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1. INTRODUCTION

In today’s world, algorithms and data structures are everywhere. On a daily basis
we all use computers for navigation, communication or entertainment. Thereby, we
trust in the security of our data and willingly accept that algorithms try to use as much
information as possible to, for instance, predict our next purchase. As almost every
part of our daily life is nowadays influenced by algorithms, two fundamental questions
immediately arise:

(1) Why do algorithms succeed or fail?
(2) Where are the limits of algorithms?

Although everyone is familiar with using algorithms on a daily basis, formulating, un-
derstanding and analysing these questions rigorously has been (and will remain) a
challenging task for decades. Due to the fact that the modern society is a complex
and fast-evolving system, answering these questions for the real world is very difficult.
Therefore, one way of making steps towards the answer is the formulation of models
that are portraying reality, but also remain easy to analyse.
But even problems formulated in a simplified setting, may turn out to be difficult to
solve. The following question, raised in the 19th century [102], is a prominent example
for such a problem:

Example 1.1 (Travelling Salesman Problem). "Given a list of cities and the distances
between each pair of cities, what is the shortest possible route that visits each city exactly
once and returns to the origin city?"

Obviously, this problem is portraying reality as all of us already tried to solve this
task in our daily life by combining, for instance, the groceries with the post office, the
bakery and the barber shop. At the same time it turns out that this question is harder
to analyse than one might expect at first glance. Indeed, this problem raised a lot of
attention over the years and researchers were not able to entirely understand it even
though they tried to tackle it from different angles [10]. Of course, it is natural to ask
how the success of a travelling salesman is connected to the questions we raised about
the fundamental understanding of algorithms.
For a mathematician the answer is quite obvious. The ’Travelling Salesman Problem’ is
deeply connected to the, so called, P-NP-Problem, which formulates one of the most
important questions in modern computer science and its scientific relevance is imme-
diate1. We will discuss this part of the answer in detail in Section 1.2. For others it might
be unclear why this particular problem raises attention in the first place. Therefore, we
will use the Section 1.1 to introduce the relevance of this problem on an intuitive level.
We will see how this basically sets a framework to talk about the limits of algorithms. A
reader familiar with the P-NP-Problem may skip this section.

1.1. Why computational hardness matters? The scientific importance of the P-NP-
Problem is unquestioned (see for instance [57] for details), but also from a non-scientific
point of view we can point out its relevance. To emphasise what the P-NP-Problem is
and why the answer might be relevant even from a non-mathematical point of view;
let us introduce Alice and Bob.
First, let us assume that Bob wants to send a private message to Alice. For Bob and
Alice it should be easy to send and receive the message. Nonetheless, for a third party
it should be hard to access their communication. But how do we prevent the third
party from spying? We just have to find an encoding-decoding scheme such that with
the right information it remains easy for Alice and Bob to encode and decode their

1In the year 2000 the Clay Mathematics Institute announced a list of the 7 most important open math-
ematical problems and exposed $1’000’000 for solving one of them. So far only one of the "Millennial
Problems" has been solved.
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messages, but a third party must invest a huge amount of computational power to re-
veal the encrypted information. This idea actually builds the backbone of the entire
data security upon the internet and is also the point where finding computational hard
problems comes into play. As aforementioned, one of the most important questions in
modern computer science is the, so called, P-NP-Problem. This problem asks whether
or not in every problem with an easy to verify solution (N P ) it is also easy to find a
solution (P ). Thus, computer scientists around the world wonder whether P 6= N P or
P = N P . For the message between Alice and Bob it is great if the latter would not be
true. Why is that the case?
Let us for the moment assume that P = N P . Then for every computational problem
instance, for which we can verify a given solution easily, producing such a solution is
easy as well. Today‘s encoding-decoding schemes are based on the fact that one can
use the schemes with the right information easily (as just verification of given infor-
mation is needed), but getting access without it is hard (as we have to produce the
information ourselves). A prominent example is the RSA crypto-scheme [86], which is
based on the believe that factorisation of large numbers is supposed to be hard. Thus,
P = N P would (in theory) imply that one could access the communication of Alice and
Bob even without their authorisation. Therefore, from a cryptography point of view
and for the security of our data P = N P would not be the most favourable outcome.
As so far no proof exists that either confirms or refutes the P 6= N P-conjecture, scien-
tists try to find evidence that hints in one or the other direction. Taking our introduc-
tory Travelling Salesman example, one can indeed show that it is (together with other
combinatorial problems) NP-hard [63]. So far, no efficient algorithm is known to suc-
ceed on these problem sets. This, of course, is no proof in one or the other direction
as just because we do not know an efficient algorithm yet, does not imply that there
is none. Therefore, the question remains far from being answered. But how can we
provide evidence in one or the other direction?
One common way to go is the analysis of toy models. Most algorithms take noisy
data as an input and then use a given procedure to solve their task. Therefore, tak-
ing such a toy model to pinpoint the circumstances under which this instance is easy,
hard or impossible to solve by certain types of algorithms, is a step towards under-
standing the fundamentals of algorithmic performance. On the one hand, we may
wonder how much data per noise is necessary such that a problem instance provides
sufficient information to solve a given task and at what point the contained infor-
mation is lost within the noise. On the other hand, we are interested whether we
can find an algorithm that is able to use the provided information efficiently (we will
explain the underlying notion of ’efficiently’ in Section 1.2.2). We call the point be-
yond which there is sufficient information contained in the problem set to solve it,
the information-theoretic-threshold. Furthermore, we say that a task is information-
theoretically-possible beyond this point. The point beyond which there exists an effi-
cient algorithm that can use the provided information to succeed, is called algorithmic-
threshold. We call a problem easy to solve beyond this point. We refer the reader to Fig-
ure 1 for an illustration. The basic question is whether these two thresholds match or
if there is a ’fundamental’ gap between them. This gap would lead to an ’information-
theoretically possible, but computationally hard’ phase and thereby imply P 6= N P .
Unfortunately, we are so far not able to proof such a fundamental gap and only unset-
tled evidence for the existence of such gaps exists. To make the interplay of signal and
noise more accessible we use the following example. Everybody knows the predictions
made by Amazon, Netflix or Facebook:

• "You bought product X, you might be interested in product Y as well."
• "You watched movie P, you might also like the first season of Q."
• "You are friends with M, you might know N, too."
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FIGURE 1. The diagram shows the interplay between signal strength
(data quantity) and noise. It is often the case that for certain pairs there
exists an algorithm that solves the task (green region) and for other pairs
the noise is too strong such that no algorithm can solve the task (red
region). In many cases, there is a gap where sufficient information is
contained but no known algorithm succeeds (yellow region).

These predictions are made by algorithms that are designed to reveal our taste and be-
haviour from our data as well as the data of the users around us. Their predictions are
based on the interplay of two measures, namely the quantity of the data (signal) and
the noise within the data. If the signal is strong the algorithms will perform well even
with a high level of noise and will start to fail if either the signal gets too weak or the
noise too strong. In our example, one may think of the signal as all information we left
on the internet that the algorithms may use. The noise comes in as, of course, not our
entire life is spread on the internet and some parts of our personality and social inter-
actions remain hidden from the algorithms. Therefore, the more information we reveal
on the internet, the better the algorithms of Netflix, Amazon and Facebook can predict
our taste. As those companies use their predictions for the purpose of earning money,
they would like their algorithms to perform well even for low levels of signal and high
levels of noise. All these prediction-algorithms are based on complicated models tai-
lored for their explicit need and a mathematical rigorous analysis of their performance
is (to the best of our knowledge) impossible. Nonetheless, we would like to understand
why algorithms of this type succeed or fail.
Therefore, again scientists introduced simplified toy models to get a handle on the
complexity and make steps towards understanding how these algorithms work and
why they may start failing. Two well-known examples of these toy models for portray-
ing the real-world in this scope are given by the Principle Component Analysis (PCA)
and Community Detection in the Stochastic Block Model (SBM)2. We can, for the sake of
the example, think of PCA as a simplification of the taste prediction rules for Amazon
and Netflix. Additionally, the friend suggestions of Facebook are distantly related to
the analysis of the SBM. For such toy models (even though very far away from the real
world) researchers were able to pinpoint how signal and noise relate such that these
problems are easy, (presumed to be) hard or impossible to solve. As not the focus of

2Note that the analogies are meant as visualisation of the need for toy models as step towards under-
standing algorithmic barriers in the real-world. The reader should be aware that there is a mayor dif-
ference between the methods used in real-world applications and the toy models used for research pur-
poses. The results derived for these toy models do NOT directly apply to real-world networks.
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this thesis, we refer the interested reader to [1, 60] for an overview about the results ob-
tained for the PCA and SBM examples. Of course, one would like to analyse models and
algorithms as close to the real world as possible. Due to the massive increase in com-
plexity, this is so far only possible by introducing and analysing toy models distantly
related to the real world. Over the last decades researchers from different fields shed
light on the reasons why problems may be computational impossible, hard or easy. We
will use Section 1.2 to introduce some of the concepts and will put our motivation into
a rigorous perspective.

1.2. Computational hardness. The answer to the question whether or not a certain
problems are hard to solve, is highly correlated with the scientific background of the
person one asks. Therefore, we have to start with introducing the notion of hardness
that we work on within this thesis. In fact, we are interested in computational hard-
ness of problems. But how do we measure hardness and how do we classify a problem
as hard or easy? Intuitively speaking for a given problem we measure, how long algo-
rithms need to compute a proper solution to the problem set on the worst case input.
The most popular classification is given by the notion of ’easy to solve’ (P ) vs. ’easy
to verify’ (N P ). While algorithms are used as some kind of cure-all black box in collo-
quial language these days, we have to clarify how we actually formally think about an
algorithm. From this definition we will be able to formulate and distinguish the two
classes rigorously. We therefore shortly introduce the concept of the Turing Machine.
One can imagine a Turing Machine as a tape that is divided into squares. This tape
comes together with a set of symbols and a set of states. Our Turing Machine takes one
of the states and each of the squares can either be empty or contain one of the avail-
able symbols. Now, our Turing Machine can move along the tape, read one symbol at
a time, overwrite it according to the current state of the Turing Machine and change its
current state. We refer the reader to [96] for more details. We say a problem belongs to
the class P if there exists such a Turing Machine that can solve the problem by applying
its procedure step by step, but for an input of size n it should only require a number
of steps polynomial in n. At the same time, the class N P consists of all problems for
which there exists a Turing Machine that can verify a given solution of the problem in a
poly(n) steps. Obviously, P ⊂ N P holds. But the question if P ⊃ N P also holds remains
open. In terms of Figure 1 we would like to know whether the two lines coincide or if
the difference (yellow region) is of fundamental nature. In the following we will intro-
duce some concepts and results that might carry evidence about the natural reasons of
computational hardness. The analysis of computational hardness is closely related to
understanding the behaviour of complex and chaotic systems. Another scientific dis-
cipline that tries to answer such questions is physics. We will use the following section
to emphasise how physics relates to computational hardness.

1.2.1. How understanding physics might help? Starting with the fundamental work of
Aristotle (384- 322 BC) and the seminal observations of Galileo (1561- 1642 AD), Isaac
Newton (1643- 1727 AD) and Albert Einstein (1879- 1955 AD), for centuries physicists
tried to understand complex real-world phenomena. Of course, their journey is far
from being over, but one could get the idea that they might be able to support us on our
journey of understanding computational hardness as we obviously entered the physi-
cist’s playground of analysing complex systems. Physicists usually try to explain their
observations through theoretical models. The probably best known example of such
a observation-theory pair is given by Newton’s apple and the theory of gravity. Obvi-
ously, we do not find a direct explanation for all phenomena we observe around us.
Therefore, similar to the theory of computational hardness, physicists started to intro-
duce toy models to portray the real world in a simplified way. In particular, we will use
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this section to emphasise the connection between our objective and the field of sta-
tistical physics and we do so, by focusing on the, so called, spin-glass theory. One can
imagine the spin-glass theory as the physics equivalent of the toy model analysis done
within the research of computational hardness.
Intuitively speaking, the theory of spin-glasses tries to explain, how macroscopic phe-
nomena of particle systems are driven by the local interactions of the particles as well
as the external influences affecting the system (like for instance temperature or air
pressure). We start with introducing the common terminology and concepts used in
this context and will use them to draw the line from physics to computational hard-
ness. The general introduction is based on [21, 76, 83, 97]. A spin-glass is a set of parti-
cles that can take a magnetic orientation. For simplicity one may think of it as ±1 and
will call it spin from now on. Furthermore, the particles can interact with each other
randomly. Therefore, such a particle system exhibit a certain form of disorder and it
is often represented through a Hamiltonian H . Here, we think about the interactions
through a random coupling J and the spin configuration of our N particles through a
vector σ= {σ1, ...,σN }. Then, the Hamiltonian is just a model-specific function

H : (J ,σ) 7→ H(J ,σ).

To make the term ’model-specific’ a little bit more accessible, we give the following
example:

Example 1.2. [The Sherrington-Kirkpatrick (SK) model] Consider a spin configuration
σ= {σ1, ...,σN } on N particles withσi ∈ {±1} and Ji j as independent Gaussian variables.
The Hamiltonian has the following form:

H =− 1p
N

N∑
i , j=1

Ji jσiσ j

As the Sherrington-Kirkpatrick model (Example 1.2) is the probably most-studied
spin-glass model, we will use it to access the ideas of spin-glass theory on an exem-
plary level. In contrast to purely ferromagnetic systems (adjacent particles tend to take
the same spin, Ji j = 1{σi 6=σ j }) and purely anti-ferromagnetic systems (adjacent par-
ticles tend to take opposite spins, Ji j = 1{σi = σ j }), one can imagine a spin-glass as
a mixture between ferromagnetic and anti-ferromagnetic (as in terms of Example 1.2
the Ji j are Gaussian variables and may take positive as well as negative values). Due
to this mixture of interactions each particle receives contradicting preferences from
its neighbours and the equilibrium state of the system is not as obvious as in the two
pure models. Assume we start with an initial spin configuration σ. Now, together with
the interactions induced by J we see that the system (σ, J ) exhibits a certain amount
of contradictions for different σi . One may think of these contradictions as internal
energy of the system. Now, the system tries to reduce this internal energy by changing
the spins over time. In the end, the system would like to reach one of its ground states
σ∗, the states of least energy3. In the best case, this would end in a spin configuration
that has no more contradictions. Due to the randomness of the interactions (and the
thereby occurring contradicting preferences) it is usually not possible to reach such a
state. The best we can hope for is a state with the least energy σ∗. Also reaching such
a ground state might turn out to be a non-trivial task for the particle system. This is
due to the existence of, so called, meta-stable configurations σM . These states exhibit
the least energy within all configurations of a certain distance, but the internal energy
of σM exceeds the energy of σ∗. Thus, locally they look like states of least energy, but
they are not the optimal state upon the entire configuration space. Even though, these
configurations σM are not the best possible outcome, leaving them is not easy for the

3For the moment we assume that the temperature T is tending to zero (T → 0).
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FIGURE 2. Consider four configurations σM ,σ′,σ′′ and σ∗. Here σM de-
notes a meta-stable configuration, σ∗ denotes the configuration of least
energy (ground state) and σ′ as well as σ′′ denote intermediate config-
urations. Even though σM is not the best possible a change σM → σ′ is
no improvement as σ′ remains in the attraction radius of σM . From an
energetic point of view the system tends to return to σM as it is looking
to achieve a lower energy. A change σM → σ′′ would help. In this case
the system reaches a point that leads to an attraction to the state of low-
est energy σ∗. This additional push to get to σ′′ instead of σ′ may turn
out to be difficult or may take a very long time. Note that this illustration
assumes the case temperature T → 0.

system. At first glance a variation from σM would increase (instead of reduce) the en-
ergy and it would take multiple inferior steps until the system overcomes this energetic
barrier. Therefore, the system might get stuck in these meta-stable configurations for
a very long time as leaving them does not seem reasonable for the system from a ener-
getic point of view. We refer the reader to Figure 2 for an illustration.
In this context, the main objective of physicists is the analysis of the Hamiltonian H(σ, J )
and its behaviour in the large system limit as N →∞. In particular, they are interested
in minσ H(σ, J ). So far, the only influential parameters for the system were given by the
spin configuration σ and the interactions induced by J . Thereby, we ignored (or sim-
plified) external influences that might change the system’s behaviour. Intuitive candi-
dates for such parameters are the temperature and air pressure. A standard example
one can have in mind at this point is water. As we all know, water appears in differ-
ent physical forms (solid, liquid, gaseous) for different temperatures. Furthermore,
air pressure influences, for instance, the boiling point of water4. A standard choice of
these influences in the field of spin-glass theory is given by the temperature T and the
external field h.
At this point, the physicists’ dream is the analysis of their favourite spin-glass model,
but apparently this turns out to be a non-trivial task, in general. Unfortunately, many
properties of the spin-glass cannot be evaluated exactly. A notable exception in this
regard is the Nishimori-line (a sub-space of the parameter space), where many prop-
erties can be evaluated exactly for certain spin-glass models [81, 82]. The questions
one may ask are quite similar to the ones we already mentioned for computational
hardness. On the one hand, we may ask under which circumstances the spin system’s
behaviour is actually coming from the internal particle interactions (spin-glass phase)

4On the Mount Everest we only need 71◦C instead of the 100◦C necessary on sea level. This is due to the
difference in air pressure.
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FIGURE 3. The behaviour of the Sherrington-Kirkpatrick model is de-
pending on the temperature T and the external field h. Here, we see un-
der which circumstances this model behaves like a spin-glass and under
which the behaviour is driven by the external influences. The separation
line is called Almeida-Thouless line.

and at what point the behaviour is just driven by the external influences T and h (para-
magnetic phase). On the other hand, within the spin-glass phase finding and analysing
the behaviour of the system’s ground states and its physical properties is the next task.
Thus, the physicist also tries to find the threshold beyond which there is some infor-
mation about the spin configuration contained. Furthermore, she wants to find a way
to analyse the contained information.

To make this connection even more accessible, we will emphasise it by considering
the Sherrington-Kirkpatrick model (Example 1.2) as a toy model. After being intro-
duced in 1975 by D. Sherrington and S. Kirkpatrick, this model evolved to one of the
most popular and well-studied spin-glass models. We will highlight some of the results
to provide an intuitive connection between spin-glasses and computational hardness
research.
The first obvious connection is given by the separation of the parameter space given
by the Almeida-Thouless (AT) line [36] (see Figure 3 for illustration). For the SK-model
[23, 59, 100] rigorously established that this transition boundary is, indeed, mathemat-
ically meaningful. Above the line the external influences are too strong and interac-
tions only play an insignificant role for the physical properties of the system. One may
think of the, so called, para-magnetic phase as the impossible regime (red area in Fig-
ure 1). Thus, the AT-line can be seen as an information-theoretic threshold within the
SK-model.
Now, moving below the AT-line we enter the, so called, spin-glass phase, where in-
deed interesting phenomena based on local interaction influence the system’s physi-
cal properties. At this point, one may choose a property of the system and ask a)Does
the system contain sufficient evidence about the chosen property? and b)Can we eval-
uate this property efficiently? These questions again sound quite familiar. Within the
spin-glass phase of the SK-model some interesting properties were predicted as well as
rigorously established.
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Let us, for instance, assume that we may be interested in the expected spin of the i -
th particle. A way to deal with this question was addressed in [99] by D. Thouless, P.
Anderson and R. Palmer. Intuitively speaking, they proposed a system of equations
(TAP-equations) to calculate the expected spin of the the i -th particle given the inter-
actions J and the other N − 1 particles. The next step is to obtain a solution of this
system and, indeed, E. Bolthausen proposed an iterative construction for solving the
TAP-equations [17] for certain regimes of T and h within the spin-glass phase.
With this in mind, we recall that, indeed, we might be able to benefit from the insights
of physics. An intuitive connection between physics and computational hardness is
given by the fact that one can imagine a spin configuration {σ1, ...,σN } as binary in-
put to the algorithm and the ground states σ∗ as solutions obtained by an algorithm.
Furthermore, one could imagine the existence of meta-stable states σM as a natural
barrier that not only keeps a particle system from reaching its ground state but also
causing algorithms to get stuck while solving a task. While the impossible phase cor-
responds to the para-magnetic phase, for the spin-glass phase one can ask whether
we can say something meaningful about certain properties of our spin-glass. This cor-
responds to finding the ’information-theoretically possible’ regime in the computa-
tional hardness research. Therefore, in our spin-glass example an immediate question
is how the ground states σ∗ relate to each other and whether meta-stable states occur.
Thus, beyond the information-theoretic threshold as soon as sufficient information are
contained in the problem set, the solution space geometry of our problem set might
matter. It might hint to some ’natural’ phenomena (based on the energy landscape of
our particle system) that cause algorithmic barriers and computational hardness. We
again employ the SK-model as example to access the theory on an explanatory level
and transfer the predictions afterwards.
In the 1980s, G. Parisi5 proposed a way to handle the analysis of the spin-glass phase of
the SK-model. While the analysis is straight forward in the para-magnetic phase, the
obtained solution is not satisfactory in the spin-glass phase. Therefore, G. Parisi pro-
posed the idea of Replica Symmetry Breaking. Within the spin-glass phase he assumed
the existence of many well-separated stable ground states6. The obtained predictions
are in line with the theory of physics and indicate that, indeed, the configuration space
geometry is getting more complex in the spin-glass phase. Furthermore, these predic-
tions were rigorously established for the SK-model [11, 84].

At this point one might wonder why we should care about these predictions for the
SK-model as the model itself seems quite distant from being relevant for the real world
and, of course, the fact that the interactions only happen pairwise and that each par-
ticle influences all the others indicates that there might be models closer to the real
world than the SK-model. Therefore, physicists started to apply their methods to mod-
els that avoid these connectivity issues. A prominent example in this regard is the
Bethe-Lattice [75].

Due to the close relation of the questions raised in spin-glass theory and the admired
goals in the scope of algorithmic hardness, physicists started to formulate and analyse
many of the toy models known for computational hardness with their techniques.
The probably most influential transfer was proposed by connecting the separation
properties for the ground states of spin-glasses and the existence of meta-stable states
with the solution space of a broad class of well-known toy models [64, 73].

5In 2021 he received the Nobel price in physics for his work on complex systems.
6By well-separated we mean that they satisfy the following inequality:

∣∣σ∗
1 −σ∗

2

∣∣ ≤
max

(∣∣σ∗
1 −σ∗

3

∣∣ ,
∣∣σ∗

3 −σ∗
2

∣∣). This is often referred to as ultrametricity.
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We will use the following section to show how scientists tried to turn these predictions
into rigorous evidence for computational hardness.

1.2.2. On rigorous evidence for Computational hardness. In the previous section, we
took a brief detour in the physics’ world. We have seen that it might not be the worst
idea to listen to the physicists’ intuition while working our way along the desired P-
NP-Problem as their experience on complex systems might help. As already men-
tioned, within the research of computational hardness we normally consider toy mod-
els to pinpoint potentially hard regimes. We will use this section to motivate where the
physics ideas can be applied to computational models and that one can actually turn
these concepts into rigorous proofs. At this point, computer scientists and physicists
are not as far apart as one might expect. Both want to understand complex systems and
due to its complexity they portray the real world through toy models. For computer
scientists a constraint satisfaction problem (CSP) is the equivalent to what a spin-glass
means to the physicists. In the end, they also want to deal with their favourite CSP
and reveal all relevant information about it. Consider n variables x1, ..., xn (for simplic-
ity one can think of xi as binary) and m constraints a1, .., am . Now, we connect the
variables with constraints and equip each constraint with a function that takes the val-
ues of its neighbouring variables and maps it to either satisfied or unsatisfied. In this
case, the connection process as well as the function given to the constraints are prob-
lem specific. For the moment, Figure 4 provides a simplified example one can have
in mind while thinking about such problems. One may ask whether or not there ex-
ists a configuration (x1, ..., xn) that meets all constraints. Furthermore, one would like
to know how to find such a configuration. Obviously, the answer of such questions
are depending on the ratio α = m

n between the number variables and the number of
constraints. It seems, of course, tempting to take the physicists tool box and throw it

A

B

C D

A

B

C

D

xA 6= xC

xB 6= xCxA 6= xB

xC 6= xD

FIGURE 4. Assume we would like to colour our favourite map, we have 3 colours
available and we would like to do it in a way such that countries with a joint border
are coloured differently. Now we can encode the information provided by the map
(countries as circles, common borders by lines). For each border we add the corre-
sponding constraint ensuring that countries corresponding to the particular border
are coloured differently (rectangle). We check that indeed the right-hand-side shows a
proper colouring of our map. Note that (even beside permutation) the colouring is not
unique as we could recolour area D and use green instead. For completeness, we draw
attention to the fact that we would not be able to colour the given map with only two
colours (due to region C).

at your favourite CSP, but all that glitters is not gold. On the one hand, their predic-
tions are often correct and provide a good starting point for rigorous research. On the
other hand, we have to be careful as their ideas are often non-rigorous and hard to
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prove. The intuitive connection between CSPs and spin-glass systems is quite obvi-
ous. Of course, instead of variables x1, ..., xn and constraints a1, ..., am in a CSP we can
think about a system of n interacting particles. Furthermore, finding a proper solu-
tion corresponds to a configuration of x1, .., xn such that there are no contradictions,
thus automatically leading to a state of least energy σ∗. Over the years physicists used
their methods to handle all kinds of different CSPs. While some are dealing with par-
ticular problem sets like our introductory example about the travelling salesman [70]
or colouring certain underlying structures [45], the probably most influential contri-
butions [64, 73] analyse a more general framework. First of all, they predict the ratio
α= m

n below which there exist a solution for a broad class of CSPs. Secondly, they use
the separation property of the ground states as well as the existence of meta-stable
states to predict that beyond a certain α′ it will be hard to find a solution even though
there exists one. Since then researchers tried to pour these predictions into a solid and
rigorously proven framework. Over the years a rich body of literature emerged and
proved many of the physicists’ predictions about the solution space of a broad class of
CSPs rigorously [2, 3, 4, 28, 33, 34]. Interestingly, many problems exhibit the predicted
phenomena of a mismatch between the existence of solutions and the ability of finding
them efficiently with the state-of-the-art algorithms. Famous member of this group are
finding a large independent set [27], or planted clique [9] in Erdös-Renyi graphs and the
random k-SAT problem [25]. Even though all of the three examples are worth a closer
look, we will employ the random k-SAT problem as explanatory example.

Example 1.3 (Random k-SAT). Given n variables x1, ..., xn and m constraints a1, ..., am .
Each a j = (a1 j , ..., ak j ) now chooses its k variables uniformly at random from
{x1, ..., xn ,¬x1, ...,¬xn}.

(1) For each a j we connect the a1 j , ..., ak j with a logical OR ( ∨ ).
(2) We connect all a1, ..., am with a logical AND ( ∧ ).

This leaves us with a problem instance of the following form:

Φ= (a11 ∨a21 ∨ ...∨ak1)∧ (a12 ∨a22 ∨ ...∨ak2)∧ ...∧ (a1m ∨a2m ∨ ...∨akm)

The target is to find a configuration (x1, ...xn) with xi ∈ { TRUE, FALSE } such thatΦ eval-
uates to TRUE.

We immediately see that the solubility of this problem depends on the interplay of
n and m. Of course, random k-SAT is a prime example for a random CSP. Therefore,
one can use the non-rigorous predictions for the transitions in the solutions space ge-
ometry [64, 73] as a starting point for rigorous research. First of all [73] predicted that
as soon as α = m

n passes αSAT := 2k ln(2)− 1+ln(2)
2 + ok (1) the problem has a satisfying

configuration for any α < αSAT and has none for α > αSAT. Although this prediction
is based on non-rigorous physics methods, this transition was rigorously justified by
[35, 37]. The next step on the way of understanding random k-SAT is the prediction
of [64, 73] referring to the computational hardness of finding a satisfying assignment.
Due to a change in the solution space geometry, they predict that in the intermediate
regime αALG < α < αSAT with αALG = 2k ln(k)

k it is computationally hard to find a sat-
isfying configuration although there exists one. In the special case of random k-SAT
physicists predict [77] that this is due the emergence of meta-stable states as soon as
one surpasses αALG. Furthermore, they predict that algorithms, that are not able to
observe the entire solution space, might get stuck in these meta-stable states as from
the algorithm’s perspective the local minimum looks like the optimal solution even
though they obviously are not optimal. If this holds for all polynomial-time algorithms,
we would immediately get P 6= N P . This would be the case because we could take an
assignment and verify whether (or not) it is satisfying in polynomial time. But at the
same time computing a satisfying assignment in polynomial-time would be hard. Of
course, we are not able to prove such a strong result for random k-SAT. There are two
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ways to go. First of all, one can propose algorithms that perform well for certain vari-
able/constraint densities α. In a second step, one can check whether certain classes
of algorithms are (not) able to surpass the barriers set by the existing algorithms. The
state-of-the-art algorithm [25] works all the way up to the predicted ’optimal’ barrier
αALG. Since then different types of algorithms tried to surpass that barrier and, so far,
no one was able to do so [19, 26, 32, 56]. There are two points we would like to em-
phasise here upon the strength of the evidence in the case of random k-SAT. First of all,
physicists usually believe that certain message-passing types of algorithms are giving
the optimal answer to algorithmic problems. While this was often the case for other
problems, this seems not to be the case for random k-SAT [26, 32, 56]. Secondly, very
recent research relates the separation phenomena with the existence of a, so called,
Overlap Gap Property (OGP)7 and show that the performance of a huge class of algo-
rithms (low-degree polynomials) is strongly related to this phenomena. In the case
of random k-SAT, [19] show that this class of algorithms also fails to surpass the bar-
rier αALG set by [25]. Due to recent results on OGP as well as low degree methods
[13, 15, 18, 19, 38, 48, 47, 93] it is sometimes conjectured that the class of low-degree-
polynomials can be used as proxy for the class of efficient algorithms as it covers most
of the a state-of-the-art algorithms. In the case of random k-SAT, this strengthens the
believe that the result of A. Coja-Oghlan [25] is indeed optimal. Furthermore, it also
strengthens the evidence that there may exist barriers that algorithms cannot surpass
efficiently. One can see this remaining gap between αALG and αSAT as a step towards
the P-NP question. The intruding question at this point is the following:

⇒ Are we able to find other toy models and problem instances

that strengthen this evidence?

The remainder of this thesis will make steps towards answering this question by as-
suming several variants of the, so called, Group Testing Problem. We will use the next
section to motivate the problem set and introduce it on an intuitive level.

1.3. Group Testing. The Group Testing Problem was introduced in 1943 by R. Dorfman
[41]. Due to the high demand at that time the testing capacity for syphilis was limited.
Therefore, he raised the following idea to increase the testing capacity:

The Group Testing Problem:
Assume we have a large group of individuals and a very small subset of them suffer
from a rare decease. Instead of using one test for one person, is it possible to determine
the infection status of each person by conducting pooled tests?

Before turning to the mathematical questions one can tackle within this problem the
reader might wonder about an even more fundamental issue here as it seems non-
trivial to move from individual to pooled tests on a chemical level. While this procedure
is not possible for every virus, there exist notable examples where such procedures are
not only possible but even in daily use [72]. The most prominent examples are prob-
ably given by COVID-19 [79] and HIV [105]. Furthermore, Group Testing procedures
found their way into some real-world applications like DNA sequencing [67, 80] and
protein interaction experiments [78, 98]. Furthermore, it appears as an essential tool
to face pandemic spread [24].
In his original work R.Dorfman proposed a testing procedure in two rounds. In a first
step the individuals are split into groups. One may think of it as collecting the blood or
saliva of each participant of a group and mixing it in one pot. If a test returns negative
the Dorfman-procedure declares all participants as uninfected. For the participants in

7We refer the reader to the recent survey articles [46, 66] for a detailed discussion



12

positive tests a second round of individual tests follows. The crucial idea of this proce-
dure is two-fold. First of all, a negative test does not contain the virus therefore none
of the participants donated it and thereby all are uninfected. While in a positive test at
least one participant is responsible for the contamination, we do not know who it was.
Therefore, the second round clarifies that.
At that point one might wonder why we so far ignored faulty tests and dilution effects
and, of course, this is correct. We cannot always assume the gold standard and we
cannot pool an unlimited number of individuals in one test. For instance COVID-19
test are to some extend faulty [106] and due to dilution effects we can only pool a
finite number of individuals [79]. While we will address these problems within this
thesis (Section 3 and Section 4) by adjusting the model, we start with the general ques-
tions one may ask. Beyond n individuals we have k infected individuals and we are al-
lowed to conduct m tests. In this thesis we apply the standard assumption k ∼ nθ with
θ ∈ (0,1). While this sub-linear scaling might seem somewhat artificial, it is indeed a
natural scaling in early stages of epidemics, due to Heaps’ Law [16, 103]. Here again,
one can ask similar questions as before. We are interested in the minimum number
of tests m such that the test carry some information about the infected subset. Fur-
thermore, we would like to know how many tests we actually need to work with this
information efficiently.
Obviously, this problem is another example of a CSP as we can see the test a1, ..., am

as constraints, our individuals x1, ..., xn as the variables and the infection status as bi-
nary information {0,1}. The constraints are induced by the individuals participation
in a test. We have to find a configuration such that a negative test does not contain a
variable xi = 1, thus, does not contain an infected individual. Furthermore, we have to
ensure that the configuration does have at least one xi = 1 in each positive test, thus
does contain at least one infected individual.
One might notice at this point that this task is a CSP of a different nature. Indeed, it is
called planted CSP. Until now (for instance random k-SAT) we were interested in find-
ing some solution for the CSP, but we had no preference about which one to choose.
In the Group Testing problem this is not sufficient anymore. Here, we would like to
recover, approximate or at least detect the set of infected individuals responsible for
the test result. A picture one can have in mind is the, so called, Teacher-Student-Model
(see [107] for an detailed overview). Here, a teacher receives a ground truth x1, ..., xn

and uses x1, ..., xn together with a model G to generate observable data a1, ...am . Now,
she passes G as well as a1, ..., am over to a student. The student now tries to recover
x1, ..., xn from the given information. As this seems quite technical on first glance, ev-
eryone of us probably experienced this situation in high school. A teacher reads a fact
in a book, writes it on the blackboard and we tried to recover the written facts from
the blackboard. Now, we would like to analyse the chances of the students to learn the
right facts. We refer the reader to Figure 5 for illustration of a Group Testing instance. In
the scope of this thesis, we analyse the chances of the student to recover, approximate
and detect the infected subset. We will shed light on the question how model specific
constraints influence her chances. The following sections are dedicated to rigorously
introduce the models, results and techniques used to obtain the results relevant to this
thesis. We will also introduce the state-of-the art before the papers relevant to this
thesis [30, 31, 50, 51, 52] have been published/submitted and place the results into
perspective.

1.3.1. Fundamentals, combinatorics and notation. While the COVID-19 pandemic re-
vealed the importance of the Group Testing problem in its own way, the mathematical
analysis of this problem will be the main focus of the thesis at hand (also see [7] for a
recent survey). On an explanatory level, we have already seen in Figure 5 that we can
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a1 a2 a3 a4 a5 a6

x1 x2 x3 x4 x5 x6 x7 x8Population

Testing Scheme

FIGURE 5. A small example of a the Group Testing problem. The top line
represents the infection status one would like to find. Circles represent
individuals (red infected, white uninfected). Rectangles represent tests
(red positive, white negative). The edges between rectangles and circles
show which individual participates in which test. The target is to tell
which of the question marks are red and white.

translate the problem into a combinatorial framework. Therefore, we introduce the
concept of the, so called, factor graph.

Definition 1.4 (Factor Graph, see for instance [74]). LetΩ 6= ; be a finite set.
AΩ-factor graph G = (V ,F, (∂a)a∈F , (ψ)a∈F ) consists of

• a set V of variable nodes,
• a set F of constraint nodes,
• a neighborhood ∂a ∈V for each a ∈ F ,
• and a weight function ψa :Ω|∂a | →R.

Remark 1.5. In our Group Testing problem we encode the population’s infection status
by σ = (σ1, ...,σn) with individual infection status σi ∈ Ω := {0,1}. The set V contains
the individuals and the set F consists of the tests. Our pooling scheme induces ∂a for all
a ∈ F as we know which individual participates in which test. Note, that in the Group
Testing problem the planted assignment σ = (σ1, ...,σn) induced which test is positive
and negative. Finally ψa := ψ(σ)

a ensures that a test is positive if at least one infected
individual is contained:

ψ(σ)
a : {0,1}∂a →




1{∑

xi ∂a σi>0
} if

∑
xi∂aσi > 0

1{∑
xi ∂a σi=0

} if
∑

xi∂aσi = 0

With this in mind, we can state the basic underlying structures that are responsible
for the complexity of certain inference tasks. From now onσ denotes a uniform chosen
vector {0,1}n with Hamming weight k, encoding the populations underlying infection
status. Furthermore, σ̂ = σ̂(G ,σ) ∈ {0,1}m denotes the sequence of (pre-noise) test
results, such that σ̂a = 1 iff test a contains at least one infected individual, that is

σ̂a = max
x∈∂a

σx .

We now introduce the underlying important structures that are important for the noise-
less Group Testing. While these do not immediately transfer to the noisy case (but are
using adoptions of these ideas) we will introduce the required adoptions in the corre-
sponding Section 4. First of all, we divide our population into two groups (infected,
uninfected): Given a pooling scheme G , let

V0(G ) = {x ∈V (G ) :σx = 0}

and V1(G ) = {x ∈V (G ) :σx = 1}
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We find uninfected individuals that are easy to identify. A negative test is a clear indica-
tor for an individual to be uninfected, we call the set of these individuals V0−. Formally,

V0−(G ) = {x ∈V0(G ) : ∃a ∈ ∂G x : σ̂a = 0} .(1.1)

Furthermore, there are infected individuals that are easy to identify. If an individual x
participates in a positive test a and x remains the only individual in test a after remov-
ing all easy uninfected individuals, the remaining x must be the one responsible for
the positive test result. Thus, it is easy to identify. Formally, we define them as

V1−−(G ) = {x ∈V1(G ) : ∃a ∈ ∂G x : (∂G a \ {x}) ⊂V0−(G )} .(1.2)

This leaves us with individuals that are less easy to handle. We call an uninfected indi-
vidual x disguised if it only appears in positive tests. Furthermore, we call an infected
individual x disguised if it appears only in positive tests where at least one other in-
fected individual beside x is contained. Formally we define them as,

V0+(G ) = {x ∈V0(G ) : ∀a ∈ ∂G x : σ̂a = 1} .(1.3)

V1+(G ) = {x ∈V1(G ) : ∀a ∈ ∂G x : (∂G a \ {x})∩V1(G ) 6= ;} .(1.4)

An illustration can be found in Figure 6. The general idea is to analyse the existence of

x1 ∈V0−
x1

x2 ∈V1−−
x2

x3 ∈V0+∪V1+
x3

FIGURE 6. Rectangles represent tests and circles individuals. Dark violet individuals
are elements of V0− and can be easily identified as uninfected. Light violet individuals
are elements of V0+, and even if uninfected themselves, they only appear in positive
tests and might be hard to identify. Infected individuals that appear only in tests con-
taining another infected individual are impossible to identify (light orange). Finally,
infected individuals of V1−− (dark orange) appear in at least one test with only ele-
ments of V0− . Thus, after identifying all elements of V0−, they can be identified. The
dashed lines represent the fact that the individuals may also participate in other tests;
these may include negative tests classifying their participants as uninfected (elements
of V0−) even though the particular test displayed is positive. This figure is adopted from
[51].

these structures to decide whether the given task on a Group Testing instance is easy,
hard or impossible to solve.

Remark 1.6. So far the individual-types assumed noiseless test outcomes. We will han-
dle noisy tests as well within this thesis (Section 4). Note, that as soon as we change the
model to allowing noisy tests a single test is not a clear indicator anymore. While the key
idea still is that the influence of the infected and uninfected individuals differ by con-
struction of the Group Testing problem (even with noisy tests), we will have to introduce
an appropriate notion of this influence to get started with the noisy case. We will go into
detail in Section 4.

For a pooling scheme G , a underlying population infection status vectorσ and a test
results sequence σ̂, we define Sk (G ,σ) as the set of all population infection statuses
τ ∈ {0,1}n that satisfy the test outcomes σ̂ (of course, including σ itself). Furthermore,
we set Zk (G ,σ) = |Sk (G ,σ)|. By Corollary 2.1 of [29] we know that, given the test re-
sult and a uniformly sampled planted assignment, all sets in Sk (G ,σ) are equally likely.
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Thus, as soon as multiple satisfying assignments exist one cannot do better than sam-
ple one uniformly at random. We will use these underlying structures to analyse the
algorithmic and information-theoretic limits of Group Testing. Note that we employ
standard Landau-notationΘ(∗),O(∗),o(∗) and ω(∗) from now on within this thesis.

1.3.2. On the model variations and the different notions of success. We consider n in-
dividuals and k ∼ nθ with θ ∈ (0,1) of them are infected. We assume σ ∈ {0,1}n to be
drawn uniformly at random among all vectors of size n with Hamming weight k. Fur-
thermore, we assume that we conduct m tests. The pooling of the n individuals within
the m tests is given by G(n,m,θ). Let σ̂ ∈ {0,1}m denote the test result vector.

Definition 1.7 (The Models for the Group-Testing Problem). We assume the following
variations of G :=G (n,m,θ) within this thesis:

(1) The standard-model assumes noiseless tests, binary test output and neither tests
nor individuals carry any size-constraints. This model is the basis for [30, 31]
and will be addressed in Section 2.

(2) The noisy-model keeps the binary output and the non-existent size-constraints,
but each test carries an error probability. This model is relevant in [52] and will
be addressed in Section 4.

(3) The size-constrained model keeps the binary output as well as the noiseless tests.
The relevant modifications are given by the size-constraints:

a) Tests can only contain a limited number of individuals.
b) Individuals can only participate in a limited number of tests.

In [51] we assume this model and we will address the details in Section 3.
(4) The quantitative-model keeps the noiseless tests and the non-existing

size-constraints, but instead of telling us whether or not an infected individual is
contained, a test returns the number of infected individuals within the test. This
model is relevant in [50] and will be addressed in Section 5.

We consider these variants of the model and will introduce them formally in the
corresponding sections. From Definition 1.7 we get the problem instance we work on.
There are three algorithmic and information-theoretic objectives we handle within this
thesis.

Definition 1.8 (Exact Recovery). An algorithm A solves exact recovery ofσ for a Group
Testing instance, if A (G ,σ̂,k) correctly identifies the infected individuals with high prob-
ability.

This notion of success is relevant in [30, 50, 51, 52]. The following two claims give us
a starting point within the analysis of the limits of exact recovery.

Claim 1.9 (Claim 2.3 of [51]). For any test design, we have Zk (G ,σ) ≥ |V1+(G )| |V0+(G )|.
Hence, conditioned on the sets V1+(G ) and V0+(G ), any inference algorithm fails with
probability at least 1− 1

|V1+(G )||V0+(G )| .

In other words, exact recovery becomes impossible if we find ’many’ disguised in-
fected as well as disguised uninfected individuals. In this case, we could flip the status
of some of these individuals and find a second satisfying assignment without being
able to distinguish them. For details we refer the reader to [51].

Claim 1.10 (Claim 2.4 of [51]). Exact recovery is easy if V1(G ) =V1−−(G ).

Thus, there exists an algorithm that can solve exact recovery as soon as all infected
individuals exhibit the right neighbourhood structure (defined in (1.2)). The, so called,
DD can use these structures to succeed. Intuitively speaking, it declares all participants
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of negative tests as uninfected and checks the remaining individuals for x ∈ V1−−(G ).
Thus, if one finds all infected individual this way, it succeeds. We will employ the DD
to establish the easy regime in multiple models. Therefore, we will come back to this
algorithm in Section 2 and Section 3. Again, the details can be found in [51]. A com-
mon way to ease the exact recovery criteria is given by weak-recovery as one might be
satisfied with a ’good portion’ of correctly identified individuals instead of getting the
entire set correct.

Definition 1.11 (weak-recovery). An algorithm A recovers the ground-truthσ of a Group
Testing instance δ-weakly, if A (G ,σ̂,k) outputs an estimate σ̃ with Hamming weight k
s.t. 〈σ̃,σ〉 ≥ δk.

We deal with this criteria in [30, 31] and the following claim will be helpful to estab-
lish results on weak-recovery.

Claim 1.12 (Section 5.1 of [31]). Fix any constant δ> 0 and let τ ∈ {0,1}n be uniformly
sampled from Sk (G ,σ). Then weak-recovery is impossible if

P (〈σ,τ〉 ≥ δk) = o(1).

In other words, we have to ensure that the probability of two satisfying assignments
(with k infected individuals) overlapping too much, is small. Thus, instead of analysing
the number of satisfying assignment we have to analyse the relation between different
satisfying assignments of the underlying problem set.

An even weaker criteria is called ’detection’. Here, we are not interested in finding the
infected subset, but telling whether the underlying pooling scheme is actually coming
from a Group Testing instance. Thus, we would like to find a way to distinguish a graph
coming from a Group Testing instance from an appropriately chosen random graph
model.

Definition 1.13 (Strong Detection [31]). An algorithm A is said to achieve strong de-
tection if, given input (G ,k) with G drawn from either a Group Testing instance P or a
random noise model Q(each chosen with probability 1/2), it correctly identifies the dis-
tribution (Q or P) with probability 1−o(1).

The following claim helps us while analysing this success criteria.

Claim 1.14 (Section 7 of [31]). Suppose P=Pn and Q=Qn are distributions over {0,1}p

for some p = pn . We say that an estimator f strongly separates P and Q if
√

max
{
VarP[ f ],VarQ[ f ]

}= o
(∣∣EP[ f ]−EQ[ f ]

∣∣) .

If there exists a estimator f = fn that strongly separates P and Q then strong detection is
possible.

Therefore, as long as we find an estimator that is expected to output two different
estimates for both models and they are sufficiently well separated such that it is not
too likely that one looks like the other by chance, we can tell the two models apart. In
[31] we also deal with this notion of success.

In the remainder of this thesis we will see how these different criteria are addressed
for the different models mentioned in Definition 1.7. Section 2 deals with the uncon-
strained case. We deal with the size-constraints in Section 3. The noisy variant is ad-
dressed in Section 4. Finally we address the quantitative output in Section 5.
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2. UNCONSTRAINED GROUP TESTING

In this section, we handle the standard Group Testing model. We assume our popu-
lation of size n with an infected subset of size k ∼ nθ. Furthermore, we do not place any
size-constraints on neither the tests nor on the individuals. We assume that the tests
are error-free. In other words, they return positive if and only if an infected individual
is contained. This section is based on [30, 31].

