti∈Dn

∣∣∣Anti+1
−Anti

∣∣∣
 . (3.2.14)

The following observation is at the core of why our approach works.

Lemma 3.2.15. Let n ∈ N and t = 0, 1/2n, . . . , (2n − 1)/2n. Then, we have

{Ant+1/2n −A
n
t > 0} ⊆ {Snt = St},

{Ant+1/2n −A
n
t < 0} ⊆ {Snt = St}.

Proof. From definition (3.2.12) we get E
[
Snt+1/2n | Ft

]
− Snt = Ant+1/2n − A

n
t , which

together with Snt = min(St,max(St,E[Snt+1/2n | Ft])) yields the assertion.

We now start to establish a uniform bound on (3.2.14) (after some stopping).

Lemma 3.2.16. Let Assumption 3.2.10 hold. Then, the set{
sup
t∈Dn

|Mn
t | : n ∈ N

}
is bounded in probability.

Proof. Before we begin, we roughly sketch the idea of the proof. If {supt∈Dn |M
n
t | :

n ∈ N} failed to be bounded in probability, the same would hold in some sense for
the sequence (An)n∈N. Indeed, this is a consequence of Sn = Sn0 + Mn + An and
the fact that |Sn| ≤ 1. Keeping Lemma 3.2.15 in mind, we show that by suitable
long-only investments in the bid-ask market, one can earn the increasing parts of
An without suffering from the decreasing parts. In doing so, we would achieve an
(UPBR) since the gains from An are of a higher order than the potential losses from
the martingale part Mn. The proof of the latter relies on the brilliant ideas of Delbaen
and Schachermayer [22, Lemma 4.7], which we adapt to the present setting. The
present setting is easier than in [22, Lemma 4.7] since the jumps of Sn are uniformly
bounded.

Step 1: Assume that the claim does not hold true, i.e., there is a subsequence
(supt∈Dmn |M

mn
t |)n∈N and α ∈ (0, 1/10) s.t.

P( sup
t∈Dmn

|Mmn
t | ≥ n3) > 10α, n ∈ N.

In the following, we write (supt∈Dn |M
n
t |)n∈N instead of (supt∈Dmn |M

mn
t |)n∈N in order

to simplify the notation. For this, it is important to note that from now on, we do not
use properties of Mn that do not hold for Mmn . Let Tn := inf{t ∈ Dn : |Mn

t | ≥ n3}
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and define the process (S̃nt )t∈Dn by S̃nt := 1
n2S

n
t∧Tn . Note that the (discrete-time) Doob

decomposition of S̃n is given by

S̃nt = S̃n0 + M̃n
t + Ãnt =

1

n2
Sn0 +

1

n2
Mn
t∧Tn +

1

n2
Ant∧Tn , t ∈ Dn,

where (M̃n
t )t∈Dn = ( 1

n2M
n
t∧Tn)t∈Dn is the martingale part and (Ãnt )t∈Dn = ( 1

n2A
n
t∧Tn)t∈Dn

the predictable part. In addition, we have

P( sup
t∈Dn

|M̃n
t | ≥ n) > 10α, |S̃nt − S̃nt−1/2n | ≤

1

n2
, t ∈ Dn. (3.2.15)

Next, we define Tn,0 := 0 and, recursively,

Tn,i := inf{t ≥ Tn,i−1 : t ∈ Dn, |M̃n
t − M̃n

Tn,i−1
| ≥ 1}, i ∈ N.

Since |Ant −Ant−1/2n | ≤ 1 and thus

|Mn
t −Mn

t−1/2n | ≤ |S
n
t − Snt−1/2n |+ |A

n
t −Ant−1/2n | ≤ 2 (3.2.16)

for all t ∈ Dn \ {0}, we get

|M̃n
Tn,i∧1 − M̃n

Tn,i−1∧1| ≤ 1 + |M̃n
Tn,i∧1 − M̃n

(Tn,i−1/2n)∧1| ≤ 1 + 2/n2 ≤ 3, (3.2.17)

for all n, i ∈ N. (3.2.17) implies

P(Tn,i <∞) > 10α for n ∈ N and i = 0, . . . , kn, (3.2.18)

where kn := b(n− 1)/3c denotes the integer part of (n− 1)/3.

Next, we establish a lower bound in L0(P) on (M̃n
Tn,i∧1 − M̃n

Tn,i−1∧1)− for i =

1, . . . , kn. The martingale property of M̃n together with (3.2.18) implies

E
[
(M̃n

Tn,i∧1 − M̃n
Tn,i−1∧1)−

]
=

1

2
E
[
|M̃n

Tn,i∧1 − M̃n
Tn,i−1∧1|

]
≥ 1

2
P(Tn,i <∞) > 5α.

For Bn,i := {(M̃n
Tn,i∧1 − M̃n

Tn,i−1∧1)− ≥ 2α}, we get

E
[
(M̃n

Tn,i∧1 − M̃n
Tn,i−1∧1)−1Bn,i

]
≥ E

[
(M̃n

Tn,i∧1 − M̃n
Tn,i−1∧1)−

]
− 2α > 3α

and thus by (3.2.17)

P (Bn,i) > α for n ∈ N and i = 0, . . . , kn. (3.2.19)

We now turn our attention to the increments (ÃnTn,i∧1−ÃnTn,i−1∧1)i=1,...,kn for n ∈ N.

Since |S̃nTn,i∧1 − S̃nTn,i−1∧1| ≤ 1/n2, (3.2.19) implies

P
(
ÃnTn,i∧1 − ÃnTn,i−1∧1 ≥ α

)
≥ P

(
ÃnTn,i∧1 − ÃnTn,i−1∧1 ≥ 2α− 1

n2

)
≥ P (Bn,i) > α
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for all n ≥
√
α and i = 1, . . . , kn. In particular, if we define (Ãn,↑t )t∈Dn by

Ãn,↑t :=
∑

ti∈Dn,0<ti≤t
(Ãnti − Ã

n
ti−1

)+, t ∈ Dn,

we also get

P
(
Ãn,↑Tn,i∧1 − Ã

n,↑
Tn,i−1∧1 ≥ α

)
> α (3.2.20)

for all all n ≥ 1/
√
α and i = 1, . . . , kn.

Step 2: In the second part of the proof, we construct an (UPBR) by placing smart

bets on the process (Ãn,↑t )t∈Dn . This is similar to the second part of [22, Lemma
4.7] with the major difference that we cannot invest directly into Sn. We define two
sequences of Dn ∪ {∞}-valued stopping times (σnk )2n

k=1 and (τnk )2n

k=1 by

σn1 := inf{t ∈ Dn | Ant+1/2n −A
n
t > 0}, τn1 := inf{t > σn1 | t ∈ Dn, A

n
t+1/2n −A

n
t < 0},

and, recursively,

σnk := inf{t > τnk−1 | t ∈ Dn, A
n
t+1/2n −A

n
t > 0},

τnk := inf{t > σnk | t ∈ Dn, A
n
t+1/2n −A

n
t < 0}

for k = 2, 3, . . . , 2n. Next, define a sequence of simple trading strategies (ϕn)n∈N by

ϕn :=

(
2n∑
k=1

1

n2
1Kσnk ,τ

n
k K

)
1K0,Tn,knK.

By Lemma 3.2.15, the strategies ϕn only buy if Snt = St and sell if Snt = St, despite
of a possible liquidation at Tn,kn Together with Snti − St ≤ 1 for all ti ∈ Dn, t ∈ [0, 1],
this implies that V liq(ϕn) can be bounded from below by

V liq
t (ϕn) ≥

∑
ti∈Dn,0<ti≤t

ϕnti(S
n
ti − S

n
ti−1

)− 1

n2

= Ãn,↑b2ntc/2n∧Tn,kn
+

∑
ti∈Dn,0<ti≤t

ϕnti(M
n
ti −M

n
ti−1

)− 1

n2

≥
∑

ti∈Dn,0<ti≤t
ϕnti(M

n
ti −M

n
ti−1

)− 1

n2

=
∑

ti∈Dn,0<ti≤t
(n2ϕnti)(M̃

n
ti − M̃

n
ti−1

)− 1

n2
, t ∈ [0, 1]. (3.2.21)

This means that the strategy allows us to invest in Ãn,↑, but we still do not know if it
actually allows for an (UPBR) as we need to get some control on the martingale part
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in (3.2.21). Therefore notice that∥∥∥∥∥∥
∑

ti∈Dn,0<ti≤Tn,kn

(n2ϕnti)(M̃
n
ti − M̃

n
ti−1

)

∥∥∥∥∥∥
L2(P)

≤
∥∥∥M̃Tn,kn∧1

∥∥∥
L2(P)

≤

√√√√ kn∑
i=1

∥∥∥M̃n
Tn,i∧1 − M̃n

Tn,i−1∧1

∥∥∥2

L2(P)
≤ 3
√
kn. (3.2.22)

Thus, Doob’s maximal inequality yields∥∥∥∥∥∥ sup
t∈Dn, t≤Tn,kn

∣∣∣∣∣∣
∑

ti∈Dn,0<ti≤t
(n2ϕnti)(M̃

n
ti − M̃

n
ti−1

)

∣∣∣∣∣∣
∥∥∥∥∥∥
L2(P)

≤ 6
√
kn. (3.2.23)

Consequently, we get the estimate

P
(

inf
t∈[0,Tn,kn∧1]

V liq
t (ϕn) ≤ −k3/4

n n−1/8 − n−2

)

≤ P

 sup
t∈Dn, t≤Tn,kn

∣∣∣∣∣∣
∑

ti∈Dn,0<ti≤t
(n2ϕnti)(M̃

n
ti − M̃

n
ti−1

)

∣∣∣∣∣∣ ≥ k3/4
n n−1/8

 ≤ 36n1/4

√
kn

(3.2.24)

by Tschebyscheff’s inequality. Thus, let us define the stopping times

Un := inf{t ≥ 0 : V liq
t (ϕn) ≤ −k3/4

n n−1/8 − n−2} ∧ Tn,kn ,

which satisfy P (Un < Tn,kn) ≤ 36n1/4/
√
kn. We now pass to the strategy

ϕ̃n := (kn)−3/4ϕn1K0,UnK.

The left and right jumps of V liq(ϕ̃n) are bounded from below by −k−3/4
n n−2, which is

a direct consequence of 0 ≤ S ≤ S ≤ 1. We obtain

inf
t∈[0,Tn,kn∧1]

V liq
t (ϕ̃n) ≥ −n−1/8 − 2k−3/4

n n−2 → 0, for n→∞. (3.2.25)

It remains to show (3.2.4). First notice that using (3.2.20) in conjunction with [22,
Corollary A1.3], yields

P
(
Ãn,↑Tn,kn∧1 ≥

α2

2

)
>
α

2
.

It follows that

P
(

(kn)−3/4Ãn,↑
Tn,kn∧

b2nUnc
2n

∧1
≥ k1/4

n

α2

2

)
>
α

2
− P (Un < Tn,kn)

≥ α

2
− 36n1/4

√
kn

.

(3.2.26)
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Putting (3.2.21), (3.2.24), (3.2.25), and (3.2.26) together yields that (ϕ̃n)n∈N is an
(UPBR).

Lemma 3.2.17. Let Assumption 3.2.10 hold. For each ε > 0, there exists a constant
C > 0 and a sequence of Dn ∪ {∞}-valued stopping times (τn)n∈N s.t. P(τn <∞) < ε
and the stopped processes Sn,τn = (Snt∧τn)t∈Dn, An,τn = (At∧τn)t∈Dn satisfy∑

ti∈Dn

∣∣∣An,τnti+1
−An,τnti

∣∣∣ ≤ C (3.2.27)

and, consequently, MV (Sn,τn , Dn) = E

 ∑
ti∈Dn

∣∣∣An,τnti+1
−An,τnti

∣∣∣
 ≤ C. (3.2.28)

Proof. The idea of the proof is akin to the proofs of Proposition 3.1 and Lemma 3.4
in Beiglböck et al. [6]. Thus, we only give a sketch of the proof and leave the details
to the reader. We first claim that ∑

ti∈Dn

(
Anti+1

−Anti
)+

: n ∈ N

 (3.2.29)

is bounded in probability. We proceed by contraposition, i.e., we suppose otherwise and
want to show that this leads to an (UPBR). Using Lemma 3.2.15, we can analogously
to the previous proof construct a sequence of simple trading strategies (ϕn)n∈N with

0 ≤ ϕn ≤ 1 s.t. ϕn invests in
∑

ti∈Dn

(
Anti+1

−Anti
)+

while only making potential

losses in the martingale part Mn and at liquidation. Indeed, similar as in step 2 of
the proof of Lemma 3.2.16, it can be shown that the associated liquidation values can
be bounded from below by

V liq
t (ϕn) ≥

∑
ti∈Dn,0<ti≤t

(
Anti+1

−Anti
)+

+
∑

ti∈Dn,0<ti≤t
ϕnti

(
Mn
ti −M

n
ti−1

)
− 1.

(3.2.30)

By the previous Lemma 3.2.16 and some stopping, there is no loss of generality by
assuming that (Mn)n∈N is uniformly bounded. Hence, by Doob’s maximal inequality,
the pathwise maxima of the martingale parts in (3.2.30) are bounded in L2. Thus, by
further stopping (cf. the arguments used in Beiglböck et al. [6, page 2433, lines 11-15]),
we may assume that (3.2.30) is uniformly bounded from below. On the other hand, by
assumption, the RHS of (3.2.30) is unbounded in probability from above. Thus, the
(adjusted) strategies yield an (UPBR) with long-only strategies (after rescaling), and
we arrive at a contradiction. Consequently, (3.2.29) has to be bounded in probability.
Since the martingale parts are also bounded in probability by Lemma 3.2.16, the same

holds for

{∑
ti∈Dn

(
Anti+1

−Anti
)−

: n ∈ N
}

, and we are done.
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In order to finish the proof of Theorem 3.2.8 we still need a couple of auxiliary
results, which give us some more information about MV (Sn, Dn) in comparison to
MV (Sm, Dm). Given a partition π = {0 = t0 < t1 < · · · < tn = 1} of [0, 1] and a
stopping time τ , we have the following notation π(τ) := inf{t ∈ π : t ≥ τ}. Recall the
following useful result from [5].

Lemma 3.2.18 (Lemma 3.2 of [5]). Let Assumption 3.2.10 hold. Then

MV(Sπ(τ), π) = E

[∑
ti∈π

1{ti<τ}
∣∣E [Sti+1 − Sti | Fti

]∣∣]

and
∣∣MV(Sπ(τ), π)−MV(Sτ , π)

∣∣ ≤ 1.

Compared to the frictionless case with Sn = S = S, the analysis is complicated
by the fact that in general Smt 6= Snt for t ∈ Dn. We have nevertheless the following
monotonicity result.

Lemma 3.2.19. Let Assumption 3.2.10 hold. In addition, let n,m ∈ N with m > n
and let τm be a Dm ∪ {∞}-valued stopping time. For any s ∈ Dn, we have

E

 ∑
ti∈Dn,ti≥s

1{ti<τm}|E
[
Snti+1

− Snti | Fti
]
| | Fs


≤ E

 ∑
ti∈Dm,ti≥s

1{ti<τm}|E
[
Smti+1

− Smti | Fti
]
| | Fs

+ (2− |Sns − Sms |)1{s<τm}.

In particular, for s = 0 this yields

MV (Sn,Dn(τm), Dn) ≤MV (Sm,τm , Dm) + 2.

In addition, we have

MV(Sm,Dn(τ), Dn) ≤ MV(Sm,Dm(τ), Dm) + 1. (3.2.31)

for all [0, 1] ∪ {∞}-valued stopping times τ .

Proof. Step 1: In a first step, we keep the grid Dn but replace Sn with Sm. Thus, we
want to show

E

 ∑
ti∈Dn,ti≥s

1{ti<τm}|E
[
Snti+1

− Snti | Fti
]
| | Fs


≤ E

 ∑
ti∈Dn,ti≥s

1{ti<τm}|E
[
Smti+1

− Smti | Fti
]
| | Fs

+ (1− |Sns − Sms |)1{s<τm}.

(3.2.32)



54 Chapter 3. Semimartingale price systems in models beyond efficient friction

We start by showing the one-step estimate∣∣∣E [Sns+1/2n − S
n
s | Fs

]∣∣∣
=

∣∣∣E [Sns+1/2n − S
m
s | Fs

]∣∣∣− |Sns − Sms |
≤

∣∣∣E [Sms+1/2n − S
m
s | Fs

]∣∣∣+ E
[∣∣∣Sms+1/2n − S

n
s+1/2n

∣∣∣ | Fs]
−|Sns − Sms | (3.2.33)

for all s = 1−1/2n, 1−2/2n, . . . , 0. The equality in (3.2.33) can be checked separately

on the Fs-measurable sets B1 := {E
[
Sns+2−n | Fs

]
> Ss}, B2 := {E

[
Sns+2−n | Fs

]
<

Ss}, and B3 := {Ss ≤ E
[
Sns+2−n | Fs

]
≤ Ss}. By the definition of Sn, B1 ⊆ {Sns =

Ss}. On the other hand, Sms ≤ Ss, which implies the equality on B1. On the set
B2 ⊆ {Sns = Ss}, the situation is completely symmetric. Finally, on B3 = {Sns =

E
[
Sns+2−n | Fs

]
}, the equality is obvious. The inequality in (3.2.33) follows from

Jensen’s inequality for conditional expectations and the triangle inequality.
Now, we show (3.2.32) by a backward-induction on s = 1− 1/2n, 1− 2/2n, . . . , 0.

For the initial step s = 1 − 1/2n, we only have to multiply (3.2.33) for s = 1 − 1/2n

by 1{1−2−n<τm} and use that |Sm1 − Sn1 | ≤ 1.
Induction step s+ 1/2n  s: By the induction hypothesis, one has

E

 ∑
ti∈Dt,ti≥s+1/2n

1{ti<τm}

∣∣∣E [Snti+1
− Snti | Fti

]∣∣∣ ∣∣∣∣Fs


≤ E

 ∑
ti∈Dn,ti≥s+1/2n

1{ti<τm}

∣∣∣E [Smti+1
− Smti | Fti

]∣∣∣ ∣∣∣∣Fs


+1{s<τm}E
[
1− |Sns+1/2n − S

m
s+1/2n ||Fs

]
, (3.2.34)

where we take on both sides of (3.2.32) for s+1/2n the conditional expectation under
Fs and use that {s + 1/2n < τm} ⊆ {s < τm}. Multiplying (3.2.33) by 1{s<τm} and
adding (3.2.34) yields (3.2.32).

Step 2: We still need to pass from Dn to Dm for the process Sm, i.e., we now want
to show that

E

 ∑
ti∈Dn,ti≥s

1{ti<τm}|E
[
Smti+1

− Smti | Fti
]
| | Fs


≤ E

 ∑
ti∈Dm,ti≥s

1{ti<τm}|E
[
Smti+1

− Smti | Fti
]
| | Fs

+ 1{s<τm}. (3.2.35)

This is less tricky: for τm = 1, it directly follows from the triangle inequality together
with Jensen’s inequality for conditional expectations and the second summand on the
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RHS is not needed. However, in the general case there is the problem that τm can
stop in Dm \Dn. Thus, for every i ∈ {s2n, s2n + 1, . . . , 2n − 1}, we have to make the
following calculations

1{i/2n<τm}

∣∣∣E [Sm(i+1)/2n − S
m
i/2n | Fi/2n

]∣∣∣
= 1{i/2n<τm}

∣∣∣∣∣∣E
(i+1)2m−n−1∑

j=i2m−n

(
Sm(j+1)/2m − S

m
j/2m

)
| Fi/2n

∣∣∣∣∣∣
≤ E

(i+1)2m−n−1∑
j=i2m−n

1{j/2m<τm}

∣∣∣E [Sm(j+1)/2m − S
m
j/2m | Fj/2m

]∣∣∣ | Fi/2n


+

∣∣∣∣∣∣E
1{i/2n<τm} (i+1)2m−n−1∑

j=i2m−n

1{j/2m≥τm}

(
Sm(j+1)/2m − S

m
j/2m

)
| Fi/2n

∣∣∣∣∣∣ . (3.2.36)

For the second summand, we can use the estimate∣∣∣∣∣∣1{i/2n<τm}
(i+1)2m−n−1∑
j=i2m−n

1{j/2m≥τm}

(
Sm(j+1)/2m − S

m
j/2m

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
(i+1)2m−n−1∑
j=i2m−n+1

1{(j−1)/2m<τm≤j/2m}

(
Sm(i+1)/2n − S

m
j/2m

)∣∣∣∣∣∣
≤

(i+1)2m−n−1∑
j=i2m−n+1

1{(j−1)/2m<τm≤j/2m} ≤ 1{i/2n<τm≤(i+1)/2n}, (3.2.37)

where we use 0 ≤ Smti ≤ 1 for all ti ∈ Dm. Putting (3.2.36) and (3.2.37) together and
summing up over all i, we arrive at (3.2.35). Together with (3.2.32), this yields the
main assertion. (3.2.31) is just (3.2.35).

For the convenience of the reader, we recall the following result from [5].

