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Abstract
We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional
Laplacian (−�)s in bounded open Lipschitz sets in the small order limit s → 0+.
While it is easy to see that all eigenvalues converge to 1 as s → 0+, we show that the
first order correction in these asymptotics is given by the eigenvalues of the logarithmic
Laplacian operator, i.e., the singular integral operator with Fourier symbol 2 log |ξ |.
By this we generalize a result of Chen and the third author which was restricted to the
principal eigenvalue. Moreover, we show that L2-normalized Dirichlet eigenfunctions
of (−�)s corresponding to the k-th eigenvalue are uniformly bounded and converge to
the set of L2-normalized eigenfunctions of the logarithmicLaplacian. In order to derive
these spectral asymptotics, we establish new uniform regularity and boundary decay
estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we
also obtain corresponding regularity properties of eigenfunctions of the logarithmic
Laplacian.
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1 Introduction

Fueled by various applications and important links to stochastic processes and partial
differential equations, the interest in nonlocal operators and associated Dirichlet prob-
lems has been growing rapidly in recent years. In this context, the fractional Laplacian
has received by far the most attention, see e.g. [2–8,25,29] and the references therein.
We recall that, for compactly supported functions u : R

N → R of class C2 and
s ∈ (0, 1), the fractional Laplacian (−�)s is well-defined by

(−�)su(x) = CN ,s lim
ε→0+

∫
R
N \Bε (x)

u(x) − u(y)

|x − y|N+2s dy,

where CN ,s = s4s
�( N2 + s)

π
N
2 �(1 − s)

. (1.1)

The normalization constant CN ,s is chosen such that (−�)s is equivalently given by

F(
(−�)su

) = | · |2sFu, (1.2)

where, here and in the following,F denotes the usual Fourier transform.We emphasize
that the fractional Laplacian is an operator of order 2s and many related regularity
properties—in particular of associated eigenfunctions—rely on this fact.

The present paper is concerned with the small order asymptotics s → 0+ of the
Dirichlet eigenvalue problem

{
(−�)sϕs = λϕs in 	,

ϕs = 0 in 	c,
(1.3)

where	 ⊂ R
N is a bounded open set with Lipschitz boundary and	c := R

N \	. It is
well known (see [30, Proposition 9] or [4, Proposition 3.1]) that, for every s ∈ (0, 1),
(1.3) admits an ordered sequence of eigenvalues

λ1,s < λ2,s ≤ λ3,s ≤ . . . (1.4)

with λk,s → ∞ as k → ∞ and a corresponding L2-orthonormal basis of eigenfunc-
tions ϕk,s , k ∈ N. Moreover, ϕ1,s is unique up to sign and can be chosen as a positive
function.

The starting point of the present work is the basic observation that

(−�)su → u as s → 0+ for every u ∈ C2
c (R

N ), (1.5)

which readily follows from (1.2) and standard properties of the Fourier transform (see
also [13, Proposition 4.4]. Similarly, we have

Es(u, u) → ‖u‖2
L2(RN )

as s → 0+ for every u ∈ C1
c (R

N ), (1.6)
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where Es denotes the quadratic form associated with (−�)s given by

(u, v) �→ Es(u, v) = CN ,s

2

∫
R
N

∫
R
N

(
u(x) − u(y)

)(
v(x) − v(y)

)
|x − y|N+2s dxdy.

We remark that these convergence properties in the limit s → 0+ extend to a non-
Hilbertian setting of quasilinear operators where the Fourier transform cannot be
employed, see e.g. [1] and the references therein. It is not difficult to deduce from
(1.5) that

λk,s → 1 as s → 0+ for all k ∈ N, (1.7)

see Sect. 2 below for details. However, there is no straightforward approach to obtain
the asymptotics of associated eigenfunctions as s → 0+ since, as a consequence of
(1.5) and (1.6), no uniform regularity theory is available for the fractional Laplacian
(−�)s in the casewhere s is close to zero. For general boundedopen setswithLipschitz
boundary, the only available result regarding these asymptotics is contained in [9],
where Chen and the third author introduced the Dirichlet problem for the logarithmic
Laplacian operator L� to give a more detailed description of the first eigenvalue λ1,s
and the corresponding eigenfunction ϕ1,s as s → 0+. On compactly supported Dini
continuous functions, the operator L� is pointwisely given by

L�u(x) = CN

∫
R
N

u(x)1B1(x)(y) − u(y)

|x − y|N dy + ρNu(x), (1.8)

where CN = π− N
2 �( N2 ), and ρN = 2 log 2 + ψ( N2 ) − γ . Here, ψ = �′

�
denotes the

Digamma function, and γ = −�′(1) is the Euler–Mascheroni constant.
We note two key properties of the operator L� shown in [9]. If u ∈ Cβ

c (RN ) for
some β > 0, then

F(L�u) = 2 log |ξ |F(u)(ξ) for a.e. ξ ∈ R
N , (1.9)

so the operator L� has the Fourier symbol ξ �→ 2 log |ξ |. Moreover,

d

ds

∣∣∣
s=0

(−�)su = lim
s→0+

(−�)su − u

s
= L�u in L p(RN ) for 1 < p ≤ ∞.

(1.10)

Hence, L� arises as a formal derivative of fractional Laplacians at s = 0. As a
consequence of (1.9), L� is an operator of logarithmic order, and it belongs to a class
of weakly singular integral operators having an intrinsic scaling property. Operators of
this type have also been studied e.g. in [11,16–19,21–23,28], while the most attention
has been given to Lévy generators of geometric stable processes. These operators have
a Fourier symbol of the form ξ �→ log(1+|ξ |2β)with some β > 0. The particular case
β = 1 corresponds to the variance gamma process, and the kernel of the associated
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Lévy generator has the same weakly singular behavior as the one of L�. The operator
L� also arises in a geometric context of the 0-fractional perimeter studied recently in
[12].

Using (1.10) and related functional analytic properties, it has been shown in [9,
Theorem 1.5] that

λ1,s − 1

s
→ λ1,L and ϕ1,s → ϕ1,L in L2(	) as s → 0+, (1.11)

where λ1,L denotes the principal eigenvalue of the Dirichlet eigenvalue problem

{
L�u = λu in 	,

u = 0 in 	c,
(1.12)

and ϕ1,L denotes the corresponding (unique) positive L2-normalized eigenfunction.
Here we note that we consider both (1.3) and (1.12) in a suitable weak sense which
we will make more precise below.

The main aim of the present paper is twofold. First, we wish to improve the L2-
convergenceϕ1,s → ϕ1,L in (1.11). For this, new tools are needed in order to overcome
the lackof uniform regularity estimates for the fractionalLaplacian (−�)s for s close to
zero. Secondly,wewish to extend the convergence result from [9] to higher eigenvalues
and eigenfunctions. Due to the multiplicity of eigenvalues and eigenfunctions for
k ≥ 2, this also requires a new approach based on the use of Fourier transform in
combination with the Courant-Fischer characterization of eigenvalues.

In order to state our main results, we need to introduce some notation regarding the
weak formulations of (1.3) and (1.12). For the weak formulation of (1.3), we consider
the standard Sobolev space

Hs
0(	) :=

{
u ∈ Hs(RN ) : u ≡ 0 on 	c

}
(1.13)

and we call ϕ ∈ Hs
0(	) an eigenfunction of (1.3) corresponding to the eigenvalue λ

if

Es(ϕ, v) = λ

∫
	

ϕv dx for all v ∈ Hs
0(	).

For the weak formulation of (1.12), we follow [9] and define the space

H0
0(	) :=

{
u ∈ L2(RN ) : u ≡ 0 on 	c, 〈u, u〉H0

0(	) < +∞
}
, (1.14)

where the quadratic form 〈·, ·〉H0
0(	) is given by

(u, v) �→ 〈u, v〉H0
0(	) := CN

2

∫∫
x,y∈R

N

|x−y|<1

(u(x) − u(y))(v(x) − v(y))

|x − y|N dxdy.
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(1.15)

A function ϕ ∈ H0
0(	) is called an eigenfunction of (1.12) corresponding to the

eigenvalue λ if

EL(ϕ, v) = λ

∫
	

ϕv dx for all v ∈ H0
0(	),

where

(u, v) �→ EL(u, v) = 〈u, v〉H0
0(	) − CN

∫∫
x,y∈R

N

|x−y|≥1

u(x)v(y)

|x − y|N dxdy + ρN

∫
R
N
uv dx

(1.16)

is the quadratic form associated with L�. For more details, see Sect. 2 below and [9].
The first main result of this paper now reads as follows.

Theorem 1.1 Let 	 ⊂ R
N be a bounded open set with Lipschitz boundary and let

k ∈ N. Moreover, for s ∈ (0, 1
4 ), let λk,s resp. λk,L denote the k-th Dirichlet eigenvalue

of the fractional and logarithmic Laplacian, respectively, and let ϕk,s denote an L2-
normalized eigenfunction. Then we have:

(i) The eigenvalue λk,s satisfies the expansion

λk,s = 1 + sλk,L + o(s) as s → 0+. (1.17)

(ii) The set {ϕk,s : s ∈ (0, 1
4 ]} is bounded in L∞(	) and relatively compact in

L p(	) for every p < ∞.
(iii) The set {ϕk,s : s ∈ (0, 1

4 ]} is equicontinuous in every point x0 ∈ 	 and therefore
relatively compact in C(K ) for any compact subset K ⊂ 	.

(iv) If 	 satisfies an exterior sphere condition, then the set {ϕk,s : s ∈ (0, 1
4 ]} is

relatively compact in the space C0(	) := {u ∈ C(RN ) : u ≡ 0 in 	c}.
(v) If (sn)n ⊂ (0, 1

4 ] is a sequence with sn → 0 as n → ∞, then, after passing to a
subsequence, we have

ϕk,sn → ϕk,L as n → ∞ (1.18)

in L p(	) for p < ∞ and locally uniformly in	, where ϕk,L is an L2-normalized
eigenfunction of the logarithmic Laplacian corresponding to the eigenvalue λk,L .

If, moreover, 	 satisfies an exterior sphere condition, then the convergence in
(1.18) is uniform in 	.

Here and in the following, we identify the space L p(	) with the space of functions
u ∈ L p(RN ) with u ≡ 0 on 	c.
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Remark 1.2 (i) Theorem 1.1 complements [9, Theorem 1.5] by emphazising the rel-
evance of higher Dirichlet eigenvalues and eigenfunctions of L� for the spectral
asymptotics of the fractional Laplacian as s → 0+. We note that upper and lower
bounds for the Dirichlet eigenvalues λk,L of the logarithmic Laplacian and corre-
sponding Weyl type asymptotics in the limit k → +∞ have been derived in [27]
and more recently in [10].

(ii) The number 1
4 in the above theorem is chosen for technical reasons, as it allows

to reduce the number of case distinctions in the arguments. In the case N ≥ 2, it
can be replaced by any fixed number smaller than 1, and in the case N = 1 it can
be replaced by any fixed number smaller than 1

2 . Since we are only interested in
parameters s close to zero in this paper, we omit the details of such an extension.

As noted already, the principal eigenvalue λ1,s(	) admits, up to sign, a unique
L2-normalized eigenfunction which can be chosen to be positive. Hence Theorem 1.1
and [9, Theorem 1.5] give rise to the following corollary.

Corollary 1.3 Let 	 ⊂ R
N be a bounded open set with Lipschitz boundary and let,

for s ∈ (0, 1
4 ], ϕ1,s denote the unique positive L2-normalized eigenfunction of (−�)s

corresponding to the principal Dirichlet eigenvalue λ1,s . Then we have

ϕ1,s → ϕ1,L as s → 0+ (1.19)

in L p(	) for p < ∞ and locally uniformly in	, where ϕ1,L is the unique positive L2-
normalized eigenfunction of L� corresponding to the principal Dirichlet eigenvalue
λ1,L .

If, moreover, 	 satisfies an exterior sphere condition, then the convergence in (1.19)
is uniform in 	.

As a further corollary of Theorem 1.1, we shall derive the following regularity
properties of eigenfunctions of the logarithmic Laplacian.

Corollary 1.4 Let 	 ⊂ R
N be a bounded open set with Lipschitz boundary, and let

ϕ ∈ H0
0(	) be an eigenfunction of (1.12). Then ϕ ∈ L∞(	) ∩ Cloc(	). Moreover, if

	 satisfies an exterior sphere condition, then ϕ ∈ C0(	).