2.1. Related work. As discussed in the previous section, the original idea was pro-
posed by R. Dorfman in 1943. In his work [41] he proposed a first pooling procedure
to solve the given task and, of course, the obvious question is whether or not one can
improve upon the proposed procedure. Since then, scientists tried to determine the
minimum number of tests necessary to reveal information about the infected subset.
A trivial counting bound states that exact recovery fails as soon as m < (1− ε)mcount

with mcount := k ln(n/k)
ln(2) . This follows as any algorithm fails as soon as we find two pop-

ulation infection statuses {0,1}n leading to the same test result. As the output of our m
tests is binary and we have to place k infected individuals in our population of size n,
the lower bound immediately follows from ensuring

2m ≥
(

n

k

)
.(2.1)

With this in mind, one can wonder whether one is able to recover the infected subset
by conducting only mcount tests. It is known by [8, 12, 58] that this is indeed possible.
Thus, exact recovery is easy all the way down to the threshold set by mcount. The main
weakness of these results comes from the required multi-stage testing (usually referred
to as adaptive strategy). Of course, these results were major breakthroughs, but it is not
fully satisfactory. This immediately follows from the origin of the Group Testing prob-
lem itself. Chemical restrictions [53] and the possible large-scale effects of pandemic
spread [24, 71, 79] actually require fast Group Testing schemes for useful practical ap-
plication. On top of that, one would like to simplify the schemes as much as possible.
Therefore, over years scientists tried to reduce the number of stages as much as pos-
sible. Thus, the ultimate target is an 1-stage procedure (usually called non-adaptive)
that recovers the infected subset with mcount tests. Indeed, [87] reduced the number of
stages needed to 3. But can we get all the way down to mcount with a 2-stage or even an
1-stage procedure for all θ ∈ (0,1)?
Indeed, [29] showed that exact recovery is information-theoretically possible with an
1-stage procedure by conducting

minf = minf(n,θ) = max

{
θ

ln2(2)(1−θ)
,

1

ln(2)

}
nθ ln(n/k).(2.2)

Note, that this bound matches mcount for all θ < ln(2)
1+ln(2) . It remained open whether there

is also an efficient algorithm that is able to use the provided information as the best-
known bound, where an algorithm was able to solve exact recovery efficiently, at this
point, required a pooling scheme on mDD tests with

mDD = mDD(n,θ) = max

{
θ

ln2(2)(1−θ)
,

1

ln2(2)

}
nθ ln(n/k).(2.3)

Thus, there remained 3 open questions within exact recovery in the Group Testing
problem that will be addressed within this thesis:

(1) Can we improve the result of [87] by proposing a 2-stage algorithm that suc-
ceeds by conducting mcount tests?

(2) Can we propose an efficient 1-stage algorithm that achieves exact recovery with
the minf tests (see (2.2)) proposed by [29]?
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(3) Can we find a better 1-stage procedure improving over the best known result of
[29] and, thereby, find a way to get all the way down to mcount for all θ?

We will answer these question concerned with exact recovery in this thesis.

As we will see in Section 2.2, it will not be possible to solve exact recovery all the way
down to mcount. Of course, exact recovery is a very strong target to chase. Therefore, in
a next step one might wonder, how easing the recovery criteria might change the tests
needed to succeed. Two natural candidates for such an analysis are given by weak-
recovery and detection. In [101] both criteria were already analysed for one particu-
lar 1-stage procedure, the Bernoulli-Design. It is known by [29, 89] that there exists a
pooling procedure, called Constant-Column Design, that information-theoretically im-
proves over the Bernoulli-Design for exact recovery. While in the Bernoulli-Model each
individual chooses tests independently with a certain probability, in the Constant-
Column Design each individual chooses a fixed number of ∆ tests uniformly at ran-
dom. A natural step for the further understanding of weak-recovery and detection is
the analysis of this particular model. Therefore, we will address the weak-recovery as
well as the detection task by employing the Constant-Column Design within this thesis.

2.2. Results. Recall that we analyse a population of n individuals among k ∼ nθ are
infected. In a first step we analyse the chances of a 1-stage pooling procedure within
the exact recovery task.

Theorem 2.1 (Theorem 1.1 and 1.2 of [30]). Let ε> 0 and

minf = minf(n,θ) = max

{
θ

ln2(2)(1−θ)
,

1

ln(2)

}
nθ ln(n/k).(2.4)

Within 1-stage procedures the following holds:

• Exact recovery is easy as soon as m ≥ (1+ε)minf.
• Exact recovery is impossible as soon as m ≤ (1−ε)minf.

This implies that there does not exist any 1-stage pooling scheme, such that exact
recovery is easy all the way down to mcount for all θ ∈ (0,1). Moreover, we are able to
close the gap that was left for efficient algorithms. Thus, it is indeed possible (for cer-
tain ranges of θ) to perform exact recovery efficiently all the way down to mcount with
a suitably chosen 1-stage pooling scheme. A next question is, whether an additional
pooling stage might help to achieve exact recovery with mcount tests for all θ ∈ (0,1).
The following theorem confirms this consideration.

Theorem 2.2. Let ε > 0, then exact recovery is easy as soon as m ≥ (1+ε)mcount with a
2-stage pooling procedure.

We note that for θ < ln(2)
1+ln(2) the bounds for 1-stage and 2-stage procedures match,

while for larger values they drift apart. Thus, there appears to be a fundamental gap
between multi-stage and 1-stage procedures. The next step of the agenda is given by
understanding weak-recovery. The following theorem states our results obtained for
this recovery criteria.

Theorem 2.3 (Theorem 1.3 of [30] and Theorem 1 of [31] ). Let ε> 0 and

mcount =
k ln(n/k)

ln(2)
.(2.5)

Within 1-stage procedures the following holds:

• weak-recovery is easy as soon as m ≥ (1+ε)mcount.
• weak-recovery is information-theoretically possible on a Constant-Column De-

sign as soon as m ≥ (1+ε)mcount.
• weak-recovery is impossible as soon as m ≤ (1−ε)mcount if one uses a Constant-

Column Design
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Therefore, weak-recovery is easy all the way down to mcount. The theorem only
shows the impossibility within the Constant-Column Design. We emphasise here that
the Constant-Column Design was proven to be the best-possible test design for exact
recovery. Therefore, it is hard to imagine that any 1-stage pooling scheme could im-
prove upon this result as weak-recovery is supposed to be easier than exact recovery.
We leave this point as open research question and refer the reader to Section 6. In a
final step, we consider the detection problem and the result is summarised in the fol-
lowing theorem.

Theorem 2.4 (Theorem 2 of [31]). Consider the Constant-Column Design (testing vari-
ant) with parameters θ ∈ (0,1) and c > 0. Define

(2.6) mdetect = max

{(
1− θ

2(1−θ)

)
1

ln2 2
,0

}
k · ln(n/k) .

Furthermore, let minf
detect = min{mdetect,mcount}

(a) If m > mdetect > 0 achieving strong detection is easy.

(b) If m > minf
detect > 0 achieving strong detection is information-theoretically possi-

ble.

Note, that there exists an algorithm that performs strong detection even below mcount

for certain ranges of large θ. For smaller θ the algorithm is not able to achieve detection
all the way down to mcount.

Remark 2.5. While the result is not due to the author of this thesis, we emphasise that
[31] indicates that detection is low-degree hard below mdetect. As already discussed in
Section 1.2.2 this carries evidence that the result obtained in Theorem 2.4 a) is best possi-
ble for the Constant-Column Design. Furthermore, combining this low-degree hardness
result with Theorem 2.4 b) indicates that there may exist a ’information-theoretically
possible, but computationally hard’ phase for detection in the Group Testing problem.
Furthermore, detection is supposed to be easier than weak as well as exact recovery.
Therefore, this might hint to a computational hard phase within these tasks as well. We
leave the details to [31] and the analysis of this phenomena as open research question
(see Section 6).

2.3. Proof strategy for exact recovery. In [29] it was shown, that it is
information-theoretically possible to perform exact recovery as long as one conducts
m > (1+ ε)minf tests (with ε > 0). The first part of Theorem 2.1 says that there is an
efficient algorithm that succeeds as soon as we provide this information. Therefore, to
prove this part we propose a pooling scheme as well as an efficient algorithm such that
exact recovery becomes easy.

We propose a 1-stage pooling scheme on minf tests that is inspired from various suc-
cesses of the spatial-coupling method known from coding theory (see for instance
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FIGURE 7. The figure deals with exact recovery. We see that there exists
an efficient algorithm that succeeds all the way down to the impossi-
ble threshold for 1-stage pooling schemes (blue/red line). Furthermore,
there exists a 2-stage pooling such that exact recovery becomes easy all
the way down to mcount. Note, that there is a fundamental gap between
1-stage and 2-stage pooling schemes. The blue and red line continue to
increase for all θ ∈ (0,1), but we omit it here due to clarity.

[65]).
We divide our n individuals as well as the minf tests into compartments V [1], ..V [T ]
and F [1], ..F [T ] with T =Θ(

p
n). Now, we take some of these compartments and mark

them. These compartments will be employed as a ’seed of additional information’. Now
each individual chooses∆=Θ(ln(n)) tests uniformly at random from its own compart-
ment and the s subsequent compartments with s = Θ(ln(ln(n))). We order the com-
partments as a ring such that the latter individual compartments start choosing from
the first ones, as soon as this becomes necessary. See Figure 8 for an illustration. Al-
though the pooling is randomised, we introduced a certain geometry within the pool-
ing procedure that helps us inferring the individuals’ infection status. Now, we take
the seed compartments and add sufficiently many test F [0] such that we can infer all
individuals in these seed compartments. Luckily, these additional tests needed are of
order o(minf) and therefore vanish in the total number of tests. For details, we refer the
reader to Appendix A or [30]. Thus, beside the randomised geometry within the ring,
another crucial feature of our pooling scheme is given by the fact that we will be able
to determine the status of the individuals contained in the seed and that these indi-
viduals are placed in other tests along the ring as well. Note, that each test contains
approximately Γ∼ n1−θ individuals.

Having a new pooling scheme is not sufficient for making exact recovery easy. There-
fore, we also introduce an (efficient) algorithm that works appropriately on the ring
induced by our new pooling procedure.
Our algorithm works in three stages. We emphasise, that all three stages are conducted
on the same 1-stage pooling scheme and that no re-pooling will happen between the
stages. In a first step, we employ the fact that we added sufficiently many tests such
that Claim 1.10 holds for the seed compartments. As discussed, we can employ the
well-known DD algorithm to infer the infection status correctly.
Now, the algorithm moves along the ring one compartment after the other. Of course,
we can declare all individuals appearing in negative tests as uninfected (by definition).
We are left with the infected individuals and disguised uninfected individuals. Along
the ring we count currently ‘unexplained’ positive tests. Furthermore, we weight these
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V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]
F [0] F [0] F [0]

· · · · · ·

FIGURE 8. The spatially coupled test design with n = 36,`= 9, s = 3. The
individuals in the seed groups V [1] ∪ ·· · ∪V [s] (orange) are equipped
with additional test F [0] (orange rectangles). The purple rectangles rep-
resent the tests F [1]∪·· ·∪F [`]. This is adopted from [30].

unexplained tests according to the relative position between the individuals’ compart-
ment and the test’s compartment. The closer the unexplained test’s position is located
to the individual’s position in the ring, the higher its weight. This gives us a first esti-
mate of the infection status vector.
In a final step, we use this estimate and combine it with the fact that for m > minf each
infected individual is the only infected individual in a certain amount of its tests.

The proof is based on a careful analysis of evolution of the distributions along the ring.
In the end, we check that the distributions induced for an infected individual and an
uninfected individual are well-separated for the estimates of the algorithm. Thus, we
apply a threshold approach to separate the two individuals types. We established that
exact recovery is easy as soon as we choose m > minf as we proposed a combination of
pooling scheme and efficient algorithm that succeeds to perform exact recovery.

The second part of Theorem 2.1 says that there cannot be any better 1-stage pooling
scheme for successful inference.
We use Claim 1.9 and show that as soon as we move below minf we have many disguised
individuals (both infected and uninfected) for any pooling scheme. For θ < ln(2)

1+ln(2) this

immediately follows from the counting bound argument (2.1). For θ > ln(2)
1+ln(2) we care-

fully analyse an arbitrary pooling scheme. We realise that the event of being disguised
in a test is positively correlated. For θ close to 1 we can apply the well-known FKG-
inequality [43] to show that in these cases we find disguised individuals as soon as we
drop below minf. Now, we extend this result by moving from these large θ cases all the
way down to θ = ln(2)

1+ln(2) . The key idea is to carefully dilute the population by adding
uninfected ’dummies’ to lower the infection density. The impossibility result follows
from combining the existence of many disguised individuals within the dilution pro-
cess. We refer the reader to Appendix A or [30] for the details.

The 2-stage result of Theorem 2.2 directly follows from the observation that if we run
the pooling scheme as well as the algorithm with m = mcount tests, we will find only
o(k) many individuals that do not carry sufficient evidence to be either classified as in-
fected or uninfected. Therefore, these are not yet classified. We now can use a second
round of individual testing to get them right as well. As this additional number of tests
is o(mcount), we do not increase the number of tests needed. Thus, a 2-stage algorithm
succeeds by combining our optimal 1-stage pooling with individual testing.

2.4. Proof strategy for weak-recovery. We start with the easy part of Theorem 2.3.
Here again, the observation that our pooling scheme employed for exact recovery to-
gether with the given algorithm only leaves o(k) individuals unclassified while applied
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on mcount tests shows that it is easy to solve weak-recovery, as there exists a pooling
scheme as well as an algorithm that solves the weak-recovery task efficiently. Namely,
the one discussed in the previous section.
As the spatially-coupled design is a special case of the Constant-Column Design, this
implies that a Constant-Column Design with mcount tests contains sufficient informa-
tion such that it is information-theoretically possible to solve the weak-recovery task.
We remind ourselves that in the Constant- Column Design each individual chooses ex-
actly ∆ tests uniformly at random.

For the impossible part we have to show that Claim 1.12 holds as soon as the num-
ber of tests drops below mcount.
Of course, by the trivial counting bound (2.1) we know that as soon as the number of
tests drops below mcount, we have exponentially many satisfying assignments beside
the true assignment σ. Here, we have to show that the probability that a τ 6= σ has a
constant overlap with the ground truth σ is small.
We start with removing the easy to identify uninfected individuals as well as the neg-
ative tests used for their classification. For the Constant-Column Design, this leaves
us with a pooling scheme on N individuals participating in ∆ = Θ(ln(n)) of the total
number of M positive tests. Let N denote the event that the N , M and the tests degree
sequence Γ= (Γ1, ...,ΓM ) behave like expected. Thus, we find

M = (
1±n−Ω(1)) k∆

2ln(2)
and N = (

1±n−Ω(1))n1−(1−θ)c ln2(2).(2.7)

and

N∆

M
− ln2(N )

√
N∆

M
≤ min

j
Γ j ≤ max

j
Γ j ≤

N∆

M
+ ln2(N )

√
N∆

M
.(2.8)

An immediate observation is that the tests are not independent as they share individ-
uals. So we have to get a handle on these dependencies. Therefore, we introduce an
auxiliary probability space that handles the tests as independent. Afterwards, we have
to ensure that we can transfer the results obtained in the modified setting back to the
original model. We will provide a road map here and refer the reader to Appendix B or
[31] for more details.

Let Z (G) denote the number of solution to the reduced Group Testing instance. Thus,
the number of vectors τwith Hamming weight k such that each of the M tests contains
at least one τi = 1. Furthermore, let Z G

σ (α) denote the number of solutions τ′ having
overlap 〈τ′,σ〉 = bαkc.
For Claim 1.11 we have to ensure∑

δk≤`≤k
Z G
σ (`/k) = o (Z (G))

hold with probability 1−o(1). By Markov’s inequality it suffices to work with
E
(
Z G
σ (`/k)

∣∣N )
. For the planted Group Testing instance P∆ (where indeed a infected

subset of size k is planted) this calculation turns out to be very challenging. Therefore,
we introduce a first auxiliary distribution Q∆ that handles the N individuals as equals.
All N individuals draw ∆ tests from the M available tests.
Applying the planting trick from [2] to (Q∆,P∆) ensures that it suffices to show

∑
δk≤`≤k

EQ∆
(

Z G (`/k) |N )= o
(
EQ∆

(
Z G |N )2

)
.(2.9)

We realise that the elements within the test degree sequence fluctuate underQ∆. Thus,
we introduce a regularised null model Q∆,Γ that fixes the test degree to exactly Γ= N∆

M .
We show that one does not loose ’too many’ solutions through this regularisation step.
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In particular, we show that

EQ∆,Γ

[
Z G]≤ EQ∆

[
Z G |N ]

exp(δk∆) and(2.10)

EQ∆,Γ

[
Z G (α)

]≥ EQ∆ [Z (G)(α) |N ]exp(−δk∆) .(2.11)

Therefore, it suffices to show

EQ∆,Γ

(
Z G (α)

)

EQ∆,Γ

(
Z G

)2 ≤ exp(−εk∆).

Thus, we transferred Claim 1.11 from the original planted model that was difficult to
handle to a more accessible model. Here, we can calculate the required first and sec-
ond moment bounds and the results can be transferred to the original model.

For the first moment, we count the expected number of solutions of Hamming weight
k. Instead of performing the calculation for the k subset, we analyse k∆ independent
half-edges. To simplify the calculation we infect each of the N∆ half-edges with prob-
ability q . Obviously, we have to ensure that all tests receive at least one infected half-
edge and that we do neither over- nor undershoot the number of infected half-edges
in a Group Testing instance given by k∆. Thus, if we choose q such that it satisfies

q

1− (1−q)Γ
= ∆k

ΓM
.(2.12)

we find with Bayes-Theorem

E[Z (Γ)
0 ] = N−O(1)

(
N

k

)
(1− (1−q)Γ)M

(ΓM
∆k

)
q∆k (1−q)ΓM−∆k

.(2.13)

In a similar way, we handle the bound on E
[

Z G (α)
]
. Instead of analysing two as-

signments with fixed infected subsets, we again want to infect the half-edges inde-
pendently with a certain probability. Of course, we again have to ensure that under
both assignment each test receives at least one infected half-edge and that this inde-
pendent infection process does not over -or undershoot the k∆ infected half-edges
induced by the original Group Testing instance. Here, we get an additional restriction
induced by α as the overlap of the two assignments matters as well. Therefore, we use
q11, q01, q10, q00 such that we can control whether τi is infected in both, only in one
of the two or uninfected in both. Thus, if we choose (q00, q01, q10, q11) ∈ [0,1]4 as the
solution to the system

q00 +q01 +q10 +q11 = 1 q01 = q10(2.14)

q11

1−2(1−q10 −q11)Γ+qΓ00

=α k∆

ΓM

q01
(
1− (q00 +q10)Γ−1

)

1−2(1−q01 −q11)Γ+qΓ00

= (1−α)
k∆

ΓM
,(2.15)

then we get with Bayes-Theorem

E[Z (Γ)
0 (α)] = N−O(1)

(
N

αk, (1−α)k, (1−α)k

)

·
(
1−2(1−q01 −q11)Γ+qΓ00

)M

( N∆
αk∆, (1−α)k∆, (1−α)k∆, (N−2k+αk)∆

)
qαk∆

11 q2(k−αk)∆
10 q N∆−2k∆+αk∆

00

.(2.16)

Now, we analyse both bounds to see whether we can ensure Claim 1.11. We start with
the first moment bound and obtain

E[Z (Γ)
0 ] = exp(o (k∆))exp

(
k∆

1− c ln(2)

c ln(2)

)
.(2.17)
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In a second step, we reformulate (2.16) as8

G(α, q01, q11) = o (∆k)+ ln

((
N

αk, (1−α)k, (1−α)k

)

·
(
1−2(1−q01 −q11)Γ+qΓ00

)M

( N∆
αk∆, (1−α)k∆, (1−α)k∆, (N−2k+αk)∆

)
qαk∆

11 q2(k−αk)∆
10 q N∆−2k∆+αk∆

00

)
.(2.18)

We use this expression to establish (2.10). Therefore, we analyse (2.18) to ensure that
there exists ε> 0 such that for all α̂ ∈ (0,1],

G
(
α̂, q01 (α̂) , q11 (α̂)

)
< (1−ε)k∆

2(1− c ln(2))

c ln(2)
.

It is hard to analyse G(α, q01, q11) as obtaining a closed form expression turns out to be
difficult. Fortunately, we are only interested in an upper-bound and for any α ∈ (0,1]
and any (q00, q01, q10, q11) ∈ [0,1]4 we find,

E[Z (Γ)
0 (α)] ≤

(
N

αk, (1−α)k, (1−α)k

)

·
(
1−2(1−q01 −q11)Γ+qΓ00

)M

( N∆
αk∆, (1−α)k∆, (1−α)k∆, (N−2k+αk)∆

)
qαk∆

11 q2(k−αk)∆
10 q N∆−2k∆+αk∆

00

.(2.19)

Thus, it suffices to choose (q00, q01, q10, q11) in an appropriate way to construct an
upper-bound that we can analyse. For

q01 = x0
k

N
and q11 = x1

k

N
we partition the interval (0,1) as

I1 =
(
0,

1

4

]
, I2 =

(
1

4
,

85

100

)
, I3 =

[
85

100
,1

)
.(2.20)

We use the following choice of x0 and x1, and define

x0(α) =1{α∈I1} ·
(
−3

5
α+ 1

2

)
+1{α∈I2} ·

(
1

2
− 3

10ln2
α

)
+1{α∈I3} · (1−α),(2.21)

x1(α) =1{α∈I1} ·
α

5
+1{α∈I2} ·

α

5ln2
−1{α∈I3} ·

16α−11

10
.(2.22)

By case distinction we analyse each interval separately and see that indeed for all α ∈
(0,1) we get

1

k∆
G(α, q01, q11) < (1−ε)

2(1− c ln2)

c ln2
Indeed, the intermediate overlap contributions are smaller than the first moment
squared. Now we are able to show that Claim 1.12 holds in our auxiliary model.
As we already pointed out, we can transfer this result back to the original model and
Claim 1.12 still holds. This makes weak-recovery impossible in the Constant-Column
Design. For details we refer the reader to [31] or Appendix B.

2.5. Proof strategy for detection. We have to show that detection is easy as soon as
we choose the number of tests large enough. We again employ the Constant-Column
Design as pooling scheme. In a first step, we remove the easy to identify uninfected
individuals (participants of negative tests). We remove these individuals as well as the
negative tests from the graph.
Now, we have a remainder graph on M positive tests with N remaining individuals (see
(2.7) for the sizes) and each of the individuals is (by construction) contained in ∆ tests.

8Note, that q01 and q11 determine q10 and q00 by construction.



25

In the detection problem, we are interested in whether or not there is a way to distin-
guish a Group Testing instance (drawn from P) from a random noise instance (drawn
from an appropriately chosen null-distribution Q). Under P there exists a subset of
size k with the constraint that each test must contain at least one of them. Thus, an
infected subset that ensures all positive tests to be positive. In the null model Q the
underlying pooling graph is just produced as a random experiment of N individuals
choosing ∆ of the M tests without replacement. Thus, there is no underlying infected
structure in the null model.

As strong separation implies strong detection we have to find an estimator f such that
Claim 1.14 holds. Our choice is

V(Γ1, . . . ,ΓM ) =
M∑

j=1

(
Γ j −

N∆

M

)2

.(2.23)

We observe that
∣∣EP[ f ]−EQ[ f ]

∣∣=Θ(k∆).
Furthermore, we show that the two estimations for P and Q are well-separated. By
applying [104] we find that the following condition must hold to ensure the deviation
of the estimator from its expectation to be small enough:

√
N 2

k
= o(k∆) ⇔ c >

(
1− θ

2(1−θ)

)
1

ln2(2)
The theorem is an immediate consequence as the estimator of choice (2.23) works
when applied to a Constant-Column Design with sufficiently many tests. Thus, the
problem becomes easy. For details we refer the reader to [31] or Appendix B.

3. SPARSITY-CONSTRAINED GROUP-TESTING

In this section we shed light on ways to deal with an obvious artificial assumption of
the standard Group Testing model. In Section 2 we have seen that in the optimal set-
ting an individual participates in ∆ =Θ(ln(n)) tests and a test contains approximately
Γ = Θ(

n1−θ) individuals. In real world application one faces two essential difficulties
that, indeed, contradict with the values of ∆ and Γ necessary for the optimal pooling
obtained in [30]. First of all, dilution effects appear such that the chemical signal (e.g.
concentration of molecules) of the virus might get too weak. Prominent examples for
such effects are given by HIV [105] and COVID-19 [79]. Moreover, the finite sample size
(e.g. blood) per individual causes that an individual can only be tested a certain num-
ber of times. We again want to analyse the information-theoretic thresholds as well as
the algorithmic-thresholds in this constrained model. This section is based on [51].

3.1. Related work. The most relevant prior work is given by [49]. The authors analysed
the case ∆ = o(ln(n) as well as Γ = o

(
n1−θ) via the COMP algorithm where all individu-

als in negative tests are declared uninfected and all remaining individuals as infected.
Informally their bounds read as follows:

• ∆-constrained model:
– (Converse) For ∆= o(lnn), any test design (with tests conducted in paral-

lel) with error probability at most ξ requires m ≥∆k
(n

k

) 1−5ξ
∆ , for sufficiently

small ξ and sufficiently large n . (Theorem 4.1 in [49])
– (Achievability) Under a suitably-chosen random test design and the COMP

algorithm, the error probability is at most ξ provided that m ≥ de∆k
(n
ξ

) 1
∆ e.

(Theorem 4.2 in [49])
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• Γ-constrained model:

– (Converse) For Γ=Θ((n
k

)β)
with β ∈ [0,1), any test design (with tests con-

ducted in parallel) with error probability at most ξ requires m ≥ 1−6ξ
1−β · n

Γ , for
sufficiently large n. (Theorem 4.5 in [49])

– (Achievability) Under a suitably-chosen random test design and COMP re-

covery, for Γ=Θ((n
k

)β)
with β ∈ [0,1) and ξ= n−ζ with ζ> 0, the error prob-

ability is at most ξ when m ≥ d 1+ζ
(1−θ)(1−β)e · dn

Γ e. (Theorem 4.6 in [49])

While their bounds leave a significant gap, our analysis will improve upon their results
and will almost entirely close these remaining gaps.

3.2. Results. Here, we obtain information-theoretic as well as algorithmic thresholds
for the size-constrained models. In this section, we focus on 1-stage procedures only.
We consider the case∆= o(ln(n) as well as Γ=Θ(1). Therefore, we consider the follow-
ing two adoption of the Group Testing model defined in Definition 1.7:

• The Γ-constrained model: We have n individuals upon which k are infected.
We are allowed to conduct m tests in parallel. The output is binary and the
tests are error-free. We impose the additional constraint that a test may only
contain Γ=Θ(1) individuals.

• The ∆-constrained model: We have n individuals upon which k are infected.
We are allowed to conduct m tests in parallel. The output is binary and the
tests are error-free. We impose the additional constraint that an individual may
only participate in ∆= o(ln(n)) tests.

For both models we are interested in exact recovery (Definition 1.8).

We pinpoint algorithmic as well as information-theoretic thresholds in these two mod-
els. The proof is based on combining a careful analysis of the combinatorial properties
induced by the underlying pooling schemes (size-constraints) with the structural prop-
erties induced by the Group Testing instance itself. We will discuss the proof strategy
of the ∆-constrained model in Section 3.3 and the Γ-constrained model in Section 3.4.

Theorem 3.1 (∆-constrained model, Theorem 3.1, 3.2 and 3.3 of [51]). Let ε > 0, θ ∈
(0,1) and define

m∆,inf = max

{
e−1∆k1+ 1−θ

∆θ ,∆k1+ 1
∆

}

and m∆,alg = max

{
∆k1+ 1−θ

∆θ ,∆k1+ 1
∆

}
.

Within the ∆-constrained model the following holds

• Exact recovery is easy as soon as m ≥ (1+ε)m∆,alg.
• Exact recovery is impossible as soon as m ≤ (1−ε)m∆,inf.

Here, we note that our algorithmic as well as information-theoretic bound almost
match. While the asymptotic order of tests matches for all θ ∈ (0,1), we see, that there
remains a constant e−1-factor gap between the two bounds for θ < 1/2.

Theorem 3.2 (Γ-constrained model, Theorem 4.1, 4.10 and 4.18 of [51]). Let ε> 0, θ ∈
(0,1) and define

mΓ = max

{(
1+

⌊
θ

1−θ

⌋)
n

Γ
,

2n

Γ+1

}
.

Within the Γ-constrained model the following holds

• Exact recovery is easy as soon as m ≥ (1+ε)mΓ.
• Exact recovery is impossible as soon as m ≤ (1−ε)mΓ.
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FIGURE 9. The information-theoretic as well as algorithmic threshold
for exact recovery in the ∆-constrained model (right-hand side) and
Γ-constrained model (left-hand side). For ∆ = 5 and Γ = 4. For the
Γ-constrained model the C of m = (C + o(1)) n

Γ is plotted for θ ∈ (0,1).
For the ∆-constrained model the η of m = C∆kη(1+o(1)) is plotted for
θ ∈ (0,1).

Note, that within the Γ-constrained model we do find an easy-impossible transi-
tion as the algorithmic as well as the information-theoretic bound match. We will
propose the optimal pooling scheme together with the suitable optimal algorithm in
Section 3.4. For both models, the main ideas are based on adopting Claim 1.9 and
Claim 1.10 to the constrained models. To satisfy Claim 1.10 we employ well-known
algorithms (stated in Algorithm 1). An illustration of the obtained bounds for both

1 Declare every individual x that appears in a negative test as uninfected; remove
all such individuals.

2 Declare all individuals that are now the sole individual in a (positive) test as
infected.

3 Proceed as follows depending on the algorithm:

• For DD, declare all remaining individuals as uninfected.
• For SCOMP, repeat the following step until no unexplained9positive tests

remain: Declare as infected the (previously undeclared) individual in the
largest number of unexplained positive tests.

Algorithm 1: The DD and SCOMP algorithms as defined by [6].

models can be found in Figure 9.

3.3. Proof strategy for the∆-constrained model.

3.3.1. On the easy-threshold. Here, we want to establish that it is, indeed, possible to
infer the infected set given the pooling scheme and the test results. Therefore, we use
Claim 1.10 to address it. Thus, we have to find a pooling scheme as well as an effi-
cient algorithm that succeeds with high probability. Our choice is a combination of
the Constant-Column Design and Algorithm 1. While [29, 30] showed that this is the
best possible pooling in the unconstrained model, we employ this pooling in the size-
constrained model as well. For this pooling procedure each individual chooses its tests
uniformly at random with replacement. Now, we analyse the properties of the un-
derlying pooling graph and are able to show that certain properties hold with high
probability. In a next step, we analyse the individual types to see whether or not the
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DD-Algorithm succeeds or not. This is the case as soon as Claim 1.10 is satisfied. The
result is obtained by a careful large deviation analysis of the underlying distributions
on the pooling scheme. Thereby, we carefully check, which graph structures occur and
how they help/harm the algorithmic performance. In particular, we analyse the oc-
currence of easy to identify individuals (1.1),(1.2) and disguised uninfected individuals
(1.3) under a ∆-regular pooling. We see that Claim 1.10 holds as soon as we surpass
the number of tests claimed in the theorem. Thus, the DD-algorithm is able to infer the
infected set efficiently when applied to the Constant-Column Design. Details can be
found in III-E of [51].

3.3.2. On the impossible-threshold. The main idea for deriving an impossible regime
for exact recovery in Group Testing is the use of Claim 1.9. We have to argue that there
is not sufficient information contained to infer the correct infection status. The first
part of our lower bound is based on an universal information-theoretic lower-bound.
We upper-bound the success probability of an algorithm that is working on a pooling
graph G with k infected individuals. We use the fact that the best-possible inference
algorithm cannot do better than drawing an uniform sample from Sk (G ) (Corollary 2.1
of [29]), and we are able to obtain an upper-bound depending on n,k and m. Setting
this upper-bound strictly smaller than 1 and solving for m leads to a lower-bound on
m∗ such that any algorithm applied to any pooling scheme with less than m∗ test will
have a non-trivial error probability.
The second part is based on a careful analysis of an arbitrary pooling graph. Instead of
directly analysing the original model with an underlying infection vector of Hamming
weight k, we pass over to an auxiliary model where an individual is infected indepen-
dently with a certain probability. The target is to show that one finds many disguised
individuals in this auxiliary model and transfer this result back to the original model.
We apply the two-round exposure technique in the auxiliary model to ensure that we
find many disguised individuals as soon as we choose the number of tests below a cer-
tain threshold, the threshold claimed in the theorem. In a first step, we build a set of in-
fected individuals K by marking them as infected independently. In a second step, we
turn to the second neighbourhood of K and mark these individuals as infected with
a certain probability. This procedure enables us to lower-bound the average proba-
bility of being disguised in the auxiliary model. By translating this probability from
the auxiliary to the original model we see, that with non-trivial probability there are
also disguised individuals in the original model. Therefore, combining the existence
of many disguised individuals with Claim 1.9, we see that exact recovery is impossible
as soon as we cross the threshold claimed in the theorem. The details can be found in
Section III-C and III-D of [51]

3.4. Proof strategy for the Γ-constrained model.

3.4.1. On the easy-threshold. Again we want to find a pooling scheme as well as an
efficient algorithm to solve exact recovery. In this model the choice is more delicate
than in the previous model, as we have to ensure that each test contains at most Γ =
Θ(1) individuals. Our choice is the following:

G̃Γ(θ) =
{

GΓ if θ ≥ 1/2

G∗
Γ otherwise

(3.1)

To obtain GΓ we employ the configuration model. We clone each individual Γ times
and each test∆= mΓ

n times. Afterwards, we build a perfect matching upon these clones.
Furthermore, we obtain G∗

Γ in a three-step procedure. First, we select a set of γ indi-
viduals uniformly at random. Now, we again build a regular graph (individuals with
degree 2 and tests with degree Γ− 1) via the configuration model. In a final step, we
match γ individuals with the graph obtained in step two. The result is the pooling
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graph we will work on. We again analyse the properties of the underlying graph. In
particular, the Γ=Θ(1) is causing the analysis to be more delicate. We carefully check
how the different individual types are influencing the graph. We see that DD succeeds
on the regular part of our pooling scheme, but for certain sparsity levels it is necessary
to add the additional greedy steps of SCOMP to succeed on the entire pooling graph with
high probability. This is due to the fact that adding the γ individuals in the final step of
the pooling procedure may confuse DD, while SCOMP works properly. The performance
guarantee of the proposed pooling with the stated algorithm matches the information-
theoretic lower-bound. Thus, leading to an optimal choice. The details can be found
in Sections IV-D and IV-E of [51].

3.4.2. On the impossible-threshold. The argument is two-fold. For the first part of the
statement, we consider a large infection spread (dense case). The second part is due to
sparse infection spread (sparse case).

In the dense case, we again consider an auxiliary model that is easier to handle. There-
fore, we argue that we find many disguised individuals in this model. In the end, we
transfer these findings back to the original model. We again employ an auxiliary model,
where we infect individuals independently with a certain probability. The proof hinges
on two main observations. First of all, we see that the property of being disguised is
a local property. Thus, two individuals, that do not share any test as well as no fellow
individuals in their tests (distance at least 6), happen to be disguised independently.
Secondly, we use the fact that additional infected individuals increase the probability
of being disguised. Thus, we employ the FKG-inequality to lower-bound the probabil-
ity of being disguised. In the end, we use these two observation to argue that we find
many disguised individuals in the auxiliary model as soon as we surpass the number
of tests claimed in the theorem. Now, we argue that the occurrence of many disguised
individuals transfers from one to the other model.

In the sparse case, the crucial observation used is also two-fold. First of all, it is im-
mediately clear that tests with only one individual are just individual tests and directly
reveal the infection status of the contained individual. Second of all, as soon as a posi-
tive test contains more than one individual of degree one, inference of these individu-
als is impossible. This follows as we cannot tell which of the individuals is responsible
for the positive test, but as they are only contained in one test there is no further infor-
mation available about these individuals. Therefore, the best we can do in that case is
guessing.
We show that as soon as the number of tests drops below the threshold claimed in the
theorem, we find many individuals with degree 1. Furthermore, we show that a suc-
cessful inference algorithm requires the number of tests, containing multiple degree 1
individuals, to be small.
Combining these statements yields the theorem. The details can be found in Section
IV-B of [51].

4. NOISY GROUP-TESTING

We adjust the standard model by assuming that the obtained test results may not
meet the gold standard, thus, being error-prone. See Figure 10 for illustration. Note,
that the content of this section is based on [52].

4.1. Related work. We dealt with the standard Group Testing model in one of the pre-
vious sections (Section 2). Some of the assumptions seem quite artificial. One of them
is the fact that ’a test returns positive if and only if an infected individual is contained’.
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FIGURE 10. The p-q-noise model: Each result of the standard noiseless
group test is noisy and gets potentially flipped. The status of positive as
well as negative tests are flipped or kept with a certain probability.

Obviously, this does generally not hold in medical application. Thus, we cannot as-
sume the gold standard within our testing procedure. A prominent example where
the tests are not error-free is given by COVID-19 [106]. The two important types of
noise in the medical scope are sensitivity (positive correct) and specificity (negative
correct). It is important to realise that values for sensitivity and specificity are usually
not equal [69]. Therefore, one step towards understanding Group Testing in a more
realistic setup is the analysis of noisy Group Testing. Due to the medical requirements
an analysis of a general p − q-model is necessary (see Figure 10). The idea of extend-
ing the model to noisy measurements raised a lot of attention [22, 87, 88, 89, 90, 92].
We are interested in the number of tests necessary such that the task of exact recov-
ery becomes easy. Two well-known algorithms in the Group Testing literature are COMP
and DD. In [22, 92] noisy variants were established (see Algorithm 2 and Algorithm 3).
So far, the only algorithmic performance guarantees for noisy Group Testing were ob-
tained for the Bernoulli-model, where each individual chooses to participate in a test
independently with probability p [22, 92, 90]. In this setting the noisy COMP was already
analysed by [22].

1 Declare every individual that appears in α∆ or more displayed negative tests as
healthy.

2 Declare all remaining individuals as infected.

Algorithm 2: The noisy COMP algorithm
The noisy DD was already analysed by [92] for the Bernoulli-model.

1 Declare every individual that appears in α∆ or more displayed negative tests as
healthy and remove such individual from every assigned test.

2 Declare every yet unclassified individual who is now the only unclassified
individual in β∆ or more displayed positive tests as infected.

3 Declare all remaining individuals as healthy.

Algorithm 3: The noisy DD algorithm [92]
As [30] (compare Section 2) showed that the Constant-Column Design is the optimal

choice in the noiseless case we take first steps to transfer this result to the noisy variant
of the Group Testing problem by analysing the performance of the two most common
algorithms.

4.2. Results. In the noisy model we derive the thresholds such that the two algorithms
succeed performing exact recovery within the Constant-Column Design. The formal
statement for noisy COMP reads as follows:
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Theorem 4.1 (Noisy COMP,Theorem 2.1 in [52]). Let p, q ≥ 0, p + q < 1,d ∈ (0,∞),α ∈
(q,e−d (1−p)+ (

1−e−d
)

q). Suppose that 0 < θ < 1 and let

mCOMP = mCOMP(n,θ, p, q) = min
α,d

max{b1(α,d),b2(α,d)}k ln(n/k)

where b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
) .

If m ≥ (1+ε)mCOMP for some ε> 0, exact recovery is easy via noisy COMP.

For noisy DD we obtain the following statement:

Theorem 4.2 (Noisy DD,Theorem 2.2 in [52]). Let p, q ≥ 0, p + q < 1,d ∈ (0,∞),α ∈
(q,e−d (1−p)+(

1−e−d
)

q) and β ∈ (0,e−d (1−q)) and define w = e−d p+(1−e−d )(1−q).
Suppose that 0 < θ < 1 and let

mDD = mDD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k ln(n/k)

where c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

and c2(α,d) = 1

dDKL (α‖1−w)

and c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)

and c4(α,β,d) = max
1−α≤z≤1





1

1−θ
1

d
(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β
z ‖

e−d p
w

))





.

If m ≥ (1+ε)mDD for some ε> 0, then exact recovery is easy via noisy DD.

We derive conditions under which exact recovery becomes easy in Theorem 4.1 and
Theorem 4.2. Furthermore, we rigorously prove the improvement upon the results of
[22, 92] for a large set of parameter and, thereby, set the strongest performance guar-
antees rigorously proved for (efficient) exact recovery in the general p −q-model. Fur-
thermore, we conduct a Shannon-Capacity analysis for the p − q-noise model to put
our results into a channel-perspective. We omit these results here and refer the reader
to [52]. In the end, we apply our generalised results to the standard channels. To make
the bounds more accessible, we illustrate the obtained bounds in Figure 11 for both
algorithms applied at different noise levels. All details can be found in Appendix D or
[52]. In the following we provide a proof idea. We will discuss further directions in the
scope of the noisy Group Testing model in Section 6.

4.3. Proof strategy for the noisy model. We follow the standard target within the anal-
ysis of the easy regime of algorithms. Here, we have to find a property that separates
infected and uninfected individuals. Furthermore, the algorithms we analyse have to
be able to use this property efficiently. As already discussed, we have two choices to
make in Group Testing:

• The pooling scheme: We choose the Constant-Column Design.
• The inference algorithm: We choose COMP and DD.

Therefore, we carefully analyse the influence of infected individuals and uninfected
individuals on the pooling scheme. Thereby, we realise that we, indeed, can distinguish
their neighbourhood structure.
For the noisy COMP algorithm we use the fact that in the pre-noise setting each infected
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FIGURE 11. Evolution of the bounds for noisy DD (left) and noisy COMP
(right) in the Z-channel for different noise level. Exact recovery is easy
for the corresponding algorithm above the line and hard below. Note,
that a similar evolution can be observed in the reverse Z, the Binary sym-
metric channel and general choices of q and q , but these are omitted
here.

individual will cause all its neighbouring tests to be positive. Of course, in the post-
noise setting some of the tests may be displayed negative. Now, we carefully derive
the underlying distributions and apply Chernoff-Bounds to reveal the number of tests
ensuring the number of displayed negative tests (DN) to be well-separated for all in-
fected and uninfected individuals with high probability (illustrated on the left hand
side of Figure 12). The analysis of the noisy DD is more delicate. While the first round
is quite similar to the noisy COMP analysis, we ease the requirements for the initial es-
timation. Instead of exact recovery in the first step, we only need a first estimate and
can leave some of the uninfected individuals

(
a set of size o (nη) for some η ∈ (0,1)

)
as

undeclared. Thus, this estimation requires less tests in the first round and we need to
ensure that the algorithm is able to fix this in the final round (conducted on the same
pooling instance, no re-pooling). In the second step we realise that we can distinguish
infected and so-far undeclared uninfected individuals by the following criteria, which
is illustrated on the right hand side in Figure 12:

• Type Displayed-Positive-Single (DP-S): Displayed positive tests in which all other
individuals are already declared as uninfected.

• Type Displayed-Positive-Multiple (DP-M): Displayed positive tests with at least
one other individual that is not contained in the estimated set of uninfected
individuals.

The crucial observation is the fact that in the pre-noise setting a uninfected individual
needs another infected individual in the test to render a test positive, while an infected
individual does not carry this requirement. We transfer this observation by carefully
applying Chernoff-Bounds to the noisy case. We derive conditions for the number of
tests m such that infected and uninfected individuals are well separated. The compari-
son with previous results as well as the application to the standard channels (Z, reverse
Z, binary symmetric) is conducted by applying Theorem 4.1 and Theorem 4.2 in the
corresponding settings.
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xi

DNDP

xi

DP-SDP-M

FIGURE 12. The relevant neighbourhood structures for the analysis of
the algorithms, on the left for the first stage and on the right for the sec-
ond step. Rectangles represent tests (displayed positive in red, displayed
negative in blue). Blue circles represent individuals that have been clas-
sified as healthy in the first step of DD (or by COMP). White circles repre-
sent individuals that are unclassified in the current stage. We refer to
displayed negative tests as Type DN, displayed positive tests as Type DP,
displayed positive with a single unclassified individual as Type DP-S and
displayed positive with a multiple unclassified individual as Type DP-M.
This figure is adopted from [52].

σ1 σ2 σ3 σ4 σ5 σ6 σ7

2 2 3 1 1

FIGURE 13. A small example with population infection σ =
(1,1,0,0,1,0,0) ∈ {0,1}7 at the top and tests a1, . . . , a5 at the bottom.
The edges of the bipartite (multi-) graph G indicate which individual
is contained in which test. The dashed lines highlight the occurrence
of multi-edges. The goal is to reconstruct σ given only G and the test
results (2,2,3,1,1).

5. QUANTITATIVE GROUP TESTING

Here we adopt the quantitative model of Definition 1.7. This section is based on
[50]10. While we have reliable tests and do not require to satisfy any size-constraints,
we do not have a binary output anymore. In this section, we assume that each test
returns the number of infected individuals contained in the test. We refer the reader to
Figure 13 for a small-size example.

5.1. Related work in the quantitative group testing model. Until now, we consid-
ered tests that return whether an infected individual is contained in the test or not.
At this point, we might wonder how receiving additional information might simplify
the problem. One way to gain additional information is given by applying the quan-
titative model. In this case, we know exactly how many infected individuals are con-
tained in a test. While this assumption might seem artificial at first glance, such testing
procedures found their way into many real-world applications such as PCR tests in a
bio-medical context [14], biological processes such as DNA screening [20, 94], or deep
neural network on a GPU [68].
Starting with the early works of Djackov [39], and Shapiro [95], the quantitative variant

10Note, that the paper handles the reconstruction of a signal vector with Hamming weight k from addi-
tive queries. To keep it close to the other contributions contained in this thesis, we think of it as a pop-
ulation with k infected individuals and the tests return the number of infected individuals contained in
the test.
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of the Group Testing model raised some attention over the years. Again, we are inter-
ested in the information-theoretic as well as the algorithmic thresholds of this problem
set.