Lemma 3.2.20 (Lemma 4.2 in [5]). Assume that (τn)n∈N is a sequence of [0, 1]∪{∞}-
valued stopping times s.t. P(τn = ∞) ≥ 1 − ε for some ε > 0 and all n ∈ N. Then,
there exists a stopping time τ and for each n ∈ N convex weights µnn, . . . , µ

n
Nn

, i.e.,

µnk ≥ 0, k = n, . . . , Nn and
∑Nn

k=n µ
n
k = 1, s.t. P(τ =∞) ≥ 1− 3ε and

1J0,τK ≤ 2

Nn∑
k=n

µnk1J0,τkK, n ∈ N. (3.2.38)

We are now in the position to prove Theorem 3.2.8.
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Proof of Theorem 3.2.8. Let Assumption 3.2.10 hold. Let ε > 0, (τn)n∈N and C > 0
as in Lemma 3.2.17. In addition, let τ as in Lemma 3.2.20. We have

MV (Sn,Dn(τ), Dn) = E

 ∑
ti∈Dn

1{ti<τ}

∣∣∣E [Snti+1
− Snti | Fti

]∣∣∣


≤ 2E

 ∑
ti∈Dn

Nn∑
k=n

µnk1{ti<τk}

∣∣∣E [Snti+1
− Snti | Fti

]∣∣∣


= 2

Nn∑
k=n

µnkMV (Sn,Dn(τk), Dn)

≤ 2

Nn∑
k=n

µnk(MV (Sk,τk , Dk) + 2) ≤ 2C + 4, n ∈ N. (3.2.39)

Indeed, both equalities hold by Lemma 3.2.18. The first inequality is due to Lemma 3.2.20
and the second inequality follows from Lemma 3.2.19. The third inequality holds by
Lemma 3.2.17. Next, let us show that

MV(SDn(τ), Dn) = lim
m→∞
m≥n

MV(Sm,Dn(τ), Dn) ≤ lim sup
m→∞
m≥n

MV(Sm,Dm(τ), Dm) + 1 ≤ 2C + 5,

n ∈ N, where S is the value process of the continuous-time game. Indeed, the equality
follows from Proposition 3.2.14 and the dominated convergence theorem. The first in-
equality is (3.2.31) and the second follows from (3.2.39). Together with Lemma 3.2.18,
we arrive at

MV(Sτ , Dn) ≤ 2C + 6, n ∈ N. (3.2.40)

Finally, by the right-continuity of Sτ and (3.2.40), we get

MV(Sτ ) = lim
n→∞

MV(Sτ , Dn) ≤ 2C + 6.

Together with P(τ <∞) ≤ 3ε, this establishes that the right-continuous process S is
a local quasimartingale and, thus, a semimartingale by Rao’s theorem (in the version
of Theorem 3.2.12) and the Doob-Meyer-Decomposition [74, Chapter 3, Theorem 16].

Proof of Theorem 3.2.7. Having shown that Theorem 3.2.8 holds the assertion follows
directly by Proposition 3.2.9.

Remark 3.2.21. The arguments presented here rely heavily on the two-dimensional
setting. However, Theorem 2.7 can be directly applied to a model with a bank account
and finitely many risky assets since in this case it is sufficient to have a semimartingale
price system for each risky asset separately (cf. also [22, Theorem 7.2]). On the other
hand, it seems that the approach cannot be adapted to the general Kabanov model (cf.
Kabanov and Safarian [55, Section 3.6]), in which there need not exist a bank account
that is involved in every transaction.
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3.3 The self-financing condition

As already discussed in the introduction, we use the semimartingale to define the
self-financing condition in the bid-ask model for general strategies. A self-financing
condition can be identified with an operator ϕ 7→ Π(ϕ) that maps each amount of risky
assets to the corresponding position in the risk-less bank account (if the later exists).
Here, we assume that the initial position and the risk-less interest are zero. In addition,
for the rest of the chapter, we assume that there exists a semimartingale
price system S, i.e., S is a semimartingale s.t. S ≤ S ≤ S (cf. Theorem 3.2.7). The
aim is to define Π(ϕ) as ϕ • S − ϕS − “costs”, where the process ϕ • S denotes the
stochastic integral. At this stage, the process ϕ is bounded (see Proposition 3.4.2 for
the extension to general strategies). The costs are caused by the fact that the trades are
carried out at the less favorable bid-ask prices. Since the gains in the semimartingale
are finite, they cannot compensate infinite costs and the latter lead to ruin.

3.3.1 Construction of the cost term

We construct the cost associated to a strategy ϕ ∈ bP path-by-path, i.e., in the
following, ω ∈ Ω is fixed and ϕ, S, S, S are identified with functions in time.

We follow a two-step procedure. First, we calculate the costs on intervals in which
the left limit of the spread is bounded away from zero by means of a modified Riemann-
Stieltjes integral. The integral turns out to always exist (but it can take the value∞).
In the second step, we exhaust the set of points with positive spread by finite unions
of such intervals and define the total costs as the supremum of the costs along these
unions. One may see a vague analogy between the second step and the way a Lebesgue
integral is constructed.

This approach leads to a well-founded self-financing condition under the additional
Assumption 3.3.18 on the behavior of the spread at zero. Very roughly speaking, there
should not occur costs if the investor builds up positions at times the spread is zero
and the positions are already closed before the spread reaches any positive value (cf.
Example 3.3.23 for a counterexample). Since for the construction of our cost process
itself, the assumption is not needed, we introduce it later on.

In order to introduce the integral, we need the following notation.

Definition 3.3.1. Let I = [a, b] ⊆ [0, T ] with a < b.

(i) A collection P = {t0, . . . tn} of points ti ∈ [a, b] for n ∈ N and i = 0, . . . , n with
a = t0 < t1 < · · · < tn = b is called a partition of I.

(ii) A partition P ′ = {t′0, . . . , t′m} with P ′ ⊇ P is called a refinement of P .

(iii) If P, P ′ are two partitions of I, the common refinement P ∪ P ′ is the partition
obtained by ordering the points of {t0, . . . tn} ∪ {t′0, . . . , t′m} in increasing order.

(iv) Given a partition P = {t0, . . . , tn} of I a collection λ = {s1, . . . , sn} with si ∈
[ti−1, ti) for i = 1, . . . , n is called a modified intermediate subdivision of P .
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(v) Let ϕ ∈ bP, P = {t0, . . . , tn} be a partition of I and λ = {s1, . . . , sn} be an
modified intermediate subdivision of P , the modified Riemann-Stieltjes sum is
defined by

R(ϕ, P, λ) :=

n∑
i=1

(Ssi − Ssi)(ϕti − ϕti−1)+ +

n∑
i=1

(Ssi − Ssi)(ϕti − ϕti−1)−.

Definition 3.3.2. Let ϕ ∈ bP and I = [a, b] ⊆ [0, T ] with a < b. The cost term of ϕ
on I exists and equals C(ϕ, I) ∈ R+ ∪ {∞} if for all ε > 0 there is a partition Pε of I
s.t. for all refinements P of Pε and all modified intermediate subdivisions λ of P the
following is satisfied:

(i) In the case of C(ϕ, I) <∞, we have |C(ϕ, I)−R(ϕ, P, λ)| < ε,

(ii) In the case of C(ϕ, I) =∞, we have |R(ϕ, P, λ)| > 1
ε .

In addition, we set C(ϕ, {a}) := 0 for all a ∈ [0, T ] and C(ϕ, ∅) := 0.

The next proposition establishes the existence of the cost term on an interval I
where the spread is bounded away from zero.

Proposition 3.3.3. Let ϕ ∈ bP and I = [a, b] ⊆ [0, T ] with a < b s.t. inft∈[a,b)(St −
St) > 0. Then, the cost term C(ϕ, I) in Definition 3.3.2 exists and is unique. In
addition, we have {

C(ϕ, I) <∞, if Varba(ϕ) <∞
C(ϕ, I) =∞, if Varba(ϕ) =∞,

where Varba(ϕ) denotes the pathwise variation of ϕ on the interval [a, b].

We postpone the technical proof of Proposition 3.3.3 to Section 3.6.

Remark 3.3.4. First note that a priori, ϕ need not be of finite variation. Thus,
we cannot decompose it into its increasing part ϕ↑ and decreasing part ϕ↓ to define∫ b
a (Ss − Ss)dϕ↑s +

∫ b
a (Ss − Ss)dϕ

↓
s := C(ϕ↑, [a, b]) + C(ϕ↓, [a, b]). Instead, we consider

the increasing and decreasing parts of ϕ along grids and weight them with the corre-
sponding prices before passing to the limit.

However, if Varba(ϕ) < ∞, it can be shown that C(ϕ↑, [a, b]) + C(ϕ↓, [a, b]) =
C(ϕ, [a, b]). This can be seen by an inspection of the proof of Proposition 3.3.3, in
which the condition inft∈[a,b)(St − St) > 0 can be dropped if Varba(ϕ) <∞.

Remark 3.3.5. Definition 3.3.2(i) only requires that the cost term exists in the
Moore-Pollard-Stieltjes-sense (see, e.g., Hildebrandt [43, Section 4] and Mikosch and
Norvaǐsa [71, Section 2.3]), i.e., as the limit of the net R(ϕ, ·, ·) indexed by the di-
rected set of tuples (P, λ) with the partial order (P, λ) ≥ (P ′, λ′) iff P is a refine-
ment of P ′. This is weaker than the existence in the norm-sense, i.e., as the limit of
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the net R(ϕ, ·, ·) indexed by the tuples (P, λ) with the partial order (P, λ) ≥ (P ′, λ′)
iff maxi=1,...,n(ti − ti−1) ≤ maxi=1,...,m(t′i − t′i−1), that is guaranteed for the usual
Riemann-Stieltjes integral with a continuous integrator of finite variation. A straight-
forward adaptation of the existence in the norm-sense of the usual Riemann-Stieltjes
integral to the present context would read:

The cost term is said to exist and equal to C(ϕ, I) ∈ R+ if for each ε > 0 there
is δ > 0 s.t. |C(ϕ, I) − R(ϕ, P, λ)| < ε for all partitions P = {t0, . . . , tn} with
maxi=1,...,n(ti − ti−1) < δ and all intermediates subdivision λ = {s1, . . . , sn} with
si ∈ [ti−1, ti).

But, the following example, similar to Guasoni et al. [36, Example A.3] shows that
C(ϕ, I) does in general not exist in the norm sense: let T = 2, S − S = 1[1,2] and
ϕ = 1(1,2]. Namely, if ti = 1 is not included in the partition P , R(ϕ, P, λ) can oscillate
between 0 and 1.

The example shows that the points of common discontinuities of integrator and
integrand are critical to calculate the costs. Thus, they have to be included in the
partition, which is guaranteed by the Moore-Pollard-Stieltjes approach.

Remark 3.3.6. The restriction that the point si of the intermediate subdivision λ
has to lie in the interval [ti−1, ti), and not only in [ti−1, ti], has a clear financial
interpretation.

If an investor buys ϕs − ϕs− shares at time s, she pays (ϕs − ϕs−)Ss− monetary
units. Consequently, if she updates her position between ti−1 and ti, only the stock
prices on the time interval [ti−1, ti) have to be considered. In the limit, the choice of
the price in [ti−1, ti) does not matter. Indeed, a well-known way to guarantee the exis-
tence of Riemann-Stieltjes integrals in the case of simultaneous jump discontinuities
on the same side of integrator and integrand is to exclude the boundary points (see
Hildebrandt [43, Section 6]).

Finally, we mention that in the case of Varba(ϕ) < ∞, the integrals are the same
as in Guasoni et al. [36, Section A.2]. But, besides considering different processes, we
introduce the integrals in a different way.

The next proposition states that the cost term is additive with regard to the
underlying interval. Its proof is obvious.

Proposition 3.3.7. Let ϕ ∈ bP, I = [a, b] ⊆ [0, T ] s.t. inft∈[a,b)(St − St) > 0 and
c ∈ [a, b]. Then, we have

C(ϕ, [a, b]) = C(ϕ, [a, c]) + C(ϕ, [c, b]).

Having defined the costs for all subintervals I = [a, b] ⊆ [0, T ] with inft∈[a,b)(St −
St) > 0, we now proceed to define the accumulated costs as a process. Therefore, we
let

I :=

{
∪ni=1[ai, bi] :

n ∈ N, 0 ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤ an ≤ bn ≤ T,
inft∈[ai,bi)(St − St) > 0, i = 1, . . . , n

}
∪ {∅}. (3.3.1)



60 Chapter 3. Semimartingale price systems in models beyond efficient friction

We now extend the cost term to I. Given ϕ ∈ bP and J = ∪ni=1[ai, bi] with inft∈[ai,bi)(St−
St) > 0 for all i = 1, . . . , n, we define the costs along J by

C(ϕ, J) :=
n∑
i=1

C(ϕ, [ai, bi]), (3.3.2)

where the cost terms C(ϕ, [ai, bi]) for i = 1, . . . , n are defined in Definition 3.3.2. By
Proposition 3.3.7, the RHS of (3.3.2) does not depend on the representation of J .
Thus, the cost term C(ϕ, J) is well-defined for all J ∈ I.

Definition 3.3.8. (Cost process) Let ϕ ∈ bP. Then, the cost process (Ct(ϕ))t∈[0,T ]

is defined by

Ct(ϕ) := sup
J∈I

C(ϕ, J ∩ [0, t]) ∈ [0,∞], t ∈ [0, T ]

(Note that {0} ∈ I with C(ϕ, {0}) = 0 and thus the supremum is nonnegative). If it
is clear from the context, we also write (Ct)t∈[0,T ] for the cost process associated to ϕ.

Proposition 3.3.9. Let ϕ ∈ bP. The cost process (Ct(ϕ))t∈[0,T ] is [0,∞]-valued,
increasing and, consequently, làglàd (if finite). In addition, the following assertions
hold.

(i) For any 0 ≤ s ≤ t ≤ T , we have Ct(ϕ) = Cs(ϕ) + supJ∈I C(ϕ, J ∩ [s, t]),

(ii) For any 0 ≤ s ≤ t ≤ T with infτ∈[s,t)(Sτ − Sτ ) > 0, we have Ct(ϕ) = Cs(ϕ) +
C(ϕ, [s, t]),

(iii) For any 0 ≤ s ≤ t ≤ T , we have Ct(ϕ) ≤ Cs(ϕ) + supτ∈[s,t)(Sτ − Sτ )Varts(ϕ).

The assertions above follow directly from Definitions 3.3.2 and 3.3.8. Thus, we
leave the easy proof to the reader.

The next proposition determines sequences of partitions whose corresponding
Riemann-Stieltjes sums converge to the cost term on an interval where the spread is
bounded away from zero. This will be crucial to show that the cost term is predictable.
For this purpose, recall that the oscillation osc(f, I) of a function f : [0, T ] → R on
an interval I ⊆ [0, T ] is defined by osc(f, I) := sup{|f(t)− f(s)| : s, t ∈ I}.

Proposition 3.3.10. Let ϕ ∈ bP and I = [a, b] ⊆ [0, T ] with a < b and inft∈[a,b)(St−
St) > 0. In addition, let (Pn)n∈N be a refining sequence of partitions of I, i.e., Pn =
{tn0 , . . . , tnmn} with a = tn0 < tn1 < · · · < tnmn = b and Pn+1 ⊇ Pn, s.t.

(i) lim
n→∞

max( sup
i=1,...,mn

osc(S − S, [tni−1, t
n
i )), sup

i=1,...,mn

osc(S − S, [tni−1, t
n
i ))) = 0

(ii) lim
n→∞

∑mn
i=1 |ϕtni − ϕtni−1

| = Varba(ϕ).
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Then, for any sequence λn = {sn1 , . . . , snmn} of modified intermediate subdivision, we
have

R(ϕ, Pn, λn)→ C(ϕ, [a, b]) as n→∞.

In addition, such a sequence (Pn)n∈N always exists.

The proof of Proposition 3.3.10 is closely related to the proof of Proposition 3.3.3.
Thus, we also postpone it to Section 3.6. We now conclude the subsection with a first
approximation result.

Proposition 3.3.11. Let ϕ,ϕn ∈ bP, n ∈ N, t ∈ [0, T ] and J ∈ I. Then, we have
the implication

ϕn → ϕ pointwise ⇒ lim inf
n→∞

C(ϕn, J ∩ [0, t]) ≥ C(ϕ, J ∩ [0, t]). (3.3.3)

Proof. Let ϕn → ϕ pointwise and t ∈ [0, T ]. We start by noting that the claim is
trivial if J = {a} for some a ∈ [0, T ] or if J = ∅.

Step 1. We now treat the special case J = [a, b] ∈ I with a < b. In this case, we
have C(ϕ, J ∩ [0, t]) = C(ϕ, [a, b ∧ t]) and C(ϕn, J ∩ [0, t]) = C(ϕn, [a, b ∧ t]) for all
n ∈ N, where we use the convention [c, d] = ∅ if d < c. In addition, by the preceding
observation, we may assume t > a.

We only consider the case C(ϕ, [a, b ∧ t]) <∞ since the opposite case C(ϕ, [a, b ∧
t]) =∞ is analogous. Let ε > 0. There is a partition Pε = {t0, . . . , tm} of [a, b ∧ t] s.t.

m∑
i=1

inf
s∈[ti−1,ti)

(Ss − Ss)(ϕti − ϕti−1)+ +
m∑
i=1

inf
s∈[ti−1,ti)

(Ss − Ss)(ϕti − ϕti−1)−

≥ C(ϕ, [a, b ∧ t])− ε.
(3.3.4)

Using the pointwise convergence of (ϕn)n∈N, we can find N ∈ N s.t. for all n ≥ N , we
have

m∑
i=1

inf
s∈[ti−1,ti)

(Ss − Ss)(ϕnti − ϕ
n
ti−1

)+ +

m∑
i=1

inf
s∈[ti−1,ti)

(Ss − Ss)(ϕnti − ϕ
n
ti−1

)−

≥ C(ϕ, [a, b ∧ t])− 2ε.

(3.3.5)

Keeping this in mind, for each n, we choose a partition Pn s.t. for all refinements P
of Pn and intermediate subdivisions λ of P , we have C(ϕn, [a, b∧t]) ≥ R(ϕn, P, λ)−ε.
Now, we let Pn := Pε ∪ Pn and write Pn = {tn0 , . . . , tnmn}. Denoting by ti−1 = tni1 <
tni2 < · · · < tnij = ti the points of Pn in between ti−1 and ti, we have

j∑
k=2

(ϕntnik
− ϕntnik−1

)+ ≥ (ϕnti − ϕ
n
ti−1

)+ and

j∑
k=2

(ϕntnik
− ϕntnik−1

)− ≥ (ϕnti − ϕ
n
ti−1

)−.
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Together with (3.3.5) this yields

C(ϕn, [a, b ∧ t]) ≥ R(ϕn, Pn, λn)− ε ≥ C(ϕ, [a, b ∧ t])− 3ε

for all n ≥ N and intermediate subdivision λn of Pn. Hence, we have

lim inf
n→∞

C(ϕn, [a, b ∧ t]) ≥ C(ϕ, [a, b ∧ t])− 3ε,

which tantamount to the claim as ε ↓ 0.
Step 2. Finally, let J = ∪mi=1[ai, bi] ∈ I. Then, using the non-negativity of the

sequences (C(ϕn, [ai, bi ∧ t]))n∈N for i = 1, . . . ,m, we have

lim inf
n→∞

C(ϕn, J ∩ [0, t]) = lim inf
n→∞

m∑
i=1

C(ϕn, [ai, bi ∧ t]) ≥
m∑
i=1

lim inf
n→∞

C(ϕn, [ai, bi ∧ t]).

Thus, (3.3.3) follows directly from step 1 and the observation at the start of the
proof.

3.3.2 The cost term as a stochastic process

Until now we kept ω ∈ Ω fixed, i.e., the construction is path-by-path. To show some
measurability properties of the cost term, we now consider it as a stochastic process.

Proposition 3.3.12. Let ϕ ∈ bP. The cost process C(ϕ) = (Ct(ϕ))t∈[0,T ] coincides
with a predictable process up to evanescence.

In order to prove Proposition 3.3.12, we need the following lemma, whose proof
relies on some deep results of Doob [28] and thus is postponed to Section 3.6.

Lemma 3.3.13. Let ϕ ∈ bP and σ ≤ τ two stopping times s.t. infσ(ω)≤t<τ(ω)(St(ω)−
St(ω) > 0 for all ω ∈ Ω. Then, the process C(ϕ, [σ∧·, τ∧·]) coincides with a predictable
process up to evanescence.

In order to establish Proposition 3.3.12, we still need to approximate the supremum
in Definition 3.3.8 in a measurable way. Therefore, we define for each n ∈ N a sequence
of stopping times by τn0 := 0 and

τnk :=

{
inf{t ≥ τnk−1 : St − St ≤ 2−(n+1)}, k odd

inf{t > τnk−1 : St − St ≥ 2−n}, k even
, for k ∈ N. (3.3.6)

Note that only a finite number of {τnk (ω)}k∈N is less than infinity as the process S−S
has càdlàg sample paths, τn2k < τn2k+1 on {τ2k <∞}, and

inf
τn2k(ω)≤t<τn2k+1(ω)

(
St(ω)− St(ω)

)
≥ 2−(n+1) for k ∈ N0
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for all ω ∈ Ω. In particular, this means that the process Cn(ϕ) = (Cn(ϕ)t)t∈[0,T ]

Cnt (ϕ) :=

∞∑
k=0

C(ϕ, [τn2k ∧ t, τn2k+1 ∧ t]) (3.3.7)

is well-defined and coincides with a predictable process up to evanescence for each
n ∈ N by Lemma 3.3.13.

Lemma 3.3.14. Let ϕ ∈ bP and (Cn(ϕ))n∈N as above. Then, Cn(ϕ)→ C(ϕ) point-
wise.

Proof. We write Cn instead of Cn(ϕ) to not overburden the notation. Let (ω, t) ∈
Ω× [0, T ]. For Ct(ω) <∞, we claim: for each ε > 0 there is N = N(ω) ∈ N s.t.

Ct(ω)− ε ≤ Cnt (ω) ≤ Ct(ω) for all n ≥ N. (3.3.8)

Thus, let us prove (3.3.8). It is obvious from Definitions 3.3.8 that we have Ct(ω) ≥
Cnt (ω) for all n ∈ N. To prove the other inequality, let ε > 0 and choose 0 ≤ a1 <
b1 ≤ a2 < · · · ≤ an < bn ≤ t s.t. inft∈[ai,bi)(St(ω)− St(ω)) > 0 for i = 1, . . . , n and

Ct(ω)− ε ≤
n∑
i=1

C(ϕ(ω), [ai, bi]) (3.3.9)

Let δ := mini=1,...,n inft∈[ai,bi)(St(ω) − St(ω)) > 0 and choose N ∈ N s.t. 2−N < δ.
Then, it follows from the definition of the stopping times (3.3.6) that

n⋃
i=1

[ai, bi] ⊆
∞⋃
k=0

[τn2k(ω) ∧ t, τn2k+1(ω) ∧ t] for all n ≥ N.