Remark 1.5 We briefly comment on the main steps and difficulties in the proof of
Theorem 1.1. The first step is to prove the asymptotic expansion (1.17) and the
L2-convergence property asserted in Theorem 1.1(v). Then, we prove the uniform
L∞-bound on eigenfunctions as stated in Theorem 1.1(ii). For this, we use a new
technique based on the splitting of the integral over R

N on a small ball of radius δ

(δ-decomposition) and apply known results and conditions associated to the newly
obtained quadratic form as in [15,19]. We emphasize that this technique strongly sim-
plifies the general DeGiorgi iterationmethod in combinationwith Sobolev embedding
to prove L∞-bounds.We also point out that this δ-decompositionmethod is applicable
for general nonlocal operators and allows to get explicit constants for the boundedness.

As a third step, we prove the local equicontinuity result stated in Theorem 1.1(iii).
A natural strategy of proving this result is to first obtain a locally uniform estimate for
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the difference

[
L� − (−�)s − id

s

]
ϕk,s (1.20)

and then to use the local regularity estimates available for the class of weakly singular
operators containing L�, see e.g. [21] and the references therein. However, we are not
able to obtain uniform estimates for the difference in (1.20). Therefore we first prove
uniform bounds related to an s-dependent auxiliary integral operator family instead
(see Lemma 4.4 below), and then we complete the proof by a direct contradiction
argument. We recall here that regularity estimates for (−�)s alone, even those with
explicit constants, cannot yield sufficient uniform control on continuity modules of the
functions ϕk,s since (−�)s converges to the identity operator, as noted in (1.5). Once
local equicontinuity is established, we then prove, assuming a uniform exterior sphere
condition for	, a uniform decay property in the sense that there exists, for every fixed
k ∈ N, a function hk ∈ C0(	)with the property that |ϕk,s | ≤ hk in	 for all s ∈ (0, 1

4 ].
This will be done with the help of a uniform small volume maximum principle and
uniform radial barrier function for the difference quotient operator (−�)s−id

s , see Sect. 5
below. We point out that the lack of uniform estimates for the difference in (1.20)
prevents us from using directly the boundary decay estimates in [23] and [9, Sect. 5].
On the other hand, the estimates in [23] allow to deduce, together with Corollary 1.4,
that every eigenfunction ϕ ∈ H0

0(	) of L� satisfies

|ϕ(x)| = O
((− ln dist(x,	c)

)−1/2
)

as x → ∂	

at least in the case when the underlying domain 	 is of class C1,1. As a consequence,
we conjecture that also the majorizing functions hk above can be chosen with the
property that hk(x) ∼ (− ln dist(x,	c)

)−1/2 as x → ∂	.

The paper is organized as follows. In Sect. 2, we collect preliminary results on
the functional analytic setting. Moreover, we prove the asymptotic expansion (1.17)
and the L2-convergence property asserted in Theorem 1.1(v). In Sect. 3, we prove the
uniform L∞-bound on eigenfunctions as stated in Theorem 1.1(ii). In Sect. 4, we then
prove the local equicontinuity result stated in Theorem 1.1(iii). In Sect. 5, we prove,
assuming a uniform exterior sphere condition for 	, a uniform decay property for the
set of eigenfunctions {ϕk,s : s ∈ (0, 1

4 ]}. Combining this uniform decay property
with the local equicontinuity proved in Sect. 4, the relative compactness in C0(	)

then follows, as claimed in Theorem 1.1(iv). In Sect. 6, we finally complete the proof
of the main results stated here in the introduction.

Notation.We letωN−1 = 2π
N
2

�( N
2 )

= 2
CN

denote themeasure of the unit sphere inR
N .

For a set A ⊂ R
N and x ∈ R

N , we define δA(x) := dist(x, Ac) with Ac = R
N \ A

and, if A is measurable, then |A| denotes its Lebesgue measure. Moreover, for given
r > 0, let Br (A) := {x ∈ R

N : dist(x, A) < r}, and let Br (x) := Br ({x}) denote
the ball of radius r with x as its center. If x = 0 we also write Br instead of Br (0).
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For A ⊂ R
N and u : A → R we denote u+ := max{u, 0} as the positive and

u− = −min{u, 0} as the negative part of u, so that u = u+ − u−. Moreover, we let

osc
A

u := sup
A

u − inf
A
u ∈ [0,∞]

denote the oscillation of u over A. If A is open, we denote by Ck
c (A) the space of

function u : R
N → R which are k-times continuously differentiable and with support

compactly contained in A.

2 First Order Expansion of Eigenvalues and L2-convergence of
Eigenfunctions

In this section, we first collect some preliminary notions and observations. After this,
we complete the proof Theorem 1.1(i), see Theorem 2.10 below.

For s ∈ (0, 1), we use the fractional Sobolev space Hs(RN ) defined as

Hs(RN ) =
{
u ∈ L2(RN ) :

∫
R
N

∫
R
N

|u(x) − u(y)|2
|x − y|N+2s dxdy < ∞

}
, (2.1)

with corresponding norm given by

‖u‖Hs (RN ) =
(

‖u‖2
L2(RN )

+
∫

R
N

∫
R
N

|u(x) − u(y)|2
|x − y|N+2s dxdy

) 1
2

. (2.2)

We recall that this norm is induced by the scalar product

(u, v) �→ 〈u, v〉Hs (RN ) = 〈u, v〉L2(RN ) + Es(u, v),

where

Es(u, v) = CN ,s

2

∫
R
N

∫
R
N

(
u(x) − u(y)

)(
v(x) − v(y)

)
|x − y|N+2s dxdy

=
∫

R
N

|ξ |2s û(ξ)v̂(ξ) dξ (2.3)

for u, v ∈ Hs(RN ) and the constant CN ,s is given in (1.1). The following elementary
observations involving the asymptotics of CN ,s are used frequently in the paper.

Lemma 2.1 With CN = π− N
2 �( N2 ) = 2

ωN−1
and ρN = 2 log 2+ψ( N2 )−γ as defined

in the introduction, we have

CN ,s

sCN
= ωN−1CN ,s

2s
= 1 + sρN + o(s) as s → 0+. (2.4)
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Consequently, there exists a constant DN > 0 with

∣∣∣1 − CN ,s

CN s

∣∣∣ ≤ sDN and therefore
∣∣∣CN − CN ,s

s

∣∣∣ ≤ sCN DN for s ∈ (0,
1

4
].
(2.5)

Proof The function

s �→ τ(s) := CN ,s

sCN
= 4s

�( N2 + s)

�( N2 )�(1 − s)

is of class C1 on [0, 1) and satisfies τ(0) = 1 and τ ′(0) = ρN . Hence (2.4) follows,
and (2.5) is an immediate consequence of (2.4) and the fact that the function s �→ CN ,s

is continuous. ��

In the remainder of this paper, we assume that 	 ⊂ R
N is an open bounded

subset with Lipschitz boundary. As noted already in the introduction, we identify, for
p ∈ [1,∞], the space L p(	) with the space of functions u ∈ L p(RN ) satisfying
u ≡ 0 on 	c.

For s ∈ (0, 1), we then consider the subspace Hs
0(	) ⊂ Hs(RN ) as defined in

(1.13). Due to the boundedness of 	, we have

λ1,s(	) := inf
u∈Hs

0(	)

u �=0

Es(u, u)

‖u‖2
L2(RN )

> 0 (2.6)

so we can equip the Hilbert spaceHs
0(	)with the scalar product Es and induced norm

u �→ ‖u‖Hs
0(	) := Es(u, u)

1
2 .

Moreover, Hs
0(	) is compactly embedded in L2(	), C2

c (	) is dense in Hs
0(	),

and we have

Es(u, v) =
∫

R
N
u(x)(−�)sv(x) dx for all u ∈ Hs(RN ) and v ∈ C2

c (R
N ),

see [13]. We now set up the corresponding framework of problem (1.12) for the
logarithmic Laplacian. We let as in the introduction, see (1.15), (1.14),

H0
0(	) :=

{
u ∈ L2(RN ) : u ≡ 0 on 	c and

∫∫
x,y∈R

N

|x−y|<1

(u(x) − u(y))2

|x − y|N dxdy < +∞
}
. (2.7)
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Then the map

(u, v) �→ 〈u, v〉H0
0(	) := CN

2

∫∫
x,y∈R

N

|x−y|<1

(u(x) − u(y))(v(x) − v(y))

|x − y|N dxdy,

(2.8)

is a scalar product on H0
0(	) by [15, Lemma 2.7], and the space H0

0(	) is a Hilbert
space. Here, CN = π−N/2�( N2 ) = 2

ωN−1
is as in the introduction. We denote the

induced norm by ‖ · ‖H0
0(	). Moreover, by [11, Theorem 2.1]),

the embedding H0
0(	) ↪→ L2(	) is compact, (2.9)

and the space C2
c (	) is dense inH0

0(	) by [9, Theorem 3.1].

Remark 2.2 We stress that, despite the similarities noted above,H0
0(	) should not be

considered as a limit of the Hilbert spacesHs
0(	) as s → 0+. In particular, it is not the

limit in the sense of [24]. Instead, the spaceH0
0(	) arises naturally when considering

a first oder expansion of 〈·, ·〉Hs (RN ), cf. Lemma 2.6 below.

Next we note that, setting

E0(u, v) = 〈u, v〉H0
0(	) − CN

∫∫
x,y∈R

N

|x−y|≥1

u(x)v(y)

|x − y|N dxdy + ρN

∫
R
N
uv dx (2.10)

with ρN = 2 log 2 + ψ( N2 ) − γ as in the introduction, we have

E0(u, v) =
∫

	

u(x)L�v(x) dx for u ∈ H0
0(	) and v ∈ C1

c (	),

see [9]. In order to get a convenient parameter-dependent notation for the remainder
of this section, we now put

Ls = (−�)s for s ∈ (0, 1) and L0 = L�.

Then, for s ∈ [0, 1), we call λ ∈ R a Dirichlet-eigenvalue of Ls in	with correspond-
ing eigenfunction u ∈ Hs

0(	) \ {0} if
{
Lsu = λu in 	

u = 0 in 	c,
(2.11)

holds in weak sense, i.e., if

Es(u, ψ) = λ

∫
	

uψ dx for all ψ ∈ Hs
0(	).
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In the following Proposition we collect the known properties on the eigenvalues and
eigenfunctions of the fractional Laplacian and the logarithmic Laplacian, see e.g.
[4, Proposition 3.1] and the references in there for the fractional Laplacian and [9,
Theorem 3.4]) for the logarithmic Laplacian.

Proposition 2.3 Let 	 ⊂ R
N be an open bounded set with Lipschitz boundary, and

let s ∈ [0, 1). Then the following holds:

(a) The eigenvalues of problem (2.11) consist of a sequence {λk,s(	)}k∈N with
0 < λ1,s(	) < λ2,s(	) ≤ · · · ≤ λk,s(	) ≤ λk+1,s(	) ≤ · · · and lim

k→∞ λk,s

(	) = +∞.

(b) The sequence {ϕk,s}k∈N of eigenfunctions corresponding to eigenvalues λk,s(	)

formsa complete orthonormal basis of L2(	)andanorthogonal systemofHs
0(	).

(c) For any k ∈ N, the eigenvalue λk,s(	) is characterized as

λk,s(	) = min
{Es(u, u) : u ∈ Pk,s(	) and ‖u‖L2(	) = 1

}
,

where P1,s(	) = Hs
0(	) and

Pk,s(	) = {
u ∈ Hs

0(	) : Es(u, ϕ j,s) = 0 for j = 1, · · · , k − 1
}

for k > 1.

(d) The first eigenvalue λ1,s(	) is simple and the corresponding eigenfunction ϕ1,s
does not change its sign in 	 and can be chosen to be strictly positive in 	.

Remark 2.4 (i) The characterization in Proposition 2.3(c) implies that λ1,s(	), as
defined in (2.6), is indeed the first Dirichlet eigenvalue of (−�)s on 	, so the
notation is consistent.

(ii) We emphasize that in the case s = 0 the eigenvalues λk,0 and corresponding
eigenfunctions ϕk,0 for k ∈ N are also denoted by λk,L and ϕk,L resp. as in the
introduction for consistency.

(iii) By the Courant-Fischer minimax principle and due to the density of C2
c (	) in

Hs
0(	), the eigenvalues λk,s , s ∈ [0, 1), k ∈ N can be characterized equivalently

as

λk,s(	) = inf
V⊂Hs

0(	)

dim V=k

max
v∈V \{0}

‖v‖L2(	)
=1

Es(v, v) = inf
V⊂C2

c (	)
dim V=k

max
v∈V \{0}

‖v‖L2(	)
=1

Es(v, v).