Over the years, some steps towards the answer of this question were taken. While a
simple counting bound shows that at least

mquant
count >

ln
(n

k

)

ln(k)
k

tests are necessary for exact recovery, [39] showed that exact recovery is impossible
as soon as the number of tests drops below mImp = 2mquant

count . The remaining ques-
tion is whether or not we can (not) achieve the bound information-theoretically or
even efficiently. Thereby, Grebrinski and Kucherov [54] showed that exact recovery is
information-theoretically possible by conducting
mGreKu = 4mquant

count . So far, the results do not depend on the scaling of k. In the case
of k =Θ(n), it is known that as soon as m > (1+ε)mimp, it is information-theoretically
possible to solve exact recovery [5, 91]. Their results do not extend to our scaling k = nθ

with θ ∈ (0,1) and it remained open whether or not a similar transition occurs in the
sublinear scaling regime. Therefore, we address (and are indeed able to close) the re-
maining gap between the results of Djackov and Grebinski/Kucherov in Theorem 5.1.
Please note, that [42] achieved the same improvement by applying different methods.

Now, we turn to efficient algorithms. Different sophisticated algorithms were proposed
to solve exact recovery in the setting at hand [40, 42, 44, 61, 62, 85]. All these algorithms
(including the one proposed in [50]) required m = Θ (k ln(n)) and thereby leave a gap
of Θ(ln(n)) to the information-theoretic possible threshold. Note, that Hahn-Klimroth
and Müller [55] were able to close this gap up to a constant factor and thereby improve
over the results of [50].

5.2. Results. We consider the noiseless, unconstrained quantitative model of Defini-
tion 1.7. Furthermore, we assume the infection spread to scale as k ∼ nθ within the
population with θ ∈ (0,1). We are interested in exact recovery and pinpoint the thresh-
old beyond which exact recovery is information-theoretically possible. Furthermore,
we propose a pooling scheme as well as a greedy-type algorithm that solves exact re-
covery efficiently. We pinpoint the number of tests necessary for the algorithm to suc-
ceed.

Theorem 5.1 (Theorem 1 and Theorem 2 of [50]). Let 0 < θ < 1, k = nθ and ε > 0 and
let

mPos(n,θ) = 2
k ln(n/k)

ln(k)
= 2

1−θ
θ

k,

mEasy(n,θ) = 4

(
1− 1p

e

)
1+

p
θ

1−
p
θ

k ln(n/k).

Then exact recovery is possible as soon as m > (1+ε)mPos and easy as soon as m > (1+
ε)mEasy(n,θ).

While we derive a possible and an easy regime for exact recovery in the model at
hand, we note that the order of the thresholds obtained in Theorem 5.1 do not match.

5.3. Proof strategy. For both of our bounds we assume a Constant-Column Design G
where each test draws n/2 individuals uniformly at random with replacement. Now,
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by combining G with the ground truth σwe obtain our test result vector

σ̂ j =
∑

xi∈∂a j

σi

5.3.1. The possible-threshold. The main idea is based on counting alternative assign-
ments τ ∈ {0,1}n with Hamming weight k that lead to the same sequence of test results
as induced by the ground truth σ. We start by counting alternative assignments with
a certain overlap. Let Zk,` denote the number of assignments with Hamming weight
k that are consistent with the test result σ̂ and have overlap ` with σ. Formally, we
analyse

Zk,`(G , y) =
∣∣{σ ∈ Sk (G , y) :σ 6=σ,〈σ,σ〉 = `}

∣∣ .

It is sufficient to show that
∑k−1
`=0 Zk,`(G , y) = 0 for m ≥ (1+ ε)mPos w.h.p.. We achieve

this by a two-fold argument. In a first step, we combine a first moment calculation
with Markov’s inequality to show that there does not exist an alternative assignment
with small overlap. We obtain this result by realising that the probability of arriving at
an alternative assignment can be approximated via a returning random walk, which
simplifies the first moment calculation. Within our first moment analysis, we have two
opposite powers at work. On the one side, the entropy is increasing in n. On the other
side, the probability term is decreasing in n. Now, we choose the number of tests m
large enough, such that the probability is strong enough to drag the entropy down and
ensure that the first moment tends to zero. Thus, as soon as the first moment tends
to zero we employ Markov’s inequality to ensure that no alternative assignment with
small overlap exists with high probability.
For the large overlap case, we employ a standard coupon-collector argument. In the
end, our analysis reveals that as long as m > (1+ ε)mPos we have only one satisfying
assignment, the ground truth. Thus, there is, indeed, sufficient information contained
to infer σ and mPos matches mImp. Details can be found in Section IV of [50].

5.3.2. The easy-threshold. To prove that the problem is easy beyond a certain point, it
suffices to show that there exist a polynomial-time algorithm which returns the correct
underlying σ with high probability. Therefore, we introduce Algorithm 4. This algo-
rithm takes the pooling graph as well as the test result as an input. Then, it calculates
the sum of all test results in the neighbourhood ∂x of each individual x and centralises
the result by its mean. In the end, the algorithm declares the k individuals with the
largest neighbourhood sum as infected. The key idea is that, of course, the neighbour-

Input: m, k, querying method query
Output: estimation σ̃ for σ.

1 for i = 1 to m do in parallel
2 sample a multiset ai of size Γ from [n]
3 compute y i ← query(ai)

// The query method guarantees that y i =
∑

j∈ai
σ( j ).

4 for i = 1 to n do
5 calculateΨi ←

∑m
j=1 1

{
i ∈ a j

} · y j

6 calculate∆?i ←∑m
j=1 1

{
i ∈ a j

}

7 sort coordinates of σ̃ in decreasing order byΨi −∆?i k
2

8 set σ̃ to 1 for the first k (sorted) coordinates
9 set σ̃ to 0 for the remaining n −k (sorted) coordinates

Algorithm 4: The Maximum Neighbourhood Algorithm
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hood sum between infected and uninfected individuals differ as each infected individ-
ual contributed its weight (its infection status) to all of its tests, while an uninfected
individual did not do that. To prove the success of the algorithm, we employ a care-
ful large deviation analysis ensuring that as soon as m > (1+ε)mEasy, we find that the
values for infected and uninfected individuals are well separated with high probability.
The details can be found in Section III of [50].

6. CONCLUSION

Obviously the COVID-19 crisis showed in its own way, why understanding the fun-
damentals of the Group Testing problem is of major interest. In this thesis, we resolved
some of the major open problems within the Group Testing community [7]. The pan-
demic showed that we are not able to immediately transfer our results on the standard
Group Testing problem to the real world. Therefore, our results on the size-constrained
as well as the noisy Group Testing problem can be seen as first steps towards a more
applicable testing procedure. From a Group Testing perspective we can formulate the
following open research questions:

• Can we transfer our spatially-coupled test design as well as an adaption of the
algorithm to the noisy variant of the Group Testing problem?

• Can we close the remaining easy vs. information-theoretically possible vs. low-
degree-hard gaps within Constant-Column Design? How does the low-degree
hardness bound for detection transfer to weak and exact recovery?

• How do our results for the noisy and size-constrained Group Testing problem
transfer to the linear infection spread k =Θ(n)?

• Can we close the remaining gaps that are left between information-theoretic
and algorithmic thresholds?

• Do we find other problem sets where one finds such fundamental gaps between
multi-stage and 1-stage procedures?

As we discussed in the introduction, we are interested in the hardness of various prob-
lem sets. We worked with a particular problem set and revealed structures that may be
helpful or disruptive while working with a data set. We believe that this understand-
ing might be transferred to other problems as well. For the general context, we want
to highlight that the result of [31] shows that for certain choices of parameters the de-
tection task is low-degree hard, while [30] indicates that it is information-theoretically
possible. As mentioned above, the low-degree framework is often conjectured as a
proxy for efficient algorithms. Therefore, it would be interesting to understand this
information-theoretically possible but low-degree-hard regime [30, 31] in more detail.
Furthermore, we have seen that the spatially-coupled pooling scheme can even solve
exact recovery there. Therefore, a deeper understanding of the spatial-coupling as a
general approach might offer a fruitful direction for understanding the fundamentals
of the initial P −N P question and, thereby, contribute to the general understanding of
algorithms.
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8. DEUTSCHE ZUSAMMENFASSUNG

8.1. Einführung. Diese Doktorarbeit basiert auf [30, 31, 50, 51, 52]. Im Folgenden wer-
den die Resultate dieser Arbeiten zusammengefasst und in den Kontext eingeordnet.
In unserer heutigen Welt spielen Algorithmen und Datenstrukturen eine zentrale Rolle
und fast jeder Teil unseres Lebens wird von solchen beeinflusst. Hierbei drängen sich
zwei Fragen unmittelbar auf:

• Warum funktionieren Algorithmen?
• Wo sind deren Grenzen?

Obwohl wir alle mit der Nutzung von Algorithmen vertraut sind, stellt sich deren ma-
thematische Analyse oft als schwierig heraus. Da unsere moderne Welt ein sich schnell
entwickelndes, komplexes System darstellt, ist das Beantworten der oben angeführten
Fragen in diesem Kontext so gut wie aussichtslos. Deshalb haben Wissenschaftler be-
gonnen, Modelle zu entwickeln, die einzelne Aspekte der realen Welt abbilden, aber
durch vereinfachende Annahmen leicht zu analysieren bleiben. Nun stellt man schnell
fest, dass einige Probleme zwar auf den ersten Blick leicht wirken, aber am Ende doch
schwerer zu lösen sind als gedacht. Daraus ergibt sich das berühmte P-vs.-N P Pro-
blem (eines der Millennium-Probleme der Mathematik). Man unterscheidet zwischen
Problemen, für die eine gegebene Lösung leicht als Lösung zu verifizieren ist (N P ) und
Problemen, für die das Finden einer Lösung leicht ist (P ). Die fundamentale Frage ist
nun, ob diese Mengen gleich sind oder nicht. Da noch kein Beweis in die eine oder an-
dere Richtung vorliegt, versuchen Wissenschaftler Hinweise für P = N P oder P 6= N P
zu finden. Das Interesse beschränkt sich nicht nur auf Mathematiker und Informati-
ker, sondern auch Physiker, probieren den Erfolg oder das Scheitern von Algorithmen
auf naturgegebene Phänomene zurückzuführen. Über die Jahre hat sich gezeigt, dass
sich die Vorhersagen der Physik für interagierende Atome auf einige Algorithmen und
Datenstrukturen übertragen lassen. Diese Vorhersagen bilden oft einen Startpunkt für
mathematische Forschung und einige der Vorhersagen sind inzwischen bewiesen. Ob-
wohl diese Vorhersagen Hinweise im Bezug auf die P-vs.-N P Frage bereithalten, ist die
Frage weiterhin offen und Wissenschaftler versuchen weiterhin die Beweislage zu ver-
dichten.

In dieser Thesis tragen wir unseren Teil dazu bei, Problemstellungen zu finden, bei
denen die Lösung leicht, schwer oder unmöglich ist. Wir nehmen uns ein spezielles
Problem heraus und analysieren, ob und warum dieses Problem algorithmisch lösbar
ist oder nicht. Das Problem unserer Wahl ist das Group Testing Problem
(Gruppentest-Problem). Im Jahre 1943 wurde das Problem von R. Dorfman erstmals
eingeführt. Angenommen wir haben eine Gruppe von n Personen und k von ihnen
sind erkrankt. Anstatt jeden einzeln zu testen, können wir Gruppen testen. Dies kann
zum Beispiel durch das Vermischen von mehreren Speichel-Proben erreicht werden.
Ein solcher Gruppen-Test ist positiv genau dann, wenn mindestens ein Infizierter in
der Gruppe ist und negativ, wenn alle Teilnehmerinnen gesund sind. Die Frage ist nun,
was die minimale Anzahl an Tests ist, die nötig ist, sodass das Problem algorithmisch
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leicht, schwer oder unmöglich zu lösen ist. In dieser Arbeit betrachten wir verschiede-
ne Abwandlungen dieses Problems. Zunächst betrachten wir das Standard-Modell, in
dem alles erlaubt ist, um die Infizierten zu finden. Offensichtlich stößt dieses Modell in
der Realität sehr schnell an seine Grenzen. Ein prominentes Beispiel für diese Methode
ist das Virus COVID-19. Es wurde schnell klar, dass in der Realität einige Restriktionen
zu beachten sind. Auf der einen Seite sind die Tests nicht fehlerfrei. Auf der anderen
Seite kann man nicht unbegrenzt viele Proben in einem Test mischen. Wir haben un-
ser Modell an diese Anforderungen angepasst und ebenfalls Resultate erarbeitet. Die
verschiedenen Modelle werden wir kurz vorstellen und die Ergebnisse zusammenfas-
sen. Natürlich kann man sich auch fragen, ob man wirklich alle Infizierten finden will
oder, ob man auch mit einer approximativen Menge zufrieden ist. Dieses Kriterium
des Erfolgs kann sogar noch weiter abgeschwächt werden und es stellt sich die Frage,
ab wann der wahrnehmbare Einfluss der Infizierten auf die Teststruktur verschwin-
det. Zu den angepassten Kriterien des Erfolgs sind auch Ergebnisse in dieser Thesis
enthalten. Die Zuweisung der Personen in die entsprechenden Tests kann als Graph-
Struktur aufgefasst werden. In Abbildung 5 ist ein Beispiel zu finden. Nun stellt man
fest, dass Infizierte und Gesunde einen unterschiedlichen Einfluss auf die zugrundelie-
gende Struktur haben. Es ist zu erkennen, dass es Strukturen gibt, die es sehr leicht ma-
chen, Infizierte und Gesunde direkt zu erkennen (1.1), (1.2). Außerdem erkennt man,
dass es Strukturen gibt, die es unmöglich machen, Infizierte und Gesunde zu unter-
scheiden (1.3),(1.4). Zur Veranschaulichung kann Abbildung 6 herangezogen werden.
Wir nutzen diese Beobachtungen, um unsere Resultate zum exakten Finden der infi-
zierten Menge herzuleiten.

• Das exakte Finden der Infizierten Menge ist leicht, wenn ein Algorithmus diese
eindeutig erkennt.

• Sobald es Infizierte und Gesunde gibt, die wir nicht unterscheiden können, ist
das exakte Finden der infizierten Menge unmöglich.

Für Resultate zum approximativen Finden der Menge oder zum Erkennen des Einflus-
ses der infizierten Menge ist diese Beobachtung nicht mehr ausreichend. Für Resultate
zum approximativen Finden der Menge müssen wir zeigen, dass bei zwei Mengen, die
das Testergebnis erklären, nur wenige infizierte Personen in beiden Mengen infiziert
sind. Um den Einfluss der infizierten Menge zu erkennen, müssen wir einen Schätzer
finden, der in Erwartung unterschiedliche Werte ausgibt, wenn man ihn für ein tat-
sächliches Gruppen Test Modell und eine zufällig erzeugte Graph-Struktur anwendet.
Zusätzlich darf die Schwankung des Schätzers nicht zu groß sein, sodass die Ergebnis-
se voneinander getrennt bleiben und sich nicht durch Zufall überlappen können.

8.2. Ergebnisse.

8.2.1. Das Standard-Modell. Im Jahre 1943 hatte R. Dorfman die Idee, dass man durch
das Testen von Gruppen statt Einzelpersonen die Kapazität an durchführbaren Tests
erhöhen kann. Er schlug ein zweistufiges Verfahren vor, in dem zunächst Gruppen
getestet werden. Negativ getestete Gruppen werden als negativ deklariert. Für positiv
getestete Gruppen folgt ein individueller Test, um festzustellen, wer am Ende für das
positive Testergebnis verantwortlich war. Nun stellt sich die Frage, was die minimale
Anzahl an Tests ist, die nötig ist, um die Infizierten zu finden. Da man den Überblick
verliert, solbald mehrere infizierte Mengen das selbe Testergebnis liefern, folgt mit

2m ≥
(

n

k

)

eine untere Schranke mcount := k ln(n/k)
ln(2) . Nun stellt sich die Frage, ob es tatsächlich mög-

lich ist, die infizierte Menge zu finden, wenn man nur mcount Tests durchführt. In dieser
Thesis haben wir gezeigt, dass es leicht ist, die infizierte Menge mit einem 2-stufigen
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Test-Verfahren auf mcount Tests zu finden. Außerdem zeigen wir, dass dies unter be-
stimmten Bedingung sogar in einem 1-stufigen Test-Verfahren möglich ist. Wir zeigen,
dass bei 1-stufigen Verfahren

minf = minf(n,θ) = max

{
θ

ln2(2)(1−θ)
,

1

ln(2)

}
nθ ln(n/k).

Tests ausreichen. Einerseits geben wir ein Test-Verfahren und einen Algorithmus an,
der die infizierte Menge tatsächlich findet, sobald m > minf. Andererseits zeigen wir,
dass es keine Möglichkeit gibt mit weniger Tests auszukommen. Die folgenden Theo-
reme fassen unsere Resultate zum exakten Finden der Menge zusammen:

Theorem 8.1 (Theorem 1.1 und 1.2 aus [30]). Sei ε> 0 und

minf = minf(n,θ) = max

{
θ

ln2(2)(1−θ)
,

1

ln(2)

}
nθ ln(n/k).

Für 1-stufige Verfahren gilt:

• Das exakte Finden der infizierten Menge ist leicht, wenn man m ≥ (1+ ε)minf

Tests verwendet.
• Das exakte Finden der infizierten Menge ist unmöglich, wenn man m ≤ (1 −
ε)minf Tests verwendet.

Theorem 8.2. Sei ε> 0 und

mcount := k ln(n/k)

ln(2)
.

Für 2-stufige Verfahren gilt:

• Das exakte Finden der infizierten Menge ist leicht, wenn man m ≥ (1+ε)mcount

Tests verwendet.

Der Beweis, dass es tatsächlich leicht ist, die infizierte Menge mit einem 1-stufigen
Verfahren zu finden, basiert darauf, dass wir ein Testverfahren entwickeln und einen
Algorithmus angeben, der die Infizierten und Gesunden anhand der vorhandenen In-
formationen auseinanderhalten kann. Die Idee der Struktur ist in Abbildung 8 zu fin-
den. Außerdem zeigen wir, dass dies von keinen Testverfahren mit m ≤ (1−ε)minf er-
reicht werden kann, da viele Infizierte und Gesunde dann nicht mehr unterscheidbar
sind. Für die Details des Beweises verweisen wir den Leser auf Appendix A oder [30].
Für den 2-stufigen Fall zeigen wir, dass unser Algorithmus bei unserem Testverfahren
mit lediglich mcount Tests nur sehr wenige Individuen nicht sicher erkennt. Diese kön-
nen in einer zweiten Runde durch individuelles Testen dann nachträglich klassifiziert
werden, ohne die Gesamtanzahl der Tests zu beeinflussen.

In einem nächsten Schritt analysieren wir die abgeschwächten Versionen des Erfolgs,
das approximative Finden und das Erkennen des Einflusses der infizierten Menge.

Theorem 8.3 (Theorem 1.2 aus [30] und Theorem 1 aus [31]). Sei ε> 0 und

mcount =
k ln(n/k)

ln(2)
.(8.1)

Für 1-stufige Verfahren gilt:

• Das approximative Finden der infizierten Menge ist leicht, sobald man m ≥ (1+
ε)mcount Tests verwendet.

• Das approximative Finden der infizierten Menge ist informationstheoretisch mög-
lich für das Konstante-Spalten Test Verfahren, sobald man m ≥ (1+ε)mcount Tests
verwendet.

• Das approximative Finden der infizierten Menge ist unmöglich für das Konstante-
Spalten Test Verfahren, sobald man m ≤ (1−ε)mcount Tests verwendet.
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Im Konstante-Spalten Testverfahren wählt jedes Individuum exakt ∆ Tests aus. Die
ersten beiden Teile des Theorems folgen direkt aus unseren Resultaten zum exakten
Finden der Menge (da unser optimales Testverfahren mit mcount approximativ funk-
tioniert und ein Spezialfall des Konstante-Spalten Verfahrens ist). Für den dritten Teil
führen wir eine Moment Berechnung durch und zeigen, dass es mit hoher Wahrschein-
lichkeit keine Lösungen mit konstanter Überlappung gibt.

Nun wollen wir noch sehen, ab wann man den Einfluss der infizierten Mengen (effi-
zient) erkennen kann.

Theorem 8.4 (Theorem 2 aus [31]). Im Konstante-Spalten Verfahren mit θ ∈ (0,1) und
c > 0 sei

(8.2) mdetect = max

{
1

ln2 2

(
1− θ

2(1−θ)

)
,0

}
k · ln(n/k) .

Außerdem definieren wir minf
detect = min(mdetect,mcount). Dann gilt das Folgende:

(a) Mit m > mdetect > 0 ist es leicht den Einfluss der infizierten Menge zu erkennen.

(b) Mit m > minf
detect ist informationstheoretisch möglich den Einfluss der infizierten

Menge zu erkennen.

Zum Beweis verwenden wir den Schätzer

V(Γ1, . . . ,ΓM ) =
M∑

j=1

(
Γ j −

N∆

M

)2

.(8.3)

und zeigen, dass der Abstand der Erwartungswerte für das Gruppen-Test Modell und
das zufällige Modell weit genug auseinander liegen, um mit der resultierenden Stan-
dardabweichung umgehen zu können, wenn die Anzahl an Tests groß genug (größer
als mdetect) ist. Außerdem zeigen wir für Teil b) des Theorems, dass ein Algorithmus
zum approximativen Finden der Menge zum Erkennen des Einflusses verwendet wer-
den kann.

8.2.2. Das Größen-Beschränkte Modell. Im Standard-Modell haben wir gezeigt, wo die
Grenzen für das Gruppentest-Problem liegen, wenn alles erlaubt ist und keine wei-
teren Einschränkungen vorgegeben sind. Es ist offensichtlich, dass diese Freiheit bei
realen Anwendungen nicht vorliegen wird. Für einige Viren, wie zum Beispiel HIV [105]
oder COVID-19 [79], ist bekannt, dass die Funktionsfähigkeit der Tests nur bei Anwen-
dung auf begrenzt viele Individuen gewährleistet ist. In diesem Abschnitt gehen wir
darauf ein, wie sich diese zusätzliche Einschränkung auf die Grenzen des Gruppentest-
Problems auswirken. Wir nehmen wieder an, dass sich in der Population der Größe n
eine infizierte Untergruppe der Größe k ∼ nθ befindet. Erste Schritte in dieser Hinsicht
wurden bereits durch [49] unternommen. Es wurden bereits erste obere und untere
Schranken für den Erfolg und das Scheitern im Größen-Beschränkten Modell analy-
siert. In [49] wird angenommen, dass ein Individuum nur an∆= o(ln(n)) Tests teilneh-
men darf und jeder Test nur maximal o

(
n1−θ). Die Schranken von [49] lassen sich wie

folgt zusammenfassen:

• Das ∆-Beschränkte Modell:
– Für ∆= o(lnn), jedes Test-Verfahren (mit parallelen Tests) und

Fehler-Wahrscheinlichkeit ξ benötigt m ≥∆k
(n

k

) 1−5ξ
∆ , für ausreichend klei-

nes ξ und ausreichend großes n . (Theorem 4.1 in [49])

– Für ein angemessen gewähltes zufälliges Test-Verfahren mit m ≥ de∆k
(n
ξ

) 1
∆ e

Tests hat der COMP Algorithmus eine Fehler-Wahrscheinlichkeit von höchs-
ten ξ. (Theorem 4.2 in [49])
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• Das Γ-Beschränkte Modell:

– Für Γ = Θ
((n

k

)β)
mit β ∈ [0,1), jedes Testverfahren (mit parallelen Tests)

mit Fehler-Wahrscheinlichkeit höchstens ξ benötigt m ≥ 1−6ξ
1−β · n

Γ , für aus-
reichend großes n. (Theorem 4.5 in [49])

– Für ein entsprechend gewähltes zufälliges Test-Verfahren und den COMP

Algorithmus, mit Γ = Θ
((n

k

)β)
für β ∈ [0,1) und ξ = n−ζ mit ζ > 0, dann

ist die Fehler-Wahrscheinlichkeit höchstens ξ wenn m ≥ d 1+ζ
(1−θ)(1−β)e · dn

Γ e.
(Theorem 4.6 in [49])

In unserer Arbeit verbessern wir für einige dieser Modelle sowohl die oberen als auch
die unteren Schranken.

Theorem 8.5 (∆-Beschränktes-Modell, Theorem 3.1, 3.2 und 3.3 in [51]). Sei ε> 0, θ ∈
(0,1) und definiere

m∆,inf = max

{
e−1∆k1+ 1−θ

∆θ ,∆k1+ 1
∆

}

und m∆,alg = max

{
∆k1+b θ

1−θ c,∆k1+ 1
∆

}
.

Im ∆-Beschränkten-Modell hält das Folgende:

• Das exakte Finden der infizierten Menge ist leicht, sobald m ≥ (1+ε)m∆,alg.
• Das exakte Finden der infizierten Menge ist unmöglich, sobald m ≤ (1−ε)m∆,inf.

Wir halten fest, dass unsere Schranken fast übereinstimmen. Obwohl die Ordung für
alle θ ∈ (0,1) übereinstimmt, sehen wir eine Konstante e−1 Lücke für θ < 1/2.

Theorem 8.6 (Γ-Beschränktes-Modell, Theorem 4.1, 4.10 und 4.18 in [51]). Sei ε > 0,
θ ∈ (0,1) und definiere

mΓ = max

{(
1+

⌊
θ

1−θ

⌋)
n

Γ
,

2n

Γ+1

}
.

Im Γ-Beschränkten-Modell hält das folgende:

• Das exakte Finden der infizierten Menge ist leicht, sobald m ≥ (1+ε)mΓ.
• Das exakte Finden der infizierten Menge ist, unmöglich sobald m ≤ (1−ε)mΓ.

Wir sehen, dass unsere Schranken übereinstimmen und wir einen direkten Über-
gang von ’leicht zu lösen’ zu ’unmöglich zu lösen’ finden.

Wir werden hier nur die Beweis-Idee vorstellen und verweisen den interessierten Leser
zu Appendix C oder [51]. Um zu zeigen, dass das Finden der infizierten Menge leicht
bzw. unmöglich ist, analysieren wir die Nachbarschaften der Individuen. Es ist unmög-
lich, die infizierte Menge zu finden, wenn es sowohl infizierte als auch gesunde Indivi-
duen gibt, die ununterscheidbar sind. In diesem Fall können wir den jeweiligen Status
der Individuen austauschen und würden die Änderung nicht bemerken. In beiden Mo-
dellen zeigen wir, dass diese verbotenen Strukturen in allen Test-Verfahren auftreten
sobald die Anzahl an Tests zu gering wird. Um zu zeigen, dass das Finden der Menge
leicht ist, benötigen wir ein Test-Verfahren und einen Algorithmus, um die infizierte
Menge finden. Wir geben in beiden Modellen ein entsprechendes Test-Verfahren an
und zeigen, dass der so genannte DD-Algorithmus ausreicht, um alle Infizierten zu
finden, sobald wir die Anzahl an Tests groß genug wählen. Eine Veranschaulichung der
Schranken kann in Abbildung 9 gefunden werden.

8.2.3. Das Fehlerhafte-Test Modell. Eine weitere Annahme des Standard-Modells, die
in der Realität zu Problemen führen kann, sind die fehlerfreien Tests.
Am Beispiel COVID-19 [106] sieht man, dass man diese Annahme nicht in der Reali-
tät finden wird. Deshalb passen wir unser Modell in diesem Abschnitt an und gehen
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davon aus, dass jeder Test mit einer bestimmten Wahrscheinlichkeit sein Testergebnis
ändert. Zur Verdeutlichung der Idee kann Abbildung 10 herangezogen werden. Die-
ses Modell hat bereits einige Aufmerksamkeit genossen [22, 87, 88, 89, 90, 92]. Wir sind
nun daran interessiert, inwieweit wir Algorithmen und Testverfahren angeben können,
die die infizierte Menge finden, obwohl die Tests nicht fehlerfrei sind. Hierzu schau-
en wir uns das Konstante-Spalten-Verfahren an (jedes Individuum zieht sich ∆ Test
uniform zufällig aus den m verfügbaren Tests mit Zurücklegen). Nun analysieren wir
die Erfolgschancen von Algorithmus 2 und Algorithmus 3. Wir erhalten die folgenden
Schranken für Algorithmus2:

Theorem 8.7 (Fehlerbehafteter COMP,Theorem 2.1 in [52]). Seien p, q ≥ 0, p +q < 1,d ∈
(0,∞),α ∈ (q,e−d (1−p)+ (

1−e−d
)

q). Angenommen 0 < θ < 1 und sei

mCOMP = mCOMP(n,θ, p, q) = min
α,d

max{b1(α,d),b2(α,d)}k ln(n/k)

mit b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

und b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
) .

Für m ≥ (1+ε)mCOMP und ein ε> 0 ist das exakte Finden der infizierten Menge mit dem
fehlerbehafteten COMP Algorithmus leicht.

Für Algorithmus 3 erhalten wir:

Theorem 8.8 (Fehlerbehafteter DD,Theorem 2.2 in [52]). Seien p, q ≥ 0, p + q < 1,d ∈
(0,∞),α ∈ (q,e−d (1−p)+ (

1−e−d
)

q) und β ∈ (0,e−d (1− q)) und definiere w = e−d p +
(1−e−d )(1−q). Angenommen 0 < θ < 1 und sei

mDD = mDD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k ln(n/k)

mit c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

und c2(α,d) = 1

dDKL (α‖1−w)

und c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)

und c4(α,β,d) = max
1−α≤z≤1





1

1−θ
1

d
(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β
z ‖

e−d p
w

))





.

Für m ≥ (1+ε)mDD und ε> 0 ist das Finden der infizierten Menge mit dem fehlerbehaf-
teten DD Algorithmus leicht.

Da diese Schranken auf den ersten Blick kompliziert wirken, kann der interessierte
Leser in Abbildung 4 die Realisierung der Schranken für verschiedene Fehler-Wahr-
scheinlichkeiten einsehen.

Für detaillierte Beweise verweisen wir den Leser auf Appendix D oder [52]. Wir ge-
hen jedoch kurz auf die Beweisidee ein. Wir verwenden das Konstante-Spalten Verfah-
ren und analysieren, wie sich die Fehler-Wahrscheinlichkeiten auf die Nachbarschaf-
ten von infizierten und gesunden Individuen auswirken. Man erkennt, dass die bei-
den Arten von Individuen unterschiedliche Eigenschaften in der zugrundeliegenden
Graph-Struktur aufweisen. Dies liegt daran, dass der Unterschied bereits im fehlerfrei-
en Modell auftritt und sich in einer bestimmten Art und Weise auf das fehlerbehaftete
Modell übertragen lässt. Sowohl Algorithmus 2 als auch Algorithmus 3 nutzen einige
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dieser unterschiedlichen Strukturen aus. Unser Beweis basiert im Grunde darauf zu
beweisen, dass sich die entsprechenden Strukturen für Infizierte und Gesunde genug
unterscheiden, um sie mit den entsprechenden Algorithmen zu nutzen. Dies ist mög-
lich, sobald die Anzahl an Tests groß genug gewählt wird. Wir berechnen die benötigten
Anzahlen und sie führen zu den Schranken, die in den Theoremen angegeben sind.

8.2.4. Das Quantitative Modell. Eine weitere Abwandlung des Modells beschäftigt sich
mit der Art der Ausgabe der Testergebnisse. Im Standard-Modell wird eine binäre Aus-
gabe angenommen. Einige Anwendungen von Gruppen Test Verfahren [14, 20, 68, 94]
arbeiten jedoch mit nicht binären Ausgaben. Deshalb passen wir das Modell entspre-
chend an und beschäftigen uns mit den Schranken, sodass das exakte Finden der in-
fizierten Menge möglich ist. Außerdem wollen wir wissen, wann genügend Informati-
on durch das Testverfahren bereit gestellt wird, um das exakte Finden der Menge zu
ermöglichen. Wir nehmen wieder an, dass sich in einer Population von n Individuen
eine Menge von k ∼ nθ Kranken befindet. Die Tests hingegen ändern jetzt ihre Aus-
gabe. Anstatt einen binären Ausgang anzusetzen, gibt ein Test die Anzahl der im Test
enthaltenen Infizierten aus. In diesem Modell kann wieder eine simple Zähl-Schranke

mquant
count >

ln
(n

k

)

ln(k)
k

angegeben werden. Es wurde in [39] gezeigt, dass das exakte Finden der infizierten
Menge unmöglich ist, sobald die Anzahl der Tests unter 2mquant

count fällt. Die Frage ist nun,
ob es mit 2mquant

count Tests überhaupt möglich ist, die infizierte Menge zu finden. Die bes-
te Schranke in dieser Hinsicht wurde von [54] mit mGeKu = 4mquant

count angegeben. Wir
schließen diese Lücke und zeigen, dass 2mquant

count Tests ausreichen. Die nächste Frage
ist, ob ein Algorithmus existiert, der diese Informationen nutzen kann und die infi-
zierte Menge findet. Es gibt bereits verschiedene Algorithmen, die für die Lösung des
Problems vorgestellt wurden wie z.B. [40, 42, 44, 61, 62, 85]. Alle diese Algorithmem
benötigen m =Θ (k ln(n)) Tests.

Theorem 8.9 (Theorem 1 und Theorem 2 in [50]). Sei 0 < θ < 1, k = nθ und ε > 0 und
sei

mpos(n,θ) = 2
k ln(n/k)

ln(k)
= 2

1−θ
θ

k,

mEasy(n,θ) = 4

(
1− 1p

e

)
1+

p
θ

1−
p
θ

k ln(n/k).

Das exakte Finden der infizierten Menge ist möglich mit m > (1+ε)mpos und leicht mit
m > (1+ε)mEasy(n,θ) Tests.

Wir halten fest, dass unsere Schranken eine Lücke der Ordnung ln(k) aufweist. Diese
Lücke konnte im Nachhinein von [55] geschlossen werden. Für die Details der Beweise
unserer Schranken verweisen wir den Leser zu Appendix E oder [50]. Wir geben wie-
der die Beweisidee an. Auf der einen Seite zeigen wir, dass es für ein richtig gewähltes
einstufiges Test-Verfahren mit m > mpos genau eine Konfiguration mit k Kranken gibt,
die das Testergebnis erklärt. Für diese Aussage zeigen wir, dass es weder eine weitere
Konfiguration mit großer noch eine weitere mit kleiner Überlappung gibt. Wir ana-
lysieren die Möglichkeit eine weitere erklärende Konfiguration mit bestimmter Über-
lappung zu erzeugen. Sobald wir die Anzahl der Tests groß genug wählen, ist dies mit
hoher Wahrscheinlichkeit nicht mehr möglich. Auf der anderen Seite geben wir einen
Algorithmus an, der die infizierte Menge findet. Für diesen Schritt sehen wir ein, dass
sich der Einfluss der infizierten Menge auf das Testverfahren vom Einfluss der gesun-
den Menge unterscheidet. Die Eigenschaft, die wir für jedes Individuum nutzen, ist die
Summe der Testergebnisse in der direkten Nachbarschaft der Individuen. Hier zeigen
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wir nun, dass diese Summen gut separiert sind für die beiden Gruppen. Von daher ist
der Algorithmus erfolgreich, sobald die Anzahl an Tests groß genug (m > mEasy) ist.

8.2.5. Fazit. Die Covid-19 Krise hat auf eindrucksvolle Art und Weise gezeigt, warum
das grundsätzliches Verständnis des Gruppentest-Problems von großer Bedeutung ist.
In dieser Arbeit wurden einige der dringendsten offene Frage der Gruppentest-
Forschung für das Standard-Modell beantwortet [7]. Außerdem haben wir Fortschritte
darin gemacht, diese Resultate auf Modelle zu übertragen, die näher an der Realität
sind als das Standard-Modell.
Wir haben Strukturen herausgearbeitet, die für den Erfolg und das Scheitern von Al-
gorithmen verantwortlich sind. Wir glauben, dass diese Einblicke auch in anderen ver-
wandten Problemen genutzt werden können. Es stellen sich natürlich einige Fragen,
die in weiterer Forschung beleuchtet werden sollten:

• Kann der Spatial-Coupling Ansatz auf das fehlerhafte Testmodell übertragen
werden?

• Können die Lücken zwischen leicht vs. möglich vs. hart im Konstante-Spalten
Test-Verfahren geschlossen werden?

• Wie übertragen sich unsere Ergebnisse auf eine linearen Infektionsdichte k ∼
Θ(n)?

• Lassen sich die verbleibenden Lücken zwischen ’genug Information vorhan-
den’ und ’Information algorithmisch leicht nutzbar’ für das Gruppen Test Mo-
dell schließen?

• Können die beobachteten Vorteile durch mehrstufige Verfahren im Vergleich zu
einstufigen Verfahren auf andere algorithmische Aufgaben übertragen werden?

Wir gehen davon aus, dass die Einblicke, die wir durch unsere Ergebnisse im Gruppentest-
Problem erhalten haben, hilfreich sein werden.
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OPTIMAL GROUP TESTING

AMIN COJA-OGHLAN, OLIVER GEBHARD, MAX HAHN-KLIMROTH, PHILIPP LOICK

ABSTRACT. In the group testing problem the aim is to identify a small set of k ∼ nθ infected individuals out of a pop-
ulation size n, 0 < θ < 1. We avail ourselves of a test procedure capable of testing groups of individuals, with the test
returning a positive result iff at least one individual in the group is infected. The aim is to devise a test design with as
few tests as possible so that the set of infected individuals can be identified correctly with high probability. We establish
an explicit sharp information-theoretic/algorithmic phase transition minf for non-adaptive group testing, where all tests
are conducted in parallel. Thus, with more than minf tests the infected individuals can be identified in polynomial time
w.h.p., while learning the set of infected individuals is information-theoretically impossible with fewer tests. In addition,
we develop an optimal adaptive scheme where the tests are conducted in two stages. MSc: 05C80, 60B20, 68P30

1. INTRODUCTION

1.1. Background and motivation. Various intriguing combinatorial problems come as inference tasks where we
are to learn a hidden ground truth by means of indirect queries. The goal is to get by with as small a number of
queries as possible. The ultimate solution to such a problem should consist of a positive algorithmic result show-
ing that a certain number of queries suffice to learn the ground truth efficiently, complemented by a matching
information-theoretic lower bound showing that with fewer queries the problem is insoluble, regardless of com-
putational resources.

Group testing is a prime example of such an inference problem [6]. The objective is to identify within a large
population of size n a subset of k individuals infected with a rare disease. We presume that the number of infected
individuals scales as a power k = ⌈nθ⌉ of the population size with an exponent θ ∈ (0,1), a parametrisation suited
to modelling the pivotal early stages of an epidemic [36]. Indeed, since early on in an epidemic test kits might be
in short supply, it is vital to get the most diagnostic power out the least number of tests. To this end we assume
that the test gear is capable of not merely testing a single individual but an entire group. The test comes back
positive if any one individual in the group is infected and negative otherwise. While in non-adaptive group testing
all tests are conducted in parallel, in adaptive group testing test are conducted in several stages. In either case we
are free to allocate individuals to test groups as we please. Randomisation is allowed. What is the least number
of tests required so that the set of infected individuals can be inferred from the test results with high probability?
Furthermore, in adaptive group testing, what is the smallest depth of test stages required?

Closing the considerable gaps that the best prior bounds left, the main results of this paper furnish matching
algorithmic and information-theoretic bounds for both adaptive and non-adaptive group testing. Specifically,
the best prior information-theoretic lower bound derives from the following folklore observation. Suppose that
we conduct m tests that each return either ‘positive’ or ‘negative’. Then to correctly identify the set of infected
individuals we need the total number 2m of conceivable test results to asymptotically exceed the number

(n
k

)
of

possible sets of infected individuals. Hence, 2m ≥ (1+o(1))
(n

k

)
. Thus, Stirling’s formula yields the lower bound

mad = 1−θ
ln2

nθ ln n, (1.1)

which applies to both adaptive and non-adaptive testing. On the positive side, a randomised non-adaptive test
design with

mDD ∼
max {θ,1−θ}

ln2 2
nθ lnn (1.2)

Supported by DFG CO 646/3 and Stiftung Polytechnische Gesellschaft. An extended abstract version of this work has been submitted to the
COLT 2020 conference.
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tests exists from which a greedy algorithm called DD correctly infers the set of infected individuals w.h.p. [22].
Clearly, mad < mDD for all infection densities θ and mDD/mad → ∞ as θ → 1. In addition, there is an efficient
adaptive three-stage group testing scheme that asymptotically matches the lower bound mad [33].

We proceed to state the main results of the paper. First, improving both the information-theoretic and the algo-
rithmic bounds, we present optimal results for non-adaptive group testing. Subsequently we show how the non-
adaptive result can be harnessed to perform adaptive group testing with the least possible number (1+o(1))mad

of tests in only two stages.

1.2. Non-adaptive group testing. A non-adaptive test design is a bipartite graph G = (V ∪F,E ) with one vertex
class V =Vn = {x1, . . . , xn } representing individuals and the other class F = Fm = {a1, . . . , am } representing tests. For
a vertex v of G denote by ∂v = ∂G v the set of neighbours of v . Thus, an individual x j takes part in a test ai iff
x j ∈ ∂ai . Since we can shuffle the individuals randomly, we may safely assume that the vector σ ∈ {0,1}V whose
1-entries mark the infected individuals is a uniformly random vector of Hamming weight k. Furthermore, the test
results induced byσ read

σ̂ai = σ̂G ,ai = max
x∈∂ai

σx .

Hence, given σ̂ = σ̂G = (σ̂G ,a )a∈F and G we aim to infer σ. Thus, we can represent an inference procedure by a
function AG : {0,1}m → {0,1}n . The following theorem improves the lower bound on the number of tests required
for successful inference. Let

minf = minf(n,θ) = max

{
θ

ln2 2
,

1−θ
ln 2

}
nθ lnn. (1.3)

Theorem 1.1. For any 0 < θ < 1, ε > 0 there exists n0 = n0(θ,ε) such that for all n > n0, all test designs G with
m ≤ (1−ε)minf tests and for every function AG : {0,1}m → {0,1}n we have

P [AG (σ̂G ) =σ] < ε. (1.4)

Theorem 1.1 rules out both deterministic and randomised test designs and inference procedures because (1.4)
holds uniformly for all G and all AG . Thus, no test design, randomised or not, with fewer than minf tests allows
to infer the set of infected individuals with a non-vanishing probability. Since minf matches mDD from (1.2) for
θ ≥ 1/2, Theorem 1.1 shows that the positive result from [22] is optimal in this regime. The following theorem
closes the remaining gap by furnishing an optimal positive result for all θ.

Theorem 1.2. For any 0 < θ < 1, ε > 0 there is n0 = n0(θ,ε) such that for every n > n0 there exist a randomised test
design G comprising m ≤ (1+ ε)minf tests and a polynomial time algorithm SPIV that given G and the test results
σ̂G outputs σw.h.p.

An obvious candidate for an optimal test design appears be a plain random bipartite graph. In fact, prior to
the present work the best known test design consisted of a uniformly random bipartite graph where all vertices in
Vn have the same degree ∆. In other words, every individual independently joins ∆ random test groups. Applied
to this random ∆-out test design the DD algorithm correctly recovers the set of infected individuals in polynomial
time provided that the number of tests exceeds mDD from (1.2). However, mDD strictly exceeds minf for θ < 1/2.
While the random ∆-out test design with (1+o(1))minf tests is known to admit an exponential time algorithm that
successfully infers the set of infected individuals w.h.p. [11], we do not know of a polynomial time that solves this
inference problem. Instead, to facilitate the new efficient inference algorithm SPIV the test design for Theorem 1.2
relies on a blend of a geometric and a random construction that is inspired by recent advances in coding theory
known as spatially coupled low-density parity check codes [18, 26].

Finally, for

θ ≤ ln 2

1+ ln 2
≈ 0.41 (1.5)

the number minf of tests required by Theorem 1.2 matches the folklore lower bound mad from (1.2) that applies to
both adaptive and non-adaptive group testing. Hence, in this regime adaptivity confers no advantage. By contrast,
for θ > ln(2)/(1+ ln 2) the adaptive bound mad is strictly smaller than minf. Consequently, in this regime at least
two test stages are necessary to match the lower bound. Indeed, the next theorem shows that two stages suffice.
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FIGURE 1. The phase transitions in group testing. The best previously known algorithm DD suc-
ceeds in the blue but not in the green region. The new algorithm SPIV succeeds in both the blue
and the green region. The black line indicates the non-adaptive information-theoretic threshold
minf, below which non-adaptive group testing is impossible. In the red area even (multi-stage)
adaptive inference is impossible. Finally, the two-stage adaptive group testing algorithm from
Theorem 1.3 succeeds in the yellow region.

1.3. Adaptive group testing. A two-stage test design consists of a bipartite graph G = (V ,F ) along with a second
bipartite graph G ′ =G ′(G,σ̂G ) = (V ′,F ′) with V ′ ⊂V that may depend on the tests results σ̂G of the first test design
G. Hence, the task is to learnσ correctly w.h.p. from G,σ̂G ,G ′ and the test results σ̂G ′ from the second stage while
minimising the total number |F | + |F ′| of tests. The following theorem shows that a two-stage test design and an
efficient inference algorithm exist that meet the multi-stage adaptive lower bound (1.1).

Theorem 1.3. For any 0 < θ < 1, ε > 0 there is n0 = n0(θ,ε) such that for every n > n0 there exist a two-stage test
design with no more than (1+ ε)mad tests in total and a polynomial time inference algorithm that outputs σ with
high probability.

Theorem 1.3 improves over [33] by reducing the number of stages from three to two, thus potentially significantly
reducing the overall time required to complete the test procedure [10, 28]. The proof of Theorem 1.3 combines the
test design and efficient algorithm from Theorem 1.2 with ideas from [32].

The question of whether an ‘adaptivity gap’ exists for group testing, i.e., if the number of tests can be reduced
by allowing multiple stages, has been raised prominently [6]. Theorems 1.1–1.3 answer this question compre-
hensively. While for θ ≤ ln(2)/(1 + ln(2)) ≈ 0.41 adaptivity confers no advantage, Theorem 1.1 shows that for
θ > ln(2)/(1+ ln(2)) there is a widening gap between mad and the number minf of tests required by the optimal
non-adaptive test design. Further, Theorem 1.3 demonstrates that this gap can be closed by allowing merely two
stages. Figure 1 illustrates the thresholds from Theorems 1.1–1.3.

