
JOHANN WOLFGANG GOETHE UNIVERSITY OF

FRANKFURT

MASTER THESIS

Single-task and multi-task transfer
learning in a multi-source context

Author:
Daniel PIETSCHMANN &
Yannic VORPAHL

Supervisor:
Prof. Dr. Gemma ROIG

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Chair for Data Analytics and Modeling
Computer Science Department

December 21, 2021

https://www.goethe-university-frankfurt.de/
https://www.goethe-university-frankfurt.de/
http://www.cvai.cs.uni-frankfurt.de/team.html
http://www.cvai.cs.uni-frankfurt.de/index.html
https://www.goethe-university-frankfurt.de/106076806/Startpage_Informatics

iii

JOHANN WOLFGANG GOETHE UNIVERSITY OF FRANKFURT

Abstract
Faculty of Computer Science and Mathematics

Computer Science Department

Master of Science

Single-task and multi-task transfer learning in a multi-source context

by Daniel PIETSCHMANN & Yannic VORPAHL

When performing transfer learning in Computer Vision, normally a pretrained model
(source model) that is trained on a specific task and a large dataset like ImageNet is
used. The learned representation of that source model is then used to perform a
transfer to a target task. Performing transfer learning in this way had a great im-
pact on Computer Vision, because it worked seamlessly, especially on tasks that are
related to each other. Current research topics have investigated the relationship be-
tween different tasks and their impact on transfer learning by developing similarity
methods. These similarity methods have in common, to do transfer learning with-
out actually doing transfer learning in the first place but rather by predicting transfer
learning rankings so that the best possible source model can be selected from a range
of different source models. However, these methods have focused only on single-
source transfers and have not paid attention to multi-source transfers. Multi-source
transfers promise even better results than single-source transfers as they combine
information from multiple source tasks, all of which are useful to the target task. We
fill this gap and propose a many-to-one task similarity method called MOTS that
predicts both, single-source transfers and multi-source transfers to a specific target
task. We do that by using linear regression and the source representations of the
source models to predict the target representation. We show that we achieve at least
results on par with related state-of-the-art methods when only focusing on single-
source transfers using the Pascal VOC and Taskonomy benchmark. We show that
we even outperform all of them when using single and multi-source transfers to-
gether (0.9 vs. 0.8) on the Taskonomy benchmark. We additionally investigate the
performance of MOTS in conjunction with a multi-task learning architecture. The
task-decoder heads of a multi-task learning architecture are used in different varia-
tions to do multi-source transfers since it promises efficiency over multiple single-
task architectures and incurs less computational cost. Results show that our pro-
posed method accurately predicts transfer learning rankings on the NYUD dataset
and even shows the best transfer learning results always being achieved when us-
ing more than one source task. Additionally, it is further examined that even just
using one task-decoder head from the multi-task learning architecture promises bet-
ter transfer learning results, than using a single-task architecture for the same task,
which is due to the shared information from different tasks in the multi-task learning
architecture in previous layers. Since the MOTS rankings for selecting the MTI-Net
task-decoder head with the highest transfer learning performance were very accu-
rate for the NYUD but not satisfying for the Pascal VOC dataset, further experiments
need to varify the generalizability of MOTS rankings for the selection of the optimal
task-decoder head from a multi-task architecture.

HTTPS://WWW.GOETHE-UNIVERSITY-FRANKFURT.DE/
https://www.goethe-university-frankfurt.de/58074304/Faculty-of-Computer-Science-and-Mathematics
https://www.goethe-university-frankfurt.de/106076806/Startpage_Informatics

v

Acknowledgements
We would like to thank Prof. Dr. Gemma Roig for her support. With her scien-
tific guidance she helped us a lot in our research project and had a great impact on
this work. Our sincere thanks go to Kshitij Dwivedi, who constantly supported us
with feedback, advise and time for discussions on sometimes even a biweekly basis.
Furthermore, we would like to thank the team of Aisel-Infra for providing us with
the g4-server and the g5-server. Without this powerful hardware the experiments in
this thesis would not have been possible. We furthermore would like to thank all
the unnamed people who supported us in the time of writing our thesis – be it with
encouragement, a scientific discussion or an advice about our writing.

vii

Contents

Abstract iii

Acknowledgements v

Acronyms xiv

1 Introduction (Yannic) 1

2 Theoretical background 4
2.1 Computer Vision (Yannic) . 4
2.2 Transfer Learning (Daniel) . 6
2.3 Multi-Task Learning (Yannic) . 9

2.3.1 Cross-Stitch-Network (Daniel) 11
2.3.2 Pattern and Distillation Network (Yannic) 12
2.3.3 Pattern-Affinitive Propagation Network (Daniel) 14
2.3.4 Multi-Scale Task Interaction Network (Yannic) 14

2.4 Task-Relationship Learning (Daniel) . 17
2.5 High-Resolution Network (Yannic) . 19
2.6 Mathematical Formulas (Yannic) . 20

2.6.1 Bayes Factor . 20
2.6.2 R-Squared . 21
2.6.3 Spearman Correlation . 21
2.6.4 Pearson Correlation . 22
2.6.5 Cosine Distance Function . 22

3 Related Literature 23
3.1 Taskonomy - Disentangling Task Transfer Learning (Daniel) 23
3.2 Representation Similarity Analysis for Efficient Task Taxonomy and

Transfer Learning (Yannic) . 25
3.3 Duality Diagram Similarity: A Generic Framework For Initialization

Selection In Task Transfer Learning (Daniel) 27
3.4 Deep Model Transferability From Attribution Maps (Daniel) 29

4 Many-To-One Task Similarity (Daniel) 31

5 Experiments and Results 34
5.1 Datasets (Yannic) . 34

Taskonomy: . 34
Pascal VOC Semantic Segmentation: 34
NYUD: . 35

5.2 Hardware Used for Experiments (Daniel) 36
5.3 MOTS in Comparison with Other State-Of-the-Art Methods 36

5.3.1 Experimental Setup (Yannic) . 36
5.3.2 RDM Configuration (Yannic) . 38

viii

5.3.3 Data Preparation and Pre-processing (Yannic) 39
5.3.4 R2 and Bayes Factor Calculation for Source and Target Task

Combinations (Daniel) . 40
5.3.5 Correlation Calculation Between Many-To-One Task Similar-

ity (MOTS) and Ground Truth (Yannic) 41
5.3.6 Search for Optimal Image Amount for RDMs (Yannic) 41
5.3.7 MOTS Results for Single-Source Transfer Learning Prediction

(Daniel) . 48
5.3.8 MOTS Results for Multi-Source Transfer Learning Prediction

(Daniel) . 50
5.3.9 MOTS Results for Single- and Multi-Source Transfer Learning

Prediction (Daniel) . 51
5.4 MOTS for Multi-Task Architecture . 52

5.4.1 Experimental Setup (Daniel) . 52
5.4.2 Used Architecture (Yannic) . 55
5.4.3 Single-Task Baseline (Yannic) . 56
5.4.4 Training Process (Yannic) . 56
5.4.5 Specifying Auxiliary Tasks for Training (Daniel) 58
5.4.6 Feature Extraction (Daniel) . 59
5.4.7 RDM Creation (Daniel) . 60
5.4.8 Layer Selection (Daniel) . 60
5.4.9 Transfer Nets (Yannic) . 62
5.4.10 Selection of Optimal Transfer Net for Ground-Truth Creation

(Daniel) . 65
5.4.11 Comparison of MOTS Prediction and Ground-Truth Ranking

(Daniel) . 68
5.4.12 Correlation between MTI-Net Layers (Yannic) 71

6 Discussion and Conclusion (Daniel) 74
6.1 MOTS with Single Sources . 74
6.2 MOTS with Multiple Sources . 74
6.3 MOTS with Multiple Tasks . 76
6.4 Limitations . 77
6.5 Ideas for Future Work . 77
6.6 Conclusion . 77

Bibliography 79

ix

List of Figures

1 Different versions of images[13]. 6
2 Traditional approach vs. deep learning [78]. 6
3 Basic CNN architecture [15] . 7
4 An overview of different settings of transfer learning [48]. 8
5 Multi-Task Learning (MTL) approaches in deep neural networks [52]. . 10
6 Encoder- and decoder-focused MTL-models [75]. 11
7 Cross-stitch unit [46]. 12
8 Idea of PAD-Net [17]. 12
9 Pad-Net framework[17]. 13
10 PAD-Net distillation modules [81]. 14
11 PAP-Net architecture [85]. 15
12 Task-interactions at different scales [73]. 16
13 Visualization of MTI-Net architecture. 16
14 Feature propagation M´module. 17
15 Selective sharing architecture [63]. 18
16 Abstract architecture of High resolution network (HRNet). 20
17 High-resolution heads of HRNet with one specific head, that outputs

the result. 20

18 Taskonomy four step process framework [84]. 24
19 Taskonomy example of a hypergraph [84]. 25
20 RSA-method [17]. 26
21 RSA-approaches in [17]. 27
22 duality diagram similarity framework [40]. 29
23 Three-step process of model transferability graph creation using attri-

bution maps [59]. 30

24 MOTS ranking generation. 32
25 Step 1: RDM creation from feature maps. 32
26 Step 2: Fit linear regression. 33
27 Step 3: Extract measure of quality of fit (R2). 33
28 MOTS evaluation by comparing MOTS ranking with ground truth

ranking of real transfer learning performances. 33

29 Estimating task similarity between a target task and multi-task de-
coders. 53

30 Architecture, we used for the experiment. 56
31 The five locations for feature extraction. 60
32 Four different transfer nets that are used as transfer learning layers for

the prediction of one target task based on a combination of different
source-tasks. 63

x

33 Layer correlation on NYUD with layers final, scale 1, scale 2, scale 3
and scale 4 of the MTI-Net with the final layers being at the bottom
left and top right corner . 72

34 Layer correlation on Pascal VOC with layers final, scale 1, scale 2,
scale 3 and scale 4 of the MTI-Net with the final layers being at the
bottom left and top right corner . 72

xi

List of Tables

2 Classical machine-learning algorithm vs. deep-learning architectures. . 6

3 Taskonomy tasks used in our experiment. 38
4 Representation Dissimilarity Matrix (RDM)s, that we use for the pre-

diction of our target RDM and are split into a train and test RDMs.
So, when we use a train RDM with 50 images, we also use a test-RDM
with 50 images. When we use a train RDM with 200 images, then
we use a test RDM with 200 images, and so on. We use this so-called
growing approach for the RDM train-test split procedure in which the
train and test RDMs consists of different images; for the case of train
and test being equal, the train RDM and test RDM use the same images. 39

5 RDMs, that we use for the prediction of our target RDM and are split
into a train and test RDMs. We use a fixed test-set size of 500, whereas
the train RDM increases in terms of the number of images included.
So, when we use a train RDM with 500 images, then we also use a test
RDM with 500 images. When we use a train RDM with 1,000 images,
we still use a test RDM with 500 images, and so on. We use this so-
called fixed approach for the RDM train-test split procedure, in which
train and test-RDMs consists of different images, and the test RDM
always uses the same 500 images. 39

6 Example of what ground truth DataFrame looks like on Taskonomy
with 471 transfers. 40

7 Ground truth on Pascal Visual Object Class (Pascal VOC) with in total
17 transfers. 40

8 Example of the calculated DataFrame. 41
9 Mean correlation between transfer learning performance (TLP) and

MOTS for single-source transfers on 17 Taskonomy tasks and the Taskon-
omy dataset with a RDM-train- and test-set sizes being is equal. 42

10 Mean correlation between TLP and MOTS for single-source transfers
on 17 Taskonomy tasks and the Taskonomy dataset with a fixed test-
set size of 500. 43

11 Target-task-based correlation between TLP and MOTS based on all
source transfers to that target for single-source transfers on 17 Taskon-
omy tasks. 43

12 Mean correlation between TLP and MOTS for 17 Taskonomy tasks
and Pascal VOC semantic segmentation as target task with a RDM-
train and test-set size being is equal. 44

13 Task-based correlation between TLP and MOTS on 17 Taskonomy
tasks and Pascal VOC semantic segmentation as target task with a
fixed test-set size of 500. 44

14 Multi-source transfers of 17 Taskonomy tasks on one target task with
the Taskonomy dataset and with a RDM train- and test-set sizes being
as equal. 45

xii

15 Multi-source transfers to one target task on 17 Taskonomy tasks on
Taskonomy dataset and a test-set size fixed of 500 images. 45

16 Target-task-based correlation between TLP and MOTS based on all
source transfers to that target. 46

17 All-source transfers of 17 Taskonomy tasks on one target task with the
Taskonomy dataset and with a RDM train-test sizes being as equal. . . 47

18 All-source transfers to one target task on 17 Taskonomy tasks on Taskon-
omy dataset and a test-set size fixed at 500 images. 47

19 Target-task-based correlation between TLP and MOTS based on all
source transfers to that target. 48

20 Example of the calculated DataFrame. na stands for "not available"
and means in this case that there is no source2, and therefore the row
is just a single-source transfer. 48

21 Correlation tasks of target task with ground truth using 1,800 Taskon-
omy images. 49

22 Correlation of single-source transfer learning for Pascal VOC seman-
tic segmentation . 49

23 Example of the calculated DataFrame. 50
24 MOTS correlation of multiple sources with RDMs created from 1,800

Taskonomy images with train-test and test set-growing. 51
25 Per task mean and variance Taskonomy TLP score 51
26 Correlations of single sources and multiple sources combined using

1,800 images for RDM creation from Taskonomy dataset with train-
test and test-set growing. 52

27 Used tasks with explanation. 54
28 NYUD task combinations for multi-task experiment. 54
29 Pascal VOC task combinations for multi-task experiment. 55
30 Target tasks and their metrics. The chosen metric is displayed in bold. 55
31 Single-task source-target model configuration training process for NYUD. 57
32 Single-task source-target combination configuration training process

for Pascal VOC (*0.0001 for single-source transfer to ss). 57
33 MTI-Net-configuration for training on datasets NYU-depth (NYUD)

and Pascal VOC. 58
34 Loss weights for Multi-Scale Task Interaction Network (MTI-Net) model

on NYUD. 58
35 Loss weights for MTI-Net model on Pascal VOC. 58
36 Comparison of MTI-Net training results for all auxiliary tasks and

equal auxiliary tasks. The better values are colored in green. The
source-target combinations sn_sl_hp=ss, ss_sn_hp=sl, ss_sn_sl=hp are
given in mean Intersection over Union (mIoU) (higher is better), while
ss_sl_hp=sn is measured by the mean error (lower is better). 59

37 Pixel sizes for the extracted features for small and normal sizes. 60
38 NYUD with source-target combination dp_sn=ss and the usage of

train_test RDMs. 61
39 NYUD with source-target combination dp_ss=sn and the usage of

train_test RDMs. 61
40 NYUD with source-target combination sn_ss=dp and the usage of

train_test RDMs. 61
41 Pascal VOC with source-target combination sn_sl_ss=hp and the us-

age of train_test RDMs. 62

xiii

42 Pascal VOC with source-target combination hp_sn_sl=ss and the us-
age of train_test RDMs. 62

43 Pascal VOC with source-target combination hp_sl_ss=sn and the us-
age of train_test RDMs. 62

44 Pascal VOC with source-target combination hp_sn_ss=sl and the us-
age of train_test RDMs. 62

45 Transfer Net 1 configuration. 64
46 Transfer Net 2 configuration. 64
47 Transfer Net 3 configuration. 64
48 Transfer Net 4 configuration. 64
49 Feature extraction (fe) and finetuning (ft) results for dp_sn=ss with

metric mIoU (highest is best). 66
50 Feature extraction (fe) and finetuning (ft) results for sn_ss=dp with

metric RMSE (lowest is best). 66
51 Feature extraction (fe) and finetuning (ft) results for dp_ss=sn with

metric RMSE (lowest is best). 66
52 Feature extraction (fe) and finetuning (ft) results for hp_sl_ss=sn with

metric RMSE (lowest is best). 67
53 Feature extraction (fe) and finetuning (ft) results for hp_sn_sl=ss with

metric mIoU (highest is best). 67
54 Feature extraction (fe) and finetuning (ft) results for sn_sl_ss=hp with

metric mIoU (highest is best). 67
55 Feature extraction (fe) and finetuning (ft) results for p_sn_ss=sl with

metric mIoU (highest is best). 68
56 Transfer learning ground truth with MOTS prediction for sn_ss=dp

on NYUD. 68
57 Transfer learning ground truth with MOTS prediction for dp_sn=ss

on NYUD. 69
58 Transfer learning ground truth with MOTS prediction for dp_ss=sn

on NYUD. 69
59 Transfer learning ground truth with MOTS prediction for hp_sn_sl=ss

on Pascal VOC. 70
60 Transfer learning ground truth with MOTS prediction for hp_sl_ss=sn

on Pascal VOC. 70
61 Transfer learning ground truth with MOTS prediction for sn_sl_ss=hp

on Pascal VOC. 70
62 Transfer learning ground truth with MOTS prediction for hp_sn_ss=sl

on Pascal VOC. 71

63 Correlation of single-source transfer learning on Taskonomy dataset . 75
64 Correlation of single-source transfer learning for Pascal VOC seman-

tic segmentation . 75
65 Correlation of multi-source transfer learning on Taskonomy dataset . . 76

xiv

Acronyms

R2 R-squared. 2, 21, 41

AHP analytical hierarchy process. 24
ANN artifical neural network. 5, 9

BF Bayes factor. 2, 20, 21, 40, 41, 48, 49
BIP binary integer programming. 25

CNN convolutional neural network. 5, 6, 13
CPU central processing unit. 36
CV Computer Vision. 1–6, 9, 19, 20, 23, 26, 55

DD duality diagram. 28
DDS duality diagram similarity. ix, 3, 27–29, 36,

37, 40, 49, 74–76, 78
DL Deep Learning. 4–6, 36
DNN deep neural network. 28–30
dp depth. 53, 57, 61, 66

fe feature extraction. xiii, 65–69, 71, 76
ft fine tuning. xiii, 65–71

GPU graphics processing unit. 25, 36, 65, 66

hp human parts. 53, 54, 59, 62, 67–69, 76
HRNet High resolution network. ix, 19, 20, 55, 56, 77

IoU Intersection over Union. 54, 55

mIoU mean Intersection over Union. xii, xiii, 54, 55,
59, 66–71

ML machine learning. 5–7, 9
MOTS Many-To-One Task Similarity. viii, ix, xi–xiii,

2, 3, 31–38, 40–53, 55, 60, 68–71, 73–78
MTI-Net Multi-Scale Task Interaction Network. xii, 2,

14, 17, 52, 53, 55–61, 65, 68, 69, 71–73, 76, 77
MTL Multi-Task Learning. ix, 2–4, 6, 8–11, 13, 14,

17, 27, 35, 36, 55, 69, 73, 76, 77

NLP natural language processing. 9
NYUD NYU-depth. xii, 3, 35, 36, 53, 56, 58–61, 65,

68, 69, 76

xv

PAD-Net Pattern and Distillation Network. 13, 17, 77
PAP-Net Pattern-Affinitive Propagation Network. 14,

77
Pascal VOC Pascal Visual Object Class. xi–xiii, 3, 34–37,

40, 42, 44, 49, 53, 55–61, 65, 68–71, 74–76, 78

RAM random-access memory. 65
RDM Representation Dissimilarity Matrix. xi, xii,

26, 32, 33, 37–53, 59, 60, 71, 74–76, 78
ReLU rectified linear unit. 60
ResNet Residual neural network. 77
RGB red-green-blue. 5
RL reinforcement learning. 9
RMSE root mean squared error. xiii, 53–55, 66–70
RSA Representation Similarity Analysis. 3, 19, 25–

27, 29, 75

sl saliency. 53, 54, 57, 59, 62, 67, 71, 76
sn surface normals. 53, 57, 59, 61, 62, 66–69, 71,

76
ss semantic segmentation. 53, 69, 71
ST single-task learning. 2, 10, 11, 17, 55, 56, 73

TL transfer learning. 1–4, 6–9, 19, 23, 26–29, 34,
36, 37, 39, 42, 46, 52, 53, 56, 57, 61, 65, 68, 69,
71, 73, 76–78

TLP transfer learning performance. xi, xii, 1–3, 19,
23, 26–28, 31–34, 37, 39, 40, 42–44, 46, 48, 50,
51, 59, 61, 68, 69, 71, 73, 74, 76–78

TN transfer net. 25, 52, 56, 62–68
TRL task-relationship learning. 11, 17

1

Chapter 1

Introduction (Yannic)

Computer Vision (CV) has undergone a rapid development in recent years, becom-
ing an important aspect in the development of artificial intelligence, for example in
autonomous driving and the creation of deepfakes. Nowadays, new innovative ap-
proaches in CV are introduced on an annual basis, with the goal to outperform pre-
vious state-of-the-art methodologies. One such technology is transfer learning (TL)
that has had a powerful impact in improving the CV model using representations
which were learned by another model [17][32][37]. TL is especially important, when
data quality is not good enough, when not enough data is available to train a model
or when computational resources are limited. TL tackles these issues through the
support of an additional model. Generally, when TL is performed, there is a model,
that needs to be trained for a specific task called the target task, and a supporting
model is used that has already been trained. This pretrained model is called the
source model, and the task on which it is trained is the source task. A source model
is usually trained on a large dataset like ImageNet [14]. The learned representations
of the source model are then transferred to a target model and then further processed
from the target model for the prediction of the target task. This current state-of-the
art method has been proven to be applicable for a range of different tasks [32][37][65]
and using this approach promises several advantages. Computational resources are
saved; use-cases with smaller datasets are possible; the overall training time is re-
duced, and the result of the target model is essentially improved through avoiding
model training from scratch.

TL has led to great results and is currently used in practice as a quasi-standard.
Unusual to other CV technologies, this approach has not changed over the last
years. One of the reasons for the functionality of TL is assumed to be linked to
the relationship between different CV tasks with the assumption, that related CV
tasks promise better transfer results, than unrelated tasks that are linked to negative
transfer [84][17][40]. Negative transfer occurs, when a respective transfer from one
source-model makes it more difficult to solve a problem for the target model [48].
The question of how to choose the most suitable source model and how to mini-
mize the risk of negative transfer constitutes an ongoing discussion [84][17][40]. A
measurement to quantify the relationship between different tasks is thus a potential
solution and currently an ongoing topic [17][40][60][84]. Taskonomy [84] is one of
the first experiments, that analyzed the TL impact of different types of source-tasks
(26 tasks in total) in different combinations to one specific target task by measuring
the TLP. By doing that, Zamir et al. [84] Taskonomy represented the best performing
source-tasks linked to specific target tasks and the interrelations between different
CV tasks.

Taskonomy has the great potential to be used as an orientation to select the most

2 Chapter 1. Introduction (Yannic)

suitable source-tasks, that promise the best TLP to one target task. Despite these
findings, it only works for a new target task by doing all the transfers from scratch
again and thus obligates all source task combinations to be trained again, which
is cumbersome and time-consuming. Alternative approaches have been produced
to overcome this obstacle by using the similarity of the tasks used to do TL with-
out doing the actual transfer in the first place [17][40]. The similarity approach is
driven by the assumption, that more similar (related) CV tasks promise better TL
results [84]. Current similarity methods provide accurate TL predictions quickly
[17][40][60]. Nevertheless, each similarity method only includes single-source trans-
fer predictions without including the multi-source transfers represented in Taskon-
omy [84].

Multi-source transfers contain the potential to improve the performance of the target
model even further, because representations of different source tasks may contain
useful information that leads to a better transfer to the target task. We therefore pro-
pose a new similarity method to fill this gap: MOTS.
MOTS estimates the similarity score between source and target tasks by applying
a linear fit on the representation of the sources to predict the target representation.
The linear fit is then evaluated by the R-squared (R2) method and the Bayes factor
(BF). In this way, we obtain rankings of different source-task combinations used for
the prediction of a specific target task and consequently obtain the best sources for
multi-source transfers on one specific target task.

Choosing the right setting for the implementation of multi-source transfers is espe-
cially complex. Performing multi-source transfers pretrained on individual single-
task learning (ST) architectures leads to higher computational costs and longer train-
ing times due to the linear increase of model parameters to train with the number
of source tasks. MTL is an alternative approach that is still relatively new in CV
[10][52][74]. A MTL-architecture usually consists of an encoder-decoder structure
in which an encoder is used for a shared representation of multiple tasks, and a
decoder is then used to obtain several task-specific decoder heads [73]. A MTL-
architecture provides several advantages over a ST architecture: It handles several
tasks in one architecture; similar representations from each ST architecture are only
trained once, and it provides multiple target-task outputs through its decoder heads
[73]. A MTL-setting thus enables through its shared representation a higher train-
ing speed and lower computational costs, and it avoids a linear increase in model
parameters by the number of source tasks. A MTI-Net is currently a state-of-the-
art MTL architecture, and it outperforms similar counterparts and ST architectures
[73]. We use MOTS with the MTI-Net as our architecture to validate our method.
We include one target task and the task-specific decoder heads of the MTI-Net in
different combinations as our source-tasks to estimate the similarity score between
source and target. By doing this, we obtain a ranking showing which combinations
of decoders are most suitable for multi-source transfer to a target. MOTS is then
evaluated by comparing its rankings with the rankings that are obtained using the
TLP from Taskonomy [84].