(2.12)

This fact will be used in the sequel.

Next, we need the following elementary estimates.

Lemma 2.5 For s ∈ (0, 1) and r > 0 we have

∣∣∣r
2s − 1

s

∣∣∣ ≤ 2
(
| ln r |1(0,1](r) + 1(1,∞)(r)r

4
)

(2.13)
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and

∣∣∣r
2s − 1

s
− 2 log r

∣∣∣ ≤ 4s
(
ln2(r)1(0,1](r) + 1(1,∞)(r)r

4
)

(2.14)

Proof Fix r > 0 and let hr (s) = r2s , r > 0. Then we have h′
r (τ ) = 2r2τ ln r and

h′′
r (τ ) = 4r2τ ln2(r) for τ > 0. Consequently,

∣∣∣r
2s − 1

s

∣∣∣ = 2| ln r |
s

∫ s

0
r2τ dτ ≤ 2| ln r |max{1, r2s}

≤ 2
(
| ln r |1(0,1](r) + 1(1,∞)(r)r

4
)
,

where in the last step we used that r2s ≤ 1 for r ≤ 1 and, since s < 1,

r2s ln r ≤ r2s+1 ≤ r4 for r > 1.

Hence (2.13) is true. Moreover, by Taylor expansion,

hr (s) = 1 + sh′
r (0) +

∫ s

0
h′′
r (τ )(s − τ)dτ = 1 + 2s ln r + 4 ln2 r

∫ s

0
r2τ (s − τ)dτ

and therefore

∣∣∣r
2s − 1

s
− 2 log r

∣∣∣ ≤ 4 ln2(r)

s

∣∣∣
∫ s

0
r2τ (s − τ)dτ

∣∣∣ ≤ 4s ln2(r)max{r2s, 1}.

Hence (2.14) follows since for r ∈ (0, 1] we have r2s ≤ 1 and, since s < 1,

r2s ln2 r ≤ r2s+2 ≤ r4 for r > 1. ��
Lemma 2.6 For every u ∈ C2

c (	) and s ∈ (0, 1) we have

∣∣∣Es(u, u) − ‖u‖2
L2(RN )

∣∣∣ ≤ 2s
(
κN‖u‖2

L1(RN )
+ ‖�u‖2

L2(RN )

)
(2.15)

and
∣∣∣Es(u, u) − ‖u‖2

L2(RN )
− sE0(u, u)

∣∣∣ ≤ 4s2
(
κN‖u‖2

L1(RN )
+ ‖�u‖2

L2(RN )

)

(2.16)

with κN = (2π)−N
∫
B1(0)

ln2 |ξ | dξ.

Proof Let u ∈ C2
c (	) and s ∈ (0, 1). By (2.3) and (2.13), we have

∣∣∣Es(u, u) − ‖u‖2
L2(RN )

∣∣∣ ≤
∫

R
N

∣∣|ξ |2s − 1
∣∣ |û(ξ)|2 dξ



Journal of Fourier Analysis and Applications (2022) 28 :18 Page 13 of 44 18

≤ 2s
(∫

B1(0)
| ln |ξ |||û(ξ)|2 dξ +

∫
R
N \B1

|ξ |4|û(ξ)|2 dξ
)

≤ 2s
(
‖û‖2

L∞(RN )

∫
B1(0)

| ln |ξ || dξ + ‖�u‖2
L2(RN )

)

≤ 2s
(
(2π)−N‖u‖2

L1(RN )

∫
B1(0)

ln2 |ξ | dξ + ‖�u‖2
L2(RN )

)
.

Thus (2.15) follows. Moreover, by (2.14) we have

∣∣∣Es(u, u) − ‖u‖2
L2(RN )

− sE0(u, u)

∣∣∣
≤

∫
R
N

∣∣|ξ |2s − 1 − 2s log |ξ |∣∣ |û(ξ)|2 dξ

≤ 4s2
(∫

B1(0)
ln2 |ξ ||û(ξ)|2 dξ +

∫
R
N \B1

|ξ |4|û(ξ)|2 dξ
)

≤ 4s2
(
‖û‖2L∞

∫
B1(0)

ln2 |ξ | dξ + ‖�u‖2
L2(RN )

)

≤ 4s2
(
(2π)−N‖u‖2

L1(RN )

∫
B1(0)

ln2 |ξ | dξ + ‖�u‖2
L2(RN )

)

Hence (2.16) follows. ��
Lemma 2.7 For all k ∈ N we have

λ1,0(	) ≤ lim inf
s→0+

λk,s(	) − 1

s
≤ lim sup

s→0+

λk,s(	) − 1

s
≤ λk,0(	) (2.17)

and

λk,s(	) ≤ 1 + sC for all s ∈ (0, 1) (2.18)

with a constant C = C(N ,	, k) > 0.

Proof We fix a subspace V ⊂ C2
c (	) of dimension k and let SV := {u ∈ V :

‖u‖L2(	) = 1}. Using (2.12) and (2.15), we find that, for s ∈ (0, 1),

λk,s(	) − 1

s
≤ max

u∈SV
Es(u, u) − 1

s
≤ C (2.19)

with

C = C(N ,	, k) = 2 max
u∈SV

(
κN‖u‖2

L1(RN )
+ ‖�u‖2

L2(RN )

)
.

Hence (2.18) holds. Technically speaking, the constant C depends on the choice of
V , but V can be chosen merely in dependence of 	. Moreover, setting Rs(u) =
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Es (u,u)−1
s − E0(u, u) for u ∈ C2

c (	), we deduce from (2.19) that

λk,s(	) − 1

s
≤ max

u∈SV
E0(u, u) + max

u∈SV
|Rs(u)|

while, by Lemma 2.6,

|Rs(u)| ≤ 4s
(
κN‖u‖2

L1(RN )
+ ‖�u‖2

L2(RN )

)
→ 0 as s → 0+ uniformly in u ∈ SV .

Consequently,

lim sup
s→0+

λk,s(	) − 1

s
≤ max

u∈SV
E0(u, u).

Since V was chosen arbitrarily, the characterization of the Dirichlet eigenvalues of the
logarithmic Laplacian given in (2.12) with s = 0 implies that

lim sup
s→0+

λk,s(	) − 1

s
≤ inf

V⊂C2
c (	)

dim(V )=k

max
u∈V‖u‖L2(	)

=1

EL(u, u) = λk,0(	), (2.20)

In particular, the last inequality in (2.17) holds. Moreover, since λk,s(	) ≥ λ1,s(	)

for every k ∈ N and

lim
s→0+

λ1,s(	) − 1

s
= λ1,0(	)

by [9, Theorem 1.5], the first inequality in (2.17) also follows. ��
Corollary 2.8 For all k ∈ N we have lim

s→0+ λk,s(	) = 1.

Proof This immediately follows from (2.17). ��
Lemma 2.9 Let k ∈ N, s0 ∈ (0, 1), and let, for s ∈ (0, s0), ϕk,s ∈ Hs

0(	) denote an
L2-normalized eigenfunction of (−�)s in 	. Then the set

{ϕk,s : s ∈ (0, s0)}

is uniformly bounded inH0
0(	) and therefore relatively compact in L2(	).

Proof By (2.18), there exists a constant C = C(N ,	, k) > 0 with the property that

C ≥ λk,s(	) − 1

s
= Es(ϕk,s, ϕk,s) − 1

s

= CN ,s

2s

∫
R
N

∫
R
N

|ϕk,s(x) − ϕk,s(y)|2
|x − y|N+2s dxdy − 1

s
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= CN ,s

2s

∫∫
|x−y|<1

|ϕk,s(x) − ϕk,s(y)|2
|x − y|N+2s dxdy

− CN ,s

s

∫∫
|x−y|≥1

ϕk,s(x)ϕk,s(y)

|x − y|N+2s dxdy + fN (s), (2.21)

where, due to the L2-normalization of ϕk,s ,

fN (s) := 1

s

(
CN ,s

∫
	

|ϕk,s(x)|2
∫

R
N \B1(x)

1

|x − y|N+2s dy dx − 1
)

= 1

s

(
CN ,sωN−1

2s
− 1

)
. (2.22)

Therefore, using the definition of ‖ · ‖H0
0(	), we deduce that

C ≥ CN ,s

sCN
‖ϕk,s‖2H0

0(	)
− CN ,s

s

∫∫
|x−y|≥1

|ϕk,s(x)ϕk,s(y)|
|x − y|N+2s dxdy + fN (s), (2.23)

where, by Hölder’s inequality,

∫∫
|x−y|≥1

|ϕk,s(x)ϕk,s(y)|
|x − y|N+2s dxdy ≤

∫
	

∫
	∩{|x−y|≥1}

|ϕk,s(x)|2
|x − y|N dydx

≤ |	|‖ϕk,s‖L2(	) = |	|,

using again the L2-normalization. Combining this with (2.23), we find that

‖ϕk,s‖2H0
0(	)

≤ sCN

CN ,s

(
C + |	| − fN (s)

)
.

Since moreover sCN
CN ,s

→ 1 and fN (s) → ρN as s → 0+ by Lemma 2.1, we conclude
that there exists a constant K = K (N , k,	) > 0 and s1 ∈ (0, 1) such that

‖ϕk,s‖H0
0(	) ≤ K for all s ∈ (0, s1).

Consequently, the set {ϕk,s : s ∈ (0, s1)} is uniformly bounded in H0
0(	) and thus

relatively compact in L2(	) by (2.9). Hence the claim follows for s0 ≤ s1.
If s0 ∈ (s1, 1), we can use the fact that by (2.18) we have, for s ∈ [s1, s0],

1 + C ≥ λk,s(	) = Es(ϕk,s, ϕk,s) = CN ,s

2

∫
R
N

∫
R
N

|ϕk,s(x) − ϕk,s(y)|2
|x − y|N+2s dxdy

≥ CN ,s

2

∫∫
|x−y|≤1

|ϕk,s(x) − ϕk,s(y)|2
|x − y|N dxdy = CN ,s

CN
‖ϕk,s‖2H0

0(	)
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with a constant C = C(N ,	, k) > 0 and hence

sup
s∈[s1,s0]

‖ϕk,s‖2H0
0(	)

≤ CN (1 + C) sup
s∈[s1,s0]

1

CN ,s
< ∞.

We thus conclude that the set {ϕk,s : s ∈ (0, s0)} is uniformly bounded inH0
0(	) and

thus relatively compact in L2(	) by (2.9), as claimed. ��
Wefinish this sectionwith the the following theoremwhich, in particular, completes

the proof of Theorem 1.2(i).

Theorem 2.10 For every k ∈ N we have

lim
s→0+

λk,s(	) − 1

s
= λk,0(	). (2.24)

Moreover, if (sn)n ⊂ (0, 1) is a sequence such that lim
n→∞ sn = 0 and ϕk,sn is an L2-

normalizedDirichlet eigenfunction of (−�)s corresponding to the eigenvalueλk,s(	),
then, after passing to a subsequence,

ϕk,s → ϕk,0 in L2(	) as n → ∞,

where ϕk,0 is an L2-normalized Dirichlet eigenfunction of the logarithmic Laplacian
corresponding to λk,0(	).

Proof To establish (2.24), it suffices, in view of (2.17), to consider an arbitrary
sequence (sn)n ⊂ (0, 1) with lim

n→∞ sn = 0, and to show that, after passing to a

subsequence,

lim
n→∞

λk,sn (	) − 1

s
= λk,0(	) for k ∈ N. (2.25)

Let {ϕk,sn : k ∈ N} be an orthonormal system of eigenfunctions corresponding to
the Dirichlet eigenvalue λk,sn (	) of (−�)sn . By Lemma 2.9, it follows that, for every
k ∈ N, the sequence of functions ϕk,sn , n ∈ N is bounded in H0

0(	) and relatively
compact in L2(	). Consequently, we may pass to a subsequence such that, for every
k ∈ N,

ϕk,sn⇀ϕk,0 weakly inH0
0(	) and ϕk,sn → ϕk,0 strongly in L2(	) as n → ∞.