1.4. Discussion. The group testing problem was first raised in 1943, when Dorfman [15] proposed a two-stage
adaptive test design to test the US Army for syphilis: in a first stage disjoint groups of equal size are tested. All
members of negative test groups are definitely uninfected. Then, in the second stage the members of positive test
groups get tested individually. Of course, this test design is far from optimal, but Dorfman’s contribution triggered
attempts at devising improved test schemes.

At first combinatorial group testing, where the aim is to construct a test design that is guaranteed to succeed
on all vectors σ, attracted significant attention. This version of the problem was studied, among others, by Erdős
and Rényi [17], D’yachkov and Rykov [16] and Kautz and Singleton [23]. Hwang [20] was the first to propose an
adaptive test design that asymptotically meets the information-theoretic lower bound mad from (1.1) for all θ ∈
[0,1]. However, this test design requires an unbounded number of stages. Conversely, D’yachkov and Rykov [16]
showed that mad tests do not suffice for non-adaptive group testing. Indeed, m ≥ min

{
Ω(k2),n

}
tests are required

non-adaptively, making individual testing optimal for θ > 1/2. For an excellent survey of combinatorial group
testing see [6].

Since the early 2000s attention has shifted to probabilistic group testing, which we study here as well. Thus, in-
stead of asking for test designs and algorithms that are guaranteed to work for allσ, we are content with recovering
σ with high probability. Berger and Levenshtein [8] presented a two-stage probabilistic group testing design and
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algorithm requiring

mBL,ad ∼ 4nθ ln n

tests in expectation. Their test design, known as the Bernoulli design, is based on a random bipartite graph where
each individual joins every test independently with a carefully chosen edge probability. For a fixed θ the number
mBL,ad of tests is within a bounded factor of the information-theoretic lower bound mad from (1.1), although the
gap mad/mBL,ad diverges as θ→ 1. Unsurprisingly, the work of Berger and Levenshtein spurred efforts at closing
the gap. Mézard, Tarzia and Toninelli proposed a different two-stage test design whose first stage consists of a
random bipartite graph called the constant weight design [29]. Here each individual independently joins an equal
number of random tests. For their two-stage design they obtained an inference algorithm that gets by with about

mMTT,ad ∼ 1−θ
ln2 2

nθ ln n. (1.6)

tests, a factor of 1/ln 2 above the elementary bound mad. Conversely, Mézard, Tarzia and Toninelli showed by
means of the FKG inequality and positive correlation arguments that two-stage test algorithms from a certain
restricted class cannot beat the bound (1.6). Furthermore, Aldridge, Johnson and Scarlett analysed non-adaptive
test designs and inference algorithms [4, 22]. For the Bernoulli test design their best efficient algorithm DD requires

mDD,Be ∼ e ·max {θ,1−θ}nθ ln n.

tests. For the constant weight design they obtained the bound mDD from (1.2). In addition, in a previous arti-
cle [11] we showed that on the constant weight design an exponential time algorithm correctly identifies the set of
infected individuals w.h.p. if the number of tests exceeds minf from (1.3). Furthermore, Scarlett [33] discovered the
aforementioned three-stage test design and polynomial time algorithm that matches the universal lower bound
mad from (1.1). Finally, concerning lower bounds, in the case of a linear number k = Θ(n) infected individuals
Aldridge [5] showed via arguments similar to [29] that individual testing is optimal in the non-adaptive case, while
Ungar [35] proved that individual testing is optimal even adaptively once k ≥ (3−p

5)n/2.
A further variant of group testing is known as the quantitative group testing or the coin weighing problem. In

this problem tests are assumed to not merely indicate the presence of at least one infected individual but to return
the number of infected individuals. Thus, the tests are significantly more powerful. For quantitative group testing
with k infected individuals Alaoui, Ramdas, Krzakala, Zdeborová and Jordan [3] presented a test design with

mQGT ∼ 2

(
1+ (n−k) ln(1−k/n)

k ln(k/n)

)
k ln(n/k)

ln(k)
for k =Θ(n)

tests from which the set of infected individuals can be inferred in exponential time; the paper actually deals with
the slightly more general pooled data problem. However, no efficient algorithm is known to come within a constant
factor of mQGT. Indeed, the best efficient algorithm, due to the same authors [2], requiresΩ(k ln(n/k)) tests.

More broadly, the idea of harnessing random graphs to tackle inference problems has been gaining momen-
tum. One important success has been the development of capacity achieving linear codes called spatially coupled
low-density parity check (‘LDPC’) codes [26, 27]. The Tanner graphs of these codes, which represent their check
matrices, consist of a linear sequence of sparse random bipartite graphs with one class of vertices corresponding
to the bits of the codeword and the other class corresponding to the parity checks. The bits and the checks are
divided equitably into a number of compartments, which are arranged along a line. Each bit of the codeword takes
part in random checks in a small number of preceding and subsequent compartments of checks along the line.
This combination of a spatial arrangement and randomness facilitates efficient decoding by means of the Belief
Propagation message passing algorithm. Furthermore, the general design idea of combining a linear spatial struc-
ture with a random graph has been extended to other inference problems. Perhaps the most prominent example is
compressed sensing, i.e., solving an underdetermined linear system subject to a sparsity constraint [13, 14, 24, 25],
where a variant of Belief Propagation called Approximate Message Passing matches an information-theoretic lower
bound from [37].

While in some inference problems such as LDPC decoding or compressed sensing the number of queries re-
quired to enable an efficient inference algorithm matches the information-theoretic lower bound, in many other
problems gaps remain. A prominent example is the stochastic block model [1, 12, 30], an extreme case of which
is the notorious planted clique problem [7]. For both these models the existence of a genuine computationally
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intractable phase where the problem can be solved in exponential but not in polynomial time appears to be an in-
triguing possibility. Further examples include code division multiple access [34, 38], quantitative group testing [2],
sparse principal component analysis [9] and sparse high-dimensional regression [31]. The problem of solving the
group testing inference problem on the test design from [22] could be added to the list. Indeed, while an expo-
nential time algorithm (that reduces the problem to minimum hypergraph vertex cover) infers the set of infected
individuals w.h.p. with only (1+ε)minf tests, the best known polynomial algorithm requires (1+ε)mDD tests.

Instead of developing a better algorithm for the test design from [22], here we exercise the discretion of con-
structing a different test design that the group testing problem affords. The new design is tailored to enable
an efficient algorithm SPIV for Theorem 1.2 that gets by with (1+ ε)minf tests. While prior applications of the
idea of spatial coupling such as coding and compressed sensing required sophisticated message passing algo-
rithms [18, 26, 27], the SPIV algorithm is purely combinatorial and extremely transparent. The main step of the
algorithm merely computes a weighted sum to discriminate between infected individuals and ‘disguised’ healthy
individuals. Furthermore, the analysis of the algorithm is based on a technically subtle but conceptually clean
large deviations analysis. This technique of blending combinatorial ideas and large deviations methods with spa-
tial coupling promises to be an exciting route for future research. Applications might include noisy versions of
group testing, quantitative group testing or the coin weighing problem [2]. Beyond these immediate extensions, it
would be most interesting to see if the SPIV strategy extends to other inference problems for sparse data.

1.5. Organisation. After collecting some preliminaries and introducing notation in Section 2, we prove Theo-
rem 1.1 in Section 3. Section 4 then deals with the test design and the inference algorithm for Theorem 1.2. Finally,
in Section 5 we prove Theorem 1.3.

2. PRELIMINARIES

As we saw in Section 1.2 a non-adaptive test design can be represented by a bipartite graph G = (V ∪F,E ) with one
vertex class V representing the individuals and the other class F representing the tests. We refer to the number |V |
of individuals as the order of the test design and to the number |F | of tests as its size. For a vertex v of G we denote
by ∂G v the set of neighbours. Where G is apparent from the notation we just write ∂v . Furthermore, for an integer
k ≤ |V | we denote byσG ,k = (σG ,k ,x )x∈V ∈ {0,1}V a random vector of Hamming weight k. Additionally, we let

σ̂G ,k = (σ̂G ,k ,a)a∈F ∈ {0,1}F with σ̂G ,k ,a = max
x∈∂G a

σG ,k ,x (2.1)

be the associated vector of test results. Where G and/or k are apparent from the context, we drop them from
the notation. More generally, for a given vector τ ∈ {0,1}V we introduce a vector τ̂G = (τ̂G ,a)a∈F by letting τ̂G ,a =
maxx∈∂G a τx , just as in (2.1). Furthermore, for a given τ ∈ {0,1}V we let

V0(G,τ) = {x ∈V : τx = 0} , V1(G,τ) = {x ∈V : τx = 1} , F0(G,τ) = {
a ∈ F : τ̂G ,a = 0

}
, F1(G,τ) = {

a ∈ F : τ̂G ,a = 1
}

.

The Kullback-Leibler divergence of p, q ∈ (0,1) is denoted by

DKL
(
q‖p

)
= q ln

(
q

p

)
+ (1−q) ln

(
1−q

1−p

)
.

We will occasionally apply the following Chernoff bound.

Lemma 2.1 ([21]). Let X be a binomial random variable with parameters N , p. Then

P
[
X ≥ qN

]≤ exp
(−N DKL

(
q‖p

))
for p < q < 1, (2.2)

P
[
X ≤ qN

]≤ exp
(−N DKL

(
q‖p

))
for 0 < q < p. (2.3)

In addition, we recall that the hypergeometric distribution Hyp(L, M , N ) is defined by

P
[
Hyp(L, M , N ) = k

]=
(

M

k

)(
L−M

N −k

)(
L

N

)−1

. (k ∈ {0,1, . . . , M ∧N }).

Hence, out of a total of L items of which M are special we draw N items without replacement and count the number
of special items in the draw. The mean of the hypergeometric distribution equals M N /L. It is well known that the
Chernoff bound extends to the hypergeometric distribution.

Lemma 2.2 ([19]). For a hypergeometric variable X ∼ Hyp(L, M , N ) the bounds (2.2)–(2.3) hold with p = M/L.
5
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Throughout the paper we use asymptotic notation o( ·),ω( ·),O( ·),Ω( ·),Θ( ·) to refer to limit n →∞. It is under-
stood that the constants hidden in, e.g., a O( ·)-term may depend on the density parameter θ or other parameters.

3. THE INFORMATION THEORETIC LOWER BOUND

In this section we prove Theorem 1.1. The proof combines techniques based on the FKG inequality and positive
correlation that were developed in [6, 29] with new combinatorial ideas. Throughout this section we fix a number
θ ∈ (0,1) and we let k = ⌈nθ⌉.
3.1. Outline. The starting point is a simple and well known observation. Namely, for a test design G = Gn,m =
(Vn ,Fm) and a vector τ ∈ {0,1}Fm of test results let

Sk (G,τ) =
{
σ ∈ {0,1}Vn :

∑
x∈Vn

σx = k, σ̂G = τ

}

be the set of all possible vectors σ of Hamming weight k that give rise to the test results τ. Further, let Zk (G,τ) =
|Sk (G,τ)| be the number of such vectors σ. Also recall that σ = σG ,k ∈ {0,1}Vn is a random vector of Hamming
weight k and that σ̂= σ̂G ,k comprises the test results that σ renders under the test design G. We observe that the
posterior ofσ given σ̂ is the uniform distribution on Sk (G,σ̂).

Fact 3.1. For any G, σ ∈ {0,1}Vn we have P [σ=σ | σ̂] = 1 {σ ∈Sk (G,σ̂)}/Zk (G,σ̂).

As an immediate consequence of Fact 3.1, the success probability of any inference scheme AG : {0,1}Fm → {0,1}Vn

is bounded by 1/Zk (G,σ̂). Indeed, an optimal inference algorithm is to simply return a uniform sample from
Sk (G,σ̂).

Fact 3.2. For any test design G and for any AG : {0,1}Fm → {0,1}Vn we have P [AG (σ̂) =σ | σ̂]≤ 1/Zk (G,σ̂).

Hence, in order to prove Theorem 1.1 we just need to show that Zk(G,σ̂) is large for any test design G with m <
(1−ε)minf tests. In other words, we need to show that w.h.p. there are many vectors σ ∈ Sk (G,σ̂) that give rise to
the test results σ̂.

We obtain these σ by making diligent local changes to σ. More precisely, we identify two sets V0+ = V0+(G,σ),
V1+ = V1+(G,σ) of individuals whose infection status can be flipped without altering the test results. Specifically,
following [5] we call an individual x ∈ Vn disguised if every test a ∈ ∂G x contains another individual y ∈ ∂G a \ {x}
with σy = 1. Let V+ =V+(G,σ) be the set of all disguised individuals. Moreover, let

V0+ =V0+(G,σ) = {x ∈V+ :σx = 0} , V1+ =V1+(G,σ)= {x ∈V+ :σx = 1} . (3.1)

Hence, V0+ is the set of all healthy disguised individuals while V1+ contains all infected disguised individuals.

Fact 3.3. We have Zk (G,σ̂) ≥ |V0+(G,σ)| · |V1+(G,σ)|.
Proof. For a pair (x, y) ∈V0+(G,σ)×V1+(G,σ) obtain τ from σ by letting τx = 1,τy = 0 and τz =σz for all z 6= x, y .
Then τ has Hamming weight k and τ̂G = σ̂. Thus, τ ∈Sk (G,σ̂). �

Hence, an obvious proof strategy for Theorem 1.1 is to exhibit a large number of disguised individuals. A similar
strategy has been pursued in the proof of the conditional lower bound of Mézard, Tarzia and Toninelli [29] and
the proof of Aldridge’s lower bound for the linear case k = Θ(n) [5]. Both [5, 29] exhibit disguised individuals via
positive correlation and the FKG inequality. However, we do not see how to stretch such arguments to obtain
the desired lower bound for all θ ∈ (0,1). Yet for θ extremely close to one it is possible to combine the positive
correlation argument with new combinatorial ideas to obtain the following.

Proposition 3.4. For any ε> 0 there exists θ0 = θ0(ε) < 1 such that for every θ ∈ (θ0,1) there exists n0 = n0(θ,ε) such
that for all n > n0 and all test designs G =Gn,m with m ≤ (1−ε)minf we have

P [|V0+(G,σ)|∧ |V1+(G,σ)| ≥ ln n]> 1−ε.

The proof of Proposition 3.4 can be found in Section 3.2.
The second step towards Theorem 1.1 is a reduction from larger to smaller values of θ. Suppose we wish to apply

a test scheme designed for an infection density θ ∈ (0,1) to a larger infection density θ′ ∈ (θ,1). Then we could
dilute the larger infection density by adding a large number of healthy ‘dummy’ individuals. A careful analysis of
this dilution process yields the following result. Due to the elementary lower bound (1.1) we need not worry about
θ ≤ ln(2)/(1+ ln 2).
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Proposition 3.5. For any ln(2)/(1+ ln(2)) < θ < θ′ < 1, t > 0 there exists n0 = n0(θ,θ′, t) > 0 such that for every n > n0

and for every test design G of order n there exist an integer n′ such that

k = ⌈nθ⌉ = ⌈n′ θ′⌉
and a test design G ′ of order n′ with the same number of tests as G such that the following is true. Let τ ∈ {0,1}Vn′ be
a random vector of Hamming weight k and let τ̂a = maxx∈∂G′ a τx comprise the tests results of G ′. Then

P [Zk(G,σ̂) ≤ t ] ≤P
[
Zk (G ′, τ̂) ≤ t

]
.

Hence, if a test design exists for θ < θ′ that beats minf(n,θ), then there is a test design for infection density θ′ that
beats minf(n′,θ′). We prove Proposition 3.4 in Section 3.2. Theorem 1.1 is an easy consequence of Propositions 3.4
and 3.5.

Proof of Theorem 1.1. For θ ≤ ln(2)/(1+ ln(2)) the assertion follows from the elementary lower bound (1.1). Hence,
fix ε> 0 and assume for contradiction that some θ ∈ (ln(2)/(1+ln(2)),1) for infinitely many n admits a test design G
of order n and size m ≤ (1−ε)minf(n,θ) such that P [Zk(G,σ̂G ) ≤ t ] ≥ ε. Then Proposition 3.5 shows that for θ′ > θ

arbitrarily close to one for an integer n′ with k = ⌈n′ θ′⌉ a test design G ′ =Gn′,m exists such that

P
[

Zk(G ′, τ̂) ≤ 1/ε
]≥ ε. (3.2)

Furthermore, (1.3) shows that for large n,

minf(n′,θ′) = θ′

ln2 2
n′ θ′ ln n′ = θ+o(1)

ln2 2
nθ ln n = (1+o(1))minf(n,θ).

Hence, the number m of tests of G ′ satisfies m ≤ (1− ε+ o(1))minf(n′,θ′). Thus, (3.2) contradicts Fact 3.3 and
Proposition 3.4. �

3.2. Proof of Proposition 3.4. Given a small ε > 0 we choose θ0 = θ0(ε) ∈ (0,1) sufficiently close to one and fix
θ ∈ (θ0,1). Additionally, pick ξ= ξ(ε,θ) ∈ (0,1) such that

2(1−θ) < ξ< θε. (3.3)

We fix ε,θ,ξ throughout this section.
To avoid the (mild) stochastic dependencies that result from the total number of infected individuals being

fixed, instead of σ we will consider a vector χ ∈ {0,1}Vn whose entries are stochastically independent. Specifically,
every entry of χ equals one with probability

p = k −
p

k ln n

n

independently. Let χ̂G ∈ {0,1}Fm be the corresponding vector of test results. The following lemma shows that it
suffices to estimate |V0+(G,χ)|, |V1+(G,χ)|. Let G denote an arbitrary test design with individuals Vn = {x1, . . . , xn }
and tests Fm = {a1, . . . , am}.

Lemma 3.6. There is n0 = n0(θ,ε) such that for all n > n0 and for all G with m ≤ minf the following is true:

if P
[|V0+(G,χ)|∧ |V1+(G,χ)| ≥ 2ln n

]> 1−ε/4, then P [|V0+(G,σ)|∧ |V1+(G,σ)| ≥ ln n] > 1−ε.

Proof. Let X = {k −2
p

k ln n ≤∑
x∈Vn χx ≤ k}. The Chernoff bound shows for large enough n,

P [X ]> 1−η/4. (3.4)

Further, given X we can coupleχ,σ such that the latter is obtained by turning k−∑
x∈Vn χx random zero entries of

the former into ones. Since turning zero entries into ones can only increase the number of disguised individuals,
on X we have

V1+(G,σ) ≥V1+(G,χ). (3.5)

Of course, it is possible that |V0+(G,σ)| < |V0+(G,χ)|. But since on X the two vectors σ,χ differ in no more than
2
p

k lnn entries, we obtain the bound

E
[
|V0+(G,χ)|− |V0+(G,σ)| |X

]
≤ 2

p
k ln n

n−k
|V0+(G,χ)| < n−1/3|V0+(G,χ)|,
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provided n is sufficiently large. Hence, Markov’s inequality shows that for large enough n,

P
[|V0+(G,χ)|− |V0+(G,σ)| > |V0+(G,χ)|/2 |X ]< ε/4. (3.6)

Combining (3.4), (3.5) and (3.6) completes the proof. �

As a next step we show that there is no point in having very big tests a that contain more than, say, Γ= Γ(n,θ) =
n1−θ ln n individuals. This is because anyway all such tests are positive w.h.p., so there is little point in actually
conducting them. Indeed, the following lemma shows that w.h.p. all tests of very high degree contain at least two
infected individuals.

Lemma 3.7. There exists n0 = n0(θ,ε) > 0 such that for all n > n0 and all test designs G with m ≤ minf tests,

P
[
∃a ∈ Fm : |∂G a| > Γ∧|∂G a ∩V1(G,χ)| ≤ 1

]
< ε/8.

Proof. Consider a test a of degree γ= |∂G a| ≥ Γ. Because inχ each of the γ individuals that take part in a is infected
with probability p independently, we have

P [|∂G a ∩V1(G,σ)| ≤ 1]=P
[
Bin(γ, p)≤ 1

]= (1−p)γ+γp(1−p)γ−1 ≤ (1+γp/(1−p))exp(−γp)= no(1)−1. (3.7)

Since m ≤ minf =O(nθ) for a fixed θ < 1, the assertion follows from (3.7) and the union bound. �

Let G∗ be test design obtained from G =Gn,m by deleting all tests of degree larger than Γ. If indeed every test of
degree at least Γ contains at least two infected individuals, then V0+(G∗,χ) =V0+(G,χ) and V1+(G∗,χ) =V1+(G,χ).
Hence, Lemma 3.7 shows that it suffices to bound |V0+ (G∗,χ)|, |V1+(G∗,χ)|. To this end we observe that G∗ contains
few individuals of very high degree.

Lemma 3.8. There is n0 = n0(θ,ε) > 0 such that for all n > n0 and all test designs G with m ≤ minf we have

∣∣{x ∈Vn : |∂G∗x| > ln3 n
}∣∣≤ n ln lnn

lnn
.

Proof. Since maxa∈Fm |∂G∗ a| ≤ Γ= n1−θ ln n, double counting yields
∑

x∈Vn

|∂G∗ x| =
∑

a∈Fm

|∂G∗ a| ≤ minfΓ=O(n ln2 n).

Consequently, there are no more than O(n/ln n) individuals x ∈Vn with |∂G∗x| > ln3 n. �

Further, obtain G(0) from G∗ by deleting all individuals of degree greater than ln3 n (but keeping all tests). Then the
degrees of G(0) satisfy

max
a∈F (G (0))

|∂G (0) a| ≤ Γ, max
x∈V (G (0))

|∂G (0) x| ≤ ln3 n. (3.8)

Let χ(0) = (χx )x∈V (G (0)) signify the restriction of χ to the individuals that remain in G(0).
With these preparations in place we are ready to commence the main step of the proof of Proposition 3.4. Given

a test design G with m ≤ (1−ε)minf we are going to construct a sequence y1, y2, . . . , yN , N = ⌈n1−ξ⌉, of individuals
of G(0) such that each yi individually has a moderately high probability of being disguised. Of course, to conclude
that in the end a large number of disguised yi actually materialise, we need to cope with stochastic dependencies.
To this end we will pick individuals yi that have pairwise distance at least five in G(0). The degree bounds (3.8)
guarantee a sufficient supply of such far apart individuals.

To be precise, starting from G(0) we construct a sequence of test designs G(1),G(2), . . . ,G(N) inductively as follows.
For each i ≥ 1 select a variable yi−1 ∈V (G(i−1)) whose probability of being disguised is maximum; ties are broken
arbitrarily. In formulas,

P
[

yi−1 ∈V+(G(i−1),χ(i−1))
]
= max

y∈V (G (i−1))
P

[
y ∈V+(G(i−1),χ(i−1))

]
,

where, of course, χ(i−1) is the only random object. Then obtain G(i) from G(i−1) by removing yi−1 along with
all vertices (i.e., tests or individuals) at distance at most four from yi−1. Moreover, let χ(i) denote the restriction
(χx )x∈V (G (i )) of χ to G(i). The following lemma estimates the probability of yi being disguised. Let m∗ = |F (G∗)| be
the total number of tests of G of degree at most Γ.

8

57



Lemma 3.9. There exists n0 = n0(ε,θ,ξ) such that for all n > n0 and all G with m ≤ (1−ε)minf we have

min
1≤i≤N

P
[

yi ∈V+(G(i))
]
≥ exp

(
−m ln2 2

nθ
−1

)
.

The proof of Lemma 3.9 requires three intermediate steps. First, we need a lower bound on number of individ-
uals in G(i). Recall that N = ⌈n1−ξ⌉.
Claim 3.10. We have min0≤i≤N |V (G(i))| ≥ n−NΓ2 ln6 n.

Proof. Since throughout the construction of the G(i) we only delete vertices, the degree bound (3.8) implies

max
a∈F (G (i ))

|∂G (i ) a| ≤ Γ= n1−θ ln n, max
x∈V (G (i ))

|∂G (i ) x| ≤ ln3 n for all i ≤ N . (3.9)

We now proceed by induction on i . For i = 0 there is nothing to show. Going from i to i +1 ≤ N , we notice that
because all individuals x ∈V (G(i)) \V (G(i+1)) have distance at most four from yi+1 , (3.9) ensures that

|V (G(i)) \V (G(i+1))| ≤ Γ2 ln6 n. (3.10)

Iterating (3.10), we obtain |V (G(0)) \V (G(i+1))| ≤ (i +1)Γ2 ln6 n, whence |V (G(i+1))| ≥ n− (i +1)Γ2 ln6 n. �
The following claim resembles the proof of [5, Theorem 1] (where the case k =Ω(n) is considered).

Claim 3.11. Let D(i)(x) = {x ∈V+(G(i))} and let

L(i) = 1

|V (G(i))|
∑

x∈V (G (i ))

lnP
[
D(i)(x)

]
. (3.11)

Then

L(i) ≥ |F (G(i))|
|V (G(i))| min

a∈F (G (i ))

∣∣∂G (i ) a
∣∣ ln

(
1− (1−p)|∂G(i ) a|−1

)
. (3.12)

Proof. For an individual x ∈V (G(i)) and a test a ∈ ∂G (i ) x let D(i)(x, a) be the event that there is another individual
z ∈ ∂G (i ) a \ {x} such that χz = 1. Then for every x ∈V (G(i)) we have

P
[
D(i) (x)

]
=P


 ⋂

a∈∂G(i ) x
D(i)(x, a)


 . (3.13)

Furthermore, the events D(i)(x, a) are increasing with respect to χ. Therefore, (3.13) and the FKG inequality imply

P
[
D(i) (x)

]
≥

∏
a∈∂G(i ) x

P
[
D(i)(x, a)

]
. (3.14)

Moreover, because each entry of χ is one with probability p independently, we obtain

P
[
D(i)(x, a)

]
= 1− (1−p)|∂G(i ) a|−1 (3.15)

Finally, combining (3.13)–(3.15), we obtain

|V (G(i))|L(i) ≥
∑

x∈V (G (i ))

∑
a∈F (G (i ))

1
{

a ∈ ∂G (i ) x
}

ln
(
1− (1−p)|∂G(i ) a|−1

)

=
∑

a∈F (G (i ))

∣∣∂G (i ) a
∣∣ ln

(
1− (1−p)|∂G(i ) a|−1

)
≥ |F (G(i))| min

a∈F (G (i ))

∣∣∂G (i ) a
∣∣ ln

(
1− (1−p)|∂G(i ) a|−1

)
,

as claimed. �
As a final preparation for the proof of Lemma 3.9 we need the following estimate.

Claim 3.12. The function z ∈ (0,∞) 7→ z ln(1− (1−p)z−1) attains its minimum at z = (
1+O(n−Ω(1))

)
ln(2)/p.

Proof. We consider three separate cases.

Case 1: z = o(1/p): we obtain

z ln
(
1− (1−p)z−1)= z ln

(
1−exp

(−pz +O(p2z)
))= z ln

(
1− (

1−pz +O(p2z2)
))

= z

ln
(zp +O(zp)2) = o(1/p). (3.16)
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Case 2: z =ω(1/p): we find

z ln
(
1− (1−p)z−1)= z ln

(
1−exp

(−pz +O(p2z)
))=−z

(
exp(−pz)+O

(
exp(−2pz)

))

=− 1

p
pz

(
exp

(
−pz

)
+exp

(
−2pz

))
= o(1/p). (3.17)

Case 3: z =Θ(1/p): letting d = zp, we obtain

z ln
(
1− (1−p)z−1)= d

p
ln

(
1−exp

(−d +O(p)
))= d

p
ln

(
1−exp (−d )

)+O(1). (3.18)

Since the strictly convex function d ∈ (0,∞) 7→ d ln(1−exp(−d)) attains its minimum at d = ln 2, (3.18) dominates
(3.16) and (3.17). Thus, the minimiser reads z = ln(2)/p +O(p−1/2). �

Proof of Lemma 3.9. Combining Claims 3.11 and 3.12, we see that for all test designs G with m ≤ (1−ε)minf and for
all i ≤ N ,

L(i) ≥−
(
1+O(n−Ω(1))

) |F (G(i))| ln2 2

|V (G(i))|p ≥−
(
1+O(n−Ω(1))

) m ln2 2

|V (G(i))|p .

Hence, Claim 3.10, (3.3) and the choice p = (k +
p

k ln n)/n imply that for all i ≤ N ,

L(i) ≥−(
1+O(n−Ω(1))

) m ln2 2

(n−N∆2 ln6 n)p
≥−(

1+O(n−Ω(1))
) m ln2 2

nθ
. (3.19)

Further, combining the definition (3.11) of L(i) with (3.19), we conclude that for every i ≤ N there exists an individ-
ual yi ∈V (G(i)) such that

P
[

yi ∈V+(G(i))
]
=P

[
D(i)(yi )

]
≥ exp

(
L(i)

)
≥ exp

(
−

(
1+O(n−Ω(1))

) m ln2(2)

nθ

)
,

which implies the assertion. �

Lemma 3.9 implies the following bound on |V0+(G∗,χ)|, |V1+(G∗,χ)|.

Corollary 3.13. There exists n0 = n0(ε,θ,ξ) such that for all n > n0 and all G =Gn,m with m ≤ (1−ε)minf we have

P
[∣∣V0+(G∗,χ)

∣∣∧
∣∣V1+(G∗,χ)

∣∣< ln4 n
]< ε/8.

Proof. We observe that V+(G(i),χ) ⊂ V+(G∗,χ) for all i ≤ N because by construction for any individual x ∈ V (G(i))
every test a ∈ ∂G∗ x of G∗ that x belongs to is still present in G(i). Consequently, we obtain the bound

P
[
x ∈V+(G∗)

]≥P
[

x ∈V (G(i))
]

for all i ∈ [N ], x ∈V (G∗). (3.20)

Combining (3.20) with Lemma 3.9 we obtain

P
[

y (i) ∈V+(G∗)
]
≥ exp

(
− ln2(2)n−θm −1

)
≥ exp

(
−(1−ε) ln2(2)n−θminf −1

)
for all i ∈ [N ].

Hence, recalling the definition of minf from (1.3), we obtain

P
[

y (i) ∈V+(G∗)
]
≥ exp(−(1−ε)θ ln(n)−1) = n(ε−1)θ/e. for all i ∈ [N ]. (3.21)

Since the entry χy (i ) is independent of the event {y (i) ∈ V+(G∗)}, the definitions (3.1) of V0+(G∗,χ) and V1+(G∗,χ)
and (3.21) yield

P
[

y (i) ∈V0+(G∗,χ)
]
≥ (1−p) · n(ε−1)θ

e
≥ nεθ−1

3
, P

[
y (i) ∈V1+(G∗,χ)

]
≥ p · n(ε−1)θ

e
≥ nεθ−1

3
for all i ∈ [N ],

provided n is sufficiently large. Therefore, recalling N = ⌈n1−ξ⌉ we obtain for large enough n,

E
∣∣{y (1), . . . , y (N)}∩V0+(G∗,χ)

∣∣≥ nεθ−ξ/3, E
∣∣{y (1), . . . , y (N)}∩V1+(G∗,χ)

∣∣≥ nεθ−ξ/3. (3.22)
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Further, because the pairwise distances of y (1), . . . , y (N) in G∗ exceed four, the events {y (i) ∈ V0+(G∗,χ)}i≤N are
mutually independent. So are the events {y (i) ∈ V1+(G∗,χ)}i≤N . Finally, since (3.3) ensures that εθ− ξ > 0, (3.22)
and the Chernoff bound yield

P
[∣∣{y (1), . . . , y (N)}∩V0+(G∗,χ)

∣∣≤ ln2 n
]
≤P

[
Bin(N ,nεθ−1/3) ≤ ln2 n

]
≤ exp(−nΩ(1)),

P
[∣∣{y (1), . . . , y (N)}∩V1+(G∗,χ)

∣∣≤ ln2 n
]≤P

[
Bin(N ,nεθ−1/3) ≤ ln2 n

]
≤ exp(−nΩ(1)),

whence the assertion is immediate. �

Proof of Proposition 3.4. Suppose that n > n0(ε,θ,ξ) is large enough and let G = Gn,m be a test design with m ≤
(1−ε)minf tests. If for every test a ∈ Fm of degree |∂G a| > Γwe have |∂G a∩V1(G,χ)| ≥ 2, then V0+(G,χ) =V0+(G∗,χ)
and V1+(G,χ) =V1+(G∗,χ). Therefore, the assertion is an immediate consequence of Lemma 3.6, Lemma 3.7 and
Corollary 3.13. �

3.3. Proof of Proposition 3.5. Given ε> 0 and ln(2)/(1+ln(2)) ≤ θ < θ′ < 1 we choose a large enough n0 = n0(ε,θ,θ′)
and assume that n > n0. Furthermore, let G be a test design with m ≤ (1−ε)minf(n,θ) for the purpose of identifying
k = ⌈nθ⌉ infected individuals. Starting from the test design G infection for density θ we are going to construct a
random test design G ′ for infection density θ′ with the same number m of tests as G. The following lemma fixes
the order of G ′.

Lemma 3.14. There exists an integer nθ/θ′/2 ≤ n′ ≤ 2nθ/θ′ ∧n such that k ′ = ⌈n′ θ′⌉ = k.

Proof. Let n′′ = ⌈nθ/θ′/2⌉. Then (4n′′)θ
′ > k but n′′ θ′ < k because the function z ∈ (1,∞) 7→ zθ

′
has derivative less

than one. For the same reason for any integer n′′ < N < 4n′′ we have (N +1)θ
′ −Nθ′ ≤ 1 and thus

⌈(N +1)θ
′ ⌉−⌈Nθ′⌉ ≤ 1.

Consequently, there exists an integer n′ ∈ (n′′,4n′′) such that ⌈n′ θ′⌉ = k. �

Given the test design G with individuals Vn = {x1, . . . , xn } and tests Fm = {a1, . . . , am } we now construct the test
design G ′ as follows. Choose a subset V (G ′) ⊂ Vn of n′ individuals uniformly at random. Then G ′ is the subgraph
that G induces on V (G ′)∪Fm . Thus, G ′ has the same tests as G but we simply leave out from every test the indi-
viduals that do not belong to the random subset V (G ′). Let τ ∈ {0,1}V (G ′) be a random vector of Hamming weight
k and let τ̂ ∈ {0,1}Fm be the induced vector of tests results

τ̂a = max
x∈∂G′ a

τx (a ∈ Fm ).

Lemma 3.15. For any integer t > 0 we have P [Zk (G,σ̂) ≥ t ]≥P
[

Zk (G ′, τ̂) ≥ t
]
.

Proof. The choice of n′ ensures that k ′ = ⌈n′ θ′⌉ = k. Therefore, the random sets {x ∈ V : σx = 1} and {x ∈ V (G ′) :
τx = 1} are identically distributed. Indeed, we obtain the latter by first choosing the random subset V (G ′) of Vn

and then choosing a random subset of V (G ′) size k. Clearly, this two-step procedure is equivalent to just choosing
a random subset of size k out of Vn . Hence, we can couple σ,τ such that the sets {x ∈ V :σx = 1}, {x ∈ V : τx = 1}
are identical. Then the construction of G ′ ensures that the vectors σ̂, τ̂ coincide as well.

Now consider a vector σ′ ∈ Sk (G ′, τ̂) that explains the test results. Extend σ′ to a vector σ ∈ {0,1}Vn by setting
σx = 0 for all x ∈Vn \V (G ′). Then σ ∈Sk (G ,σ̂). Hence, Zk (G,σ̂) ≥ Zk (G ′, τ̂). �

Proof of Proposition 3.5. Lemma 3.15 shows that for any t > 0,

P [Zk(G,σ̂) ≥ t ] ≥P
[
Zk (G ′, τ̂) ≥ t

]
= E

[
P

[
Zk (G ′, τ̂) ≥ t |G ′]] .

Consequently, there exists an outcome G ′ of G ′ such that P [Zk (G,σ̂) ≥ t ]≥P
[

Zk(G ′, τ̂) ≥ t
]
. �

4. THE NON-ADAPTIVE GROUP TESTING ALGORITHM SPIV

In this section we describe the new test design and the associated inference algorithm SPIV for Theorem 1.2.
Throughout we fix θ ∈ (0,1) and ε > 0 and we tacitly assume that n > n0(ε,θ) is large enough for the various es-
timates to hold.
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4.1. The random bipartite graph and the DD algorithm. To motivate the new test design we begin with a brief
discussion of the plain random design used in prior work and the best previously known inference algorithm
DD [11, 22]. At first glance a promising candidate test design appears to be a random bipartite graph with one vertex
class Vn = {x1, . . . , xn } representing individuals and the other class Fm = {a1, . . . , am} representing tests. Indeed, two
slightly different random graph models have been proposed [6]. First, in the Bernoulli model each Vn–Fm -edge is
present with a certain probability (the same for every pair) independently of all others. However, due to the rela-
tively heavy lower tail of the degrees of the individuals, this test design turns out to be inferior to a second model
where the degrees of the individuals are fixed. Specifically, in the∆-out model every individual independently joins
an equal number of ∆ tests drawn uniformly at random without replacement [29].

Clearly, in order to extract the maximum amount of information ∆ should be chosen so as to maximise the en-
tropy of the vector of test results. Specifically, since the average test degree equals∆n/m and a total of k individuals
are infected, the average number of infected individuals per test comes to ∆k/m. Indeed, since k ∼ nθ for a fixed
θ < 1, the number of infected individuals in test ai can be well approximated by a Poisson variable. Therefore,
setting

∆∼ m

k
ln 2 (4.1)

ensures that about half the tests are positive w.h.p.
With respect to the performance of the ∆-out model, [11, Theorem 1.1] implies together with Theorem 1.1 that

this simple construction is information-theoretically optimal. Indeed, m = (1+ ε+ o(1))minf test suffice so that
an exponential time algorithm correctly infers the set of infected individuals. Specifically, the algorithm solves
a minimum hypergraph vertex cover problem with the individuals as the vertex set and the positive test groups
as the hyperedges. For m = (1+ ε+o(1))minf the unique optimal solution is precisely the correct set of infected
individuals w.h.p. While the worst case NP-hardness of hypergraph vertex cover does not, of course, preclude the
existence of an algorithm that is efficient on random hypergraphs, despite considerable efforts no such algorithm
has been found. In fact, as we saw in Section 1.4 for a good number of broadly similar inference and optimisation
problems on random graphs no efficient information-theoretically optimal algorithms are known.

But for m exceeding the threshold mDD from (1.2) an efficient greedy algorithm DD correctly recovers σ w.h.p.
The algorithm proceeds in three steps.

DD1: declare every individual that appears in a negative test uninfected and subsequently remove all nega-
tive tests and all individuals that they contain.

DD2: for every remaining (positive) test of degree one declare the individual that appears in the test infected.
DD3: declare all other individuals as uninfected.

The decisions made by the first two steps DD1–DD2 are clearly correct but DD3 might produce false negatives.
Prior to the present work DD was the best known polynomial time group testing algorithm. While DD correctly
identifies the set of infected individuals w.h.p. if m > (1+ε)mDD [22], the algorithm fails if m < (1−ε)mDD w.h.p. [11].

4.2. Spatial coupling. The new efficient algorithm SPIV for Theorem 1.2 that gets by with the optimal number
(1+ε+o(1))minf of tests comes with a tailor-made test design that, inspired by spatially coupled codes [18, 26, 27],
combines randomisation with a superimposed geometric structure. Specifically, we divide both the individuals
and the tests into

ℓ= ⌈ln1/2 n⌉ (4.2)

compartments of equal size. The compartments are arranged along a ring and each individual joins an equal
number of random tests in the

s = ⌈ln ln n⌉ = o(ℓ) (4.3)

topologically subsequent compartments. Additionally, to get the algorithm started we equip the first s compart-
ments with extra tests so that they can be easily diagnosed via the DD algorithm. Then, having diagnosed the initial
compartments correctly, SPIV will work its way along the ring, diagnosing one compartment after the other.

To implement this idea precisely we partition the set V = Vn = {x1, . . . , xn } of individuals into pairwise disjoint
subsets V [1], . . . ,V [ℓ] of sizes |V [ j ]| ∈ {⌊n/ℓ⌋,⌈n/ℓ⌉}. With each compartment V [i ] of individuals we associate a
compartment F [i ] of tests of size |F [i ]| = m/ℓ for an integer m that is divisible by ℓ. Additionally, we introduce
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V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]

F [0] F [0] F [0]

· · · · · ·

FIGURE 2. The spatially coupled test design with n = 36,ℓ = 9, s = 3. The individuals in the seed
groups V [1]∪·· ·∪V [s] (blue) are equipped with additional test F [0] (blue rectangles). The black
rectangles represent the tests F [1]∪·· ·∪F [ℓ].

a set F [0] of 10⌈(ks/ℓ) ln n⌉ extra tests to facilitate the greedy algorithm for diagnosing the first s compartments.
Thus, the total number of tests comes to

|F [0]|+
ℓ∑

i=1
|F [i ]| = (1+O(s/ℓ))m = (1+o(1))m. (4.4)

Finally, for notational convenience we define V [ℓ+ i ]=V [i ] and F [ℓ+ i ]= F [i ] for i = 1, . . . , s.
The test groups are composed as follows: let

k = ⌈nθ⌉ and let ∆= m ln 2

k
+O(s) (4.5)

be an integer divisible by s; cf. (4.1). Then we construct a random bipartite graph as follows.

SC1: for i = 1, . . . ,ℓ and j = 1, . . . , s every individual x ∈V [i ] joins ∆/s tests from F [i + j −1] chosen uniformly
at random without replacement. The choices are mutually independent for all individuals x and all j .

SC2: additionally, each individual from V [1]∪·· ·∪V [s] independently joins ⌈10ln(2) ln n⌉ random tests from
F [0], drawn uniformly without replacement.

Thus, SC1 provides that the individuals in compartment V [i ] take part in the next s compartments F [i ], . . . ,F [i +
s −1] of tests along the ring. Furthermore, SC2 supplies the tests required by the DD algorithm to diagnose the first
s compartments. Figure 2 provides an illustration of the resulting random test design,

From here on the test design produced by SC1–SC2 is denoted by G. Furthermore σ ∈ {0,1}V denotes a uni-
formly random vector of Hamming weight k, drawn independently of G, and σ̂ = (σ̂a)a∈F [0]∪···∪F [ℓ] signifies the
vector of test results

σ̂a = max
x∈∂a

σx .

In addition, let V1 = {x ∈ V : σx = 1} be the set of infected individuals and let V0 = V \ V1 be the set of healthy
individuals. Moreover, let F = F [0]∪F [1]∪·· · ∪F [ℓ] be the set of all tests, let F1 = {a ∈ F : σ̂a = 1} be the set of all
positive tests and let F0 = F \ F1 be the set of all negative tests. Finally, let

V0[i ]=V [i ]∩V0, V1[i ]=V [i ]∩V1, F0[i ]= F [i ]∩F0, F1[i ] = F [i ]∩F1.

The following proposition summarises a few basic properties of the test design G.

Proposition 4.1. If m =Θ(nθ lnn) then G enjoys the following properties with probability 1−o(n−2).

(i) The infected individual counts in the various compartments satisfy

k

ℓ
−

√
k

ℓ
lnn ≤ min

i∈[ℓ]
|V1[i ]| ≤ max

i∈[ℓ]
|V1[i ]| ≤ k

ℓ
+

√
k

ℓ
ln n.

(ii) For all i ∈ [ℓ] and all j ∈ [s] the test degrees satisfy

∆n

ms
−

√
∆n

ms
ln n ≤ min

a∈F [i+ j−1]
|V [i ]∩∂a| ≤ max

a∈F [i+ j−1]
|V [i ]∩∂a| ≤ ∆n

ms
+

√
∆n

ms
lnn.
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(iii) For all i ∈ [ℓ] the number of negative tests in compartment F [i ] satisfies

m

2ℓ
−p

m ln3 n ≤ |F0[i ]| ≤ m

2ℓ
+p

m ln3 n.

We prove Proposition 4.1 in Section 4.4. Finally, as a preparation for things to come we point out that for any
specific individual x ∈V [i ] and any particular test a ∈ F [i + j ], j = 0, . . . , s −1, we have

P [x ∈ ∂a]= 1−P [x 6∈ ∂a]= 1−
(
|F [i + j ]|−1

∆/s

)(
|F [i + j ]|
∆/s

)−1

= ∆ℓ

ms
+O

((
∆ℓ

ms

)2)
. (4.6)

4.3. The Spatial Inference Vertex Cover (‘SPIV’) algorithm. TheSPIV algorithm for Theorem 1.2 proceeds in three
phases. The plan of attack is for the algorithm to work its way along the ring, diagnosing one compartment after the
other aided by what has been learned about the preceding compartments. Of course, we need to start somewhere.
Hence, in its first phase SPIV diagnoses the seed compartments V [1], . . . ,V [s].

4.3.1. Phase 1: the seed. Specifically, the first phase of SPIV applies the DD greedy algorithm from Section 4.1 to
the subgraph of G induced on the individuals V [1]∪ . . .∪V [s] and the tests F [0]. Throughout the vector τ ∈ {0,1}V

signifies the algorithm’s current estimate of the ground truth σ.

Input: G , σ̂
Output: an estimate ofσ

1 Let (τx )x∈V [1]∪···∪V [s] ∈ {0,1}V [1]∪···∪V [s] be the result of applying DD to the tests F [0];
2 Set τx = 0 for all individuals x ∈V \ (V [1]∪·· ·∪V [s]);

Algorithm 1: SPIV, phase 1

The following proposition, whose proof can be found in Section 4.5, summarises the analysis of phase 1.

Proposition 4.2. W.h.p. the output of DD satisfies τx =σx for all x ∈V [1]∪·· · ∪V [s].

4.3.2. Phase 2: enter the ring. This is the main phase of the algorithm. Thanks to Proposition 4.2 we may assume
that the seed has been diagnosed correctly. Now, the programme is to diagnose one compartment after the other,
based on what the algorithm learned previously. Hence, assume that we managed to diagnose compartments
V [1], . . . ,V [i ] correctly. How do we proceed to compartment V [i +1]?

For a start, we can safely mark as uninfected all individuals in V [i+1] that appear in a negative test. But a simple
calculation reveals that this will still leave us with many more than k undiagnosed individuals w.h.p. To be precise,
consider the set of uninfected disguised individuals

V0+[i +1] = {x ∈V0[i +1] : σ̂a = 1 for all a ∈ ∂x} ,

i.e., uninfected individuals that fail to appear in a negative test. In Section 4.6 we prove the following.

Lemma 4.3. Suppose that (1+ε)mad ≤ m =O(nθ ln n). Then w.h.p. for all s ≤ i < ℓ we have

|V0+[i +1]| = (
1+O

(
n−Ω(1))) n

ℓ2∆
.