We suspect that our method suggests better source models for TL than related meth-
ods by including multi-source transfers. We also expect better results using multi-
source transfers rather than only single-source transfers.

To prove our claim we will answer the following research question in this thesis:

Chapter 1. Introduction (Yannic) 3

Does our similarity method promise state-of-the-art results in TLP prediction when us-
ing a linear fit between source and target task for single- as well as multi-source tasks?

The research question can be broken down into the following areas, each of which
needs to be answered individually:

1. How well does MOTS perform in single-source TLP prediction?

2. How well does MOTS perform in multi-source TLP prediction?

3. How well does MOTS perform in TLP prediction using the task-decoder heads
of a mulit-task architecture as sources?

To address these matters, we proceed as follows. We compare the single-source TLP
of MOTS with other state-of-the-art methods. We then apply MOTS to multi-source
transfers and compare its results with state-of-the-art single-source transfer meth-
ods. Next, we validate the performance of MOTS in a practical, validation envi-
ronment by using a new architecture trained on two datasets (NYUD and Pascal
VOC). The task-specific representations obtained from the model are then used in
our MOTS method to create prediction rankings of different source-tasks combina-
tions to one target task. The rankings are then compared to the actual TLP, which is
achieved through the actual training of the model, and the transfers to a target task.

We first introduce the theoretical nature of our work in Chapter 2 and present the
area of CV in Section 2.1, TL in Section 2.2, MTL in Section 2.3, task-relationships in
Section 2.4 and the mathematical basics in Section 2.6. Following this, we showcase
related works, that has already been accomplished. We introduce the ground truth
of our method in Section 3.1, the Representation Similarity Analysis (RSA) method
in Section 3.2, the duality diagram similarity (DDS) method in Section 3.3 and then
attribution maps in Section 3.4. We then present our method MOTS in Chapter 4
and the results of all of our experiments in Chapter 5. We discuss and conclude our
thesis with proposals for future work and an outlook in Chapter 6.

4

Chapter 2

Theoretical background

In this chapter, we provide a theoretical overview of the concepts used in our thesis.
We provide information about general concepts regarding CV and Deep Learning
(DL), actual literature, state-of-the-art methods in TL and mathematical concepts
that we use in our analysis.
We start with the broader, more general topics of CV and TL and later dive deeper
into different architectures of MTL.

2.1 Computer Vision (Yannic)

CV deals with digital images or a sequence of digital images. The main goal of CV
models is hereby the understanding and the interpretation of images and the infor-
mation it can extract from them[42][80]. The outcome can vary and depends on the
visual task, a computer is to perform[80].

CV often refers to machines, that have the the ability to see like a human[42][80].
In defining its features, a CV system should contain the definition of "seeing" or "vi-
sion" to use as a guide. Learned-Miller [42] states that human vision does not consist
of just one component, but rather exists through a set of different components, such
as memory, retrieval, reasoning, estimation, recognition and coordination with other
senses. He further explains that for a system to be considered to have a degree of
vision, it is not mandatory to include all these components.
Huang [31] separates CV between biological science point of view and an engineer-
ing points of view. He mentions, that from a biological perspective, computational
models are built to be similar or identical to the human visual system, whereas from
an engineering perspective, autonomous systems are built to execute visual tasks,
that a human visual perspective can perform. While the first viewpoint focuses on
replicating the human visual system in an identical manner, the second viewpoint
rather aims to achieve a similar or identical output between a visual machine and a
human, regardless of the system design.
Fermüller and Aloimonos [22] connect vision with the two components of percep-
tion and action and link vision among others with physiology, the brain and the
behaviour. They define a CV system as a system, that “interacts with the space-time
in which the system exists and the establishing of relations between these represen-
tations, and the system actions” [22, p. 742]. Their focus mainly lies in the recon-
struction of a behavioural framework.

CV was originally invented to transform 2D photographs back into a 3D form [41,
p. 8, 9]. This is an inverse problem in which an original state is restored with in-
sufficient information about its original form [64, p. 3]. Learned-Miller [42] calls

2.1. Computer Vision (Yannic) 5

this inference, which is assumed from a picture about the world. In solving visual
tasks, CV is mentioned along with related fields like digital image processing, pat-
tern recognition, machine learning (ML) and Computer graphics, and it uses con-
cepts, ideas and techniques from these systems [80]. Image processing and CV are
often handled in the same manner. Wiley and Lucas [80] define image processing
as computational transformations performed on images, while CV is more focused
on the creation of models and data extraction it obtains from images. CV and com-
puter graphics are opposites. While CV processes images from the world in order to
convert them to abstract representations, computer graphics takes an abstract repre-
sentations of the world into a computer in order to turn them into images. Pattern
recognition is defined as “a branch of CV, which focuses on the process of object
identification through image transformation to get better image quality and image
interpretation”. [80, p. 30]

One of the challenges in CV involves the inverse transformation of an images back
to their 3D form, which is easily manageable for the human eye but not so much
for a CV model [41]. From a human perspective, the interpretation of spatial data
is processed in seconds, while a CV system has limited capacities and relies on the
“sensitivity of the parameters, the strength of the algorithm and the accuracy of the
result” [80, p. 29]. Machines do not recognize pictures the way humans do; they
represent digital images in the form of arrays with a variety of different numerical
values [41, p. 2][13, p. 1], as can be seen in Figure 1. An array is described as a much
larger and more complex form of an image [13, p. 1]. An image is thus defined as a
representation, respectively as a picture that is visualized as a 2D projection from a
3D scene and captured by a sensor from an imaging device and consists of pixel val-
ues. Pixels are thereby discrete and responsible for the brightness of a scene. They
lie in the range of k = 2b with b being the number of bits. The number of pixel val-
ues represents the resolution of an image, whereas the number of channels describe
the depth of an image. A gray-scale image uses one channel, whereas a colorful
image like one in red-green-blue (RGB) represents multiple channels. A gray-scale
image represents the luminance at each point of a scene. A color image contains
chrominance (color information) in addition to the luminance; it is therefore larger
and requires more resource-intensive to be processing compared to its gray-scale
counterpart [13, p. 1, 2].

Nowadays, two approaches are used to perform computational visual tasks. One
of them is referred to as a classical ML approach with a set of different methods for
different use cases, while the other is DL [45]. The difference between both is visu-
alized in Figure 2. Both approaches identify features in an image, thus supporting a
system through its process to its output. Mahony et al. [45] defines features as some-
thing small, visible in a particular area of an image, about which a certain statement
can be made. For a classical approach, a CV expert is needed, to identify important
features in an image. A classical approach is often referred to as a manual, hand-
crafted feature-extraction process, while no expert is needed in DL and the feature
extraction process is done completely automatically. DL is therefore defined as a
subset of ML and linked to artifical neural network (ANN) [45]. Especially in CV, a
convolutional neural network (CNN) is often mentioned as an architecture that pro-
cesses inputs using a variety of different methods in order to produce an output [45].
The basic architecture of a CNN is displayed in Figure 3. Compared to a classical ML
approach, CNNs achieve better results in image classification, segmentation and in
object detection, but they need data and computational power in order to be trained

6 Chapter 2. Theoretical background

accurately. In this thesis, we use architectures based CNNs, and we therefore forego
on a detailed description of the other approaches. Some classical methods, as well
as further DL architectures are displayed in Table 2 and can be further examined in
the respective papers. The following sections deal with CNN and especially with
a variety of different CNN architectures being discussed currently, especially in the
domain of TL and MTL.

FIGURE 1: Different versions of images[13].

Classical ML Explanation
SIFT[35] Auto-Encoder[2]
SURF[3] CNN[43][39]
FAST[51] RBM[47]

Hough transforms[27] LSTM[30][54]
Geometric hashing RNN[54]

TABLE 2: Classical machine-learning algorithm vs. deep-learning ar-
chitectures.

FIGURE 2: Traditional approach vs. deep learning [78].

2.2 Transfer Learning (Daniel)

In this section, we explain the theoretical overview of TL and its application areas.
TL is a method used in ML that allows the use of learned knowledge from one model
to be transferred to another. It is widely used in the DL and CV community as many

2.2. Transfer Learning (Daniel) 7

FIGURE 3: Basic CNN architecture [15] .

image-processing tasks are difficult to learn and train, so they require high comput-
ing power, which is what makes TL so attractive. Furthermore, TL is commonly
used in data mining and ML applications [48].
A typical use case for TL is when there is not enough data, or the training of the
model for the desired task of interest is not feasible. In cases like this, it is recom-
mended or even necessary to use TL to acquire a model for the task of interest.
Compared to a classical ML problem, TL makes the assumption that the data used
for training and the data used during inference do not need to be in the same feature
space1 nor do they need to have the same distribution. Pan and Yang [48] give a
specific definition of TL as follows:

Given a source domain DS and learning task TS , a target domain DT and
learning task TT, transfer learning aims to help improve the learning of
the target predictive function fT(·) in DT using the knowledge in DS and
TS, where DS 6= DT, or TS 6= TT. [48, p. 1347]

with DS = {(xS1 , yS1), ..., (xSnS
, ySnS

)}, where xSi ∈ XS is the data instance and ySi ∈
YS is the corresponding class label (assuming that the task is a classification task).
Furthermore, Pan and Yang [48] define the goal of TL as being to “extract the knowl-
edge from one or more source tasks and apply the knowledge to a target task” [48,
p. 1346]. A key characteristic of TL is that it allows domains, tasks and distributions
to differ between the training and testing of the model. [48] To understand the con-
cept of TL, it is necessary to understand the concepts of positive and negative trans-
fer: “Negative transfer happens when the source domain data and task contribute
to the reduced performance of learning in the target domain” [48, p. 1354]. Positive
transfer is the opposite and occurs when the source domain knowledge (data and
task) improves the performance of the target task. In general, TL is applied to per-
form a positive transfer of knowledge from a source to a target model. In the case
when a relationship between the feature spaces of two domains exists, Pan and Yang
[48] call these two domains related.
The authors divide the research issues of TL into three groups based on different
questions: What should be transferred?; How should this transfer be done?; and
When and in which situations should the transfer occur [48]?
As shown in Figure 4, Pan and Yang [48] differentiate between three types of TL
settings:

• Inductive TL
1The feature space is a n-dimensional space. The number of dimensions of this space is equal to the

number of variables/properties [58]

8 Chapter 2. Theoretical background

FIGURE 4: An overview of different settings of transfer learning [48].

• Transductive TL

• Unsupervised TL

In inductive TL, target and source tasks are different, and labeled data is available
in the target domain. Pan and Yang [48] further categorize inductive TL into MTL,
in which case-labeled data is available in the source domain and self-taught learning
– in which there is no labeled data – in the source domain.
In comparison to inductive TL, in Transductive TL the source and target tasks are
the same, but the domains are different. Transductive TL is categorized into cases
with different feature space (XS 6= XT) and cases with the same feature space using
a different probability distribution of the input data (P(XS) 6= P(XT)); this is called
domain adaption [48].
Unsupervised TL is similar to inductive TL in the sense that the source and target
tasks are different. Unsupervised TL differs from inductive TL by using clustering
and dimensionality reduction tasks instead of classification and regression tasks.
The experiments in this thesis focus only on MTL as a part of inductive TL. There-
fore, the following theoretical descriptions also concentrate on just this case and do
not go into detail about the other types of TL. Pan and Yang [48] define inductive TL
as follows: In the source domain DS, a source task TS is learned. However, the goal
is to train the target task TT in the target domain DT. This is accomplished by using
the learned representations from TS to improve the target prediction function fT(·),
with the assumption that TS 6= TT is taken.
In MTL as a subcase of inductive TL it is further assumed that there is labeled train-
ing data available in DS. Regarding the question, What should be transferred?, TL
can be disassembled into four approaches:

• Instance transfer

• Feature representation-transfer

2.3. Multi-Task Learning (Yannic) 9

• Parameter transfer

• Relational knowledge transfer

Instance transfer involves the transfer of labeled data from the source to the tar-
get domain. Feature representation transfer transfers the learned features from the
source domain to the target domain to improve the prediction in the target domain.
Parameter transfer reuses learned and shared parameters in the target domain, and
relational-knowledge transfer establishes relations between source and target do-
main. Of these categories, this thesis only focuses on feature representation transfer
in supervised learning, which works by extracting a low-dimensional representation
from TS. In an optimal case, this low-dimensional representation is shared across
different but related tasks so that the knowledge from it can be transferred to TT by
performing positive transfer instead.
TL has been widely applied in different research areas, for example in text and nat-
ural language problems such as domain adaption for sentiment classification [6],
document classification [11] and CV tasks (self-taught clustering of images [12] and
image clustering [82]).

2.3 Multi-Task Learning (Yannic)

TL and MTL are closely related. For our methodology, the selection of the right MTL
architecture plays an important role, which is why a basic understanding of MTL
is necessary. Before diving into the topic, MTL is discussed in many different areas
of ANN (natural language processing (NLP), reinforcement learning (RL), CV)[10].
This Section deals with the topic with regards to the field of CV

Ruder [52] describes MTL as a framework that takes multiple tasks into one shared
representation to predict multiple target tasks, which consists of more than one loss
function that needs to be optimized. Crawshaw [10] highlights the original idea be-
hind MTL to imitate the human way of learning. A human brain combines and uses
previously acquired knowledge of various tasks to perform multiple tasks at once
by using the same layers for different tasks in earlier regions of the brain [74].
Similar to Ruder [52], he defines MTL as a sub-field of ML in which multiple tasks
are performed simultaneously by a shared model. Ruder [52] describes MTL among
other things from a ML perspective “as a form of inductive transfer”[52, p. 2]. In-
ductive transfer is described as a form, that improves a model through inductive
bias. Inductive bias is further described as a measure, that favors one hypothesis
over the other.

The challenge in developing a MTL design in CV consists of two things:

• Selection of the appropriate design structure of the architecture.

• Implementation of optimization techniques, that need to be performed in par-
allel on different tasks without being disadvantageous for at least one of them.

Current MTL implementations are classified as follows [10]:

• Shared trunk: architectures with a global feature, which is shared across all
tasks and an individual output branch for each task

• Cross-talk: individual branches for each task with shared information between
parallel layers

10 Chapter 2. Theoretical background

• Prediction distillation: preliminary predictions for each as initiator to predict
final output for certain tasks

• Task routing: parameter sharing between tasks at the feature level and not
layer level

• Single tasking: single task, that is used for multiple task predictions

A more abstract representation of a MTL frameworks is displayed in Figure 5 and
consists of hard parameter sharing (see Table 5a) and soft parameter sharing (see 5b.
Hard parameter sharing is accomplished through two steps. First, it involves model
parameters which are shared between different tasks at the beginning. Second, each
task branches to its own network and generates its own task-specific output. Soft
parameter sharing provides each task with its own independent network. Each in-
dependent network tends to communicate with the others in order to maintain a
similarity with each other [52]. Ruder [52] underlines the issue, especially regard-

(a) Hard parameter sharing in MTL

(b) Soft parameter sharing in MTL

FIGURE 5: MTL approaches in deep neural networks [52].

ing architectures with hard parameter sharing, which tend to work seamlessly only
for closely related tasks. He points out, that these approaches hinder the implemen-
tation of less related tasks, and he identifies task similarity, task relationships, and
task hierarchy as three important points that need to be researched further, because
of negative transfer [52]. Negative transfer happens when tasks are not closely re-
lated. This can be seen as a win-loss situation in which one task may increase in
accuracy while the other one decreases. As a result, performance degradation oc-
curs with some tasks, while others increase in accuracy. This makes the usage of a
MTL approach for some tasks unnecessary when a ST approach shows better per-
formance [10]. Vandenhende et al. [74] therefore argue that suitable task-groupings
need to be selected in advance to prevent negative transfer and they state as well that
task relatedness and task similarity need to be considered for optimal task group-
ings, but they also emphasize suitable layers in which the sharing should occur.
According to the authors, fewer related tasks can be implemented in that way by
having their own layers. Vandenhende et al. [75] proposes a new MTL-framework
that is considered to be an encoder-decoder-based approach for dense prediction
tasks. The structure is visualized in Figure 6.

Having a MTL architecture for related tasks, promises several advantages. A shared

2.3. Multi-Task Learning (Yannic) 11

(a) Encoder-focused model (b) Decoder-focused model

FIGURE 6: Encoder- and decoder-focused MTL-models [75].

representation between them lead according to Ruder [52] to a model that general-
izes better compared to a ST model. This can for instance reduce the risk of overfit-
ting [52].
Crawshaw [10] and Vandenhende et al. [74] describe MTL as a promising method
for increasing learning speed for related tasks but also for downstream tasks. MTL
is capable of drastically decreasing the amount of computational time since training
of models for each task is no longer mandatory.
Currently, advancements in MTL are being made in the areas of architecture, op-
timization and task-relationship learning (TRL) [10]. Crawshaw [10] connects hard
parameter sharing to the area of MTL architectures and soft parameter sharing to
the area of MTL optimizations. The author [10] describes both areas and TRL; this
is further described in Section 2.4, as the guiding framework in MTL, and contra-
dict the usual approach that separates a MTL structure into hard and soft parameter
sharing.

2.3.1 Cross-Stitch-Network (Daniel)

The cross-stitch network is an encoder-focused MTL architecture that uses soft-parameter
sharing. It combines multiple networks by using so-called cross-stitch units and
is end-to-end trainable. Cross-stitch networks can be used to estimate the optimal
combination between shared and task-specific representations in a MTL setup. The
cross-stitch unit uses a linear combination of activations of different networks to
learn a shared representation [46].
Figure 7 shows a cross-stitch unit that combines two networks, each regarding its
own task.
The cross-stitch unit works as follows: Given the activation maps xA from network
A and the xB from network B (both from layer l) the linear combinations x̃A and x̃B
are calculated by modulating the activations by α (Equation 2.1):[

x̃ij
A

x̃ij
B

]
=

[
αA A αAB
αB A αBB

] [
xij

A
xij

B

]
(2.1)

12 Chapter 2. Theoretical background

FIGURE 7: Cross-stitch unit [46].

After x̃A and x̃B are calculated, they are used as input for the next layer.

By changing α the cross-stitch unit supervises itself as to how much sharing is neces-
sary. By selecting α, the model can choose the optimal combination between shared
and task-specific parts [46].
The main disadvantage of the cross-stitch network is its scalability problem and its
restriction on the usage of local information. The scalability problem is due to the
fact that the network´s size increases linearly with the number of tasks. The second
disadvantage is that the network can only use limited information while modulating
α and therefore has only a small receptive field [73].

2.3.2 Pattern and Distillation Network (Yannic)

FIGURE 8: Idea of PAD-Net [17].

2.3. Multi-Task Learning (Yannic) 13

FIGURE 9: Pad-Net framework[17].

Pattern and Distillation Network (PAD-Net) is a decoder-focused MTL architecture
that supports target task predictions with a distillation network. Figure 8 visualizes
the idea behind PAD-Net and auxiliary tasks, in which one input image is being
processed through different CNNs, that solve individual tasks. These intermedi-
ate task predictions are then used as multi-modal data input and further processed
with a multi-modal distillation module in order to use the important information
from each intermediate task for the prediction of the final multi-task output. Xu
et al. [81] argue that the knowledge shared by different intermediate tasks creates a
generalizable MTL model with the advantage of being capable to produce different
target tasks.

Xu et al. [81] describe the advantages and potentials of the multi-modal approach
from three perspectives:

• Multi-modal data improves the performance of deep predictions due to the
complementary information they have for the final output.

• Information from related tasks that are not being predicted as final tasks, can
also improve the performance further if used as intermediate tasks.

• The design of the multi-modal module facilitates the communication and shar-
ing of information from the multi-modal data, that consists of different visual
tasks.

The authors add that their approach improves optimization of the frontend network,
provides valuable initial predictions and promises a better handling of task informa-
tion derived from the intermediate tasks in earlier layers [81].

Figure 9 illustrates the PAD-Net architecture and its four main components. The
multi-modal distillation module plays a significant role in this framework, because
the final multi-task output depends on its design and the way the information from
different intermediate tasks is combined for the final task predictions.
PAD-Net achieves a better result than the baseline network with any design struc-
ture shown in Figure 10. The authors also demonstrated, that a higher number of
related intermediate tasks have a positive impact on the result of the network. Fur-
thermore, the authors proved that the multi-task outputs scene parsing and depth
estimation achieve better results, than state-of-the-art approaches. There is no per-
formance degradation when both tasks are predicted in one model at the same time.

14 Chapter 2. Theoretical background

FIGURE 10: PAD-Net distillation modules [81].

2.3.3 Pattern-Affinitive Propagation Network (Daniel)

PAP-Net is a decoder-focused network for joint training of the tasks depth estima-
tion, surface normal prediction and semantic segmentation. In this approach, the
researchers utilized cross-task affinity patterns to jointly predict all three tasks. The
idea of cross-task affinity patterns is to use non-local affinities between tasks to im-
prove the joint prediction of all tasks compared to prediction network [85]. The goal
is to use the affinity patterns between tasks and improve the prediction performance
of each individual task based on this information.
The Pattern-Affinitive Propagation Network (PAP-Net) architecture is fully trainable
in an end-to-end manner. It is visualized in Figure 11. The process used in PAP-Net
contains four main steps [85]:

1. Learn affinity matrices for each task by using the affinity learning layer to store
pixel pairwise similarities.

2. Combine the affinity matrices of the different tasks in an adaptive manner.

3. Use the specific diffusion layer of each task to propose the learned affinities to
the features.

4. Use diffused task-specific features to produce final outputs of tasks.

The main contributions are the proposition of the PAP-Net method, the proposition
of the two-stage affinity propagation and the experiments validating the PAP-Net
method. Advantages of the PAP-Net method are that the network learns non-local
affinities and uses these affinities for cross-task improvement. Further, it is a data-
driven method that does not need task-specific supervision, which makes it easier
to handle in training [85].

2.3.4 Multi-Scale Task Interaction Network (Yannic)

MTI-Net was developed to be a MTL architecture and is used at different scales. It
follows the idea of current MTL approaches described in Section 2.3.2 and is con-
sidered to distill information from initial task predictions. However, what makes
MTI-Net different is the consideration of task-interactions at different scales as well
as is shown in 13. Vandenhende, Georgoulis, and van Gool [73] showed that pat-
tern affinities at a certain scale do not guarantee similar behaviour at other scales,
and they therefore proposed a new design that considers pattern affinities not only
at the task level but also at the scale level [73]. The authors [73] explain their as-
sumption using an illustration, which is displayed in Figure 12a:

2.3. Multi-Task Learning (Yannic) 15

FIGURE 11: PAP-Net architecture [85].

"The local patches in the depth map provide little information about the
semantics of the scene. However, when we enlarge the receptive field,
the depth map reveals a person’s shape, hinting at the scene’s semantics."
[73]

A certain size of receptive field can hide information that may be necessary for the
accurate prediction of a certain visual task. Increasing that size could provide the
correct result. However, task information from a certain scale that may hinder an
accurate performance for a certain task, can be useful for another. The authors there-
fore show that visual tasks may influence one another differently depending on the
receptive field size. Vandenhende, Georgoulis, and van Gool [73] validate their
assumptions through an experiment, which is illustrated in Figure 12b:

"We measure the pixel affinity in local patches on the label space of each
task, using kernels of fixed size. The size of the receptive field can be
selected by choosing the dilation for the kernel." [73]

The results show a high pixel affinity for each task combination for a certain dilation
value, but they also demonstrate the dependency of pattern affinities with respect to
a receptive field size. The experiment therefore supports the statement of Vanden-
hende, Georgoulis, and van Gool [73] that pixel affinities between two different tasks
can vary depending on the receptive field size, which is determined by the kernel
dilation [73]. Based on these findings, the authors [73] suggest a model that distills
information of different tasks at multiple scales. They propose an architecture for
this procedure that is built around a backbone network, a multi-modal distillation
unit, a feature propagation module and a feature aggregation unit.

The backbone network is used to extract feature representations at multiple scales
from an input image. Feature representations at each scale are then used to do ini-
tial task predictions with the output being stored in task-specific heads at different
scales. [73].

A multi-modal distillation unit is thereafter used to refine feature representations
that were extracted at multiple scales. The following formula is used to find the
distilled task feature F◦k,s for task k at scale s [73]:

F◦k,s = Fi
k,s + ∑

l 6=k
σ(Wk,l,sFi

l,s)� (W
′
k,l,sFi

l,s) (2.2)

16 Chapter 2. Theoretical background

(a) Local patches from a depth map.

(b) Pixel affinities for visual tasks with different di-
lations.

FIGURE 12: Task-interactions at different scales [73].

FIGURE 13: Visualization of MTI-Net architecture.