(2.26)

Here a diagonal argument is used to have convergence for all k ∈ N. Moreover, by
(2.17) we may, after passing again to a subsequence if necessary, assume that, for
every k ∈ N,

λk,sn (	) − 1

sn
→ λ�

k ∈
[
λ1,0(	), λk,0(	)

]
as n → ∞. (2.27)
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To prove (2.25), it now suffices to show that

λk,0(	) = λ�
k for every k ∈ N. (2.28)

It follows from (2.26) that

‖ϕk,0‖L2(	) = 1 and 〈ϕk,0, ϕ�,0〉L2(	) = 0 for k, � ∈ N, � �= k. (2.29)

Moreover, for w ∈ C2
c (	) and n ∈ N we have

Esn (ϕk,sn , w) = λk,sn (	)〈ϕk,sn , w〉L2(	) (2.30)

and therefore, by [9, Theorem 1.1(i)],

lim
n→∞

λk,sn (	) − 1

sn
〈ϕk,sn , w〉L2(	) = lim

n→∞
1

sn

(
Es(ϕk,sn , w) − 〈ϕk,sn , w〉L2(	)

)

= lim
n→∞

〈
ϕk,sn ,

(−�)snw − w

sn

〉
L2(	)

= 〈ϕk,0, L�w〉L2(	) = EL(ϕk,0, w).

Since moreover 〈ϕk,sn , w〉L2(	) → 〈ϕk,0, w〉L2(	) for n → ∞, it follows from (2.27)
that

EL(ϕk,0, w) = λ�
k〈ϕk,0, w〉L2(	) for all w ∈ C2

c (	). (2.31)

Thus ϕk,0 is a Dirichlet eigenfunction of the logarithmic Laplacian L� corresponding
to λ�

k .
Next, for fixed k ∈ N, we consider Ek,0 := span{ϕ1,0, ϕ2,0, · · · , ϕk,0}, which is a

k-dimensional subspace of H0
0(	) by (2.29). Since

λ�
1 ≤ λ�

2 ≤ . . . ≤ λ�
k

as a consequence of (2.27) and since λi,sn ≤ λ j,sn for 1 ≤ i ≤ j ≤ k, n ∈ N, we have

the following estimate for every w =
k∑

i=1
αiϕi,0 ∈ Ek,0 with α1, · · · , αk ∈ R:

E0(w,w) =
k∑

i, j=1

αiα jE0(ϕi,0, ϕ j,0) =
k∑

i, j=1

αiα jλ
�
i 〈ϕi,0, ϕ j,0〉L2(	) (2.32)

=
k∑

i=1

α2
i λ

�
i ‖ϕi,0‖2L2(	)

≤ λ�
k

k∑
i=1

α2
i = λ�

k‖w‖2L2(	)
. (2.33)

The characterization in (2.12) now yields that

λk,0(	) ≤ max
w∈Ek,0‖w‖L2(	)

=1

E0(w,w) ≤ λ�
k .
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Since also λ�
k ≤ λk,0(	) by (2.27), (2.28) follows. We thus conclude that (2.25)

holds. Moreover, the second statement of the theorem also follows a posteriori from
the equality λ�

k = λk,0(	), since we have already seen that ϕk,sn → ϕk,0 in L2(	),
where ϕk,0 is a Dirichlet eigenfunction of the logarithmic Laplacian L0 corresponding
to the eigenvalue λ�

k . The proof is thus finished. ��

3 Uniform L∞-bounds on Eigenfunctions

Through the remainder of this paper, we fix k ∈ N, and we consider, for s ∈ (0, 1
4 ],

eigenfunctions ϕs := ϕk,s of (−�)s in 	 corresponding to λs := λk,s . Furthermore,
we assume that ϕs is L2-normalized, that is ‖ϕs‖L2(	) = 1 for all s ∈ (0, 1

4 ]. The
main result of this section is the following.

Theorem 3.1 There exists a constant C = C(N ,	, k) with the property that
‖ϕs‖L∞(	) ≤ C for all s ∈ (0, 1

4 ].
To prove this result, we use a new approach based on a so-called δ-decomposition

of nonlocal quadratic forms.
For δ > 0 and u, v ∈ Hs(RN ), we can write

Es(u, v) = Eδ
s (u, v) + CN ,s

2

∫∫
|x−y|>δ

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy

= Eδ
s (u, v) + κδ,s〈u, v〉L2(RN ) − 〈kδ,s ∗ u, v〉L2(RN )

with the δ-dependent quadratic form

(u, v) �→ Eδ
s (u, v) = CN ,s

2

∫∫
|x−y|<δ

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy,

the function kδ,s = CN ,s1R
N \Bδ(0)

| · |−N−2s ∈ L1(RN ) and the constant

κδ,s = CN ,sωN−1δ
−2s

2s
.

In particular, this decomposition is valid if 	 ⊂ R
N is a bounded Lipschitz domain

and u, v ∈ Hs
0(	).

Proof of Theorem 3.1 Let δ ∈ (0, 1), c > 0, and consider the functionwc = (ϕs−c)+ :
	 → R for s ∈ (0, 1). Then wc ∈ H0

0(	) by [18, Lemma 3.2]. Moreover, for
x, y ∈ R

N we have

(ϕs(x) − ϕs(y))(wc(x) − wc(y)) = ([ϕs(x) − c] − [ϕs(y) − c])(wc(x) − wc(y))

= [ϕs(x) − c]wc(x) + [ϕs(y) − c]wc(y) − [ϕs(x) − c]wc(y) − wc(x)[ϕs(y) − c]
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= w2
c (x) + w2

c (y) − 2wc(x)wc(y) + [ϕs(x) − c]−wc(y) + wc(x)[ϕs(y) − c]−
≥ w2

c (x) + w2
c (y) − 2wc(x)wc(y) = (wc(x) − wc(y))

2,

which implies that

Eδ
s (wc, wc) = CN ,s

2

∫∫
|x−y|<δ

(wc(x) − wc(y))2

|x − y|N+2s dxdy

≤ CN ,s

2

∫∫
|x−y|<δ

(ϕs(x) − ϕs(y))(wc(x) − wc(y))

|x − y|N+2s dxdy

= Eδ
s (ϕs, wc) = Es(ϕs, wc) − κδ,s〈ϕs, wc〉L2(	) + 〈kδ,s ∗ ϕs , wc〉L2(	)

= (
λs − κδ,s

)〈ϕs, wc〉L2(	) + 〈kδ,s ∗ ϕs , wc〉L2(	) = gδ(s)〈ϕs, wc〉L2(	)

+ 〈kδ,s ∗ ϕs , wc〉L2(	) (3.1)

with the function

gδ : (0, 1) → R, gδ(s) = λs − κδ,s = λs − CN ,sωN−1δ
−2s

2s
. (3.2)

Since λs = 1 + λLs + o(s) by Theorem 2.10, where λL = λk,0 denotes the k-the
eigenvalue of the logarithmic Laplacian, and

CN ,sωN−1δ
−2s

2s
= 1 + (

ρN + 2 ln δ
)
s + o(s) as s → 0+

by Lemma 2.1, we have

gδ(s) = (
λL − ρN + 2 ln δ

)
s + o(s) as s → 0+.

Here the remainder term o(s) depends on δ > 0. Nevertheless, we may first fix
δ ∈ (0, 1) sufficiently small such that λL − ρN + 2 ln δ < −1, and then we may fix
s0 ∈ (0, 1

4 ] with the property that

gδ(s) ≤ −s ≤ 0 for all s ∈ (0, s0]. (3.3)

Since also ϕs(x)wc(x) ≥ cwc(x) ≥ 0 for x ∈ 	, s ∈ (0, s0], we deduce from (3.1)
that

Eδ
s (wc, wc) ≤

∫
	

[kδ,s ∗ ϕs − sc]wc dx ≤ (‖kδ,s ∗ ϕs‖L∞(	) − sc
) ∫

	

wc dx . (3.4)

Here we note that, by Hölder’s (or Young’s) inequality,

‖kδ,s ∗ ϕs‖L∞(	) ≤ ‖kδ,s‖L2(RN )‖ϕs‖L2(	) = ‖kδ,s‖L2(RN )
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with

‖kδ,s‖L2(RN ) = CN ,s

( ∫
R
N \Bδ

|y|−2N−4s dy

)1/2

= CN ,sω
1
2
N−1δ

− N
2 −2s

√
N + 4s

.

Since

d̃ := sup
s∈(0,s0]

‖kδ,s‖L2(RN )

s
= sup

s∈(0,s0]
CN ,sω

1
2
N−1δ

− N
2 −2s

s
√
N + 4s

< ∞,

we deduce from (3.4) that for c > d̃ and s ∈ (0, s0] we have

0 ≤ Eδ
s (wc, wc) ≤ s

(
d̃ − c

) ∫
	

wc dx ≤ 0

and therefore Eδ
s (wc, wc) = 0. Consequently, wc = 0 in 	 for s ∈ (0, s0] by the

Poincaré type inequality given in [15, Lemma 2.7] . But then ϕs(x) ≤ c a.e. in 	, and
therefore

sup
s∈(0,s0]

‖ϕ+
s ‖L∞(	) ≤ c.

Repeating the above argument for −ϕs in place of ϕs , we also find that sup
s∈(0,s0]

‖ϕ−
s ‖L∞(	) ≤ c and therefore

sup
s∈(0,s0]

‖ϕs‖L∞(	) ≤ c. (3.5)

It remains to prove that

sup
s∈[s0, 14 ]

‖ϕs‖L∞(	) < ∞. (3.6)

To see this, we argue as above, but with different values of δ ∈ (0, 1) and c > 0. For
this we first note that, by (3.2), we may choose δ ∈ (0, 1) sufficiently small so that
(3.3) holds for s ∈ [s0, 1

4 ]. With this new value of δ and d̃ redefined as

d̃ := sup
s∈[s0, 14 ]

‖kδ,s‖L2(RN )

s
= sup

s∈[s0, 14 ]

CN ,sω
1
2
N−1δ

− N
2 −2s

s
√
N + 4s

< ∞,

we may now fix c > d̃ and complete the argument as above to see that also

sup
s∈[s0, 14 ]

‖ϕs‖L∞(	) ≤ c.
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Hence (3.6) holds. The proof is now finished by combining (3.5) and (3.6). ��

4 Local Equicontinuity

This section is devoted to prove local equicontinuity of the set {ϕs : s ∈ (0, 1
4 ]} in 	.

The first step of the proof consists in deriving s-dependent Hölder estimates for the
functions with uniform (i.e., s-independent) constants as s → 0+. As a preliminary
tool, we need to consider the Riesz kernel

Fs : R
N \ {0} → [0,∞), Fs(z) = κN ,s |z|2s−N with κN ,s = s�( N2 − s)

4sπN/2�(1 + s)
.

(4.1)

The following two lemmas contain estimates which are essentially standard but
hard to find in the literature in this form with s-independent constants. For closely
related estimates, see e.g. [31, Sect. 2] and [26, Sect. 7].

Lemma 4.1 Let s ∈ (0, 1
4 ], r ∈ (0, 1) and f ∈ L∞(Br ). Moreover, let

u f : R
N → R, u f (x) :=

∫
Br

Fs(x − y) f (y) dy. (4.2)

Then u f ∈ Cs(RN ) ∩ L∞(RN ), and there is a constant C = C(N ) > 0 such that

|u f (x) − u f (y)| ≤ Crs‖ f ‖L∞(Br )|x − y|s for all x, y ∈ R
N . (4.3)

If, moreover, f ∈ Cα(Br ) for some α ∈ (0, 1 − s), then we also have

|u f (x) − u f (y)| ≤ Crs−α‖ f ‖Cα(Br )
|x − y|s+α for x, y ∈ B3r/4 (4.4)

after making C = C(N ) larger if necessary.

Proof For x ∈ B1 we have

u f (r x) =
∫
Br

Fs(r x − y) f (y) dy = r2s
∫
B1

Fs(x − z) f (r z) dz,

so that we may assume r = 1 in the following. Next, we recall the following standard
estimate:

∫
Bt

|x − z|τ−N dz ≤
∫
Bt

|z|τ−N dz = ωN−1tτ

τ
for every

t > 0, τ ∈ (0, N ) and x ∈ R
N . (4.5)
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From this we deduce that u f ∈ L∞(RN ) with

‖u f ‖L∞(RN ) ≤ ‖ f ‖L∞(B1)κN ,s sup
x∈R

N

∫
B1

|x − y|2s−N dy ≤ ‖ f ‖L∞(B1)
κN ,sωN−1

2s

= �( N2 − s)ωN−1

22s+1πN/2�(1 + s)
‖ f ‖L∞(B1) ≤ C1‖ f ‖L∞(B1) (4.6)

with a constant C1 = C(N ) independent of s ∈ (0, 1
4 ]. Next, by e.g. [14, Eq. (A.3)]

we use

|a2s−N − b2s−N | ≤ N − 2s

N − s
|a − b|s(as−N + bs−N )

≤ |a − b|s(as−N + bs−N ) for a, b > 0. (4.7)

With this estimate and (4.5), we deduce that

|u(x + h) − u(x)| =
∣∣∣∣
∫
B1

(
Fs(x − z + h) − Fs(x − z)

)
f (z) dz

∣∣∣∣
≤ |h|s‖ f ‖L∞(B1)κN ,s

∫
B1

(|x − z − h|s−N + |x − z|s−N ) dz

≤ 2ωN−1κN ,s

s
‖ f ‖L∞(B1)|h|s = 2ωN−1�( N2 − s)

4sπN/2�(1 + s)
‖ f ‖L∞(B1)|h|s for x, h ∈ R

N .