Hence, by the definition (4.5) of ∆ for m close to minf the set V0+[i +1] has size k1+Ω(1) ≫ k w.h.p.
Thus, the challenge is to discriminate between V0+[i +1] and the set V1[i +1] of actual infected individuals in

compartment i +1. The key observation is that we can tell these sets apart by counting currently ‘unexplained’
positive tests. To be precise, for an individual x ∈ V [i +1] and 1 ≤ j ≤ s let W x, j be the number of tests in com-
partment F [i + j ] that contain x but that do not contain an infected individual from the preceding compartments
V [1]∪·· ·∪V [i ]. In formulas,

W x, j =
∣∣{a ∈ ∂x ∩F [i + j ] : ∂a ∩ (V1[1]∪·· · ∪V1[i ]) =;

}∣∣ . (4.7)

Crucially, the following back-of-the-envelope calculation shows that the mean of this random variable depends on
whether x is infected or healthy but disguised.
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Infected individuals (x ∈V1[i +1]): consider a test a ∈ ∂x ∩F [i + j ], j = 1, . . . , s. Because the individuals join
tests independently, conditioning on x being infected does not skew the distribution of the individuals
from the s − j prior compartments V [i + j − s +1], . . . ,V [i ] that appear in a. Furthermore, we chose ∆ so
that for each of these compartments V [h] the expected number of infected individuals that join a has
mean (ln 2)/s. Indeed, due to independence it is not difficult to see that |V1[h]∩ ∂a| is approximately a
Poisson variable. Consequently,

P
[
(V1[i + j − s +1]∪·· ·∪V1[i ])∩∂a =;]∼ 2−(s− j )/s . (4.8)

Hence, because x appears in ∆/s tests a ∈ F [i + j ], the linearity of expectation yields

E
[
W x, j | x ∈V1[i +1]

]
∼ 2 j /s−1∆

s
. (4.9)

Disguised healthy individuals (x ∈V0+[i +1]): similarly as above, for any individual x ∈V [i +1] and any a ∈
∂x ∩F [i + j ] the unconditional number of infected individuals in a is asymptotically Po(ln2). But given
x ∈V0+[i+1] we know that a is positive. Thus, ∂a\{x} contains at least one infected individual. In effect, the
number of positives in a approximately turns into a conditional Poisson Po≥1(ln 2). Consequently, for test
a not to include any infected individual from one of the known compartments V [h], h = i + j − s +1, . . . , i ,
every infected individual in test a must stem from the j yet undiagnosed compartments. Summing up the
conditional Poisson and recalling that x appears in ∆/s tests a ∈ F [ j ], we thus obtain

E
[
W x, j | x ∈V0+[i +1]

]
∼ ∆

s

∑
t≥1

P [Po≥1(ln2) = t] ( j /s)t = (2 j /s −1)
∆

s
. (4.10)

A first idea to tell V0+[i +1] and V1[i +1] apart might thus be to simply calculate

W x =
s−1∑
j=1

W x, j (x ∈V [i +1]). (4.11)

Indeed, (4.9) and (4.10) yield

E [W x | x ∈V1[i +1]]∼ ∆

2ln 2
= 0.721. . . ∆ whereas E [W x | x ∈V0+[i +1]]∼ ∆(1− ln 2)

ln 2
= 0.442. . . ∆.

But unfortunately a careful large deviations analysis reveals that W x is not sufficiently concentrated. More pre-
cisely, even for m = (1+ε+o(1))minf there are as many as k1+Ω(1) ‘outliers’ x ∈V0+[i +1] whose W x grows as large
as the mean ∆/(2ln 2) of actual infected individuals w.h.p.

At second thought the plain sum (4.11) does seem to leave something on the table. While W x counts all as yet
unexplained positive tests equally, not all of these tests reveal the same amount of information. In fact, we should
really be paying more attention to ‘early’ unexplained tests a ∈ F [i+1] than to ‘late’ ones b ∈ F [i+s]. For we already
diagnosed s−1 out of the s compartments of individuals that a draws on, whereas only one of the s compartments
that contribute to b has already been diagnosed. Thus, the unexplained test a is a much stronger indication that x
might be infected. Consequently, it seems promising to replace W x by a weighted sum

W ⋆
x =

s−1∑
j=1

w j W x, j (4.12)

with w1, . . . , ws−1 ≥ 0 chosen so as to gauge the amount of information carried by the different compartments.
To find the optimal weights w1, . . . , ws−1 we need to investigate the rate function of W ⋆

x given x ∈ V0+[i + 1].
More specifically, we should minimise the probability that W ⋆

x given x ∈ V0+[i +1] grows as large as the mean of
W ⋆

x given x ∈V1[i +1], which we read off (4.9) easily:

E
[
W ⋆

x | x ∈V1[i +1]
]∼ ∆

s

s−1∑
j=1

2 j /s−1w j . (4.13)

A careful large deviations analysis followed by a Lagrangian optimisation leads to the optimal choice

w j = ln
(1−2ζ)2 j /s−1(2−2 j /s )

(1− (1−2ζ)2 j /s−1)(2 j /s −1)
where ζ= 1/s2. (4.14)
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The following two lemmas show that with these weights the scores W ⋆
x discriminate well between the potential

false positives and the infected individuals. More precisely, thresholding W ⋆
x we end up misclassifying no more

than o(k) individuals x w.h.p.

Lemma 4.4. Suppose that (1+ε)mad ≤ m =O(nθ ln n). W.h.p. we have

∑
s≤i<ℓ

∑
x∈V1[i]

1

{
W ⋆

x < (1−ζ/2)
∆

s

s−1∑
j=1

2 j /s−1w j

}
≤ k exp

(
− Ω(ln n)

(lnln n)4

)
. (4.15)

Lemma 4.5. Suppose that (1+ε)mad ≤ m =O(nθ ln n). W.h.p. we have

∑
s≤i<ℓ

∑
x∈V0+[i]

1

{
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j

}
≤ k1−Ω(1). (4.16)

We prove these two lemmas in Sections 4.7 and 4.8.
Lemmas 4.4–4.5 leave us with only one loose end. Namely, calculating the scores W ⋆

x requires knowledge of the
correct infection status σx of all the individuals x ∈ V [1]∪ ·· · ∪V [i ] from the previous compartments. But since
the r.h.s. expressions in (4.15) and (4.16) are non-zero, it is unrealistic to assume that the algorithm’s estimates τx

will consistently match the ground truth σx beyond the seed compartments. Hoping that the algorithm’s estimate
will not stray too far, we thus have to make do with the approximate scores

W ⋆
x (τ) =

s−1∑
j=1

w j Wx, j (τ), where Wx, j (τ)=
∣∣∣∣
{

a ∈ ∂x ∩F [i + j −1] : max
y∈∂a∩(V [1]∪···V [i])

τy = 0

}∣∣∣∣ . (4.17)

Hence, phase 2 of SPIV reads as follows.

3 for i = s, . . . ,ℓ−1 do
4 for x ∈V [i +1] do
5 if ∃a ∈ ∂x : σ̂a = 0 then
6 τx = 0 // classify as uninfected
7 else if W ⋆

x (τ)< (1−ζ)∆s
∑s−1

j=1 2 j /s−1w j then

8 τx = 0 // tentatively classify as uninfected
9 else

10 τx = 1 // tentatively classify as infected
Algorithm 2: SPIV, phase 2.

Since phase 2 of SPIV uses the approximations from (4.17), there seems to be a risk of errors amplifying as we
move along. Fortunately, it turns out that errors proliferate only moderately and the second phase of SPIV will
misclassify only o(k) individuals. The following proposition summarises the analysis of phase 2.

Proposition 4.6. Suppose that (1+ε)mad ≤ m =O(k ln n). W.h.p. the assignment τ obtained after steps 1–10 satisfies

∑
x∈V

1 {τx 6=σx } ≤ k exp

(
− ln n

(ln lnn)6

)
.

The proof of Proposition 4.6 can be found in Section 4.9.

4.3.3. Phase 3: cleaning up. The final phase of the algorithm rectifies the errors incurred during phase 2. The com-
binatorial insight that makes this possible is that for m ≥ (1+ ε)minf every infected individual has at least Ω(∆)
positive tests to itself w.h.p. Thus, these tests do not feature a second infected individual. Phase 3 of the algorithm
exploits this observation by simply thresholding the number Sx of tests where there is no other infected individual
besides potentially x. Thanks to the expansion properties of the graph G, each iteration of the thresholding pro-
cedure reduces the number of misclassified individuals by at least a factor of three. In effect, after ln n iterations
all individuals will be classified correctly w.h.p. Of course, due to Proposition 4.2 we do not need to reconsider the
seed V [1]∪·· · ∪V [s].
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11 Let τ(1) = τ;
12 for i = 1, . . . ,⌈ln n⌉ do
13 For all x ∈V [s +1]∪·· · ∪V [ℓ] calculate

14 Sx (τ(i)) =
∑

a∈∂x:σ̂a=1
1

{
∀y ∈ ∂a \ {x} : τ(i)

y = 0
}

;

15 Let τ(i+1)
x =

{
τ(i)

x if x ∈V [1]∪·· · ∪V [s],

1
{

Sx
(
τ(i)

)> ln1/4 n
}

otherwise
;

16 return τ(⌈lnn⌉)

Algorithm 3: SPIV, phase 3.

Proposition 4.7. Suppose that (1+ε)minf ≤ m =O(nθ ln n). W.h.p. for all 1≤ i ≤ ⌈ln n⌉ we have

∑
x∈V

1{τ(i+1)
x 6=σx } ≤ 1

3

∑
x∈V

1{τ(i)
x 6=σx }.

We prove Proposition 4.7 in Section 4.10.

Proof of Theorem 1.2. The theorem is an immediate consequence of Propositions 4.2, 4.6 and 4.7. �

4.4. Proof of Proposition 4.1. The number |V1[i ]| of infected individuals in compartment V [i ] has distribution
Hyp(n,k, |V [i ]|). Since ||V [i ]|−n/ℓ| ≤ 1, (i) is an immediate consequence of the Chernoff bound from Lemma 2.2.

With respect to (ii), we recall from (4.6) that P [x ∈ ∂a] = ∆ℓ
ms (1+O( ∆ℓms )). Hence, because the various individuals

x ∈V [i ] join tests independently, the number |V [i ]∩∂a| of test participants from V [i ] has distribution

|V [i ]∩∂a| ∼ Bin(|V [i ]|,∆ℓ/(ms)+O((∆ℓ/ms)2)).

Since |V [i ]| = n/ℓ+O(1), assertion (ii) follows from (4.5) and the Chernoff bound from Lemma 2.1.
Coming to (iii), due to part (i) we may condition on E = {∀i ∈ [ℓ] : |V1[i ]| = k/ℓ+O(

p
k/ℓ ln n)}. Hence, with h

ranging over the s compartments whose individuals join tests in F [i ], (4.6) implies that for every test a ∈ F [i ] the
number of infected individuals |V1 ∩∂a| is distributed as a sum of independent binomial variables

|V1 ∩∂a| ∼
∑
h

X h with X h ∼ Bin

(
V1[h],

∆ℓ

ms
+O

((
∆ℓ

ms

)2))
.

Consequently, (4.5) ensures that the event V1 ∩∂a =; has conditional probability

P [V1 ∩∂a =; | E ] =
∏
h
P [X h = 0 | E ] = exp


s


k

ℓ
+O



√

k

ℓ
ln n




 ln

(
1− ∆ℓ

ms
+O

((
∆ℓ

ms

)2))



= exp


− sk

ℓ
· ∆ℓ

ms
+O



√

k

ℓ
· ∆ℓ

m


+O

(
sk

ℓ
·
(
∆ℓ

ms

)2)

= 1

2
+O(

p
ℓ/k).

Therefore, we obtain the estimate

E [|F0[i ]| | E ] = m

2ℓ
+O(

p
m ln n). (4.18)

Finally, changing the set of tests that a specific infected individual x ∈V1[h] joins shifts |F0[i ]| by at most ∆ (while
tinkering with uninfected ones does not change |F0[i ]| at all). Therefore, the Azuma–Hoeffding inequality yields

P [||F0[i ]|−E [|F0[i ]| | E ]| ≥ t | E ]≤ 2exp

(
− t 2

2k∆2

)
for any t > 0. (4.19)

Thus, (iii) follows from (4.5), (4.18) and (4.19) with t =p
m ln3 n.
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4.5. Proof of Proposition 4.2. Let D = ⌈10ln(2) ln n⌉ and recall that |F [0]| = ⌈10ks ln(n)/ℓ⌉. Since by SC2 every
individual from ∈V [1]∪·· ·∪V [s] joins D random tests from F [0], in analogy to (4.6) for every x ∈V [1]∪·· ·∪V [s]
and every test a ∈ F [0] we obtain

P [x ∈ ∂a]= 1−P [x 6∈ ∂a]= 1−
(
|F [0]|−1

D

)(
|F [0]|

D

)−1

= D

|F [0]|

(
1+O

(
D

|F [0]|

))
= ℓ ln 2

ks

(
1+O(n−Ω(1))

)
. (4.20)

Let F1[0] be the set of tests a ∈ F [0] with σ̂a = 1.

Lemma 4.8. W.h.p. the number of positive tests a ∈ F [0] satisfies |F1[0]| = |F [0]|( 1
2 +O(n−Ω(1))).

Proof. By Proposition 4.1 we may condition on the event E that |V1[1]∪·· ·∪V1[s]| = ks
ℓ (1+O(n−Ω(1))). Hence, (4.20)

implies that given E the expected number of infected individuals in a test a ∈ F [0] comes to

E[|∂a ∩V1| | E ]= ln2+O(n−Ω(1)). (4.21)

Moreover, since individuals join tests independently, |∂a∩V1| is a binomial random variable. Hence, (4.21) implies
P[∂a ∩V1 =; | E ]= 1

2 +O(n−Ω(1)). Consequently, since P [E ]= 1−o(n−2) by Proposition 4.1,

E|F1 ∩F [0]| = E|F1[0]| = |F [0]|
2

(1+O(n−Ω(1))). (4.22)

Finally, changing the set ∂x of neighbours of an infected individual can shift |F1[0]| by at most D. Therefore, the
Azuma–Hoeffding inequality implies that

P [||F1[0]|−E|F1[0]|| > t ]≤ 2exp

(
− t 2

2D2k

)
for any t > 0. (4.23)

Since D =O(ln n), combining (4.22) and (4.23) and setting, say, t = k2/3 completes the proof. �

As an application of Lemma 4.8 we show that w.h.p. every seed individual x appears in a test a ∈ F [0] whose
other individuals are all healthy.

Corollary 4.9. W.h.p. every individual x ∈V [1]∪·· ·∪V [s] appears in a test a ∈ F [0]∩∂x such that ∂a \ {x} ⊂V0.

Proof. We expose the random bipartite graph induced on V [1]∪ ·· · ∪V [s] and F [0] in two rounds. In the first
round we expose σ and all neighbourhoods (∂y)y∈(V [1]∪···∪V [s])\{x}. In the second round we expose ∂x. Let X be
the number of negative tests a ∈ F [0] after the first round. Since x has degree D =O(ln n), Lemma 4.8 implies that
X = |F [0]|( 1

2 +O(n−Ω(1))) w.h.p. Furthermore, given X the number of tests a ∈ ∂x all of whose other individuals are
uninfected has distribution Hyp(|F [0]|, X ,D). Hence,

P [∀a ∈ ∂x : V1 ∩∂a \ {x} 6= ; | X ]=
(
|F [0]|−X

D

)(
|F [0]|

D

)−1

≤ exp(−D X /|F [0]|). (4.24)

Assuming X /|F [0]| = 1
2 +O(n−Ω(1)) and recalling that D = ⌈10ln(2) lnn⌉, we obtain exp(−D X /|F [0]|) = o(1/n). Thus,

the assertion follows from (4.24) and the union bound. �

Proof of Proposition 4.2. Due to Corollary 4.9 we may assume that for every x ∈ V [1] ∪ ·· · ∪V [s] there is a test
ax ∈ F [0] such that ∂ax \{x} ⊂V0. Hence, recalling the DD algorithm from Section 4.1, we see that the first step DD1
will correctly identify all healthy individuals x ∈ V0[1]∪ ·· · ∪V0[s]. Moreover, the second step DD2 will correctly
classify all remaining individuals V1[1]∪·· · ∪V1[s] as infected, and the last step DD3 will be void. �

4.6. Proof of Lemma 4.3. Let E be the event that properties (i) and (iii) from Proposition 4.1 hold; then P [E ] =
1− o(n−2). Moreover, let E be the σ-algebra generated by σ and the neighbourhoods (∂x)x∈V1 . Then the event
E is E-measurable while the neighbourhoods (∂x)x∈V0 of the healthy individuals are independent of E. Recalling
from SC1 that the individuals x ∈V0[i ] choose ∆/s random tests in each of the compartments F [i + j ], 0 ≤ j ≤ s−1
independently and remembering that x ∈V0+[i ] iff none of these tests is negative, on E we obtain

P [x ∈V0+[i ] |E] =
(

m/(2ℓ)+O(
p

m ln3 n)

∆/s

)s(
m/ℓ

∆/s

)−s

=
(

1+O(m−1/2ℓ ln3 n)

2

)∆

= 2−∆+O(m−1/2∆ℓ ln3 n) = 2−∆(1+O(n−θ/2 ln4 n)) [due to (4.2) and (4.5)]. (4.25)
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Because all x ∈ V0[i ] choose their neighbourhoods independently, (4.25) implies that the conditional random
variable |V0+[i ]| given E has distribution Bin(|V0[i ]|,2−∆(1+O(n−Ω(1)))). Therefore, since on E we have |V0[i ]| =
|V [i ]|+O(nθ) = n/ℓ+O(nθ), the assertion follows from the Chernoff bound from Lemma 2.1.

4.7. Proof of Lemma 4.4. The aim is to estimate the weighted sum W ⋆
x for infected individuals x ∈ V [i +1] with

s ≤ i < ℓ. These individuals join tests in the s compartments F [i + j ], j ∈ [s]. Conversely, for each such j the tests
a ∈ F [i + j ] recruit their individuals from the compartments V [i + j − s +1], . . . ,V [i + j ]. Thus, the compartments
preceding V [i +1] that the tests in F [i + j ] draw upon are V [h] with i + j − s < h ≤ i . We begin by investigating the
set Wi , j of tests a ∈ F [i + j ] without an infected individual from these compartments, i.e.,

Wi , j =
{

a ∈ F [i + j ] : (V1[1]∪·· · ∪V1[i ])∩∂a =;}=
{

a ∈ F [i + j ] :
⋃

i+ j−s+1<h≤i
V1[h]∩∂a =;

}
.

Claim 4.10. With probability 1−o(n−2) for all s ≤ i < ℓ, j ∈ [s] we have |Wi , j | = 2−(s− j )/s m
ℓ (1+O(n−Ω(1))).

Proof. We may condition on the event E that (i) from Proposition 4.1 occurs. To compute the mean of |Wi , j |fix a test
a ∈ F [i + j ] and an index i + j − s < h ≤ i . Then (4.6) shows that the probability that a fixed individual x ∈V [h] joins
a equals P [x ∈ ∂a]= ∆ℓ

ms (1+O( ∆ℓms )). Hence, the choices (4.2) and (4.5) of∆ and ℓ and the assumption m =Θ(k ln n)
ensure that

E
[∣∣(V1[i + j − s +1]∪·· · ∪V1[i ])∩∂a

∣∣ | E ]= (
s − j

)
(
∆ℓ

ms
· k

ℓ
+O

(
∆2k

m2s2

)
+O

(
∆ℓ

p
k ln n

ms

))

= s − j

s
ln2+O(n−Ω(1)). (4.26)

Since by SC1 the events {x ∈ ∂a}x are independent, |V1[h]∩∂a| is a binomial random variable for every h and all
these random variables (|V1[h]∩∂a|)h are mutually independent. Therefore, (4.26) implies that

P
[
(V1[i + j − s +1]∪·· ·V1[i ])∩∂a =; | E

]
= 2−(s− j )/s +O(n−Ω(1)). (4.27)

Hence,

E
[|Wi , j | | E

]=
∑

a∈F [i+ j ]
P

[
(V1[i + j − s +1]∪·· · ∪V1[i ])∩∂a =; | E ]= m

ℓ
2−(s− j )/s(1+O(n−Ω(1))). (4.28)

Finally, changing the neighbourhood ∂x of one infected individual x ∈ V1 can alter |Wi , j | by at most ∆. Therefore,
the Azuma–Hoeffing inequality shows that for any t > 0,

P
[∣∣|Wi , j |−E[|Wi , j | | E ]

∣∣> t | E
]
≤ 2exp

(
− t 2

2k∆2

)
. (4.29)

Combining (4.28) and (4.29), applied with t =p
m ln2 n, and taking a union bound on i , j completes the proof. �

As a next step we use Claim 4.10 to estimate the as yet unexplained tests counts W x, j from (4.7).

Claim 4.11. For all s ≤ i < ℓ, x ∈V1[i +1] and j ∈ [s] we have

P
[

W x, j < (1−ε/2)2 j /s−1∆/s
]
≤ exp

(
− Ω(ln n)

(lnln n)4

)
.

Proof. Fix a pair of indices i , j and an individual x ∈ V1[i + 1]. We also condition on the event E that (i) from
Proposition 4.1 occurs. Additionally, thanks to Claim 4.10 we may condition on the event

E ′ =
{
|Wi , j | = 2−(s− j )/s m

ℓ
(1+O(n−Ω(1)))

}
.

Further, let E be the σ-algebra generated by σ and by the neighbourhoods (∂y)y∈V [1]∪···∪V [i]. Recall from SC1 that
x simply joins ∆/s random tests in compartment F [i + j ], independently of all other individuals, and remember
from (4.7) that W x, j counts tests a ∈Wi+ j ∩∂x. Therefore, since the events E ,E ′ and the random variable |Wi , j | are
E-measurable while ∂x is independent of E, given E the random variable W x, j has a hypergeometric distribution
Hyp(m/ℓ, |Wi , j |,∆/s). Thus, the assertion follows from the hypergeometric Chernoff bound from Lemma 2.2 and
the choice (4.14) of ζ. �
Proof of Lemma 4.4. Since W ⋆

x = ∑s
j=1 w j W x, j , the lemma is an immediate consequence of Markov’s inequality

and Claim 4.11. �
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4.8. Proof of Lemma 4.5. We need to derive the rate functions of the random variable W x, j that count as yet
unexplained tests for x ∈ V0+[i +1]. To this end we first investigate the set of positive tests in compartment i + j
that do not contain any infected individuals from the first i compartments. In symbols,

P i+1, j =
{

a ∈ F1[i + j ] : ∂a ∩ (V1[1]∪·· ·∪V1[i ]) =;
}

(s ≤ i < ℓ, j ∈ [s]).

Claim 4.12. W.h.p. for all s ≤ i < ℓ, j ∈ [s] we have |P i+1, j | =
(
1+O(n−Ω(1))

)(
2 j /s −1

) m
2ℓ .

Proof. We may condition on the event E that (i) from Proposition 4.1 occurs. As a first step we calculate the prob-
ability that (V1[i + 1] ∪ ·· · ∪V1[i + j ]) ∩ ∂a 6= ; for a specific test a ∈ F [i + j ]. To this end we follow the steps
of the proof of Claim 4.10. Since by (4.6) a specific individual x ∈ V [h], i < h ≤ i + j , joins a with probability
P [x ∈ ∂a] = (∆ℓ/(ms))(1+O(∆ℓ/(ms))) and since given E each compartment V [h] contains k/ℓ+O(

p
k/ℓ ln n)

infected individuals, we obtain, in perfect analogy to (4.26),

E
[∣∣(V1[i +1]∪·· ·∪V1[i + j ])∩∂a

∣∣ | E ]= j

s
ln 2+O(n−Ω(1)). (4.30)

Since the individuals x ∈V [i +1]∪·· ·∪V [i + j ] join tests independently, (4.30) implies that

P
[
(V1[i +1]∪·· · ∪V1[i + j ])∩∂a 6= ; | E

]
= 1−2− j /s +O(n−Ω(1)). (4.31)

Furthermore, we already verified in (4.27) that

P
[
(V1[i + j − s +1]∪·· ·V1[i ])∩∂a =; | E ]= 2−(s− j )/s +O(n−Ω(1)). (4.32)

Because the choices for the compartments V [i + j − s +1]∪ ·· · ∪V [i + j ] from which a draws its individuals are
mutually independent, we can combine (4.31) with (4.32) to obtain

P

[
⋃

i+ j−s<h≤i
V1[h]∩∂a =; 6=

⋃
i<h≤i+ j

V1[h]∩∂a | E
]
= 2 j /s −1

2
+O(n−Ω(1)). (4.33)

Further, (4.33) implies

E
[|P i+1, j | | E

]= E

[∣∣∣∣∣

{
a ∈ F1[i + j ] :

⋃
h≤i

V1[h]∩∂a =; 6=
⋃
i<h

V1[h]∩∂a

}∣∣∣∣∣ | E
]
= (2 j /s −1)

m

2ℓ

(
1+O(n−Ω(1))

)
. (4.34)

Finally, altering the neighbourhood ∂x of any infected individual can shift |P i+1, j | by at most ∆. Therefore, the
Azuma–Hoeffding inequality implies that

P
[∣∣|P i+1, j |−E[|P i+1, j | | E ]

∣∣> t | E
]
≤ 2exp

(
− t 2

2k∆2

)
. (4.35)

Thus, the assertion follows from (4.5), (4.34) and (4.35) by setting t =p
m ln2 n. �

Thanks to Proposition 4.1 (iii) and Lemma 4.12 in the following we may condition on the event

U =
{
∀s < i ≤ ℓ, j ∈ [s] : |F1[i + j ]| = (

1+O(n−Ω(1))
) m

2ℓ
∧|P i+1, j | =

(
1+O(n−Ω(1))

)(
2 j /s −1

) m

2ℓ

}
. (4.36)

As a next step we will determine the conditional distribution of W x, j for x ∈V0+[i +1] given U .

Claim 4.13. Let s < i ≤ ℓ and j ∈ [s]. Given U for every x ∈V0+[i +1] we have

W x, j ∼ Hyp

((
1+O(n−Ω(1))

) m

2ℓ
,
(
1+O(n−Ω(1))

)(
2 j /s −1

) m

2ℓ
,
∆

s

)
. (4.37)

Proof. By SC1 each individual x ∈V0+[i +1] joins ∆/s positive test from F [i + j ], drawn uniformly without replace-
ment. Moreover, by (4.7) given x ∈V0+[i +1] the random variable W x, j counts the number of tests a ∈P i+1, j ∩∂x.
Therefore, W x, j ∼ Hyp(|F1[i + j ], |P i+1, j |,∆/s). Hence, given U we obtain (4.37). �

The estimate (4.37) enables us to bound the probability that W ⋆
x gets ‘too large’.
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Claim 4.14. Let

M =min
1

s

s−1∑
j=1

1
{

z j ≥ 2 j /s −1
}

DKL

(
z j‖2 j /s −1

)

s.t.
s−1∑
j=1

(
z j − (1−2ζ)2 j /s−1

)
w j = 0, z1, . . . , zs−1 ∈ [0,1].

Then for all s ≤ i < ℓ and all x ∈V [i +1] we have

P

[
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]
≤ exp(−(1+o(1))M∆).

Proof. Let s ≤ i < ℓ and x ∈ V0+[i +1]. Step SC1 of the construction of G ensures that the random variables
(W x, j ) j∈[s] are independent because the tests in the various compartments F [i + j ], j ∈ [s], that x joins are drawn
independently. Therefore, the definition (4.12) of W ⋆

x and Lemma 4.13 yield

P

[
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]
=P

[
s−1∑
j=1

w j W x, j ≥
1−2ζ

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]

≤
∆∑

y1 ,...,ys=0
1

{
s−1∑
j=1

w j y j ≥
1−2ζ

s

s−1∑
j=1

2 j /s−1w j

}
s−1∏
j=1

P[W x, j ≥ y j |U , x ∈V0+[i +1]]. (4.38)

Further, let

Z =
{

(z1, . . . , zs−1) ∈ [0,1]s−1 :
s−1∑
j=1

(
z j − (1−2ζ)2 j /s−1

)
w j = 0

}
.

Substituting y j =∆z j /s in (4.38) and bounding the total number of summands by (∆+1)s , we obtain

P

[
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]
≤ (∆+1)s max

(z1 ,...,zs )∈Z

s−1∏
j=1

P[W x, j ≥∆z j /s |U , x ∈V0+[i +1]].

(4.39)

Moreover, Claim 4.13 and the Chernoff bound from Lemma 2.2 yield

P[W x, j ≥∆z j /s |U , x ∈V0+[i +1]] ≤ exp

(
−1

{
z j ≥ p j

} ∆
s

DKL
(
z j ‖p j

))
where p j = 2 j /s −1+O(n−Ω(1)).

Consequently, since (4.5) and the assumption m =Θ(k ln n) ensure that ∆=Θ(lnn), we obtain

P[W x, j ≥∆z j /s |U , x ∈V0+[i +1]] ≤ exp

(
−1

{
z j ≥ 2 j /s −1

} ∆
s

DKL

(
z j ‖2 j /s −1

)
+O(n−Ω(1))

)
. (4.40)

Finally, the assertion follows from (4.39) and (4.40). �

As a next step we solve the optimisation problem M from Claim 4.14.

Claim 4.15. We have M = 1− ln 2+O(ln(s)/s).

Proof. Fixing an auxiliary parameter δ≥ 0 we set up the Lagrangian

Lδ(z1, . . . , zs ,λ) =
s−1∑
j=1

(
1

{
z j ≥ 2 j /s −1

}
+δ1

{
z j < 2 j /s −1

})
DKL

(
z j ‖2 j /s −1

)
+ λ

s

s−1∑
j=1

w j

(
z j − (1−2ζ)2 j /s−1

)
.

The partial derivatives come out as

∂Lδ

∂λ
=−1

s

s−1∑
j=1

((1−2ζ)2 j /s−1 − z j )w j ,
∂Lδ

∂z j
=−λw j +

(
1

{
z j ≥ 2 j /s −1

}
+δ1

{
z j < 2 j /s −1

})
ln

z j (2−2 j /s )

(1− z j )(2 j /s −1)
.

Set z∗
j = (1−2ζ)2 j /s−1 and λ∗ = 1. Then clearly

∂Lδ

∂λ

∣∣∣
λ∗,z∗1 ,...,z∗s−1

= 0. (4.41)

21

70



Moreover, the choice (4.14) of ζ guarantees that z∗
j ≥ 2 j /s −1. Hence, by the choice (4.14) of the weights w j ,

∂Lδ

∂z j

∣∣∣
λ∗,z∗1 ,...,z∗s−1

= 0. (4.42)

Since Lδ(y1, . . . , ys ,λ) is strictly convex in z1, . . . , zs for every δ> 0, (4.41)–(4.42) imply that λ∗, z∗
1 , . . . , z∗

s−1 is a global
minimiser. Furthermore, since this is true for any δ> 0 and since z∗

j ≥ 2 j /s −1, we conclude that (z∗
1 , . . . , z∗

s−1) is an

optimal solution to the minimisation problem M . Hence,

M = 1

s

s−1∑
j=1

DKL

(
z∗

j ‖2 j /s −1
)
= 1

s

s−1∑
j=1

DKL

(
(1−2ζ)2 j /s−1‖2 j /s −1

)
. (4.43)

Since

∂

∂α
DKL

(
(1−2α)2z−1‖2z −1

)= 2z [−z ln(2)+ ln(1−2z−1 +α2z )− ln(1−2z−1)− ln(1−2α)+ ln(2z −1)
]

,

we obtain ∂
∂αDKL

(
(1−2α)2z−1‖2z −1

)
= O(ln s) for all z = 1/s, . . . , (s −1)/s and α ∈ [0,2ζ]. Combining this bound

with (4.43), we arrive at the estimate

M =O(ζ ln s)+ 1

s

s−1∑
j=1

DKL

(
2 j /s−1‖2 j /s −1

)
. (4.44)

Additionally, the function f : z ∈ [0,1] 7→ DKL
(
2z−1‖2z −1

)
is strictly decreasing and convex. Indeed,

f ′(z)= 2z−1 ln 2

2z −1

(
(2z −1) ln

(
2z

2z −1

)
−1

)
, f ′′(z) =

(
2z−1 ln2 2

)(
ln

(
2z

2z −1

)
+ 2−2z

(2z −1)2

)
.

The first derivative is negative because 2z−1/(2z −1) > 0 while (2z −1) ln (2z /(2z −1)) < 1 for all z ∈ (0,1). Moreover,
since evidently f ′′(z) > 0 for all z ∈ (0,1), we obtain convexity. Further, l’Hôpital’s rule yields

DKL
(
21/s−1‖21/s −1

)=O(ln s).

As a consequence, we can approximate the sum (4.44) by an integral and obtain

M =O(ln(s)/s)+
∫1

0
DKL

(
2z−1‖2z −1

)
dz

=O(ln(s)/s)+ 2(1− z) ln2(2)+2z ln2z + (1−2z ) ln(2z −1)

2ln 2

∣∣∣
z=1

z=0
= 1− ln(2)+O(ln(s)/s),

as claimed. �

Proof of Lemma 4.5. Fix s ≤ i < ℓ and let X i be the number of x ∈ V0+[i ] such that W ⋆
x > (1−2ζ)∆s

∑s−1
j=1 2 j /s−1w j .

Also recall that Proposition 4.1 (iii) and Claim 4.12 imply thatP [U ]= 1−o(1). Combining Lemma 4.3 with Claims 4.14
and 4.15, we conclude that

E[X i |U ]≤ (
1+O

(
n−Ω(1)))2−∆n exp(−(1− ln(2)+o(1))∆) = exp(ln n− (1+o(1))∆) . (4.45)

Recalling the definition (4.5) of ∆ and using the assumption that m ≥ (1+ ε)mad for a fixed ε > 0, we obtain ∆ ≥
(1−θ+Ω(1)) ln n. Combining this estimate with (4.45), we find

E[X i |U ]≤ nθ−Ω(1). (4.46)

Finally, the assertion follows from (4.46) and Markov’s inequality. �

4.9. Proof of Proposition 4.6. The following lemma establishes an expansion property of G. Specifically, if T is a
small set of individuals, then there are few individuals x that share many tests with another individual from T .

Lemma 4.16. Suppose that m =Θ(nθ ln n). W.h.p. for any set T ⊂V of size at most exp(− ln7/8 n)k we have
∣∣∣∣∣

{
x ∈V :

∑
a∈∂x\F [0]

1{T ∩∂a \ {x} 6= ;} ≥ ln1/4 n

}∣∣∣∣∣≤
|T |
3

.
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Proof. Fix a set T ⊂V of size t = |T | ≤ exp(− ln7/8 n)k, a set R ⊂V of size r = ⌈t/3⌉ and let γ= ⌈ln1/4 n⌉. Furthermore,
let U ⊂ F [1]∪·· · ∪F [ℓ] be a set of tests of size γr ≤ u ≤ ∆t . Additionally, let E (R,T,U ) be the event that every test
a ∈U contains two individuals from R ∪T . Then

P

[
R ⊂

{
x ∈V :

∑
a∈∂x\F [0]

1 {T ∩∂a \ {x} 6= ;} ≥ γ

}]
≤P [E (R,T,U )] . (4.47)

Hence, it suffices to estimate P [E (R,T,U )].
Given a test a ∈ U there are at most

(r+t
2

)
way to choose two individuals xa , x′

a ∈ R ∪T . Moreover, (4.6) shows
that the probability of the event {xa , x′

a ∈ ∂a} is bounded by (1+o(1))(∆ℓ/(ms))2. Therefore,

P [E (R,T,U )]≤
[(

r + t

2

)(
(1+o(1))∆ℓ

ms

)2
]u

.

Consequently, the event E (t ,u) that there exist sets R ,T,U of sizes |R| = r = ⌈t/3⌉, |T | = t , |U | = u such that E (R,T,U )
occurs has probability

P [E (t ,u)]≤
(

n

r

)(
n

t

)(
m

u

)[(
r + t

2

)(
(1+o(1))∆ℓ

ms

)2
]u

.

Hence, the bounds γt/3≤ γr ≤ u ≤∆t yield

P [E (t ,u)]≤
(

n

t

)2(
m

u

)[(
2t

2

)(
(1+o(1))∆ℓ

ms

)2
]u

≤
(en

t

)2t
(

2e∆2ℓ2t 2

ms2u

)u

≤
[(en

t

)3/γ 6e∆2ℓ2t

γms2

]u

≤
[(en

t

)3/γ
· t ln4 n

m

]u

[due to (4.2), (4.5)].

Further, since γ = Ω(ln1/4 n) and m = Ω(k ln n) while t ≤ exp(− ln7/8 n)k, we obtain P [E (t ,u)] ≤ exp(−u
p

ln n).
Thus,

∑
1≤t≤k1−α
γt/3≤u≤∆t

P [E (t ,u)] ≤
∑

1≤u≤∆t
u exp(−u

p
ln n) = o(1). (4.48)

Finally, the assertion follows from (4.47) and (4.48). �

Proof of Proposition 4.6. With τ the result of steps 1–10 of SPIV let M [i ]= {x ∈V [i ] : τx 6=σx } be the set of misclas-
sified individuals in compartment V [i ]. Proposition 4.2 shows that w.h.p. M [i ] =; for all i ≤ s. Further, we claim
that for every s ≤ i < ℓ and any individual x ∈M [i +1] one of the following three statements is true.

M1: x ∈V1[i +1] and W ⋆
x < (1−ζ/2)∆s

∑s−1
j=1 2 j /s−1w j ,

M2: x ∈V0+[i +1] and W ⋆
x > (1−2ζ)∆s

∑s−1
j=1 2 j /s−1w j , or

M3: x ∈V [i +1] and
∑

a∈∂x 1{∂a ∩ (M [1]∪·· ·∪M [i ]) 6= ;} ≥ ln1/4 n.

To see this, assume that x ∈M [i +1] while M3 does not hold. Then comparing (4.7) and (4.17) we obtain
∣∣Wx, j (τ)−W x, j

∣∣≤ ln1/4 n for all 1≤ j < s. (4.49)

Moreover, the definition (4.14) of the weights, the choice (4.3) of s, and the choices (4.14) of ζ and the weights w j

ensure that 0 ≤ w j ≤O(s) =O(lnln n). This bound implies together with the definition (4.12) of the scores W ⋆
x and

(4.49) that

|W ⋆
x −W ⋆

x (τ)| = o(ζ∆). (4.50)

Thus, combining (4.50) with the definition of τx in Steps 5–10 of SPIV, we conclude that either M1 or M2 occurs.
Finally, to bound M [i +1] let M1[i +1], M2[i +1], M3[i +1] be the sets of individuals x ∈V [i +1] for which M1,

M2 or M3 occurs, respectively. Then Lemmas 4.4 and 4.5 imply that w.h.p.

|M1[i +1]| , |M2[i +1]| ≤ k exp

(
− ln n

(lnln n)5

)
.
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Furthermore, Lemma 4.16 shows that |M3[i +1]| ≤∑i
h=1 |M [h]| w.h.p. Hence, we obtain the relation

|M [i +1]| ≤ k exp

(
− ln n

(lnln n)5

)
+

i∑
h=1

|M [h]| . (4.51)

Because (4.2) ensures that the total number of compartments is ℓ = O(ln1/2 n), the bound (4.51) implies that
|M [i +1]| ≤O(ℓ2k exp(−(lnn)/(lnln n)5) for all i ∈ [ℓ] w.h.p. Summing on i completes the proof. �

4.10. Proof of Proposition 4.7. For an infected individual x ∈V let

Sx [ j ]=
∣∣{a ∈ F [ j ]∩∂x : V1 ∩∂a = {x}

}∣∣ and Sx =
ℓ∑

j=1
Sx [ j ].

Thus, Sx [ j ] is the number of positive sets a ∈ F [ j ] that x has to itself, i.e., tests that do not contain a second infected
individual, and Sx is the total number of such tests.

Lemma 4.17. Assume that m ≥ (1+ε)minf. W.h.p. we have minx∈V1 Sx ≥
p
∆.

Proof. Due to Proposition 4.1 we may condition on the event

N =
{
∀i ∈ [ℓ] :

m

2ℓ
−p

m ln n ≤ |F0[i ]| ≤ m

2ℓ
+p

m ln n
}

.

We claim that given N for each x ∈V1[i ], i ∈ [ℓ], the random variable Sx has distribution

Sx [i + j −1] ∼ Hyp

(
m

ℓ
,

m

2ℓ
+O(

p
m lnn),

∆

s

)
. (4.52)

To see this, consider the set Fx [i + j −1] = {
a ∈ F [i + j −1] : ∂a ∩V1 \ {x} =;}

of all tests in compartment F [i + j −1]
without an infected individual besides possibly x. Since x joins ∆/s =O(lnn) tests in F [i + j −1], given N we have

∣∣F0,x [i + j ]
∣∣= |F0[i + j ]|+O(ln n) = m

2ℓ
+O(

p
m ln n). (4.53)

Furthermore, consider the experiment of first constructing the test design G and then re-sampling the set ∂x of
neighbours of x; i.e., independently of G we have x join ∆/s random tests in each compartment F [i + j ]. Then
the resulting test design G ′ has the same distribution as G and hence the random variable S ′

x [i + j −1] that counts
tests a ∈ F [i + j −1]∩∂x that do not contain another infected individual has the same distribution as Sx [i + j −1].
Moreover, the conditional distribution of S ′

x [i + j −1] given G reads

S ′
x [i + j −1] ∼ Hyp

(
m

ℓ
, |F0,x [i + j −1]|, ∆

s

)
. (4.54)

Combining (4.53) and (4.54), we obtain (4.52).
To complete the proof we combine (4.52) with Lemma 2.2, which implies that

P
[

Sx [i + j −1] ≤
p
∆ | x ∈V1

]
≤ exp

(
−∆

s
DKL

(
(1+o(1))s/

p
∆‖1/2+o(1)

))
= exp

(
−(1+o(1))

∆ ln 2

s

)
. (4.55)

Since SC1 ensures that the random variables (Sx [i + j −1]) j∈[s] are mutually independent, (4.55) yields

P
[

Sx ≤
p
∆ | x ∈V1

]
≤ 2−(1+o(1))∆. (4.56)

Finally, the assumption m ≥ (1+ε)minf for a fixed ε > 0 and the choice (4.5) of ∆ ensure that 2−(1+o(1))∆ = o(1/k).
Thus, the assertion follows from (4.56) by taking a union bound on x ∈V1. �

Proof of Proposition 4.7. For j = 1. . . ⌈ln n⌉, let

M j =
{

x ∈V : τ
( j )
x 6=σx

}

contain all individuals that remain misclassified at the j -th iteration of the clean-up step. Proposition 4.6 shows
that w.h.p.

|M1| ≤ k exp

(
− lnn

(ln lnn)6

)
. (4.57)

Furthermore, in light of Lemma 4.17 we may condition on the event A = {minx∈V1 Sx ≥
p
∆}.
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We now claim that given A for every j ≥ 1

M j+1 ⊂
{

x ∈V :
∑

a∈∂x\F [0]

∣∣∂a ∩M j \ {x}
∣∣≥ ⌈

ln1/4 n
⌉
}

. (4.58)

To see this, suppose that x ∈M j+1 and recall that the assumption m ≥ minf and (4.5) ensure that ∆=Ω(ln n). Also
recall that SPIV’s Step 15 thresholds the number

Sx (τ( j )) =
∑

a∈∂x:σ̂a=1
1

{
∀y ∈ ∂a \ {x} : τ( j )

y = 0
}

of positive tests containing x whose other individuals are deemed uninfected. There are two cases to consider.

Case 1: x ∈V0: in this case every positive tests a ∈ ∂x contains an individual that is actually infected. Hence, if

τ
( j )
y = 0 for all y ∈ ∂a \{x}, then ∂a∩M j \{x} 6= ;. Consequently, since Step 15 of SPIV applies the threshold

of Sx (τ( j )) ≥ ln1/4 n, there are at least ln1/4 n tests a ∈ ∂x such that ∂a ∩M j \ {x} 6= ;.

Case 2: x ∈V1: given A every infected x participates in at least Sx ≥
p
∆=Ω(ln1/2 n) tests that do not actually

contain another infected individual. Hence, if Sx (τ( j )) ≤ ln1/4 n, then at least
p
∆− ln1/4 n ≥ ln1/4 n tests

a ∈ ∂x contain an individual from M j \ {x}.

Thus, we obtain (4.58). Finally, (4.57), (4.58) and Lemma 4.16 show that w.h.p. |M j+1| ≤ |M j |/3 for all j ≥ 1. Con-
sequently, M⌈lnn⌉ =; w.h.p. �

5. OPTIMAL ADAPTIVE GROUP TESTING

In this final section we show how the test design G from Section 4 can be extended into an optimal two-stage
adaptive design. The key observation is that Proposition 4.6, which summarises the analysis of the first two phases
of SPIV (i.e., steps 1–10) only requires m ≥ (1+ε)mad tests. In other words, the excess number (1+ε)(minf −mad)
of tests required for non-adaptive group testing is necessary only to facilitate the clean-up step, namely phase 3 of
SPIV.

Replacing phase 3 of SPIV by a second test stage, we obtain an optimal adaptive test design. To this end we
follow Scarlett [32], who observed that a single-stage group testing scheme that correctly diagnoses all but o(k)
individuals with (1+o(1))mad tests could be turned into a two-stage design that diagnoses all individuals correctly
w.h.p. with (1+o(1))mad tests in total. (Of course, at the time no such optimal single-stage test design and algorithm
were known.) The second test stage works as follows. Let τ denote the outcome of phases 1 and 2 of SPIV applied
to G with m = (1+ε)mad.

T1: Test every individual from the set V1(τ) = {x ∈ V : τx = 1} of individuals that SPIV diagnosed as infected
separately.

T2: To the individuals V0(τ) = {x ∈ V : τx = 0} apply the random d-out design and the DD-algorithm from
Section 4.1 with a total of m = k tests and d = ⌈10ln n⌉.

Let τ′ ∈ {0,1}V be the result of T1–T2.

Proposition 5.1. W.h.p. we have τ′x =σx for all x ∈V .