Combining (3.3.9) this with Proposition 3.3.7, we find Ct(ω) − ε ≤ Cnt (ω) for all
n ≥ N, which proves (3.3.8). Of course, for Ct(ω) =∞ the arguments are completely
analogous.

Proof of Proposition 3.3.12. Applying Lemma 3.3.13, we find that Cn coincides with
a predictable process up to evanescence. Together with Lemma 3.3.14 this yields that
C does the same.

Next, we want to calculate the cost of an “almost simple” trading strategy (cf.
Guasoni et al. [36] for a detailed discussion).

Definition 3.3.15. A predictable stochastic process ϕ of finite variation is called an
almost simple strategy if there is a sequence of stopping times (τn)n≥0 with τn < τn+1

on {τn <∞} and #{n : τn(ω) <∞} <∞ for all ω ∈ Ω, s.t.

ϕ =

∞∑
n=0

(ϕτn1JτnK + ϕτn+1Kτn,τn+1J).
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Proposition 3.3.16. Let ϕ be an almost simple strategy. We have

Ct(ϕ) =
∞∑
n=0

1{τn≤t}
(
(Sτn− − Sτn−)(ϕτn − ϕτn−)+ + (Sτn− − Sτn−)(ϕτn − ϕτn−)−

)
+

∞∑
n=0

1{τn<t}
(
(Sτn − Sτn)(ϕτn+ − ϕτn)+ + (Sτn − Sτn)(ϕτn+ − ϕτn)−

)
for all t ∈ [0, T ].

Proof. For ω ∈ Ω fixed, there is some n ∈ N0 with τ0(ω) < . . . < τn−1(ω) ≤ T and
τn(ω) = ∞. Now, it is sufficient to consider partitions containing τi(ω) − δ, τi(ω) if
(Sτi−(ω)−Sτi−(ω))∧(Sτi−(ω)−Sτi−(ω)) > 0 and τi(ω), τi(ω)+δ if (Sτi(ω)−Sτi(ω))∧
(Sτi(ω)− Sτi(ω)) > 0 for i = 0, . . . , n− 1 and δ > 0 small. We leave the details to the
reader.

At last, we show how a ϕ ∈ bP, which incurs finite cost on a stochastic interval
where the spread is bounded away from zero, can be approximated by almost simple
strategies on this interval s.t. the cost terms converges as well.

Proposition 3.3.17. Let ϕ ∈ bP and σ ≤ τ two stopping times s.t.

inf
σ(ω)≤t<τ(ω)

(St(ω)− St(ω) > 0

for all ω ∈ Ω and C(ϕ, [σ ∧ T, τ ∧ T ]) < ∞ a.s. Then, there exists a uniformly
bounded sequence (ϕn)n∈N s.t. ϕn1Kσ,τK is almost simple with ϕnσ = ϕσ on {σ < ∞}
and |ϕ− ϕn| ≤ 1/n on Jσ, τK (up to evanescence) for all n ∈ N, and s.t.

sup
t∈[0,T ]

|C(ϕn, [σ ∧ t, τ ∧ t])− C(ϕ, [σ ∧ t, τ ∧ t])| → 0, P-a.s. (3.3.10)

The proof is postponed to Section 3.6.

3.3.3 Definition and characterization

For the remainder of the chapter, we make the following assumption on the bid-ask
spread.

Assumption 3.3.18. For every (ω, t) ∈ Ω × [0, T ) with St(ω) = St(ω) there exists
an ε > 0 s.t. Ss(ω) = Ss(ω) for all s ∈ (t, (t + ε) ∧ T ) or Ss(ω) > Ss(ω) for all
s ∈ (t, (t+ ε) ∧ T ).

This means that each zero of the path t 7→ St(ω)− St(ω) is either an inner point
from the right of the zero set or a starting point of an excursion away from zero. This
excludes, e.g., Brownian behavior of the spread, which is exploited in Example 3.3.23,
where we show what can go wrong without this assumption.
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For the rest of the chapter, we work with the predictable versions of the cost pro-
cesses (cf. Proposition 3.3.12), and identify processes that coincide up to evanescence.
Given a semimartingale S, we define the operator Π that maps a bounded, predictable
strategy ϕ starting at zero, i.e., ϕ ∈ bP, to the associated [−∞,∞)-valued risk-less
position (also starting at zero) by

Πt(ϕ) := ϕ • St − ϕtSt − Ct(ϕ), t ∈ [0, T ], (3.3.11)

which coincides with ϕ • St− − ϕtSt− − Ct(ϕ). Throughout the chapter, ϕ • S de-
notes the standard stochastic integral as defined by Definition III.6.17 in [46]. If
stock positions are evaluated by the semimartingale S, the wealth process is given by
Vt(ϕ) := ϕ • St−Ct(ϕ) = Πt(ϕ)+ϕtSt. If there is ambiguity about the semimartingale
S used in the construction, we write CS(ϕ),ΠS(ϕ), V S(ϕ) instead of C(ϕ),Π(ϕ), V (ϕ).

We still have to introduce a measure that gives some information about the con-
vergence of integrals w.r.t. S. There exists a probability measure Q ∼ P s.t. the
semimartingale S possesses a decomposition S = M + A, where M is a Q-square
integrable martingale and A is a process of Q-integrable variation (Theorem 58 in
Chapter VII of Dellacherie and Meyer [25]). We introduce the finite measure

µS(B) := EQ (1B • 〈M,M〉T ) + EQ (1B • VarT (A)) , B ∈ P, (3.3.12)

where 〈M,M〉 denotes the predictable quadratic variation of M (see, e.g., [46, Chapter
1, Theorem 4.2]).

The following theorem characterizes the process V (ϕ) as the limit of wealth pro-
cesses associated with suitable almost simple strategies. Note that for almost simple
strategies, V coincides with the intuitive wealth process that can be written down
without any limiting procedure.

Theorem 3.3.19. Let ϕ ∈ bP and let µ be a σ-finite measure on the predictable
σ-algebra with µS � µ.

(i) For all {0,1}-valued decreasing predictable processes A and all uniformly bounded
sequences of predictable processes (ϕn)n∈N, the following implication holds:

ϕn → ϕ pointwise on {S− > S−} ∩ {A = 1},
µS-a.e. on {S− = S−} ∩ {A = 1}

=⇒ lim inf
n→∞

V (ϕn) ≤ V (ϕ) on {A = 1} up to evanescence.

(ii) There exists a uniformly bounded sequence of almost simple strategies (ϕn)n∈N
s.t.

ϕn → ϕ pointwise on {S− > S−} ∩ {C(ϕ) <∞},
µ-a.e. on {S− = S−}∩{C(ϕ) <∞},

and

sup
t∈[0,T ]

|Vt(ϕn)− Vt(ϕ)|1{Ct(ϕ)≤K} → 0

in probability for n→∞ and all K ∈ N.
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Remark 3.3.20. In the special case C(ϕ) <∞, which is equivalent to V (ϕ) > −∞,
setting A = 1 yields the following characterization of the wealth process of a bounded
strategy: (i) The wealth of the strategy exceeds the limiting wealth of (almost) pointwise
converging simple strategies and (ii) there exists a special approximating sequence s.t.
the wealth processes converge.

On the set {V (ϕ) = −∞} = {C(ϕ) = ∞}, one cannot expect the existence of a
sequence of simple strategies that converge pointwise to ϕ on {S− > S−}. Nevertheless,
Theorem 3.3.19(i) provides a motivation for V (ϕ) = −∞.

For the proof of Corollary 3.3.22, we need the theorem in this general form, cover-
ing the case of infinite costs, since a priori it is not clear that the latter property does
not depend on the choice of S.

Remark 3.3.21. In Theorem 3.3.19(i), one cannot expect convergence “uniformly
in probability” as in the frictionless case. Indeed, consider S = 1, S = 2, and ϕn =
1]]1/n,1]] which converges pointwise to ϕ = 1]]0,1]] but V (ϕn)− V (ϕ) = 1]]0,1/n]].

Corollary 3.3.22. Let ϕ ∈ bP. The self-financing condition, i.e., the risk-less po-
sition Π(ϕ), does not depend on the choice of the semimartingale price system up to
evanescence.

Proof. Let ϕ ∈ bP and S, S̃ be semimartingale price systems. Of course, the mea-
sure Q in (3.3.12) can be chosen jointly for S and S̃ and w.l.o.g. Q = P. We set

µ := µS + µS̃ . Let us fix K ∈ N and show that

ΠS̃(ϕ) ≥ ΠS(ϕ) on {CS(ϕ) ≤ K} up to evanescence. (3.3.13)

Observe that (3.3.13) for all K ∈ N implies that ΠS̃(ϕ) ≥ ΠS(ϕ) up to evanescence
since ΠS(ϕ) = −∞ on {CS(ϕ) = ∞} = (Ω × [0, T ]) \ ∪K∈N{CS(ϕ) ≤ K}. Then, the
assertion of the corollary follows by symmetry. Thus, it is sufficient to show (3.3.13).

For this, let (ϕn)n∈N be a sequence of almost simple strategies satisfying the prop-
erties in Theorem 3.3.19(ii) for the semimartingale S and µ given above. According
to Theorem 3.3.19(ii), we may suppose that

sup
t∈[0,T ]

|V S
t (ϕn)− V S

t (ϕ)|1{CSt (ϕ)≤K} → 0 P-a.s. (3.3.14)

by passing to a subsequence. On the other hand, by applying Theorem 3.3.19(i) with
regard to the semimartingale S̃ and A := 1{CS(ϕ)≤K}, we get

lim inf
n→∞

V S̃(ϕn) ≤ V S̃(ϕ) on {CS(ϕ) ≤ K} up to evanescence. (3.3.15)

In addition, Proposition 3.3.16 and elementary calculations yield the assertion of the
corollary for almost simple strategies, i.e.,

V S̃(ϕn) = V S(ϕn) + ϕn(S̃ − S), n ∈ N. (3.3.16)
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It remains to analyze (ϕn−ϕ)(S̃−S), especially on {S− = S−}∩{S > S}. If a sequence
of càdlàg processes converges to zero uniformly in probability, the same holds for the
associated jump processes. Thus, the choice of µ and the same arguments as in the
proof of Theorem 3.3.19(i) yield

sup
t∈[0,T ]

|ϕnt ∆St − ϕt∆St|1{St−−St−=0, CSt (ϕ)<∞} → 0 in probability for n→∞

sup
t∈[0,T ]

|ϕnt ∆S̃t − ϕt∆S̃t|1{St−−St−=0, CSt (ϕ)<∞} → 0 in probability for n→∞.

(3.3.17)

By passing to a further subsequence (again denoted by (ϕn)n∈N), we can and
do assume that the convergence in (3.3.17) holds for P-a.e. ω ∈ Ω. Thus, on {S− =
S−, C

S(ϕ) <∞} we have ϕn(S̃−S) = ϕn(S̃−−S−)+ϕn(∆S̃−∆S) = ϕn(∆S̃−∆S)→
ϕ(∆S̃ − ∆S) = ϕ(S̃ − S) up to evanescence. In addition, Theorem 3.3.19(ii) yields
ϕn(S̃−S)→ ϕ(S̃−S) on {S− > S−, C

S(ϕ) <∞}, i.e., we have ϕn(S̃−S)→ ϕ(S̃−S)
on {CS(ϕ) < ∞} up to evanescence. Combining this with (3.3.14), (3.3.15), and
(3.3.16) yields

ΠS̃(ϕ)−ΠS(ϕ) = V S̃(ϕ)− ϕS̃ −
(
V S(ϕ)− ϕS

)
≥ lim inf

n→∞

(
V S̃(ϕn)− V S(ϕn)− ϕn

(
S̃ − S

))
= 0 on {CS(ϕ) ≤ K} up to an evanescence,

and we are done. We note that the differences above are well-defined since ΠS(ϕ) and
V S(ϕ) are finite on {CS(ϕ) ≤ K}.

The following example shows that our approach does not work without Assump-
tion 3.3.18.

Example 3.3.23. Let S = −|B| + LB and S = |B| + LB, where B is a standard
Brownian motion and LB its local time at zero in the sense of [74, page 212]. Consider
the strategy ϕ := 1{S=S}∩(Ω×(0,T ]) = 1{B=0}∩(Ω×(0,T ]) and different semimartingale

price systems S = α|B| + LB for α ∈ [−1, 1]. By Definition 3.3.8, we get C(ϕ) = 0.
By [74, Theorem IV.69 and Corollary 3 of Theorem IV.70], we have ϕ • S = (α+1)LB.
Together this implies Π(ϕ) = (α + 1)LB − 1{B=0}L

B. Since LB does not vanish, the
self-financing condition would depend on the choice of α.

Corollary 3.3.24. Let ϕ ∈ bP and (ϕn)n∈N be uniformly bounded. If ϕn → ϕ point-
wise on {S− > S−} and µS-a.s. on {S− = S−}, then there exists a deterministic
subsequence (nk)k∈N s.t.

lim
k→∞

(V (ϕnk)− V (ϕ))+ = 0 up to evanescence.

Proof. The proof of Theorem 3.19 (i) shows that we have ϕn • S → ϕ • S uniformly
in probability. Hence, we can choose a subsequence (nk)k∈N s.t. ϕnk • S → ϕ • S up to
evanescence. Finally, together with lim infk→∞C(ϕnk) ≥ lim infn→∞C(ϕn) ≥ C(ϕ)
the assertion follows.
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3.4 Extension to unbounded strategies

Let (bP)Π := {ϕ ∈ bP : Π(ϕ) > −∞ up to evanescence}. Note that by Corol-
lary 3.3.22 this set does not depend on the semimartingale price system. In this sec-
tion, we want to extend the self-financing condition, i.e., the operator Π from (bP)Π to
an as large as possible set of predictable strategies. Therefore, recall that the space of
adapted làdlàg processes L endowed with the topology of uniform convergence in prob-

ability, which is defined by the quasinorm ‖X‖up = E
[
supt∈[0,T ] |Xt| ∧ 1

]
, X ∈ L, is

a complete metric space with metric dup(X,Y ) := ‖X − Y ‖up for X,Y ∈ L. Indeed,
this is a consequence of the completeness of the space of làdlàg functions (also called
regulated functions) equipped with the supremum norm (see, e.g., Fraňková [31, Point
1.8]). In addition, if (Xn)n∈N ⊆ L converges to X ∈ L with regard to dup, we write
up-limn→∞X

n = X. At this step, the restriction from bP to (bP)Π is not critical
since the latter is sufficiently large to approximate finite portfolio processes, in which
we are finally interested, in a reasonable way.

Definition 3.4.1. Let L denote the subset of real-valued, predictable strategies ϕ s.t.
there exists a sequence (ϕn)n∈N ⊂ (bP)Π with

(i) ϕn → ϕ pointwise on Ω× [0, T ] and (ϕn)+ ≤ ϕ+, (ϕn)− ≤ ϕ− for all n ∈ N,

(ii) there exists a semimartingale S with S ≤ S ≤ S s.t.

(V S(ϕn))n∈N = (ϕn • S − CS(ϕn))n∈N

is Cauchy in (L, dup) and s.t. for all sequences (ϕ̃n)n∈N ⊆ (bP)Π satisfying (i),
there exists a deterministic subsequence (nk)k∈N s.t.(

V S(ϕ̃nk)− V S(ϕnk)
)+ → 0, k →∞, up to evanescence. (3.4.1)

The requirement (ii) means that in the limit, the approximation with (ϕn)n∈N is
better than all other pointwise approximations (ϕ̃n)n∈N if the stock position is eval-
uated by the same semimartingale. In (3.4.1), we cannot expect uniform convergence
in time, but exceptional P-null sets can be chosen independently of time. By Corol-
lary 3.3.24, we have (bP)Π ⊆ L.

Proposition 3.4.2. Let ϕ ∈ L. If (ϕn)n∈N ⊆ (bP)Π is a sequence satisfying the as-
sertions of Definition 3.4.1 for ϕ with regard to a semimartingales S and (ϕ̃n)n∈N ⊆
(bP)Π is another sequence satisfying the same assertions for ϕ with regard to a semi-
martingale S̃, then we have

up-lim
n→∞

V S(ϕn)− ϕS = up-lim
n→∞

V S̃(ϕ̃n)− ϕS̃

up to evanescence.
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We now can extend the operator Π to L by setting

Π(ϕ) := up-lim
n→∞

V S(ϕn)− ϕS, ϕ ∈ L,

where (ϕn)n∈N is a sequence satisfying the assertions of Definition 3.4.1 with regard
to the semimartingale S. By Proposition 3.4.2, Π is well-defined on L, i.e., it does not
depend on the choice of the approximating sequence and the semimartingale.

Proof of Proposition 3.4.2. Let (ϕn)n∈N and (ϕ̃n)n∈N be sequences that satisfy the
assumptions of the proposition. Corollary 3.3.22 states that the process Π(ϕ̃n) does
not depend on the semimartingale, i.e., we have

V S(ϕ̃n)− ϕ̃nS = V S̃(ϕ̃n)− ϕ̃nS̃ up to evanescence for all n ∈ N, (3.4.2)

and thus(
V S̃(ϕ̃n)− ϕ̃nS̃ −

(
V S(ϕn)− ϕnS

))+
=
(
V S(ϕ̃n)− V S(ϕn) + (ϕn − ϕ̃n)S

)+
≤
(
V S(ϕ̃n)− V S(ϕn)

)+
+ ((ϕn − ϕ̃n)S)+ (3.4.3)

up to evanescence for all n ∈ N. We have that ϕn → ϕ and ϕ̃n → ϕ pointwise as
n → ∞. We may pass to a subsequence s.t. ((V S(ϕ̃n) − V S(ϕn))+)n∈N converges
to zero pointwise up to evanescence by (3.4.1). In addition, we may further pass to

subsequences, s.t. (V S̃(ϕ̃n))n∈N, (V S(ϕn))n∈N converge pointwise up to evanescence.
Thus, by symmetry, (3.4.3) yields the assertion.

3.4.1 Frictionless markets

We now turn towards the frictionless case, i.e., S = S = S, and show that L equals
the set L(S) of S-integrable processes:

Proposition 3.4.3. Let S = S = S be a semimartingale. Then, we have L = L(S)
and Π(ϕ) = ϕ • S − ϕS for all ϕ ∈ L.

The set L(S) was introduced as given in Definition III.6.17 of [46] by Jacob [45],
but there are equivalent definitions that may look a bit smarter and that are based
on bP ⊆ L(S). For this, recall that the space of semimartingales S endowed with the
semimartingale topology defined by the metric

dS(X,Y ) := sup
H∈bP, ‖H‖∞≤1

‖H • (X − Y )‖up, X, Y ∈ S (3.4.4)

is a complete metric space by Émery [30, Theorem 1]. The following characterization
of S-integrability is effectively due to Chou et al. [13].

Note 3.4.4. Let S be a semimartingale and ϕ be a predictable process. The following
assertions are equivalent
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(i) ϕ ∈ L(S).

(ii) There exists a sequence (ϕn)n∈N ⊆ bP s.t. ϕn → ϕ pointwise, (ϕn)+ ≤ ϕ+,
(ϕn)− ≤ ϕ− for all n ∈ N, and (ϕn • S)n∈N is Cauchy in (S, dS).

(iii) For all sequences (ϕn)n∈N ⊆ bP with ϕn → ϕ pointwise and |ϕn| ≤ |ϕ| for all
n ∈ N, the sequence (ϕn • S)n∈N is Cauchy in (S, dS).

In this case, the integral ϕ • S is given by the dS-limit of any such sequence (ϕn •

S)n∈N.

Proof of Note 3.4.4. In the definition on page 130, Chou et al. [13] (see also [25,
Chapter VIII, 75]) introduce the special approximating sequence ϕn := ϕ1{|ϕ|≤n} for
some predictable process ϕ. Later on, the only properties of (ϕn)n∈N they use is that
ϕn ∈ bP for n ∈ N, |ϕn| ≤ |ϕ| for n ∈ N, and ϕn → ϕ pointwise. Thus, the note is just
a reformulation of their results [13, Properties b), c), d) on page 130 and Theoreme
1] (see also [25, Chapter VIII, 74-77])

A similar characterization is provided in Eberlein and Kallsen [29], page 193 by

L(S) = {ϕ predictable : ∃ semimartingale Z s.t. (ϕ1{|ϕ|≤n}) • S = 1{|ϕ|≤n} • Z, n ∈ N}.

It emphasizes the maximality of L(S) if one requires that the integral ϕ • S := Z
itself is a semimartingale. By contrast, in our characterization from Definition 3.4.1,
the semimartingale property can be seen more as a result since it is stated with the
up-metric and not with the semimartingale metric.

Proof of Proposition 3.4.3. Ad L(S) ⊆ L: This follows from (i)⇒ (ii)⇒(iii) in Note 3.4.4.
Ad L ⊆ L(S): Let ϕ ∈ L. Thus, there exists (ϕn)n∈N ⊆ bP satisfying Defi-

nition 3.4.1(i) and (ii). In particular, the sequence (V S(ϕn))n∈N = (ϕn • S)n∈N is
Cauchy with regard to dup. Let us demonstrate that the sequence is also Cauchy in
(S, dS) by contradiction, i.e., we assume that there exists ε > 0, a sequence (Hn)n∈N
of predictable processes with 0 ≤ Hn ≤ 1 for all n ∈ N and a subsequence (mn)n∈N
with mn ≥ n s.t.

P (((Hn (ϕn − ϕmn) • S))∗T > ε) > ε, ∀n ∈ N (3.4.5)

We note that in (3.4.5), it can be assumed that Hn is [0, 1]-valued and not only
[−1, 1]-valued, since otherwise it can be decomposed into its positive and its negative
part. Next, we define the strategies ψn := Hnϕn + (1 − Hn)ϕmn ∈ bP and θn :=
(1 − Hn)ϕn + Hnϕmn ∈ bP for n ∈ N. The strategies satisfy ψn → ϕ, θn → ϕ
pointwise and (ψn)+ ∨ (θn)+ ≤ ϕ+, (ψn)− ∨ (θn)− ≤ ϕ−, i.e., they satisfy Definition
3.4.1 (i).