Hence there is C2 = C2(N ) independent of s ∈ (0, 1
4 ] such that

|u(x + h) − u(x)| ≤ C2‖ f ‖L∞(B1)|h|s for all x, h ∈ R
N . (4.8)

We thus deduce (4.3).
Next we assume that f ∈ Cα(B1) for some α ∈ (0, 1 − s), and we establish (4.4)

in the case r = 1.
We choose a cut-off function η ∈ C∞

c (RN ) with 0 ≤ η ≤ 1, η ≡ 1 on B7/8 and
η = 0 on R

N \ B1. We then define w ∈ Cα
c (RN ) by w(x) = η(x) f (x) for x ∈ B1

and w(x) = 0 for x ∈ R
N \ B1. Then u f (x) = u1(x) + u2(x) for x ∈ B1 with

u1(x) =
∫
B1

Fs(x − z)(1 − η(z)) f (z) dz =
∫
B1\B7/8

Fs(x − z)(1 − η(z)) f (z) dz

and

u2(x) =
∫

R
N
Fs(x − z)w(z) dz for x ∈ R

N .
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Since |x − z| ≥ 1
8 for x ∈ B3/4 and z ∈ B1 \ B7/8, for all β ∈ N

d
0 , |β| ≤ 1 we have

|∂βu1(x)| =
∣∣∣
∫
B1

∂β
x Fs(x − z)(1 − η(z)) f (z) dz

∣∣∣ ≤ ‖ f ‖L∞(B1)‖∂βFs‖L1(B2\B 1
8
)

≤ ‖ f ‖L∞(B1)κN ,sωN−1

(
(N − 2s)

∫ 2

1/8
t2s−2 dt +

∫ 2

1/8
t2s−1 dt

)

≤ ‖ f ‖L∞(B1)κN ,sωN−1(N + 2)
∫ 2

1/8
t2s−2 dt ≤ C3‖ f ‖L∞(B1)

for x ∈ B3/4, s ∈ (0, 1) with a constant C3 = C3(N ) > 0. Hence u1 ∈ C1(B3/4),
and

|u1(x) − u1(y)| ≤ C3‖ f ‖L∞(B1)|x − y| for all x, y ∈ B3/4. (4.9)

To estimate u2, we first note that, by the same estimate as in (4.6), we find that

‖u2‖L∞(B1) ≤ C‖w‖L∞(B1) ≤ C‖ f ‖L∞(B1). (4.10)

Moreover, we write δhw(x) = w(x+h)−w(x) for x, h ∈ R
N . Sincew has a compact

support contained in B1 and η is smooth, there is C4 = C4(N ) such that

|δhw(x)| ≤ C4‖ f ‖Cα(B1)
|h|α for all x, h ∈ R

N .

For x, h ∈ R
N , |h| ≤ 1 we now have, by (4.7) and since δhw is supported in B2,

|u2(x + 2h) − 2u2(x + h) + u2(x)|
= ∣∣δ2hu2(x)

∣∣ =
∣∣∣∣
∫

R
N

δh Fs(x − z)δhw(z) dz

∣∣∣∣ =
∣∣∣∣
∫
B2

δh Fs(x − z)δhw(z) dz

∣∣∣∣
≤ |h|α+sC4‖ f ‖Cα(B1)

κN ,s

∫
B2

(|x − z − h|s−N + |x − z|s−N ) dz.

Using now (4.5) again, we deduce that

|u2(x + 2h) − 2u2(x + h) + u2(x)|

≤ κN ,s

s
C4ωN−12

s+1‖ f ‖Cα(B1)
|h|α+s = C4ωN−12s+1�( N2 − s)

4sπN/2�(1 + s)
‖ f ‖Cα(B1)

|h|α+s .

Hence there is C5 = C5(N ) such that

|u2(x + 2h) − 2u2(x + h) + u2(x)| ≤ C5‖ f ‖Cα(B1)
|h|α+s

for all x ∈ R
N , |h| ≤ 1. (4.11)
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By (4.10), we may make C5 > 0 larger if necessary so that (4.11) holds for all
x, h ∈ R

N . Since α+s < 1 by assumption, it now follows, by a well known argument,
that

|u2(x + h) − u2(x)| ≤ C6‖ f ‖Cα(B1)
|h|α+s for all x, h ∈ R

N (4.12)

with a constant C6 = C6(N ) > 0. For the convenience of the reader, we recall this
argument in the appendix. The estimate (4.4) now follows by combining (4.9) and
(4.12). ��
Lemma 4.2 Let r > 0, f ∈ L∞(Br ), and suppose that u ∈ L∞(RN ) is a distributional
solution of the equation (−�)su = f in Br for some s ∈ (0, 1

4 ]. Moreover, let
u f : R

N → R be defined as in (4.2), and let u∗ := u − u f .
Then we have the estimate

|u∗(x) − u∗(y)| ≤ C |x − y|3s
(
r−3s‖u‖L∞(RN \Br ) + r−s‖ f ‖L∞(Br )

)

for x, y ∈ Br
2

(4.13)

with a constant C = C(N ) > 0.

Proof By scaling invariance, it suffices to consider the case r = 1. In this case, we
may follow the proof of [20, Lemma A.1], using the fact that u∗ solves the problem

(−�)su∗ = 0 in Br u∗ = u − u f in R
N \ Br .

Using the corresponding Poisson representation of u∗, it was shown in [20, Proof of
Lemma A.1] that

|u∗(x) − u∗(y)|
≤ c1|x − y|

(
τN ,s

∫
R
N \B1

|u(z)|
|z|N (|z|2 − 1)s

dz + ‖ f ‖L∞(B1)

)
for x, y ∈ B 1

2

(4.14)

with a constant c1 = c1(N ) and τN ,s = 2
�(s)�(1−s)|SN−1| , see [20, P. 48]. From this,

we deduce (4.13) in the case r = 1 since s ∈ (0, 1
4 ]. ��

Corollary 4.3 Let s ∈ (0, 1
4 ]. Then ϕs ∈ C3s(Br/8(x0)) for all x0 ∈ 	 and 0 < r ≤

min{1, δ	(x0)}. Moreover, there is C = C(N ,	, k) > 0 such that

sup
x,y∈Br/8(x0)

|ϕs(x) − ϕs(y)|
|x − y|3s ≤ Cr−3s for s ∈ (0,

1

4
].

Proof By translation invariance we may assume x0 = 0 ∈ 	. Let r ∈
(0,min{1, δ	(0)}). We write ϕs = us,1 + us,2 with

us,1(x) =
∫
Br

Fs(x − z)λsϕs(z) dz, for x ∈ R
N , us,2 = ϕs − us,1,
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where Fs is the Riesz kernel defined in Lemma 4.1. Moreover, in the following,
the letter C > 0 denotes different constants depending only on N ,	 and k. By
Theorem 3.1 and Lemma 4.1, we have

|us,1(x) − us,1(y)| ≤ Crs |x − y|s for all x, y ∈ R
N .

Moreover, by Lemma 4.2 we have

|us,2(x) − us,2(y)| ≤ Cr−3s |x − y|3s ≤ Cr−2s |x − y|2s
≤ Cr−s |x − y|s for all x, y ∈ Br/2. (4.15)

Hence

|ϕs(x) − ϕs(y)| ≤ Cr−s |x − y|s for all x, y ∈ Br/2.

Applying now the second claim in Lemma 4.1 with α = s, we deduce that

|us,1(x) − us,1(y)| ≤ Cr−s |x − y|2s for all x, y ∈ Br/4.

Combining this estimate with (4.15), we deduce that

|ϕs(x) − ϕs(y)| ≤ Cr−2s |x − y|2s for all x, y ∈ Br/4.

Finally, applying the second claim in Lemma 4.1 with α = 2s, we deduce that

|us,1(x) − us,1(y)| ≤ Cr−2s |x − y|3s for all x, y ∈ Br/8.

Combining this estimate with (4.15), we deduce that

|ϕs(x) − ϕs(y)| ≤ Cr−3s |x − y|3s for all x, y ∈ Br/8,

as claimed. ��
We now state a key local bound related to an auxiliary integral operator.

Lemma 4.4 Let t0, r > 0. Then there exists a constant C = C(N ,	, k, r , t0) > 0
with the property that

∣∣∣
∫
Bt0

ϕs(x) − ϕs(x + y)

|y|N+2s dy
∣∣∣ ≤ C for all s ∈ (0,

1

4
] and all x ∈ 	 with δ	(x) > r .

Proof Without loss of generality, we may assume that r < 1. Moreover, we fix x ∈ 	

with δ	(x) > r . In the following, we fix t = min{ t02 , r
8 } < 1, and we write

∫
Bt0

ϕs(x) − ϕs(x + y)

|y|N+2s dy =
∫
Bt

ϕs(x) − ϕs(x + y)

|y|N+2s dy −
∫
Bt0\Bt

ϕs(x + y)

|y|N+2s dy
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+ωN−1
t−2s − t0−2s

2s
ϕs(x)

and

(−�)sϕs(x) = CN ,s

∫
Bt

ϕs(x) − ϕs(x + y)

|y|N+2s dy − CN ,s

∫
R
N \Bt

ϕs(x + y)

|y|N+2s dy

+ωN−1CN ,s

2s
t−2sϕs(x).

Since CNωN−1 = 2, we can thus write

CN

∫
Bt0

ϕs(x) − ϕs(x + y)

|y|N+2s dy −
( (−�)s − 1

s

)
ϕs(x) = I s1 (x) + I s2 (x) + I s3 (x)

(4.16)

with

I s1 (x) :=
(
CN − CN ,s

s

) ∫
Bt

ϕs(x) − ϕs(x + y)

|y|N+2s dy

I s2 (x) :=
(CN ,s

s
− CN

) ∫
Bt0\Bt

ϕs(x + y)

|y|N+2s dy + CN ,s

s

∫
R
N \Bt0

ϕs(x + y)

|y|N+2s dy and

I s3 (x) := ϕs(x)

s

(
CNωN−1

t−2s − t0−2s

2
+ 1 − ωN−1CN ,s

2s
t−2s

)

= ϕs(x)

s

[(
1 − CN ,s

CN s

)
t−2s + 1 − t−2s

0

]
.

By (2.5) and since

t−2s ≤ t−
1
2 and

∣∣1 − t−2s
0

s

∣∣ ≤ | ln t0|
2

max{1, t−2s
0 } ≤ | ln t0|

2
max{1, t−

1
2

0 }

for s ∈ (0,
1

4
],

it follows that

|I s3 (x)| ≤
[
DN t

− 1
2 + | ln t0|

2
max{1, t−

1
2

0 }
]

sup
s∈(0, 14 ]

‖ϕs‖L∞(	), (4.17)

where the RHS is a finite constant by Theorem 3.1. To estimate I s2 , we let R :=
1 + diam(	) and note that, by (2.5), Theorem 3.1, and since ϕs ≡ 0 on 	c,

|I s2 (x)| ≤
(∣∣CN ,s

s
− CN

∣∣ + CN ,s

s

) ∫
BR\Bt

|ϕs(x + y)|
|y|N+2s dy
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≤
(∣∣CN ,s

s
− CN

∣∣ + CN ,s

s

)
ωN−1

t−2s − R−2s

2s
‖ϕs‖L∞(	)

= (∣∣CN ,s

sCN
− 1

∣∣ + CN ,s

sCN

) t−2s − R−2s

s
‖ϕs‖L∞(	)

≤ (2sDN + 1)
t−2s − R−2s

s
‖ϕs‖L∞(	)

≤ (DN

2
+ 1

) t−2s − R−2s

s
‖ϕs‖L∞(	) for s ∈ (0,

1

4
].