As a matter of course T1 renders correct results, i.e., for all individuals x ∈ V1(τ) we have τ′x = σx . Further, to
analyse T2 we use a similar argument as in the analysis of the first phase of SPIV in Section 4.5; we include the
analysis for the sake of completeness. We begin by investigating the number of negative tests. Let G ′ denote the
test design set up by T2, let F ′ = {b1, . . . ,bk } denote its set of tests and let σ̂b1 , . . . ,σ̂bk signify the corresponding
test results. Further, let F ′

0 = {b ∈ F ′ : σ̂b = 0} and F ′
1 = {b ∈ F ′ : σ̂b = 1} be the set of negative and positive tests,

respectively.

Lemma 5.2. W.h.p. we have |F ′
1| ≤ k

2 .

Proof. Proposition 4.6 implies that w.h.p.

|V0(τ)∩V1| ≤
∑

x∈V
1{τx 6=σx } ≤ k exp

(
− ln n

(lnln n)6

)
. (5.1)
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Moreover, since every individual x ∈V0(τ) joins d random tests, for any specific test b ∈ F ′ we have

P
[
x ∈ ∂G ′b

]= 1−P[
x 6∈ ∂G ′b

]= 1−
(

k −1

d

)(
k

d

)−1

= d

k
(1+O(n−Ω(1))).

Hence, for every test b ∈ F ′,

E

[
|∂b ∩V1|

∣∣∣ |V0(τ)∩V1| ≤ k exp

(
− ln n

(ln lnn)6

)]
=O(1/ln n).

Consequently,

E
[
|F ′

1| | |V0(τ)∩V1| ≤ k/ln n
]
=O(k/ln n). (5.2)

Finally, combining (5.1) and (5.2) and applying Markov’s inequality, we conclude that |F ′
1| ≤ k

2 w.h.p. �
Corollary 5.3. W.h.p. for every x ∈V0(τ) there is a test b ∈ F ′ such that ∂b \ {x} ⊂V0.

Proof. We construct the random graph G ′ in two rounds. In the first round we first expose the neighbourhoods
(∂G ′ y)y∈V0(τ)\{x}. Lemma 5.2 implies that after the first round the number X of tests that do not contain an infected
individual y ∈ V0(τ)∩V1 exceeds k/2 w.h.p. In the second round we expose ∂G ′ x. Because ∂G ′x is chosen inde-
pendently of the neighbourhoods (∂G ′ y)y∈V0(τ)\{x}, the number of tests b ∈ ∂G ′ x that do not contain an infected
individual y ∈V0(τ)∩V1 has distribution Hyp(k, X ,d). Therefore, since d ≥ 10ln n we obtain

P [∀b ∈ ∂x : V1 ∩∂b \ {x} 6= ; | X ≤ k/2]≤P
[
Hyp(k,k/2,d) = 0

]≤ 2−d = o(1/n). (5.3)

Finally, the assertion follows (5.3) and the union bound. �
Proof of Proposition 5.1. Corollary 5.3 shows that we may assume that for every x ∈V0(τ) there is a test bx ∈ F ′ with
∂bx \ {x} ⊂V0. As a consequence, upon executing the first step DD1 of the DD algorithm, T2 will correctly diagnose
all individuals x ∈V0(τ)∩V0. Therefore, if x ∈V0(τ)∩V1, then DD2 will correctly identify x as infected because all
other individuals y ∈ ∂bx were already identified as healthy by DD1. Thus, τ′x =σx for all x ∈V . �
Proof of Theorem 1.3. Proposition 5.1 already establishes that the output of the two-stage adaptive test is correct
w.h.p. Hence, to complete the proof we just observe that the total number of tests comes to (1+ε)mad for the first
stage plus |V1(τ)|+k for the second stage. Furthermore, Proposition 4.6 implies that w.h.p.

|V1(τ)| ≤ |V1|+
∑

x∈V
1 {τx 6=σx } ≤ k

(
1+exp

(
− lnn

(ln lnn)6

))
= (1+o(1))k.

Thus, the second stage conducts O(k) = o(mad) tests. �
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Abstract
We study the group testing problem where the goal is to identify a set of k infected indi-

viduals carrying a rare disease within a population of size n, based on the outcomes of pooled
tests which return positive whenever there is at least one infected individual in the tested group.
We consider two different simple random procedures for assigning individuals to tests: the
constant-column design and Bernoulli design. Our first set of results concerns the fundamental
statistical limits. For the constant-column design, we give a new information-theoretic lower
bound which implies that the proportion of correctly identifiable infected individuals under-
goes a sharp “all-or-nothing” phase transition when the number of tests crosses a particular
threshold. For the Bernoulli design, we determine the precise number of tests required to solve
the associated detection problem (where the goal is to distinguish between a group testing in-
stance and pure noise), improving both the upper and lower bounds of Truong, Aldridge, and
Scarlett (2020). For both group testing models, we also study the power of computationally
efficient (polynomial-time) inference procedures. We determine the precise number of tests re-
quired for the class of low-degree polynomial algorithms to solve the detection problem. This
provides evidence for an inherent computational-statistical gap in both the detection and re-
covery problems at small sparsity levels. Notably, our evidence is contrary to that of Iliopoulos
and Zadik (2021), who predicted the absence of a computational-statistical gap in the Bernoulli
design.1
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1 Introduction
Motivated by the ongoing COVID-19 pandemic [MNB+21, MTB12] but also a growing algorith-
mic and information-theoretic literature [AJS19], in this work we focus on the group (or pooled)
testing model. Introduced by [Dor43], group testing is concerned with finding a subset of k indi-
viduals carrying a rare disease within a population of size n. One is equipped with a procedure
that allows for testing groups of individuals such that a test returns positive if (and only if) at least
one infected individual is contained in the tested group. The ultimate goal is to find a pooling
procedure and a (time-efficient) algorithm such that inference of the infection status of all individ-
uals is conducted with as few tests as possible. Furthermore, group testing has found its way into
various real-world applications such as DNA sequencing [KMDZ06, ND00], protein interaction
experiments [MDM13, TM06] and machine learning [EVM15].

As carrying out a test is often time-consuming, many real-world applications call for fast iden-
tification schemes. As a consequence, recent research focuses on non-adaptive pooling schemes,
i.e., all tests are conducted in parallel [SC16, Ald19, COGHKL20a, COGHKL20b, IZ21]. On
top of this, naturally the testing scheme is required to be simple as well. Two of the most well-
established and simple non-adaptive group testing designs are the Bernoulli design and the constant-
column design (for a survey, see [AJS19]). The Bernoulli design is a randomised pooling scheme
under which each individual participates in each test with a fixed probability q independently of
everything else [SC16]. In the constant-column design [AJS16, COGHKL20a], each individual
independently chooses a fixed number ∆ of tests uniformly at random. We remark that the spa-
tially coupled design of [COGHKL20b] may be an attractive choice in practice because it admits
information-theoretically optimal inference with a computationally efficient algorithm. In this pa-
per our focus will be on the two simpler designs (Bernoulli and constant-column), which may be
favorable due to their simplicity and also serve as a testbed for studying computational-statistical
gaps.

In this work, we take the number of infected individuals to scale sublinearly in the population
size as is typical in group testing tasks, that is k = nθ+o(1) for a fixed constant θ ∈ (0, 1). This
regime is mathematically interesting and is also the one most suitable for modelling the early stages
of an epidemic in the context of medical testing [WLZ+11]. In the two group testing models, we
study two different inference tasks (defined formally in Section 2.1): (a) approximate recovery,
where the goal is to achieve almost perfect correlation with the set of infected individuals, and (b)
weak recovery, where the goal is to achieve positive correlation with the set of infected individuals.
The task of exact recovery has also been studied (see [COGHKL20a]) but will not be our focus
here.

Recently, there has been substantial work on the information-theoretic limits of group testing
[CCJS11, ABJ14, COGHKL20a, COGHKL20b, TAS20]. An interesting recent discovery is that
for the Bernoulli group testing model there exists a critical threshold minf := (ln 2)−1k ln(n/k)
such that when the number of testsm satisfiesm ≥ (1+ε)minf for any fixed ε > 0 there is a (brute-
force) algorithm that can approximately recover the infected individuals, but whenm ≤ (1−ε)minf

no algorithm (efficient or not) can even weakly recover the infected individuals. This sharp phase
transition, known as the All-or-Nothing (AoN) phenomenon, was first proven by [TAS20] for θ = 0
(that is, k = no(1)) and then proven for all θ ∈ [0, 1) by [NWZ21]. This sharp phenomenon has
been established recently in many other sparse Generalized Linear Models (GLMs), starting with
sparse regression [RXZ19b]. Our first main result (Theorem 3.1) establishes the AoN phenomenon
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in the constant-column group testing model for any θ ∈ (0, 1), occurring at the same information-
theoretic threshold minf as in the Bernoulli model. To our knowledge, this is the first instance
where AoN has been established for a GLM where the samples (tests) are not independent (see
Section 1.1 for further discussion).

An emerging but less understood direction is to study the algorithmic thresholds of the group
testing models. In both group testing models, the best known polynomial-time algorithm achieves
approximate recovery only under the statistically suboptimal condition m ≥ (1 + ε)malg where
malg := (ln 2)−1minf . For the constant-column design, the algorithm achieving this is Combina-
torial Orthogonal Matching Pursuit (COMP) [CCJS11, CJSA14], which simply outputs all indi-
viduals who participate in no negative tests. For the Bernoulli design, the algorithm achieving
malg is called Separate Decoding [SC18], which outputs all individuals who participate in no
negative tests and “sufficiently many” positive tests (above some threshold). These results raise
the question of whether better algorithms exist, or whether there is an inherent computational-
statistical gap. Starting from the seminal work of [BR13], conjectured gaps between the power of
all estimators and the power of all polynomial-time algorithms have appeared recently throughout
many high-dimensional statistical inference problems. While we do not currently have tools to
prove complexity-theoretic hardness of statistical problems, there are various forms of “rigorous
evidence” for hardness that can be used to justify these computational-statistical gaps, including
average-case reductions (see e.g. [BB20]), sum-of-squares lower bounds (see e.g. [RSS18]), and
others.

In the Bernoulli group testing model, the recent work of [IZ21] suggested (but did not prove)
that a polynomial-time Markov Chain Monte Carlo (MCMC) method can achieve approximate
recovery all the way down to the information-theoretic threshold (that is, using only minf tests).
The evidence for this is based on first-moment Overlap Gap Property calculations and numerical
simulations. The Overlap Gap Property is a landscape property originating in spin glass theory,
which has been repeatedly used to offer evidence for the performance of local search and MCMC
methods in inference problems, as initiated by [GZ17]. A significant motivation for the present
work is to gain further insight into the existence or not of such a computational-statistical gap
for both the constant-column and Bernoulli designs. Our approach is based on the well-studied
low-degree likelihood ratio (discussed further in Section 2.2), which is another framework for
understanding computational-statistical gaps.

In line with most existing results using the low-degree framework, we consider a detection (or
hypothesis testing) formulation of the problem. In our case, this amounts to the task of deciding
whether a given group testing instance was actually drawn from the group testing model with k
infected individuals, or whether it was drawn from an appropriate “null” model where the test
outcomes are random coin flips (containing no information about the infected individuals). Our
second set of results is that for both the constant-column and Bernoulli designs, we pinpoint the
precise low-degree detection threshold mLD = mLD(k, n) (which is different for the two designs)
in the following sense: when the number of tests exceeds this threshold, there is a polynomial-time
algorithm that provably achieves strong detection (that is, testing with o(1) error probability); on
the other hand, if the number of tests lies below the threshold, all low-degree algorithms prov-
ably fail to separate the two distributions (as defined in Section 2.2). This class of low-degree
algorithms captures the best known poly-time algorithms for many high-dimensional testing tasks
(including those studied in this paper), and so our result suggests inherent computational hardness
of detection below the threshold mLD. For the exact thresholds, see Theorem 3.2 for the constant-
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column design and Theorem 3.3 for Bernoulli design.
Since approximate recovery is a harder problem than detection (this is formalized in Ap-

pendix C), our results also suggest that approximate recovery is computationally hard below mLD.
Since mLD exceeds minf for sufficiently small θ (see Figure 2), this suggests the presence of a
computational-statistical gap for the recovery problem (in both group testing models). Notably,
our evidence is contrary to that of [IZ21], who suggested the absence of a comp-stat gap in the
Bernoulli model for all θ ∈ (0, 1).

Finally, our third set of results is to identify the precise statistical (information-theoretic)
threshold for detection in the Bernoulli design (commonly referred to in the statistics literature
as the detection boundary); see Theorem 3.4.

Our main results are summarized by the phase diagrams in Figure 2.

1.1 Relation to Prior Work
Detection in the Bernoulli design To our knowledge, the only existing work on the detection
boundary in group testing is [TAS20], which focused on the Bernoulli design. They gave a de-
tection algorithm and an information-theoretic lower bound which did not match. In this work
we pinpoint the precise information-theoretic detection boundary by improving both the algorithm
and lower bound (Theorem 3.4). The new algorithm involves counting the number of individuals
who participate in no negative tests and “sufficiently many” positive tests (above some carefully
chosen threshold). The lower bound of [TAS20] is based on a second moment calculation, and our
improved lower bound uses a conditional second moment calculation (which conditions away a
rare “bad” event).

Strictly speaking, our detection problem differs from the one studied by [TAS20] because our
detection problem takes place on “pre-processed” graphs where the negative tests have been re-
moved (see Section 2.1), but we show in Appendix D that our results can be transferred to their
setting.

All-or-Nothing phenomenon The All-or-Nothing (AoN) phenomenon was originally proven
in the context of sparse regression with an i.i.d. Gaussian measurement matrix [GZ17, RXZ19a,
RXZ19b], and was later established for (a) various other Generalized Linear Models (GLMs) such
as Bernoulli group testing [TAS20, NWZ21] and the Gaussian Perceptron [LBM20, NWZ21], (b)
variants of sparse principal component analysis [BMR20, NWZ20], and (c) graph matching models
[WXY21]. In all of the GLM cases, a key assumption behind all such proofs is that the samples
(or tests in the case of Bernoulli group testing) are independent. This sample independence gives
rise to properties similar to the I-MMSE formula [GSV05], which can then be used to establish
the AoN phenomenon by simply bounding the KL divergence between the planted model and an
appropriate null model.

In the present work, we establish AoN for the constant-column group testing model which is a
GLM where the samples (tests) are dependent. Despite this barrier, we manage to prove this result
by following a more involved but direct argument, which employs a careful conditional second
moment argument alongside a technique from the study of random CSPs known as the “planting
trick” originally used in the context of random k-SAT [ACO08]. A more detailed proof outline is
given in Section 5.
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Low-degree lower bounds Starting from the work of [BHK+19, Hop18, HKP+17, HS17], lower
bounds against the class of “low-degree polynomial algorithms” (defined in Section 2.2) are a com-
mon form of concrete evidence for computational hardness of statistical problems (see [KWB19]
for a survey). In this paper we apply this framework to the detection problems in both group testing
models, with a few key differences from prior work. For the Bernoulli design, the standard tool—
the low-degree likelihood ratio—does not suffice to establish sharp low-degree lower bounds, and
we instead need a conditional variant of this argument that conditions away a rare “bad” event.
While such arguments are common for information-theoretic lower bounds, this is (to our knowl-
edge) the first setting where a conditional low-degree argument has been needed, along with the
concurrent work [BEH+22] on sparse regression. Our result for the constant-column design is (to
our knowledge) the first example of a low-degree lower bound where the null distribution does not
have independent coordinates. For both group testing models, the key insight to make these cal-
culations tractable is a “low-overlap second moment calculation,” which is explained in Section 7
(particularly 7.4).

Comparison with [IZ21] Perhaps the most relevant work, in terms of studying the computa-
tional complexity of group testing, is the recent work of [IZ21] which focuses on the Bernoulli
design. The authors provide simulations and first-moment Overlap Gap Property (OGP) evidence
that a polynomial-time “local” MCMC method can approximately recover the infected individuals
for any statistically possible number of testsm ≥ (1+ε)minf and any θ ∈ (0, 1). However, proving
this remains open.

In contrast, our present work shows that at least when θ > 0 is small enough no low-degree
polynomial algorithm can even solve the easier detection task for some number of tests strictly
above minf . Given the low-degree framework’s track record of capturing the best known algorith-
mic thresholds for a wide variety of statistical problems, this casts some doubts on the prediction
of [IZ21]. However, our results do not formally imply failure of the MCMC method (which is
not a low-degree algorithm) and the failure of low-degree algorithms is only known to imply the
failure of MCMC methods for the class of Gaussian additive models [BEH+22]. Our results “raise
the stakes” for proving statistical optimality of the MCMC method, as this would be a significant
counterexample to optimality of low-degree algorithms for statistical problems.

Notation
We will consider the limit n → ∞. Some parameters (e.g. θ, c) will be designated as “constants”
(fixed, not depending on n) while others (e.g. k) will be assumed to scale with n in a prescribed
way. Asymptotic notation o(·), O(·), ω(·),Ω(·) pertains to this limit (unless stated otherwise), i.e.,
this notation may hide factors depending on constants such as θ, c. We use Õ(·) and Ω̃(·) to hide
a factor of (lnn)O(1). An event is said to occur with high probability if it has probability 1− o(1),
and overwhelming probability if it has probability 1− n−ω(1).
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2 Getting Started

2.1 Group Testing Setup and Objectives
We will consider two different group testing models. The following basic setup pertains to both.

Group testing We first fix two constants θ ∈ (0, 1) and c > 0. A group testing instance is
generated as follows. There are n individuals x1, . . . , xn out of which exactly k = nθ+o(1) are
infected. There are m = (c+ o(1))k ln(n/k) tests a1, . . . , am.

For each test, a particular subset of the individuals is chosen to participate in that test, according
to one of the two designs (constant-column or Bernoulli) described below. The assignment of
individuals to tests can be expressed by a bipartite graph (see Figure 1). The ground-truth σ ∈
{0, 1}n is drawn uniformly at random among all binary vectors of length n and Hamming weight
k. We say individual xi is infected if and only if σi = 1. We denote the sequence of test results
by σ̂ ∈ {0, 1}m, where σ̂j is equal to one if and only if the j-th test contains at least one infected
individual.

We consider two different schemes for assigning individuals to tests, which are defined below.

Constant-column design In the constant column weight design (also called the random regular
design), every individual independently chooses a set of exactly ∆ = (c+o(1)) ln(2) ln(n/k) tests
to participate in, uniformly at random from the

(
m
∆

)
possibilities.

Bernoulli design In the Bernoulli design, every individual participates in each test independently
with probability q := ν/k where ν = ln 2 + o(1) is the solution to (1− ν/k)k = 1/2 so that each
test is positive with probability exactly 1/2.

We remark that the parameter ν (in the Bernoulli design) and the constant ln(2) in the definition of
∆ (in the constant-column design) could have been treated as free tuning parameters. To simplify
matters, we have chosen to fix these values so that roughly half the tests are positive (maximizing
the “information content” per test), but we expect our results could be readily extended to the
general case.

We will be interested in the task of recovering the ground truth σ. Two different notions of
success are considered, as defined below.

Approximate recovery An algorithm is said to achieve approximate recovery if, given input
(GGT , σ̂, k), it outputs a binary vector τ ∈ {0, 1}n with the following guarantee: 〈τ ,σ〉

‖τ‖2‖σ‖2 =

1− o(1) with probability 1− o(1).

Equivalently, approximate recovery means the number of false positive and false negatives are both
o(k).

Weak recovery An algorithm is said to achieve weak recovery if, given input (GGT , σ̂, k), it
outputs a binary vector τ ∈ {0, 1}n with the following guarantee: with probability 1 − o(1),
〈τ ,σ〉
‖τ‖2‖σ‖2 = Ω(1).
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Pre-processing via COMP Note that in both models we can immediately classify any individual
who participates in a negative test as uninfected. Therefore, the first step in any recovery algorithm
should be to pre-process the graph by removing all negative tests and their adjacent individuals.
(We sometimes refer to this pre-processing step as COMP because it is the main step of the COMP
algorithm of [CCJS11, CJSA14], which simply performs this pre-processing step and then reports
all remaining individuals as infected.) The resulting graph is denoted G′GT (see Figure 1). We let
N denote the number of remaining individuals and let M denote the number of remaining tests.
We use σ′ ∈ {0, 1}N to denote the indicator vector for the infected individuals. Note that after
pre-processing, all remaining tests are positive and so σ̂ can be discarded.

x1 x2 x3 x4 x5 x6 x7 x8

a1 a2 a3 a4 a5 a6

x1 x2 x3 x4 x6

a1 a2 a3 a4

Figure 1: The bipartite factor graph representing a group testing instance. Circles represent individuals
while squares represent tests. The colour of circle/square indicates infected / positive in red and uninfected
/ negative in blue. The left figure shows an instance ofGGT while the right figure shows the corresponding
instance ofG′GT where individuals in negative tests have already been classified and removed.

In addition to recovery, we will also consider an easier hypothesis testing task. Here the goal
is to distinguish between a (“planted”) group testing instance and an unstructured (“null”) in-
stance. We now define this testing model for both group testing designs. The input is an (N,M)-
bipartite graph, representing a group testing instance that has already been pre-processed as de-
scribed above.

Constant-column design (testing) Let N = Nn and M = Mn scale as N = n1−(1−θ)c(ln 2)2+o(1)

andM = (c/2+o(1))k ln(n/k); this choice is justified below. Consider the following distributions
over (N,M)-bipartite graphs (encoding adjacency between N individuals and M tests).

• Under the null distribution Q, each of the N individuals participates in exactly ∆ (defined
above) tests, chosen uniformly at random.

• Under the planted distribution P, a set of k infected individuals out of N is chosen uni-
formly at random. Then a graph is drawn from Q conditioned on having at least one infected
individual in every test.

Bernoulli design (testing) Let N = Nn and M = Mn scale as N = n1−(1−θ) c
2

ln 2+o(1) and
M = (c/2 + o(1))k ln(n/k); this choice is justified below. Consider the following distributions
over (N,M)-bipartite graphs (encoding adjacency between N individuals and M tests).

• Under the null distribution Q, each of the N individuals participates in each of the M tests
with probability q (defined above) independently.
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• Under the planted distribution P, a set of k infected individuals out of N is chosen uni-
formly at random. Then a graph is drawn from Q conditioned on having at least one infected
individual in every test.

Note that in the pre-processed group testing graph G′GT , the dimensions N,M are random vari-
ables. For the testing problems above, we will instead think of N,M as deterministic functions
of n, which are allowed to vary arbitrarily within some range (due to the o(1) terms). The spe-
cific scaling of N,M is chosen so that the actual dimensions of G′GT obey this scaling with high
probability (see e.g. [COGHKL20a, IZ21]). Furthermore, the planted distribution P is precisely
the distribution ofG′GT conditioned on the dimensions N,M .

We now define two different criteria for success in the testing problem.

Strong detection An algorithm is said to achieve strong detection if, given input (G, k) with G
drawn from either Q or P (each chosen with probability 1/2), it correctly identifies the distribution
(Q or P) with probability 1− o(1).

Weak detection An algorithm is said to achieve weak detection if, given input (G, k) with G
drawn from either Q or P (each chosen with probability 1/2), it correctly identifies the distribution
(Q or P) with probability 1/2 + Ω(1).

We will establish a formal connection between the testing and recovery problems: any algorithm
for approximate recovery can be used to solve strong detection (see Appendix C for exact state-
ments).

2.2 Hypothesis Testing and the Low-Degree Framework
Following [HS17, HKP+17, Hop18], we will study the class of low-degree polynomial algorithms
as a proxy for computationally-efficient algorithms (see also [KWB19] for a survey). Considering
the hypothesis testing setting, suppose we have two (sequences of) distributions P = Pn and
Q = Qn over Rp for some p = pn. Since our testing problems are over (N,M)-bipartite graphs,
we will set p = NM and take P,Q to be supported on {0, 1}p (encoding the adjacency matrix of
a graph). A degree-D polynomial algorithm is simply a multivariate polynomial f : Rp → R of
degree (at most)D with real coefficients (or rather, a sequence of such polynomials f = fn). In our
case, since the inputs will be binary, the polynomial can be multilinear without loss of generality.
In line with prior work, we define two different notions of “success” for polynomial-based tests as
follows.

Strong/weak separation A polynomial f : Rp → R is said to strongly separate P and Q if
√

max

{
Var
P

[f ],Var
Q

[f ]

}
= o

(∣∣∣∣EP [f ]− E
Q

[f ]

∣∣∣∣
)
. (2.1)

Also, a polynomial f : Rp → R is said to weakly separate P and Q if
√

max

{
Var
P

[f ],Var
Q

[f ]

}
= O

(∣∣∣∣EP [f ]− E
Q

[f ]

∣∣∣∣
)
. (2.2)
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These are natural sufficient conditions for strong/weak detection: note that by Chebyshev’s in-
equality, strong separation immediately implies that strong detection can be achieved by thresh-
olding the output of f ; also, by a less direct argument, weak separation implies that weak detection
can be achieved using the output of f [BEH+22, Proposition 6.1].

Perhaps surprisingly, it has now been established that for a wide variety of “high-dimensional
testing problems” (including planted clique, sparse PCA, community detection, tensor PCA, and
many others), the class of degree-O(ln p) polynomial algorithms is precisely as powerful as the best
known polynomial-time algorithms (e.g. [BKW20, DKWB19, Hop18, HKP+17, HS17, KWB19]).
One explanation for this is that such polynomials can capture powerful algorithmic frameworks
such as spectral methods (see [KWB19], Theorem 4.4). Also, lower bounds against low-degree
algorithms imply failure of all statistical query algorithms (under mild assumptions) [BBH+21]
and have conjectural connections to the sum-of-squares hierarchy (see e.g. [HKP+17, Hop18]).
While there is no guarantee that a degree-O(ln p) polynomial can be computed in polynomial time,
the success of such a polynomial still tends to coincide with existence of a poly-time algorithm.

In light of the above, low-degree lower bounds (i.e., provable failure of all low-degree algo-
rithms to achieve strong/weak separation) is commonly used as a form of concrete evidence for
computational hardness of statistical problems. In line with prior work, we will aim to prove
hardness results of the following form.

Low-degree hardness If no degree-D polynomial achieves strong (respectively, weak) sepa-
ration for some D = ω(ln p), we say “strong (resp., weak) detection is low-degree hard”; this
suggests that strong (resp., weak) detection admits no polynomial-time algorithm and furthermore
requires runtime exp(Ω̃(D)) where Ω̃ hides factors of ln p.

In this paper, we will establish low-degree hardness of group testing models in certain parameter
regimes. While the implications for all polynomial-time algorithms are conjectural, these results
identify apparent computational barriers in group testing that are analogous to those in many other
problems. As a result, we feel there is unlikely to be a polynomial-time algorithm in the low-
degree hard regime, at least barring a major algorithmic breakthrough.2 Throughout the rest of this
paper we focus on proving low-degree hardness as a goal of inherent interest, and refer the reader
to the references mentioned above for further discussion on how low-degree hardness should be
interpreted.

3 Main Results
We now formally state our main results on statistical and computational thresholds in group testing,
which are summarized in Figure 2. Throughout, recall that we fix the scaling regime k = nθ+o(1)

andm = (c+o(1))k ln(n/k) for constants θ ∈ (0, 1) and c > 0. Our objective is to characterize the
values of (θ, c) for which various group testing tasks are “easy” (i.e., poly-time solvable), “hard”
(in the low-degree framework), and (information-theoretically) “impossible.”

2Strictly speaking, we should perhaps only conjecture computational hardness for a slightly noisy version of group
testing (say where a small constant fraction of test results are changed at random) because some “noiseless” statistical
problems admit a poly-time algorithm in regimes where low-degree polynomials fail; see e.g. Section 1.3 of [ZSWB21]
for discussion.
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3.1 Constant-Column Design
Our first set of results pertains to the constant-column design, as defined in Section 2.1.

Weak recovery: All-or-Nothing phenomenon We start by focusing on the information-theoretic
limits of weak recovery in the constant-column design. We show that the AoN phenomenon occurs
at the critical constant cinf = 1/ ln 2, i.e., at the critical number of tests minf = (ln 2)−1k ln(n/k).
It was known previously that when c > 1/ ln 2, one can approximately recover (as defined in Sec-
tion 2.1) the infected individuals via a brute-force algorithm [COGHKL20a, COGHKL20b]. It
was also known that when c < 1/ ln 2, one cannot approximately recover the infected individuals
(see [AJS19]). We show that in fact a much stronger lower bound holds: when c < 1/ ln 2, no
algorithm can even achieve weak recovery.

Theorem 3.1. Consider the constant-column design with any fixed θ ∈ (0, 1). If c < cinf := 1/ ln 2
then every algorithm (efficient or not) taking input (GGT , σ̂, k) and returning a binary vector
τ ∈ {0, 1}n must satisfy 〈τ ,σ〉

‖τ‖2‖σ‖2 = o(1) with probability 1− o(1). In particular, weak recovery is
impossible.

Combined with the prior work mentioned above, this establishes the All-or-Nothing phenomenon,
namely:

• If c > cinf and m = (c+ o(1))k ln(n/k) then approximate recovery is possible.

• If c < cinf and m = (c+ o(1))k ln(n/k) then weak recovery is impossible.

As mentioned in the Introduction, the only algorithms known to achieve approximate recovery
with the statistically optimal number of tests minf do not have polynomial runtime [COGHKL20a,
COGHKL20b]. As a tool for studying this potential computational-statistical gap (and out of
independent interest), we next turn our attention to the easier detection task. We will return to
discuss the implications for hardness of the recovery problem later.

Detection boundary and low-degree methods We first pinpoint the precise “low-degree” thresh-
old cCC

LD = cCC
LD(θ) (where the superscript indicates “constant-column”) for detection: above this

threshold we prove that a new poly-time algorithm achieves strong detection; below this threshold
we prove that all low-degree polynomial algorithms fail to achieve weak separation, giving con-
crete evidence for hardness (see Section 2.2). As a sanity check for the low-degree lower bound,
we also verify that low-degree algorithms indeed succeed at strong separation above the threshold
(specifically, this is achieved by a degree-2 polynomial that computes the empirical variance of the
test degrees).

Theorem 3.2. Consider the constant-column design (testing variant) with parameters θ ∈ (0, 1)
and c > 0. Define

cCC
LD =

{
1

(ln 2)2

(
1− θ

2(1−θ)

)
if 0 < θ < 2/3,

0 if 2/3 ≤ θ < 1.
(3.1)

(a) (Easy) If c > cCC
LD , there is a degree-2 polynomial achieving strong separation, and a

polynomial-time algorithm achieving strong detection.
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(b) (Hard) If c < cCC
LD then there is a D = nΩ(1) such that any degree-D polynomial fails to

achieve weak separation. (This suggests that weak detection requires runtime exp(nΩ(1)).)

We remark that when θ ≥ 2/3, the problem is “easy” for any constant c > 0 (and perhaps even for
some sub-constant scalings for c, although we have not attempted to investigate this).

Hardness of Recovery Above, we have given evidence for hardness of detection below the
threshold cCC

LD . We also show in Appendix C that recovery is a formally harder problem than detec-
tion: any poly-time algorithm for approximate recovery can be made into a poly-time algorithm for
strong detection, succeeding for the same parameters θ, c. These two results together give evidence
for hardness of recovery below cCC

LD via a two-step argument: our low-degree hardness for detection
leads us to conjecture that there is no poly-time algorithm for detection below cCC

LD , and this conjec-
ture (if true) formally implies that there is no poly-time algorithm for approximate recovery below
cCC

LD . (However, our results do not formally imply failure of low-degree algorithms for recovery.)
Notably, it turns out that cCC

LD exceeds cinf for some values of θ (namely 0 < θ < 1+ 1
2 ln 2−3

≈ 0.38),
revealing a possible-but-hard regime for recovery (Region I in Figure 2).

Since the recovery problem might be strictly harder than testing, our results do not pinpoint a
precise computational threshold for recovery (even conjecturally). However, one case where we
do pinpoint the computational recovery threshold is in the limit θ → 0: here, the thresholds cCC

LD

and calg coincide, that is, our low-degree hardness result for detection matches the best known
poly-time algorithm for recovery (COMP). This suggests that for small θ, the COMP algorithm is
optimal among poly-time methods (for approximate recovery).

An interesting open question is to resolve the low-degree threshold for recovery, in the style of
[SW20]. However, it is not clear that their techniques immediately apply here.

3.2 Bernoulli Design
Our second set of our results pertains to the Bernoulli design as defined in Section 2.1. As always,
we fix the scaling regime k = nθ+o(1) and m = (c + o(1))k ln(n/k) for constants θ ∈ (0, 1) and
c > 0.

Detection boundary and low-degree methods We will determine both the statistical and low-
degree thresholds for detection. The thresholds are more complicated than in the constant-column
design and involve the Lambert W function: for x ≥ −1

e
, define W0(x) to be the unique y ≥ −1

satisfying yey = x. We begin with the low-degree threshold.

Theorem 3.3. Consider the Bernoulli design (testing variant) with parameters θ ∈ (0, 1) and
c > 0. Define

cB
LD =





− 1
ln2 2

W0(− exp(− θ
1−θ ln 2− 1)) if 0 < θ < 1

2
(1− 1

4 ln 2−1
),

1
ln 2
· 1−2θ

1−θ if 1
2
(1− 1

4 ln 2−1
) ≤ θ < 1

2
,

0 if 1
2
≤ θ < 1.

(3.2)

(a) (Easy) If c > cB
LD, there is a degree-O(lnn) polynomial achieving strong separation, and a

polynomial-time algorithm achieving strong detection.
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0 2
3

1

ln−2 2

ln−1 2

III

IV III

θ

c

calg cinf cCC
LD

0 1
2

1

ln−2 2

ln−1 2
III

IV III

θ

c

calg cinf cB
LD

Figure 2: Phase transitions in the constant-column (left) and Bernoulli (right) designs, in (θ, c) space where
k = nθ+o(1) and m = (c + o(1))k ln(n/k). Recovery is possible above the red line and impossible below
it. Polynomial-time recovery is only known above the blue line. Detection is achievable in polynomial time
above the dotted line and (low-degree) hard below it. In Region I, detection and recovery are both possible-
but-hard. In Region II, detection is easy and recovery is possible, but it is open whether recovery is easy or
hard. In Region III, detection is easy and recovery is impossible. In Region IV, recovery is impossible; we
expect detection is also impossible, and this is proven for the Bernoulli design only. Above the blue line,
detection and recovery are both easy. See Section 3 for the formal statements.
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(b) (Hard) If c < cB
LD then any degree-o(k) polynomial fails to achieve weak separation. (This

suggests that weak detection requires runtime exp(Ω̃(k)).)

We remark that cB
LD is a continuous function of θ (see Figure 2). The new algorithm that succeeds

in the “easy” regime is based on counting the number of individuals whose degree (in the graph-
theoretic sense) exceeds a particular threshold. For θ in the first case of (3.2), the low-degree
hardness result requires a conditional argument that conditions away a certain rare “bad” event;
for θ in the second case of (3.2), no conditioning is required and the resulting threshold matches
the information-theoretic detection lower bound of [TAS20]. We remark that the predicted run-
time exp(Ω̃(k)) in the “hard” regime is essentially tight, matching the runtime of the brute-force
algorithm up to log factors in the exponent.

Next, we determine the precise information-theoretic detection boundary. One (inefficient)
detection algorithm is the brute-force algorithm for optimal recovery (which can be made into a
detection algorithm per Proposition C.1 in Appendix C). Another (efficient) detection algorithm is
the low-degree algorithm from Theorem 3.3 above. We show that for each θ ∈ (0, 1), statistically
optimal detection is achieved by the better of these two algorithms. Brute-force is better when
θ < 1− ln 2

2 ln 2−ln ln 2−1
≈ 0.079, and otherwise low-degree is better.

Theorem 3.4. Consider the Bernoulli design (testing variant) with parameters θ ∈ (0, 1) and
c > 0. Let cinf := 1/ ln 2 and define cB

LD as in (3.2).

(a) (Possible) If c > min{cinf , c
B
LD} then strong detection is possible.

(b) (Impossible) If c < min{cinf , c
B
LD} then weak detection is impossible.

Hardness of Recovery Similarly to the constant-column design, our low-degree hardness results
suggest hardness of recovery below the threshold cB

LD (see the discussion in Section 3.1). This sug-
gests a possible-but-hard regime for recovery (namely Region I in Figure 2) in the Bernoulli design,
for sufficiently small θ (namely θ < 1− ln 2

2 ln 2−ln ln 2−1
≈ 0.079). As discussed in the Introduction,

this is contrary to the evidence of [IZ21], who predicted the absence of a computational-statistical
gap for all θ ∈ (0, 1).

4 Background on Constant-Column Group Testing

4.1 General Setting
Recall that, in the underlying group testing instance, we start with n individuals out of which
k = nθ for fixed θ ∈ (0, 1) are infected, and conduct

m = ck ln
(n
k

)
= ck(1− θ) lnn

parallel tests. We assume throughout that c is fixed with 0 < c < ln−2(2). (Strictly speaking we
should write e.g. k = nθ+o(1) due to integrality concerns, but for ease of notation we will drop
these o(1) terms.)
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Let GGT = (VGT ∪ FGT , EGT ) be a random bipartite graph with |FGT | = m factor nodes
(a1, ..., am) representing the tests and |VGT | = n variable nodes (x1, ..., xn) representing the indi-
viduals. Each individual independently chooses to participate in exactly ∆ = c ln(2) ln(n/k) tests,
chosen uniformly at random from the

(
m
∆

)
possibilities. If xi participates in test aj , this is indicated

by an edge between xi and aj . As usual, ∂aj or ∂xi denotes the neighbourhood of a vertex inGGT .
We let σ ∈ {0, 1}n denote the ground-truth vector encoding the infection status of each indi-

vidual, uniformly chosen from all binary vectors of length n and Hamming weight k. GivenGGT ,
we let σ̂ ∈ {0, 1}m denote the sequence of test results, that is

σ̂a = 1 {∂a ∩ {x : σ(x) = 1} 6= ∅} .

We introduce a partition of the set of individuals into the following parts. We denote by
V0(GGT ) the set of uninfected and by V1(GGT ) the set of infected individuals, formally

V0(GGT ) = {x ∈ VGT : σ(x) = 0} and V1(GGT ) = {x ∈ VGT : σ(x) = 1} .

Those individuals appearing in a negative test are hard fields and denoted by V −0 (GGT ) while the
set V +

0 (GGT ) consists of disguised uninfected individuals, that is uninfected individuals that only
appear in positive tests:

V −0 (GGT ) = {x ∈ V0(GGT ) : ∃a ∈ ∂x : σ̂a = 0}
and V +

0 (GGT ) = V0(GGT ) \ V −0 (GGT ).

As previously mentioned, it is a straightforward task to identify those individuals that participate
in a negative test and classify them as non-infected. Let m0 denote the number of tests rendering
a negative result.

Lemma 4.1 (see [GJLR21], Lemmas A.4 & B.4). With high probability 1− o(1), we have

m0 =
m

2
±O(

√
m ln2(n)) and

∣∣V +
0 (GGT )

∣∣ =
(
1± n−Ω(1)

)
n1−(1−θ)c ln2(2).

Observe that as long as c < ln−2(2), the number of disguised uninfected individuals clearly exceeds
the number of infected individuals.

4.2 Reduced Setting
Now, we remove allm0 negative tests and their adjacent individuals fromGGT and are left with an
reduced group testing instanceG′GT on M = m−m0 tests and N =

∣∣V +
0 (GGT )

∣∣+ k individuals.
Using Lemma 4.1 and the scaling of m, k,∆ we have with high probability,

M =
(
1± n−Ω(1)

) k∆

2 ln 2
and N =

(
1± n−Ω(1)

)
n1−(1−θ)c ln2(2). (4.1)

Let σ′ ∈ {0, 1}N denote the restriction of σ to this reduced instance and observe that there are
only positive tests remaining, which we re-label as a1, . . . , aM .

16

92



5 Proof Roadmap for Theorem 3.1: “All-or-Nothing”

5.1 First Steps
We recall the setting of the theorem. Fix θ ∈ (0, 1) and c > 0. Given n individuals x1, . . . , xn, out
of which k = nθ are infected, and m = ck ln(n/k) tests a1, . . . , am, we denote by σ ∈ {0, 1}n
the ground truth that encodes the infection status of the individuals. We create an instance of the
constant-column pooling designGGT as described in the previous section: each of the individuals
independently chooses exactly ∆ = c ln(2) ln(n/k) tests.

Suffices to study the posterior As described in the Introduction, it is known that if c > 1/ ln(2)
then approximate recovery is possible. For this reason, we focus here solely on the case c <
1/ ln(2) with the goal of proving the “nothing” part of the all-or-nothing phenomenon, that is
for any estimator τ = τ (GGT ) ∈ {0, 1}n it holds that 〈τ ,σ〉 = o(‖τ‖2‖σ‖2) with probability
1−o(1).Our first observation is that it suffices to prove that the inner product between a draw from
the posterior distribution σ|GGT and the ground truth σ is o(k) in expectation, that is it suffices to
prove

E
(σ,GGT )

E
τ∼σ|GGT

[〈τ ,σ〉] = o(k). (5.1)

Indeed, under (5.1) using the so-called “Nishimori identity” (see e.g. [NWZ21, Lemma 2]) and the
Bayes optimality of the posterior mean, we have that for any estimator (with no norm restriction)
τ = τ (GGT ) it holds E[‖τ − σ‖2

2] = k(1 − o(1)). The following lemma then gives the desired
result.

Lemma 5.1. Under our above assumptions, suppose that for any estimator τ = τ (GGT ) it holds
E[‖τ − σ‖2

2] = k(1 − o(1)). Then for any estimator τ = τ (GGT ) with ‖τ‖2 = 1 almost surely,
it holds E[〈τ ,σ〉]2 = o(k) = o(‖σ‖2

2). In particular, for any estimator τ = τ (GGT ) ∈ {0, 1}n it
holds that 〈τ ,σ〉 = o(‖τ‖2‖σ‖2) with probability 1− o(1).

Proof of Lemma 5.1. Fix any τ = τ (GGT ) with ‖τ‖2 = 1 almost surely. Then for α := E[〈τ ,σ〉]
we have that it must hold

E[‖ατ − σ‖2] = k(1− o(1))

which implies,
α2 + k − 2αE[〈τ ,σ〉] = k(1− o(1))

and using the value of α we conclude

E[〈τ ,σ〉]2 = o(k),

as we wanted. The lemma’s final claim follows by normalizing τ and using Markov’s inequality.
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The posterior is uniform among “solutions” Now an easy computation using Bayes’ rule gives
that the posterior distribution is simply the uniform distribution over vectors σ ∈ {0, 1}n with Ham-
ming weight k that are solutions in the sense that every positive test contains at least one individual
in the support of σ and none of the individuals in the support of σ participate in any negative tests.
Therefore to prove (5.1), it suffices to show the following statement: with probability 1 − o(1)
over GGT , a uniformly random solution for GGT overlaps with the ground truth in at most o(k)
individuals.

Reducing the instance by removing negative tests We can simplify the problem by working
with the reduced instanceG′GT defined in Section 4, where we have removed the negative tests and
their adjacent individuals (so that only the positive tests remain). For simplicity in what follows, we
re-label the individuals inG′GT by x1, . . . , xN and the tests by a1, . . . , aM . Recall thatσ′ ∈ {0, 1}N
denotes the ground truth restricted to the individuals inG′GT . To show (5.1) it suffices to show that
if c < 1/ ln(2), a uniformly random “solution” in the reduced model overlaps with σ′ in at most
o(k) individuals, with probability 1 − o(1). Here, with a slight abuse of notation, we define from
now on a “solution” in G′GT to be a vector σ ∈ {0, 1}N of Hamming weight k with the property
that each of the M (positive) tests in G′GT contains at least one individual in the support of σ.
Formally, we define the set of solutions S = S(G′GT ) by

S =

{
σ ∈

(
[N ]

k

)
: max
x∈∂aj

σx = 1 for all j = 1, . . . ,M

}
. (5.2)

As discussed above, (5.1), which implies the desired “nothing” result, follows by showing that
almost all elements of S have a small overlap, in expectation, with the ground truth. In other
words, since convergence in expectation and in probability are equivalent for bounded random
variables, our new goal is to prove the following result.

Proposition 5.2. Fix constants 0 < c < ln−1(2) and θ ∈ (0, 1). Fix any constant δ > 0 and let
τ ∈ {0, 1}N be uniformly sampled from S. Then

Pr (〈σ′, τ 〉 ≥ δk) = o(1).

Here the probability is over bothG′GT and τ .

By the above discussion, Theorem 3.1 follows as a corollary of Proposition 5.2.

5.2 Proof Roadmap for Proposition 5.2: Two Null Models and their Roles
Now we describe the proof roadmap for Proposition 5.2 which completes the proof of Theo-
rem 3.1. Here and in the following, we treat N,M as deterministic quantities lying in the “typical”
range (4.1). We let P∆ denote the (“planted”) distribution of the reduced instance G′GT described
in the previous section, conditioned on our chosen values of N,M . For an (N,M)-bipartite graph
G, we let Z(G) := |S(G)| denote the number of solutions in G as defined in (5.2). Furthermore,
for the ground truth set of infected individuals σ ∈ {0, 1}N (since we will work exclusively in
the reduced instance from now on, we simply write σ instead of σ′) and some α ∈ (0, 1], we let
Zσ(G,α) denote the number of solutions τ ∈ S with 〈τ ,σ〉 = bαkc.

18

94



First step In this notation, Proposition 5.2 asks that with probability 1− o(1) over G ∼ P∆,
∑

δk≤`≤k
Zσ(G, `/k) = o(Z(G)).

Notice that by Markov’s inequality, it suffices to show that with probability 1− o(1) over G ∼ P∆,
∑

δk≤`≤k
E
P∆

[Zσ(G, `/k)] = o(Z(G)). (5.3)

Unfortunately, direct calculations in the planted model P∆ are challenging. Towards establish-
ing (5.3), we make use of two different “null” distributions over bipartite graphs withN individuals
and M tests which are ∆-regular on the individuals side.

The ∆-Null Model First, we consider the ∆-null model Q∆ which is simply the measure on
bipartite graphs with N individuals and M tests where each individual independently chooses
exactly ∆ tests uniformly at random (in particular, notice that no individual is assumed to be
“infected”).

The reason we introduce this model is because the expected number of solutions of a graph G
drawn from Q∆ offers a very simple high-probability lower bound on Z(G) for G ∼ P∆. This
is based on an application of the so-called planting trick introduced in the context of random k-
SAT [ACO08]. The following lemma holds.