2.4. Task-Relationship Learning (Daniel) 17

where σ(Wk,l,sFi
l,s) returns a per-scale spatial attention mask that is applied to the

task features Fi
l,s from task l at scale s [73].

A feature propagation module is then used to link task features from previous

FIGURE 14: Feature propagation M´module.

lower resolution scales that were previously refined by a multi-modal distillation
unit with features from a subsequent higher resolution scale that were extracted
from the backbone as described in Figure 14. According to Vandenhende, Geor-
goulis, and van Gool [73], this step is performed to circumvent poor initial task pre-
dictions due to the limited receptive field of view at higher resolution scales. The
entire process is depicted in Figure 14 and described in more detail in [73].
The distilled task features at each scale are sampled up to the highest scale and then
concatenated, resulting in a “final feature representation for every task”[73, p. 9].
Vandenhende, Georgoulis, and van Gool [73] additionally mention that in addition
to initial task predictions, their model allows auxiliary tasks to be implemented, as
is the case with PAD-Net.
The logical innovative design behind MTI-Net is also reflected in the model per-
formance, showing results that are at least on par with related architectures with
advantages of a smaller footprint, a reduced number of calculations and a better
performance than ST architectures [73].

2.4 Task-Relationship Learning (Daniel)

In contrast to MTL architecture design and changing optimization techniques, TRL
is another approach of MTL. Crawshaw [10] divides TRL into three research direc-
tions:

• Task grouping

• Transfer relationships

• Task embeddings

Task grouping:
The idea of the grouping-tasks approach is to avoid negative transfer between tasks
by separating those tasks in the training process that will have a negative trans-
fer between them. In this approach, the main body of research studies (e.g. [1], [5],
[16]) use the approach of training all tasks individually and afterwards training them

18 Chapter 2. Theoretical background

jointly in pairs or groups of multiple tasks. Afterwards, the training process is com-
pared between clusters that can be built out of tasks that improve their performance
while being trained jointly and those that do not improve [5]. Using this approach,
Alonso and Plank [1] found that auxiliary tasks with label distributions containing a
high entropy but a low kurtosis are generally beneficial to train as auxiliary tasks to
the main task. This result is strengthened by the findings of Bingel and Søgaard [5].

Doersch and Zisserman [16] did not use the trial-and-error approach used in the
formerly discussed approaches. Instead, they used an algorithm called selective
sharing (shown in Figure 15) for grouping the tasks into different clusters. This ar-
chitecture uses the same input for all tasks, a shared feature extractor and a shared
representation. Following the shared part of the architecture, task specific decoder
heads predict a different output for each task. The gradients of the different tasks
are used for building clusters of the tasks: The similarity between different gradi-
ent vectors is used as the predictor for task similarity. While training, the tasks are
adaptively merged into clusters based on the gradients. When merging two tasks,
the task-specific decoder heads are merged as well so that they share parameters.
The algorithm stops at the point where the clusters no longer change. On the one
hand, this approach is inexpensive and learns task features for understanding task
relationships. On the other hand, it assumes that similarly behaving gradients go
together with beneficial task combinations. This assumption breaks down more and
more in the course of the training period [10].

FIGURE 15: Selective sharing architecture [63].

Standley et al. [62] built a framework and reported an empirical study of task
groups using the so-called Taskonomy dataset [83] (The Taskonomy dataset will be
explained in detail later in this thesis). Furthermore, they divided a group of tasks
into different clusters in which positive transfer existed between tasks in the same
cluster. This was accomplished by using a branch-and-bound algorithm2 to find the
task clusters that benefit from joint training. We provide a more in-depth review of
[83] in Chapter 3.1.

Transfer relationships:
The main idea of transfer relationship research is to learn how tasks should be
grouped for joint learning. This approach differs from the task-grouping approach
regarding the fact that it does not train the tasks simultaneously but in a two-step
process, selecting an optimal source task (or multiple-source tasks) from which to

2A branch-and-bound-algorithm is a problem solving algorithm based on the assumption that the
solution set can be divided into smaller subsets of solutions. [34]

2.5. High-Resolution Network (Yannic) 19

transfer, then carrying out TL by moving the knowledge from the source to the tar-
get task for just those combinations that are worthwhile.
Zamir et al. [83] tried to learn task affinities using their Taskonomy dataset. For each
pair of tasks, they asked the question “How well can we perform task i by training a
decoder on top of a feature extractor which was trained on task j?” [10, p. 30]. This
summary question is a simplification in the sense that j refers to not only a single
task but also to multiple-task combinations. To find the ideal set of source tasks,
the problem is modeled as a Boolean integer programming problem3. The result is
visualized as a directed graph, while the tasks are represented as nodes. A directed
edge between task i and task j means that task i is contained in the set of possible
source tasks for task j (explained in more detail in Section 3.1; the graph is shown
in Figure 19). The main drawback of the approach of [83] is that it is a brute-force
approach and is therefore extremely computationally intensive.
Dwivedi and Roig [17] and Song et al. [59] introduced two much cheaper methods

than that of [83].
Dwivedi and Roig [17] used RSA 4 [38] to compare two neural networks and build
a measure of similarity. The underlying assumption is that tasks that have positive
transfer will learn similar representations. By comparing the learned representa-
tions, it is possible to predict TLP without actually performing the transfer. [59]
followed a similar approach to [17]; however, they used attribution maps. They
compared the attribution maps of two networks on the same input. Their basic as-
sumption was that tasks that complement each other in learning will pay attention
to the same parts of an input image. The attention of the networks can be compared
by using the attribution maps.
The work of Dwivedi and Roig [17] and Song et al. [59] is further analyzed in Sec-
tions 3.2 and 3.4.

Task embedding:
The task-embedding approach is a general form of learning task relationships. The
main disadvantage of this method is that any new task to analyze must be directly
related to the tasks already trained. It is mainly used in the area of meta learning.
[10]

2.5 High-Resolution Network (Yannic)

A HRNet is a CV architecture specifically designed for CV tasks in semantic segmen-
tation, pose estimation and object detection. It differs from other architectures in the
way, that it processes input images throughout the whole network with the same
resolution size. Commonly, architectures are designed to encode an input image to
a smaller size by down-sampling the original size and only later decoding it back to
its original form. Wang et al. [77] argue that re-establishment of the original size is
characterized by information loss because information based on the original image
size is not stored and lost during down-sampling and thus not completely recover-
able during up-sampling at a later stage.
In addition to processing the original image resolution in the whole network, HRNet
also contains parallel networks with smaller resolution sizes with a factor of 1/2 and
1/4 of the original image size. The whole process is visualized in Figure 16, and it

3A boolean Integer Programming problem is an optimization problem which can be solved by op-
timizing a linear function witch’s variables are bound by a set of linear constraints. [10]

4Method drawn from Neuroscience and further explained in Section 3.2.

20 Chapter 2. Theoretical background

is characterized by the fact that all the networks communicate and exchange infor-
mation with each other. Wang et al. [77] argue that each individual network scale
recognizes different important features based on the resolution of the image and
transmit this information to the other network scales and vice versa. Up-sampling
and down-sampling are thus less prone to information loss because the information
is stored at different scale instead of being partly deleted. At the end of the HRNet

FIGURE 16: Abstract architecture of HRNet.

architecture, an output is produced at one specific network scale depending on the
CV task. The end process is displayed in Figure 17 detailing the concatenation of all
parallel networks to the specific network that outputs the result. Information from
each network is passed in order to ensure scaling-based specific information in the
output of the result. Wang et al. [77] argue that HRNet is suitable for use as a back-
bone network for semantic segmentation, object detection and human pose because
it outperforms other state-of-the-art methods in each of these tasks.

FIGURE 17: High-resolution heads of HRNet with one specific head,
that outputs the result.

2.6 Mathematical Formulas (Yannic)

It must be said that our methodology and related literature can only be truly under-
stood if certain mathematical principles are known. Therefore, important basics are
presented and explained in this section.

2.6.1 Bayes Factor

The BF is used in each of our experiments as a comparison metric and one of the
main drivers in deciding on one model. In research, the BF has been mentioned as a
comparison technique between a null hypothesis and an alternative approach with
the goal to defend one of the hypotheses against the other. As a model comparison
metric, it is used for model selection by determining which model better fits the data.

2.6. Mathematical Formulas (Yannic) 21

The BF is used in order to calculate the posterior odds using the following formula
[50]:

P(M0|data)
P(M1|data)

=
P(data|M0)
P(data|M1)

∗ P(M0)
P(M1)

(2.3)

The mathematical part P(data|M0)
P(data|M1) is highlighted as BF. Its outcome is described as a

shift in belief that occurs when observing the model performance of Model 0 (M0)
and Model 1 (M1) after new data is given to them. The ratio between the two models
defines the preference of one over the other. The magnitude of preference K of one
model over the other is categorized and counts as follows, when M0 is the numerator
and Model 1 is the denominator [50, p. 158]:

• Grade 0. K > 0. M0 is supported

• Grade 1. 1 > K > 10−0.5. Small evidence against M0

• Grade 2. 10−0.5 > K > 10−1. Substantial evidence against M0

• Grade 3. 10−1 > K > 10−1.5. Strong evidence against M0

• Grade 4. 10−1.5 > K > 10−2. Very strong evidence against M0

• Grade 5. 10−2 > K >. Decision based evidence against M0

2.6.2 R-Squared

R2 is a method that follows a similar intention to the BF method in terms of model
comparison and model selection. It is defined as the coefficient of determination and
evaluates the quality of the fit of the line to the data in regression tasks. It uses the
following equation [28]:

R2 = 1− RSS
TSS

= 1− ∑n
i=1(Yi − Ŷi)

2

∑n
i=1(Yi − Ȳ)2 (2.4)

where

1. RSS: Residual sum of squares, which calculates the difference between the
ground truth value Yi and the predicted value Ŷi for each data point i

2. TSS: Total sum of squares, which calculates the difference between actual value
Yi and predicted mean value Ȳi for each data point i

R2 can take values between 0 and 1 in which a higher value means a better fit of
the line and therefore a higher dependency between two variables, whereas a lower
value means more independence between two variables [9].

2.6.3 Spearman Correlation

The Spearman correlation is defined as a rank correlation coefficient. We use the
metric in the first two experiments in this work to evaluate our method against the
benchmark. The correlation of the method is calculated by the ranks of the variable
in each method. Spearman is used in bivariate statistics and measures the type and
strength of the relationship between two variables through linearity. The mathemat-
ical formula is as follows [61]:

rs = 1−
6 ∑n

i=1 d2
i

n ∗ (n2 − n)
(2.5)

22 Chapter 2. Theoretical background

where

1. rs: Spearman rank correlation

2. di: difference between the ranks of corresponding variables

3. n: number of observations

The strength of relationship between two variables is represented by a value ranging
from -1 to 1 with -1 meaning a negative correlation, 0 no correlation, and 1 a perfect
correlation.[61]

2.6.4 Pearson Correlation

The Pearson correlation is a measure of linear correlation between two sets of data
and outlines the strength of linear relationship between two variables. The follow-
ing formula is used to calculate the Pearson correlation coefficient (PCC) given two
random variables X and Y [76]:

PCC(X, Y) =
cov(X, Y)

σxσy
=

E[(X− X̄)(Y− Ȳ)]
σxσy

(2.6)

where:

1. X̄ is the average value of X

2. Ȳ is the average value of Y

3. σx is the standard deviation of X

4. σy is the standard deviation of Y

The Pearson correlation can take values ranging from -1 to 1, resulting in the strength
of relationship between two variables. A value of -1 means a negative correlation
between two variables, while 0 means no correlation and 1 a perfect correlation.[36]

2.6.5 Cosine Distance Function

The cosine distance function is used to get the dissimilarity between two representa-
tions by calculating the angular distance between two vectors, which are projected
in a multi-dimensional space. The mathematical formula is hereby as follows [21, p.
55]:

cosine_distance = 1− cosine_similarity = 1− A ∗ B
||A|| ∗ ||B|| = 1− ∑n

i=1 AiBi√
∑n

i=1 A2
i

√
∑n

i=1 B2
i

(2.7)
where:

1. A: Vector A

2. B: Vector B

3. ||A||: Euclidean norm of vector A

4. ||B||: Euclidean norm of vector B

23

Chapter 3

Related Literature

In this chapter, we introduce the current state of literature in the field of TL model
selection. In Section 3.1, we discuss the work of Zamir et al. [83] in which the authors
create a task taxonomy that serves as a ground truth of TLP in current state-of-the-
art methods for predicting TLP. These state-of-the-art methods for TLP prediction
are explained in Sections: 3.2, 3.3 and 3.4.

3.1 Taskonomy - Disentangling Task Transfer Learning (Daniel)

With this work, Zamir et al. [83] propose a fully computational approach for model-
ing the structure of the space of visual tasks. Fully computational refers to the fact
that the authors perform the full computation of transfers using a brute-force ap-
proach, meaning that they do not use a prediction or heuristic but create the ground
truth. With this ground, truth they create a benchmark against which to evaluate TL
prediction methods.
The two main contributions of Zamir et al. [83] are as follows:

1. They create a dataset of task similarities called Taskonomy.

2. They propose a framework for creating a computational taxonomic map for
task TL.

Taskonomy is an image dataset containing four million images. The images are of in-
door scenes from more than 600 buildings and cover 26 different CV tasks, which are
all completely labeled. The 26 CV tasks are in the areas of 2D, 2.5D, 3D and seman-
tic tasks. The complete pixel-level geometric information is provided using meshes,
and the semantic annotations are generated as pseudo-semantic annotations by ap-
plying knowledge distillation [84].
The goal of the framework is to make visible the underlying and hidden task space
structure of visual tasks. Furthermore, it aims to provide a framework that can be
used to map the space of visual tasks [84]. This task space structure [84] refers
to the computationally found relations between tasks; it can be rephrased as which
tasks benefit from joint training (positive transfer in TL) and which do not (negative
transfer in TL). The authors formulate the problem as follows: a set of target tasks τ
with {t1, ..., tn}, a set of source tasks S with {s1, ..., sn} and the supervision budget γ
(the supervision budget is equal to the maximum number of trainable source tasks,
for example due to computation restrictions).
The task dictionary ν is defined as the joint set of source and target tasks: ν = τ ∪ S.
In the analysis, the four tasks colorization, jigsaw puzzle, in-painting and random
projection are source-only, which means that they are only used as a source for TL
and never as the target of the transfer. The source-only tasks are given as S− S ∩ τ.

24 Chapter 3. Related Literature

The results are achieved in a four step process shown in Figure 18:

1. Train a specific network for each task.

2. Perform transfers from different orders (single source, double source, etc.).

3. Normalize the results.

4. Solve subgraph selection and build a hypergraph.

FIGURE 18: Taskonomy four step process framework [84].

In the first step, a fully supervised model is trained for each task. For this, every task
uses the same encoder (ResNet-50 [29] without pooling). The decoders need to be
different since the tasks have different output requirements.
In the second step, multiple transfers are done from all si ∈ S to all tj ∈ τ. Further-
more, higher order transfers are done using multiple tasks as source tasks. Since the
number of possible transfers explodes combinatorially (powerset P(S)), the beam-
search algorithm1 is used to prune down the number of transfers with multiple
sources and select only the most promising combinations.
In the third step, the results of the transfers are normalized using an analytical hier-
archy process (AHP)2.

1Beam search is an hearistic graph based search algorithm. It is a variation of breadth-first-search
and uses a beam width which specifies how many of the top branches should be saved to memory for
further exploration. [4]

2AHP is a “methodology for structuring, measurement, and synthesis” [23, p. 469]. It compares
objectives in a pairwise manner. The method contains three primary functions: structuring complexity,
measurement and synthesis. [23]

3.2. Representation Similarity Analysis for Efficient Task Taxonomy and Transfer
Learning (Yannic)

25

FIGURE 19: Taskonomy example of a hypergraph [84].

In the fourth step, the subgraph selection problem is solved using binary integer
programming (BIP)3, and a hypergraph is constructed. Figure 19 shows a created
hypergraph as an example. In the graph, each node is a task. An edge from node i to
node j implies that there exists a feasible transfer from task i to task j. The thickness
of the edge demonstrates the performance of the transfer (the thicker the edge, the
better the performance of the transfer).
In [84], the authors perform 3,000 knowledge transfers from source to target tasks
with over 47,886 graphics processing unit (GPU) hours of training time. To analyze
the generalization of the found task structure (called Taskonomy) the authors an-
alyzed an all-for-one scenario, which means that just one target-only task is used.
Target-only means that the task is never used as a source task (|τ| = 1 and |S| =
n − |τ| = n − 1), which is a typical usecase. Since the task is target-only, no task-
specific network is trained for it. Only 16,000 images were used for training a trans-
fer net (TN) based on the source tasks. With this procedure, the authors aimed to
localize the target task inside the Taskonomy graph.
The main disadvantage of the Taskonomy brute-force approach is its high compu-
tational cost. Performing the transfers is very resource intensive. Furthermore, for
every task, many human notations are necessary as the ground truth for training,
which is costly as well. Another problem is that when a researcher wants to ana-
lyze a new task that is not already contained in the graph, new transfers have to be
trained between the new task and all the tasks already included in the graph. There-
fore, the runtime grows polynomially withO(n2) with the number of tasks involved
(only with respect to the first order transfers) [59].

3.2 Representation Similarity Analysis for Efficient Task Tax-
onomy and Transfer Learning (Yannic)

The RSA approach was originally used in the neuroscience to calculate the similarity
between three different areas (brain-activity measurement, behavioral measurement
and quantitative computational modeling) by measuring the correlation between
brain data responses and computation or behavioral models [38][17].

3BIP is a mathematical optimization program in which all variables are boolean integers (0 or 1). It
is NP-complete.

26 Chapter 3. Related Literature

This RSA concept was adopted in CV [17] for a model-to-model similarity-comparison
approach in two applications, namely task taxonomy and TL. The following points
were investigated regarding the RSA approach:

• Task relationships between different tasks according to their similarity

• Size of model and size of image-set for adequate similarity measure

• Model-selection method in CV for TL

Dwivedi and Roig [17] adopted the methodology of RSA using it in combination
with RDMs to measure the similarity between different CV tasks. A RDM stores for
each respective visual task the dissimilarity between different representations, that
a task-based model outputs. These task-based RDMs are then compared with one
another by calculating the Pearson correlation between them, thus displaying the
similarity between the tasks. A higher similarity between the tasks is interpreted as
more suitable for TL. Dwivedi and Roig [17] describes the Taskonomy approach in
[84] as unsustainable due to the high degree of computational resources and train-
ing time needed. The authors mention, that each task from a set of pretrained tasks
needs to be trained from scratch every time, if they want to calculate the TLP of a
new task. The current state-of-the-art approach in the real world is also described as
incomplete, because it ignores and therefore probably overlooks pretrained models
that are more suitable for the target task. Dwivedi and Roig [17] claim that their
method overcomes both issues as it is more efficient and faster. The authors validate
their approach by comparing it to the TLP achieved and published in the Taskon-
omy experiment [84].

(a) RDM´s of two deep neural networks.
(b) Similarity calculation of two deep neural net-

works.

FIGURE 20: RSA-method [17].

Dwivedi and Roig [17] argue, that their approach bypasses the previously men-
tioned issues in an efficient manner, because their method does not need any model
training but only one forward pass and a small amount of data for the visualiza-
tion of task relationships. The RSA method is partitioned into two steps. A RDM
for each model is first obtained by using the representations of input images at a
certain layer through a forward pass. The representations are then used to cal-
culate a dissimilarity score between each pair of representations with the formula
1 − Pearson_correlation. Both steps are illustrated in Figures 20a, and Figure 20b.
After having obtained task-based RDMs, the similarity between the RDMs is ob-
tained through the lower or upper triangular part of the RDMs and the Spearman
correlation [17]:

3.3. Duality Diagram Similarity: A Generic Framework For Initialization Selection
In Task Transfer Learning (Daniel)

27

(a) Calculate task similarities.

(b) Compare similarities of a small, trained model
and a larger, pretrained model.

(c) Small pretrained model for new computer vision task in transfer learning.

FIGURE 21: RSA-approaches in [17].

Dwivedi and Roig [17] analyzed the usage of RSA in three areas, which are dis-
played in Figure 21. They concluded, that their RSA approach clusters similar tasks
into three groups as it is the reported in the Taskonomy paper explained in Section
3.1, namely in 2D, 3D and semantic tasks. It is also described that the similarities
between different tasks started to decrease when measured deeper in the network.
As a second result, they found that their method shows a high correlation with a
smaller model trained with the same number of images as with a larger network in
Taskonomy, which means that a smaller dataset promises the same transfer learning
results as is the case with a large dataset. Furthermore, the authors discovered, that
the RSA similarity score had a high correlation with the TLP of the Taskonomy ap-
proach. RSA seems to be an attractive alternative to the Taskonomy approach, due
to its good experimental results and its computational efficiency. Dwivedi and Roig
[17] also highlight the flexibility of the method and its potential usage in other areas
like MTL:

RSA can be used for deciding different branching out locations for dif-
ferent tasks, depending on their similarity with the representations at
different depth of the shared root. [17, p. 3]

3.3 Duality Diagram Similarity: A Generic Framework For
Initialization Selection In Task Transfer Learning (Daniel)

In Kshitij Dwivedi et al. [40], the authors propose a general framework called duality
diagram similarity (DDS) that helps selecting the optimal model initialization for TL
from a set of different source models. DDS is highly correlated with TL performance.
Furthermore, the DDS framework is useful for selecting the location in a model: the
specific layer from which to transfer. The general motivation in Kshitij Dwivedi et al.
[40] is to discover how one should select a model to achieve the highest possible TLP
on a new task when different pretrained models are available.

28 Chapter 3. Related Literature

The DDS method is based on duality diagram (DD)s4 introduced in Escoufier [18].
With DDS, it is possible to compare the representations of two deep neural network
(DNN)s. After comparing the DNNs, DDS predicts the TLP when a transfer is done
from one DNN to the other. DDS is formulized as follows:
A set of encoders of already trained tasks is given. The goal is to compare the similar-
ity of each of the pretrained tasks with the target task to create a ranking of predicted
TL-performance.
In the following, X refers to one of the pretrained tasks, while Y refers to the target
task: X and Y are matrices containing the features of the pretrained task and the
target task. These features are created by passing n images (feed forward) into the
DNNs and extracting the features for every image. The matrix D contains weights
for the images, while the matrices QX and QY store relations between the feature
dimensions of the pretrained task and target task, respectively.
Figure 22 visualizes the method of [40]. The process works in three steps:

1. Transform the data.

2. Generate pairwise distance maps.

3. Compare distance maps.

In the first step, the features X (or Y) in combination with D and QX (or D and QY)
are used to create the DD X̂ (or Ŷ) from D, X and QX: X̂ = DXQX (the same for
Ŷ = DYQY).
In the second step, a similarity function f is used to create the pairwise similarity
matrices MX and MY by giving X̂ and Ŷ as input to f .
Third, the similarity function g returns the similarity S of MX and MY (Equation 3.1)
(the index i in Equation 3.1 refers to the source task from the set of pretrained tasks):

Si = g(MX, MY) (3.1)

Kshitij Dwivedi et al. [40] experimented with different version for the similarity
function f . They used the functions linear, Laplacian, RBF, Pearson, Euclidean and
cosine. They report that the DDS combination containing Z-score5 for Q and D and
cosine function for f is the best option. In this work, Z-scoring is applied to D, X
and Q: D = Inxn − 1nxn/n, X = Xnxchw and Q = Schwxchw, where I is the identity
matrix; the matrix is filled with 1s, and X is the output feature map extracted from a
feed forward pass (with c being the number of channels, h the height, w the width
and n the number of images).
Using Z-score Spearman’s correlation outperforms Pearson’s correlation as the func-
tion g (see on Figure 22) for comparing the similarity matrices (g).

4The DD is a method based on the Principal Component Analysis, which can additionally deal
with changes of scale, variables, weighting of statistial units (for this work: feature representations),
and decentering of representations.[18]

5Z-scoring is a standardization method, using the mean µ and the standard deviation σ. The for-
mula for the z-score is z =

(x−µ)
σ

3.4. Deep Model Transferability From Attribution Maps (Daniel) 29

FIGURE 22: duality diagram similarity framework [40].

Kshitij Dwivedi et al. [40] compared DDS using cosine-similarity with DDS using
Laplacian as the kernel function f with the results of state-of-the-art methods: Taskon-
omy (as ground truth), attribution maps [59] (explained in detail in Section 3.4),
DeepLIFT [59], ε-LRP [59] and RSA [17] (explained in detail in Section 3.2).
The authors [40] compared the DDS method with the results of the Taskonomy ap-
proach [84] on a basis of 17x17 task transfers. They achieved a correlation of 0.86
with the Taskonomy ground truth in less than two minutes. With these results, the
authors report a 10% increase in performance compared with state-of-the-art meth-
ods, and the method is several magnitudes faster than the brute-force approach of
[84].