Since
(
t−2s − R−2s

) = 2(ln R − ln t)s + o(s) as s → 0+, it follows that

|I s2 (x)| ≤ (DN

2
+ 1

)
sup

s∈(0, 14 ]

t−2s − R−2s

s
sup

s∈(0, 14 ]
‖ϕs‖L∞(	), (4.18)

where the RHS is a finite constant depending on t but not on s.
Finally, to estimate I s1 (x), we note that our choice of t = min{ t02 , r

8 } allows us to
apply Corollary 4.3, which gives that

|ϕs(x + h) − ϕs(x)| ≤ C̃ |y|3s for s ∈ (0,
1

4
], y ∈ Bt

with a constant C̃ = C̃(N ,	, k, r , t0) > 0. Using this together with (2.5) we may
estimate

|I s1 (x)| ≤
∣∣∣CN − CN ,s

s

∣∣∣C̃
∫
Bt

|y|s−Ndy ≤ ωN−1C̃
(
sCN DN

) t s
s

= 2C̃ DN t
s ≤ 2C̃ DN for s ∈ (0,

1

4
].

Going back to (4.16), we now find that

sup
s∈(0, 14 ]

∣∣∣CN

∫
Bt0

w(x) − w(x + y)

|y|N+2s dy −
( (−�)s − 1

s

)
ϕs(x)

∣∣∣ < ∞.

Since also

sup
s∈(0, 14 ]

∥∥∥
( (−�)s − 1

s

)
ϕs(x)

∥∥∥
L∞(	)

= sup
s∈(0, 14 ]

(∣∣∣λs − 1

s

∣∣∣∥∥ϕs(x)
∥∥
L∞(	)

)
< ∞

by Theorems 2.10 and 3.1, the claim now follows. ��
We now have all tools to complete the proof of Theorem 1.1(iii) which we restate

here for the reader’s convenience.

Theorem 4.5 The set {ϕs : s ∈ (0, 1
4 ]} is equicontinuous in every point x0 ∈ 	 and

therefore relatively compact in C(K ) for every compact subset K ⊂ 	.
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Proof We only have to prove the equicontinuity of the set M := {ϕs : s ∈ (0, 1
4 ]}

in every point x0 ∈ 	. Once this is shown, it follows from Theorem 3.1 and the
Arzela-Ascoli Theorem that, for every compact subset K ⊂ 	, the set M is relatively
compact when regarded as a subset of C(K ).

Arguing by contradiction, we now assume that there exists a point x0 ∈ 	 such
that M is not equicontinuous at x0, which means that

lim
t→0+ sup

s∈(0, 14 ]
osc
Bt (x0)

ϕs = ε > 0. (4.19)

Here, we note that this limit exists since the function

(0,∞) → [0,∞), t �→ sup
s∈(0, 14 ]

osc
Bt (x0)

ϕs

is nondecreasing. Without loss of generality, to simplify the notation, we may assume
that x0 = 0 ∈ 	. We first choose δ > 0 sufficiently small so that

ε − δ

2N+2 − 2 · 3N δ > 0 (4.20)

The relevance of this condition will become clear later. Moreover, we choose t0 > 0
sufficiently small so that

B3t0 ⊂ 	 (4.21)

and

ε ≤ sup
s∈(0, 14 ]

osc
Bt

ϕs ≤ ε + δ for 0 < t ≤ 2t0. (4.22)

By Lemma 4.4 and (4.21), there exists a constant C1 > 0 with the property that

∣∣∣
∫
Bt0

ϕs(x) − ϕs(x + y)

|y|N+2s dy
∣∣∣ ≤ C1 for all x ∈ Bt0 , s ∈ (0,

1

4
]. (4.23)

Next, we choose a sequence of numbers tn ∈ (0, t0
5 ) with tn → 0+ as n → ∞. By

(4.22), there exists a sequence (sn)n ⊂ (0, 1
4 ] such that

osc
Btn

ϕsn ≥ ε − δ for all n ∈ N, (4.24)

whereas, by Lemma 4.3, we have

osc
Btn

ϕsn ≤ C2(2tn)
3sn for all n ∈ N with a constant C2 > 0.
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Hence,

t snn ≥ 2−sn
( 1

C2
osc
Btn

ϕsn

) 1
3 ≥ 2− 1

4

(ε − δ

C2

) 1
3

for all n ∈ N (4.25)

which implies, in particular, that

sn → 0 as n → ∞. (4.26)

To simplify the notation, we now set ϕn := ϕsn . By (4.24), we may write

ϕn(Btn ) = [dn − rn, dn + rn] for n ∈ N with some dn ∈ R und rn ≥ ε − δ

2
.

(4.27)

Together with (4.22) and the fact that Btn ⊂ B2t0 , we deduce that

ϕn(B2t0) ⊂ [dn − ε + 3δ

2
, dn + ε + 3δ

2
]. (4.28)

Indeed,

sup
B2t0

ϕn ≤ inf
Btn

+ osc
B2t0

ϕn ≤ dn − rn + ε + δ ≤ dn + ε + 3δ

2

and, similarly, inf
B2t0

ϕn ≥ dn − ε+3δ
2 . Next, we let

cn :=
∫
Bt0\B3tn

|y|−N−2sn dy = ωN−1
(3tn)−2sn − t−2sn

0

2sn
for n ∈ N,

and we note that

cn → ∞ as n → ∞ (4.29)

since cn ≥ ωN−1
(
log t0 − log(3tn)

)
for n ∈ N and tn → 0 for n → ∞. We also put

An+ := {y ∈ Bt0 \ B3tn : ϕn(y) ≥ dn} and An− := {y ∈ Bt0 \ B3tn : ϕn(y) ≤ dn}.

Since

cn ≤
∫
An+

|y|−N−2sn dy +
∫
An−

|y|−N−2sn dy for all n ∈ N,
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we may pass to a subsequence such that

∫
An+

|y|−N−2sn dy ≥ cn
2

for all n ∈ N or

∫
An−

|y|−N−2sn dy ≥ cn
2

for all n ∈ N.

Without loss of generality, we may assume that the second case holds (otherwise
we may replace ϕn by −ϕn and dn by −dn). We then define the Lipschitz function
ψn ∈ Cc(R

N ) by

ψn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2δ, |x | ≤ tn
0, |x | ≥ 2tn
2δ

tn
(2tn − |x |), tn ≤ |x | ≤ 2tn .

We also let τn := ϕn + ψn for all n ∈ N. By (4.28), we have

τn = ϕn ≤ dn + ε + 3δ

2
≤ dn + rn + 2δ in B2t0 \ B2tn .

Moreover, since dn + rn ∈ ϕn(Btn ) by (4.27), we have

dn + rn + 2δ ∈ τn(Btn ) ⊂ τn(B2tn ).

Consequently, max
B2t0

τn is attained at a point xn ∈ B2tn with

τn(xn) ≥ dn + rn + 2δ

which implies that

ϕn(xn) ≥ dn + rn ≥ dn + ε − δ

2
. (4.30)

By (4.23) and since B3tn ⊂ Bt0(xn) for n ∈ N by construction, we have that

C1 ≥
∫
Bt0

ϕn(xn) − ϕn(xn + y)

|y|N+2sn
dy =

∫
Bt0 (xn)

ϕn(xn) − ϕn(y)

|xn − y|N+2sn
dy

=
∫
B3tn

ϕn(xn) − ϕn(y)

|xn − y|N+2sn
dy +

∫
Bt0 (xn)\B3tn

ϕn(xn) − ϕn(y)

|xn − y|N+2sn
dy. (4.31)

To estimate the first integral, we note that, by definition of the function ψn ,

|ψn(x) − ψn(y)| ≤ 2δ

tn
|x − y| for all x, z ∈ R

N .
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Moreover, by the choice of xn we have τn(xn) ≥ τn(y) for all y ∈ B3tn . Consequently,

∫
B3tn

ϕn(xn) − ϕn(y)

|xn − y|N+2sn
dy =

∫
B3tn

τn(xn) − τn(y)

|xn − y|N+2sn
dy −

∫
B3tn

ψn(xn) − ψn(y)

|xn − y|N+2sn
dy

≥ −
∫
B3tn

ψ(xn) − ψ(y)

|xn − y|N+2sn
dy ≥ −2δ

tn

∫
B3tn

|xn − y|1−N−2sn dy

≥ −2δ

tn

∫
B3tn

|y|1−N−2sn dy

= −31−2snωN−12δt
−2sn
n

1 − 2sn
≥ −12ωN−1δt

−2sn
n ≥ −C3 (4.32)

with a constant C3 > 0 independent of n. Here we used (4.5) and (4.25).
To estimate the second integral in (4.31) we first note, since xn ∈ B2tn , we have

that

2|y| ≥ |y − xn| ≥ |y|
3

for every n ∈ N and y ∈ R
N \ B3tn .

Moreover, by (4.22), (4.28), and (4.30) we have

ε + δ ≥ ϕn(xn) − ϕn(y) ≥ dn + ε − δ

2
− ϕn(y) ≥ −2δ for y ∈ Bt0(xn) ⊂ B2t0 .

Consequently, combining (4.31) and (4.32), using again (4.30), we may estimate as
follows:

C1 + C3 ≥
∫
Bt0 (xn)\B3tn

ϕn(xn) − ϕn(y)

|y − xn |N+2sn
dy

≥
∫
Bt0 (xn)\B3tn

[ϕn(xn) − ϕn]+(y)

|y − xn |N+2sn
dy − 2δ

∫
Bt0 (xn)\B3tn

|y − xn |−N−2sn dy

≥ 1

2N+2sn

∫
Bt0 (xn)\B3tn

[ϕn(xn) − ϕn]+(y)

|y|N+2sn
dy

− 2 · 3N+2sn δ

∫
Bt0 (xn)\B3tn

|y|−N−2sn dy

≥ 1

2N+2sn

(∫
Bt0 \B3tn

[ϕn(xn) − ϕn]+(y)

|y|N+2sn
dy

−
∫
Bt0 \Bt0 (xn)

[ϕn(xn) − ϕn]+(y)

|y|N+2sn
dy

)

− 2 · 3N+2sn δ
(∫

Bt0 \B3tn
|y|−N−2sn dy +

∫
Bt0 (xn)\Bt0

|y|−N−2sn dy
)

≥ 1

2N+2sn

(
rn

∫
A−
n

|y|−N−2sn dy − (ε + δ)

∫
Bt0 \Bt0 (xn)

|y|−N−2sn dy
)

− 2 · 3N+2sn δ
(
cn +

∫
Bt0 (xn)\Bt0

|y|−N−2sn dy
)
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≥
( rn
2 · 2N+2sn

− 2 · 3N+2sn δ
)
cn

− (ε + δ)

2N+2sn

∫
Bt0 \Bt0−2tn

|y|−N−2sn dy − 2 · 3N+2sn δ

∫
Bt0+2tn \Bt0

|y|−N−2sn dy

≥
( ε − δ

2N+2+2sn
− 2 · 3N+2sn δ

)
cn − o(1) =

( ε − δ

2N+2 − 2 · 3N δ + o(1)
)
cn − o(1)

as n → ∞,

where we used (4.27). By our choice of δ > 0 satisfying (4.20), we arrive at a
contradiction to (4.29). The proof is thus finished. ��

5 Uniform Boundary Decay

Throughout this section, we assume that	 is a bounded Lipschitz domain satisfying a
uniform exterior sphere condition. By definition, this means that there exists a radius
R0 > 0 such that for every point x∗ ∈ ∂	 there exists a ball Bx∗ of radius R0 contained
in R

N \ 	 and with Bx∗ ∩ 	 = {x∗}.

We first note the following boundary decay estimate.

Lemma 5.1 There is a constant C = C(N ,	, k) > 0 such that

|ϕs(x)| ≤ Cδs	(x) for x ∈ R
N , s ∈ (0,

1

4
]. (5.1)

Proof We note that ϕs is a weak solution of

(−�)sϕs = fs in 	, ϕs ≡ 0 in 	c,

where the functions fs := λsϕs , s ∈ (0, 1
4 ] are uniformly bounded in L∞(	) by The-

orem 3.1. Therefore, the decay estimate in (5.1) essentially follows from [29, Lemma
2.7], although it is not stated there that the constant C can be chosen independently of
s. For an alternative proof of the latter fact, see [20, Appendix]. We stress here that the
use of radial barrier functions as in [29] and [20, Appendix] only requires a uniform
exterior sphere condition and no further regularity assumptions on 	. ��

For δ > 0, we now consider the one-sided neighborhood of the boundary

	δ := {x ∈ 	 : δ	(x) < δ}

The main result of the present section is the following.