Let σn := inf{t ≥ 0 : ψn • St − ϕn • St > ε/2} and τn := inf{t ≥ 0 : θn • St − ϕn •
St > ε/2}. As (ϕn − ϕmn) • S → 0 uniformly in probability by Definition 3.4.1 (ii),
there is N ∈ N s.t. P(((ϕn − ϕmn) • S)∗T > ε/2) < ε/2 for all n ≥ N . Thus, we have

P (σn ∧ τn ≤ T ) ≥ P (((Hn (ϕn − ϕmn) • S))∗T > ε)− P (((ϕn − ϕmn) • S)∗T > ε/2)

> ε/2 ∀n ≥ N.
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Next, we define the strategies ψ̃n := ψn1J0,σnK + ϕn1Kσn,T K and θ̃n := θn1J0,τnK +
ϕn1Kτn,T K that still satisfy Definition 3.4.1 (i). Thus, together with

P
({
ψ̃n • ST − ϕn • ST > ε/2

}
∪
{
θ̃n • ST − ϕn • ST > ε/2

})
≥ P(σn ∧ τn ≤ T ) > ε/2

for all n ≥ N , we have arrived at a contradiction to (3.4.1). Thus (ϕn • S)n∈N is
Cauchy in (S, dS) and the assertion follows by (ii)⇒ (i) in Note 3.4.4.

One of the referees in the review process for the article Kühn and Molitor [67]
raised the following interesting question that can be considered as a generalization
of Proposition 3.4.3 to markets with friction. Does ϕ ∈ L imply that there exists a
semimartingale price system S s.t. ϕ ∈ L(S)? This would mean, if stock positions are
evaluated by S, the trading gains and the cost term of the approximating bounded
strategies converge separately (and not only the sum).

Under additional assumptions, the following theorem gives a positive answer to this
question. Especially, the considered model is deterministic, see Remark 3.4.6 below
for a discussion.

Theorem 3.4.5. Let Ω = {ω} and S, S be continuous. If ϕ ∈ L, ϕ > 0 on (0, T ],
and ϕ is lower semi-continuous at all t ∈ [0, T ] with St > St, then there exists a
semimartingale price system S with ϕ ∈ L(S).

Proof. We fix a semimartingale price system S̃ (whose existence is assumed in this
section).

Step 1: Let us show that

sup
ψ bounded, 0≤ψ≤ϕ

V S̃
T (ψ) <∞. (3.4.6)

Assume by contradiction that there exist bounded strategies ψn, n ∈ N s.t. 0 ≤ ψn ≤ ϕ
and V S̃

T (ψn)→∞. On the other hand, since ϕ ∈ L and by (3.4.2), there exist bounded

ϕn, n ∈ N with 0 ≤ ϕn ≤ ϕ, ϕn → ϕ, and V S̃
T (ϕn) → V S̃

T (ϕ) ∈ R. Thus, there is a
null sequence (εn)n∈N ⊂ (0, 1) s.t.

V S̃
T (εnψ

n + (1− εn)ϕn) ≥ εnV S̃
T (ψn) + (1− εn)V S̃

T (ϕn)→∞,

which is a contradiction to ϕ ∈ L.
Step 2: Next, we show that for each nonnegative bounded function ψ̃,

sup
0≤ψ≤ψ̃

V S̃
T (ψ) (3.4.7)

is attained by a maximizer ψ∗. To see this, let (ψn)n∈N be a maximizing sequence,

i.e., V S̃
T (ψn)→ sup

0≤ψ≤ψ̃ V
S̃
T (ψ). Since ψn • S̃T ≤ supt∈[0,T ] ψ̃t ·VarT (S̃) for all n ∈ N,

the sequence of cost terms (C S̃T (ψn))n∈N is bounded. In addition, the set {S > S}
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can be written as a countable union of closed intervals on which either S̃ ≥ S +
1/3(S − S) or S̃ ≤ S + 2/3(S − S). In the first case, sells lead to essential costs on
such an interval [a, b]. Consequently, one must have supn∈N Varba(ψ

n) <∞. Then, by
the same arguments as in Campi and Schachermayer [11], proof of Proposition 3.4,
after passing to convex combinations, we obtain a pointwise limit limn→∞ ψ

n =: ψ∗

everywhere on {S > S} and Var(S̃)-a.e. on {S = S}, which has to be a maximizer by
Theorem 3.3.19(i).

Step 3: We now construct a sequence (ϕ̂n)n∈N s.t. ϕ̂n is a solution of (3.4.7) with
ψ̃ = ϕ ∧ n for all n ∈ N and for n < m the strategy ϕ̂m has to “buy/sell” if ϕ̂n

“buys/sells”.
Starting with solutions η̂k of (3.4.7) with ψ̃ = (ϕ− (k−1))+∧1 for each k ∈ N, we

define the strategies ηn,k :=
(∑n

l=1 η̂
l − (k − 1)

)+ ∧ 1 for n ∈ N and k ≤ n. We have

n∑
k=1

V S̃
T (ηn,k) = V S̃

T

(
n∑
k=1

ηn,k

)
= V S̃

T

(
n∑
k=1

η̂k

)
≥

n∑
k=1

V S̃
T (η̂k).

Indeed, V S̃
T (·) is superadditiv and additive for ηn,k, k = 1, . . . , n. The later can be

seen by the additivity of the cost term for approximating simple strategies. Together

with V S̃
T (η̂k) ≥ V S̃

T (ηn,k) for all k ≤ n, this implies V S̃
T (η̂k) = V S̃

T (ηn,k) for all n ∈ N
and k ≤ n. Defining ηk := limn→∞ η

n,k = (
∑∞

l=1 η̂
l − (k − 1))+ ∧ 1, k ∈ N, we

observe ηk = 0 on {ηk−1 < 1} and ηk ≤ (ϕ − (k − 1)) ∧ 1. In addition, we have

V S̃
T (ηk) ≥ limn→∞ V

S̃
T (ηn,k) = V S̃

T (η̂k) by Theorem 3.3.19 (i) and, thus, ηk solves

(3.4.7) with ψ̃ = (ϕ − (k − 1)) ∧ 1. Finally, we set ϕ̂n :=
∑n

k=1 η
k, n ∈ N. Then,

for an arbitrary strategy ψ with ψ ≤ ϕ ∧ n, the optimality of ηk yields V S̃
T (ψ) =∑n

k=1 V
S̃
T ((ψ − (k − 1))+ ∧ 1) ≤

∑n
k=1 V

S̃
T (ηk) = V S̃

T (ϕ̂n), i.e., ϕ̂n solves (3.4.7) with

ψ̃ = ϕ ∧ n.
Step 4: Let (ϕ̂n)n∈N be the sequence of maximizers from the previous step. Since

short positions are forbidden, we can replace ST by S̃T and assume that positions

are sold at T . The aim is to construct a finite variation process S s.t. V S̃
T (ϕ̂n) =

ϕ̂n • ST and ψ • ST ≤ ϕ̂n • ST for all strategies 0 ≤ ψ ≤ ϕ ∧ n, i.e., S is a
shadow price simultaneously for all problems (3.4.7) with ψ̃ = ϕ ∧ n, n ∈ N. Under
Assumption 3.3.18 and by an exhaustion argument, it is possible to construct S in the
following way. On the frictionless intervals, cf. Lemma 3.5.2, S is defined as S = S = S.
Now, let a be a “buying time” with Sa > Sa, i.e., there exists n ∈ N s.t. in any
neighborhood of a there are t1 < t2 with ϕ̂nt2 > ϕ̂nt1 . Let b be the next selling time
(defined as infimum over n ∈ N), and d the next buying time after b. In addition, c
is the last selling time before d. We have that a < b ≤ c ≤ d. The strict inequality
is crucial for the exhaustion argument. It holds since, by Sa > Sa and the continuity
of the bid-ask prices, any investment needs some time to amortize, and by Step 3,
for any pair of buying and selling time, there is a joint strategy ϕ̂n that realizes this
investment. Summing up, all ϕ̂n, n ∈ N, are nondecreasing on (a, b), nonincreasing on
(b, c), and constant on (c, d).
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For t ∈ [a, b), we define

τt := inf{s ∈ [a, t] : ∃ε > 0 inf
u∈(s,t+ε)

ϕu > inf
u∈(t,b)

ϕu} ∧ t (3.4.8)

and

St := inf
u∈[τt,b)

Su ∧ Sb.

Roughly speaking, S can only increase at a “bottleneck” on the way to b, where the
constraint is binding. For t ∈ [b, c), we define

σt := sup{s ∈ [t, c) : ∀ε > 0 inf
u∈(t+ε,s)

ϕu > inf
u∈[b,t]

ϕu} ∨ t

and

St := sup
u∈[b,σt]

Su. (3.4.9)

For [c, d), c < d, we make a case differentiation. For ϕ̂1 = 0 on (c, d), we define S on
[c, d) as the Snell envelope of the process Lt := St1{t<d} + Sd1{t=d}, t ∈ [c, d], i.e.,

St := supu∈[t,d] Lu, t ∈ [c, d)]. Otherwise, we define St := Sc1{t<τ̃d}+Sd1{t≥τ̃d}, where

τ̃d := inf{s ∈ [c, d] : infu∈(s,d) ϕu > inf
u∈(d,̃b)

ϕu}∧ d with b̃ being the next selling time

after d. By using the maximality and the monotonicity of all ϕ̂n, n ∈ N, it is easy to
check that S has to lie in the bid-ask spread.

Now, any excursion of the spread away from zero, cf. Lemma 3.5.1, can be ex-
hausted by intervals of the form [a, b), [b, c), and [c, d). In the special case that there
is no further buying time, (3.4.9) is applied to the closed interval from b to the end of
the excursion of the spread away from zero or to T . The resulting process S is càdlàg
and does not depend on the choice of the intervals. Note that Sa > Sa is only needed
to guarantee that b > a.

Step 5: Let us show that S is of finite variation and

ϕ̂n • ST = V S
T (ϕ̂n) = V S̃

T (ϕ̂n), n ∈ N. (3.4.10)

Let a be a buying time and ã be the time inf{t > a : ϕ̂1
t = 0} truncated at the

end of the excursion. We have that Sa = Sa ≥ S̃a and Sã = Sã ≤ S̃ã, and S is
nondecreasing on [a, ã]. From ã up to (and including) the next buying time, S is
nonincreasing. This yields VarT (S) ≤ VarT (S̃) < ∞. Finally, by construction of S,
the cost terms CS(ϕ̂n) vanish for all n ∈ N and thus (3.4.10) holds. E.g., on [a, b), the
process ϕ̂n is nondecreasing and has to be constant on {S < S} by optimality.

Step 6: Next, we show that

ψ • ST ≤ ϕ̂n • ST for all n ∈ N and all strategies ψ with 0 ≤ ψ ≤ ϕ ∧ n. (3.4.11)

Of course, it is sufficient to show this assertion for excursions of the spread away from
zero (cf., again, Lemma 3.5.1).
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From now on, we need the assumed lower semi-continuity, i.e.,

ϕt = lim
ε→0

inf
u∈[t−ε,t+ε]

ϕu for all t ∈ (0, T ) with St > St. (3.4.12)

We start with the buying period, i.e., the interval [a, b) (cf. Step 4). Setting ξt :=
infu∈[t,b) ϕu, we claim that∫

[a,b)
ψt dSt ≤

∫
[a,b)

(ϕt ∧ n) dSt ≤
∫

[a,b)
(ξt ∧ n) dSt ≤

∫
[a,b)

ϕ̂nt dSt (3.4.13)

for every strategy ψ with ψ ≤ ϕ ∧ n.
The first inequality is obvious as S is nondecreasing on [a, b). We start by show-

ing the second inequality in (3.4.13). It follows from (3.4.12) that (ξt)t∈[a,b) is left-
continuous and the set {t ∈ [a, b) : ξt < ϕt} is open. Hence, we find a sequence of open
intervals (uk1, u

k
2), uk1 ≤ uk2, k ∈ N s.t.

{t ∈ [a, b) : ξt < ϕt} =
⋃
k∈N

(u1
k, u

2
k). (3.4.14)

For all t1, t2 with uk1 < t1 < t2 < uk2, we have that inft∈[t1,t2](ϕt − ξt) > 0 and,

thus, St2 = St1 . This yields Suk2−
= Suk1

if uk1 < uk2 and, hence,
∫

[a,b)(ϕt ∧ n) dSt =∫
[a,b)(ξt ∧ n) dSt due to (3.4.14).

Moving towards the last inequality in (3.4.13), we exclude the trivial case that
Sa = Sb. For a given ε > 0, there is a partition a = t0 < t1 < · · · < tm = b s.t.∫

[a,b)
(ξt ∧ n) dSt ≤

m−1∑
i=1

(ξti−1 ∧ n)(Sti − Sti−1) + (ξtm−1 ∧ n)(Sb− − Stm−1) + ε

(3.4.15)

by [74, Theorem II.21] and the left-continuity of ξ. Let s := sup{u > a : Su <
Sb} ≤ b. Next, we define a perturbation ϕ̂n,p of the optimal strategy ϕ̂n in the bid-ask
model, which approximately realizes the gains on the RHS of (3.4.15) on [a, b). We
set ϕ̂n,p = ϕ̂n on [0, a) ∪ [s, T ] and construct ϕ̂n,p on [a, s) by iteratively specifying
possible purchases. At time t0 = a, we buy until we reach ϕ̂n,pa := ξt0 ∧n ≥ ϕ̂na , paying
price Sa = Sa per share (time t0 has the special property that it is a “buying time”
in the sense of Step 4). We proceed as follows: if St1 < St2 (which is equivalent to
infu∈[τt1 ,τt2 ) Su < St2 and, in this case, St1 = infu∈[τt1 ,τt2 ) Su), we buy until we reach

ξt1 ∧ n shares at time t∗1 := arg minu∈[τt1 ,τt2 ) Su. Hereby, we have St∗1 < St2 ≤ Sb,
i.e., t∗1 < s, and, since t∗1 ≥ τt1 , the constraint ϕ ∧ n is also satisfied. This is repeated
for the intervals [τti−1 , τti) for i = 3, . . . ,m. Since purchasing prices are strictly below
Sb, in the bid-ask market, purchases take place on [a, s). For s < b, we have ϕ̂n,ps− ≤
ξs∧n = ϕ̂ns , where the equality follows from the optimality of ϕ̂n and (3.4.12). Finally,
the missing position ϕ̂ns − ϕ̂

n,p
s− ≥ 0 is purchased at price Ss = Sb if s < b. In the case

s = b, we must have Sb = Sb and need not care about the sign of the missing position.
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Hence, the optimality of ϕ̂n, together with V S̃
T (ϕ̂n)−V S̃

T (ϕ̂n,p) = V S
T (ϕ̂n)−V S

T (ϕ̂n,p),
yields

0 ≤ V S
T (ϕ̂n)− V S

T (ϕ̂n,p) ≤
∫

[a,b)
ϕ̂nt dSt −

∫
[a,b)

(ξt ∧ n)dSt + ε, (3.4.16)

where for the second inequality we use (3.4.15) and the fact that ϕ̂n,p does not produce
any costs w.r.t. S. (3.4.16) implies the last inequality in (3.4.13) as the ε > 0 is
arbitrary.

It remains to show ψt dSt ≤ ϕ̂nt dSt on sets other than [a, b). After a time reversal,
the proof for a selling interval [b, c) is the same as for a buying interval [a, b). Namely,
w.l.o.g. we assume that Sc > Sb and consider an approximation similar to (3.4.15)
“backward in time” (the last point is b− with Sb− = Sb). Time s from above is replaced
by s̃ := inf{u > b : Su > Sb} ≤ c. From the optimality of ϕ̂n, the assumption that b is
a selling time in the sense of Step 4, and (3.4.12), it follows that ϕ̂nb− ≥ infu∈[b,s̃] ϕu∧n.
We leave the details as an exercise for the reader. On intervals with ϕ̂1 = 0, we use
that the Snell envelope is nonincreasing.

Step 7: By ϕ ∈ L and (3.4.2), we can find a sequence of strategies (ϕn)n∈N with
ϕn → ϕ and 0 ≤ ϕn ≤ ϕ ∧ n s.t. for all other strategies (ϕ̃n)n∈N with ϕ̃n → ϕ and
0 ≤ ϕ̃n ≤ ϕ∧ n, one has (V S

T (ϕ̃n)− V S
T (ϕn))+ → 0. Let us show that (ϕn • S)n∈N has

to be Cauchy in (S, dS). We first show that

∀ε > 0 ∃K ∈ R+ ∀n ∈ N, B ∈ B([0, T ]) (1{ϕ>K}∩Bϕ
n) • ST ≤ ε. (3.4.17)

Indeed, since S is a shadow price, see (3.4.11), and by (3.4.6), we have

(1{ϕ>K}∩Bϕ
n) • ST ≤ (1{ϕ>K}ϕ̂

n) • ST ≤
∞∑
k=1

((1{ϕ>K}η
k) • ST ) <∞ (3.4.18)

for all K ∈ R+ and B ∈ B([0, T ]). By (3.4.18), (1{ϕ>K}η
k) • ST ≤ ηk • ST (which

follows from (3.4.11)), and dominated convergence, we obtain (3.4.17). Let us show
that

∀ε > 0 ∃K ∈ R+, N ∈ N ∀n ≥ N,B ∈ B([0, T ]) (1{ϕ>K}∩Bϕ
n) • ST ≥ −ε.(3.4.19)

Assume by contradiction that there exists ε > 0, a subsequence (nk)k∈N, and a se-
quence (Bk)k∈N ⊂ B([0, T ]) s.t. (1{ϕ>k}∩Bkϕ

nk) • ST < −ε for all k ∈ N. On the other
hand, since dS(1{ϕ>k} • S, 0)→ 0 for k →∞, there must exist a sequence (λk)k∈N ⊂
R+ with λk →∞ slowly enough s.t. 1{ϕ>k}∩Bk(ϕnk ∧ λk) • ST → 0 for k →∞. Thus,
we have (1{ϕ>k}∩Bk(ϕnk − λk)+) • ST < −ε/2 for k large enough. As in (3.4.18), we
can estimate (1[0,T ]\({ϕ>k}∩Bk)(ϕ

nk −λk)+) • ST = (1{ϕ>λk}\({ϕ>k}∩Bk)(ϕ
nk −λk)+) •

ST ≤
∑∞

l=1((1{ϕ>λk}η
l) • ST ), which converge to 0 as λk →∞ for k →∞. This yields

that ((ϕnk−λk)+) • ST < −ε/4 for k large enough. Since the cost term of ϕnk exceeds
those of ϕnk ∧λk, we arrive at V S

T (ϕnk) < V S
T (ϕnk ∧λk)−ε/4 for k large enough. This

is a contradiction to the maximality of (ϕn)n∈N stated at the beginning of this step.
Thus, (3.4.19) holds.
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Putting (3.4.17), (3.4.19), and ϕn → ϕ with ϕn ≤ ϕ for all n ∈ N together,
we obtain that (ϕn • S)n∈N is Cauchy in (S, dS). This implies that ϕ ∈ L(S) (cf.
Note 3.4.4).

Remark 3.4.6. The proof demonstrates how the maximality condition in the defini-
tion of L works. For ϕ ∈ L, problem (3.4.6) has to be finite, but its maximizer ϕ̂ :=
limn→∞ ϕ̂

n can be different from ϕ = limn→∞ ϕ
n. Also, in the frictionless shadow

price market, ϕ̂n dominates all other strategies that are bounded by ϕ∧ n. This upper
bound is key to show that ϕn • S is Cauchy w.r.t. the semimartingale topology.

It is an open (but possibly insolvable) problem whether the theorem also holds in
the general stochastic case. The construction of the shadow price S is essentially based
on the assumptions that the model is deterministic and ϕ is lower semi-continuous.
The latter is needed since on the intervals with friction, S has its upward movements
at the “bottlenecks” of the constraint ϕ ∧ n.

Nevertheless, we think that the proof already provides the basic intuition for the
relation between L and L(S) in the general stochastic case. In addition, the sequence of
strategies constructed in Step 3 and the ideas from Step 7 should also be of general use
to solve related problems in the stochastic model. By contrast, the other assumptions
are less essential. They are made to focus on the main ideas and to avoid further case
differentiations and technicalities.

3.5 Proof of Theorem 3.3.19

We start with two lemmas that prepare the proof of Theorem 3.3.19. In the following,
we set X := S − S with the convention that X0− := 0. Let M be the set of starting
points of excursions of the spread away from zero, i.e.,

M := ({X = 0} ∪ {X− = 0})
∩ {(ω, t) ∈ Ω× [0, T ) : ∃ε > 0 ∀s ∈ (t, (t+ ε) ∧ T ) Xs(ω) > 0}.

Here, we follow the convention that an excursion also ends (and thus a new excursion
can start) if only the left limit of the spread process is zero. Under the usual conditions
and Assumption 3.3.18, the process Y := 1{(ω,t)∈Ω×[0,T ):∃ε>0 ∀s∈(t,(t+ε)∧T ) Xs(ω)>0} is
right-continuous on Ω×[0, T ) and adapted (for the latter one uses that for all t ∈ [0, T )
and ε̃ ∈ (0, T − t), one has {ω ∈ Ω : ∃ε > 0 ∀s ∈ (t, (t+ ε)∧T ) Xs(ω) > 0} = Ω\{ω ∈
Ω : ∃ε ∈ (0, ε̃)∩Q ∀s ∈ (t, t+ε)∩Q Xs(ω) = 0}). Thus, Y is a progressive process (see,
e.g., Theorem 3.11 in [42]), which implies that M is a progressive set. Consequently,
{ω ∈ Ω : τ(ω) <∞, (ω, τ(ω)) 6∈M} ∈ F if τ is a stopping time.

For a stopping time τ , we define the associated stopping time Γ2(τ) by

Γ2(τ) := inf{t > τ : Xt = 0 or Xt− = 0}.