3.4 Deep Model Transferability From Attribution Maps (Daniel)

The approach of Song et al. [59] uses the attribution maps of DNNs to estimate
transfer ability. To accomplish this, it projects the DNNs into a model space in which
the points in the space refer to networks; the distance between points gives the mea-
sure of relatedness between two DNNs and is calculated by the deviations of their
produced attribution maps.
The model space is defined as a space on top of the attribution maps where distance
between points represents the distance between produced attribution maps [59].
The general assumption of this approach is that models that focus on similar regions
of input images are expected to produce correlated representations, and correlated
representations give rise to favorable transfer learning results.
The authors specify their problem setup similarly to the problem setup of Taskon-
omy in Section 3.1:
M = {m1, ..., mN} is a set of pretrained models, in which N is the number of models
involved. ti is the task treated by model mi and the task dictionary τ is given by
τ = {t1, ..., tN}. It is assumed that no labeled annotations are available, and the goal
is to

efficiently quantify the transfer ability between different tasks in τ, so
that given a target task, we can read out from the learned transfer ability

30 Chapter 3. Related Literature

matrix the source task that potentially yields the highest transfer perfor-
mance. [59]

The approach involves a three step process that is visualized in Figure 23:

1. Create probe-dataset.

2. Compute attribution maps.

3. Estimate model transfer ability.

In the first step, a probe-dataset is created. This is done with unlabeled data, so
no human supervision is necessary. For this, a random selection of 1,000 images is
taken. The probe-dataset is the same for all tasks. The idea of the probe-dataset is
that, later on, the responses of the different DNNs are compared to the same stimuli
(the stimuli that is the same for all DNNs is the probe-dataset).
In the second step, the attribution maps are created. Three different attribution meth-
ods are used: saliency map6, DeepLIFT7 and ∈-LRP8.
In the third step, model transfer ability is estimated. This is accomplished by calcu-
lating the cosine-similarity between the averaged attribution maps.
In comparison to Taskonomy the attribution map approach was shown to be faster
and cheaper in terms of computational requirements. Song et al. [59] report their
approach to be in the factor of EN(T−1)

M more efficient. E refers to the epochs trained
on the training data which has the size N, while T is the size of the task dictionary
and M is the size of the Probe-dataset. Simultaneously, the attribution map approach
produces a highly similar tansferability topology to Taskonomy. Therefore, the au-
thors propose the attribution map approach as a competent transferability estimator
that is especially useful when the task dictionary is large or frequently updated so
that recalculation is necessary.

FIGURE 23: Three-step process of model transferability graph cre-
ation using attribution maps [59].

The advantages of these methods are that there are no constraints on the architec-
tures of the DNNs and no human annotations are required. Furthermore, updating
the model space is inexpensive since it only requires calculating the nearest neigh-
bors in the model space, which is much cheaper than updating in Taskonomy.

6The attribution map saliency map calculates the absolute value of the partial derivative of the
output for a given input. [59]

7DeepLIFT is an improvement of the saliency maps method. It multiplies the gradient with the
input signal: This is equal to a first-order Taylor approximation of how the output would change
when the input is fixed to zero [55]

8∈-LRP“computes the attributions by redistributing the prediction score (output) layer by layer
until the input layer is reached.” [59, p. 4]

31

Chapter 4

Many-To-One Task Similarity
(Daniel)

In Chapter 3, we discussed current methods targeting the question how to find the
best pretrained model for doing transfer learning for a selected target task?
Zamir et al. [83] present a fully computational approach that gives the most pre-
cise results. However, it is highly cost intensive and therefore not feasible for many
applications. Song et al. [59] use attribution maps for predicting the TLP, while
Dwivedi and Roig [17] and Kshitij Dwivedi et al. [40] use feature map correlations
of source and target task as their basis for predicting TLP. All the mentioned meth-
ods based on attribution maps and feature representations are several magnitudes
cheaper than the fully computational Taskonomy approach. However, they have
one major drawback: None of them can use the combined knowledge of multiple
sources for the TLP prediction.

With this thesis, we propose a new method we call Many-To-One Task Similarity
(MOTS). With MOTS, we tackle the possibility of using multiple source tasks for the
TLP prediction. MOTS is a method for predicting TLP and the similarity between
source and target tasks based on a couple of given source models. MOTS takes
one or multiple source-task models and a target task as input and ranks the source
models in terms of TLP when using them as the source. MOTS is mainly built on the
work of Kshitij Dwivedi et al. [40] and Dwivedi and Roig [17]. However, the main
difference is that it can use multiple source tasks as sources for the transfer. Figure
24 presents a general overview of the method.

32 Chapter 4. Many-To-One Task Similarity (Daniel)

FIGURE 24: MOTS ranking generation.The representations of differ-
ent source-task combinations are compared by MOTS to representa-
tions of the target task. MOTS returns a ranking of all source com-
binations for the provided target task. The source combinations are

ordered by their predicted transfer learning performance.

MOTS uses the extracted feature maps of all source tasks and the feature map of the
target task. It compares the similarity of source and target task by creating RDMes
out of the features and compares these RDMs to find similarities. The prediction of
TLP comes from the R2-value of a linear regression from source RDMs to the target
RDM.
The MOTS process in detail is the following:

1. In the first step, the activations/feature maps of all source models need to be
extracted. This is done by forwarding N images through the network and ex-
tracting the feature maps of the layer from which to transfer from. Having
this, an RDM of dimension N is calculated from the feature maps individu-
ally from each model. For the distance function k, we use the cosine function
because Kshitij Dwivedi et al. [40] identify it as the most robust. These steps
need to be performed for all source tasks and the target task to create an RDM
independently for each model (see Figure 25).

FIGURE 25: Step 1: RDM creation from feature maps.

2. In the second step, a set of training images is used to estimate the weights
for a linear regression using the RDMs of the source models as independent

Chapter 4. Many-To-One Task Similarity (Daniel) 33

variables and the RDM of the target task as the dependent variable (See Figure
26).

FIGURE 26: Step 2: Fit linear regression.

3. In the third step a set of test images is used to evaluate the quality of the fit by
calculating the R2 value. (See Figure 27)

FIGURE 27: Step 3: Extract measure of quality of fit (R2).

For evaluating MOTS, we use a ground truth that gives the actual TLP of the trans-
fers from each source task. Figure 28 displays the evaluation of MOTS against a
provided ground truth. After creating the ranking of all source combinations, the
MOTS rankings are compared to the actual TLP as the ground truth. The compari-
son between both rankings is done using Spearman’s correlation (see Figure 28.

FIGURE 28: MOTS evaluation by comparing MOTS ranking with
ground truth ranking of real transfer learning performances.

34

Chapter 5

Experiments and Results

This chapter presents the implementation of MOTS, the experiments we performed
and the results of each experiment. Our experiments using MOTS for single-source
transfers and multi-source transfers as well as a combination of both and the com-
parison with the ground truth and other state-of-the-art methods are described in
Section 5.3. We benchmark the results of MOTS against other state-of-the-art results,
that use the same ground truth for comparison.

5.1 Datasets (Yannic)

Taskonomy:

This dataset was created for the deployment of the Taskonomy experiments in [84].
It consists of a variety of indoor scenes with the following statistics of the dataset:

• 4.5 million scenes

• 600 buildings

• 25 tags per image

• 1,024 resolution for taxonomy and transfer learning tasks.

The Taskonomy dataset includes annotations for every tasks on every image and
makes it therefore suitable in a TL context as ground truth data according to Zamir
et al. [84]. They argue that through the annotations for each image on each task,
task intrinsics play a major role in TLP, less so the characteristics of each pixel of an
image, when a task is being trained on them and then used for TL. The TLP is thus
not distorted as it could be, when using the second approach. The TL results show
therefore a more significant measure in the way this dataset was built.
We use the Taskonomy dataset for our experiments in chapter 5.3 to compare the
performance of our MOTS method with other state-of-the-art similarity methods.

Pascal VOC Semantic Segmentation:

The Pascal VOC dataset consists of outdoor scenes with the aim to offer different
images in terms of variability to avoid a bias towards something specific inside of
an image when the pattern occurs in multiple images. In terms of variability, this
dataset provides the following characteristics according to [20][19]:

• object size

• orientation

5.1. Datasets (Yannic) 35

• pose

• illumination

• position

• occlusion

The Pascal VOC 2012 dataset includes 20 object categories of pixel-accurate segmen-
tation annotations, bounding box annotations and object class annotations. Pascal
VOC was created with two intentions according to [20][19]:

• to offer a publicly available dataset with ground-truth annotations to measure
the performance of self-created algorithms

• to hold an annual competition with five challenges ranging from classification
to detection, segmentation, action classification and person layout and dataset
annotations specific to these tasks with the goal of new innovative implemen-
tations and creations of state-of-the art methods in the respective categories.

We used the annotated segmentation dataset for our experiment. The Pascal VOC
2012 segmentation dataset consists of 1,464 training images and 1,449 validation im-
ages [49].
We used the dataset on our first two experiments to compare the performance of our
method MOTS with other state-of-the-art similarity methods and thereafter for our
last experiment in Section 5.4 to validate our approach with a MTL architecture.

NYUD:

The so-called NYU-depth (NYUD) dataset consists of indoor scenes, that are ex-
tracted from video sequences and recorded by the RGB and depth cameras from Mi-
crosoft Kinect [56]. There are currently two versions of the dataset available: NYUD
version 1 (v1) [56] and NYUD version 2 (v2) [57]. NYUD v1 covers 12 object cate-
gories in 2,347 frames extracted from different environments and manually labeled
with the goal to combine depth maps intensities and dense labels of the images [56].
The NYUD v2 dataset is a new version of NYUD v1 that contains the following:

• 1,449 RGB and depth images

• 464 diverse annotated indoor scenes across 26 scene classes

Each image consists of a labeled class and an instance number for objects being in the
same class. Furthermore, support annotations are included, which are represented
in a triplet form shown by Silberman et al. [57]:

[Ri, Rj, type] (5.1)

where:

1. Ri is region ID of the supporting object

2. Rj is the region ID of the supported object

3. type indicates whether the support is from below (e.g., cup on a table) or from
behind (e.g.,picture on a wall).

The v2 dataset was created to handle messy and untidy scenes with two goals:

36 Chapter 5. Experiments and Results

• to disassemble each characteristic inside of a room, which are typically floor,
walls, supporting surfaces and object regions, and

• to retrieve support relationships between the characteristics of a room.

We used NYUD v2 in Section 5.4 to validate our MOTS approach and the transfer-
ability in a new scenario with a modern MTL-architecture.

5.2 Hardware Used for Experiments (Daniel)

The training of neural networks is highly resource intense in the area of DL and even
more so with the usage of images or video data. Therefore, it is necessary to have
sufficient hardware availability. Especially the GPU is important since GPUs are
made for processing many small computations in a parallel manner [53]. In neural
networks in each forward pass, all calculations from each neuron of one layer can be
done in parallel. Therefore, GPUs can greatly increase the training speed in compar-
ison to central processing unit (CPU) training. Since most of the experiments in this
thesis could not be run locally on our machines (or simply would take too long), we
used two Ubuntu servers. The network hostnames of the two servers are g5 and g4.

g5-server:
The g5 is a Linux Ubuntu server using Linux kernel version 4.15.0-74-generic. It is
a 64 bit version with 754 GiB of memory. The CPU is an Intel(R) Xeon(R) Gold 5218
CPU @ 2.30GHz with 16 physical CPU cores. The g5 has four NVIDIA Tesla V100
SXM2 32GB as GPUs that contain about 32,510 MiB GPU memory and a maximum
power capacity of 300 watts each. CUDA version 10.2 is installed.

g4-server:
The g4 is a Linux Ubuntu server using Linux kernel version 5.4.0-72-generic. It is a
64 bit version with 1 TiB of system memory. The CPU is an AMD EPYC 7452 32-core
processor with 32 physical cores; g4 has four A100-SXM4-40GB as GPUs that contain
about 40,536 MiB GPU memory and a maximum power capacity of 400 watts each.
CUDA version 11.2 is installed.

All our code was run in a single GPU manner. However, we used the different GPUs
for different calculations in parallel.

5.3 MOTS in Comparison with Other State-Of-the-Art Meth-
ods

5.3.1 Experimental Setup (Yannic)

Ground Truth:
We used the TL results from the Taskonomy experiment [84] as the ground-truth
data for comparison using our similarity method. We obtained the ground-truth file
1 from the GitHub page of Taskonomy in [66].
For the execution of our experiment on the Pascal VOC dataset, we used the ground
truth from the DDS experiment [40], which is provided in the respective GitHub

1Ground truth files are downloadable at https://github.com/StanfordVL/taskonomy/tree/master/
results/affinities . We use the ground truth file affinities.pkl

5.3. MOTS in Comparison with Other State-Of-the-Art Methods 37

page of DDS 2 and consists of information about the TLP regarding the target task
Pascal VOC semantic segmentation.

Tasks:
We used Taskonomy tasks from the Taskonomy experiment conducted by Zamir et
al. [84] and described in 3 with the goal to research task-relationships between 26
tasks, ranging from 2D, 2.5D to 3D as well as semantic tasks. In the Taskonomy
experiment, the TLP was calculated from a variety of different source tasks to one
target task based on the 26 Taskonomy tasks. With respect to these experiments, we
used the TL results of all source-task combinations to one target task as the ground
truth, which included 471 transfers in different task combinations. The tasks we
used are described in Table 3. We choose these tasks to make MOTS comparable to
other state-of-the-art methods, especially to the current best performing similarity
method DDS [40]. We obtained the ground-truth transfer results from a variety of
different task-combinations, which were either transfers from one source task to one
target task or two source tasks to one target task.
For the execution of our experiment on the Pascal VOC dataset, the same 17 Taskon-
omy tasks from Table 3 were used as source tasks to do single-source transfers to the
Pascal VOC semantic segmentation task, which gave us in total 17 TL results. The
ground-truth TL results included single-source transfers from each of the 17 Taskon-
omy tasks to the target task Pascal VOC semantic segmentation.

Feature Maps:
We used feature representations to build our RDMs by calculating the pairwise dis-
similarity between each feature map. Resulting from this, we obtained task-based
RDMs for each task described in Table 3. We used in total 5,000 feature maps that
we found in the DDS experiments conducted by Dwivedi and Roig [17]. 3

2Ground truth informations are stored inside a list under the following link:
https://github.com/cvai-repo/duality-diagram-similarity/blob/master/jupyter_notebooks/
DDS_vs_transferlearning(Pascal).ipynb

3Feature maps are downloadable at the GitHub repository of DDS in https://github.com/cvai-
repo/duality-diagram-similarity/tree/master/features
We use the following files:

• taskonomy_pascal_feats_taskonomy_5000.pkl for 5,000 feature maps from the Taskonomy
dataset

• taskonomy_pascal_feats_pascal_5000.pkl for 5,000 feature maps from the Pascal VOC dataset

38 Chapter 5. Experiments and Results

Task
Autoencoding

Curvature Estimation
Denoising

Edge Detection (2D)
Edge Detection (3D)

Keypoint Detection (2D)
Keypoint Detection (3D)

Reshading
Depth Estimation

RGB2Mist
Surface Normal Estimation
Room Layout Estimation

Segmentation, Unsupervised(2D)
Segmentation, Unsupervised(2.5D)

Vanishing Point Estimation
Segmentation, Semantic

Classification, Semantic (1000-classes)

TABLE 3: Taskonomy tasks used in our experiment.

5.3.2 RDM Configuration (Yannic)

We examined different RDM sizes and different train-test split procedures in order
to find the optimal size and the optimal RDM train-test split, that gives MOTS the
best overall result. For each task-based RDM, we used z-standardization as our
normalization function and cosine distance metric. There are four different RDM-
train-test split methods for the linear regression of MOTS in which the size of the
RDM test set is chosen to be equal to the size of the RDM training set or fixed at a
size of 500 images. Training and test sets are either completely identical and called
“train-train", meaning they use identical feature maps, or completely unequal and
called “train-test", meaning the training set and test set are based on different feature
maps. We use the term growing, which means, that both train and test-set increase in
size. We as well use the term fixed, which means, that the RDM size always remains
the same. We selected RDM sizes and train-test split procedures using the following
logic:

1. RDM train-test split, where train set = test set and train and test-sets are grow-
ing.

2. RDM train-test split, where train set 6= test set and train and test-set are grow-
ing.

3. RDM train-test split, where train set 6= test set and train-set is growing and
test-set is always fixed at a size of 500 same images.

Table 4 shows our results for Cases 1 and 2, and Table 5 shows our resulting RDMs
for Case 3. We executed MOTS on each of these predefined sizes and selected the
one that performs the best in comparison with state-of-the art methods.

5.3. MOTS in Comparison with Other State-Of-the-Art Methods 39

RDM train size 50 200 400 600 800 1,000 1,200 1,400 ... 2,400
RDM test size 50 200 400 600 800 1,000 1,200 1,400 ... 2,400

TABLE 4: RDMs, that we use for the prediction of our target RDM
and are split into a train and test RDMs. So, when we use a train
RDM with 50 images, we also use a test-RDM with 50 images. When
we use a train RDM with 200 images, then we use a test RDM with
200 images, and so on. We use this so-called growing approach for
the RDM train-test split procedure in which the train and test RDMs
consists of different images; for the case of train and test being equal,

the train RDM and test RDM use the same images.

RDM train size 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
RDM test size 500 500 500 500 500 500 500 500 500

TABLE 5: RDMs, that we use for the prediction of our target RDM and
are split into a train and test RDMs. We use a fixed test-set size of 500,
whereas the train RDM increases in terms of the number of images
included. So, when we use a train RDM with 500 images, then we
also use a test RDM with 500 images. When we use a train RDM
with 1,000 images, we still use a test RDM with 500 images, and so
on. We use this so-called fixed approach for the RDM train-test split
procedure, in which train and test-RDMs consists of different images,

and the test RDM always uses the same 500 images.

5.3.3 Data Preparation and Pre-processing (Yannic)

The Taskonomy ground truth is extracted from the Taskonomy GitHub repository
4 and stored in a Pandas DataFrame format5. We then analyzed the DataFrame by
its unique tasks (20 Taskonomy tasks are included in the ground truth file) and ex-
cluded each task, be it a source or target task, if it was not one of the 17 Taskonomy
tasks we used for comparison. We ignored in that way the following Taskonomy
tasks and their TL results from the ground truth file:

• colorization

• class places

• inpainting whole

As a result, we obtained a DataFrame-structure as displayed in Table 6 that consists
of information about single-source transfers to one target task or two-source task
transfers to one target task and their respective TLP. We interpreted task combina-
tions that use the same task name in source1 and source2 as a single-source transfer
to one target and renamed the respective cell in the “source2" column to “na".

4https://github.com/StanfordVL/taskonomy .
5https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

40 Chapter 5. Experiments and Results

Source1 Source2 Target Ground_Truth
segment25d na rgb2sfnorm 0.01346
class_1000 na edge3d 0.00430

...
curvature reshade segment25d 0.04501

TABLE 6: Example of what ground truth DataFrame looks like on
Taskonomy with 471 transfers.

The ground-truth data for transfers to the Pascal VOC semantic segmentation task
had already been prepared and stored in a list in the GitHub repository of DDS6. It
consists of 17 source transfers to Pascal VOC semantic segmentation. Part of this list
is displayed in Table 7.

Source Target Ground_Truth
autoencoder Pascal VOC semantic segmentation 0.59016
class_1000 Pascal VOC semantic segmentation 0.64929
curvature Pascal VOC semantic segmentation 0.65294

...
vanishing_point Pascal VOC semantic segmentation 0.58918

TABLE 7: Ground truth on Pascal VOC with in total 17 transfers.

5.3.4 R2 and Bayes Factor Calculation for Source and Target Task Combi-
nations (Daniel)

With the creation the DataFrame as described in Section 5.3.3, we obtained a DataFrame
in which each row represents one source/sources-target task combination with its
TLP as the ground truth. In the following, we add two more columns to this DataFrame.
These columns contain the prediction of the TLP from MOTS, one using R2 and the
other the BF. We use the following procedure to accomplish this: This happens in
the following procedure:

1. We created the RDMs based on the different configuration cases from Section
5.3.2.

2. For creating predictions of TLP, we iterated over the rows of the created DataFrame
(see Section 5.3.3) and read out the one or two source tasks and the target task
in the row.

3. We loaded the RDMs for the source/sources and for the target task.

4. We extracted the upper triangular of the one or two source RDMs and flattened
the matrix to a vector containing the values of the source RDMs.

5. We also extracted the upper triangular of the target RDM and flattened it to a
target vector.

6. We perform a linear regression based on the RDM/RDMs of the source/sources
for predicting the RDM of the target task. The source-task RDMs were used as
the independent variable of the linear regression and the target task RDM was
the dependent variable.

6https://github.com/cvai-repo/duality-diagram-similarity

5.3. MOTS in Comparison with Other State-Of-the-Art Methods 41

7. We calculated the BF value by creating a random null-model of the BF ap-
proach (explained in Section 2.6) for comparison and used the BF as the quality
of fit for the linear regression in one of the two added columns.

8. We stored the R2 value as an alternative measure for the quality of fit in the
second of the two added columns.

Table 8 shows how the DataFrame looks at this point.

source1 source2 target ground_truth bayes_factor r_2
segment25d na rgb2sfnorm 0.01346 564212 0.5019
class_1000 na edge3d 0.0043 148045 0.1671

...
denoise segment2d edge2d 0.0094 410042 0.3974

TABLE 8: Example of the calculated DataFrame.

5.3.5 Correlation Calculation Between MOTS and Ground Truth (Yannic)

The results presented in Section 5.3.4 provide the opportunity to calculate the cor-
relation between the ground truth and R2 or the BF. We calculated the correlation
using the Spearman ranked correlation coefficient explained in Section 2.6. The cal-
culation is immediately processed with a single pre-built function offered in the Pan-
das library 7, which allowed us to specify the column and method for the correlation
calculation. The "corr" function automatically ranks cells in a descending order and
does that for the ground-truth column and the R2 and BF columns. It then calculates
the correlation based on the rankings of the ground truth and BF or ground truth
and R2.
We performed the correlation calculation in two steps. We first grouped each target
task by its name and stored each individual group in a dictionary with the respec-
tive target name as the key. We then performed the calculation based on each of our
target tasks so that we obtained the task-based correlation between the ground truth
and our metric. To obtain the overall correlation of all tasks, we used the mean of all
task-based correlations summed together and divided by the number of tasks.

5.3.6 Search for Optimal Image Amount for RDMs (Yannic)

This section provides an overview of several experiments we executed based on
different RDM train-test split sizes. We report results on the basis of our created
DataFrame, our calculated BF and R2 values from Section 5.3.4, the task-based group-
ings in Section 5.3.5 and the Spearman correlation between the ground truth and our
metric, R2 or BF. The correlation between the ground truth and R2 and the correla-
tion between the ground truth and BF are nearly identical and only differ after the
seventh decimal place. We therefore omit the presentation of both results and show
one result rounded to four decimal places. We analyzed the behaviour of MOTS
based on the different RDM sizes we used for the prediction and looked for the
RDM size that gives the overall best performance.

We present results for single-source transfers, multi-source transfers (only two source-
transfers) and all-source transfers (one and two-source transfers) on the Taskonomy

7https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html

42 Chapter 5. Experiments and Results

dataset, on the Pascal VOC dataset and for domain difference to investigate the com-
mon problem involved in transfers from one dataset (Taskonomy) to a completely
different dataset (Pascal VOC).

Single-Source Transfers:
Each executed experiment on the Taskonomy dataset, both with an equal RDM train-
test split size for train and test in Table 9 and with a constant test-set size of 500 im-
ages in Table 15, showed good results and a high mean correlation value between
TLP and MOTS with a value of around 0.86. It is noticeable, that all correlation
values show very similar and very close results to each other, which excludes the
possible consideration of MOTS being dependable on a certain number of images
(be it small or large). Nonetheless, (around 0.87) was obtained with a RDM train
and test size of 2,400.
Table 11 shows results for target-task-based correlations between TLP and MOTS
for a train-test split size of 2,400. It especially outlines class_1000 and denoising as
target tasks with a clearly lower correlation than the other ones (below 0.80).
We found a different pattern, when we executed our experiments on the Pascal VOC
dataset with the target task Pascal VOC semantic segmentation shown in Table 12.
Especially for the case of domain equality, there is a pattern that tells us, that a higher
size for our RDM train and RDM test supports a better performance of MOTS, with
the best overall performance at 2,200 with around 0.81. The perfomance for the case
of domain difference (using images from Taskonomy to predict Pascal VOC seman-
tic segmentation) was in most cases average at best, with the best result at a size of
50 (0.6789). MOTS underpins the issue of using TL in different domain areas, due to
the differently learned representations of source tasks.