Theorem 5.2 We have

lim
δ→0+ sup

s∈(0, 14 ]
‖ϕs‖L∞(	δ) = 0.
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In other words, for every ε > 0, there exists δε > 0 with the property that

|ϕs(x)| ≤ ε for all s ∈ (0,
1

4
], x ∈ 	δε .

The remainder of this section is devoted to the proof of this theorem.We need some
preliminaries. In the following, for s ≥ 0, we let L1

s (R
N ) denotes the space of locally

integrable functions u : R
N → R such that

‖u‖L1
s

:=
∫

R
N

|u(x)|
(1 + |x |)N+2s dx < +∞.

We note that L1
s (R

N ) ⊂ L1
t (R

N ) for 0 ≤ s < t . Next, we need the following
generalization of [9, Theorem 1.1].

Lemma 5.3 Let A ⊂ R
N be a compact set, let U ⊂ R

N be an open neighborhood of
A, and let u ∈ L1

0(R
N ) be a function with u ∈ Cα

loc(U ) for some α > 0. Then

lim
s→0+ sup

x∈A

∣∣∣ (−�)su(x) − u(x)

s
− L�u(x)

∣∣∣ = 0.

Proof In the following, we assume α < 1. Moreover, without loss of generality, we
may assume that u ∈ Cα(U ), otherwise we replace U by a compact neighborhood
U ′ ⊂ U of A. Next, since A is compact, we may fix r ∈ (0, 1) such that for all x ∈ A
we have dist(x, R

N \ U ) > r . For x ∈ A we split the expression of the logarithmic
Laplacian as

L�u(x) =CN

∫
Br

u(x) − u(x + y)

|y|N dy − CN

∫
R
N \Br

u(x + y)

|y|N dy

+ u(x)
( ∫

B1\Br
CN

|y|N dy + ρN

)
.

With Dr ,N (s) := CN ,sωN−1
2s r−2s and since CNωN−1 = 2, this splitting gives rise to

the inequality

sup
x∈A

∣∣∣ (−�)s − 1

s
u(x) − L�u(x)

∣∣∣ ≤ sup
x∈A

∫
Br

|u(x) − u(x + y)|
|y|N

∣∣∣CN ,s

s
|y|−2s − CN

∣∣∣ dy

+ sup
x∈A

∫
R
N \Br

|u(x + y)|
|y|N

∣∣∣CN ,s

s
|y|−2s − CN

∣∣∣ dy

+ ‖u‖L∞(A)

∣∣∣Dr ,N (s) − 1

s
− ρN + 2 log r

∣∣∣
≤ ‖u‖Cα(U ) I1(s) + sup

x∈A
I2(s, x) + ‖u‖L∞(A) I3(s), (5.2)

where

I1(s) =
∫
Br

|y|α−N
∣∣∣CN ,s

s
|y|−2s − CN

∣∣∣ dy, I2(s, x)
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=
∫

R
N \Br

|u(x + y)|
|y|N

∣∣∣CN ,s

s
|y|−2s − CN

∣∣∣, and

I3(s) =
∣∣∣Dr ,N (s) − 1

s
− ρN + 2 log r

∣∣∣.

By Lemma 2.1, we have lim
s→0+

Dr ,N (s)−1
s = ρN − 2 log r and therefore

lim
s→0+ I3(s) = lim

s→0+

∣∣∣Dr ,N (s) − 1

s
− ρN + 2 log r

∣∣∣ = 0. (5.3)

Moreover, by (2.5), we have the inequality

∣∣∣CN ,s

s
|y|−2s − CN

∣∣∣ ≤
∣∣∣CN ,s

s
− CN

∣∣∣|y|−2s + CN

∣∣∣|y|−2s − 1
∣∣∣

≤ CN

(
s DN |y|−2s +

∣∣∣|y|−2s − 1
∣∣∣
)
. (5.4)

for y ∈ R
N \ {0}. Using that ∣∣|y|−2s − 1

∣∣ ≤ 4s
α

(|y|−2s− α
2 +|y| α

2
)
by [20, Lemma 2.1]

it follows that

∣∣∣CN ,s

s
|y|−2s − CN

∣∣∣
≤ s CN

(
DN |y|−2s + 4

α

(|y|−2s− α
2 + |y| α

2
))

for y ∈ R
N \ {0}. (5.5)

In particular,

∣∣∣CN ,s

s
|y|−2s − CN

∣∣∣ ≤ s CN

(
DN + 8

α

)
|y|−2s− α

2 for 0 < |y| ≤ r (5.6)

and

∣∣∣CN ,s

s
|y|−2s − CN

∣∣∣ ≤ s CNr
−2s+α

(
DN + 8

α

)|y| α
2 for |y| > r . (5.7)

Therefore, (5.6) gives

lim
s→0+ I1(s) ≤ lim

s→0+ sCN

(
DN + 8

α

) ∫
Br

|y| α
2 −N−2sdy

= lim
s→0+ 2s

(
DN + 8

α

) r
α
2 −2s

α
2 − 2s

= 0 (5.8)

It remains to consider I2(s, x) for x ∈ A. For this, let ε > 0 and note that there is
R0 > 0 such that for any R ≥ R0 we have

∫
R
N \BR

|u(y)|
|y|N dy ≤ ε

CN2N
. (5.9)
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Indeed, this is possible since u ∈ L1
0 and thus lim

R→0

∫
R
N \BR

|u(y)|
|y|N dy = 0. In the

following, we fix R > max{2, R0} such that B R
2
(A) ⊂ BR . Note that by this choice

we have in particular sup
z∈A

|z| ≤ R
2 . Using (5.7) we then split for x ∈ A (∗)

I2(s, x) =
∫

R
N \Br (x)

|u(y)|
|x − y|N

∣∣∣CN ,s

s
|x − y|−2s − CN

∣∣∣ dy

≤sCNr
−2s−α(DN + 8

α
)

∫
BR\Br (x)

|u(y)|
|x − y|N− α

2
dy

+ CN

∫
R
N \BR

|u(y)|
|x − y|N

∣∣∣CN ,s

sCN
|x − y|−2s − 1

∣∣∣ dy. (5.10)

To estimate the first integral in this decomposition, we use the fact that |x − y| ≥ r ≥
r

R+1 (1 + |y|) for y ∈ BR \ Br (x) and therefore

∫
BR\Br

|u(y)|
|x − y|N− α

2
dy ≤

( r

R + 1

) α
2 −N

∫
BR\Br (x)

|u(y)|(1 + |y|) α
2 −Ndy

≤
( r

R + 1

) α
2 −N

(1 + R)
α
2 ‖u‖L1

0
≤ (1 + R)Nr

α
2 −N‖u‖L1

0
.

(5.11)

For the second integral in this decomposition, we note that, since |x−y| ≥ max{1, |y|
2 }

for y ∈ R
N \ BR , we have for y ∈ R

N \ BR by (2.4)

∣∣∣CN ,s

sCN
|x − y|−2s − 1

∣∣∣ ≤ 1 − 4s |y|−2s(1 + sρN + o(s)) ≤ 1 + O(s)

for s → 0+ (uniform in x and y).

Combining this with (5.11) in (5.10) we find

lim
s→0+ sup

x∈A
I2(s, x) ≤ CN sup

x∈A

∫
R
N \BR

|u(y)|
|x − y|N dy ≤ CN2

N
∫

R
N \BR

|u(y)|
|y|N dy ≤ ε.

(5.12)

Combining (5.3), (5.8), and (5.12), we get from (5.2)

lim
s→0+ sup

x∈A

∣∣∣ (−�)su(x) − u(x)

s
− L�u(x)

∣∣∣ ≤ ε.

Here, ε > 0 is chosen arbitrary and this completes the proof of the lemma. ��
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Next we state a uniform small volume maximum principle. For this we define, for
s ∈ (0, 1) and any open set U ⊂ R

N , the function space

Vs(U ) := {u ∈ L2
loc(R

N ) :
∫
U

∫
R
N

(u(x) − u(y))2

|x − y|N+2s dxdy < ∞}

It is easy to see that the quadratic form

Es(u, v) = CN ,s

∫
R
N

∫
R
N

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy

is well-defined in Lebesgue sense for u ∈ Vs(U ), v ∈ Hs
0(U ), see e.g. [18] and the

references therein. If functions u ∈ Vs(U ) and g ∈ L2(U ) are given, we say that
(−�)su ≥ g in U weak sense if

Es(u, v) −
∫
U
gv dx ≥ 0 for all v ∈ Hs

0(U ), v ≥ 0.

Remark 5.4 Let U ⊂ R
N be an open bounded set. Moreover, let g ∈ L2(U ), and

let u ∈ L1
s (R

N ) ∩ L2
loc(R

N ) be a function satisfying u ∈ Cα(K ) for a compact
neighborhood K of U and, for some s ∈ (0, α

2 ),

(−�)su ≥ g in U in pointwise sense.

Then u ∈ Vs(U ), and u satisfies (−�)su ≥ g also in weak sense. This follows since,
under the stated assumptions, we have

∫
U

[(−�)su]v dx = Es(u, v) for all v ∈ Hs
0(U ).

The latter property follows easily by Fubini’s theorem.

Our uniform small volume weak maximum principle now reads as follows.

Proposition 5.5 There exists μ0 = μ0(N ) > 0 with the property that the operators

(−�)s − id, s ∈ (0, 1)

satisfy the following weak maximum principle on every open set U ⊂ R
N with |U | ≤

μ0:

For every s ∈ (0, 1) and every function u ∈ Vs(U ) satisfying

(−�)su ≥ u in U , u ≥ 0 in R
N \U

we have u ≥ 0 on R
N .
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Proof By [18, Prop. 2.3], it suffices to find μ0 > 0 with the property that

λ1,s(U ) > 1 for every open set U ⊂ R
N with |U | ≤ μ0 and every s ∈ (0, 1),

(5.13)

where λ1,s(U ) denotes the first Dirichlet eigenvalue of (−�)s on U .

Let r0 = r0(N ) := 2e
1
2 (ψ( N

2 )−γ ). It then follows from [9, Sect. 4] that λ1,L(Br0) >

0, where λ1,L(Br0) denotes the first Dirichlet eigenvalue of L� on Br0 := Br0(0).
Since

λ1,s(Br0) − 1

s
→ λ1,L(Br0) as s → 0+,

there exists s0 ∈ (0, 1) with the property that

λ1,s(Br0) > 1 for s ∈ (0, s0).

By the scaling properties of the fractional Laplacian, this also implies that

λ1,s(Br ) =
(r0
r

)2s
λ1,s(Br0) ≥ λ1,s(Br0) > 1 for s ∈ (0, s0), r ∈ (0, r0].

(5.14)

To obtain a similar estimate for s ∈ [s0, 1), we use a lower eigenvalue bound given by
Bañuelos and Kulczycki. In [3, Corollary 2.2], they proved that

λ1,s(B1) ≥ 22s
�(1 + s)�( N2 + s)

�( N2 )
for s ∈ (0, 1).

From this we deduce that

λ1,s(Br ) ≥
(2
r

)2s �(1 + s)�( N2 + s)

�( N2 )
≥

(2
r

)2s0 �min

�( N2 )
> 1

for s ∈ [s0, 1) and 0 < r ≤ r1, (5.15)

where r1 := 2
(

�min

�( N
2 )

) 1
2s0 and �min > 0 denotes the minimum of the Gamma function

on (0,∞). Setting r∗ := min{r0, r1}, we thus find, by combining (5.14) and (5.15),
that

λ1,s(Br ) > 1 for s ∈ (0, 1), r ∈ (0, r∗]. (5.16)

Next, let μ0 := |Br∗ |, and let U ⊂ R
N be a nonempty open set with |U | ≤ μ0.

Moreover, let r ∈ (0, r∗] with |Br | = |U |. Combining (5.16) and the Faber–Krahn
type principle given in [2, Theorem 5], we deduce that
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λ1,s(U ) ≥ λ1,s(Br ) > 1 for s ∈ (0, 1),

as required. ��
Werecall a result from [9] regarding a radial barrier type function for the logarithmic

Laplacian, see [9, Lemma 5.3, Case τ = 1
4 ].