Lemma 5.3. For any ε > 0,

P∆

{
Z(G) ≤ ε E

Q∆

[Z(G)]

}
≤ ε.

In light of Lemma 5.3, to prove (5.3) it suffices to show
∑

δk≤`≤k
E
P∆

[Zσ(G, `/k)] = o

(
E
Q∆

[Z(G)]

)
. (5.4)

But now notice the following relation between P∆ and Q∆.

Fact 5.4. One can generate a valid sample (σ,G) ∼ P∆ by first choosing σ ∈ {0, 1}N uniformly
from binary vectors of Hamming weight k, and then drawingG from Q∆|σ, that is Q∆ conditioned
on σ being a solution.

Introducing the notation that for some α ∈ (0, 1] and a graph G we call Z(G,α) the number of
pairs of solutions τ ,σ ∈ S with 〈τ ,σ〉 = bαkc, we will use Fact 5.4 to prove the following
“change-of-measure” lemma.

Lemma 5.5. For any α ∈ (0, 1],

E
P∆

[Zσ(G,α)] =
EQ∆

[Z(G,α)]

EQ∆
[Z(G)]

.

Therefore, to prove (5.4) it suffices to show to ∆-null model property,
∑

δk≤`≤k
E
Q∆

[Z(G, `/k)] = o

(
E
Q∆

[Z(G)]2
)
. (5.5)
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The (∆,Γ)-Null Model Now, unfortunately it turns out that establishing (5.5) remains a highly
technical task. Our way of establishing it is by considering another null model where the compu-
tations are easier, which we call the (∆,Γ)-null model Q?

∆,Γ. Here, instead of choosing ∆ distinct
tests (without replacement), each individual chooses ∆ tests with replacement. Thus, under Q?

∆,Γ

we allow (for technical reasons) the existence of multi-edges, as opposed to P∆ or Q∆. (Through-
out, we will use an asterisk to signify models with multi-edges.) Also, we condition on every test
having degree exactly Γ = N∆/M . Formally, Q?

∆,Γ is generated from the configuration model (see
e.g. [JLR11]) over bipartite (multi-)graphs with N individuals, M tests, ∆ degree for the individ-
uals, and Γ = N∆/M degree for the tests. Under Q∆, the test degrees concentrate tightly around
Γ, and as a result we will be able to show that the models Q∆ and Q?

∆,Γ are “close.” Specifically,
this is formalized as follows.

Lemma 5.6. For any fixed 0 < c < ln−1(2), 0 < θ < 1, and δ > 0, it holds for all δ ≤ α ≤ 1 that

E
Q?∆,Γ

[Z(G)] ≤ E
Q∆

[Z(G)] exp (o(k∆)) and

E
Q?∆,Γ

[Z(G,α)] ≥ E
Q∆

[Z(G,α)] exp (−o(k∆)) .

Calculations in the configuration model are easier, yet still delicate, and allow us to prove the
following result which given the above, concludes the proof of (5.5) and therefore of Proposi-
tion 5.2.

Proposition 5.7. For any fixed 0 < c < ln−1(2), 0 < θ < 1, and δ > 0, there exists ε > 0 such
that the following holds for sufficiently large N . For all δ ≤ α ≤ 1,

EQ?∆,Γ [Z(G,α)]

EQ?∆,Γ [Z(G)]2
≤ exp(−εk∆).

5.3 Proof of Lemmas 5.3 and 5.5
Proof of Lemma 5.3. Using Fact 5.4, note that P∆(G) is proportional to Z(G), i.e.,

P∆(G) =
Z(G)Q∆(G)

EQ∆
[Z(G)]

. (5.6)

Set for simplicity λ = EQ∆
[Z(G)]. Using (5.6), we find

P∆(Z(G) ≤ ελ) =
∑

G

1 {Z(G) ≤ εEQ∆
[Z(G)]} Z(G)Q∆(G)

EQ∆
[Z(G)]

≤
∑

G

1 {Z(G) ≤ εEQ∆
[Z(G)]} εEQ∆

[Z(G)]Q∆(G)

EQ∆
[Z(G)]

≤ ε
∑

G

1 {Z(G) ≤ ελ}Q∆(G)

= εQ∆(Z(G) ≤ ελ)

≤ ε.

This concludes the proof.
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Proof of Lemma 5.5. Given Fact 5.4 and the symmetry of the individuals we have

E
P∆

[Zσ(G,α)] =
1(
N
k

)
∑

σ,σ′

Q∆(σ′ ∈ S(G) | σ ∈ S(G))

where the sum is over σ, σ′ pairs with 〈σ, σ′〉 = bαkc

=
1(

N
k

)
Q∆(σ ∈ S(G))

∑

σ,σ′

Q∆(σ′ ∈ S(G), σ ∈ S(G))

=
EQ∆

[Z(G,α)]

EQ∆
[Z(G)]

.

Note that with some abuse of notation we have pulled a term involving σ outside the sum; this is
okay because (by symmetry) this term does not actually depend on σ. The proof is complete.

6 Remaining Proofs from Section 5: The Q?
∆,Γ Model

6.1 Preliminaries: First and Second Moment under Q?
∆,Γ

In this section we consider a bipartite graph drawn from Q?
∆,Γ onM tests a1, . . . , aM of size exactly

Γ each and N individuals x1, . . . , xN of degree exactly ∆. Recall that this graph is generated from
the configuration model and may feature multi-edges.

Our first result is about the first moment of the number of solutions.

Lemma 6.1. Let q ∈ (0, 1) be the solution to the equation

q

1− (1− q)Γ
=

∆k

ΓM
. (6.1)

Then

E
Q?∆,Γ

[Z(G)] = N−O(1)

(
N

k

)
(1− (1− q)Γ)M(

ΓM
∆k

)
q∆k(1− q)ΓM−∆k

. (6.2)

We now present in some detail the proof of Lemma 6.1 since it is a good first example of the
technique we follow for the computations in this section.

Proof. By linearity of expectation and symmetry, notice that for any fixed configuration σ ∈
{0, 1}N with Hamming weight k, it holds that

E
Q?∆,Γ

[Z(G)] =

(
N

k

)
Q?

∆,Γ[σ ∈ S(G)].

We now calculate the probability Q?
∆,Γ[σ ∈ S(G)] as follows. We first set up an auxiliary product

probability space. Fix any parameter q ∈ (0, 1). Construct a product probability space with
measure Pq where we choose ΓM bits (ωij)i∈[M ], j∈[Γ] independently such that ωij ∼ Ber(q) for
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all i, j. (It may help to think of ωij as representing the infection status of the jth individual in the
ith test.) LetR =

∑
i,j ωij be the total number of ones. Let us define

S =

{
∀i ∈ [M ] : max

j
ωij = 1

}
R = {R = k∆} . (6.3)

But then notice that in this notation the symmetry of the product space gives that for any q ∈ (0, 1),

Q?
∆,Γ[σ ∈ S(G)] = Pq [S | R] .

One can then calculate this conditional probability via Bayes. The unconditional probabilities are
easy to compute:

Pq [S] = (1− (1− q)Γ)M , Pq [R] =

(
ΓM

∆k

)
q∆k(1− q)ΓM−∆k.

A priori, the conditional probability Pq [R | S] may be difficult to compute and this is where our
freedom to choose q becomes important. Specifically, we pick q as in (6.1). By the local limit
theorem for sums of independent random variables (see for instance [COHKL+21, Section 6]),
this choice ensures that

E[R | S] = ΓM
q

1− (1− q)Γ
= ∆k and therefore P [R | S] = N−O(1).

Bayes’ theorem now completes the proof of the lemma.

Using a multidimensional version of the idea that allowed us to calculate the first moment
bound we develop the second moment bound by modelling the pairs of configurations via inde-
pendent random variables. We derive the appropriate probabilities for an “independent” problem
setting and then tackle the dependencies afterwards by applying Bayes’ formula.

Recall the definition

Z(G,α) = |{σ, τ ∈ S(G) : 〈σ, τ〉 = αk}|

denote the number of pairs of solutions that overlap on an α-fraction of entries. We are able to
obtain the following sharp bound on the expectation of Z(G,α).

Lemma 6.2. For any α ∈ (0, 1] and any (q00, q01, q10, q11) ∈ [0, 1]4,

E
Q?∆,Γ

[Z(G,α)] ≤
(

N

αk, (1− α)k, (1− α)k

)

·
(
1− 2(1− q01 − q11)Γ + qΓ

00

)M
(

N∆
αk∆, (1−α)k∆, (1−α)k∆, (N−2k+αk)∆

)
qαk∆

11 q
2(k−αk)∆
10 qN∆−2k∆+αk∆

00

. (6.4)

Furthermore, if (q00, q01, q10, q11) ∈ [0, 1]4 is the solution to the system

q00 + q01 + q10 + q11 = 1 q01 = q10 (6.5)

q11

1− 2(1− q10 − q11)Γ + qΓ
00

= α
k∆

ΓM

q01

(
1− (q00 + q10)Γ−1

)

1− 2(1− q01 − q11)Γ + qΓ
00

= (1− α)
k∆

ΓM
(6.6)
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then

E
Q?∆,Γ

[Z(G,α)] = N−O(1)

(
N

αk, (1− α)k, (1− α)k

)

·
(
1− 2(1− q01 − q11)Γ + qΓ

00

)M
(

N∆
αk∆, (1−α)k∆, (1−α)k∆, (N−2k+αk)∆

)
qαk∆

11 q
2(k−αk)∆
10 qN∆−2k∆+αk∆

00

. (6.7)

Proof. The multinomial coefficient simply counts assignments so that the pair of configurations
has the correct overlap. Hence, let us fix a pair (σ, τ) with overlap α. As before we employ an
auxiliary probability space (ωij,ω

′
ij)i∈[M ], j∈[Γ] with independent entries drawn from the distribu-

tion (q00, . . . , q11), e.g., q01 is the probability that ωij = 0 and ω′ij = 1. (We think of ωij as the
infection status of the jth individual in the ith test under σ, and ω′ij is the same for τ .) Let S be the
event that all tests are positive under both assignments and letR be the event that

∑

i,j

ωij =
∑

i,j

ω′ij = k∆ and
∑

i,j

ωijω
′
ij = αk∆.

Then

E
Q?∆,Γ

[Z(G,α)] =

(
N

αk, (1− α)k, (1− α)k

)
P [S | R]

=

(
N

αk, (1− α)k, (1− α)k

)
P [S]P [R | S]

P [R]
.

Once again we use Bayes’ rule. The unconditional probabilities are easy:

P [R] =

(
N∆

αk∆, (1− α)k∆, (1− α)k∆

)
qαk∆

11 q
2(k−αk)∆
10 qN∆−2k∆+αk∆

00 ,

P [S] =
(
1− 2(1− q01 − q11)Γ + qΓ

00

)M
.

Using the fact P [R | S] ≤ 1, we can conclude (6.4). Now we also claim that with the choice
(6.5)-(6.6),

P [R | S] = N−O(1).

As before, this follows from the local limit theorem for sums of independent random variables,
provided we can show

E

[∑

i,j

ωij

∣∣∣∣∣ S
]

= E

[∑

i,j

ω′ij

∣∣∣∣∣ S
]

= k∆, E

[∑

i,j

ωijω
′
ij

∣∣∣∣∣ S
]

= αk∆. (6.8)

The second equation in (6.8) is easy to compute because any test that contains a (1, 1) will instantly
be satisfied under both assignments:

E

[∑

i,j

ωijω
′
ij

∣∣∣∣∣ S
]

=
ΓMq11

1− 2(1− q01 − q11)Γ + qΓ
00

.
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For the first equation in (6.8), it suffices to show

E

[∑

i,j

ωij − ωijω′ij

∣∣∣∣∣ S
]

= (1− α)k∆.

If a test contains a (1, 0) then it still requires either a (1, 1) or a (0, 1) to be satisfied under the other
assignment as well:

E

[∑

i,j

ωij − ωijω′ij

∣∣∣∣∣ S
]

=
ΓMq10

(
1− (q00 + q01)Γ−1

)

1− 2(1− q10 − q11)Γ + qΓ
00

.

In any case, the choice (6.5)-(6.6) gives what we want.

6.2 Proof of Proposition 5.7
To prove Proposition 5.7, we need to compare the first moment squared and (part of) the second
moment expansion under Q?

∆,Γ. We begin with a bound on the first moment.

6.2.1 Bound on First Moment

As we have a multiplicative factor exp (o (k∆)) of freedom, the result of the following proposition
will suffice.

Proposition 6.3. It holds that

E
Q?∆,Γ

[Z(G)] = exp (o (k∆)) exp

(
k∆

1− c ln(2)

c ln(2)

)
.

Proof. Our starting point is Lemma 6.1. Recall ΓM = N∆. Define d > 0 such that q = d k
N

and
recall that Γ =

(
2 ln 2± n−Ω(1)

)
N
k

. Therefore (6.1) is equivalent to

1− exp
(
−2d ln 2

(
1± n−Ω(1)

))
= d.

Therefore, the unique solution q̂ to (6.1) turns out to be

q̂ =
(
1± n−Ω(1)

) k

2N
. (6.9)

Furthermore observe for the binomial coefficients needed in Lemma 6.1 that Stirling’s formula
(Lemma A.1) implies
(
N∆

k∆

)
= (1 + o(1))

1√
2πk∆

(
Ne

k

)k∆

and
(
N

k

)
= (1 + o(1))

1√
2πk

(
Ne

k

)k
. (6.10)

Finally, recall the scaling

M =
(
1±N−Ω(1)

) k∆

2 ln(2)
. (6.11)

The proposition follows from plugging (6.9), (6.10) and (6.11) into (6.2) from Lemma 6.1.
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6.2.2 Bound on Second Moment

We will bound the expression for EQ?∆,Γ [Z(G,α)] given in Lemma 6.2. Lemma 6.2 yields

E
Q?∆,Γ

[Z(G,α)] ≤
(

N

αk, (1− α)k, (1− α)k

)

·
(
1− 2(1− q01 − q11)Γ + qΓ

00

)M
(

N∆
αk∆, (1−α)k∆, (1−α)k∆, (N−2k+αk)∆

)
qαk∆

11 q
2(k−αk)∆
10 qN∆−2k∆+αk∆

00

.

For α ∈ (0, 1], define

(q00 = q00(α), q01 = q01(α), q10 = q10(α), q11 = q11(α)) ∈ [0, 1]4

to be the solution of (6.5)-(6.6). Using the first two equations of (6.5)-(6.6) it suffices to only keep
track of q01, q11 because q00, q10 are simple linear functions of them.

To this end, define

G(α, q01, q11) = k∆

(
α ln(α) + 2(1− α) ln(1− α)− (2− α) + (2− α)

1− c ln2(2)

c ln(2)

+
1

2 ln(2)
ln
(
1− 2(1− q01 − q11)Γ + (1− 2q01 − q11)Γ

)

− αq11 − (2− α)q01

)

− (N∆− 2k∆ + αk∆) ln(1− 2q01 − q11).

By Stirling’s formula this is, up to o(k∆) additive error terms, equal to the exponential part of
EQ?∆,Γ [Z(G,α)] from Lemma 6.2. Indeed,

G(α, q01, q11) = o (∆k) + ln

((
N

αk, (1− α)k, (1− α)k

)

·
(
1− 2(1− q01 − q11)Γ + qΓ

00

)M
(

N∆
αk∆, (1−α)k∆, (1−α)k∆, (N−2k+αk)∆

)
qαk∆

11 q
2(k−αk)∆
10 qN∆−2k∆+αk∆

00

)
. (6.12)

The purpose of this approximation is that the function G can be analysed analytically.

Lemma 6.4. For any c < ln−1(2) and any θ ∈ (0, 1), there exists ε > 0 such that for all α̇ ∈ (0, 1],

G
(
α̇, q01(α̇), q11(α̇)

)
< (1− ε)k∆

2(1− c ln(2))

c ln(2)
.

Proof. As a first step, we need to determine q01, q11 from (6.5)-(6.6) for a general α̇ ∈ (0, 1]. We
define x0, x1 > 0 such that

q01 = x0
k

N
and q11 = x1

k

N
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and define

W(x0, x1) = 1− 2 exp (−2 ln(2)(x0 + x1)) + exp (−2 ln(2)(2x0 + x1)) .

This allows us to simplify (6.6) to

α =
x1

W(x0, x1)
and 1− α =

x0 (1− exp (−2 ln(2)(x0 + x1)))

W(x0, x1)
. (6.13)

If we plug in (6.13) into the definition of G, we get

G(α, q01, q11)

= (1 + o(1))k∆

(
α ln

(
α

x1

)
+ 2(1− α) ln

(
1− α
x0

)
+ (2− α)

1− c ln2(2)

c ln(2)

)
(6.14)

+ k∆

(
1

2 ln(2)
ln (W(x0, x1)) + (2x0 + x1)− (2− α)

)
.

While it is easy for a given α̇ to determine the solution (ẋ0, ẋ1) of (6.13) numerically, it seems
impossible to come up with an analytic closed form expression. Fortunately, by the first part of
Lemma 6.2 this is not necessary. Indeed, any choice (x0, x1) for a given α̇ renders an upper bound
on (6.14) as this is the leading order part of EQ?∆,Γ [Z(G, α)]. Specifically, recall from (6.12) that
G(α, q01, q11) approximates the exponential part of EQ?∆,Γ [Z(G)] up to an additive error of o (k∆).

We approximate (ẋ0, ẋ1) by a piecewise linear function. Define the following partition of (0, 1):

I1 =

(
0,

1

4

]
, I2 =

(
1

4
,

85

100

)
, I3 =

[
85

100
, 1

)
. (6.15)

We define

x0(α) =1{α∈I1} ·
(
−3

5
α +

1

2

)
+ 1{α∈I2} ·

(
1

2
− 3

10 ln 2
α

)
+ 1{α∈I3} · (1− α), (6.16)

x1(α) =1{α∈I1} ·
α

5
+ 1{α∈I2} ·

α

5 ln 2
− 1{α∈I3} ·

16α− 11

10
. (6.17)

For brevity, let

F (α) =

(
α ln

(
α

x1

)
+ 2(1− α) ln

(
1− α
x0

)
+ (2− α)

1− c ln2(2)

c ln(2)

)

+

(
1

2 ln(2)
ln (W(x0, x1)) + (2x0 + x1)− (2− α)

)
(6.18)

= G

(
α, x0

k

N
, x1

k

N

)
1 + o(1)

k∆
. (6.19)

We will bound each piece of F separately, with the goal of establishing the bound

F (α) <
2(1− c ln(2))

c ln(2)
for all α ∈ (0, 1]. (6.20)

An illustration of the result of the considered cases can be found in Figure 3.
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Figure 3: The first plot shows a numerical comparison between the optimal choices (x0, x1) and our
piece-wise linear approximation. The other plots show how the evaluation of G

(
α, x0

k
N , x1

k
N

)
varies

between the numerically calculated optimal values (blue), the linear approximation of (x0, x1) applied to
G
(
α, x0

k
N , x1

k
N

)
(green) and the easily established upper bound on this quantity through convexity (purple)

for different values of c ∈ (0, ln−1(2)]. The red line equals 2(1−c ln(2))
c ln(2) .

Case α ∈ I1 : In this case, (6.19) reads as

F (α) = α ln(5) + 2(1− α) ln(1− α)− 2(1− α) ln

(
1

2
− 3

5
α

)
+ (2− α)

1− c ln2(2)

c ln(2)

+
1

2 ln(2)
ln

(
1− 2 exp

(
−2 ln(2)

(
−2

5
α +

1

2

))
+ exp (−2 ln(2)(1− α))

)
− 1.

We find for any c ∈ (0, ln−1(2)) that

∂2F

∂α2
=

2

1− α +
0.72(1− α)

(−0.6α + 0.5)2
+

2.4

0.6α− 0.5
− 1

2

(22α−1 − 1.6 · 20.8α−1.0)2 ln(2)

(20.8α − 22α−2 − 1)2

− ln(2)

2
· 22α − 1.28 · 20.8α−1

(20.8α − 22α−2 − 1)
> 0
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which can be verified analytically (for illustration see Figure 4). To see this we analyse two separate
parts. On the one hand,

2

1− α +
0.72(1− α)

(−0.6α + 0.5)2
+

2.4

0.6α− 0.5
> 0.

On the other hand one can verify that the remainder satisfies

− ln(2)

2

(
(22α−1 − 1.6 · 20.8α−1.0)2

(20.8α − 22α−2 − 1)2
+

22α − 1.28 · 20.8α−1

(20.8α − 22α−2 − 1)

)
> 0,

as

(22α−1 − 1.6 · 20.8α−1.0)2 +
(
22α − 1.28 · 20.8α−1

) (
20.8α − 22α−2 − 1

)
< −1

3
α < 0.

In particular, ∂2F
∂α2 does not depend on c and is monotonically increasing on I1. Therefore, F is

strictly convex on I1, and so it suffices to verify (6.20) at the endpoints of I1. We will apply a
first-order Taylor approximation to F at α = 0. Let F̃ be this approximation. The following holds
by Taylor’s theorem. For any ε > 0 there is δ > 0 with the property that

F (α) ≤ (1 + δ)F̃ (α) for all α ∈ (0, ε). (6.21)

We have

F̃ (α) =

((
5 ln (5) ln (2)− 5 ln (2)2 − ln (2)

)
α− 10 ln (2)

)
c− 5α + 10

5 c ln (2)
.

Therefore,

F̃ (α)− 2(1− c ln(2))

c ln(2)
=

(
5 ln (5) ln (2)− 5 ln (2)2 − ln (2)

)
αc− 5α

5 c ln (2)
.

Therefore, by (6.21) we only need to verify that there is that there is δ′ > 0 and α? > 0 such that
for all α ∈ (0, α?) and c < ln−1(2), we have

(
5 ln (5) ln (2)− 5 ln (2)2 − ln (2)

)
c− 5 < −δ′(α)−1.

As
(
5 ln (5) ln (2)− 5 ln (2)2 − ln (2)

)
≈ 2.48, the strongest requirement is given for c = ln−1(2)

and is satisfied if α? > δ′/1.4. Furthermore, it can be verified that

lim
α→0.25

F (α) =
ln
(
−1

4

√
2
(

2
√

2
(

2
1
5 − 1

)
− 1
))

2 ln (2)
+

7

4 c ln (2)
+

1

4
ln (5)− 7

4
ln (2) +

3

2
ln

(
3

4

)

− 3

2
ln

(
7

20

)
− 1 <

2(1− c ln(2))

c ln(2)

for any c ∈ (0, ln−1(2)), thus, (6.20) is satisfied on I1.
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Figure 4: The piece-wise defined second derivative ∂2F
∂α2 on the three intervals I1, I2, I3. As could

be seen analytically, it does not depend on c but is a (piece-wise) continuous mapping of α.

Case α ∈ I2 : We have

F (α) = α ln(α)− α ln(α) + α ln(5 ln(2))

+ 2(1− α) ln(1− α)− 2(1− α) ln

(
0.5− 0.3 · 1

ln(2)
α

)

+
1

2 ln(2)
ln

(
1− 2 exp

(
−2 ln(2)

(
1

2
− 1

10 ln(2)
α

))

+ exp

(
−2 ln(2)

(
1− 2

5 ln(2)
α

)))

+ (2− α)
1− c ln2(2)

c ln(2)
+ 1− 2

5 ln(2)
α− 2 + α.

In this case,

∂2F

∂α2
=

2

1− α −
1

2
· (0.8 · 20.8α/ ln(2)−2 − 0.4 · 20.2α/ ln(2)−1)2

(20.8α/ ln(2)−2 − exp (0.2α) + 1)2 ln(2)

+
1

2
· 0.64 · 20.8α/ ln(2)−2 − 0.08 · 20.2α/ ln(2)−1

(20.8α/ ln(2)−2 − exp(0.2α) + 1) ln(2)

− 1.2

(−0.3α/ ln(2) + 0.5) ln(2)
− 0.18α− 0.18

(−0.3α/ ln(2) + 0.5)2 ln(2)2)
> 0.

We again verify this by analysing two separate parts. On the one hand one can verify that
2

1− α −
1.2

(−0.3α/ ln(2) + 0.5) ln(2)
− 0.18α− 0.18

(−0.3α/ ln(2) + 0.5)2 ln(2)2)
> 0, (6.22)
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as this can be rearranged to
9

50
α2 +

1

2

(
ln(2) +

3

5

)2

> 0.

Now we turn to the second part which reads as follows:

− 1

2 ln(2)
·
(

(0.8 · 20.8α/ ln(2)−2 − 0.4 · 20.2α/ ln(2)−1)2

(20.8α/ ln(2)−2 − exp (0.2α) + 1)2
− 0.64 · 20.8α/ ln(2)−2 − 0.08 · 20.2α/ ln(2)−1

(20.8α/ ln(2)−2 − exp(0.2α) + 1)

)

(6.23)

Thus, we show that
(

(0.8 · 20.8α/ ln(2)−2 − 0.4 · 20.2α/ ln(2)−1)2

−
(
0.64 · 20.8α/ ln(2)−2 − 0.08 · 20.2α/ ln(2)−1

) (
20.8α/ ln(2)−2 − exp(0.2α) + 1

)
)
< 0.

The assertion immediately follows as the latter product exceeds the quadratic expression for all
α ∈

(
1
4
, 85

100

]
and all three parts are positive. Thus (6.23) is positive.

It follows that ∂
2F
∂α2 is positive by combining our results of (6.22) and (6.23). Thus we find F (α)

to be strictly convex on I2. Furthermore, for c ∈ (0, ln−1(2)), we find

lim
α→0.25

F (α) ≤ −0.785 ln−1(2) + 1.75/(c ln(2))− 1.75 ln(2) + 0.25 ln(5 ln(2))

− 1.5 ln((0.5 ln(2)− 0.075)/ ln(2))− 1.18 <
2(1− c ln(2))

c ln(2)
, and

lim
α→0.85

F (α) ≤ −0.92856/ ln(2) + 1.15/(c ln(2))− 1.15 ln(2) + 0.85 ln(5 ln(2))

− 0.3 ln((0.5 ln(2)− 0.255)/ ln(2))− 0.7191 <
2(1− c ln(2))

c ln(2)
.

Case α ∈ I3 : In this case, F evaluates to

F (α) = α ln

(
10α

16α− 11

)
+

3

5
α− (2− α)

c ln(2)2 − 1

c ln(2)

+
1

2
ln
(
24/5α−9/5 − 2−6/5α+6/5 + 1

)
ln−1(2)− 11

10
.

Then we find the following for all α ∈ I3, which is easy to verify computationally (see Figure 4):

∂2F

∂α2
= −32 (16α− 11)

(
1

(16α− 11)2 −
16α

(16α− 11)3

)

+
(16α− 11)

(
1

16α−11
− 16α

(16α−11)2

)

α
+

16

16α− 11
− 256α

(16α− 11)2

−
2
(

2
4
5
α− 4

5 + 3 · 2− 6
5
α+ 6

5

)2

ln (2)

25
(

2
4
5
α− 9

5 − 2−
6
5
α+ 6

5 + 1
)2 +

2
(

2
4
5
α+ 1

5 ln (2)− 9 · 2− 6
5
α+ 6

5 ln (2)
)

25
(

2
4
5
α− 9

5 − 2−
6
5
α+ 6

5 + 1
) > 0.
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We now check that this inequality holds. First we simplify the polynomial part to

176

(16α− 11)2
− 11

α(16α− 11)
.

Now we lower bound the non-polynomial part

h(α) = −
2
(

2
4
5
α− 4

5 + 3 · 2− 6
5
α+ 6

5

)2

ln (2)

25
(

2
4
5
α− 9

5 − 2−
6
5
α+ 6

5 + 1
)2 +

2
(

2
4
5
α+ 1

5 ln (2)− 9 · 2− 6
5
α+ 6

5 ln (2)
)

25
(

2
4
5
α− 9

5 − 2−
6
5
α+ 6

5 + 1
) .

One can verify that this is negative and concave for α ∈ [85/100, 1). Thus, one can derive the
lower bound

h(α) >
6751

150
α− 148

3
.

Therefore we get a lower bound

∂2F

∂α2
>

176

(16α− 11)2
− 11

α(16α− 11)
+

6751

150
α− 148

3
.

Standard calculus reveals that the minimum is strictly positive.

Again, this means F (α) is convex and it suffices to check the boundary. It is easily verified that
for c ∈ (0, ln−1(2)),

lim
α→0.85

F (α) ≤ −((1.15 ln(2)2 − 0.41687 ln(2) + 0.5586)c− 1.15)/(c ln(2))

<
2(1− c ln(2))

c ln(2)
, and

lim
α→1

F (α) =
1− c ln(2)

c ln(2)
<

2(1− c ln(2))

c ln(2)
.

Finally, the lemma follows from combination of the three cases. Indeed, this proves that there is
an ε > 0 such that for all α ∈ (0, 1],

1

k∆
G(α, q01, q11) = F (α) < (1− ε)2(1− c ln 2)

c ln 2

as desired.

Proposition 5.7 now follows, since by Lemma 6.2 and Stirling’s approximation,

exp (G(α, q01, q11))

= exp (o (k∆))

(
N

αk, (1− α)k, (1− α)k

)

·
(
1− 2(1− q01 − q11)Γ + qΓ

00

)M
(

N∆
αk∆, (1−α)k∆, (1−α)k∆, (N−2k+αk)∆

)
qαk∆

11 q
2(k−αk)∆
10 qN∆−2k∆+αk∆

00

≥ EQ?∆,Γ [Z(G, α)] exp (o (k∆)) ,

and then using Proposition 6.3 concludes the proof.
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6.3 Proof of Lemma 5.6
We have two adjustments to take care of in order to transfer our results from Q?

∆,Γ to Q∆. First,
the configuration model Q?

∆,Γ may feature multi-edges, while Q∆ does not. Second, under Q?
∆,Γ

we assume the test degrees to be regular. These two issues are handled in Sections 6.3.1 and 6.3.2,
respectively.

Our proof will pass from Q?
∆,Γ to Q∆ by way of a third null model Q?

∆ which is defined exactly
like Q∆ with the sole difference that now each individual chooses ∆ tests with replacement (i.e.,
multi-edges are possible).

Formally, the proof of Lemma 5.6 follows immediately by combining Lemmas 6.5, 6.6, and 6.7
below.

6.3.1 Existence of Multi-edges

In this section we show how to compare important properties of Q∆ and Q?
∆. Our first result

concerns Z(G).

Lemma 6.5. We have
EQ∆

[Z(G)] ≥ EQ?∆ [Z(G)] .

Proof. Given a sample G? ∼ Q?
∆, we can produce a sample G ∼ Q∆ by resampling the duplicate

edges until no multi-edges remain. This process can only increase the number of solutions: for
every τ ∈ S(G?), we also have τ ∈ S(G).

We also have the converse bound for Z(G,α).

Lemma 6.6. For any fixed 0 < c < ln−1(2), 0 < θ < 1, and 0 < δ ≤ α ≤ 1,

E
Q∆

[Z(G,α)] ≤ E
Q?∆

[Z(G,α)] exp(o(k∆)).

Proof. Fix an arbitrary pair σ, τ ∈ {0, 1}N with Hamming weight k and overlap αk. Using linear-
ity of expectation,

E
Q∆

[Z(G,α)] =

(
N

(1− α)k, αk, αk

)
Q∆(σ, τ ∈ S(G))

and

E
Q?∆

[Z(G,α)] =

(
N

(1− α)k, αk, αk

)
Q?

∆(σ, τ ∈ S(G)).

Therefore it suffices to show

Q∆(σ, τ ∈ S(G)) ≤ exp(o(k∆))Q?
∆(σ, τ ∈ S(G)). (6.24)

Under G ∼ Q?
∆, let E denote the event that there are no multi-edges incident to individuals

that have label 1 under σ or τ (or both). Notice that

Q∆(σ, τ ∈ S(G)) = Q?
∆(σ, τ ∈ S(G) | E)

because the event {σ, τ ∈ S(G)} depends only the edges incident to individuals in the union
of supports supp(σ) ∪ supp(τ). One can directly bound the probability Q?

∆(EM) = k−O(1) =
exp(o(k∆)) as in the proof of Lemma 8.8, and so we conclude (6.24).
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6.3.2 The Regularisation Process

In Section 6.3.1 we showed how to transfer results from Q?
∆ to Q∆. In this section we show how

to transfer results from Q?
∆,Γ to Q?

∆. Namely, our goal is to establish the following result which
(combined with Lemmas 6.5 and 6.6) completes the proof of Lemma 5.6.

Lemma 6.7. For any fixed α ∈ (0, 1],

E
Q?∆,Γ

[Z(G,α)] = E
Q?∆

[Z(G,α)] exp (o(k∆)) .

In particular,

E
Q?∆,Γ

[Z(G)] = E
Q?∆

[Z(G)] exp (o(k∆)) .

Before proving this lemma, we introduce some notation. For j ∈ [M ], we use Γj to denote
the random quantity |∂aj|, i.e., the number of individuals in test j. For technical reasons we will
need to condition on the following high-probability event which states that the test degrees are well
concentrated.

Lemma 6.8. With probability 1− o(1) over G ∼ Q∗∆,

N∆

M
− ln2(N)

√
N∆

M
≤ min

j
Γj ≤ max

j
Γj ≤

N∆

M
+ ln2(N)

√
N∆

M
. (6.25)

Since Γj ∼ Bin(N∆, 1/M), the proof is a direct consequence of Bernstein’s inequality and a
union bound over tests. Let N denote the event that (6.25) holds. We next show that conditioning
on N does not change the expectation of Z(G,α) too much.

Lemma 6.9. We have

E
Q?∆

[Z(G,α) | N ] = (1 + o(1)) E
Q?∆

[Z(G,α)].

Proof. Define a planted model P?α as follows. To sample G ∼ P?α, first draw two k-sparse binary
vectors σ, τ ∈ {0, 1}N uniformly at random subject to having overlap 〈σ, τ〉 = αk. Then draw G
from Q?

∆ conditioned on the event that both σ and τ are solutions. Note that P?α(G) is proportional
to Z(G,α), that is,

P?α(G) =
Q?

∆(G)Z(G,α)

EQ?∆ [Z(G,α)]
.

This implies the identity
EQ?∆ [Z(G,α) | N ]

EQ?∆ [Z(G,α)]
=

P?α(N )

Q?
∆(N )

.

The result follows because N is a high-probability event under both Q?
∆ and P?α. For Q?

∆ this
is Lemma 6.8, and the claim for P?α can be proved similarly by handling the contribution from
“infected” individuals similarly to the proof of Lemma 8.4.
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Proof of Lemma 6.7. The second desired claim follows from the first by setting α = 1, so we focus
on establishing the first. Furthermore, using Lemma 6.9 it suffices to prove

E
Q?∆,Γ

[Z(G,α)] = E
Q?∆

[Z(G,α) | N ] exp (o(k∆)) .

Fix an arbitrary pair of k-sparse binary vectors σ, τ ∈ {0, 1}N with overlap 〈σ, τ〉 = αk. By
linearity of expectation,

E
Q?∆,Γ

[Z(G,α)] =

(
N

k

)(
k

αk

)(
N − k

(1− α)k

)
Q?

∆,Γ {σ, τ ∈ S(G)}

and

E
Q?∆

[Z(G,α) | N ] =

(
N

k

)(
k

αk

)(
N − k

(1− α)k

)
Q?

∆ {σ, τ ∈ S(G) | N} .

Hence it suffices to show

Q?
∆,Γ {σ, τ ∈ S(G)} = Q?

∆ {σ, τ ∈ S(G) | N} exp (o(k∆)) . (6.26)

To prove (6.26) we employ the auxiliary probability space used also in the proof of Lemma 6.2.
We describe again here its definition and quick motivation. We fix an arbitrary (to be chosen
appropriately later) choice of probability values qc,d > 0, where c, d ∈ {0, 1}, which are solely
required to sum up to 1. Now notice that to prove (6.26) we are only interested for both Q?

∆ and
Q?

∆,Γ to model the status of the edges which connect an arbitrary test with some individual labelled
1 by σ or τ. Let us first construct the probability space for Q?

∆,Γ. In this case, the edges can be
modelled as the conditional product probability measure on the binary status of the total possible
MΓ edges (counting from the test side), say (ωij)i=1...M,j=1...Γ ∈ {0, 1}MΓ, (ω′ij)i=1...M,j=1...Γ ∈
{0, 1}MΓ, conditioned on the event R which makes sure to satisfy the Hamming weight k and
overlap αk constraint on the individual side of σ, τ , that is we condition on

R =

{∑

i,j

ωij =
∑

i,j

ω′ij = k∆ and
∑

i,j

ωijω
′
ij = αk∆.

}

The product law simply asks (ωij)i=1...M,j=1...Γ, (ω
′
ij)i=1...M,j=1...Γ to be independent random vari-

ables such that qcd is the probability that ωij = c, ω′ij = d for c, d ∈ {0, 1}. The symmetries of
the model suffice to conclude that for any choice of qc,d > 0 the conditional law is indeed the law
also induced by Q?

∆,Γ on the edge status of σ, τ . One can construct in a straightforward manner
the corresponding construction for Q?

∆ conditional on the (varying) test degrees Γ1, . . . ,ΓM . We
define the corresponding conditioning event as R̃.

Now recall that we care to compare the event of σ, τ ∈ S(G) between the two null models. For
this reason in the auxiliary spaces, we denote by S the event that all used edges in the auxiliary
space for Q?

∆,Γ “cover all the M tests,” and similarly define the event S̃ “cover all the M tests” for
Q?

∆. Given the above it holds,

Q?
∆,Γ {σ, τ ∈ S(G)} = Pr(S | R)
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and
Q?

∆ {σ, τ ∈ S(G) | N} = EΓi Pr(S̃ | R̃,N ,Γ1, . . . ,ΓM) = Pr(S̃ | R̃,N ).

Hence we turn our focus on proving

Pr(S | R) = Pr(S̃ | R̃,N ) exp (o(k∆)) , (6.27)

or equivalently by Baye’s rule,

Pr(S) Pr(R | S)

Pr(R)
=

Pr(S̃ | N ) Pr(R̃ | S̃,N )

Pr(R̃ | N )
exp (o(k∆)) . (6.28)

For the purpose of intuition, notice that (6.27) and (6.28) can be interpreted as “degree concentra-
tion” conditions in terms of the Γi’s.

Recall now that so far we have defined the auxiliary probability spaces for arbitrary qcd > 0.
To prove (6.28) we choose the values of the qcd appropriately, similar to the proof of Lemma 6.2.
We first handle the case that 0 < α < 1. We define q and q00, . . . , q11 such that the equations (6.1),
(6.5) – (6.6) are satisfied and prove that in this case

q10, q01, q11 = Θ

(
k

N

)

and therefore q00 = 1 − 2q01 − q11 = 1 − Θ(kN−1). Indeed, the r.h.s. of (6.1) is Θ
(
k
N

)
, because

M = Θ(k∆) and Γ = Θ
(
N
k

)
. Because α does not depend on N , equation (6.13) implies that

q10, q01, q11 = Θ
(
k
N

)
.

We find that

Pr(S̃ | N ,Γ1, ...,ΓM) =
M∏

i=1

(
1− 2(1− q01 − q11)Γi + qΓi

00

)
.

Because by assumption q01, q11 = Θ
(
k
N

)
, the following follows from a simple Taylor expansion

of the logarithm. Recall that N ensures that Γi ∼ Θ
(
N
k

)
and, given N ,

max
i

Γi ≤ min
i

Γi +O

(
ln(N)

√
N

k

)
.

Thus, given N we we have

M∑

i=1

ln

(
1− 2 (1− q01 − q11)Γi + qΓi

00

1− 2 (1− q01 − q11)Γ + qΓ
00

)

= O
(
M
∣∣∣max

i
Γi −min

i
Γi

∣∣∣ (ln (1− q01 − q11)± ln (1− 2q01 − q11))
)

= Õ

(
M

√
N

k
· k
N

)
= o(k∆).

35

111



Therefore, we find

EΓi Pr(S̃ | N ,Γ1, . . . ,ΓM) = Pr
(
S̃ | N

)
= Pr (S) exp (o(k∆)) . (6.29)

A similar Taylor expansion directly shows that as in Lemma 6.2

Pr [R] =

(
N∆

αk∆, (1− α)k∆, (1− α)k∆

)
qαk∆

11 q
2(k−αk)∆
10 qN∆−2k∆+αk∆

00

= exp (o (k∆)) Pr
(
R̃ | N

)
.

We are left to prove that the conditional probabilities compare as well, more precisely that we
have

EΓi Pr(R̃ | S̃,N ,Γ1, . . . ,ΓM) = Pr
(
R̃ | S̃,N

)
= Pr (R | S) exp (o (k∆)) . (6.30)

We know as in Lemma 6.2 that Pr (R | S) = N−O(1) = exp(o(k∆)). Using an appropriate mod-
ification of the local limit theorem technique explained in Section 6 of [COHKL+21] one can
similarly deduce Pr

(
R̃ | S̃,N

)
= exp(o(k∆)), completing the proof in the case α ∈ (0, 1).

The case α = 1 follows from an almost identical line of reasoning for the case α = 1. In this
case, we have q01 = q10 = 0 and q11 = Θ (kN−1) as previously. The calculation of Pr (S) =
exp (o(k∆)) Pr (S | N ) works as above by setting q01 = 0. Indeed, given N it suffices to prove

(1− (1− q11)E[Γ1])M = exp (o (k∆))
M∏

i=1

(1− (1− q11)Γi).

This again follows from a Taylor expansion with E [Γ1] ∼ 2 ln 2N
k

, q11 = Θ
(
k
N

)
and M ∼ k∆

2 ln 2

and verifies

Pr
(
S̃ | N

)
= exp (o (k∆)) Pr (S) .

Analogously, as in Lemma 6.1, we can also verify that

Pr (R) =

(
MΓ

k∆

)
q11

∆k(1− q11)MΓ−∆k = exp (o (k∆)) Pr
(
R̃ | N

)
.

and that the local central limit theorem argument carries through again to give Pr (R | S) =

N−O(1) = exp(o(k∆)) and Pr
(
R̃ | S̃,N

)
= exp(o(k∆)).

7 Background on Hypothesis Testing and Low-Degree Polyno-
mials

Suppose we are interested in distinguishing between two probability distributions P = Pn and
Q = Qn over Rp (in our case, {0, 1}p), where p = pn grows with the problem size n. Given
a single sample X drawn from either P or Q (each chosen with probability 1/2), the goal is to
correctly determine whether X came from P or Q. There are two different objectives of interest:
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• Strong detection: test succeeds with probability 1− o(1) as n→∞.

• Weak detection: test succeeds with probability 1
2
+ε for some constant ε > 0 (not depending

on n).

A natural sufficient condition to obtain strong (respectively, weak) detection via a polynomial-
based test is strong (resp., weak) separation, as discussed in Section 2.2. We recall the definitions
here for convenience. For a multivariate polynomial f : Rp → R,

• Strong separation:
√

max {VarP[f ],VarQ[f ]} = o (|EP[f ]− EQ[f ]|).

• Weak separation:
√

max {VarP[f ],VarQ[f ]} = O (|EP[f ]− EQ[f ]|).

7.1 Chi-Squared Divergence
The chi-squared divergence χ2(P ‖Q) is a standard quantity that can be defined in a number of
equivalent ways. Let L = dP

dQ denote the likelihood ratio. Since our distributions P,Q are on the

finite set {0, 1}p, the likelihood ratio is simply L(X) = P(X)
Q(X)

:=
PrX′∼P(X′=X)

PrX′∼Q(X′=X)
. To ensure that L is

defined, we will always assume P is absolutely continuous with respect to Q, which on the finite
domain {0, 1}p simply means the support of P is contained in the support of Q (we can define
L(X) = 0 outside the support of Q). We have

χ2(P ‖Q) := E
X∼Q

L(X)2 − 1

= sup
f :Rp→R

(EX∼P f(X))2

EX∼Q f(X)2
− 1

= sup
f :Rp→R

EX∼Q f(X)=0

(EX∼P f(X))2

EX∼Q f(X)2
.

The equivalence between these definitions is standard, and follows as a special case of Lemma 7.2
below. Standard arguments use the chi-squared divergence to show information-theoretic impossi-
bility of detection (see for example Lemma 2 of [MRZ15]):

Lemma 7.1.

• If χ2(P ‖Q) = O(1) as n→∞ then strong detection is impossible.

• If χ2(P ‖Q) = o(1) as n→∞ then weak detection is impossible.

One can use either χ2(P ‖Q) or χ2(Q ‖P) for this purpose, but it is typically more tractable to
bound χ2(P ‖Q) where Q is the “simpler” distribution.
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7.2 Low-Degree Chi-Squared Divergence
The degree-D chi-squared divergence χ2

≤D(P ‖Q) is an analogous quantity which measures whether
or not P,Q can be distinguished by a degree-D polynomial. Let R[X]≤D denote the space of mul-
tivariate polynomials Rp → R of degree (at most) D. For functions Rp → R, define the inner
product 〈f, g〉Q := EX∼Q[f(X)g(X)] and the associated norm ‖f‖Q =

√
〈f, f〉Q. Also let f≤D

denote the orthogonal (with respect to 〈·, ·〉Q) projection of f onto R[X]≤D. Recall that L = dP
dQ

denotes the likelihood ratio. We have the equivalent definitions

χ2
≤D(P ‖Q) := E

X∼Q
L≤D(X)2 − 1 = ‖L≤D‖2

Q − 1 (7.1)

= sup
f∈R[X]≤D

(EX∼P f(X))2

EX∼Q f(X)2
− 1 (7.2)

= sup
f∈R[X]≤D

EX∼Q f(X)=0

(EX∼P f(X))2

EX∼Q f(X)2
. (7.3)

These equivalences are standard (see e.g. [Hop18, KWB19]), and we include the proof for conve-
nience.

Lemma 7.2. Suppose P and Q are distributions over Rp with P absolutely continuous with respect
to Q. The three definitions for χ2

≤D(P ‖Q) in (7.1)-(7.3) are equivalent.

Proof. For (7.1)=(7.2),

sup
f∈R[X]≤D

(EX∼P f(X))2

EX∼Q f(X)2
= sup

f∈R[X]≤D

(EX∼Q f(X)L(X))2

EX∼Q f(X)2
= sup

f∈R[X]≤D

〈f, L〉2Q
‖f‖2

Q

which is optimized by f = L≤D, so

=
〈L≤D, L〉2Q
‖L≤D‖2

Q
=
‖L≤D‖4

Q

‖L≤D‖2
Q

= ‖L≤D‖2
Q.