Train-Train RDMs Train-Test RDMs

Size
Metric

MOTS MOTS

50 0.8647 0.8627
200 0.8698 0.8621
400 0.8715 0.8629
600 0.8699 0.8686
800 0.8674 0.8775

1,000 0.8643 0.8787
1,200 0.8674 0.8777
1,400 0.8684 0.8766
1,600 0.8708 0.8758
1,800 0.8718 0.8804
2,000 0.8719 0.8785
2,200 0.8741 0.8807
2,400 0.8743 0.8797

TABLE 9: Mean correlation between TLP and MOTS for single-source
transfers on 17 Taskonomy tasks and the Taskonomy dataset with a

RDM-train- and test-set sizes being is equal.

5.3. MOTS in Comparison with Other State-Of-the-Art Methods 43

Train-Test RDMs

Size
Metric

MOTS

50 0.8747
200 0.8766
500 0.8753

1,000 0.8746
1,500 0.8751
2,000 0.8764
2,500 0.8771
3,000 0.8776
3,500 0.8770
4,000 0.8759
4,500 0.8752

TABLE 10: Mean correlation between TLP and MOTS for single-
source transfers on 17 Taskonomy tasks and the Taskonomy dataset

with a fixed test-set size of 500.

Train-Train Growing with RDM Size 2,400
Task/ Metric MOTS

Autoencoder 0.8390
Class 1000 0.7538
Curvature 0.8118
Denoising 0.7854
Edge 2D 0.9276
Edge 3D 0.9364

Keypoiont 2D 0.8258
Keypoint 3D 0.8188

Reshade 0.9294
Depth 0.9767

RGB2Mist 0.9732
Surface Normals 0.8872

Room Layout 0.9013
Segment 2.5D 0.8416
Segment 2D 0.9215

Semantic Segmentation 0.8513
Vanishing Point 0.8820

TABLE 11: Target-task-based correlation between TLP and MOTS
based on all source transfers to that target for single-source transfers

on 17 Taskonomy tasks.

44 Chapter 5. Experiments and Results

Train-Train
RDM on Pascal VOC

Train-Test
RDM on Pascal VOC

Train-Train
RDM on Taskonomy

Train-Test
RDM on Taskonomy

Size
Metric

MOTS MOTS MOTS MOTS

50 0.6373 0.6618 0.5686 0.6789
200 0.7059 0.7010 0.5711 0.5270
400 0.6985 0.7475 0.5245 0.5172
600 0.7696 0.7745 0.5172 0.5882
800 0.7475 0.7623 0.5123 0.6103

1,000 0.7843 0.7770 0.5319 0.5662
1,200 0.7794 0.7941 0.5735 0.5539
1,400 0.7500 0.7745 0.5711 0.5172
1,600 0.7672 0.8039 0.5637 0.5686
1,800 0.7623 0.7990 0.5637 0.5931
2,000 0.7819 0.7917 0.5735 0.5368
2,200 0.8137 0.7941 0.5735 0.5368
2,400 0.7990 0.7574 0.5637 0.5466

TABLE 12: Mean correlation between TLP and MOTS for 17 Taskon-
omy tasks and Pascal VOC semantic segmentation as target task with

a RDM-train and test-set size being is equal.

Train-Test
on Pascal VOC

Train-Test
on Taskonomy

Size
Metric

MOTS MOTS

50 0.7574 0.5858
200 0.7255 0.5539
500 0.7255 0.5196

1,000 0.7255 0.5270
1,500 0.7255 0.5270
2,000 0.7451 0.5270
2,500 0.7451 0.5270
3,000 0.7451 0.5270
3,500 0.7451 0.5270
4,000 0.7451 0.4951
4,500 0.7451 0.4951

TABLE 13: Task-based correlation between TLP and MOTS on 17
Taskonomy tasks and Pascal VOC semantic segmentation as target

task with a fixed test-set size of 500.

Multi-Source Transfers:
This paragraph describes experiments of multi-source transfers including only two
source-tasks transfers. We performed experiments on the Taskonomy dataset, both
with with an equal RDM train-test split size as shown in Table 9 and a fixed RDM
test-set size of 500 images as shown in Table 15. We obtained multi-source transfer
results, that reveal a contrary picture to single-source transfer results with a correla-
tion, that is at best average (below 0.5) in each case.
Analyzing these results on each target task shown in Table 11 manifests the average

5.3. MOTS in Comparison with Other State-Of-the-Art Methods 45

correlations we obtained. There are some tasks, that display negative correlation
(keypoint 2D, semantic segmentation, etc.) or even a perfect correlation (Class 1000).

Train-Train Train-Test
Size/ Metric MOTS MOTS

50 0.4220 0.3552
200 0.3928 0.4538
400 0.4496 0.4130
600 0.4298 0.4013
800 0.4112 0.4070

1,000 0.4090 0.4067
1,200 0.4217 0.4113
1,400 0.4112 0.4331
1,600 0.4108 0.4300
1,800 0.4153 0.4301
2,000 0.4089 0.4325
2,200 0.4264 0.4112
2,400 0.4183 0.4161

TABLE 14: Multi-source transfers of 17 Taskonomy tasks on one target
task with the Taskonomy dataset and with a RDM train- and test-set

sizes being as equal.

Train-Test RDMs
Size/ Metric MOTS

50 0.3893
200 0.4190
500 0.4001

1,000 0.4140
1,500 0.4061
2,000 0.4029
2,500 0.4029
3,000 0.4029
3,500 0.4029
4,000 0.4029
4,500 0.3995

TABLE 15: Multi-source transfers to one target task on 17 Taskonomy
tasks on Taskonomy dataset and a test-set size fixed of 500 images.

46 Chapter 5. Experiments and Results

Train-Test Growing with RDM Size 1,800

Task/ Metric MOTS

Autoencoder 0.7714
Class 1000 1.0000
Curvature 0.4424
Denoise 0.7714
Edge 2D 0.0286
Edge 3D 0.0061

Keypoint 2D -0.3143
Keypoint 3D 0.4788

Reshade 0.0667
Depth 0.6727

RGB2Mist 0.7939
Surface Normals 0.8667

Room Layout 0.5273
Segment 2.5D 0.5879
Segment 2D -0.2121

Semantic Segmentation -0.2364
Vanishing Point 0.7697

TABLE 16: Target-task-based correlation between TLP and MOTS
based on all source transfers to that target.

All-Source Transfers:
Table 17 shows the results of our experiments executed on the Taskonomy dataset
with 17 Taskonomy tasks and equal RDM train- and RDM test-set sizes, Table 18
shows the same information for a fixed test-set size of 500 images. Similar to the
single-source case, we obtained good results and high mean correlation values be-
tween TLP and MOTS with values ranging from 0.89 to 0.91. All correlation values
appear to be very similar and provide close results to one another. The best result
(0.9038) was obtained with a RDM train-test size of 1,800. Table 19 presents results
for target-task-based correlations between TLP and MOTS for a train-test split size of
1,800. Each target represents a high correlation with a value of at least 0.80, but there
are more with values ranging above 0.90. By comparing these results (especially 19
with multi-source transfers or single-source transfers it is clear to see, that all-source
transfers achieve better results than the other two independently. We therefore note,
that a mix between single and multiple sources should be included in TL.

5.3. MOTS in Comparison with Other State-Of-the-Art Methods 47

Train-train Train-test
Size/ Metric MOTS MOTS

50 0.8946 0.8890
200 0.8973 0.8953
400 0.9020 0.8971
600 0.9011 0.8990
800 0.9001 0.9028

1,000 0.8991 0.9038
1,200 0.9002 0.9023
1,400 0.9011 0.9022
1,600 0.9008 0.9019
1,800 0.9015 0.9038
2,000 0.9012 0.9032
2,200 0.9026 0.9035
2,400 0.9023 0.9037

TABLE 17: All-source transfers of 17 Taskonomy tasks on one target
task with the Taskonomy dataset and with a RDM train-test sizes be-

ing as equal.

Train-Test RDMs
Size/ Metric MOTS

50 0.8993
200 0.9023
500 0.9011

1,000 0.9013
1,500 0.9013
2,000 0.9018
2,500 0.9018
3,000 0.9021
3,500 0.9021
4,000 0.9014
4,500 0.9010

TABLE 18: All-source transfers to one target task on 17 Taskonomy
tasks on Taskonomy dataset and a test-set size fixed at 500 images.

48 Chapter 5. Experiments and Results

RDM Train-Test Growing with RDM Size 1,800
Task/ Metric MOTS

Autoencoder 0.9167
Class 1000 0.8450
Curvature 0.8302
Denoise 0.9029
Edge 2D 0.8886
Edge 3D 0.8940

Keypoint 2D 0.9029
Keypoint 3D 0.9119

Reshade 0.9252
Depth 0.9634

RGB2Mist 0.9799
Surface Normals 0.9491

Room Layout 0.9334
Segment 2.5D 0.8777
Segment 2D 0.8777

Semantic Segmentation 0.8196
Vanishing Point 0.9462

TABLE 19: Target-task-based correlation between TLP and MOTS
based on all source transfers to that target.

5.3.7 MOTS Results for Single-Source Transfer Learning Prediction (Daniel)

After creating our DataFrame with the ground truth values as well as our predictions
of R2 and BF, we compared our results with already existing methods. Since existing
state-of-the-art methods can only use one source task for the prediction, we decided,
for the purpose of comparability to analyze MOTS when just one source task is used.
In this way, MOTS is directly comparable. Therefore, we temporarily left out all rows
with two sources included in the DataFrame (see the example visualization in Table
20).

source1 source2 target ground_truth bayes_factor r_2
segment25d na rgb2sfnorm 0.0135 564212 0.5019
class_1000 na edge3d 0.0043 148045 0.1671

...
keypoint3d na rgb2depth 0.0317 759271 0.6085

TABLE 20: Example of the calculated DataFrame. na stands for "not
available" and means in this case that there is no source2, and there-

fore the row is just a single-source transfer.

Futhermore, we filtered the DataFrame for each target task so that we generated
a DataFrame for each target task in which all the rows are rows containing transfers
to the mentioned target task. After that, we calculated the Spearman’s correlation
between the columns of the ground truth of the Taskonomy TLP and the column
of R2 as our prediction for each target task. Calculating the average over all tasks,
we came to a TLP prediction of 0.880, thereby showing outperformance over existing
state-of-the-art methods. Table 63 shows the correlation of single-source TLP predic-
tion with the ground truth on the Taskonomy dataset grouped by each target task.

5.3. MOTS in Comparison with Other State-Of-the-Art Methods 49

Since the correlation of the ground truth and our metrics for the quality of fit for R2

and the BF only differ at the seventh decimal point, we summarized both metrics to
one column and named it MOTS.

Target Task MOTS
autoencoder 0.8495
class_1000 0.7609
curvature 0.8118
denoise 0.8012
edge2d 0.8820
edge3d 0.9381

keypoint2d 0.8627
keypoint3d 0.8293

reshade 0.9416
rgb2depth 0.9785
rgb2mist 0.9838

rgb2sfnorm 0.8855
room_layout 0.9136
segment25d 0.8434
segment2d 0.9215

segmentsemantic 0.8670
vanishing_point 0.8960

TABLE 21: Correlation tasks of target task with ground truth using
1,800 Taskonomy images.

Pascal VOC:
After analyzing MOTS in a single-source context on the Taskonomy dataset, we as
well evaluated it using the Pascal VOC dataset to prove that MOTS performance
is generalizable over the Taskonomy dataset to other datasets as well. The proce-
dure of this experiment was the same as described in this section for the Taskonomy
experiment. However, as a target task, just the Pascal VOC target task was given,
and for RDM creation, the images from the Pascal VOC dataset were used. Table 64
shows the results for MOTS with single-sources using the datasets Taskonomy and
Pascal VOC and comparing them to the DDS method. It is clear that MOTS out-
performs DDS with both cosine and Laplacian-function in the domain transfer case,
where the Pascal VOC semantic segmentation task is predicted by using Taskonomy
images for the RDMs (right column), however MOTS performs slightly worse (by
0.002) than DDS with Laplacian while predicting Pascal VOC semantic segmenta-
tion tasks while using Pascal VOC images for RDM creation.

Method Pascal VOC Taskonomy

DDS(f=cosine) 0.789 0.539
DDS(f=Laplacian) 0.801 0.581

MOTS 0.799 0.593

TABLE 22: Correlation of single-source transfer learning for Pascal
VOC semantic segmentation. For both MOTS and DDS, the RDMs
were computed with 1,800 images. We created RDMs using images

of different datasets (Pascal VOC and Taskonomy).

50 Chapter 5. Experiments and Results

5.3.8 MOTS Results for Multi-Source Transfer Learning Prediction (Daniel)

Based on our task-based RDMs and source-target combinations, we calculate the
following:

• The Spearman correlation of the TLP and the MOTS prediction for each target
task.

• The mean average Spearman correlation of the TLP and the MOTS prediction
for all target tasks combined.

For this analysis, we included all rows of the DataFrame, that were multiple sources8

(check column "source2" in Table 23). All rows with single-sources were dropped
from the DataFrame. The results of the average correlation with the ground truth

source1 source2 target ground_truth bayes_factor r_2
denoise segment2d edge2d 0.0094 410042 0.3974

rgb2sfnorm reshade edge3d 0.0658 1385668 0.8194
...

reshade keypoint3d rgb2depth 0.0521 1231554 0.7816

TABLE 23: Example of the calculated DataFrame.

for multiple sources are provided in Table 24. The average of these results regard-
ing all target tasks is in 0.430. This result is much worse than that result from the
single-source tasks (0.880) in Section 5.3.7. Looking in detail at the values in Table
24 reveals that the bad performance is attributable to the target tasks edge3d, key-
point2d, segment2d, segmentsemantic and reshade (marked in gray in Table 24).
To understand why these four tasks perform much worse, we performed a vari-
ance analysis of the Taskonomy affinity scores of the individual target tasks with
two sources (provided in Table 25). By checking the variance of the tasks edge3d,
keypoint2d, segment2d and segment semantic, it becomes clear that these five tasks
with low MOTS prediction have a low variance of the Taskonomy TLP score. The
conclusion we draw from this is that for the cases of target tasks in which the differ-
ence in TLP from different sources is not significant, the MOTS ranking prediction
is not correct. However, since the difference in TLP from different sources is not
significant, the TLP of the source proposed by MOTS will be close to the optimal
TLP.

8In this analysis the maximum of sources for a transfer are two sources (see Table 23), since the pro-
vided ground truth of Transfer Learning Performance just contains single-source and double-source
transfers

5.3. MOTS in Comparison with Other State-Of-the-Art Methods 51

Target Task MOTS
autoencoder 0.7714
class_1000 1.0000
curvature 0.4667
denoise 0.6571
edge2d 0.2571
edge3d -0.2242

keypoint2d -0.0286
keypoint3d 0.4788

reshade 0.1152
rgb2depth 0.6727
rgb2mist 0.7939

rgb2sfnorm 0.7697
room_layout 0.5273
segment25d 0.6242
segment2d -0.0303

segmentsemantic -0.3091
vanishing_point 0.7697

TABLE 24: MOTS correlation of multiple sources with RDMs created
from 1,800 Taskonomy images with train-test and test set-growing.

target Task Affinity(mean±var) MOTS
rgb2sfnorm 0.0342±0.0053 0.7697

segmentsemantic 0.0316±0.0003 -0.3091
edge3d 0.0335±0.0007 -0.2242

rgb2depth 0.0322±0.0004 0.6727
keypoint2d 0.0371±0.0111 -0.0286

room_layout 0.0302±0.0002 0.5273
segment2d 0.0302±0.0002 -0.0303

autoencoder 0.0351±0.0071 0.7714
segment25d 0.0327±0.0003 0.6242

curvature 0.0319±0.0008 0.4667
edge2d 0.0388±0.0263 0.2571

vanishing_point 0.0319±0.0013 0.7697
keypoint3d 0.0335±0.0011 0.4788

rgb2mist 0.0323±0.0004 0.7939
class_1000 0.0243±0.0003 1.0000

denoise 0.0385±0.0304 0.6571
reshade 0.033±0.0005 0.1152

TABLE 25: Per task mean and variance Taskonomy TLP score
Transfer learning performance per target task compared to MOTS

transfer learning correlation on Taskonomy dataset for 16 tasks.

5.3.9 MOTS Results for Single- and Multi-Source Transfer Learning Pre-
diction (Daniel)

In the all-sources case, we combined the results from Sections 5.3.7 and 5.3.8, mean-
ing we did not drop any rows in this case and worked with the full DataFrame in the

52 Chapter 5. Experiments and Results

form of Table 8 as described in Section 5.3.4. The average of the results of all target
tasks was 0.904. The results for each target task are provided in Table 26.

Target Task MOTS
autoencoder 0.9167
class_1000 0.8450
curvature 0.8302
denoise 0.9029
edge2d 0.8886
edge3d 0.8940

keypoint2d 0.9029
keypoint3d 0.9119

reshade 0.9252
rgb2depth 0.9634
rgb2mist 0.9799

rgb2sfnorm 0.9491
room_layout 0.9334
segment25d 0.8777
segment2d 0.8777

segmentsemantic 0.8196
vanishing_point 0.9462

TABLE 26: Correlations of single sources and multiple sources com-
bined using 1,800 images for RDM creation from Taskonomy dataset

with train-test and test-set growing.

5.4 MOTS for Multi-Task Architecture

5.4.1 Experimental Setup (Daniel)

One specific application for MOTS is the selection of source-task combinations from
different task decoder heads in a multi-task architecture. Figure 29 shows a visual-
ization of this application using the MTI-Net architecture explained in Section 2.3.4.
The multi-task decoder heads of the multi-task architecture are treated like individ-
ual source-target combinations. For each decoder head, the features are extracted,
and the RDMs are created out of the features for each head individually. The same is
done for the target task, extracting the features from the final layer. Next, the linear
regression of MOTS from the source tasks to the target tasks is performed for each
possible combination of source tasks. This experiment was performed to evaluate
MOTS in a new application to find the best source combination of task-heads from a
multi-task architecture.

Ground Truth:
There is no ground truth provided for TL from different task-heads for the used
multi-task learning architecture, MTI-Net (More information about why we chose
MTI-Net for this analysis follows in Section 5.4.2). Therefore, the ground truth to
compare MOTS against was generated in the process of this thesis. We apply differ-
ent TN architectures for TL in Section 5.4.9 for generating the ground truth ourselves
and evaluates the different TL approaches in Section 5.4.10.

5.4. MOTS for Multi-Task Architecture 53

MOTS

final
target
task

model

target
architecture

scale 1

scale 2

scale 3

scale 4

Multi-Modal
Distillationbackbone

compareRDMtrain
s1

RDMtrain
target

N

N

Input
Images

N

RDMtrain
sn

1

2

Task
predictions

N

Task
predictions

N

taskhead
1

2

taskhead
N

2

1

source
architecture

1

Input
Images

2

2

1

1

1

2

FIGURE 29: Estimating task similarity between a target task and
multi-task decoders. The multi-task source-target combination con-
sists of multiple task heads each corresponding to a computer vision
task. In this work, individual task heads (or combinations of them)
from a multi-task source-target combination are used as sources to
transfer to a target task. From each task head, we first extract the
feature maps and then create RDMs. Similarly, the feature map is
extracted from the final layer of the target architecture to compute
the target RDM. To compute the task similarity between source task
heads and target task representations, we use MOTS, which predicts
the target task’s RDM linearly from source RDMs and evaluate the fit

quality with R2.

Tasks:
For NYUD this analysis uses the tasks depth (dp) estimation, surface normals (sn)
and semantic segmentation (ss). For Pascal VOC, the analysis uses the tasks human
parts (hp), saliency (sl), ss and sn. The tasks are explained in Table 27. We trained
three MTI-Net models for NYUD and four MTI-Net models on Pascal VOC. For each
training, we selected one of the tasks as the target task and set the others (two for
NYUD and three for Pascal VOC) as the source tasks. The source-target combina-
tions use the following notation:

• NYUD: source1_source2 = target

• Pascal VOC: source1_source2_source3 = target.

The number of possible sources for TL is the equivalent of the powerset of the set
of source tasks from the multi-task architecture. Table 28 shows the source-target
combinations used with the NYUD dataset, while Table 29 displays the source-target
combinations used with the Pascal VOC dataset.
While training, the target tasks were evaluated on different metrics. Table 30 shows
the MTI-Net reported metrics for each target task. In this work, we selected only one
metric per target task. For sn, ss and dp we select root mean squared error (RMSE)

54 Chapter 5. Experiments and Results

Task Explanation
depth For each pixel in the image, a depth value is estimated

[26], [68].
surface normals In surface normal estimation, the physical orientations

of the pixels from the image are predicted [79].
semantic segmentation Semantic segmentation is a combination of identify-

ing multiple objects in an image and classify the cor-
responding pixels of the objects with the object class.
Therefore, in semantic segmentation each pixel is as-
signed a class label [44] [70].

human parts Human parts are segmented on the image, meaning that
human parts are identified on the image, and each pixel
color is based on the class of the part identified [33].

saliency In saliency estimation, the borders between objects and
their neighbors are amplified. With that, saliency es-
timation assigns different levels of visual relevance to
distinct regions of the image [7].

TABLE 27: Used tasks with explanation.

Source-Target Combinations for NYUD
Source 1 Source 2 Target Abbreviation

depth surface normals
semantic

segmentation
dp_sn=ss

surface normals
semantic

segmentation
depth sn_ss=dp

depth
semantic

segmentation
surface normals dp_ss=sn

TABLE 28: NYUD task combinations for multi-task experiment.

while for hp and sl we select mIoU.

Root mean squared error:
The RMSE is a typically used metric for evaluating the prediction error of a model.
It is the standard deviation of the prediction errors (also known as residuals). The
formula of RMSE is as follows:

RMSE =

√
n

∑
i=1

(ŷi − yi)2

n
(5.2)

where ŷ1, ..., ŷn are the predicted values, y1, ..., yn are the observed values and n is
the number of observations.

mean Intersetion over Union:
mIoU is a widely used evaluation metric, for example for semantic image segmen-
tation tasks [67]. The calculation of mIoU proceeds as follows:

1. Calculate the Intersection over Union (IoU) for each class using the following
formula:

IoU =
tp

tp + f p + f n
(5.3)

5.4. MOTS for Multi-Task Architecture 55

Source-Target Combinations for Pascal VOC
Source 1 Source 2 Source 3 Target Abbreviation
human
parts

saliency
semantic

segmentation
surface normals hp_sl_ss=sn

human parts surface normals saliency
semantic

segmentation
hp_sn_sl=ss

surface normals saliency
semantic

segmentation
human parts sn_sl_ss=hp

human parts surface normals
semantic

segmentation
saliency hp_sn_ss=sl

TABLE 29: Pascal VOC task combinations for multi-task experiment.

Target Task Metric
surface normals (sn) mean, median, RMSE, 11.25, 22.5, 30

semantic segmentation (ss) mIoU
depth (dp) RMSE, log-RMSE

human parts (hp) mIoU
saliency (sl) mIoU, maxF

TABLE 30: Target tasks and their metrics. The chosen metric is dis-
played in bold.

where tp are the true positive predicted pixels, f p are the false positive pre-
dicted pixels and f n are the false negative predicted pixels

2. Calculate the mean of all IoU scores.

The Intersection over Union is also known as the Jaccard-distance [71].

5.4.2 Used Architecture (Yannic)

The choice of a suitable CV architecture for the MOTS experiment is not so trivial as
it might seem, especially for the case of multi-source transfers. ST models at hand
are not capable of producing more than one output. Using the source heads of many
different ST models together for the transfer to one target task would be compu-
tationally costly. ST models were therefore excluded as a potential source-model
solution. Thus, a suitable architecture needed to be selected from a set of different
MTL models that promise good results and efficiency over a ST model due to the
processing of multiple tasks in just one model.

Different types of MTL architectures were presented in Section 2.3, and they are all
suitable as a source model. Nonetheless, we decided to use the MTI-Net due to its
efficiency, innovative approach with its initial task predictions, inclusion of auxiliary
tasks, processing of the tasks at different scales as well as because of the achieved re-
sults compared to other models [73].

We used the following architectures in combination:

• Backbone network HRNet

• MTI-Net

56 Chapter 5. Experiments and Results

• Transfer net (TN), described later in 5.4.9

The process flow is visualized in Figure 30. HRNet predicts and provides initial
task-specific heads at different scales. MTI-Net processes these initial task heads in
combination and outputs task-specific results at the end. We then used an additional
network defined by us as a TN architecture, that combines source-specific heads to
produce the final target task.

FIGURE 30: Architecture, we used for the experiment.

5.4.3 Single-Task Baseline (Yannic)

We use as a baseline model a ST architecture, which only accepts and outputs one
specific task. The ST model is structured similar to the MTI-Net but without layers,
that are used when processing more than one tasks and as well without multiple-
task decoder heads at the end. MTI-Net is built on this model in order to be compa-
rable with it performance wise. The training process of the MTI-Net consists of the
following two points:

• Train ST baselines on one specific task described in Table 27.

• Start MTI-Net training in different task-combinations shown in Table 28 for
NYUD and in Table 29 for Pascal VOC.