Lemma 5.6 Let R ∈ (0, 1
2 ). Then there exists δ0 = δ0(R) > 0 and a continuous

function V ∈ L1
0(R

N ) with the following properties:

(i) V ≡ 0 in BR and V > 0 in R
N \ BR;

(ii) V ∈ C1
loc(R

N \ BR);
(iii) L�V (x) → ∞ as |x | → R, |x | > R.

In fact, in [9, Lemma 5.3] it was only stated that V is locally uniformly Dini
continuous on R

N \ BR since this was sufficent for the considerations in this paper.
However, the construction in the proof of this lemma immediately yields that V ∈
C1
loc(R

N \ BR).

Proof of Theorem 5.2 (completed)We need some more notation. For R > 0 and R1 >

R, we consider the open annulus

AR,R1 := {x ∈ R
N : R < |x | < R1} ⊂ R

N

and its translations

AR,R1(y) := {x ∈ R
N : R < |x − y| < R1}, y ∈ R

N .

In the following, we let ∂ i	 ⊂ ∂	 denote the subset of boundary points x∗ ∈ ∂	 for
which there exists an (inner) open ball Bx∗ ⊂ 	 with x∗ ∈ ∂Bx∗ .

Since 	 satisfies a uniform exterior sphere condition, there exists a radius 0 <

R0 < 1
2 such that for every point x∗ ∈ ∂ i	 there exists a (unique) ball Bx∗ of radius

R0 contained in R
N \	 and tangent to ∂Bx∗ at x∗. Let c(x∗) denote the center of Bx∗ .

Applying Lemma 5.6 with the value R := R0
2 now yields a function V ∈ L1

0(R
N )

such that the properties (i–iii) of Lemma 5.6 are satisfied.
Wenowchoose δ0 ∈ (0, R) sufficiently small such that (*)

|AR,R+δ0 | < μ0,

where μ0 > 0 is given by Proposition 5.5.
Next we consider the finite values

m1 := sup
s∈(0, 14 ]

‖ϕs‖L∞(	) and m2 := sup
s∈(0, 14 ]

∥∥∥λs − 1

s
ϕs

∥∥∥
L∞(	)
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By Lemma 5.6(iii), we can make δ0 > 0 smaller if necessary to guarantee that

L�V (x) ≥ 2m2 in AR,R+δ0 . (5.17)

Next, for x∗ ∈ ∂ i	 and t ∈ [0, R], we consider the point

z(t, x∗) := x∗ + (t + R)
c(x∗) − x∗
|c(x∗) − x∗| in R

N \ 	.

which lies on the extension of the line segment spanned by the points x∗ and c(x∗)
beyond c(x∗). By construction, BR(z(t, x∗)) ∩ 	 = ∅ for t ∈ (0, R], while, for
t ∈ (0, δ0), the intersection (*)

	t,x∗ := 	 ∩ AR,R+δ0(z(t, x∗)) = 	 ∩ AR+t,R+δ0(z(t, x∗))

is nonempty. Since 	 is bounded, there exists R1 > R such that

	 ⊂ AR,R1(z(t, x∗)) for all x∗ ∈ ∂ i	, t ∈ (0, δ0),

which implies that

	 \ 	t,x∗ ⊂ AR+δ0,R1(z(t, x∗)) for all x∗ ∈ ∂ i	, t ∈ (0, δ0). (5.18)

Next, we define the translated functions

Vt,x∗ ∈ L1
0(R

N ), Vt,x∗(x) = V (x − z(t, x∗)), x∗ ∈ ∂	, t ∈ [0, R].

Since V is positive on the compact set AR+δ0,R1 by Lemma 5.6(i), we may choose
c > 1 sufficiently large such that V ≥ m1

c in AR+δ0,R1 and thus, by (5.18), also

Vt,x∗ ≥ m1

c
in 	 \ 	t,x∗ for all x∗ ∈ ∂ i	, t ∈ (0, δ0). (5.19)

To finish the proof of the theorem, we now let ε > 0 be given. Since V is continous
and V ≡ 0 on BR by Lemma 5.6(i), we may fix δ ∈ (0, δ0

2 ) such that

0 ≤ V ≤ ε

c
in BR+2δ. (5.20)

Since AR+δ,R+δ0 ⊂⊂ R
N \ BR , we find, as a consequence of Lemmas 5.3 and 5.6,

that

(−�)sV − V

s
→ L�V uniformly on AR+δ,R+δ0 as s → 0+.
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Hence, by (5.17), we may fix s1 ∈ (0, 1
4 ] with the property that

(−�)sV − V

s
≥ m2 ≥ m2

c
on AR+δ,R+δ0 for s ∈ (0, s1). (5.21)

We now claim that

|ϕs(x)| ≤ ε for s ∈ (0, s1), x ∈ 	δ. (5.22)

To show (5.22), we let x ∈ 	δ , and we let x∗ ∈ ∂	 with δ	(x) = |x − x∗|. By
definition, we then have x∗ ∈ ∂ i	. Moreover, by construction we have

x ∈ 	 ∩ AR+δ,R+2δ(z(δ, x∗)) ⊂ BR+2δ(z(δ, x∗)). (5.23)

We now define W := cVδ,x∗ ∈ L1
0(R

N ). By (5.21), we then have that

(−�)sW ≥ W + sm2 in AR+δ,R+δ0(z(δ, x
∗)) for s ∈ (0, s1). (5.24)

Consequently, in weak sense,

(−�)s
(
W ± ϕs

) = (−�)sW ± λsϕs ≥ (
W ± ϕs

) + s
(
m2 ± λs − 1

s
ϕs

)
≥ W ± ϕs in 	δ,x∗ = 	 ∩ AR+δ,R+δ0(z(δ, x

∗)) (5.25)

by the definition ofm2. Moreover, it follows from (5.19) and the definition ofm1 that

W ± ϕs ≥ 0 in R
N \ 	δ,x∗ for s ∈ (0, s1). (5.26)

Using Propositions 5.5, (5.25), and (5.26) together with the fact that |	δ,x∗ | ≤
|AR,R+δ0 | ≤ μ0, we deduce that

W ± ϕs ≥ 0 in R
N ,

and thus, in particular,

|ϕs | ≤ W ≤ ε in BR+2δ(z(δ, x∗)) for s ∈ (0, s1)

by (5.20). Consequently, |ϕs(x)| ≤ ε for s ∈ (0, s1) by (5.23), and this yields (5.22).
Making δ > 0 smaller if necessary, we may, by Lemma 5.1, also assume that

|ϕs(x)| ≤ ε for s ∈ [s1, 1
4
], x ∈ 	δ. (5.27)

Combining (5.22) and (5.27), we conclude that

|ϕs(x)| ≤ ε for s ∈ (0,
1

4
], x ∈ 	δ.
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The proof of Theorem 5.2 is thus finished. ��

6 Completion of the Proofs

In this section, we complete the proofs of Theorem 1.1, Corollarys 1.3 and 1.4.
We start with the

Proof of Theorem 1.1 Part (i) is proved in Theorem 2.10. Part (iii) is proved in Theo-
rem 4.5. Moreover, the first claim in Part (ii), the boundedness of the set M := {ϕk,s :
s ∈ (0, 1

4 ]} in L∞(	), has been proved in Theorem 3.1. Combining this fact with the
relative compactness of the setM inC(K ) for every compact subset K ⊂ 	, it follows
from Theorem 5.2 together with the Kolmogorov–Riesz compactness theorem that M
is relatively compact in L p(	) for every p ∈ [1,∞), this completes the claim in Part
(ii).

To prove Part (iv) of Theorem 1.1, we first observe that, since	 satisfies an exterior
sphere condition by assumption, it follows from Lemma 5.1 that ϕk,s ∈ C0(	) for
any k ∈ N and s ∈ (0, 1

4 ]. Furthermore, M is equicontinuous in all points in 	 by
Theorem 4.5 and in all points in ∂	 by Theorem 5.2. Since moreover M is uniformly
bounded with respect to ‖ · ‖L∞(	) by Part (ii), the Arzelà-Ascoli Theorem implies
that M is relatively compact in C0(	).

To prove Part (v), let (sn)n ⊂ (0, 1
4 ] be a sequence of numbers with sn → 0+. By

Theorem 2.10, we may pass to a subsequence with the property that

ϕk,sn → ϕk,L in L2(	) as n → ∞. (6.1)

Due to the relative compactness of the set M in L p(	) already proved in Part (ii),
we also have L p-convergence in (6.1) for 1 ≤ p < ∞, and the locally uniform
convergence follows from Part (iii). Moreover, in the case where	 satisfies an exterior
sphere condition, the convergence in C0(	) follows from the relative compactness in
the space C0(	) stated in Part (iv). ��

Next we complete the

Proof of Corollary 1.3 For the particular case 1 ≤ p ≤ 2, the convergent in (1.19)
follows directly from [9, Theorem 1.5] combinedwith the Hölder inequality. But using
the relative compactness of the set M in L p(	) proved in Part (ii) of Theorem 1.1 and
the uniqueness of ϕ1,s , the L p-convergence in (1.19) for 1 ≤ p < ∞ and the locally
uniform convergence in 	 also follows by Part (iv) of Theorem 1.1. The additional
assertion follows from the additional assertion in Theorem 1.1(v). ��
Proof of Corollary 1.4 Let (sn)n ⊂ (0, 1

4 ] be a sequence of numbers with sn → 0+.
Moreover, for every n ∈ N, let ϕk,sn , k ∈ N denote L2-orthonormal Dirichlet
eigenfunctions of (−�)sn on 	 corresponding to the eigenvalues λk,sn . Passing to
a subsequence, we may assume, by Theorem 1.1, that

λk,sn − 1

sn
→ λk,L and ϕk,sn → ϕk,L in L2(	) (6.2)
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as n → ∞, where, for every k ∈ N, ϕk,L is a Dirichlet eigenfunction of L� on 	

corresponding to the eigenvalue λk,L . Parts (iii) and (v) of Theorem 1.1 then imply
that

ϕk,L ∈ L∞(	) ∩ Cloc(	) for every k ∈ N.

Moreover, it follows that ϕk,L ∈ C0(	) in the case where	 satisfies an exterior sphere
condition.

Finally, the L2-convergence in (6.2) implies that the sequence of functions ϕk,L ,
k ∈ N is L2-orthonormal. It then follows that every Dirichlet eigenfunction of L� on
	 can be written as a finite linear combination of the functions ϕk,L , and therefore it
has the same regularity properties as the functions ϕk,L , k ∈ N. ��
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Appendix A. On Equivalent Hölder Estimates

Here we recall that by the notion of Hölder–Zygmund spaces we have for τ ∈ (0, 1)
and r > 0 that v ∈ Cτ (RN ) ∩ L∞(RN ) if and only if

‖v‖L∞(RN ) + sup
x,h∈R

N

h �=0

|2v(x + h) − v(x + 2h) − v(x)|
|h|τ =: vτ < ∞. (A.1)

Indeed, if v ∈ Cτ (Br (0)) ∩ L∞(RN ), then clearly (A.1) holds. To see the reverse
implication, first note that we have ‖v‖L∞(RN ) ≤ vτ < ∞ by (A.1). Next, let x ∈ R

N

and we claim that there is C2 independent of x such that

sup
y∈R

N

h �=0

|v(x + h) − v(x)|
|h|τ ≤ C2.

http://creativecommons.org/licenses/by/4.0/
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Since v(x + h) − v(x) = (v − c)(x + h) − (v − c)(x) for all constants c ∈ R, we
may assume v(x) = 0. Next, let h ∈ R

N , then

|2v(x + 2kh) − v(x + 2k+1h)| = |2v(x + 2kh) − v(x + 2k+1h) − v(x)| ≤ vτ2
kτ |h|τ

for k ∈ N0.

But then, for n ∈ N and since τ < 1,

|2nv(x + h) − v(x + 2nh)| ≤
n−1∑
k=0

2n−1−k |2v(x + 2kh) − v(x + 2k+1h)|

≤ C |h|τ
n−1∑
k=0

2n−1−k+kτ ≤ vτ2
n|h|τ

∞∑
k=0

2−(1−τ)k

= vτ2n

1 − 2τ−1 |h|τ .

Hence, for all n ∈ N,

|v(x + h) − v(x)| = |v(x + h)| ≤ 2−n|2nv(x + h) − v(x + 2nh)|
+ 2−n|v(x + 2nh)|

≤ vτ

1 − 2τ−1 |h|τ + 2−nvτ

and, for n → ∞, we have |v(x + h) − v(x)| ≤ vτ

1−2τ−1 |h|τ so that v ∈ Cτ (RN ) ∩
L∞(RN ).
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