Lemma 3.5.1. There exists a sequence of stopping times (τn1 )n∈N with P({ω ∈ Ω :
τn1 (ω) < ∞, (ω, τn1 (ω)) 6∈ M}) = 0 for all n ∈ N, P(τn1

1 = τn2
1 < ∞) = 0 for all
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n1 6= n2, and

{X− > 0} ⊂ ∪n∈N]]τn1 ,Γ2(τn1 )]] up to evanescence. (3.5.1)

Proof. We define a finite measure µ on the predictable σ-algebra by

µ(A) :=
∞∑
k=1

2−kP({ω ∈ Ω : (ω, qk) ∈ A}), A ∈ P,

where (qk)k∈N is a counting of the rational numbers. Let M be the set of predictable
processes of the form 1]]τ,Γ2(τ)]], where τ runs through all stopping times satisfying
P({ω ∈ Ω : τ(ω) < ∞, (ω, τ(ω)) 6∈ M}) = 0. The essential supremum of M w.r.t. µ
can be written as

esssup M = sup
n∈N

1]]τn1 ,τ
n
2 ]] = 1∪n∈N]]τn1 ,τ

n
2 ]] µ-a.e.,

where τn2 = Γ2(τn1 ). Obviously, the sequence (τn1 )n∈N can be chosen s.t. P(τn1
1 = τn2

1 <
∞) = 0 holds for all n1 6= n2. Then, by the definition of M and Γ2, one has that
]]τn1

1 , τn1
2 ]]∩]]τn2

1 , τn2
2 ]] = ∅ up to evanescence for all n1 6= n2.

Now consider the random time σ := inf{t ∈ (0, T ] : Xt− > 0 and t 6∈ ∪n∈N(τn1 , τ
n
2 ]}.

Since σ can be written as the debut inf{t ∈ (0, T ] : Zt > 0}, where Z := X−(1 −∑∞
n=1 1]]τn1 ,τ

n
2 ]]) is a finite predictable process, it is a stopping time (see Theorem 7.3.4

in [14]). By the definition of the infimum and Γ2, we must have that Xσ = 0 or
Xσ− = 0 on the set {σ < ∞}. Together with Assumption 3.3.18, this means that
in σ there starts an excursion, and it is not yet overlapped. By the definition of the
essential supremum, one has µ(]]σ,Γ2(σ)]]) = 0. Since Γ2(σ) > σ on {σ < ∞}, this is
only possible if P(σ < ∞) = 0 and thus P({ω ∈ Ω : ∃t ∈ (0, T ] Xt−(ω) > 0 and t 6∈
∪n∈N(τn1 (ω), τn2 (ω)]}) = 0.

Next, we analyze the time the spread spends at zero. Define

M1 :={(ω, t) ∈ Ω× [0, T ] : t = 0 or ∀ε > 0 ∃s ∈ ((t− ε) ∨ 0, t) Xs(ω) > 0}
∩ {X− = 0}

and M2 :={X− > 0} ∩ {X = 0}.

The optional set M1 ∪M2 consists of the ending points of an excursion and of their
accumulation points. For a stopping time τ , we define the starting point of the next
excursion after τ by (Γ1(τ))(ω) := inf{t ≥ τ(ω) : (ω, t) ∈ M} for ω ∈ Ω, which is the
debut of a progressive set and thus a stopping time by [14, Theorem 7.3.4].

Lemma 3.5.2. There exists a sequence of stopping times (σn1 )n∈N with P({ω ∈ Ω :
σn1 (ω) < ∞, (ω, σn1 (ω)) 6∈ M1 ∪M2}) = 0 s.t. (σn1 ){Xσn1−=0} are predictable stopping

times for all n ∈ N, P(σn1
1 = σn2

1 <∞) = 0 for all n1 6= n2, and

{X− = 0} ⊂ ∪n∈N
(

[[(σn1 ){Xσn1−=0}]]∪]]σn1 ,Γ1(σn1 )]]
)

up to evanescence. (3.5.2)

for Γ1 from above.
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(3.5.2) can be interpreted as follows. If the spread approaches zero continuously
at some time t, the investment between t− and t already falls into the “frictionless
regime”. On the other hand, if the spread jumps to zero at time t, the frictionless
regime only starts immediately after t (if at all).

Proof of Lemma 3.5.2. We take the starting points τn1 of the excursions from Lemma
3.5.1 and define the measure µ(A) :=

∑∞
n=1 2−nP({ω ∈ Ω : (ω, τn1 (ω)) ∈ A}) +P({ω ∈

Ω : (ω, T ) ∈ A}) for all A ∈ P. Consider the essential supremum w.r.t. µ of the set of
predictable processes 1[[σ{Xσ−=0}]]∪]]σ,Γ1(σ)]], where σ runs through the set of stopping

times satisfying P({ω ∈ Ω : σ(ω) < ∞, (ω, σ(ω)) 6∈ M1 ∪M2}) = 0 with the further
constraint that σ{Xσ−=0} is a predictable stopping time. Again, the supremum can be
written as

1
∪n∈N

(
[[(σn1 ){Xσn1−

=0}]]∪]]σn1 ,Γ1(σn1 )]]

) µ-a.e.

Consider the random time

σ := inf{t ≥ 0 : Xt− = 0 and t 6∈ ∪n∈N
(

[(σn1 ){Xσn1−=0}] ∪ (σn1 , σ
n
2 ]
)
}, (3.5.3)

where σn2 := Γ1(σn1 ). Since σ = inf{t ≥ 0 : Zt = 0}, where

Z := X− +

∞∑
n=1

1[[(σn1 ){Xσn1−
=0}]]∪]]σn1 ,σ

n
2 ]]

is predictable, σ is a stopping time (see Theorem 7.3.4 in [14]). In addition, one has

[[σ{Xσ−=0}]] = [[σ]] ∩ {X− = 0}

=
(

[[0, σ]] \ ∪n∈N[[(σn1 ){Xσn1−=0}]]∪]]σn1 , σ
n
2 ]]
)
∩ {X− = 0} ∈ P,

where we use that the infimum in (3.5.3) must be attained if Xσ− = 0. Thus, σ{Xσ−=0}
is a predictable stopping time. Finally, we have that P({ω ∈ Ω : σ(ω) <∞, (ω, σ(ω)) 6∈
M1 ∪M2) = 0. By the maximality of the supremum, one has

µ([[σ{Xσ−=0}]]∪]]σ,Γ1(σ)]]) = 0.

Since the intervals overlap T or some τn1 (ω) if they are nonempty, we arrive at P(σ <
∞) = 0, and thus (3.5.2) holds.

Note 3.5.3. For any ϕ ∈ bP and any σ-finite measure µ on P with µS � µ, there
exists a uniformly bounded sequence of simple strategies (ϕn)n∈N with ϕn → ϕ, µ-a.e.,
and for any such sequence (ϕn)n∈N one has ϕn • S → ϕ • S uniformly in probability.

Proof. The existence of such a sequence with ϕn → ϕ, µ-a.e. follows from the ap-
proximation theorem for measures (see, e.g., Theorem 1.65(ii) in [62]). Then, the
convergence of the integrals follows for the martingale parts by (3) on page 49 of [46]
and for the finite variation parts by dominated convergence.



3.5. Proof of Theorem 3.3.19 79

Proof of Theorem 3.3.19. Obviously, it is sufficient to show the theorem under an
equivalent measure Q ∼ P. Hence, we assume w.l.o.g. that P = Q, where Q is the
measure introduced above (3.3.12).

Ad (i): Let (ϕn)n∈N ⊂ bP satisfy ϕn → ϕ pointwise on {S− > S−, A = 1}. For any
J ∈ I from (3.3.1), Proposition 3.3.11 yields that lim infn→∞C(ϕn, J ∩ [0, t])(ω) ≥
C(ϕ, J ∩ [0, t])(ω) for all (ω, t) ∈ {A = 1}. It follows that lim infn→∞Ct(ϕ

n)(ω) ≥
supJ∈I C(ϕ, J ∩ [0, t])(ω) = Ct(ϕ)(ω) for all (ω, t) ∈ {A = 1}. If in addition (ϕn)n∈N
is uniformly bounded and ϕn → ϕ µS-a.e. on {S− = S−, A = 1}, we have that

(ϕn1{A=1}) • S → (ϕ1{A=1}) • S uniformly in probability (3.5.4)

(see Note 3.5.3). Since {A = 1} is a predictable set of interval type, there is an
increasing sequence of stopping times (Tm)m∈N s.t. {A = 1}∪(Ω×{0}) = ∪m∈N[[0, Tm]]
(see, e.g., [42, Theorem 8.18]). For each m ∈ N, we obviously have((

1[[0,Tm]]ϕ
)
• S
)
1[[0,Tm]] = (ϕ • S)T

m

1[[0,Tm]] = (ϕ • S)1[[0,Tm]].

Letting m→∞ this yields

(ϕ1{A=1} • S)1{A=1} = (ϕ • S)1{A=1} (3.5.5)

up to evanescence by Note 3.5.3 and, analogously, (ϕn1{A=1} • S)1{A=1} = (ϕn •

S)1{A=1} up to evanescence for n ∈ N. Thus, together with (3.5.4), we have

lim inf
n→∞

(ϕn • S − ϕ • S)+
1{A=1} = 0 up to evanescence.

Putting the cost terms and the trading gains w.r.t. S together, we arrive at (i).

Ad (ii): The following analysis is based on the stopping times (τn1 )n∈N and (σn1 )n∈N
from Lemma 3.5.1 and Lemma 3.5.2, respectively. We can and do choose (σn1 )n∈N s.t.

P(σn1 = τm1 <∞, Xσ1
n− > 0) = 0, ∀n,m ∈ N. (3.5.6)

This means that if the spread X only touches zero at a single point and its left limit
is non-zero, there directly starts the next excursion without a one point frictionless
regime in between.

For the rest of the proof, we write {Xτ− ∈ B} for the set {ω ∈ Ω : ∃t ∈
[0, T ] τ(ω) = t, Xt−(ω) ∈ B}, where τ is a [0, T ] ∪ {∞}-valued stopping time and
B ⊂ R. Let

An :=]](τn1 ){Xτn1 −>0},Γ2(τn1 )[[∪[[(Γ2(τn1 )){Xτn1 −>0}∩{XΓ2(τn1 )−>0}]] ∈ P, n ∈ N,

Bn := [[(σn1 ){Xσn1−=0}]]∪]]σn1 ,Γ1(σn1 )]] ∈ P, n ∈ N,

B̃n :=]]Γ1(σn1 ),Γ2(Γ1(σn1 ))[[∪[[(Γ2(Γ1(σn1 )))X{Γ2(Γ1(σn1 )))−>0}]] ∈ P, n ∈ N,
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and

ϕN := ϕ1∪n=1,...,N (An∪Bn∪B̃n)
, N ∈ N. (3.5.7)

Excursions away from zero are either included by An or by B̃n with the frictionless
forerunner Bn. In the first case, the spread cannot jump away from zero since Xτn1

= 0

on {Xτn1 − > 0}. In the latter case, the frictionless forerunner avoids that ϕN produces
costs when the spread jumps away from zero, which do not occur with the strategy ϕ.
Namely, at a time the spread jumps away from zero, ϕN either remains zero or it
already coincides with ϕ. Note that the frictionless forerunner may consist of a single
point only. For example, this is the case if the jump time is an accumulation point of
starting/ending points of excursions shortly before.

First, we approximate ϕ by the strategies ϕN .
Step 1: Let E ∈ FT be a set with P(E) = 1 s.t. the properties from Lemma 3.5.1

and Lemma 3.5.2 hold for all ω ∈ E. Let us show that ϕNt (ω)→ ϕt(ω) for all t ∈ [0, T ]
and ω ∈ E. By construction of ϕN , we only have to show that for each n ∈ N, the
excursion starting in τn1 (ω) is overlapped by Anω := {t ∈ [0, T ] : (ω, t) ∈ An}, the

ω-intersection of An, or by some B̃m
ω , m ∈ N. In the case that Xτn1 (ω)−(ω) > 0,

the excursion is overlapped by Anω. In the case that Xτn1 (ω)−(ω) = 0, we have by
Lemma 3.5.2 that τn1 (ω) ∈ [σm1 (ω),Γ1(σm1 (ω))] for some m ∈ N and thus the excursion

starting in τ1
n(ω) is overlapped by B̃m

ω . By Note 3.5.3, it follows that ϕN • S to ϕ • S
uniformly in probability for N →∞.

Step 2: W.l.o.g we assume that the bounded process ϕ takes values in [−1/2, 1/2]
to get rid of a further constant. Let us show that

sup
t∈[0,T ]

|Ct(ϕN )− Ct(ϕ)|1{Ct(ϕ)≤K} → 0, N →∞, pointwise on E ∀K ∈ N. (3.5.8)

From Xτn1
= 0 on {Xτn1 − > 0} and Xσn1

= 0 on {Xσn1− > 0}, we conclude: for
fixed ω ∈ E and 0 ≤ a ≤ b ≤ T with infu∈[a,b)Xu(ω) > 0, we either have that

ϕNu (ω) = ϕu(ω) for all u ∈ [a, b] or ϕNu (ω) = 0 for all u ∈ [a, b]. By the definition of
the cost term in (3.3.2), this yields C(ϕN , I ∩ [0, t]) ≤ C(ϕ, I ∩ [0, t]) for all I ∈ I,
(ω, t) ∈ E × [0, T ] and thus Ct(ϕ

N ) ≤ Ct(ϕ) for all (ω, t) ∈ E × [0, T ]. We define

θm := inf{t ≥ 0 : Ct(ϕ) > m} ∧ T for m ∈ N. (3.5.9)

By ∆−Cθm(ϕ) ≤ supu∈[0,T ]Xu, the paths of the stopped process Cθ
m

(ϕ) are bounded.

Fix ω ∈ E and ε > 0. For K ∈ N we set u := θK . Proposition 3.3.7 yields that
C(ϕ, I ∩ [0, u]) = C(ϕ, I ∩ [0, t]) + C(ϕ, I ∩ [t, u]) for all I ∈ I and t ≤ u. Therefore,
together with Proposition 3.3.9(i), there exists I ∈ I s.t.

sup
t∈[0,T ]

(Ct(ϕ)− C(ϕ, I ∩ [0, t]))1{Ct(ϕ)≤K} ≤ ε.

The set I is overlapped by finitely many ω-intersections of An and Bn ∪ B̃n, i.e.,
for N large enough, one has I ⊂ ∪n≤N (An ∪ Bn ∪ B̃n)ω, i.e., C(ϕN , I ∩ [0, t]) =
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C(ϕ, I ∩ [0, t]) and, consequently, (Ct(ϕ) − Ct(ϕN ))1{Ct(ϕ)≤K} ≤ (C(ϕ, I ∩ [0, t]) −
C(ϕN , I ∩ [0, t]))1{Ct(ϕ)≤K} + ε = ε for all t ∈ [0, T ]. This implies (3.5.8). Together
with Step 1, we have that

ϕN → ϕ pointwise up to evanescence (3.5.10)

and sup
t∈[0,T ]

|Vt(ϕN )− Vt(ϕ)|1{Ct(ϕ)≤K} → 0 in probability (3.5.11)

for N →∞ and each K ∈ N.
Step 3: It remains to approximate the strategies ϕN , N ∈ N, by almost simple

strategies. Since the pointwise convergence that we need on {X− > 0} ∩ {C(ϕ) <∞}
is not metrizable, it is not sufficient to approximate each ϕN separately by a sequence
of almost simple strategies. Let µ be a σ-finite measure on P with µS � µ. We
fix some N ∈ N and let ε := 2−N . In the following, we construct an almost simple
strategy step by step on disjoint stochastic intervals. The main idea is to approximate
the cost term on subintervals of excursions where the spread is bounded away from
zero while controlling the error at the beginning and the end of the excursions. We
start with the construction of an almost simple strategy on An with n ≤ N . We recall
that τn2 := Γ2(τn1 ). There exists a stopping time τn,N1 with θN ∧ τn2 ≥ τn,N1 > τn1 on

{τn1 < θN} ∩ {Xτn1 − > 0}, τn,N1 = θN on {θN ≤ τn1 } and, for notational convenience,

τn,N1 = τn1 elsewhere s.t.

P(τn1 ∧ θN ≤ τ
n,N
1 ≤ τn1 + ε) = 1, (3.5.12)

P((ϕN1
]]τn1 ,τ

n,N
1 ]]

• S)? > ε) ≤ ε, P(τn1 < ∞, |X
τn,N1
−Xτn1 ∧θN | > ε) ≤ ε, and P(τn1 <

∞, C
τn,N1

(ϕN )−Cτn1 ∧θN (ϕN ) > ε) ≤ ε, where we use the notation Y ? := supt∈[0,T ] |Yt|
and θN was defined in (3.5.9). This follows from the right-continuity of the processes
ϕN1]]τn1 ,T ]]

• S, X and from the definition of the cost process together with Xτn1
= 0

on {Xτn1 − > 0}. In addition, since [[(τn2 ){Xτn2 −=0}]] =]]τn1 , τ
n
2 ]] ∩ {X− = 0} ∈ P, the

stopping time (τn2 ){Xτn2 −=0} is predictable. Thus, by the existence of an announcing

sequence (see, e.g., [42, Theorem 4.34]), there is a stopping time τn,N2 with τn,N1 ≤
τn,N2 ≤ τn2 ∧ θN and τn,N2 < τn2 on {Xτn2 − = 0, τn,N1 < τn2 } s.t.

P(τn,N2 < τn2 ∧ θN − ε) ≤ ε, P(Xτn2 − > 0, τn,N2 < τn2 ∧ θN ) ≤ ε, (3.5.13)

P((ϕN1
]]τn,N2 ,τn2 ∧θN [[∪[[(τn2 )

{Xτn2 −
>0, τ

n,N
2 <τn2 ∧θ

N}
]]
• S)? > ε) ≤ ε,

P(X
τn,N2

> ε, τn,N2 < τn2 ∧ θN ) ≤ ε, and P(τn2 <∞, Cτn2 ∧θN (ϕN )− C
τn,N2

(ϕN ) > ε) ≤ ε.

By Proposition 3.3.17 applied to the stopping times τn,N1 ≤ τn,N2 , there exists an

almost simple strategy ψ̃N with ψ̃N
τn,N1

= ϕN
τn,N1

,

sup
t∈[τn,N1 ,τn,N2 ]

|ψ̃Nt − ϕNt | ≤ ε, (3.5.14)
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P

 sup
t∈[τn,N1 ,τn,N2 ]

|Ct(ψ̃N )− C
τn,N1

(ψ̃N )− (Ct(ϕ
N )− C

τn,N1
(ϕN ))| > ε

 ≤ ε,
and P(((ψ̃N − ϕN )1

]]τn,N1 ,τn,N2 ]]
• S)? > ε) ≤ ε (the later also uses Note 3.5.3). We

define the almost simple strategy by

ψNt := ψ̃Nt 1(τn,N1 <t≤τn,N2 )
on An. (3.5.15)

Since ψN can be updated for free at the left endpoint of An, for the increments of the
process V (ψN )− V (ϕN ) = (ψN − ϕN ) • S − (C(ψN )− C(ϕN )) we get the estimate

P

 sup
t∈(τn1 ,τ

n
2 )

∪[(τn2 ){Xτn2 −
>0}]

|Vt(ψN )− Vτn1 (ψN )− (Vt(ϕ
N )− Vτn1 (ϕN ))|1{Ct(ϕ)≤K} > 8ε

τn1 <∞, Xτn1 − > 0,
)
≤ 8ε for all n = 1, . . . , N, K ≤ N, (3.5.16)

regardless of how ψN is defined outside An, especially at time τn1 . Indeed, in the worst

case, there are 2 error terms on (τn1 , τ
n,N
1 ], 3 error terms on (τn,N1 , τn,N2 ], and 3 error

terms between (τn,N2 , τn2 ) ∪ [(τn2 ){Xτn2 −>0}].

We proceed with the construction of the almost simple strategy on Bn ∪ B̃n with
n ≤ N . A strategy with support Bn has zero costs, and by Note 3.5.3, we find an
(almost) simple strategy ψ̂N with

µ(|ψ̂N − ϕN |1Bn > ε) ≤ ε, (3.5.17)

P(Γ1(σn1 ) <∞, |ψ̂NΓ1(σn1 ) − ϕ
N
Γ1(σn1 )|XΓ1(σn1 ) > ε) ≤ ε, (3.5.18)

and P(((ψ̂N − ϕN )1Bn • S)? > ε) ≤ ε. After Γ1(σn1 ), we proceed similar to (3.5.15).

Setting τ̃n2 := Γ2(Γ1(σn1 )), there exists a stopping time τ̃n,N1 with τ̃n,N1 = θN on

{θN ≤ Γ1(σn1 )}, τ̃n,N1 = Γ1(σn1 ) on {Γ1(σn1 ) < θN , XΓ1(σn1 ) > 0} and θN ∧ τ̃n2 ≥ τ̃
n,N
1 >

Γ1(σn1 ) on {Γ1(σn1 ) < θN , XΓ1(σn1 ) = 0} s.t. P(Γ1(σn1 ) ∧ θN ≤ τ̃n,N1 ≤ Γ1(σn1 ) + ε) = 1,

P(((ϕN−ϕNΓ1(σn1 ))1]]Γ1(σn1 ),τ̃n,N1 ]]
• S)? > ε) ≤ ε, P(Γ1(σn1 ) <∞, |X

τ̃n,N1
−XΓ1(σn1 )∧θN | >

ε) ≤ ε, and P(Γ1(σn1 ) < ∞, C
τ̃n,N1

(ϕN ) − CΓ1(σn1 )∧θN (ϕN ) > ε) ≤ ε. τ̃n,N2 is defined

completely analogous to τn,N2 from above. We set

ψNt := ψ̂Nt 1(t≤Γ1(σn1 )∧θN ) + ψ
N
t 1(τ̃n,N1 <t≤τ̃n,N2 )

on Bn ∪ B̃n (3.5.19)

for some almost simple strategy ψ
N

with ψ
N
τ̃n,N1

= ϕN
τ̃n,N1

and sup
t∈[τ̃n,N1 ,τ̃n,N2 ]

|ψNt −

ϕNt | ≤ ε. As in (3.5.16), but with the additional error terms on Bn and (3.5.18) for
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the case that the spread jumps away from zero, we get that

P

 sup
t∈[(σn1 ){Xσn1−

=0}∪(σn1 ,Γ2(Γ1(σn1 )))

∪[(Γ2(Γ1(σn1 ))){XΓ2(Γ1(σn1 ))−>0}]

|Vt(ψN )− V 1 − (Vt(ϕ
N )− V 2)|1{Ct(ϕ)≤K} > 10ε


≤ 10ε for all n = 1, . . . , N, K ≤ N, (3.5.20)

where V 1 := Vσn1−(ψN ), V 2 := Vσn1−(ϕN ) on {Xσn1− = 0} and V 1 := Vσn1 (ψN ),

V 2 := Vσn1 (ϕN ) on {Xσn1− > 0}. By (3.5.6), An and Bm ∪ B̃m are disjoint. Thus,
(3.5.15) and (3.5.19) can be used to define an almost simple strategy on Ω × [0, T ]:
for n ≤ N , define ψN on ∪n≤N (An ∪ Bn ∪ B̃n) as above and set ψN := 0 on

(Ω × [0, T ]) \ ∪n≤N (An ∪ Bn ∪ B̃n). By V0(ψN ) = V0(ϕN ) = 0 and the construc-

tion of An and Bn ∪ B̃n, for each (ω, t), (Vt(ψ
N
t )(ω) − Vt(ϕN )(ω))1{Ct(ϕ)≤K}(ω) can

be written as a finite sum of increments from (3.5.16) and (3.5.20). For this, we again
use that at the right endpoint of An and B̃n, the position can be liquidated with-
out any costs. Summing up the error terms and recalling that ε = 2−N , this yields
P(supt∈[0,T ] |Vt(ψN ) − Vt(ϕ

N )|1{Ct(ϕ)≤K} > 18N2−N ) ≤ 18N2−N for all N ≥ K.