5.4.4 Training Process (Yannic)

The training process is split into three different steps. First, the ST source-target
combination is trained on one specific target task. Second, the MTI-Net source-target
combination is trained through a combination of different source tasks to predict
multiple outputs. Third, these predicted target tasks are then used as source tasks
to predict one specific target task by performing TL on them. More regarding this is
discussed in the Subsection feature extraction 5.4.6 and TN 5.4.9.
The configuration of the baseline source-target combination can be seen in Table 31
for the datasets NYUD and in Table 32 for Pascal VOC. The configuration of the
MTI-Net source-target combination is visualized in Table 33 with the respective loss
weights for Pascal VOC in Table 35 and for NYUD in Table 34.

5.4. MOTS for Multi-Task Architecture 57

In order to perform TL from a multi-source task perspective, we first needed to train
our MTI-Net source-target combination and evaluate the results. MTI-Net outputs
different target task predictions that can then be used for TL. A new target task is
predicted through TL and feature extraction of the task-specific heads, that were
generated previously.

NYUD
Configuration ss dp sn

trBatch 8
valBatch 1
nworkers 4

epochs 100
optimizer adam

optimizer-lr 0.0001
optimizer-weight-decay 0.0001

scheduler poly
model baseline

backbone HRNet-w18
backbone-pretrained True

backbone-dilated False
head HRNet

TABLE 31: Single-task source-target model configuration training
process for NYUD.

Pascal VOC
Configuration ss sn sl hp

trBatch 8
valBatch 1
nworkers 4

epochs 60
optimizer sgd

optimizer-lr 0.01*
optimizer-weight-decay 0.0001

scheduler poly
model baseline

backbone HRNet-w18
backbone-pretrained True

backbone-dilated False
head HRNet

TABLE 32: Single-task source-target combination configuration train-
ing process for Pascal VOC (*0.0001 for single-source transfer to ss).

58 Chapter 5. Experiments and Results

Configuration NYUD Pascal VOC

trBatch 8
valBatch 8
nworkers 4

epochs 100
optimizer adam

optimizer-lr 0.0001
optimizer-weight-decay 0.0001

scheduler poly
model MTI-Net

backbone HRNet-w18
backbone-pretrained True

backbone-dilated False
head HRNet

TABLE 33: MTI-Net-configuration for training on datasets NYUD and
Pascal VOC.

NYUD
Tasks Loss Weights

semseg 1.0
surface normals 10.0

depth 1.0

TABLE 34: Loss weights for MTI-Net model on NYUD.

Pascal VOC
Tasks Loss Weights

semseg 1.0
human parts 2.0

saliency 5
surface normals 10.0

TABLE 35: Loss weights for MTI-Net model on Pascal VOC.

5.4.5 Specifying Auxiliary Tasks for Training (Daniel)

Since the implementation of MTI-Net allows for a specification of source, target and
auxiliary tasks, the question arises as to how the auxiliary tasks should be specified.
It is necessary to declare that a task used as a source task also needs to be specified as
an auxiliary task (forced by MTI-Net implementation); however, this does not hold
in reverse. The question arises as to whether, all four auxiliary tasks should be used
or if just the auxiliary tasks that are also used as source tasks should be used. Table
36 shows the results of the training process of MTI-Net with:

1. all auxiliary tasks used

2. equal sets of auxiliary tasks and source tasks used

5.4. MOTS for Multi-Task Architecture 59

Since the results are on average slightly better in the case of equally specified auxil-
iary tasks, the rest of the analysis only uses experiments with equal auxiliary tasks
configuration.

Source-Target Combination Source Task All Auxiliary Tasks Equal Auxiliary Tasks

sn_sl_hp=ss
hp 61.5703 61.2521
sl 67.164 66.991
sn 14.7886 14.5939

ss_sl_hp=sn
ss 61.9234 63.5639
hp 61.8103 62.4998
sl 67.348 67.498

ss_sn_hp=sl
ss 61.9955 62.1316
hp 61.6819 62.0944
sn 14.8787 14.8212

ss_sn_sl=hp
ss 62.0474 60.4335
sl 67.152 67.123
sn 14.8085 14.5673

TABLE 36: Comparison of MTI-Net training results for all auxil-
iary tasks and equal auxiliary tasks. The better values are colored
in green. The source-target combinations sn_sl_hp=ss, ss_sn_hp=sl,
ss_sn_sl=hp are given in mIoU (higher is better), while ss_sl_hp=sn

is measured by the mean error (lower is better).

5.4.6 Feature Extraction (Daniel)

After training the single-task baseline and the MTI-Net models with different source
and target combinations, it is necessary to create feature maps for all source-target
combinations. These feature maps are used later to predict the TLP.
The feature maps are created by setting the batch size for validation to one and sav-
ing the representations within the MTI-Net model for each forward pass and there-
fore for each input image. Since it is not trivial which feature map size should yield
better results, this analysis uses two different sizes. The two evaluated pixel sizes are
32x24px and 64x48px which we label as small and normal, respectively (see Figure
37).
Due to computational constrains, small feature extractions were preferred in the
analysis. To keep the computational costs as low as possible without losing gener-
alizability, a correlation analysis was performed between the feature maps of small
and normal for one source-target combination: the feature maps of the task combi-
nation with depth and surface normals as source tasks and semantic segmentation as
the target task using NYUD dataset. We hypothesized that the correlation for RDMs
from the Pascal VOC dataset would behave similarly. For the correlation analysis,
we first created the RDMs for depth and surface normals using the small size once
and the normal size once. Then, we correlated both sizes for each source task by
using the upper triangular of the RDMs and calculating the Pearson correlation of
the upper triangles. We used the final layer of both tasks for the extraction of the
feature maps for this correlation analysis (More information about the selection of
the final layer is provided in Section 5.4.8). For both tasks, we achieved a correla-
tion between small and normal that was higher than 0.9999 (value is rounded). This
led us to the conclusion that we could use the small size for all further experiments
without important information loss.

60 Chapter 5. Experiments and Results

Label Width Height
small 32 24

normal 64 48

TABLE 37: Pixel sizes for the extracted features for small and normal
sizes.

5.4.7 RDM Creation (Daniel)

For creating the RDMs, the features from Section 5.4.6 were used. These RDMs are
based on 250 images in the NYUD case and 500 images in the Pascal VOC case.
Using these RDMs, we performed ordinary least squares regression from the MOTS
method. The processes of feature extraction, RDM creation and MOTS prediction
were performed for multiple layers in the MTI-Net.

5.4.8 Layer Selection (Daniel)

In addition to the question of which size to use for the feature extraction, the non-
trivial question of from which part of the network architecture the feature maps
should be extracted needs to be answered.
For this, we identified five different positions in the MTI-Net architecture from which
the feature maps are extracted (see Figure 31 for a visualized overview of the loca-
tions). Four of the positions for extraction are based on the four different scale levels
used in the MTI-Net architecture: 1/32, 1/16, 1/8 and 1/4. In addition to these four
locations, we extracted the feature maps from the task-specific heads (we call this
final) directly before predicting the task at the rectified linear unit (ReLU)-layer. The
ReLU-layer is a layer of neurons in a neural network which uses the rectified linear
activation function:

ReLU(x) =

{
x, if x ≥ 0
0, otherwise

(5.4)

where x is the input from the former layer. The ReLU function is a broadly used
activation function in neural networks [8] and it outputs the results of the prediction
for the target task in this case.

FIGURE 31: The five locations for feature extraction.

To compare the different locations of extracted features, we generated RDMs for
the features of all locations. Afterwards, we used these RDMs to apply our MOTS

5.4. MOTS for Multi-Task Architecture 61

method and create the TLP prediction for all sources to the target task for each
source-target combination.
This was performed for all three source-target combinations of NYUD and all four
source-target combinations of Pascal VOC in order to determine the layer for per-
forming TL on later on.
We plotted the results in one table per source-target combination. Tables 38, 39 and
40 display the quality of fit in respect to the predictions based on the NYUD dataset,
while Tables 43, 42, 44 and 41 represent the predictions based on Pascal VOC. All val-
ues represent the R2 value for the specific source-target combination. The column
called "layer" displays the layer from which the representations are drawn. The vari-
able f refers to the final layer, while s1, s2, s3, s4 refer to scale1, scale2, scale3 and
scale4, respectively, of the MTI-Net architecture (see Figure 31). The highest values
are marked in green.
For the sources-target tasks combinations dp_sn=ss (NYUD), dp_ss=sn (NYUD),
sn_ss=dp (NYUD), hp_sn_sl=ss (Pascal VOC) and hp_sn_ss=sl (Pascal VOC) the fi-
nal layer is clearly the best. For the source-target task combination of sn_sl_ss=hp
(Pascal VOC), layer scale4 yields the best result, and for hp_sl_ss=sn (Pascal VOC),
there is no clear best result. However, since all the predictions of sn_sl_ss=hp (Pascal
VOC) and hp_sl_ss=sn (Pascal VOC) are close to zero, we argue that the best choice
is to use the final layer for all the source-target task combinations for consistency.
This suggests that for the given multi-task model (MTI-Net), the best choice for TL
is to take the last layer of all the task heads to perform the transfer in all the combi-
nations tested.

Layer dp sn dp_sn
f 0.180060 0.173983 0.199403

s1 0.072420 0.106345 0.122618
s2 0.072111 0.097630 0.115699
s3 0.072560 0.105867 0.123954
s4 0.071813 0.118327 0.135859

TABLE 38: NYUD with
source-target combi-
nation dp_sn=ss and
the usage of train_test

RDMs.

Layer dp ss dp_ss
f 0.355330 0.186888 0.387210

s1 0.137628 0.185873 0.260321
s2 0.138012 0.198627 0.268709
s3 0.138585 0.204601 0.273481
s4 0.136019 0.187343 0.263634

TABLE 39: NYUD with
source-target combi-
nation dp_ss=sn and
the usage of train_test

RDMs.

Layer sn ss sn_ss
f 0.310605 0.187587 0.350263

s1 0.174823 0.128428 0.242082
s2 0.168223 0.191088 0.275776
s3 0.175603 0.190402 0.274621
s4 0.197111 0.176518 0.277418

TABLE 40: NYUD with source-target combination sn_ss=dp and the
usage of train_test RDMs.

62 Chapter 5. Experiments and Results

Layer sn sl ss sn_sl sn_ss sl_ss sn_sl_ss
f -0.000050 -0.000031 -0.000027 -0.000055 -0.000068 -0.000035 -0.000085

s1 -0.000032 -0.000042 -0.000058 -0.000029 -0.000052 -0.000053 -0.000066
s2 -0.000051 -0.000045 -0.000048 -0.000027 -0.000020 -0.000032 -0.000064
s3 -0.000005 -0.000047 -0.000008 -0.000047 -0.000015 -0.000048 -0.000066
s4 -0.000017 -0.000008 0.000002 -0.000018 -0.000034 -0.000007 -0.000036

TABLE 41: Pascal VOC with source-target combination sn_sl_ss=hp
and the usage of train_test RDMs.

Layer hp sn sl hp_sn hp_sl sn_sl hp_sn_sl
f 0.214835 0.180209 0.126714 0.263397 0.253411 0.236178 0.290947

s1 0.106013 0.078255 0.060696 0.151516 0.142811 0.118084 0.177888
s2 0.098511 0.072963 0.062718 0.141089 0.139134 0.116740 0.171996
s3 0.097672 0.068222 0.068951 0.137849 0.145548 0.118974 0.175886
s4 0.128403 0.062165 0.073412 0.160150 0.167154 0.119107 0.192697

TABLE 42: Pascal VOC with source-target combination hp_sn_sl=ss
and the usage of train_test RDMs.

Layer hp sl ss hp_sl hp_ss sl_ss hp_sl_ss
f -0.000012 -0.000043 -0.000035 -0.000059 -0.000038 -0.000042 -4.801e-05

s1 -0.000012 -0.000005 -0.000013 -0.000020 -0.000014 -0.000033 6.876e-07
s2 -0.000028 -0.000003 -0.000014 -0.000003 -0.000024 -0.000011 -1.212e-05
s3 -0.000043 -0.000007 -0.000036 -0.000028 -0.000026 -0.000047 -3.132e-05
s4 -0.000027 -0.000004 -0.000012 0.000002 -0.000013 -0.000023 -8.670e-06

TABLE 43: Pascal VOC with source-target combination hp_sl_ss=sn
and the usage of train_test RDMs.

Layer hp sn ss hp_sn hp_ss sn_ss hp_sn_ss
f 0.183031 0.117546 0.207511 0.210219 0.231044 0.235385 0.248366

s1 0.044525 0.054643 0.090897 0.081781 0.102432 0.124062 0.130192
s2 0.036935 0.058882 0.094606 0.079071 0.102156 0.128898 0.132250
s3 0.028917 0.056827 0.141222 0.071794 0.143372 0.165298 0.165879
s4 0.067396 0.053210 0.181539 0.099164 0.194024 0.197240 0.206244

TABLE 44: Pascal VOC with source-target combination hp_sn_ss=sl
and the usage of train_test RDMs.

5.4.9 Transfer Nets (Yannic)

A TN was added to the best performing layer. We used a set of different TNs in order
to determine, which one performs the best. For the implementation of the TN, we
followed the approach of the Taskonomy paper, which is described in the supple-
mentary material of Taskonomy in [84] and found in the GitHub repository [25]. In

5.4. MOTS for Multi-Task Architecture 63

[84], a tower structure is used that consists of four different steps. First, extreme val-
ues are clipped to 5-sigma;9 batch renormalization is processed afterwards, followed
by two convolution layers at the end. In total, four different TNs were implemented
and compared with one another in our experiment. They are visualized in Figure
32.

(a) Transfer Net 1

(b) Transfer Net 2

(c) Transfer Net 3

(d) Transfer Net 4

FIGURE 32: Four different transfer nets that are used as transfer learn-
ing layers for the prediction of one target task based on a combination

of different source-tasks.

9Derived from the normal distribution with five-times sigma and therefore the following formula:
f (x) = 1

5σ
√

2π
e−

1
2 (

x−µ
5σ)2

64 Chapter 5. Experiments and Results

Transfer Net 1
Configuration In Channels Out Channels Kernel Size Stride

Conv2D n-tasks * n-features target output size (1,1) (1,1)

TABLE 45: Transfer Net 1 configuration.

Transfer Net 2
Configuration In Channels Out Chan-

nels
Kernel Size Stride Padding

BatchRenorm2D n-tasks * n-
features

Conv2D n-tasks * n-
features

n-features (3,3) (1,1) (1,1)

Conv2D n-features target out-
put size

(3,3) (1,1) (1,1)

TABLE 46: Transfer Net 2 configuration.

Transfer Net 3
Configuration In Channels Out Chan-

nels
Kernel Size Stride Padding

BatchRenorm2D n-features
Conv2D n-features 0.5*n-

features
(3,3) (1,1) (1,1)

Conv2D 0.5*n-
features

0.5*0.5 n-
features

(3,3) (1,1) (1,1)

Conv2D n-tasks *
0.5*0.5*n-
features

target out-
put size

(1,1) (1,1)

TABLE 47: Transfer Net 3 configuration.

Transfer Net 4
Configuration In Channels Out Chan-

nels
Kernel Size Stride Padding

BatchRenorm2D n-features
Conv2D n-features n-features (3,3) (1,1) (1,1)
Conv2D n-features target out-

put size
(3,3) (1,1) (1,1)

TABLE 48: Transfer Net 4 configuration.

TN 1 is used as a computational resource-saving alternative, with just one convo-
lution layer. Each task-specific head is first concatenated with the others and then
processed by one convolution layer with the output dimension of the specific target
task. TNs 2 and 3 follow the same structure as the Taskonomy approach by applying
a tower structure to their TN [84]. In TN 2, each task-specific head is first concate-
nated with the others before being processed by the tower structure, whereas in TN
3, the tower structure is being used already at each task-specific head. A concate-
nation occurs afterwards, which is then accompanied by a further convolution layer
and an output dimension with respect to the target task. TN 4 is handled the same

5.4. MOTS for Multi-Task Architecture 65

as TN 2, but with the element-wise addition instead of concatenation.
Each TN clips extreme values to 5-sigma[72]. Batch renormalization was used with a
self-made function that is offered in GitHub [24]. Each TN configuration is described
in more detail in Tables 45, 46, 47 and 48.

5.4.10 Selection of Optimal Transfer Net for Ground-Truth Creation (Daniel)

We experimented with the four different TN architectures described in Section 5.4.9.
For performing the TL, we used the concepts of feature extraction and finetuning.
In feature extraction (fe), the layer parameters from the source tasks are copied and
used identically in the target task. Just one or a few last layers were trained while
training the model on the target task [69]. All other layer weights were not changed
during the process since they were frozen.
The contrarian concept is that of fine tuning (ft), in which the layer parameters are
also copied from the source task and transferred to the target task. However, while
training the model on the target task, the whole network is trained. With this ap-
proach, the model has many more parameters that can be altered to fit during the
training process. [69]
During the selection of the optimal TN both concepts are applied. For the fe ap-
proach the process is the following:

1. Freeze all layer parameters of the architecture.

2. Remove the output layer.

3. Add a TN from Section 5.4.9.

4. Train the architecture by training only the layers of the TN.

The ft process is nearly the same. The difference is that the layers are not frozen, and
therefore the whole architecture is trained after adding the TN.
Tables 49, 50 and 51 display the results for the source-target combinations using the
NYUD dataset, while Tables 52, 53, 54 and 55 provide the results of the transfers
using the source-target combinations of the Pascal VOC dataset. The best results are
marked in green, while the second best are marked in yellow. In Tables 50, 51, 52, 54
and 55, the results of TN3 are missing. The reason is that the transfer could not be
computed with our hardware since the GPU RAM storage is insufficient.
In Figure 32, it is clear that TN1 is the least expensive in terms of complexity and
therefore computational intensity, while TN3 is the most expensive. The reason is
that TN1 has just one additional layer in comparison to the provided default MTI-
Net architecture since we deleted the last layer of the default MTI-Net architecture
and added the two layers of TN1, while TN3 has 13 more layers. This means that for
training TN3, many more parameters need to be trained, which increases the train-
ing time as well as the memory footprint due to more saved parameters. Therefore,
it fails to train TN3 due to insufficient GPU RAM on NVIDIA Tesla V100 SXM2 with
32GB of RAM on g5-server. At this point in the analysis, the g4-server was not avail-
able to train. It is unclear whether the 40GB of GPU RAM in the g4-server would
have been sufficient.
Looking at the results for fe in isolation, we came to the conclusion that in most cases,
TN2 provides the best results. Only TN4 provides better results in some cases, while
this occurs mainly in Table 55 with the target task saliency.
Due to the computational constraints of this thesis, we only evaluated TN1 with
the approach of ft. TN2, TN3 and TN4 are not computable with the used hardware

66 Chapter 5. Experiments and Results

due to out-of-memory errors from the GPU. They are not even performable on the
stronger g4-server. However, the ft results on TN1 show that it outperformed the
results from fe by far for all given TNs. We hypothesize that the stronger perfor-
mance of ft comes from the larger number of trainable parameters in ft compared to
fe. With more parameters, the model has more possibilities to adopt to the training
data. Similarly, the cause of the GPU out-of-memory error seems to be the greater
memory usage due to more trainable parameters for ft than for fe.

dp_sn=ss
fe ft

Source TN1 TN2 TN3 TN4 TN1
dp 0.0628 0.1367 0.1272 0.1366 0.1801
sn 0.0647 0.1307 0.1222 0.1312 0.1740

dp_sn 0.0874 0.1677 0.1555 0.1437 0.1994

TABLE 49: Feature extraction (fe) and finetuning (ft) results for
dp_sn=ss with metric mIoU (highest is best).

sn_ss=dp
fe ft

Source TN1 TN2 TN3 TN4 TN1
sn 1.2433 1.0872 - 1.0627 0.3106
ss 1.2784 1.0971 - 1.1326 0.1876

sn_ss 1.1554 1.0134 - 1.0844 0.3503

TABLE 50: Feature extraction (fe) and finetuning (ft) results for
sn_ss=dp with metric RMSE (lowest is best).

dp_ss=sn
fe ft

Source TN1 TN2 TN3 TN4 TN1
dp 44.4314 37.7339 - 37.7881 0.3548
ss 45.2671 43.0672 - 43.0753 0.1869

dp_ss 43.6890 37.0614 - 40.4617 0.3872

TABLE 51: Feature extraction (fe) and finetuning (ft) results for
dp_ss=sn with metric RMSE (lowest is best).

5.4. MOTS for Multi-Task Architecture 67

hp_sl_ss=sn
fe ft

Source TN1 TN2 TN3 TN4 TN1
hp 29.0942 28.5435 - 28.5202 18.5929
sl 28.6353 28.2802 - 28.3163 18.5907
ss 29.5513 28.7688 - 28.7723 18.5120

hp_sl 27.9470 27.4432 - 28.1451 18.6192
hp_ss 28.2681 27.6783 - 28.4109 18.6262
sl_ss 28.2211 27.6675 - 28.4530 18.5907

hp_sl_ss 27.5905 26.9392 - 28.2778 18.6030

TABLE 52: Feature extraction (fe) and finetuning (ft) results for
hp_sl_ss=sn with metric RMSE (lowest is best).

hp_sn_sl=ss
fe ft

Source TN1 TN2 TN3 TN4 TN1
hp 0.2001 0.2191 0.2161 0.2177 0.6333
sn 0.1416 0.1992 0.198 0.2001 0.6295
sl 0.0820 0.1134 0.1268 0.1004 0.6270

hp_sn 0.2340 0.2702 0.2665 0.2404 0.6321
hp_sl 0.2121 0.2383 0.2295 0.2208 0.6338
sn_sl 0.1755 0.2294 0.2270 0.2068 0.4861

hp_sn_sl 0.2439 0.2790 0.2790 0.2364 0.5397

TABLE 53: Feature extraction (fe) and finetuning (ft) results for
hp_sn_sl=ss with metric mIoU (highest is best).

sn_sl_ss=hp
fe ft

Source TN1 TN2 TN3 TN4 TN1
sn 0.2712 0.3401 - 0.3436 0.5984
sl 0.2217 0.3139 - 0.3139 0.6020
ss 0.3689 0.3965 - 0.4010 0.6021

sn_sl 0.3096 0.3890 - 0.3610 0.6004
sn_ss 0.3975 0.4299 - 0.4159 0.6008
sl_ss 0.3800 0.4163 - 0.3800 0.6013

sn_sl_ss 0.4039 0.4340 - 0.4124 0.6002

TABLE 54: Feature extraction (fe) and finetuning (ft) results for
sn_sl_ss=hp with metric mIoU (highest is best).

68 Chapter 5. Experiments and Results

hp_sn_ss=sl
fe ft

Source TN1 TN2 TN3 TN4 TN1
hp 0.0542 0.0566 - 0.0618 0.0362
sn 0.0659 0.1035 - 0.1008 0.0341
ss 0.0442 0.0517 - 0.0566 0.0301

hp_sn 0.0542 0.0721 - 0.0882 0.0300
hp_ss 0.0450 0.0434 - 0.0531 0.0336
sn_ss 0.0472 0.0660 - 0.06046 0.0299

hp_sn_ss 0.0482 0.0526 - 0.0626 0.0362

TABLE 55: Feature extraction (fe) and finetuning (ft) results for
p_sn_ss=sl with metric mIoU (highest is best).

5.4.11 Comparison of MOTS Prediction and Ground-Truth Ranking (Daniel)

As described in Section 5.4.10, we trained four different versions of TNs on the task-
decoder heads of the MTI-Net and then compared the results to the ranking of MOTS
prediction method. This subsection displays the results of the four TNs and com-
pares them with the MOTS prediction as well as with TL results created by using
the single-task baseline models provided by the MTI-Net-framework. For the com-
parison of the MOTS prediction with the generated ground truth, we selected the
TN1 ground truth for the ft approach and the TN2 ground truth for feature extrac-
tion due to it having the highest TLPs. The single-source transfers using the baseline
single-source models provided by the MTI-Net framework were trained using TN2
with the fe-approach.
Tables 56, 57 and 58 display the results for the NYUD dataset, while Tables 59, 60,
61 and 62 display the results for the Pascal VOC dataset. All tables include the
prediction performance given by the ground truth in the metric mIoU or RMSE.
The column on the right of each table shows the values predicted by our MOTS TL
prediction. It is necessary to highlight that the rows of the MOTS prediction of each
source-target combination cannot be compared by their absolute values. However,
the ranking of the rows is important. The similarity of the ranking from the MOTS
prediction with the ranking of the ground truth displays the quality of the prediction
method: the higher the similarity, the better. For a perfect prediction method, the
ordering should be equal in all cases. The order of the three best sources for use in
TL is displayed for the first-, second- and third-best options in green, yellow and
red, respectively.

Ground Truth (sn_ss=dp) Prediction

Source
Metric

RMSE (fe) RMSE (ft) MOTS

sn 1.0872 0.5761 0.3106
ss 1.0971 0.5794 0.1876

sn_ss 1.0134 0.5759 0.3503
sn (single source) 1.7635 - -
ss (single source) 3.0512 - -

TABLE 56: Transfer learning ground truth with MOTS prediction for
sn_ss=dp on NYUD.

5.4. MOTS for Multi-Task Architecture 69

Ground Truth (dp_sn=ss) Prediction

Source
Metric

mIoU (fe) mIoU (ft) MOTS

dp 0.1367 0.3838 0.1801
sn 0.1307 0.3807 0.1740

dp_sn 0.1677 0.3836 0.1994
dp (single source) 0.0068 - -
sn (single source) 0.0070 - -

TABLE 57: Transfer learning ground truth with MOTS prediction for
dp_sn=ss on NYUD.

Ground Truth (dp_ss=sn) Prediction

Source
Metric

RMSE (fe) RMSE (ft) MOTS

dp 37.7339 28.463 0.3548
ss 43.0672 28.520 0.1869

dp_ss 37.0614 28.414 0.3872
dp (single source) 63.4431 - -
ss (single source) 61.6498 - -

TABLE 58: Transfer learning ground truth with MOTS prediction for
dp_ss=sn on NYUD.

On NYUD with the source-target combinations sn_ss=dp and dp_ss=sn the rank-
ings of the MOTS prediction are equal to the rankings of the ground truth transfers
for the fe and ft approaches (Tables 56 and 58). In case of dp_sn=ss, the MOTS pre-
diction ranking is equal to the ranking of the ground truth from fe; however, the
first and second ranks differ between MOTS prediction and ft ground truth. In this
case however, the mIoU scores of the first and second ranks differ only in the third
decimal point (Table 57). The difference in the result of TL when switching between
the two sources is therefore very small.
It can be seen that for all three source-target combinations of NYUD, the best per-
formance is given by the case of transferring from multiple sources (Tables 56, 57
and 58). Comparing the cases where only one branch from the MTI-Net is used as
the source to the single-source transfers created by using the single-source transfers
from the baseline as explained in Section 5.4.3 (last two rows of Tables 56, 57 and 58),
the single-source transfers using the baselines are outperformed in every case. This
guides us to the assumption that even when using only one task-head from the MTL
architecture for TL, the performance of the transfer is better. Our explanation is that
during the joint training of multiple tasks in the multi-task architecture, complemen-
tary information from different tasks is learned, which improves the TLP. This effect
also occurs when just one task-head from the multi-task architecture is used for the
source of the transfer. For the NYUD dataset the MOTS prediction therefore yields a
nearly perfect prediction.
Regarding the results using Pascal VOC, in the case of ft with the target task ss (Ta-
ble 59), MOTS predicted the first best transfers correctly and therefore answered the
question of which combination sources should be used to obtain the best transfer. In
the case of fe all the first three best sources for TL were predicted correctly. How-
ever, the cases of hp (Table 61) and sn as target tasks (Table 60) were not predicted

70 Chapter 5. Experiments and Results

Ground Truth (hp_sn_sl=ss) Prediction

Source
Metric

mIoU (fe) mIoU (ft) MOTS

hp 0.2191 0.6333 0.4644
sn 0.1992 0.6295 0.4246
sl 0.1135 0.6270 0.3562

hp_sn 0.2702 0.6321 0.5135
hp_sl 0.2383 0.6338 0.5039
sn_sl 0.2294 0.6302 0.4861

hp_sn_sl 0.2790 0.6361 0.5397
hp (single source) 0.0354 - -
sn (single source) 0.0320 - -
sl (single source) 0.0268 - -

TABLE 59: Transfer learning ground truth with MOTS prediction for
hp_sn_sl=ss on Pascal VOC.

Ground Truth (hp_sl_ss=sn) Prediction

Source
Metric

RMSE (fe) RMSE (ft) MOTS

hp 28.5435 18.5929 -0.0028
sl 28.2802 18.5907 0.0028
ss 28.7688 18.5120 -0.0015

hp_sl 27.4432 18.6192 0.0037
hp_ss 27.6783 18.6262 0.0057
sl_ss 27.6676 18.5907 0.0025

hp_sl_ss 26.9392 18.6030 0.0037
hp (single source) 98.3698 - -
ss (single source) 50.2263 - -
sl (single source) 91.5639 - -

TABLE 60: Transfer learning ground truth with MOTS prediction for
hp_sl_ss=sn on Pascal VOC.

Ground Truth (sn_sl_ss=hp) Prediction

Source
Metric

mIoU (fe) mIoU (ft) MOTS

sn 0.3401 0.5984 -0.0021
sl 0.3139 0.6020 -0.0042
ss 0.3965 0.6021 -0.0048

sn_sl 0.3890 0.6004 -0.0019
sn_ss 0.4299 0.6008 -0.0029
sl_ss 0.4163 0.6013 -0.0050

sn_sl_ss 0.4340 0.6002 -0.0027
ss (single source) 0.0847 - -
sn (single source) 0.1133 - -
sl (single source) 0.1142 - -

TABLE 61: Transfer learning ground truth with MOTS prediction for
sn_sl_ss=hp on Pascal VOC.

5.4. MOTS for Multi-Task Architecture 71

Ground Truth (hp_sn_ss=sl) Prediction

Source
Metric

mIoU (fe) mIoU (ft) MOTS

hp 0.0566 0.0362 0.4287
sn 0.1035 0.0341 0.3431
ss 0.0517 0.0301 0.4559

hp_sn 0.0721 0.0300 0.4594
hp_ss 0.0434 0.0336 0.4856
sn_ss 0.0660 0.0299 0.4856

hp_sn_ss 0.0526 0.0362 0.4994
hp (single source) 0.1869 - -
ss (single source) 0.1871 - -
sn (single source) 0.1869 - -

TABLE 62: Transfer learning ground truth with MOTS prediction for
hp_sn_ss=sl on Pascal VOC.

correctly by MOTS. The reason is that the MOTS’s predictions of all different source
combinations are nearly zero, suggesting a poor prediction of the target RDM from
the source RDM. In such cases, the MOTS-based rankings are not reliable.
Looking at the results for the target task sl it becomes clear that the mIoU values
for all transfers using fe as well as ft are implausibly low, with a maximum of 10%,
while the minimum of the transfers using the single-sources as a baseline achieves
18.69%. Due to time constraints, the reason for this behavior could not be further
evaluated in this thesis. However, it is reasonable to assume that a bug occurred
during the training on target task sl. Therefore, no statement can be made about the
functionality and quality of MOTS on the basis of the results using target task sl. For
this reason, the results of MOTS for target task saliency are not taken into account in
the further analysis. In comparing the results of the transfers from different source
combinations using fe it is clear that all the source task combinations from the MTI-
Net perform much better than the single-source tasks from the baseline single-source
model (last three rows of Table 61), while the best transfer is provided by the three-
source task combination sn, sl and ss. A possible reason that the single-source task
combinations from the MTI-Net (first three rows of Table 61: sn, sl and ss) are better
than the single-source baselines is that in multi-task training, the task interactions
improve the overall TLP for the target task.

5.4.12 Correlation between MTI-Net Layers (Yannic)

The results described in Section 5.4.11 showed among others that using just one
single-task decoder head from the MTI-Net for single-source transfers led to better
TL results than using a single-task architecture for that transfer. It must be men-
tioned as was already described in Section 5.4.8 that we used the last layer of the
MTI-Net architecture to do transfers (see Table 31) since the best results were ob-
tained here. We asked ourselves the question if there was another reason for the
better performance of MOTS on the final layers over the scaling layers of the MTI-
Net architecture.

To find an answer to that question, a correlation matrix between the different fea-
ture maps (tasks) at certain layers, that were available for the selection of feature

72 Chapter 5. Experiments and Results

extraction was plotted. The location of the MTI-Net layers that were used for fea-
ture extraction is showcased in Table 31 with the following definition of the layers:

(a) On tasks semantic segmentation and
depth estimation

(b) On tasks surface normals and
depth estimation

FIGURE 33: Layer correlation on NYUD with layers final, scale 1,
scale 2, scale 3 and scale 4 of the MTI-Net with the final layers be-

ing at the bottom left and top right corner

(a) On tasks semantic segmentation,
surface normals and saliency

(b) On tasks semantic segmentation,
saliency and human parts

FIGURE 34: Layer correlation on Pascal VOC with layers final, scale 1,
scale 2, scale 3 and scale 4 of the MTI-Net with the final layers being

at the bottom left and top right corner

• final layer of the MTI-Net architecture

• scale 3, which is the MTI-Net scale layer, processing images with a resolution
size of 1/4

• scale 2, which is the MTI-Net scale layer, processing images with a resolution
size of 1/8

5.4. MOTS for Multi-Task Architecture 73

• scale 1, which is the MTI-Net scale layer, processing images with a resolution
size of 1/16

• scale 0, which is the MTI-Net scale layer, processing images with a resolution
size of 1/32

A certain pattern was identified and is partly visible in Figure 33 on NYUD for two
source-task combinations and in Figure 34 on Pascal VOC for three source-task com-
binations. All plots show a higher correlation between different and identical tasks
on different layers when at least one final layer was involved (the areas in the bot-
tom left and top right corners of the correlation matrix are lighter and belong to the
final layer). That is because all tasks were concatenated in the final layer and thus
include task-based information from multiple tasks to a higher degree while this is
not the case for the tasks at the scale layers. It appears that a higher TLP with only
one task on the MTI-Net using the final layer for feature extraction, promises better
results than using a single-task baseline model for transfer due to the fact of implicit
shared information from several tasks. This observation strengthens the result, that
was presented in 5.4.11 with regards to the higher TLP on single-task decoder heads
from a MTL architecture compared to that of a ST model. It further enforces the pre-
diction performance of MOTS, which additionally may be used for the selection of
the best layer in a MTL architecture due to the fact, that it accurately suggested the
final layers to be used to do TL-ranking predictions on MTI-Net.

74

Chapter 6

Discussion and Conclusion
(Daniel)

In this chapter, we first discuss MOTS regarding the three analyzed aspects, MOTS
with single-sources, MOTS with multiple sources and MOTS with multiple tasks.
Afterwards, we discuss the limitations of this work and propose some ideas for fu-
ture research projects.
Finally, we come to a conclusion about our approach and answer our guiding re-
search questions.

6.1 MOTS with Single Sources

In the single-source transfer experiments, MOTS showed a similar high correlation
(+0.002 more) to the Taskonomy ground truth as the previous state-of-the art method
DDS (Table 63) when 200 images were used to generate the RDMs, as in the DDS pa-
per [40]. In the comparison of DDS and MOTS using 1,800 images and the distance
function cosine, MOTS outperformed DDS by 0.009 in terms of higher correlation
with the Taskonomy ground truth. In the single-source transfer experiment on Pas-
cal VOC (Table 64, middle column) where the RDMs were generated using Pascal
VOC images and the target task was Pascal VOC, MOTS showed a slightly lower
correlation with ground truth than DDS, but both provided a high correlation of
about 0.8 with Taskonomy ground truth. In the domain transfer experiment (Ta-
ble 64, rightmost column) where the Taskonomy images were used to generate the
RDMs but the target task was Pascal VOC, MOTS showed a correlation of 0.593,
which is significantly lower than in the first Pascal VOC experiment. Nevertheless,
MOTS outperformed DDS [40], which in this case was 0.539 (f=cosine) and 0.581
(f=Laplacian). MOTS thus dominates the previous state-of-the-art method DDS [40]
in two out of three single-source experiments. Although the results are only slightly
better, MOTS shows that it already works better in the single-source case than pre-
vious methods.

6.2 MOTS with Multiple Sources

The particular strength of MOTS compared to DDS is that MOTS can predict the TLP
of multiple sources. To the best of our knowledge, there are no alternative prediction
methods for Taskonomy TLP prediction of multiple sources against which MOTS
could be benchmarked. Therefore, we compared the correlation of MOTS of single-
and double-source transfers with the Taskonomy ground truth with the correlation
of DDS of single-source transfers with the Taskonomy ground truth. Compared to
DDS’s result of 0.871 correlation, MOTS achieved 0.904 correlation with single- and

6.2. MOTS with Multiple Sources 75

h]

Method Correlation

Taskonomy Winrate [83] 0.988
Taskonomy affinity [83] 1

saliency [59] 0.605
DeepLIFT [59] 0.681

ε-LRP [59] 0.682
RSA [17] 0.777
DDS [40] 0.86

MOTS (200) 0.862
DDS(f=cosine) [40] (train set) 0.862

DDS(f=Laplacian) [40] (train set) 0.863
DDS(f=cosine) [40] (test set) 0.871

DDS(f=Laplacian) [40] (test set) 0.868
MOTS (f=cosine) 0.880

TABLE 63: Correlation of single-source transfer learning on Taskon-
omy dataset with 16 Taskonomy tasks. We compare MOTS to state-
of-the-art methods using 200 images (white rows). Grey rows: we
compare MOTS using 1,800 images for train and 1,800 for test to DDS
using cosine as well as Laplacian similarity with the 1,800 train set

and the 1800 test set.

Method Pascal VOC Taskonomy

DDS (f=cosine) 0.789 0.539
DDS (f=Laplacian) 0.801 0.581

MOTS 0.799 0.593

TABLE 64: Correlation of single-source transfer learning for Pascal
VOC semantic segmentation. For both, MOTS and DDS, the RDMs
were computed with 1,800 images. We created RDMs using images

from different datasets (Pascal VOC and Taskonomy).

76 Chapter 6. Discussion and Conclusion (Daniel)

double-sources, beating DDS by almost 3% percent (see Table 65). It is surprising
that MOTS achieved only a low correlation of 0.4390 with ground truth in the case
where only two source transfers were used. However, the poor performance can
be attributed to certain target tasks in the Taskonomy dataset, all of which have a
very low variance of TLP values with this target task. This means that the choice
of the source task for transfers to these target tasks with bad predictions has little
significance because a similar TLP is achieved with all possible choices for the source
task.

Method Correlation

DDS (f=Laplacian) [40] (train,single) 0.863
DDS (f=cosine) [40] (test,single) 0.871

MOTS (single) 0.880
MOTS (multi) 0.430

MOTS (all) 0.904

TABLE 65: Correlation of multi-source transfer learning on Taskon-
omy dataset with 16 Taskonomy tasks. We compare MOTS when us-
ing only multiple sources (multi= two source tasks) and all sources
(one and two source tasks combined), as well as single-source trans-
fer learning (single) to DDS with single-source transfer learning, in all
cases using 1,800 images for computing the RDMs, both for training

and testing.

6.3 MOTS with Multiple Tasks

With the application of MOTS to the task-heads of the MTI-Net we showed a specific
use case for MOTS. We created ground truth TLP values for two datasets (NYUD
and Pascal VOC) and evaluated the MOTS prediction with the created ground truth.
The results of this evaluation were two sided: On the one hand, MOTS achieved an
almost perfect prediction for all target tasks in the NYUD case, only once confusing
the first and second rank. In addition, the ground truth value of the first and sec-
ond ranks in that case only differ in the third decimal place, which means that the
difference between a transfer of the first or second rank is almost the same so MOTS
still delivers a very good prediction. On the other hand, MOTS was not convincing
in the Pascal VOC experiment. It should be noted that the prediction of a correct
ranking is significantly more difficult in the Pascal VOC case than in the NYUD case
since only three source combinations are evaluated in the NYUD transfers, whereas
in Pascal VOC there are seven source combinations per target task. Nevertheless, it
can be seen that in the cases of the target tasks sn and hp having near zero values,
and partly slightly negative MOTS values were generated. This means that the tar-
get RDMs are poorly predicted by the source RDM using MOTS linear regression in
these cases. Although some experiments seem promising, MOTS lacked a general
reliability in our multi-task experiment. Therefore, further experiments are neces-
sary to prove or disprove MOTS applicability for selecting the optimal source for
task-heads from a MTL architecture.
An interesting observation from the experiments on NYUD and Pascal VOC is that
in all cases (target task sl is not considered because implausible results) of fe as a
TL method, the source combination with the most possible task heads (NYUD: two
task heads, Pascal VOC: three task heads) achieves the best TLP and outperforms all
other transfers based on the MTI-Net and the single-task baseline transfers.

6.4. Limitations 77

6.4 Limitations

There are some limitations regarding the interpretability of the results of this the-
sis. The experiments evaluating MOTS were limited because there is no large-scale
ground truth for multiple source TL against which to evaluate MOTS.
The use case of predicting the TLP of the combinations of task-decoder heads in a
MTL architecture was only evaluated with the MTI-Net. It remains to be evaluated
whether the MOTS prediction behaves differently with a different multi-task archi-
tecture.

6.5 Ideas for Future Work

A few ideas for further research arose from the project:

• For better evaluability of multi-source transfer prediction methods, a large-
scale ground truth dataset is needed, especially one that includes the TL using
different combinations of task-heads as sources. A project providing a ground
truth dataset for the TLP from transfers from different taks-heads of state-of-
the-art MTL architectures would also be highly beneficial.

• The configuration of the MTI-Net was mainly kept fixed and close to the pro-
vided configuration of the MTI-Net framework. This was done on purpose
to allow an easy comparability. However, it might be interesting for future
studies to change training configurations such as the optimizer and use other
visual tasks and another backbone. An obvious step would be to repeat the
experiments with a Residual neural network (ResNet) instead of the HRNet as
the backbone, since ResNet backbone is provided by the MTI-Net implemen-
tation.

• As already explained in the limitations section (Section 6.4), the evaluation of
MOTS in a multi-task setting was only performed using MTI-Net as the multi-
task model. Other multi-task architectures could result in further insights into
transferability from different multi-task heads. Interesting candidates for MTL
architectures include PAP-Net or PAD-Net.

6.6 Conclusion

In this thesis, we analyzed and evaluated a new method for predicting TLP: MOTS.
The main advantage of our method over existing methods is its ability to consider
multiple source tasks for the prediction of TLP. To evaluate this methodology, we
set several research questions in the introduction. Our main question was: Does
our similarity method promise state-of-the-art results in TL when using a linear
fit between source and target task for single as well as multiple source tasks?
To answer this main question, we divided it in three further subquestions, which
will be answered before coming back to our main research question.
The first subquestion is: How well does MOTS perform in single-source TLP pre-
diction? As already explained in the discussion section, MOTS shows not only a
similar performance to state-of-the-art methods; it surpasses them in two-thirds of
the results.
Our second guiding question tackles MOTS‘ main feature, its application to multi-
ple sources for TL prediction: How well does MOTS perform in multi-source TLP

78 Chapter 6. Discussion and Conclusion (Daniel)

prediction?
Although MOTS cannot be benchmarked in multi-source TL against other prediction
methods, it can be evaluated against the brute-force approach of Taskonomy. The
correlation of MOTS predictions with Taskonomy ground truth using single-source
and multiple-source transfers improved by 0.024 from MOTS using just single-source
transfers to MOTS using single- and multiple-source transfers.
The third guiding question is: How well does MOTS perform in TLP prediction us-
ing the task-decoder heads of a mulit-task architecture as sources? This question
has to be answered from different perspectives. MOTS results for the prediction of
the optimal source combination of task-heads were nearly optimal; however, MOTS
showed only limited predictive power in a similar experiment with the Pascal VOC
dataset.
Does our similarity method promise state-of-the-art results in TLP prediction when
using a linear fit between source and target task for single- as well as multi-source
tasks?
In summary, our main question can be answered as follows: In terms of predictive
power in the single-source and multi-source cases, MOTS is convincing and sur-
passes the state-of-the-art method DDS in the majority of cases. Therefore, predict-
ing the target RDMs using the source RDMs via a linear regression is a promising
approach. Whether this approach is suited for the prediction of the optimal source
combination of task-decoder heads in a multi-task architecture could not be finally
proven and needs further analysis.

79

Bibliography

[1] Héctor Martínez Alonso and Barbara Plank. When is multitask learning effective?
Semantic sequence prediction under varying data conditions. URL: https://arxiv.
org/pdf/1612.02251.

[2] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. URL: https://
arxiv.org/pdf/2003.05991.

[3] Herbert Bay, Tinne Tuytelaars, and Luc van Gool. “SURF: Speeded Up Ro-
bust Features”. In: Computer vision - ECCV 2006. Ed. by Aleš Leonardis, Horst
Bischof, and Axel Pinz. Vol. 3951. Lecture Notes in Computer Science. Berlin:
Springer, 2006, pp. 404–417. ISBN: 978-3-540-33832-1. DOI: 10.1007/11744023_
32.

[4] Beam search. 10/26/2004. URL: https://personalpages.bradley.edu/~chris/
searches.html.

[5] Joachim Bingel and Anders Søgaard. Identifying beneficial task relations for multi-
task learning in deep neural networks. URL: https://arxiv.org/pdf/1702.
08303.

[6] John Blitzer, Mark Dredze, and Fernando Pereira. “Biographies, Bollywood,
Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification”.
In: Proceedings of the 45th Annual Meeting of the Association of Computational Lin-
guistics. Prague, Czech Republic: Association for Computational Linguistics,
June 2007, pp. 440–447. URL: https://aclanthology.org/P07-1056.

[7] Marco Buzzelli, Simone Bianco, and Gianluigi Ciocca. “Combining Saliency
Estimation Methods”. In: Image analysis and processing - ICIAP 2019. Ed. by
Elisa Ricci et al. Vol. 11752. LNCS sublibrary. SL 6, Image processing, computer
vision, pattern recognition, and graphics. Cham, Switzerland: Springer, 2019,
pp. 326–336. ISBN: 978-3-030-30644-1. DOI: 10.1007/978-3-030-30645-8_30.

[8] B. Chen. “Why Rectified Linear Unit (ReLU) in Deep Learning and the best
practice to use it with TensorFlow”. In: Towards Data Science (1/11/2021). URL:
https://towardsdatascience.com/why-rectified-linear-unit-relu-in-
deep-learning-and-the-best-practice-to-use-it-with-tensorflow-
e9880933b7ef.

[9] “Coefficient of Determination”. In: The Concise Encyclopedia of Statistics. Springer,
New York, NY, 2008, pp. 88–91. DOI: 10.1007/978-0-387-32833-1_62. URL:
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-
32833-1_62.

[10] Michael Crawshaw. Multi-Task Learning with Deep Neural Networks: A Survey.
URL: http://arxiv.org/pdf/2009.09796v1.

[11] Wenyuan Dai et al. “Co-clustering based classification for out-of-domain doc-
uments”. In: KDD 2007. Ed. by Pavel Berkhin. New York, New York, USA:
ACM Press, 2007, p. 210. ISBN: 9781595936097. DOI: 10.1145/1281192.1281218.

https://arxiv.org/pdf/1612.02251
https://arxiv.org/pdf/1612.02251
https://arxiv.org/pdf/2003.05991
https://arxiv.org/pdf/2003.05991
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/11744023_32
https://personalpages.bradley.edu/~chris/searches.html
https://personalpages.bradley.edu/~chris/searches.html
https://arxiv.org/pdf/1702.08303
https://arxiv.org/pdf/1702.08303
https://aclanthology.org/P07-1056
https://doi.org/10.1007/978-3-030-30645-8_30
https://towardsdatascience.com/why-rectified-linear-unit-relu-in-deep-learning-and-the-best-practice-to-use-it-with-tensorflow-e9880933b7ef
https://towardsdatascience.com/why-rectified-linear-unit-relu-in-deep-learning-and-the-best-practice-to-use-it-with-tensorflow-e9880933b7ef
https://towardsdatascience.com/why-rectified-linear-unit-relu-in-deep-learning-and-the-best-practice-to-use-it-with-tensorflow-e9880933b7ef
https://doi.org/10.1007/978-0-387-32833-1_62
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-32833-1_62
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-32833-1_62
http://arxiv.org/pdf/2009.09796v1
https://doi.org/10.1145/1281192.1281218

80 Bibliography

[12] Wenyuan Dai et al. “Self-taught clustering”. In: Proceedings, Twenty-fifth Inter-
national Conference on Machine Learning. Ed. by Andrew K. McCallum and Sam
Roweis. Helsinki, Finland: University of Helsinki], 2008, pp. 200–207. ISBN:
9781605582054. DOI: 10.1145/1390156.1390182. URL: https://www.cse.ust.
hk/~qyang/Docs/2008/dwyakicml.pdf.

[13] Kenneth Dawson-Howe. A practical introduction to computer vision with OpenCV.
Online-Ausg. Chichester, England: Wiley, 2014. ISBN: 9781118848784. URL: http:
//site.ebrary.com/lib/alltitles/Doc?id=10856780.

[14] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 6/20/2009 -
6/25/2009, pp. 248–255. ISBN: 978-1-4244-3992-8. DOI: 10.1109/CVPR.2009.
5206848.

[15] Adit Deshpande. A Beginner’s Guide To Understanding Convolutional Neural Net-
works. 2.04.2021. URL: https://adeshpande3.github.io/A-Beginner%27s-
Guide-To-Understanding-Convolutional-Neural-Networks/.