Together with (3.5.11), we obtain supt∈[0,T ] |Vt(ψN )− Vt(ϕ)|1{Ct(ϕ)≤K} → 0 in prob-
ability for N →∞ and all K ∈ N.

By (3.5.17) and (3.5.19), we have that (ψN )N∈N converges to ϕ µ-a.e. on {X− =
0}∩{C(ϕ) <∞}. It remains to show that (ψN )N∈N converges pointwise up to evanes-
cence to ϕ on the set {X− > 0} ∩ {C(ϕ) < ∞}. Let (ω, t) ∈ Ω × [0, T ] with
Xt−(ω) > 0 and Ct(ϕ)(ω) <∞. By the arguments in Step 1, there exists an n ∈ N with
(ω, t) ∈ An∪B̃n. W.l.o.g. (ω, t) ∈ An. By (3.5.12), one has τn,N1 (ω) ≤ τn1 (ω)+2−N < t
and, as the costs at t are finite, θN (ω) ≥ t for N large enough.

Case 1: t < τn2 (ω). By (3.5.13) and the lemma of Borel-Cantelli, we have that

P(En) = 0, where En := ∩
Ñ∈N ∪N≥Ñ {τ

n,N
2 < τn2 − 2−N}. If ω 6∈ En, this implies

that t < τn2 (ω)− 2−N ≤ τn,N2 (ω) for N large enough and thus by (3.5.14), |ψNt (ω)−
ϕNt (ω)| ≤ 2−N for N large enough.

Case 2: t = τn2 (ω) and thus Xτn2 (ω)− > 0. By (3.5.13) and the lemma of Borel-

Cantelli, we have that P(Ẽn) = 0, where Ẽn := ∩
Ñ∈N ∪N≥Ñ {Xτn2 − > 0, τn,N2 < τn2 }.

If ω 6∈ Ẽn, this implies that t = τn,N2 (ω) for N large enough and thus by (3.5.14),
|ψNt (ω)− ϕNt (ω)| ≤ 2−N for N large enough.

Since ϕNt (ω) = ϕt(ω) for all N ≥ n, we conclude that the sequence (ψN )N∈N
converges pointwise up to evanescence to ϕ on the set {X− > 0} ∩ {C(ϕ) <∞}.
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3.6 Technical results: Construction of the cost term

Proof of Proposition 3.3.3 and Proposition 3.3.10. As the two propositions are inter-
related, we give their proofs together. Recall that the arguments below are path-by-
path, i.e., ω ∈ Ω is fixed.

Step 1: We begin by establishing the uniqueness of the cost term. Therefore, assume
that there are exist C1, C2 ∈ [0,∞] satisfying the condition in Definition 3.3.2. This
means that for each i ∈ {1, 2}, ε > 0, we find a partition P iε of I = [a, b] s.t. for
every refinement P of P iε and every modified intermediate subdivision λ of P , we have
d(Ci, R(ϕ, P, λ)) < ε, where d(x, y) := | arctan(x) − arctan(y)| with arctan(∞) :=
π/2, which defines a metric on [0,∞]. But, letting λ denote an arbitrary modified
intermediate subdivision of P 1

ε ∪ P 2
ε , this means

d(C1, C2) ≤ d(C1, R(ϕ, P 1
ε ∪ P 2

ε , λ)) + d(C2, R(ϕ, P 1
ε ∪ P 2

ε , λ)) < 2ε,

which means C1 = C2 as the above holds for all ε > 0.
Step 2: We now turn towards existence. Let (δn)n∈N, (ηn)n∈N ⊆ (0,∞) be sequences

with δn ↓ 0 and ηn ↓ 0. It follows from a minor adjustment of [71, Lemma 2.1] that
for each n ∈ N there is a partition Pn = {tn0 , . . . , tnkn} of I s.t.

osc(S − S, [tni−1, t
n
i )) < δn and osc(S − S, [tni−1, t

n
i )) < δn (3.6.1)

for i = 1, . . . , kn. By the definition of the oscillation of a function, (3.6.1) also holds
for every refinement of Pn. Hence, Pn can be chosen s.t. we also have{∑kn

i=1 |ϕtni − ϕtni−1
|+ ηn ≥ Varba(ϕ), if Varba(ϕ) <∞∑kn

i=1 |ϕtni − ϕtni−1
| > 1/ηn, if Varba(ϕ) =∞

for all n ∈ N. (3.6.2)

In addition, we can obviously choose the sequence (Pn)n∈N s.t. it is refining. This
shows that there exists a refining sequence of partitions satisfying assertions (i) and
(ii) of Proposition 3.3.10.

Step 3: Next, let (Pn)n∈N be a refining sequence of partitions from step 2, i.e.,
Pn = {tn0 , . . . , tnkn} satisfies (3.6.1) and (3.6.2).

Case 1: Let us first assume Varba(ϕ) < ∞. Let M := supt∈I(St − St). We claim
that for all subdivisions λ = {s1, . . . , skn} of Pn, all refinements P ′ = {t′0, . . . , t′m} of
Pn, and all subdivisions λ′ = {s′1, . . . , s′m} of P ′, we have

|R(ϕ, Pn, λ)−R(ϕ, P ′, λ′)| ≤ ηnM + δnVarba(ϕ). (3.6.3)
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The key estimate to derive (3.6.3) is∣∣∣∣∣(Ssi − Ssi)(ϕtni − ϕtni−1

)+
−

ni∑
k=1

(
Ss′ik

− Ss′ik

)(
ϕt′ik
− ϕt′ik−1

)+
∣∣∣∣∣

≤

∣∣∣∣∣(Ssi − Ssi)
((

ϕtni − ϕtni−1

)+
−

ni∑
k=1

(
ϕt′ik
− ϕt′ik−1

)+
)∣∣∣∣∣

+

∣∣∣∣∣
ni∑
k=1

((
Ss′ik

− Ss′ik

)
−
(
Ssi − Ssi

))(
ϕt′ik
− ϕt′ik−1

)+
∣∣∣∣∣

≤M

(
ni∑
k=1

(
ϕt′ik
− ϕt′ik−1

)+
−
(
ϕtni − ϕtni−1

)+
)

+ δn

ni∑
k=1

(
ϕt′ik
− ϕt′ik−1

)+
,

where i ∈ {1, . . . , kn} and t′i1 , . . . , t
′
ini

denote the elements of P ′ with tni−1 = t′i1 <

· · · < t′ini
= tni .

Now, let (λn)n∈N be arbitrary modified intermediate subdivisions of (Pn)n∈N.
Then, as the sequence (Pn)n∈N is refining, (3.6.3) yields

sup
m≥n
|R(ϕ, Pm, λm)−R(ϕ, Pn, λn)| ≤ ηnM + δnVarba(ϕ).

Thus, the sequence (R(ϕ, Pn, λn))n∈N is Cauchy in R+ and C := lim
n→∞

R(ϕ, Pn, λn) ∈
R+ exists. It remains to show that C satisfies Definition 3.3.2(i). Therefore, let ε > 0
and choose n ∈ N s.t. ηnM + δnVarba(ϕ) < ε/2 and |C−R(ϕ, Pn, λn)| < ε/2. Together
with (3.6.3), this implies that for all refinements P ′ of Pn and subdivisions λ′ of P ′,
we have

|C −R(ϕ, P ′, λ′)| ≤ |C −R(ϕ, Pn, λn)|+ |R(ϕ, Pn, λn)−R(ϕ, P ′, λ′)| < ε.

Thus, C satisfies Definition 3.3.2(i).
Case 2: We now treat the case Varba(ϕ) = ∞. In this case, we will show that the

cost term exists and C(ϕ, I) =∞. Recall that we assumed δ := inft∈[a,b)(St−St) > 0.
We define a sequence (σk)k≥0 by σ0 = a and

σk :=

{
inf{t ≥ σk−1 : St ≤ St + δ/3} ∧ b, k odd

inf{t ≥ σk−1 : St ≤ St − δ/3} ∧ b, k even.

As S, S, and S are càdlàg, we have σk = b for k large enough. Hence, let K ∈ N denote
the smallest number s.t. σK = b. In addition, note that we also have σ0 ≤ σ1 < σ2 <
· · · < σK = b and, per construction,

inf
t∈[σ2k,σ2k+1)

St − St > δ/3, and inf
t∈[σ2k+1,σ2(k+1))

St − St > δ/3. (3.6.4)
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Recall that Varba(ϕ) =∞ implies that
∑kn

i=1 |ϕtni − ϕtni−1
| → ∞ as n→∞ by (3.6.2).

Since K <∞ and ϕ is bounded, this implies that for at least one k ∈ {0, 1, . . . ,K−1},
we have ∑

tni ,t
n
i−1∈Pn

tni ,t
n
i−1∈[σk,σk+1]

|ϕtni − ϕtni−1
| → ∞, n→∞,

which, again by the boundedness of ϕ, implies that∑
tni ,t

n
i−1∈Pn

tni ,t
n
i−1∈[σk,σk+1]

(ϕtni − ϕtni−1
)+ →∞, n→∞

and
∑

tni ,t
n
i−1∈Pn

tni ,t
n
i−1∈[σk,σk+1]

(ϕtni − ϕtni−1
)− →∞, n→∞.

(3.6.5)

By (3.6.4), this implies that R(ϕ, Pn, λn) → ∞ as n → ∞ for arbitrary subdivisions
λn of Pn. Since the sums in (3.6.5) get even bigger if Pn are replaced by refining
partitions Gn, the cost term C(ϕ, I) exists and is ∞.

This finishes the proof of Propositions 3.3.3 and 3.3.10. Indeed, in step 2 above, we
showed that there exists a sequence of partitions satisfying the assumptions (i) and
(ii) of Proposition 3.3.10. Subsequently, in step 3 we showed that for every refining
sequence of partitions with these properties the corresponding Riemann-Stieltjes sums
converge and their limits satisfy Definition 3.3.2. Thus, by the uniqueness shown in
step 1, their limits coincide and we are done.

We now turn to the proof of Lemma 3.3.13. This will rely on the following concept
and result of Doob [28].

Definition 3.6.1. Let ϕ be a stochastic process. A sequence (Tn)n∈N of predictable
stopping times is called a predictable separability set for ϕ if for each ω ∈ Ω the set
{Tn(ω) : n ∈ N} contains 0 and is dense in [0, T ] and

{(t, ϕt(ω)) : t ∈ [0, T ]} = {(Tn(ω), ϕTn(ω)(ω)) : n ∈ N}, (3.6.6)

i.e., the graph of the sample function t 7→ ϕt(ω) is the closure of the graph restricted
to the set {Tn(ω) : n ∈ N}. A stochastic process ϕ having a predictable separability
set is called predictably separable.

Theorem 3.6.2 (Doob [28], Theorem 5.2). A predictable process coincides with some
predictably separable predictable process up to evanescence.

Proof of Lemma 3.3.13. By Theorem 3.6.2, we have to show that for a predictably
separable predictable process ϕ, the process C(ϕ, [σ ∧ ·, τ ∧ ·]) is predictable.

Let {Tn : n ∈ N} denote the predictable separability set for ϕ. By (3.6.6), we
can find a sequence of finite sequences of (not necessarily predictable) stopping times



3.6. Technical results: Construction of the cost term 87

σ = Tn0 ≤ Tn1 ≤ · · · ≤ Tnmn = τ s.t.

Varτ∧tσ∧t(ϕ) = lim
n→∞

mn∑
i=1

|ϕTni ∧t − ϕTni−1∧t|, pointwise, t ∈ [0, T ].

Next, we define for each n ∈ N and i ∈ {1, . . . ,mn} a sequence (V n,i
l )l∈N of stopping

times by V n,i
0 = Tni−1 and recursively

V n,i
l := inf{t > V n,i

l−1 :|St − St − (S
V n,il−1
− S

V n,il−1
)| > 1

2n

or |St − St − (S
V n,il−1
− S

V n,il−1
)| > 1

2n
} ∧ Tni .

This leads to the sequence of random partitions Pn :=
⋃
k≤n

⋃
i=1,...,mk

⋃
l∈N0
{V i,k

l },
n ∈ N, which is for each ω refining. Note that for ω and n fixed, Pn is finite. Re-
arranging the resulting stopping times in increasing order yields a refining sequence
of increasing sequences of stopping times (νnk )k∈N, n ∈ N, s.t. #{k : νnk (ω) < ∞} <
∞ for all n ∈ N, Varτ∧tσ∧t(ϕ) = lim

n→∞

∑∞
k=0 |ϕνnk∧t − ϕνnk−1∧t| for all t ∈ [0, T ], and

max(osc(S − S, [νnk , νnk+1)), osc(S − S, [νnk , νnk+1))) ≤ 1/n for all k ∈ N0 and n ∈ N. In
particular, this means that for each ω ∈ {σ < τ} and t ∈ [0, T ] the sequence of parti-
tions (Pn(ω))n∈N defined by Pn(ω) := {νnk (ω)∧ t : k ∈ N} satisfies the assumptions of
Proposition 3.3.10. Hence, Proposition 3.3.10 together with C(ϕ, [σ ∧ ·, τ ∧ ·]) = 0 on
{σ = τ} implies that the sequence of predictable processes

∞∑
k=1

(Sνnk−1
− Sνnk−1

)(ϕνnk∧· − ϕνnk−1∧·)
+ +

∞∑
k=1

(Sνnk−1
− Sνnk−1

)(ϕνnk∧· − ϕνnk−1∧·)
−, n ∈ N

converges pointwise to C(ϕ, [σ ∧ ·, τ ∧ ·]), which yields the assertion.

Proof of Proposition 3.3.17. In the following, we can and do assume with no loss of
generality that σ and τ are [0, T ]-valued stopping times. In addition, by Proposi-
tion 3.3.3, we have Varτσ(ϕ) <∞ a.s. and thus w.l.o.g. also for all paths. This implies
that the paths of ϕ are làglàd on [[σ, τ ]].

Step 1. We start by constructing the sequence (ϕn)n∈N. Therefore, we define

Tn0 := σ, Tnk := inf{t ∈ (Tnk−1, τ ] : |ϕt − ϕTnk−1+| ≥ 1/n}, k ∈ N, (3.6.7)

which are obviously stopping times. In addition, we have Tnk−1 < Tnk on {Tnk−1 <∞}
and #{k : Tnk (ω) ≤ τ} < ∞ for all ω ∈ Ω as Varτσ(ϕ) < ∞. We have to distinguish
between a portfolio adjustment at Tnk and at Tnk +. For this, we define further stopping
times:

πn0 := σ, πnk := (Tnk ){|ϕTn
k
−ϕTn

k−1
+|≥1/n}, k ∈ N
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and note that πnk is a predictable stopping time for all k ∈ N. Indeed, for k ≥ 1 we
have

Jπnk K = J0, Tnk K ∩ {(ω, t) : Yt(ω) ≥ 1/n} ∈ P

since the process Yt := |ϕt − ϕTnk−1+|1KTnk−1,τK
is a predictable. Hence, we may define

(ϕn)n∈N by

ϕn :=
∞∑
k=0

(
ϕπnk1Jπnk K + ϕTnk +1KTnk ,T

n
k+1K\Jπnk+1K

)
which satisfies ϕnσ = ϕσ and ϕn1Kσ,τK is predictable and, consequently, almost simple.
In addition, the definition ensures |ϕ− ϕn| ≤ 1/n on Jσ, τK.

Step 2: Let us show that supt∈[σ,τ ] |Vartσ(ϕ) − Vartσ(ϕn)| → 0 pointwise. Let
ω ∈ Ω and ε > 0 be fixed. We take a partition P = {t0, . . . , tm} s.t. Varτσ(ϕ(ω)) ≤∑m

i=1 |ϕti(ω)− ϕti−1(ω)|+ ε. This yields

Vartσ(ϕ(ω)) ≤
m∑
i=1

|ϕti∧t(ω)− ϕti−1∧t(ω)|+ ε, ∀t ∈ [σ(ω), τ(ω)]. (3.6.8)

Now, recall from Step 1 that ϕn(ω) → ϕ(ω) uniformly on [σ(ω), τ(ω)]. Thus, we
may choose N ∈ N large enough s.t. for all n ≥ N we have |ϕt(ω)− ϕnt (ω)| ≤ ε/(2m)
for all t ∈ [σ(ω), τ(ω)]. Therefore, we get

Vartσ(ϕ(ω))−Vartσ(ϕn(ω)) ≤
m∑
i=1

|ϕti∧t(ω)− ϕti−1∧t(ω)|+ ε−Vartσ(ϕn(ω))

≤
m∑
i=1

|ϕnti∧t(ω)− ϕnti−1∧t(ω)|+ 2ε−Vartσ(ϕn(ω)) ≤ 2ε

for all t ∈ [σ(ω), τ(ω)]. Hence, we have proven the claim as we have Vartσ(ϕ(ω)) ≥
Vartσ(ϕn(ω)) by construction.

Step 3: We now show that (3.3.10) holds. We again argue path-by-path, i.e., ω ∈ Ω
is fixed without explicitly mentioning it. Therefore, note that the jumps of the cost
term on [σ, τ ] are given by

∆Ct(ϕ) = lim
s↑t

C(ϕ, [s, t]) = (St− − St−)(∆ϕt)
+ + (St− − St−)(∆ϕt)

−, t ∈ (σ, τ ],

∆+Ct(ϕ) = lim
s↓t

C(ϕ, [t, s]) = (St − St)(∆+ϕt)
+ + (St − St)(∆+ϕt)

−, t ∈ [σ, τ).

In the following, given k ∈ N, we use the notation C(ϕ, (Tnk−1, T
n
k ]) := C(ϕ, [Tnk−1, T

n
k ])−

∆+CTnk−1
(ϕ) and C(ϕ, (Tnk−1, T

n
k )) := C(ϕ, (Tnk−1, T

n
k ])−∆CTnk (ϕ), where it is tacitly

assumed that Tnk ≤ τ . In particular, this means that for ϕn, we have C(ϕn, (Tnk−1, T
n
k ]) =

(STnk −−STnk −)(ϕnTnk
−ϕnTnk −)++(STnk −−STnk −)(ϕnTnk

−ϕnTnk −)− as C(ϕn, (Tnk−1, T
n
k )) = 0

according to Proposition 3.3.16. We now want to get an estimate on

|C(ϕ, (Tnk−1, T
n
k ]) + ∆+CTnk (ϕ)− (C(ϕn, (Tnk−1, T

n
k ]) + ∆+CTnk (ϕn))| (3.6.9)
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(this means that we move forward from Tnk−1+ to Tnk + and tacitly assume Tnk < τ).
Step 3.1: We start by establishing a strong bound on the difference (3.6.9), which

only holds if the prices do not vary too much between Tnk−1 and Tnk . To formalize this,
we take δ > 0, which will be specified later, and define (ρm)m≥0 by ρ0 := σ and

ρm := inf{t ∈ (ρm−1, τ ] : |St−St−(Sρm−1−Sρm−1)| > δ or |St−St−(Sρm−1−Sρm−1
)| > δ}.

We now claim that on {ρm−1 ≤ Tnk−1 < Tnk < ρm} for some m ≥ 1, we have

|C(ϕ, (Tnk−1, T
n
k ]) + ∆+CTnk (ϕ)− (C(ϕn, (Tnk−1, T

n
k ]) + ∆+CTnk (ϕn))|

≤ δVar
Tnk +

Tnk−1+(ϕ) + sup
t∈[0,T ]

(St − St)
(

Var
Tnk +

Tnk−1+(ϕ)−Var
Tnk +

Tnk−1+(ϕn)
)
, k ≥ 1.

(3.6.10)

In order to prove this, we distinguish between two cases.
Case 1: We start by considering the event {Tnk = πnk}, i.e., the infimum in (3.6.7)

is attained and ∆+CTnk (ϕ) = ∆+CTnk (ϕn). First, we assume that ϕTnk − ϕTnk−1+ ≥ 0,
i.e., the strategy ϕ buys (after netting buying and selling)

a := ϕTnk − ϕTnk−1+ = Var
Tnk
Tnk−1+(ϕn) ≥ 0

stocks on (Tnk−1, T
n
k ]. Now observe that ϕn buys a stocks at a cost of STnk −−STnk − and

ϕ buys at least a stocks at different cost, which differs from STnk − − STnk − by at most

δ. In addition, the continuous strategy purchases ϕ↑Tnk
− ϕ↑Tnk−1+ − a additional stocks

and sells ϕ↓Tnk
− ϕ↓Tnk−1+ stocks on the same interval. But the cost of those trades can

be estimated above by supt∈[0,T ](St − St). Putting these arguments together, we get

|C(ϕ, (Tnk−1, T
n
k ]) + ∆+CTnk (ϕ)− (C(ϕn, (Tnk−1, T

n
k ]) + ∆+CTnk (ϕn))|

≤ δa+ sup
t∈[0,T ]

(St − St)(ϕ
↑
Tnk
− ϕ↑Tnk−1+ − a+ ϕ↓Tnk

− ϕ↓Tnk−1+)

= δVar
Tnk
Tnk−1+(ϕn) + sup

t∈[0,T ]
(St − St)

(
Var

Tnk
Tnk−1+(ϕ)−Var

Tnk
Tnk−1+(ϕn)

)
≤ δVar

Tnk +

Tnk−1+(ϕ) + sup
t∈[0,T ]

(St − St)
(

Var
Tnk +

Tnk−1+(ϕ)−Var
Tnk +

Tnk−1+(ϕn)
)
,

where we used

Var
Tnk
Tnk−1+(ϕn) ≤ Var

Tnk
Tnk−1+(ϕ) ≤ Var

Tnk +

Tnk−1+(ϕ)

and ∆+CTnk (ϕ) = ∆+CTnk (ϕn) on {Tnk = πnk}. For ϕTnk −ϕTnk−1+ < 0, the argument is
analogue.

Case 2: We still have to prove the claim on {Tnk 6= πnk}. Here, we have ∆CTnk (ϕn) =
0 and, therefore, the argument is similar to the previous case but this time with
a := ϕTnk + − ϕTnk−1+. Thus, we skip the details.
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Step 3.2: We still need a bound on (3.6.9) if the costs vary by more than δ between
Tnk−1 and Tnk . Fortunately, a weaker bound will be sufficient here. We now claim that,
in general, we have

|C(ϕ, (Tnk−1, T
n
k ]) + ∆+CTnk (ϕ)− (C(ϕn, (Tnk−1, T

n
k ]) + ∆+CTnk (ϕn))|

≤ sup
t∈[0,T ]

(St − St)
[

2

n
+ (Var

Tnk +

Tnk−1+
(ϕ)−Var

Tnk +

Tnk−1+(ϕn))

]
. (3.6.11)

We distinguish between the same cases as above.
Case 1: We first consider the event {Tnk = πnk}. Recall that in this case we have

∆+CTnk (ϕ) = ∆+CTnk (ϕn). In addition, let us assume that ϕTnk − ϕTnk−1+ ≥ 0. In this
case, we have ϕTnk −ϕTnk−1+ ≥ 1/n and ϕTnk −−ϕTnk−1+ ≤ 1/n by the Definition of Tnk .
This implies

ϕTnk − ϕTnk − = ϕTnk − ϕTnk−1+ −
(
ϕTnk − − ϕTnk−1+

)
≥ 0,

i.e., both strategies buy at Tnk , but possibly different amounts. Thus, we have ∆CTnk (ϕ) =

(STnk − − STnk −)(ϕTnk − ϕTnk −) and can write

|C(ϕ, (Tnk−1, T
n
k ]) + ∆+CTnk (ϕ)− (C(ϕn, (Tnk−1, T

n
k ]) + ∆+CTnk (ϕn))|

= |C(ϕ, (Tnk−1, T
n
k )) + (STnk − − STnk −)(ϕTnk − ϕTnk −)− (STnk − − STnk −)(ϕTnk − ϕTnk−1+

)|

= |C(ϕ, (Tnk−1, T
n
k ))− (STnk − − STnk −)(ϕTnk − − ϕTnk−1+)|.

Since the costs per share are bounded by supt∈[0,T ](St − St), this yields

|C(ϕ, (Tnk−1, T
n
k ))− (STnk − − STnk −)(ϕTnk − − ϕTnk−1+)|

≤ sup
t∈[0,T ]

(St − St)
[
Var

Tnk −
Tnk−1+

(ϕ) + |ϕTnk − − ϕTnk−1+|
]

≤ sup
t∈[0,T ]

(St − St)
[

2

n
+ Var

Tnk +

Tnk−1+
(ϕ)−Var

Tnk +

Tnk−1+(ϕn)

]
,

where we use |ϕTnk − − ϕTnk−1+| ≤ 1/n per construction of Tnk , Var
Tnk −
Tnk−1+

(ϕ)− |ϕTnk − −

ϕTnk−1+| ≤ Var
Tnk
Tnk−1+

(ϕ)−Var
Tnk
Tnk−1+

(ϕn), and ∆+CTnk (ϕ) = ∆+CTnk (ϕ) on {Tnk = πnk}.
The case ϕTnk − ϕTnk−1+ ≤ 0 is analogous.

Case 2: We still need to consider the event {Tnk 6= πnk}, i.e., ∆CTnk (ϕn) = 0.
However, as this is analogous to Case 1, we leave it to the reader.

In addition, note that on {Tnk−1 ≤ t < Tnk }, we have VartTnk−1+(ϕn) = 0 and, thus,

the trivial estimate

|C(ϕ, (Tnk−1, t])− C(ϕn, (Tnk−1, t])|
≤ sup
t∈[0,T ]

(St − St)(VartTnk−1+(ϕ)−VartTnk−1+(ϕn)). (3.6.12)
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Step 4: We can now finish the proof by putting the different estimates together.
Therefore, let a(δ) := #{m : ρm ≤ τ} and note that a(δ) < ∞ (recall that ω ∈ Ω
is fixed). Next, note that we have ∆+Cσ(ϕ) = ∆+Cσ(ϕn) by construction of ϕn. For
t ∈ [σ, τ ] let Kn := #{k : Tnk ≤ t}. We get

|C(ϕ, [σ, t])− C(ϕn, [σ, t])|

≤
Kn∑
k=1

|C(ϕ, (Tnk−1, T
n
k ]) + ∆+CTnk (ϕ)1{Tnk <t} − (C(ϕn, (Tnk−1, T

n
k ]) + ∆+CTnk (ϕn)1{Tnk <t})|

+ |C(ϕ, (TnKn , t])− C(ϕn, (TnKn , t])| (3.6.13)

On {TnKn < t} we apply the estimate (3.6.11) to all pairs Tnk−1, T
n
k with k = 1, . . . ,Kn

s.t. there is at least one m = 1, . . . , a(δ) with Tnk−1 < pm ≤ Tnk , the estimate (3.6.12) to
the last interval (TnKn , t] and for all other pairs we use the stronger estimate (3.6.10).
On {TnKn = t} we apply the same estimates to all pairs Tnk−1, T

n
k with k = 1, . . . ,Kn−1.

In addition, on {TnKn = πnKn = t} the arguments in Step 3.1, Case 1 resp. Step 3.2,
Case 1 show that |C(ϕ, (TnKn−1, T

n
Kn

])− C(ϕn, (TnKn−1, T
n
Kn

])| is bounded from above
by the RHS of (3.6.10) if there is no m ∈ {1, . . . , a(δ)} with TnKn−1 < pm ≤ TnKn
or by the RHS of (3.6.11) if there is. Finally, on {TnKn = t, πnKn = ∞}, we have
VartTnKn−1+(ϕn) = 0 and thus |C(ϕ, (TnKn−1, T

n
Kn

]) − C(ϕn, (TnKn−1, T
n
Kn

])| is bounded

from above by the RHS of (3.6.12). Plugging all this into (3.6.13), we get

|C(ϕ, [σ, t])− C(ϕn, [σ, t])|

≤ δVartσ(ϕ) + sup
t∈[0,T ]

(St − St)
(

Vartσ(ϕ)−Vartσ(ϕn) +
2a(δ)

n

)

≤ δVarτσ(ϕ) + sup
t∈[0,T ]

(St − St)

(
sup
t∈[σ,τ ]

(Vartσ(ϕ)−Vartσ(ϕn)) +
2a(δ)

n

)
(3.6.14)

for all t ∈ [σ, τ ]. Given an ε > 0, we first choose δ < ε/(2Varτσ(ϕ)) and, subsequently,
applying Step 2 together with the fact that a(δ) < ∞ and supt∈[0,T ](St − St) < ∞
(for fixed ω ∈ Ω). We can choose N ∈ N s.t. for n ≥ N the second term in (3.6.14)
is smaller than ε/2. At last this yields supt∈[σ,τ ] |C(ϕ, [σ, t]) − C(ϕn, [σ, t])| < ε for
n ≥ N . Thus, we have established the assertion.
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Chapter 4

Deutsche Zusammenfassung

Eine Arbitragemöglichkeit ist die Chance auf einen risikolosen Gewinn ohne Startkapi-
tal. Das Grundprinzip der Arbitragefreiheit besagt, dass es in einem finanzmathemati-
schem Marktmodell keine Arbitragemöglichkeiten geben sollte. In friktionslosen zeit-
diskreten Finanzmarktmodellen ist die Arbitragefreiheit des Marktmodells äquivalent
zur Existenz eines äquivalenten Martingalmaßes. Diese Aussage ist als Fundamental-
satz der Preistheorie bekannt (siehe, z.B., [21, 41, 53, 83]).

Unter proportionalen Transaktionskosten spielen (strikt) konsistente Preissyste-
me eine ähnliche Rolle wie äquivalente Martingalemaße in der friktionslosen Theo-
rie. Jedoch ist die Arbitragefreiheit des Marktmodells im Allgemeinen nicht mehr
äquivalent zur Existenz eines konsistenten Preissystems. Im Gegensatz zu friktionslo-
sen Modellen, in denen die Arbitragefreiheit bereits die Abgeschlossenheit der Menge
der superreplizierbaren Claims bzgl. der Konvergenz in Wahrscheinlichkeit impliziert,
existieren arbitragefreie Modelle mit Transaktionskosten in denen eine Arbitrage be-
liebig gut approximiert werden kann. Im ersten Teil der Arbeit, siehe Kapitel 2, führen
wir die prospektive strict no-arbitrage-Bedingung ein. Prospective strict no-arbitrage
ist schwächer als robust no-arbitrage, aber impliziert bereits die Abgeschlossenheit
der Menge der superreplizierbaren Claims und schließt somit approximative Arbitra-
gemöglichkeiten aus. Dementsprechend impliziert prospective strict no-arbitrage die
Existenz eines konsistenten Preissystems. Obwohl die Abgeschlossenheit für die theo-
retisch bedeutsamen Superhedging-Resultate und für Anwendungen in der Portfolio-
optimierung zentral ist, ist sie nicht notwendig für die Existenz eines konsistenten
Preissystems. Jedoch stellt sich heraus, dass eine abgeschwächte Form der prospective
strict no-arbitrage-Bedingung äquivalent zur Existenz eines konsistenten Preissystems
ist. Anders als bei strikt konsistenten Preissystemen, können die Preissysteme hierbei
Werte auf dem Rand des Bid-Ask-Spreads annehmen.

Die Hauptresultate des ersten Teils der Arbeit sind im Folgenden zusammenge-
fasst.
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Prospective strict no-arbitrage

In Kapitel 2 arbeiten wir mit dem zeitdiskreten Modell mit proportionalen Trans-
aktionskosten aus Schachermayer [85]. Es gibt d ∈ N Wertpapiere. Wir nennen eine
d× d-Matrix Π = (πij)1≤i,j≤d eine Bid-Ask Matrix, falls

(i) 0 < πij <∞, für 1 ≤ i, j ≤ d,

(ii) πii = 1, für 1 ≤ i ≤ d,

(iii) πij ≤ πikπkj , für 1 ≤ i, j, k ≤ d.

Die Handelsbedingungen der d Wertpapiere werden durch einen adaptierten d × d–
Matrix-wertigen Prozess (Πt)

T
t=0, wobei die Matrix Πt(ω) für jedes ω ∈ Ω und t ∈

{0, . . . , T} eine Bid-Ask Matrix ist, modelliert. Der Prozess (Πt)
T
t=0 wird Bid-Ask

Prozess genannt. Die zufällige Matrix Πt = (πijt )1≤i,j≤d spezifiziert die Wechselkur-

se zwischen den einzelnen Wertpapieren zum Zeitpunkt t. Der Eintrag πijt gibt die
Anzahl der Einheiten von Wertpapier i, welche ein Investor zum Erwerb einer Ein-
heit des Wertpapiers j zum Zeitpunkt t benötigt, an. Die Menge, der zum Zeitpunkt
t ohne Anfangsausstattung erwerbbaren Portfolios wird dementsprechend durch den
konvexen Kegel ∑

1≤i,j≤d
λij(ej − πijt ei)− r : (λij)1≤i,j≤d ∈ L0(Rd×d+ ,Ft), r ∈ L0(Rd+,Ft)

 , (1)

modelliert, wobei ei den i-ten Einheitsvektor des Rd bezeichnet. Jedes Portfolio ist
eine Ft-messbare Rd-wertige Zufallsvariable, welche sich als Differenz des Ergebnisses
eines Handelsauftrages λ = (λij)1≤i,j≤d ∈ L0(Rd×d+ ,Ft) und einer nicht-negativen
Zufallsvariable r ∈ L0(Rd+,Ft) ergibt. Hierbei beschreibt λij die Anzahl, der bestellten
Einheiten von Wertpapier j im Austausch mit Wertpapier i und r die Möglichkeit eines
Investors eine nicht-negative Menge jedes Wertpapiers

”
weg zuschmeißen”.

SeiK(Πt(ω)) := cone({πijt (ω)ei−ej}1≤i,j≤d, {ei}1≤i≤d) für ω ∈ Ω und t ∈ {0, . . . , T}.
Im Folgenden schreiben wir kurz Kt = K(Πt). Die Menge in (1) stimmt mit der Menge
L0(−Kt,Ft) der Ft-messbaren Selektoren des zufälligen polyhedrischen Kegels −Kt

überein (siehe Lemma 2.3.1). Dementsprechend bezeichnen wir L0(−Kt,Ft) als die
Menge der zum Zeitpunkt t ohne Anfangsausstattung erwerbbaren Portfolios.

Definition 1. Ein Rd-wertiger adaptierter Prozess ϑ = (ϑt)
T
t=0 mit

ϑt − ϑt−1 ∈ L0(−Kt,Ft) für alle t = 0, . . . , T, (2)

wobei ϑ−1 := 0, heißt selbstfinanzierender Protfolioprozess für den Bid-Ask Prozess
(Πt)

T
t=0. Für jedes Paar (s, t) mit s, t ∈ {0, . . . , T} und s ≤ t definieren wir den

konvexen Kegel Ats, der ohne Anfangsausstattung zwischen s und t superreplizierbaren
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Claims, durch

Ats :=
t∑

k=s

L0(−Kk,Fk).

Für einen weiteren Bid-Ask Prozess (Π̃t)
T
t=0 bezeichnen wir die entsprechende Menge

mit Ãts, wobei K̃t = K(Π̃t) für alle t = 0, . . . , T .

Definition 2. Der Bid-Ask Prozess (Πt)
T
t=0 erfüllt die prospective strict no-arbitrage

Bedingung (NAps), falls

At0 ∩ (−ATt ) ⊆ ATt für alle t = 0, . . . , T

gilt.

Bemerkung 3. Die (NAps) Eigenschaft kann wie folgt interpretiert werden: Jedes
Portfolio v ∈ At0, welches bis zum Zeitpunkt t aufgebaut wurde und welches in t bzw. in
den darauf folgenden Perioden liquidiert werden kann, d.h. −v ∈ ATt , muss auch durch
Handel nur zwischen t und T erreichbar seien, d.h. v ∈ ATt . (NAps) ist eine Variante
der strict no-arbitrage (NAs) Bedingung aus Kabanov et al. [51], welche besagt, dass
jedes Portfolio v ∈ At0, welches zum Zeitpunkt t liquidiert werden kann, d.h. −v ∈ Att,
ebenfalls zum Zeitpunkt t ohne Startausstattung aufgebaut werden kann, d.h. v ∈ Att.
Der einzige Unterschied zwischen den Bedingungen ist, dass (NAps) nicht zwischen
Transaktionen zum Zeitpunkt t und Transaktionen von denen bereits zum Zeitpunkt t
bekannt ist, dass sie sicher in Zukunft realisiert werden können, unterscheidet.

In anderen Worten überprüfen wir für jedes t die bis zum Zeitpunkt t erzielbaren
Portfolios. Entweder ist das erzielte Portfolio nicht vorteilhaft, da dasselbe Portfolio
auch durch Handel ab t erzielt werden kann, oder das Portfolio ist risikobehaftet, d.h.
es kann in den folgenden Perioden nicht sicher liquidiert werden.

Wir können nun bereits das erste Hauptresultat der Arbeit präsentieren.

Theorem 4. Erfüllt der Bid-Ask Prozess (Πt)
T
t=0 die prospective strict no-arbitrage

Bedingung (NAps), so ist der konvexe Kegel AT0 abgeschlossen bzgl. der Konvergenz
in Wahrscheinlichkeit.

Für eine Bid-Ask Matrix Π ist der duale Kegel K? von K = K(Π) durch K? :=
{w ∈ Rd : 〈v, w〉 ≥ 0 für alle v ∈ K} definiert. Dementsprechend induziert der
Bid-Ask Prozess (Πt)

T
t=0 einen zugehörigen mengenwertigen Prozess (K?

t )Tt=0 von
dualen Kegeln. Wir führen nun konsistente Preissysteme, welche das Analogon zu
Dichten äquivalenter Martingalmaße aus der friktionslosen Theorie sind, ein. Für eine
detaillierte ökonomische Interpretation von konsistenten Preissystemen verweisen wir
auf Schachermayer [85].

Definition 5. Ein Rd+-wertiges P-Martingal Z = (Zt)
T
t=0 mit Zt ∈ L0(K?

t \ {0},Ft),
d.h. Zt(ω) ∈ K?

t (ω)\{0} für fast alle ω ∈ Ω und jedes t ∈ {0, . . . , T}, heißt konsistentes
Preissystem, engl. consistent price system (CPS), für den Bid-Ask Prozess (Πt)

T
t=0.
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Wir haben nun die folgende Konsequenz von Theorem 4.

Korollar 6. Erfüllt der Bid-Ask Prozess (Πt)
T
t=0 die prospective strict no-arbitrage

Bedingung (NAps), so existiert ein konsistentes Preissystem (CPS). Allgemeiner, exi-
stiert für jede FT -messbare Funktion ϕ : Ω → (0, 1] ein CPS Z = (Zt)

T
t=0 mit

‖ZT ‖ ≤ Mϕ f.s. für ein M ∈ R+ \ {0}, wobei ‖ · ‖ die euklidische Norm auf dem
Rd bezeichnet.

Die umgekehrte Implikation von Korollar 6 gilt nicht. Im Allgemeinen folgt aus
[55, Section 3.2.4, Example 1], dass keine no-arbitrage Bedingung existiert, welche die
Abgeschlossenheit von AT0 garantiert und gleichzeitig äquivalent zur Existenz eines
CPS ist. Wir können jedoch eine Äquivalenz zeigen, wenn wir zu einer schwächeren
Form von (NAps) übergehen.

Definition 7. Der Bid-Ask Prozess (Πt)
T
t=0 erfüllt die schwache prospective strict

no-arbitrage Bedingung (NAwps), wenn ein Bid-Ask Prozess (Π̃t)
T
t=0 mit Π̃t ≤ Πt

f.s. für alle t = 0, . . . , T existiert, sodass (Π̃t)
T
t=0 die prospective strict no-arbitrage

Bedingung (NAps) erfüllt.

Der Bid-Ask Prozess (Π̃t)
T
t=0 in Definition 7 muss nicht strikt vorteilhafter als

(Πt)
T
t=0 sein, somit ist (NAwps) schwächer als (NAps). Das zweite Hauptresultat des

ersten Teils dieser Arbeit ist der folgende Fundamentalsatz der Preistheorie.

Theorem 8. Ein Bid-Ask Prozess (Πt)
T
t=0 erfüllt die schwache prospective strict no-

arbitrage Bedingung (NAwps) genau dann, wenn ein konsistentes Preissystem (CPS)
existiert.

Bemerkung 9. Theorem 8 ist eine Verallgemeinerung des zweiten Teils von Theo-
rem 1 aus Kabanov and Stricker [54] auf allgemeine Wahrscheinlichkeitsräume. Im
Fall |Ω| <∞ ergibt sich aus der Kombination beider Theoreme die nette Eigenschaft,
dass (NAwps) äquivalent zur üblichen no-arbitrage Bedingung, d.h. AT0 ∩L0(Rd+,FT ) =
{0}, ist.

Bemerkung 10. Aus dem Satz von Grigoriev [34], d.h. der Äquivalenz zwischen
der Existenz eines CPS und (NA) im Falle von nur zwei Wertpapieren, ergibt sich,
dass (NA) und (NAwps) in diesem Fall auch auf beliebigen Wahrscheinlichkeitsräumen
übereinstimmen.

Semimartingalpreissysteme in Modellen mit proportiona-
len Transaktionskosten

In zeitstetigen Finanzmarktmodellen mit Transaktionskosten ist efficient friction, d.h.
nichtverschwindende Transaktionskosten, eine Standardannahme. Zusammen mit ro-
bust no free lunch with vanishing risk schließt efficient friction Handelsstrategien von
unendlicher Variation, welche in friktionslosen Finanzmarktmodellen üblich sind, aus
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(siehe Guasoni et al. [36]). Im zweiten Teil dieser Arbeit, siehe Kapitel 3, zeigen wir,
wie Modelle mit und ohne Transaktionskosten vereinheitlicht werden können. Wir be-
trachten eindimensionale Bid- und Askpreisprozesse mit càdlàg Pfaden, die adaptiert
und lokal nach unten beschränkt sind. Insbesondere können sie an einigen Stellen
übereinstimmen. Wir zeigen zunächst, dass die Bedingung no unbounded profit with
bounded risk für nichtnegative elementar vorhersehbare Strategien die Existenz eines
Semimartingals mit Werten zwischen Bid-und Askpreisprozess impliziert.