[16] Carl Doersch and Andrew Zisserman. Multi-task Self-Supervised Visual Learn-
ing. URL: https://arxiv.org/pdf/1708.07860.

[17] Kshitij Dwivedi and Gemma Roig. “Representation Similarity Analysis for Ef-
ficient Task taxonomy & Transfer Learning”. In: CoRR abs/1904.11740 (2019).
arXiv: 1904.11740. URL: http://arxiv.org/abs/1904.11740.

[18] Y. Escoufier. “The Duality Diagram: A Means for Better Practical Applica-
tions”. In: Develoments in Numerical Ecology. Ed. by Pierre Legendre and Louis
Legendre. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 139–156.
ISBN: 978-3-642-70882-4. DOI: 10.1007/978-3-642-70880-0_3.

[19] Mark Everingham et al. “The Pascal Visual Object Classes Challenge: A Retro-
spective”. In: International Journal of Computer Vision 111.1 (2015), pp. 98–136.
ISSN: 0920-5691. DOI: 10.1007/s11263-014-0733-5.

[20] Mark Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”.
In: International Journal of Computer Vision 88.2 (2010), pp. 303–338. ISSN: 0920-
5691. DOI: 10.1007/s11263-009-0275-4.

[21] H. Faris, I. Aljarah, and S. Mirjalili. Evolutionary Data Clustering: Algorithms and
Applications. Algorithms for intelligent systems. Springer, 2021. ISBN: 9789813341913.
URL: https://books.google.de/books?id=20wfEAAAQBAJ.

[22] Cornelia Fermüller and Yiannis Aloimonos. “Vision and action”. In: Image and
Vision Computing 13.10 (1995), pp. 725–744. ISSN: 02628856. DOI: 10 . 1016 /
0262-8856(95)98754-H.

[23] Ernest H. Forman and Saul I. Gass. “The Analytic Hierarchy Process—An Ex-
position”. In: Operations Research 49.4 (2001), pp. 469–486. ISSN: 0030-364X.
DOI: 10.1287/opre.49.4.469.11231.

[24] GitHub. ludvb/batchrenorm: Batch Renormalization in Pytorch. 14.09.2021. URL:
https://github.com/ludvb/batchrenorm.

[25] GitHub. taskonomy/results at master · StanfordVL/taskonomy. 14.09.2021. URL: https:
//github.com/StanfordVL/taskonomy.

https://doi.org/10.1145/1390156.1390182
https://www.cse.ust.hk/~qyang/Docs/2008/dwyakicml.pdf
https://www.cse.ust.hk/~qyang/Docs/2008/dwyakicml.pdf
http://site.ebrary.com/lib/alltitles/Doc?id=10856780
http://site.ebrary.com/lib/alltitles/Doc?id=10856780
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://arxiv.org/pdf/1708.07860
https://arxiv.org/abs/1904.11740
http://arxiv.org/abs/1904.11740
https://doi.org/10.1007/978-3-642-70880-0_3
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-009-0275-4
https://books.google.de/books?id=20wfEAAAQBAJ
https://doi.org/10.1016/0262-8856(95)98754-H
https://doi.org/10.1016/0262-8856(95)98754-H
https://doi.org/10.1287/opre.49.4.469.11231
https://github.com/ludvb/batchrenorm
https://github.com/StanfordVL/taskonomy
https://github.com/StanfordVL/taskonomy

Bibliography 81

[26] Clement Godard et al. “Digging Into Self-Supervised Monocular Depth Esti-
mation”. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV).
IEEE, 2019, pp. 3827–3837. ISBN: 978-1-7281-4803-8. DOI: 10.1109/ICCV.2019.
00393. URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/
Godard_Digging_Into_Self-Supervised_Monocular_Depth_Estimation_
ICCV_2019_paper.pdf.

[27] Alexander Goldenshluger and Assaf Zeevi. “The Hough transform estima-
tor”. In: The Annals of Statistics 32.5 (2004). ISSN: 0090-5364. DOI: 10.1214/
009053604000000760.

[28] Curt Hagquist and Magnus Stenbeck. “Goodness of Fit in Regression Analysis
– R2 and G2 Reconsidered”. In: Quality and Quantity 32.3 (Aug. 1998), pp. 229–
245.

[29] Kaiming He et al. Deep Residual Learning for Image Recognition. URL: https:
//arxiv.org/pdf/1512.03385.

[30] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural Com-
putation 9.8 (1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997.
9.8.1735.

[31] T. Huang. Computer Vision: Evolution And Promise. 1996. DOI: 10.5170/CERN-
1996-008.21.

[32] Mi-Young Huh, Pulkit Agrawal, and Alexei A. Efros. “What makes ImageNet
good for transfer learning?” In: CoRR abs/1608.08614 (2016). arXiv: 1608 .
08614. URL: http://arxiv.org/abs/1608.08614.

[33] Andrew Hynes and Stephen Czarnuch. “Human Part Segmentation in Depth
Images with Annotated Part Positions”. In: Sensors (Basel, Switzerland) 18.6
(2018). DOI: 10.3390/s18061900.

[34] “Integer Programming: Branch and Bound Methods”. In: SpringerReference.
Berlin/Heidelberg: Springer-Verlag, 2011. URL: http://web.tecnico.ulisboa.
pt/mcasquilho/compute/_linpro/TaylorB_module_c.pdf.

[35] Ebrahim Karami, Mohamed Shehata, and Andrew Smith. Image Identification
Using SIFT Algorithm: Performance Analysis against Different Image Deformations.
URL: https://arxiv.org/pdf/1710.02728.

[36] “Pearson’s Correlation Coefficient”. In: Encyclopedia of Public Health. Ed. by
Wilhelm Kirch. Dordrecht: Springer Netherlands, 2008, pp. 1090–1091. ISBN:
978-1-4020-5614-7. DOI: 10.1007/978- 1- 4020- 5614- 7_2569. URL: https:
//doi.org/10.1007/978-1-4020-5614-7_2569.

[37] S. Kornblith, J. Shlens, and Q. V. Le. “Do Better ImageNet Models Transfer Bet-
ter?” In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, 2019, pp. 2656–2666.
DOI: 10.1109/CVPR.2019.00277. URL: https://doi.ieeecomputersociety.
org/10.1109/CVPR.2019.00277.

[38] Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. “Representational
similarity analysis - connecting the branches of systems neuroscience”. In:
Frontiers in systems neuroscience 2 (2008), p. 4. DOI: 10.3389/neuro.06.004.
2008.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25 (8436).

https://doi.org/10.1109/ICCV.2019.00393
https://doi.org/10.1109/ICCV.2019.00393
https://openaccess.thecvf.com/content_ICCV_2019/papers/Godard_Digging_Into_Self-Supervised_Monocular_Depth_Estimation_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Godard_Digging_Into_Self-Supervised_Monocular_Depth_Estimation_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Godard_Digging_Into_Self-Supervised_Monocular_Depth_Estimation_ICCV_2019_paper.pdf
https://doi.org/10.1214/009053604000000760
https://doi.org/10.1214/009053604000000760
https://arxiv.org/pdf/1512.03385
https://arxiv.org/pdf/1512.03385
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.5170/CERN-1996-008.21
https://doi.org/10.5170/CERN-1996-008.21
https://arxiv.org/abs/1608.08614
https://arxiv.org/abs/1608.08614
http://arxiv.org/abs/1608.08614
https://doi.org/10.3390/s18061900
http://web.tecnico.ulisboa.pt/mcasquilho/compute/_linpro/TaylorB_module_c.pdf
http://web.tecnico.ulisboa.pt/mcasquilho/compute/_linpro/TaylorB_module_c.pdf
https://arxiv.org/pdf/1710.02728
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1109/CVPR.2019.00277
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00277
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00277
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.3389/neuro.06.004.2008

82 Bibliography

[40] Kshitij Dwivedi et al. “Duality Diagram Similarity: a generic framework for
initialization selection in task transfer learning”. In: (2020).

[41] Lawrence G. Roberts. Machine Perception of Three-Dimensional Solids. 1963. ISBN:
0-8240-4427-4. URL: https://www.researchgate.net/publication/220695992_
Machine_Perception_of_Three-Dimensional_Solids.

[42] Erik G. Learned-Miller. “Introduction to Computer Vision”. In: (2011). URL:
https://people.cs.umass.edu/~elm/Teaching/Docs/IntroCV_1_19_11.
pdf.

[43] Yann LeCun et al. “Object Recognition with Gradient-Based Learning”. In:
Shape, Contour and Grouping in Computer Vision. Ed. by David A. Forsyth et
al. Vol. 1681. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 319–345. ISBN: 978-3-540-66722-3. DOI: 10.1007/
3-540-46805-6_19.

[44] Fei-Fei Li, Justin Johnson, and Serena Yeung. cs231: Detection and Segmentation:
Lecture 11. URL: http://cs231n.stanford.edu/slides/2017/cs231n_2017_
lecture11.pdf.

[45] Niall O’ Mahony et al. “Deep Learning vs. Traditional Computer Vision”. In:
943 (2020). DOI: 10.1007/978-3-030-17795-9. URL: http://arxiv.org/pdf/
1910.13796v1.

[46] Ishan Misra et al. Cross-stitch Networks for Multi-task Learning. URL: https://
arxiv.org/pdf/1604.03539.

[47] Guido Montufar. Restricted Boltzmann Machines: Introduction and Review. URL:
https://arxiv.org/pdf/1806.07066.

[48] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In: IEEE
Transactions on Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359.
ISSN: 1558-2191. DOI: 10.1109/TKDE.2009.191.

[49] PASCAL VOC2012 Database Statistics. http : / / host . robots . ox . ac . uk /
pascal/VOC/voc2012/dbstats.html. Accessed: 2021-12-17.

[50] Christian P. Robert, Nicolas Chopin, and Judith Rousseau. “Harold Jeffreys’s
Theory of Probability Revisited”. In: Statistical Science 24.2 (2009). ISSN: 0883-
4237. DOI: 10.1214/09-STS284.

[51] Edward Rosten and Tom Drummond. “Machine Learning for High-Speed Cor-
ner Detection”. In: Computer vision - ECCV 2006. Ed. by Aleš Leonardis, Horst
Bischof, and Axel Pinz. Vol. 3951. Lecture Notes in Computer Science. Berlin:
Springer, 2006, pp. 430–443. ISBN: 978-3-540-33832-1. DOI: 10.1007/11744023_
34.

[52] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks.
URL: http://arxiv.org/pdf/1706.05098v1.

[53] German Sharabok. Why Deep Learning Uses GPUs?. And why you should too. . . |
by German Sharabok | Towards Data Science. 2020. URL: https://towardsdatascience.
com/why-deep-learning-uses-gpus-c61b399e93a0.

[54] Alex Sherstinsky. “Fundamentals of Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) Network”. In: Physica D: Nonlinear Phenom-
ena 404.8 (2020), p. 132306. ISSN: 01672789. DOI: 10.1016/j.physd.2019.
132306. URL: https://arxiv.org/pdf/1808.03314.

https://www.researchgate.net/publication/220695992_Machine_Perception_of_Three-Dimensional_Solids
https://www.researchgate.net/publication/220695992_Machine_Perception_of_Three-Dimensional_Solids
https://people.cs.umass.edu/~elm/Teaching/Docs/IntroCV_1_19_11.pdf
https://people.cs.umass.edu/~elm/Teaching/Docs/IntroCV_1_19_11.pdf
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
https://doi.org/10.1007/978-3-030-17795-9
http://arxiv.org/pdf/1910.13796v1
http://arxiv.org/pdf/1910.13796v1
https://arxiv.org/pdf/1604.03539
https://arxiv.org/pdf/1604.03539
https://arxiv.org/pdf/1806.07066
https://doi.org/10.1109/TKDE.2009.191
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/dbstats.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/dbstats.html
https://doi.org/10.1214/09-STS284
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/11744023_34
http://arxiv.org/pdf/1706.05098v1
https://towardsdatascience.com/why-deep-learning-uses-gpus-c61b399e93a0
https://towardsdatascience.com/why-deep-learning-uses-gpus-c61b399e93a0
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://arxiv.org/pdf/1808.03314

Bibliography 83

[55] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning Impor-
tant Features Through Propagating Activation Differences”. In: PMLR 70:3145-
3153 (). URL: https://arxiv.org/pdf/1605.01713.pdf.

[56] Nathan Silberman and Rob Fergus. “Indoor scene segmentation using a struc-
tured light sensor”. In: 2011 IEEE International Conference on Computer Vision
workshops (ICCV workshops 2011). Piscataway, NJ: IEEE, 2011, pp. 601–608. ISBN:
978-1-4673-0063-6. DOI: 10.1109/ICCVW.2011.6130298.

[57] Nathan Silberman et al. “Indoor Segmentation and Support Inference from
RGBD Images”. In: Computer Vision – ECCV 2012. Ed. by David Hutchison et
al. Vol. 7576. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 746–760. ISBN: 978-3-642-33714-7. DOI: 10.1007/
978-3-642-33715-4_54.

[58] Bhupesh Kumar Singh. “Evaluation of Genetic Algorithm as Learning System
in Rigid Space Interpretation”. In: Handbook of research on novel soft computing
intelligent algorithms. Ed. by Pandian Vasant. Advances in computational intel-
ligence and robotics (ACIR) book series, 2327-0411. Hershey, PA: Information
Science Reference, 2014, pp. 475–510. ISBN: 9781466644502. DOI: 10.4018/978-
1-4666-4450-2.ch016.

[59] Jie Song et al. Deep Model Transferability from Attribution Maps. URL: http://
arxiv.org/pdf/1909.11902v2.

[60] Jie Song et al. “DEPARA: Deep Attribution Graph for Deep Knowledge Trans-
ferability”. In: Proceedings, 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. Los Alamitos, California: IEEE Computer Society, Confer-
ence Publishing Services, 2020, pp. 3921–3929. ISBN: 978-1-7281-7168-5. DOI:
10.1109/CVPR42600.2020.00398. URL: https://openaccess.thecvf.com/
content_CVPR_2020/papers/Song_DEPARA_Deep_Attribution_Graph_for_
Deep_Knowledge_Transferability_CVPR_2020_paper.pdf.

[61] “Spearman Rank Correlation Coefficient”. In: The Concise Encyclopedia of Statis-
tics. New York, NY: Springer New York, 2008, pp. 502–505. ISBN: 978-0-387-
32833-1. DOI: 10.1007/978-0-387-32833-1_379. URL: https://doi.org/10.
1007/978-0-387-32833-1_379.

[62] Trevor Standley et al. Which Tasks Should Be Learned Together in Multi-task Learn-
ing? URL: https://arxiv.org/pdf/1905.07553.

[63] Gjorgji Strezoski, Nanne van Noord, and Marcel Worring. “Learning Task Re-
latedness in Multi-Task Learning for Images in Context”. In: Proceedings of the
2019 on International Conference on Multimedia Retrieval. Ed. by Abdulmotaleb
El Saddik. ACM Digital Library. New York,NY,United States: Association for
Computing Machinery, 2019, pp. 78–86. ISBN: 9781450367653. DOI: 10.1145/
3323873.3325009.

[64] Richard Szeliski. Computer vision: Algorithms and applications. Texts in computer
science. London: Springer, 2011. ISBN: 9781848829350. DOI: 10.1007/978-1-
84882-935-0. URL: http://site.ebrary.com/lib/alltitles/docDetail.
action?docID=10421311.

[65] Chuanqi Tan et al. “A Survey on Deep Transfer Learning”. In: CoRR abs/1808.01974
(2018). arXiv: 1808.01974. URL: http://arxiv.org/abs/1808.01974.

[66] Taskonomy: Disentangling Task Transfer Learning. https://github.com/StanfordVL/
taskonomy. Accessed: 2021-12-17.

https://arxiv.org/pdf/1605.01713.pdf
https://doi.org/10.1109/ICCVW.2011.6130298
https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.4018/978-1-4666-4450-2.ch016
https://doi.org/10.4018/978-1-4666-4450-2.ch016
http://arxiv.org/pdf/1909.11902v2
http://arxiv.org/pdf/1909.11902v2
https://doi.org/10.1109/CVPR42600.2020.00398
https://openaccess.thecvf.com/content_CVPR_2020/papers/Song_DEPARA_Deep_Attribution_Graph_for_Deep_Knowledge_Transferability_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Song_DEPARA_Deep_Attribution_Graph_for_Deep_Knowledge_Transferability_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Song_DEPARA_Deep_Attribution_Graph_for_Deep_Knowledge_Transferability_CVPR_2020_paper.pdf
https://doi.org/10.1007/978-0-387-32833-1_379
https://doi.org/10.1007/978-0-387-32833-1_379
https://doi.org/10.1007/978-0-387-32833-1_379
https://arxiv.org/pdf/1905.07553
https://doi.org/10.1145/3323873.3325009
https://doi.org/10.1145/3323873.3325009
https://doi.org/10.1007/978-1-84882-935-0
https://doi.org/10.1007/978-1-84882-935-0
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10421311
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10421311
https://arxiv.org/abs/1808.01974
http://arxiv.org/abs/1808.01974
https://github.com/StanfordVL/taskonomy
https://github.com/StanfordVL/taskonomy

84 Bibliography

[67] Keras Team. Keras documentation: Image segmentation metrics. 12/3/2021. URL:
https://keras.io/api/metrics/segmentation_metrics/.

[68] Keras Team. Keras documentation: Monocular depth estimation. 12/3/2021. URL:
https://keras.io/examples/vision/depth_estimation/.

[69] TensorFlow. Transfer learning and fine-tuning. 12/17/2021. URL: https://www.
tensorflow.org/tutorials/images/transfer_learning.

[70] The Beginner’s Guide to Semantic Segmentation. 12/18/2021.

[71] Ekin Tiu. Metrics to Evaluate your Semantic Segmentation Model. 12/18/2021.
URL: https : / / towardsdatascience . com / metrics - to - evaluate - your -
semantic-segmentation-model-6bcb99639aa2.

[72] torch.clamp — PyTorch 1.9.0 documentation. 14.09.2021. URL: https://pytorch.
org/docs/stable/generated/torch.clamp.html.

[73] Simon Vandenhende, Stamatios Georgoulis, and Luc van Gool. MTI-Net: Multi-
Scale Task Interaction Networks for Multi-Task Learning. URL: http://arxiv.org/
pdf/2001.06902v5.

[74] Simon Vandenhende et al. Branched Multi-Task Networks: Deciding What Layers
To Share. URL: https://arxiv.org/pdf/1904.02920.

[75] Simon Vandenhende et al. Multi-Task Learning for Dense Prediction Tasks: A Sur-
vey. URL: http://arxiv.org/pdf/2004.13379v2.

[76] Jiguang Wang. “Pearson Correlation Coefficient”. In: Encyclopedia of Systems
Biology. Ed. by Werner Dubitzky et al. New York, NY: Springer New York,
2013, pp. 1671–1671. ISBN: 978-1-4419-9863-7. DOI: 10.1007/978- 1- 4419-
9863-7_372. URL: https://doi.org/10.1007/978-1-4419-9863-7_372.

[77] Jingdong Wang et al. Deep High-Resolution Representation Learning for Visual
Recognition. URL: https://arxiv.org/pdf/1908.07919.

[78] Jinjiang Wang et al. “Deep learning for smart manufacturing: Methods and
applications”. In: Journal of Manufacturing Systems 48 (2018), pp. 144–156. ISSN:
02786125.

[79] Xiaolong Wang, David F. Fouhey, and Abhinav Gupta. Designing Deep Net-
works for Surface Normal Estimation. URL: https://arxiv.org/pdf/1411.4958.

[80] Victor Wiley and Thomas Lucas. “Computer Vision and Image Processing:
A Paper Review”. In: International Journal of Artificial Intelligence Research 2.1
(2018), p. 22. DOI: 10.29099/ijair.v2i1.42.

[81] Dan Xu et al. PAD-Net: Multi-Tasks Guided Prediction-and-Distillation Network
for Simultaneous Depth Estimation and Scene Parsing. URL: http://arxiv.org/
pdf/1805.04409v1.

[82] Qiang Yang et al. “Heterogeneous Transfer Learning for Image Clustering via
the SocialWeb”. In: Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Process-
ing of the AFNLP. Suntec, Singapore: Association for Computational Linguis-
tics, 2009, pp. 1–9. URL: https://www.aclweb.org/anthology/P09-1001.

[83] Amir Zamir et al. Taskonomy: Disentangling Task Transfer Learning. URL: https:
//arxiv.org/pdf/1804.08328.

https://keras.io/api/metrics/segmentation_metrics/
https://keras.io/examples/vision/depth_estimation/
https://www.tensorflow.org/tutorials/images/transfer_learning
https://www.tensorflow.org/tutorials/images/transfer_learning
https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2
https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2
https://pytorch.org/docs/stable/generated/torch.clamp.html
https://pytorch.org/docs/stable/generated/torch.clamp.html
http://arxiv.org/pdf/2001.06902v5
http://arxiv.org/pdf/2001.06902v5
https://arxiv.org/pdf/1904.02920
http://arxiv.org/pdf/2004.13379v2
https://doi.org/10.1007/978-1-4419-9863-7_372
https://doi.org/10.1007/978-1-4419-9863-7_372
https://doi.org/10.1007/978-1-4419-9863-7_372
https://arxiv.org/pdf/1908.07919
https://arxiv.org/pdf/1411.4958
https://doi.org/10.29099/ijair.v2i1.42
http://arxiv.org/pdf/1805.04409v1
http://arxiv.org/pdf/1805.04409v1
https://www.aclweb.org/anthology/P09-1001
https://arxiv.org/pdf/1804.08328
https://arxiv.org/pdf/1804.08328

Bibliography 85

[84] Amir R. Zamir et al. “Supplementary Material, Taskonomy: Disentangling
Task Transfer Learning”. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. IEEE, 18.06.2018 - 23.06.2018, pp. 3712–3722. ISBN: 978-1-
5386-6420-9. DOI: 10.1109/CVPR.2018.00391.

[85] Zhenyu Zhang et al. Pattern-Affinitive Propagation across Depth, Surface Normal
and Semantic Segmentation. URL: https://arxiv.org/pdf/1906.03525.

https://doi.org/10.1109/CVPR.2018.00391
https://arxiv.org/pdf/1906.03525

	Abstract
	Acknowledgements
	Acronyms
	Introduction (Yannic)
	Theoretical background
	Computer Vision (Yannic)
	Transfer Learning (Daniel)
	Multi-Task Learning (Yannic)
	Cross-Stitch-Network (Daniel)
	Pattern and Distillation Network (Yannic)
	Pattern-Affinitive Propagation Network (Daniel)
	Multi-Scale Task Interaction Network (Yannic)

	Task-Relationship Learning (Daniel)
	High-Resolution Network (Yannic)
	Mathematical Formulas (Yannic)
	Bayes Factor
	R-Squared
	Spearman Correlation
	Pearson Correlation
	Cosine Distance Function

	Related Literature
	Taskonomy - Disentangling Task Transfer Learning (Daniel)
	Representation Similarity Analysis for Efficient Task Taxonomy and Transfer Learning (Yannic)
	Duality Diagram Similarity: A Generic Framework For Initialization Selection In Task Transfer Learning (Daniel)
	Deep Model Transferability From Attribution Maps (Daniel)

	Many-To-One Task Similarity (Daniel)
	Experiments and Results
	Datasets (Yannic)
	Taskonomy:
	Pascal VOC Semantic Segmentation:
	NYUD:

	Hardware Used for Experiments (Daniel)
	MOTS in Comparison with Other State-Of-the-Art Methods
	Experimental Setup (Yannic)
	RDM Configuration (Yannic)
	Data Preparation and Pre-processing (Yannic)
	R2 and Bayes Factor Calculation for Source and Target Task Combinations (Daniel)
	Correlation Calculation Between MOTS and Ground Truth (Yannic)
	Search for Optimal Image Amount for RDMs (Yannic)
	MOTS Results for Single-Source Transfer Learning Prediction (Daniel)
	MOTS Results for Multi-Source Transfer Learning Prediction (Daniel)
	MOTS Results for Single- and Multi-Source Transfer Learning Prediction (Daniel)

	MOTS for Multi-Task Architecture
	Experimental Setup (Daniel)
	Used Architecture (Yannic)
	Single-Task Baseline (Yannic)
	Training Process (Yannic)
	Specifying Auxiliary Tasks for Training (Daniel)
	Feature Extraction (Daniel)
	RDM Creation (Daniel)
	Layer Selection (Daniel)
	Transfer Nets (Yannic)
	Selection of Optimal Transfer Net for Ground-Truth Creation (Daniel)
	Comparison of MOTS Prediction and Ground-Truth Ranking (Daniel)
	Correlation between MTI-Net Layers (Yannic)

	Discussion and Conclusion (Daniel)
	MOTS with Single Sources
	MOTS with Multiple Sources
	MOTS with Multiple Tasks
	Limitations
	Ideas for Future Work
	Conclusion

	Bibliography