Unter der zusätzlichen Annahme, dass jede Nullstelle des Bid-Ask Spreads ent-
weder ein innerer Punkt von rechts der Nullstellenmenge oder der Startpunkt einer
Exkursion weg von der Null ist, zeigen wir in einem zweiten Schritt, wie das Semimar-
tingal verwendet werden kann, um für jede beschränkte und vorhersehbare Strategie
die zugehörige selbstfinanzierende Position im Bankkonto zu definieren. Abschließend
setzen wir die Selbstfinanzierungsbedingung auf eine größtmögliche Menge von Stra-
tegien fort. Im friktionslosen Spezialfall stimmt diese Menge mit der Menge der vor-
hersehbaren Prozesse, welche bezüglich des Semimartingals integrierbar sind, überein.
Wir erhalten somit eine neue Charakterisierung und damit auch einen neuen Blick
auf diese Menge.

Die Hauptresultate des zweiten Teils sind im Folgenden zusammengefasst.

Existenz von Semimartingalpreissystemen

Das Finanzmarktmodell besteht aus einem risikolosen Bond mit Preis 1 und einer risi-
kobehafteten Aktie mit Bid-Preis S und Ask-Preis S. Wir nehmen an, dass (St)t∈[0,T ]

und (St)t∈[0,T ] adaptierte Prozesse mit càdlàg Pfaden sind. Zusätzlich sei St ≤ St für
alle t ∈ [0, T ] und S sei lokal von unten beschränkt.

Definition 11. Eine elementar vorhersehbare Handelsstrategie ist ein stochastischer
Prozess (ϕt)t∈[0,T ] von der Form

ϕ =

n∑
i=1

Zi−11KTi−1,TiK, (3)

wobei n ∈ N eine endliche Zahl ist, 0 = T0 ≤ T1 ≤ · · · ≤ Tn = T eine aufsteigende
Folge von Stoppzeiten ist, und für alle i = 0, . . . , n− 1 ist Zi messbar bzgl. FTi .

Die Strategie ϕ spezifiziert die Menge der risikobehafteten Aktie im Portfolio. Ist
eine elementar vorhersehbare Handelsstrategie ϕ gegeben, so lässt sich die entspre-
chende selbstfinanzierende Position im Bond direkt aufschreiben. Diese Selbstfinan-
zierungbedingung ist Inhalt der folgenden Definition.

Definition 12. Sei (ϕt)t∈[0,T ] eine elementar vorhersehbare Handelsstrategie. Die zu-
gehörige Position im risikolosen Bond (ϕ0

t )t∈[0,T ] ist gegeben durch

ϕ0
t :=

∑
0≤s<t

(
Ss(∆

+ϕs)
− − Ss(∆+ϕs)

+
)
, t ∈ [0, T ]. (4)
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Definition 13. Sei (ϕt)t∈[0,T ] eine elementar vorhersehbare Handelsstrategie. Der

Liquidierungswertprozess (V liq
t (ϕ))t∈[0,T ] ist gegeben durch

V liq
t (ϕ) := ϕ0

t + (ϕt)
+St − (ϕt)

−St, t ∈ [0, T ]. (5)

Definition 14. Wir sagen, dass (St, St)t∈[0,T ] einen unbeschränkten Profit mit be-
schränkten Risiko, engl. unbounded profit with bounded risk (UPBR), für elementar
vorhersehbare nichtnegative Strategien erlaubt, wenn eine Folge elementar vorherseh-
barer Handelsstrategien (ϕn)n∈N mit ϕn ≥ 0 existiert, sodass

(i) V liq
t (ϕn) ≥ −1 für alle t ∈ [0, T ] und n ∈ N, und

(ii) die Folge (V liq
T (ϕn))n∈N unbeschränkt in Wahrscheinlichkeit ist, d.h.

lim
m→∞

sup
n∈N

P
(
V liq
T (ϕn) ≥ m

)
> 0. (6)

Falls keine solche Folge existiert, sagen wir, dass der Bid-Ask Prozess (S, S) die no
unbounded profit with bounded risk (NUPBR) Bedingung für elementar vorhersehbare
nichtnegative Strategien erfüllt.

Das erste Hauptresultat des zweiten Teils der Arbeit ist das folgende Theorem.

Theorem 15. Sei angenommen, dass (St, St)t∈[0,T ] die (NUPBR) Bedingung für ele-
mentar vorhersehbare nichtnegative Handelsstrategien erfüllt. Dann existiert ein Se-
mimartingal S = (St)t∈[0,T ] mit

St ≤ St ≤ St für alle t ∈ [0, T ]. (7)

Ein Semimartingale S, welches (7) erfüllt, nennen wir Semimartingalpreissystem.

Die Selbstfinanzierungsbedingung

Wir bereits angedeutet, verwenden wir das Semimartingalpreissystem S, um eine
Selbstfinanzierungsbedingung für das Modell zu definieren. Eine Selbstfinanzierungs-
bedingung kann hierbei mit einem Operator ϕ 7→ Π(ϕ), welcher die Position im ri-
sikobehafteten Wertpapier auf die zugehörige Position im risikolosen Bond abbildet,
identifiziert werden. Wir nehmen stets an, dass die Startposition und die risikolose
Zinsrate Null sind. Ferner sei für den Rest dieses Kapitels angenommen, dass ein Se-
mimartingalpreissystem S existiert. Ziel ist es Π(ϕ) als ϕ • S − ϕS −

”
Kosten′′ zu

definieren, wobei der Prozess ϕ • S das herkömmliche stochastische Integral bezeich-
net. Die Kosten entstehen dadurch, dass die einzelnen Handelsgeschäfte im Transak-
tionskostenmarkt nicht zum Preis S, sondern zum jeweiligen Bid- bzw. Ask Preis
durchgeführt werden. Wir starten zunächst mit beschränkten und vorhersehbaren
Handelsstrategien. Die Handelsgewinne ϕ • S sind hierdurch stets wohldefiniert und
endlich. Dementsprechend können

”
unendliche” Verluste nicht durch Handelsgewinne

kompensiert werden.
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Konstruktion des Kostenterms

Im Folgenden bezeichne bP die Menge der beschränkten und vorhersehbaren Prozesse
ϕ mit ϕ0 = 0. Die Konstruktion des Kostenterms für eine Strategie ϕ ∈ bP erfolgt
pfadweise, d.h. ω ∈ Ω ist fix und ϕ, S, S und S werden mit Funktionen in der Zeit
identifiziert.

Unsere Konstruktion besteht aus zwei Schritten. Zunächst berechnen wir die Ko-
sten auf Intervallen, in denen die linksstetige Version des Spreads von der Null entfernt
ist, durch ein modifiziertes Riemann-Stieltjes Integral. Dieses Integral existiert immer,
kann jedoch den Wert∞ annehmen. Anschließend schöpfen wir die Menge der Punkte
mit positiven Spread durch endliche Vereinigungen obiger Intervalle aus und definieren
die Gesamtkosten als Supremum über solche Vereinigungen.

Definition 16. Sei I = [a, b] ⊆ [0, T ] ein Intervall mit a < b.

(i) Eine Menge P = {t0, . . . tn} von Punkten ti ∈ [a, b] mit n ∈ N und i = 0, . . . , n
sowie a = t0 < t1 < · · · < tn = b heißt Partition von I.

(ii) Eine Partition P ′ = {t′0, . . . , t′m} mit P ′ ⊇ P heißt Verfeinerung von P .

(iii) Die gemeinsame Verfeinerung P ∪ P ′ zweier Partitionen P, P ′ von I ist die
Anordnung der Punkte in {t0, . . . tn}∪{t′0, . . . , t′m} in aufsteigender Reihenfolge.

(iv) Ist P = {t0, . . . , tn} eine Partition von I, so nennen wir eine Menge λ =
{s1, . . . , sn} mit si ∈ [ti−1, ti) für i = 1, . . . , n eine modifizierte Zwischenun-
terteilung von P .

(v) Sei ϕ ∈ bP, P = {t0, . . . , tn} eine Partition von I und λ = {s1, . . . , sn} eine mo-
difizierte Zwischenunterteilung von P , die modifizierte Riemann-Stieltjes Summe
zu ϕ, P und λ ist

R(ϕ, P, λ) :=
n∑
i=1

(Ssi − Ssi)(ϕti − ϕti−1)+ +
n∑
i=1

(Ssi − Ssi)(ϕti − ϕti−1)−.

Definition 17. Sei ϕ ∈ bP und I = [a, b] ⊆ [0, T ] ein Intervall mit a < b. Der
Kostenterm von ϕ auf I existiert und ist gleich C(ϕ, I) ∈ R+ ∪ {∞}, wenn für alle
ε > 0 eine Partition Pε von I existiert, sodass für alle Verfeinerungen P von Pε und
alle modifizierten Zwischeneinteilungen λ von P das Folgende gilt:

(i) Im Falle C(ϕ, I) <∞, haben wir |C(ϕ, I)−R(ϕ, P, λ)| < ε,

(ii) Im Falle C(ϕ, I) =∞, haben wir |R(ϕ, P, λ)| > 1
ε .

Zusätzlich, setzen wir C(ϕ, {a}) := 0 für alle a ∈ [0, T ] und C(ϕ, ∅) := 0.

Die nächste Proposition stellt die Existenz des Kostenterms auf einem Intervall I,
in dem der Spread von der Null entfernt ist, fest.
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Proposition 18. Sei ϕ ∈ bP und I = [a, b] ⊆ [0, T ] ein Intervall mit a < b und
inft∈[a,b)(St − St) > 0. Dann existiert der Kostenterm C(ϕ, I) aus Definition 3.3.2
und ist eindeutig. Zusätzlich gilt{

C(ϕ, I) <∞, if Varba(ϕ) <∞
C(ϕ, I) =∞, if Varba(ϕ) =∞,

wobei Varba(ϕ) die pfadweise Variation von ϕ auf dem Intervall [a, b] bezeichnet.

Nachdem wir die Kosten für alle Teilintervalle I = [a, b] ⊆ [0, T ] mit inft∈[a,b)(St−
St) > 0 definiert haben, gehen wir nun dazu über die kumulierten Kosten als Prozess
zu definieren. Dafür sei

I :=

{
∪ni=1[ai, bi] :

n ∈ N, 0 ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤ an ≤ bn ≤ T,
inft∈[ai,bi)(St − St) > 0, i = 1, . . . , n

}
∪ {∅}. (8)

Wir setzen den Kostenterm nun auf I fort. Gegeben ϕ ∈ bP und J = ∪ni=1[ai, bi] ∈ I,
definieren wir die Kosten entlang J durch

C(ϕ, J) :=

n∑
i=1

C(ϕ, [ai, bi]), (9)

wobei die Kostenterme C(ϕ, [ai, bi]) für i = 1, . . . , n in Definition 17 definiert sind.

Definition 19. (Kostenprozess) Sei ϕ ∈ bP. Der Kostenprozess (Ct(ϕ))t∈[0,T ] ist
gegeben durch

Ct(ϕ) := sup
J∈I

C(ϕ, J ∩ [0, t]) ∈ [0,∞], t ∈ [0, T ].

Bisher haben wir ω ∈ Ω fest gehalten, d.h. die Konstruktion erfolgte Pfad für Pfad.
Betrachtet als stochastischen Prozess haben wir die folgende Messbarkeitseigenschaft:

Proposition 20. Sie ϕ ∈ bP. Der Kostenprozess C(ϕ) = (Ct(ϕ))t∈[0,T ] stimmt mit
einem vorhersehbaren Prozess bis auf Ununterscheidbarkeit überein.

Definition und Charakterisierung

Für den Rest des Abschnittes brauchen wir die folgende Voraussetzung an den Bid-Ask
Spread.

Annahme 21. Für jedes (ω, t) ∈ Ω × [0, T ) mit St(ω) = St(ω) existiert ein ε > 0
sodass Ss(ω) = Ss(ω) für alle s ∈ (t, (t + ε) ∧ T ) oder Ss(ω) > Ss(ω) für alle s ∈
(t, (t+ ε) ∧ T ).

Dementsprechend ist jede Nullstelle des Pfades t 7→ St(ω) − St(ω) entweder ein
innerer Punkt der Nullstellenmenge von rechts oder ein Startpunkt einer Exkursion
weg von der Null.



101

Zusätzlich verwenden wir im Folgenden stets die vorhersehbare Version des Kosten-
prozesses (cf. Proposition 20) und identifizieren ununterscheidbare Prozesse mitein-
ander. Sei nun S ein Semimartingalpreissystem. Dann definieren wir den Operator Π,
welcher eine beschränkte vorhersehbare Strategie ϕ mit Startwert null, d.h., ϕ ∈ bP,
auf die zugehörige [−∞,∞)-wertige risikolose Position abbildet, durch

Πt(ϕ) := ϕ • St − ϕtSt − Ct(ϕ), t ∈ [0, T ]. (10)

Hierbei ist ϕ • S das übliche stochastische Integral. Wird die Aktienpostion im Se-
mimartingal S bewertet, so ist der zugehörige Vermögensprozess durch Vt(ϕ) := ϕ •

St − Ct(ϕ) = Πt(ϕ) + ϕtSt gegeben.
Wir benötigen im Folgenden ein Maß, welches Informationen über die Konver-

genz von Integralen bzgl. S liefert. Dazu bemerken wir, dass ein Wahrscheinlich-
keitsmaß Q ∼ P existiert, sodass das Semimartingal S eine Zerlegung S = M + A
besitzt, wobei M ein Q-quadratintegrierbares Martingal und A ein Prozess mit Q-
integrierbarer Variation ist (Theorem 58 in Kapitel VII von Dellacherie und Mey-
er [25]). Wir führen nun das endliche Maß

µS(B) := EQ (1B • 〈M,M〉T ) + EQ (1B • VarT (A)) , B ∈ P, (11)

ein, wobei 〈M,M〉 die vorhersehbare quadratische Variation von M (siehe, z.B., [46,
Kapitel 1, Theorem 4.2]) bezeichnet und P die vorhersehbare σ-Algebra ist.

Definition 22. Ein vorhersehbarer stochastischer Prozess ϕ von endlicher Variation
heißt fast elementar vorhersehbare Strategie, falls eine Folge von Stoppzeiten (τn)n≥0

mit τn < τn+1 auf {τn < ∞} und #{n : τn(ω) < ∞} < ∞ für alle ω ∈ Ω existiert,
sodass

ϕ =

∞∑
n=0

(ϕτn1JτnK + ϕτn+1Kτn,τn+1J).

Für eine Strategie ϕ ∈ bP charakterisiert das folgende Theorem den Prozess V (ϕ)
als Grenzwert von Vermögensprozessen, welche zu einer passenden Folge fast elementar
vorhersehbarer Strategien gehören. Hierbei sei bemerkt, dass der Vermögensprozess
V für fast elementar vorhersehbare Strategien mit dem intuitiven Vermögensprozess,
welcher ohne jede Grenzwertprozedur aufgeschrieben werden kann, übereinstimmt.

Theorem 23. Sei ϕ ∈ bP und µ ein σ-endliches Maß auf der vorhersehbaren σ-
Algebra mit µS � µ.

(i) Für alle {0,1}-wertigen monoton fallenden vorhersehbaren Prozesse A und gleichmäßig
beschränkten Folgen vorhersehbarer Prozesse (ϕn)n∈N gilt die Implikation:

ϕn → ϕ punktweise auf {S− > S−} ∩ {A = 1},
µS-f.ü. auf {S− = S−} ∩ {A = 1}

=⇒ lim inf
n→∞

V (ϕn) ≤ V (ϕ) auf {A = 1} bis auf Ununterscheidbarkeit.
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(ii) Es existiert eine gleichmäßig beschränkte Folge fast elementar vorhersehbarer
Strategien (ϕn)n∈N, s.d.

ϕn → ϕ punktweise auf {S− > S−} ∩ {C(ϕ) <∞},
µ-f.ü. auf {S− = S−}∩{C(ϕ) <∞},

und

sup
t∈[0,T ]

|Vt(ϕn)− Vt(ϕ)|1{Ct(ϕ)≤K} → 0

in Wahrscheinlichkeit für n→∞ und alle K ∈ N.

Bemerkung 24. Im Spezialfall C(ϕ) < ∞, welcher äquivalent zu V (ϕ) > −∞ ist,
ergibt sich mit A = 1 die folgende Charakterisierung des Vermögensprozesses für eine
beschränkte Strategie: (i) Das Vermögen der Strategie dominiert das Grenzvermögen
aller (fast) punktweise konvergierender Strategien und (ii) es existiert eine ausgezeich-
nete Folge approximierender Strategien, sodass die Vermögensprozesse konvergieren.

Auf der Menge {V (ϕ) = −∞} = {C(ϕ) =∞} kann die Existenz einer punktweise
auf {S− > S−} gegen ϕ konvergierenden Folge fast elementar vorhersehbarer Stra-
tegien jedoch nicht erwartet werden. Trotzdem liefert Theorem 23(i) eine Motivation
für V (ϕ) = −∞.

Korollar 25. Sei ϕ ∈ bP. Die Selbstfinanzierungsbedingung, d.h. die risikolose Po-
sition Π(ϕ), hängt bis auf Ununterscheidbarkeit nicht von der Wahl des Semimartin-
galpreissystems ab.

Erweiterung auf unbeschränkte Strategien

Sei (bP)Π := {ϕ ∈ bP : Π(ϕ) > −∞ bis auf Ununterscheidbarkeit}. Nach dem
vorangegangen Korollar hängt diese Menge nicht vom Semimartingalpreissystem ab.
In diesem Abschnitt wollen wir die Selbstfinanzierungsbedingung, d.h. den Opera-
tor Π von (bP)Π auf eine größtmögliche Menge von vorhersehbaren Strategien fort-
setzen. Hierzu sei daran erinnert, dass der Raum der adaptierten làdlàg Prozes-
se L ausgestattet mit der Topologie der gleichmäßigen Konvergenz in Wahrschein-
lichkeit ein vollständiger metrischer Raum mit Metrik dup(X,Y ) := ‖X − Y ‖up =

E
[
supt∈[0,T ] |Xt − Yt| ∧ 1

]
für X,Y ∈ L ist. Im Folgenden schreiben wir

up-lim
n→∞

Xn = X,

falls eine Folge (Xn)n∈N ⊆ L gegen X ∈ L bzgl. dup konvergiert.

Definition 26. Sei L die Teilmenge der reellwertigen, vorhersehbaren Strategien ϕ,
sodass eine Folge (ϕn)n∈N ⊂ (bP)Π mit den folgenden Eigenschaften existiert:

(i) ϕn → ϕ punktweise auf Ω× [0, T ] und (ϕn)+ ≤ ϕ+, (ϕn)− ≤ ϕ− für alle n ∈ N.
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(ii) Es existiert ein Semimartingal S mit S ≤ S ≤ S, sodass

(V S(ϕn))n∈N = (ϕn • S − CS(ϕn))n∈N

Cauchy in (L, dup) ist, und sodass für alle Folgen (ϕ̃n)n∈N ⊆ (bP)Π, die (i)
erfüllen, eine deterministische Teilfolge (nk)k∈N existiert mit(

V S(ϕ̃nk)− V S(ϕnk)
)+ → 0, k →∞, bis auf Ununterscheidbarkeit (12)

Die Bedingung (ii) bedeutet, dass die Approximation mit (ϕn)n∈N im Grenzwert
besser ist als alle anderen punktweise Approximationen (ϕ̃n)n∈N, wenn die Aktienpo-
sition im selben Semimartingal bewertet wird. In (12) können wir keine gleichmäßige
Konvergenz in der Zeit erwarten. Die Ausnahmenullmenge kann jedoch unabhängig
von der Zeit gewählt werden. Insbesondere gilt (bP)Π ⊆ L.

Proposition 27. Sei ϕ ∈ L. Falls (ϕn)n∈N ⊆ (bP)Π eine Folge von Strategien ist,
welche Definition 26 für ϕ im Bezug auf ein Semimartingal S erfüllt, und (ϕ̃n)n∈N ⊆
(bP)Π eine weitere Folge von Strategien ist, welche dieselben Bedingung im Bezug auf
ϕ und ein Semimartingal S̃ erfüllt, dann gilt

up-lim
n→∞

V S(ϕn)− ϕS = up-lim
n→∞

V S̃(ϕ̃n)− ϕS̃

bis auf Ununterscheidbarkeit.

Wir können den Operator Π nun durch

Π(ϕ) := up-lim
n→∞

V S(ϕn)− ϕS, ϕ ∈ L

auf L fortsetzen, wobei (ϕn)n∈N eine Folge von Strategien, welche Definition 26 bzgl.
des Semimartingals S erfüllt, ist. Nach Propostion 27 ist Π auf L wohldefiniert, d.h.
der Operator hängt weder von der Wahl der approximierende Folge noch der Wahl des
Semimartingals ab. Wir schließen nun die Zusammenfassung der Hauptresultate dieser
Arbeit mit einer Proposition ab, welche zeigt, dass im friktionslosen Fall, d.h. S = S =
S, die Menge L mit der Menge L(S), der S-integrierbaren Prozesse, übereinstimmt.

Proposition 28. Sei S = S = S ein Semimartingal. Dann gilt L = L(S) und
Π(ϕ) = ϕ • S − ϕS für alle ϕ ∈ L.
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[38] Guasoni, P., Rásonyi, M., Schachermayer, W.: The fundamental theorem of asset
pricing for continuous processes under small transaction costs. Ann. Finance 6,
157–191 (2010)

[39] Harris, L.E.: Trading and Exchanges. Oxford University Press, New York (2003)

[40] Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities
markets. J. Econ. Theory 20, 381–408 (1979)

[41] Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory
of continuous trading. Stochastic Process. Appl. 11, 215–260 (1981)

[42] He, S., Wang, J., Yan, J.: Semimartingale theory and stochastic calculus. CRC
Press, Boca Raton (1992)

[43] Hildebrandt, T.H.: Definitions of Stieltjes Integrals of the Riemann Type. Amer.
Math. Monthly 45, 265–278 (1938)



108 Chapter 5. Bibliography

[44] Jacka, S., Berkaoui, A., Warren, J.: No arbitrage and closure results for trading
cones with transaction costs. Finance Stoch. 12, 583–600 (2008)

[45] Jacod J.: Integrales stochastiques par rapport a une semimartingale vectorielle et
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