For (7.1)=(7.3), define the subspace V = {f ∈ R[X]≤D : EX∼Q[f ] = 0} = {f ∈ R[X]≤D :
〈f, 1〉Q = 0} and let fV denote orthogonal projection of f onto this subspace. Similarly to above,

sup
f∈V

(EX∼P f(X))2

EX∼Q f(X)2
= ‖LV ‖2

Q.

Now LV = (L− 〈L, 1〉Q)≤D = (L− 1)≤D = L≤D − 1 and so

‖LV ‖2
Q = ‖L≤D − 1‖2

Q = ‖L≤D‖2
Q − 2〈L≤D, 1〉Q + 1

= ‖L≤D‖2
Q − 2〈L, 1〉Q + 1 = ‖L≤D‖2

Q − 1,

completing the proof.
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Note that on the finite domain {0, 1}p, the degree-D chi-squared divergence recovers the usual
chi-squared divergence whenever D ≥ p, since any function {0, 1}p → R can be written as

a degree-p polynomial. From (7.1) we can see that the quantity
√
χ2
≤D(P ‖Q) + 1 is equal to

‖L≤D‖Q, which is commonly called the norm of the low-degree likelihood ratio (see [Hop18,
KWB19]). Analogous to the standard chi-squared divergence, we have the following interpretation
for χ2

≤D(P ‖Q).

• If χ2
≤D(P ‖Q) = O(1) for some D = ω(ln p), this suggests that strong detection has no

polynomial-time algorithm and furthermore requires runtime exp(Ω̃(D)).

• If χ2
≤D(P ‖Q) = o(1) for some D = ω(ln p), this suggests that weak detection has no

polynomial-time algorithm and furthermore requires runtime exp(Ω̃(D)).

To justify the above interpretations, recall the notions of strong/weak separation and low-degree
hardness from Section 2.2. We will see (Lemma 7.3) that if χ2

≤D(P ‖Q) = O(1) then no degree-D
polynomial can strongly separate P and Q, and similarly, if χ2

≤D(P ‖Q) = o(1) then no degree-D
polynomial can weakly separate P and Q. For further discussion on some other sense(s) in which
χ2
≤D(P ‖Q) can be used to rule out polynomial-based tests, we refer the reader to [KWB19],

Section 4.1 (for strong detection) and [LWB20], Section 2.3 (for weak detection).

7.3 Conditional Chi-Squared Divergence
It is well known that in some instances, the chi-squared divergence is not sufficient to prove sharp
impossibility results: there are cases where detection is impossible, yet χ2(P ‖Q) → ∞ due to a
rare “bad” event under P. Sharper results can sometimes be obtained by a conditional chi-squared
calculation. This amounts to defining a modified planted distribution P̃ by conditioning P on some
high-probability event (that is, an event of probability 1−o(1)). Note that any algorithm for strong
(respectively, weak) detection between P and Q also achieves strong (respectively, weak) detection
between P̃ and Q. As a result, bounds on χ2(P̃ ‖Q) can be used to prove impossibility of detection
between P and Q. This technique is classical, and it turns out to have a low-degree analogue:
bounds on χ2

≤D(P̃ ‖Q) can be used to show failure of low-degree polynomials to strongly/weakly
separate P and Q, as we see below. (This result also appears in [BEH+22, Proposition 6.2] and we
include the proof here for convenience.)

Lemma 7.3. Suppose P = Pn and Q = Qn are distributions over Rp for some p = pn. LetA = An
be a high-probability event under P, that is, P(A) = 1− o(1). Define the conditional distribution
P̃ = P |A.

• If χ2
≤D(P̃ ‖Q) = O(1) as n→∞ for some D = Dn, then no degree-D polynomial strongly

separates P and Q in the sense of (2.1).

• If χ2
≤D(P̃ ‖Q) = o(1) as n → ∞ for some D = Dn, then no degree-D polynomial weakly

separates P and Q in the sense of (2.2).

Proof. We prove the contrapositive. Suppose f = fn strongly (respectively, weakly) separates P
and Q. By shifting and rescaling we can assume without loss of generality that EQ[f ] = 0 and
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EP[f ] = 1, and that VarQ[f ],VarP[f ] are both o(1) (resp., O(1)). Note that EQ[f 2] = VarQ[f ]. It
suffices to show EP̃[f ] ≥ 1− o(1) so that, using (7.3),

χ2
≤D(P̃ ‖Q) ≥ (EP̃[f ])2

EQ[f 2]
≥ 1− o(1)

VarQ[f ]

which is ω(1) (resp., Ω(1)), completing the proof.
It remains to prove EP̃[f ] ≥ 1 − o(1). Letting Ac denote the complement of the event A, we

have
1 = E

P
[f ] = P(A) Ẽ

P
[f ] + P(Ac)E

P
[f |Ac],

and so, solving for EP̃[f ],

Ẽ
P
[f ] = P(A)−1(1− P(Ac)E

P
[f |Ac]).

Since P(A) = 1−o(1), it suffices to show |P(Ac)EP[f |Ac]| = o(1). We can also repeat the above
argument for the second moment:

E
P
[f 2] = P(A) Ẽ

P
[f 2] + P(Ac)E

P
[f 2 |Ac],

and so
P(Ac)E

P
[f 2 |Ac] ≤ E

P
[f 2] = Var

P
[f ] + 1.

We can use the above to conclude
∣∣∣P(Ac)E

P
[f |Ac]

∣∣∣ ≤ P(Ac)
√
E
P
[f 2 |Ac]

≤ P(Ac)
√
P(Ac)−1(Var

P
[f ] + 1)

=
√
P(Ac) ·

√
Var
P

[f ] + 1

= o(1) ·O(1) = o(1),

completing the proof.

7.4 Proof Technique for Low-Degree Lower Bounds: Low-Overlap Second
Moment

We now give an overview of the proof strategy for our low-degree hardness results. We will
bound the low-degree chi-squared divergence using a “low-overlap chi-squared calculation.” (This
is not to be confused with the conditional chi-squared from the previous section, although we
will sometimes use both together—a “low-overlap conditional chi-squared calculation.” But for
now, suppose we are simply working with P instead of P̃.) This strategy was employed implicitly
by [BBK+21, BKW20, KWB19] and is investigated in more detail by [BEH+22].

Recall that for the group testing models we consider, the planted distribution P takes the fol-
lowing form: first a set of k infected individuals is chosen uniformly at random, which we encode
using a k-sparse indicator vector u ∈ {0, 1}N ; then the observationX is drawn from an appropriate
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distribution Pu. We can therefore write L(X) = Eu∼U Lu(X) with Lu = dPu/dQ, where U de-
notes the uniform measure on k-sparse binary vectors. This means, using linearity of the degree-D
projection operator,

χ2
≤D(P ‖Q) + 1 =

∥∥L≤D
∥∥2

Q =

∥∥∥∥
(
E
u∼U

Lu

)≤D∥∥∥∥
2

Q
=
∥∥∥ E
u∼U

(
L≤Du

)∥∥∥
2

Q

=
〈

E
u∼U

L≤Du , E
u′∼U

L≤Du′
〉
Q

= E
u,u′∼U

〈L≤Du , L≤Du′ 〉Q

where u and u′ are drawn independently from U . For some threshold δ > 0 to be chosen later
(which may scale with n), we will break this expression down into two parts and handle them
separately:

χ2
≤D(P ‖Q) + 1 = R≤δ +R>δ

where
R≤δ := E

u,u′∼U
1〈u,u′〉≤δ 〈L≤Du , L≤Du′ 〉Q

and
R>δ := E

u,u′∼U
1〈u,u′〉>δ 〈L≤Du , L≤Du′ 〉Q.

We now sketch the arguments for bounding these two terms. We will showR>δ = o(1) by leverag-
ing the fact that 〈u, u′〉 > δ is a very low-probability event, combined with a crude upper bound on
〈L≤Du , L≤Du′ 〉Q. For R≤δ, we will first use a symmetry argument from [BEH+22, Proposition 3.6]
(we include the details in Lemmas 8.12 and 9.6) to show 〈L≤Du , L≤Du′ 〉Q ≤ 〈Lu, Lu′〉Q for all u, u′,
and so

R≤δ ≤ T≤δ := E
u,u′∼U

1〈u,u′〉≤δ 〈Lu, Lu′〉Q.

Thus it suffices to bound the “low-overlap second moment” T≤δ. Since this quantity does not
involve low-degree projection, it will be tractable to compute directly.

We will sometimes need to bound the conditional low-degree chi-squared divergence, in which
case we follow the above proof sketch with a modified planted distribution P̃ in place of P.

We remark that the “standard” approach to bounding the low-degree chi-squared divergence
involves direct moment computations with a basis of Q-orthogonal polynomials (see e.g. [Hop18],
Section 2.3 or [KWB19], Section 2.3). For the group testing models we consider here, this ap-
proach seems prohibitively complicated: for the Bernoulli design we will need a modified planted
distribution P̃, under which it seems difficult to directly compute expectations of orthogonal poly-
nomials; for the constant-column design, the orthogonal polynomials themselves are quite com-
plicated and arduous to work with directly. By following the more indirect proof sketch outlined
above, we are able to drastically simplify these calculations: for the Bernoulli design, the low-
overlap second moment T≤δ “plays well” with the conditional distribution P̃; for the constant-
column design, we manage to largely avoid working with the specific details of the orthogonal
polynomials (aside from some very basic properties used when boundingR>δ).

41

117



8 Detection in the Constant-Column Design

8.1 Detection Algorithm: Proof of Theorem 3.2(a)
Recall that our goal is to derive conditions under which there exists a low-degree algorithm that
achieves strong separation (as defined in (2.1)) for the following two distributions:

• Null model Q: N individuals each participate in exactly ∆ distinct tests, chosen uniformly
at random (from a total number of M tests).

• Planted Model P: a set of k infected individuals out of N is chosen uniformly at random.
Then a graph is drawn as in the null model conditioned on having at least one infected
individual in every test.

Proposition 8.1. Fix an arbitrary constant ε > 0. If k3 ≥ N2+ε then there is a degree-2 polynomial
that strongly separates P and Q.

This implies Theorem 3.2(a) because the condition c > cCC
LD is equivalent to k3 ≥ N2+ε. The

polynomial achieving strong separation is T defined in (8.1). The value of T is computable in
polynomial time, so by Chebyshev’s inequality, this also gives a polynomial-time algorithm for
strong detection by thresholding T .

The rest of this section is devoted to proving Proposition 8.1. Given an (N,M)-bipartite graph
X ∈ {0, 1}NM drawn from either P or Q, let Γ1, . . . ,ΓM denote the degree sequence of the
tests, i.e., Γj is the number of individuals in test j. The polynomial we use to distinguish will be
T : {0, 1}NM → R defined by

T (X) =
M∑

j=1

(
Γj −

N∆

M

)2

. (8.1)

Note that each Γj is a degree-1 polynomial in X , and so T is a degree-2 polynomial in X .

Remark 8.2. Since the total number of edges in the graph is exactly N∆ =
∑

j Γj , we can expand
the square in (8.1) to deduce

T (X) =
M∑

j=1

Γ2
j −

N2∆2

M
,

which means the simpler polynomial
∑

j Γ2
j also achieves strong separation in the same regime

that T does. However, the centered version (8.1) will be more convenient for our analysis.

In the planted model, decompose Γj = Zj + Wj where Wj is the contribution from infected
edges and Zj is the contribution from non-infected edges. There are two key claims we need to
prove:

Lemma 8.3. In the null model, |T − E[T ]| ≤ Õ(N/
√
k) with overwhelming probability 1−n−ω(1).

Lemma 8.4. In the planted model,
∣∣∣∣∣

(∑

j

W 2
j

)
− (1 + ln 2 + o(1))k∆

∣∣∣∣∣ ≤ Õ(
√
k)

with overwhemling probability 1− n−ω(1).
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8.1.1 Proof of Proposition 8.1

We first show how to complete the proof of Proposition 8.1 assuming Lemmas 8.3 and 8.4.

Lemma 8.5.
Var
Q

[T ] = Õ(N2/k).

Proof. Since T ≤ nO(1) almost surely, this is immediate from Lemma 8.3.

Lemma 8.6. ∣∣∣∣EP [T ]− E
Q

[T ]

∣∣∣∣ = Ω̃(k).

Proof. Under Q we have Γj ∼ Bin(N, ∆
M

) for each j (but these are not independent), so we can
compute

E
Q

[T ] = M · Var

[
Bin

(
N,

∆

M

)]
= N∆

(
1− ∆

M

)
. (8.2)

Under P, let Zj = Zj − (N − k) ∆
M

and W j = Wj − k ∆
M

, and write

T =
∑

j

(Zj +W j)
2 =

∑

j

Z
2

j +
∑

j

W
2

j + 2
∑

j

ZjW j. (8.3)

Similarly to (8.2),

E

[∑

j

Z
2

i

]
= (N − k)∆

(
1− ∆

M

)
. (8.4)

Also, E[ZjW j] = 0 due to the independence between the Z’s and W ’s along with the centering
E[Zj] = E[W j] = 0. The centering for W follows because the total number of infected edges is
exactly k∆ =

∑
jWj . Finally, using this same fact again,

∑

j

W
2

j =
∑

j

(
W 2
j − 2k

∆

M
Wj + k2 ∆2

M2

)
=
∑

j

W 2
j −

k2∆2

M
.

Combining the above, we conclude

E
P
[T ]− E

Q
[T ] = E

[∑

j

W 2
j

]
− k∆− k(k − 1)

∆2

M
= E

[∑

j

W 2
j

]
− (1 + 2 ln 2 + o(1))k∆.

Finally, since
∑

jW
2
j ≤ nO(1) almost surely, Lemma 8.4 implies

E

[∑

j

W 2
j

]
= (1 + ln 2 + o(1))k∆± Õ(

√
k), (8.5)

and so
E
P
[T ]− E

Q
[T ] = −(ln 2 + o(1))k∆± Õ(

√
k) = −Θ̃(k),

completing the proof.
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Lemma 8.7.
Var
P

[T ] = Õ(N2/k).

Proof. Recall from (8.3) the decomposition

T =
∑

j

Z
2

j +
∑

j

W
2

j + 2
∑

j

ZjW j.

We claim that all pairwise covariances between the three terms in the right-hand side above are
zero. For the first two terms,

Cov

(∑

j

Z
2

j ,
∑

j

W
2

j

)
= 0

follows immediately because the Z’s are independent from the W ’s. We can also compute

Cov

(∑

j

Z
2

j ,
∑

j

ZjW j

)
=
∑

ij

E[Z
2

iZjW j]− E

[∑

j

Z
2

j

]
E

[∑

j

ZjW j

]

=
∑

ij

E[Z
2

iZj]E[W j]− E

[∑

j

Z
2

j

](∑

j

E[Zj]E[W j]

)

= 0,

where we have used independence between the Z’s and W ’s along with the centering E[Zj] =
E[W j] = 0. The third covariance can similarly be computed to be zero. As a result,

Var
P

[T ] = Var

[∑

j

Z
2

j

]
+ Var

[∑

j

W
2

j

]
+ Var

[∑

j

ZjW j

]
.

The first two terms are Õ(N2/k) and Õ(k) respectively, using Lemmas 8.3 and 8.4 respectively.
We will compute the third term. Since

∑
i Zi = 0 almost surely, we have, using symmetry,

0 = E



(∑

j

Zj

)2

 = M E[Z

2

1] +M(M − 1)E[Z1Z2].

Therefore E[Z1Z2] = − 1
M−1

E[Z
2

1] and similarly, E[W 1W 2] = − 1
M−1

E[W
2

1]. We can use this to

44

120



compute

Var

[∑

j

ZjW j

]
=
∑

ij

E[ZiZjW iW j]

=
∑

ij

E[ZiZj]E[W iW j]

=
∑

i

E[Z
2

i ]E[W
2

i ] +
∑

i 6=j
E[ZiZj]E[W iW j]

= M E[Z
2

1]E[W
2

1] +M(M − 1) · −1

M − 1
E[Z

2

1] · −1

M − 1
E[W

2

1]

=
M2

M − 1
E[Z

2

1]E[W
2

1]

=
1

M − 1
E

[∑

j

Z
2

j

]
E

[∑

j

W
2

j

]
= Õ

(
1

k
·N · k

)
= Õ(N),

where we have used (8.4) and (8.5) in the final line. Since k ≤ N ≤ N2/k, we conclude VarP[T ] =
Õ(N2/k + k +N) = Õ(N2/k).

Proof of Proposition 8.1. This follows immediately from the definition of strong separation (2.1)
by combining Lemmas 8.5, 8.6, and 8.7.

8.1.2 Proof of Lemma 8.3

Proof of Lemma 8.3. Under Q we have Γj ∼ Bin(N, ∆
M

) for each j (although these are not in-
dependent), which has mean N∆

M
≥ nΩ(1) and variance ≤ N∆

M
. Bernstein’s inequality gives

|Γj − N∆
M
| ≤

√
N∆
M

lnn with probability n−ω(1). Let Γ± := N∆
M
±
√

N∆
M

lnn. Define Γ′j to
be the restriction of Γj to the interval [Γ−,Γ+], that is,

Γ′j :=





Γ− if Γj < Γ−

Γj if Γ− ≤ Γj ≤ Γ+

Γ+ if Γj > Γ+

and let

T ′ :=
M∑

j=1

(
Γ′j −

N∆

M

)2

.

The Bernstein bound above implies T ′ = T with probability 1− n−ω(1) and (since T, T ′ ≤ nO(1))
E[T ′] = E[T ]± n−ω(1). It therefore suffices to prove the lemma with T ′ in place of T .

We will apply McDiarmid’s inequality to T ′. Let Xi ⊆ [M ] denote individual i’s choice of ∆
distinct tests. Note that {Xi} are independent and that T ′ is a deterministic function of {Xi}; we
write T ′ = T ′(X1, . . . , XN). To apply McDiarmid’s inequality, we need to bound the maximum
possible change in T ′ induced by changing a single Xi. If a single Xi changes, this changes at

45

121



most 2∆ = Õ(1) different Γ′j values, each of which changes by at most 1. When Γ′j changes to
Γ′j + δ for δ ∈ {±1}, the induced change in T ′ is
∣∣∣∣∣

(
Γ′j + δ − N∆

M

)2

−
(

Γ′j −
N∆

M

)2
∣∣∣∣∣ =

∣∣∣∣2δ
(

Γ′j −
N∆

M

)
+ 1

∣∣∣∣ ≤ 2

√
N∆

M
lnn+1 = Õ(

√
N/k).

McDiarmid’s inequality now yields

|T ′ − E[T ′]| ≤ Õ(N/
√
k) with probability 1− n−ω(1),

completing the proof.

8.1.3 Proof of Lemma 8.4

Proof of Lemma 8.4. We first give an overview of the proof, which involves a series of compar-
isons to simpler models. Since the infected and non-infected individuals behave independently,
we only need to consider the infected individuals in this proof. We will define quantities Rj that
are similar to Wj except with multi-edges allowed. The Rj’s can be generated by a balls-into-bins
experiment conditioned on having at least one ball (infected edge) in each bin (test). We then
approximate the load per bin as a family of independent random variables R′j with distribution
Poi≥1(λ) (Poisson conditioned on value at least 1), for a certain choice of λ. Standard concentra-
tion arguments imply the desired result for the R′j’s with overwhelming probability 1−n−ω(1). We
next show that with non-trivial probability n−O(1), the sum of theR′j’s is exactly k∆, in which case
the R′j’s have the same joint distribution as the Rj’s. This lets us conclude the desired result for
the Rj’s with overwhelming probability. Finally, we show that with non-trivial probability n−O(1),
the balls-into-bins experiment did not feature any multi-edges, allowing us to conclude the desired
result for the original Wj’s. In the following, we will fill in this sketch with details.

Suppose k∆ balls are thrown intoM bins independently and uniformly at random, conditioned
on having at least one ball in every bin. Let Rj denote the random number of balls in bin j. Also
let R′1, . . . , R

′
M be a collection of independent Poi≥1(λ) random variables with λ = (1 + o(1)) ln 2

chosen such that E[R′j] = k∆
M

= (1 + o(1))2 ln 2. Our first step is to prove the desired result
for the {R′j}. One can compute E[(R′j)

2] = (2 ln 2)(1 + ln 2) + o(1) = (1 + ln 2 + o(1))k∆
M

.
Standard sub-exponential tail bounds on the Poisson distribution (see [Can16]) imply R′j ≤ ln2 n

with probability 1 − n−ω(1) and E[(R′j)
2 |R′j ≤ ln2 n] = E[(R′j)

2] ± n−ω(1). Apply Hoeffding’s
inequality conditioned on the event {R′j ≤ ln2 n for all j} to conclude

∣∣∣∣∣

(∑

j

(R′j)
2

)
− (1 + ln 2 + o(1))k∆

∣∣∣∣∣ ≤ Õ(
√
k) with probability 1− n−ω(1).

Our next step is to transfer this claim to {Rj} and then finally to {Wj}. Define the event

R =
{∑M

j=1R
′
j = k∆

}
. A folklore fact (e.g., implicit in [Dur19, Chapter 3.6]) is that the bin

loads of the balls-into-bins experiment has the same distribution as i.i.d. Poisson random variables
(of any variance) conditioned on the total number of balls being correct; this gives the equality of
distributions

(R1, . . . , RM)
d
= (R′1, . . . , R

′
M) givenR.
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Also, by the local limit theorem for sums of independent random variables, since k∆ is the ex-
pectation of

∑
j R
′
j , we have Pr(R) = n−O(1). This means the probability of any event can only

increase by a factor of nO(1) when passing from {R′j} to {Rj}, and in particular,
∣∣∣∣∣

(∑

j

R2
j

)
− (1 + ln 2 + o(1))k∆

∣∣∣∣∣ ≤ Õ(
√
k) with probability 1− n−ω(1).

Finally, we use a similar argument to pass from {Rj} to {Wj}. In Lemma 8.8 below, we show
that with probability n−O(1), the balls-into-bins experiment generating {Rj} features no multi-
edges (i.e., the ∆ balls from each infected individual fall into ∆ distinct bins). Conditioned on
having no multi-edges, {Rj} has the same distribution as {Wj}, so similarly to above we conclude

∣∣∣∣∣

(∑

j

W 2
j

)
− (1 + ln 2 + o(1))k∆

∣∣∣∣∣ ≤ Õ(
√
k) with probability 1− n−ω(1).

as desired.

Lemma 8.8. Suppose k infected individuals each choose ∆ tests out of M uniformly at random
with replacement (so that multi-edges may occur), conditioned on having at least one infected
individual in every test. With probability n−O(1), no multi-edges occur.

Proof. Suppose each individual chooses ∆ tests with replacement. Let A be the event that all M
tests contain at least one infected individual, and let B be the event that no multi-edges occur. Our
goal is to show Pr(B | A) = n−O(1). It is clear that Pr(A | B) ≥ Pr(A | Bc). Using Bayes’ rule,

Pr(B | A) =
Pr(A | B) Pr(B)

Pr(A)
=

Pr(A | B) Pr(B)

Pr(A | B) Pr(B) + Pr(A | Bc) Pr(Bc)

≥ Pr(B)

Pr(B) + Pr(Bc)
= Pr(B).

Thus it suffices to show Pr(B) = n−O(1), which is easy to establish directly due to independence
across individuals. For any one individual, the expected number of “edge collisions” is

(
∆
2

)
1
M
≤

∆2

M
, so by Markov’s inequality, the probability that this individual has no multi-edges is ≥ 1− ∆2

M
.

Now

Pr(B) ≥
(

1− ∆2

M

)k
=

(
1−Θ

(
lnn

k

))k
= exp(−Θ(lnn)) = n−Θ(1),

completing the proof.

8.2 Low-Degree Lower Bound: Proof of Theorem 3.2(b)
8.2.1 Orthogonal Polynomials

A key ingredient for the analysis will be an orthonormal (with respect to 〈·, ·〉Q defined in Sec-
tion 7.2) basis for the polynomials {0, 1}NM → R. We first discuss orthogonal polynomials on a
slice of the hypercube (which corresponds to the edges incident to one individual), and then show
how to combine these to build an orthonormal basis for Q.

47

123



Orthogonal Polynomials on a Slice of the Hypercube Consider the uniform distribution on the
“slice of the hypercube”

(
[M ]
∆

)
:= {x ∈ {0, 1}M :

∑
i xi = ∆}, where ∆ ≤ M/2. The associated

inner product between functions
(

[M ]
∆

)
→ R is 〈f, g〉 := E

x∼Unif([M ]
∆ )[f(x)g(x)] and the associated

norm is ‖f‖ :=
√
〈f, f〉. An orthonormal basis of polynomials with respect to this inner product

is given in [Sri11, Fil16]. For ease of readability, we will not give the (somewhat complicated)
full definition of the basis here. Instead, we will state only the properties of this basis that we
actually need for the proof. See Appendix B for further details on how to extract these properties
from [Fil16].

The basis elements are called (χ̂B)B∈BM . These are multivariate polynomials RM → R that
are orthonormal with respect to the above inner product 〈·, ·〉 on the slice. The indices B belong to
some set BM , the details of which will not be important for us. The indices have a notion of “size”
|B| ∈ N := {0, 1, 2, . . .}, which coincides with the degree of the polynomial χ̂B.

Fact 8.9. For any integer D ≥ 0, the set {χ̂B : B ∈ BM , |B| ≤ min(D,∆)} is a complete
orthonormal basis for the degree-D polynomials on

(
[M ]
∆

)
. That is, for any polynomial RM → R

of degree (at most) D, there is a unique R-linear combination of these basis elements that is
equivalent3 to f on

(
[M ]
∆

)
.

In particular, any function on the slice can be written as a polynomial of degree at most ∆.
Luckily, we will not need to use many specific details about the functions χ̂B. We only need

the following crude upper bound on their maximum value.

Fact 8.10. For any x ∈
(

[M ]
∆

)
and any B ∈ BM with |B| ≤ ∆, we have |χ̂B(x)| ≤M2|B|.

Orthogonal Polynomials for the Null Distribution The null distribution Q consists of N in-
dependent copies of the uniform distribution on

(
[M ]
∆

)
, one for each individual. We can therefore

use the following standard construction to build an orthonormal basis of polynomials for Q. We
denote the basis by {HS}S∈SM,∆ where

SM,∆ = {S = (B1, . . . , BN) : Bi ∈ BM , |Bi| ≤ ∆},

defined by HS(X) =
∏

i∈[N ] χ̂Bi(Xi) where Xi is the collection of edge-indicator variables for
edges incident to individual i. For S = (B1, . . . , BN), we define |S| =

∑
i∈[N ] |Bi|, which is the

degree of the polynomial HS . As a consequence of Fact 8.9, {HS : S ∈ SM,∆, |S| ≤ D} is a
complete orthonormal (with respect to 〈·, ·〉Q) basis for the degree-D polynomials {0, 1}NM → R.

We will need an upper bound on the number of basis elements of a given degree. Since {HS}
are linearly independent, the number of indices S ∈ SM,∆ with |S| ≤ D is at most the dimension
(as a vector space over R) of the degree-D polynomials {0, 1}NM → R. This dimension is at
most the number of multilinear monomials of degree ≤ D, i.e., the number of subsets of [NM ] of
cardinality ≤ D. This immediately gives the following.

Fact 8.11. For any integer D ≥ 0,

|{S ∈ SM,∆ : |S| ≤ D}| ≤ (1 +NM)D.

3Here, “equivalent” means the two functions output the same value when given any input from
(

[M ]
∆

)
. This is not

the same as being equal as formal polynomials, e.g., x1 is equivalent to x2
1, and

∑
i xi is equivalent to the constant ∆.
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8.2.2 Low-Degree Hardness

We follow the proof outline in Section 7.4, defining U , Pu, and Lu = dPu/dQ accordingly. With
some abuse of notation, we will use u to refer to both the set of infected individuals and its indicator
vector u ∈ {0, 1}N .

Lemma 8.12. For any u, u′, we have 〈L≤Du , L≤Du′ 〉Q ≤ 〈Lu, Lu′〉Q.

Proof. We use a symmetry argument inspired by [BEH+22, Proposition 3.6]. Expanding in the
orthonormal basis {HS} from Section 8.2.1, we have

〈L≤Du , L≤Du′ 〉Q =
∑

|S|≤D
〈Lu, HS〉Q〈Lu′ , HS〉Q =

∑

|S|≤D
E

X∼Pu
[HS(X)] E

X∼Pu′
[HS(X)]. (8.6)

Let V (S) = {i ∈ [N ] : ∃a ∈ [M ], (i, a) ∈ S}, the set of all individuals “involved” in the basis
function S. Note that if V (S) 6⊆ u then there exists some i ∈ V (S) such that under X ∼ Pu
we have Xi ∼ Unif

(
[M ]
∆

)
independently from the rest of X , and thus EX∼Pu [HS(X)] = 0.

Similarly, if V (S) 6⊆ u′ then EX∼Pu′ [HS(X)] = 0. On the other hand, if V (S) ⊆ u ∩ u′
then (by symmetry) Pu and Pu′ have the same marginal distribution when restricted to the vari-
ables {(i, a) : i ∈ u ∩ u′} and so EX∼Pu [HS(X)] = EX∼Pu′ [HS(X)]. As a result, we have
EX∼Pu [HS(X)]EX∼Pu′ [HS(X)] ≥ 0 for all S, i.e., every term on the right-hand side of (8.6) is
nonnegative. This means 〈L≤0

u , L≤0
u′ 〉Q ≤ 〈L≤1

u , L≤1
u′ 〉Q ≤ 〈L≤2

u , L≤2
u′ 〉Q ≤ · · · ≤ 〈L≤∞u , L≤∞u′ 〉Q =

〈Lu, Lu′〉Q.

Following Section 7.4, recall the decomposition

χ2
≤D(P ‖Q) + 1 = R≤δ(D) +R>δ(D) (8.7)

(where we have made the dependence on D explicit) and choose

δ = max

{
k2

N
, 1

}
· n2γ (8.8)

for a small constant γ > 0 to be chosen later. In light of Lemma 8.12, we have

R≤δ(D) := E
u,u′∼U

1〈u,u′〉≤δ 〈L≤Du , L≤Du′ 〉Q ≤ E
u,u′∼U

1〈u,u′〉≤δ 〈Lu, Lu′〉Q =: T≤δ. (8.9)

It therefore remains to bound R>δ(D) and T≤δ, which we will do in Lemmas 8.14 and 8.17 re-
spectively.

Towards boundingR>δ(D), we need the following crude upper bound on 〈L≤Du , L≤Du′ 〉Q, which
makes use of some basic properties of the orthogonal polynomials discussed in Section 8.2.1.

Lemma 8.13. For any u, u′, we have 〈L≤Du , L≤Du′ 〉Q ≤ (NM + 1)DM4D.

Proof. Consider the expansion (8.6). The number of terms in the sum on the right-hand side is at
most (NM + 1)D by Fact 8.11. Using Fact 8.10 and the definition of HS (see Section 8.2.1), we
have for any |S| ≤ D and any X ∈ {0, 1}N×M that |HS(X)| ≤M2D. Plugging these bounds back
into (8.6) yields the claim.
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Lemma 8.14. For any fixed θ ∈ (0, 1), c ∈ (0, (ln 2)−2), and γ > 0, if δ is chosen according
to (8.8) and D = Dn satisfies D ≤ nγ thenR>δ(D) = o(1).

Proof. Fix u and consider the randomness over u′. In order to have 〈u, u′〉 > δ, there must exist
a subset of size exactly dδe contained in both u and u′. For any fixed subset of u of this size, the
probability (over u′) that it is also contained in u′ is

(
N−dδe
k−dδe

)
/
(
N
k

)
. Taking a union bound over these

subsets and using the choice of δ (8.8) along with the binomial bound
(
n
k

)
≤
(
en
k

)k for 1 ≤ k ≤ n,

Pr
u,u′∼U

(〈u, u′〉 > δ) ≤
(
k

dδe

)(N−dδe
k−dδe

)
(
N
k

) ≤
(
k

dδe

)(
k

N − dδe+ 1

)dδe

≤
(
ek

dδe

)dδe(
k

N − k

)dδe
=

(
ek

dδe ·
k

N − k

)dδe
(8.10)

≤
(

2e

n2γ

)dδe
≤
(

2e

n2γ

)n2γ

≤ n−γn
2γ

,

provided c < (ln 2)−2 (so that k = o(N)). Combining this with Lemma 8.13,

R>δ(D) := E
u,u′∼U

1〈u,u′〉>δ 〈L≤Du , L≤Du′ 〉Q ≤ Pr
u,u′∼U

(〈u, u′〉 > δ) · (NM + 1)DM4D

= n−Ω(n2γ) · nO(D), (8.11)

which is o(1) provided D ≤ nγ .

8.2.3 Low-Overlap Second Moment

This section is devoted to bounding T≤δ as defined in (8.9). Letting E(u,X) denote the event that
every test contains at least one individual from u, we can write

Lu(X) =
dPu
dQ

(X) = Q(E(u,X))−1
1E(u,X)

and

〈Lu, Lu′〉Q = Q(E(u,X))−2 Pr
X∼Q

(E(u,X) ∩ E(u′, X)) =
PrX∼Q(E(u′, X) |E(u,X))

PrX∼Q(E(u,X))
. (8.12)

Let N (u) ⊆ [M ] denote the neighborhood of u, that is, the set of tests that contain at least one
individual from u. Let B(u, u′, X) denote the event that the neighborhood of u ∩ u′ has maximal
size, that is, |N (u ∩ u′)| = ∆ · |u ∩ u′|.

Lemma 8.15. For any fixed u, u′,

PrX∼Q(E(u′, X) |E(u,X))

PrX∼Q(E(u,X))
≤ 1

PrX∼Q(B(u, u′, X))
.
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Proof. First, observe that the events E(u,X) and E(u′, X) are conditionally independent given
|N (u∩ u′)|. Furthermore, since E(u′, X) is clearly a monotone event with respect to |N (u∩ u′)|,
we have for every x ∈ {0, 1, . . . ,∆|u ∩ u′|},

Pr
X∼Q

(E(u′, X) | |N (u ∩ u′)| = x) ≤ Pr
X∼Q

(E(u′, X) | |N (u ∩ u′)| = ∆|u ∩ u′|)

= Pr
X∼Q

(E(u′, X) |B(u, u′, X)).

Hence, combining with the aforementioned conditional independence we get

Pr
X∼Q

(E(u′, X) | |N (u ∩ u′)| = x,E(u,X)) ≤ Pr
X∼Q

(E(u′, X) |B(u, u′, X)). (8.13)

Using now (8.13) and the law of total probability we have

Pr
X∼Q

(E(u′, X) |E(u,X))

=

∆|u∩u′|∑

x=0

Pr
X∼Q

(|N (u ∩ u′)| = x |E(u,X)) Pr
X∼Q

(E(u′, X) | |N (u ∩ u′)| = x,E(u,X))

≤ Pr
X∼Q

(E(u′, X) |B(u, u′, X)). (8.14)

Given (8.14) and symmetry we conclude

PrX∼Q(E(u′, X) |E(u,X))

PrX∼Q(E(u,X))
≤ PrX∼Q(E(u′, X) |B(u, u′, X))

PrX∼Q(E(u,X))

=
PrX∼Q(E(u′, X) |B(u, u′, X))

PrX∼Q(E(u,X) |B(u, u′, X)) PrX∼Q(B(u, u′, X))

=
1

PrX∼Q(B(u, u′, X))
,

completing the proof.

Lemma 8.16. For any fixed u, u′ with 〈u, u′〉 = `,

Pr
X∼Q

(B(u, u′, X)) ≥ 1− `2M−1∆2.

Proof. We will compute E[Z] where Z is defined to be the number of “collisions”, i.e., the number
of tuples (i, j, a) where i, j ∈ u ∩ u′ (with i < j) and a ∈ [M ] such that test a contains both
individuals i and j. The number of tuples (i, j, a) is

(
`
2

)
M and the probability that any fixed tuple

is a collision is (∆/M)2. Therefore E[Z] =
(
`
2

)
M−1∆2. Since B(u, u′, X) is the event that Z = 0,

we have by Markov’s inequality, Pr(B) = 1− Pr(Z ≥ 1) ≥ 1− E[Z] ≥ 1− `2M−1∆2.

Lemma 8.17. For any fixed θ ∈ (0, 1) and c > 0 satisfying c < cCC
LD , there exists γ = γ(θ, c) such

that if δ is chosen according to (8.8) then T≤δ = 1 + o(1).

Proof. Combining (8.12) with Lemmas 8.15 and 8.16, we have

〈Lu, Lu′〉Q ≤ (1− 〈u, u′〉2M−1∆2)−1
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and so
T≤δ := E

u,u′∼U
1〈u,u′〉≤δ 〈Lu, Lu′〉Q ≤ (1− δ2M−1∆2)−1.

Recalling M−1∆2 = Θ̃(k−1), we have T≤δ = 1 + o(1) provided that δ �
√
k (where � hides

factors of lnn). Recalling the choice of δ (8.8), this reduces to the sufficient conditions k2

N
n2γ �√

k and n2γ �
√
k. Choosing γ sufficiently small and recalling the scaling for N , these reduce to

3
2
θ + (1− θ)c(ln 2)2 < 1, which is equivalent to c < cCC

LD .

Proof of Theorem 3.2(b). Provided c < cCC
LD (which also implies c < (ln 2)−2), we can combine

(8.7), (8.9), Lemma 8.14, and Lemma 8.17 to conclude χ2
≤D(P ‖Q) = o(1) for any D ≤ nγ =

nΩ(1). By Lemma 7.3, this completes the proof of Theorem 3.2(b).

9 Detection in the Bernoulli Design
For convenience we recall the definition

cB
LD =





− 1
ln2 2

W0(− exp(− θ
1−θ ln 2− 1)) if 0 < θ < 1

2
(1− 1

4 ln 2−1
),

1
ln 2
· 1−2θ

1−θ if 1
2
(1− 1

4 ln 2−1
) ≤ θ < 1

2
,

0 if 1
2
≤ θ < 1,

where W0(x) denotes the unique y ≥ −1 satisfying yey = x. Throughout this section, the follow-
ing reformulation will be helpful: for θ ∈ (0, 1) and c > 0, the condition c > cB

LD is equivalent to
τ(c) < θ

1−θ , where the function τ is given by

τ(c) =





1− c ln 2 if 0 < c ≤ 1
2(ln 2)2 ,

c ln 2− 1
ln 2

[1 + ln(c(ln 2)2)] if 1
2(ln 2)2 < c < 1

(ln 2)2 ,

0 if c ≥ 1
(ln 2)2 .

(9.1)

9.1 Upper Bounds: Proof of Theorem 3.3(a) and Theorem 3.4(a)
First, for Theorem 3.4(a), it is known that if c > 1/ ln 2 then approximate recovery is possible (see
e.g. [IZ21, Lemma 2.1]). Hence, by Proposition C.1 strong detection is also possible.

In this section we give a polynomial-time algorithm for strong detection whenever τ(c) < θ
1−θ

(recall the reformulation in (9.1)). We also show how to turn this algorithm into an O(lnn)-degree
polynomial that achieves strong separation (see Section 9.1.4). This will complete the proof of
both Theorem 3.4(a) and Theorem 3.3(a).

Define the test statistic T to be the number of individuals of (graph-theoretic) degree at least
d = 2tqM for a constant t > 1 to be chosen later. That is,

T =
N∑

i=1

1di≥d

where di is the degree of individual i (i.e., the number of tests that i participates in).
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9.1.1 Non-Infected

First consider the contribution T− to T from non-infected individuals. (Under Q, we consider all
individuals to be “non-infected.”) Let N ′ = |V−| be the number of non-infected individuals, which
is equal to N under Q and N − k under P. The degree of each i ∈ V− is di ∼ Bin(M, q) and these
are independent. Define

p− = Pr(Bin(M, q) ≥ d)

so that T− ∼ Bin(N ′, p−). This means E[T−] = N ′p− and Var(T−) = N ′p−(1 − p−) ≤ N ′p−.
We can bound p− using the Binomial tail bound (Proposition A.2):

p− ≤ exp(−MD(2tq ‖ q))

where, using Lemma A.4,

D(2tq ‖ q) ≥ q(2t ln 2t− 2t+ 1)−O(q2),

where O(·) hides a constant depending only on t. This means

p− ≤ exp
[
−
( c

2
+ o(1)

)
k ln(n/k) · q(2t ln 2t− 2t+ 1− o(1))

]

≤ n−(1−θ) c
2

(ln 2)(2t ln 2t−2t+1)+o(1). (9.2)

9.1.2 Infected

Now consider the contribution T+ to T from infected individuals (under P). Under P there are
k = |V+| infected individuals. Each i ∈ V+ has degree di ∼ Bin(M, 2q) (see (9.3)), but these are
not independent. Define

p+ = Pr(Bin(M, 2q) ≥ d).

Lemma 9.1. We have
p+ = n−(1−θ)c(ln 2)(t ln t−t+1)+o(1).

Proof. We first give a lower bound using the Binomial tail lower bound (Proposition A.3 and
Lemma A.4):

p+ ≥
1√

8d(1− d/M)
exp

(
−MD

(
d

M

∥∥∥ 2q

))

≥ 1√
16tqM

exp(−MD(2tq ‖ 2q))

≥ 1√
16t

(( c
2

ln 2 + o(1)
)

ln(n/k)
)−1/2

exp[−M(2tq ln t+ 2q − 2tq +O(q2))]

≥ n−o(1) exp[−(c ln 2 + o(1))(t ln t− t+ 1 + o(1)) ln(n/k)]

= n−(1−θ)c(ln 2)(t ln t−t+1)−o(1)

as desired. The matching upper bound is proved similarly, using the Binomial tail upper bound
(Proposition A.2).
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This gives us control of the mean of T+, since E[T+] = kp+. Next we will bound the variance of
T+ which is more difficult because the di are not independent. However, we will leverage negative
correlations between the di to effectively reduce to the independent case. Fix two distinct infected
individuals i, j and a test a. Recall that Xia is the indicator for edge (i, a). We will compute the
joint distribution of Xia and Xja. Letting Ea be the event that a is connected to at least one of the
k infected individuals,

q2 = E
Q

[XiaXja] = Q(Ea)E
Q

[XiaXja|Ea] + Q(Ea)E
Q

[XiaXja|Ea]

=
1

2
· E
Q

[XiaXja|Ea] +
1

2
· 0

and so
P(Xia = Xja = 1) = E

P
[XiaXja] = E

Q
[XiaXja|Ea] = 2q2.

Similarly, we can compute

P(Xia = Xja = 0) = 1− 4q + 2q2

and
P(Xia = 1 ∧Xja = 0) = P(Xia = 0 ∧Xja = 1) = 2q(1− q),

and so we know the joint distribution of Xia and Xja under P. Due to independence across tests,
we also know the joint distribution of {Xia}a∈[M ] and {Xja}a∈[M ]. In particular, we have the
conditional probabilities

P(Xja = 1 |Xia = 1) =
2q2

2q
= q

and

P(Xja = 1 |Xia = 0) =
2q(1− q)

1− 2q
,

as well as the conditional distribution

dj | {di = w} ∼ Bin(w, q) + Bin

(
M − w, 2q(1− q)

1− 2q

)
=: Dw

where the two binomials are independent. Since 2q(1−q)
1−2q

> q (recall q = ν
k
→ 0), the distribution

Dw stochastically dominates Dw+1 for all 0 ≤ w < M . As a result,

P(dj ≥ d | di ≥ d) ≤ P(dj ≥ d),

and so

P(di ≥ d ∧ dj ≥ d) = P(di ≥ d)P(dj ≥ d | di ≥ d) ≤ P(di ≥ d)P(dj ≥ d) = p2
+.
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We can now compute

Var(T+) = E[T 2
+]− E[T+]2

= E




∑

i∈V+

1di≥d




2
− (kp+)2

= E

[∑

i

1di≥d +
∑

i 6=j
1di≥d1dj≥d

]
− (kp+)2

≤ kp+ + k(k − 1)p2
+ − (kp+)2

= kp+(1− p+)

≤ kp+.

9.1.3 Putting it Together

Let’s recap what we have so far. Under Q, we have T = T−, which has mean and variance

E
Q

[T ] = Np− and Var
Q

(T ) ≤ Np−.

Under P, we have T = T+ + T− (with T+ and T− independent), which has mean and variance

E
P
[T ] = (N − k)p− + kp+ and Var

P
(T ) ≤ (N − k)p− + kp+.

In order to distinguish P and Q with high probability by thresholding T , it suffices (by Chebyshev’s
inequality) to have

√
Var
Q

(T ) +
√

Var
P

(T ) = o

(
E
P
[T ]− E

Q
[T ]

)
,

which yields the sufficient condition
√
Np− +

√
kp+ = o(k(p+ − p−)).

Thus, it sufficies to have all of the following three conditions:

(i) p− = o(p+),

(ii)
√
Np− = o(kp+),

(iii)
√
kp+ = o(kp+).

Recall from above (see (9.2) and Lemma 9.1) the asymptotics

k = nθ+o(1), N = n1−(1−θ) c
2

ln 2+o(1), p− ≤ n−(1−θ) c
2

(ln 2)(2t ln 2t−2t+1)+o(1),

p+ = n−(1−θ)c(ln 2)(t ln t−t+1)+o(1).

These can be used to rewrite the three conditions as the following sufficient conditions:

(i’) t > 1 (which, recall, we also assumed earlier),
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(ii’) 1 + c(ln 2)(t ln t
2
− t+ 1) < θ

1−θ ,

(iii’) c(ln 2)(t ln t− t+ 1) < θ
1−θ .

First consider the case 0 ≤ c ≤ 1
2(ln 2)2 . In this case, choose t = 2 (which minimizes the left-hand

side of (ii’)). This causes (iii’) to become subsumed by (ii’). Also, (ii’) simplifies to 1 − c ln 2 <
θ

1−θ , which matches the desired condition τ(c) < θ
1−θ .

Next consider the case 1
2(ln 2)2 < c < 1

(ln 2)2 . In this case, choose t = 1
c(ln 2)2 , which satisfies (i’)

due to the assumption on c. This causes (ii’) and (iii’) to become equivalent, both reducing to the
desired condition c ln 2− 1

ln 2
[1 + ln(c(ln 2)2)] < θ

1−θ .
Finally, consider the case c ≥ 1

(ln 2)2 . For any θ ∈ (0, 1), it suffices to take t = 1 + ε for
sufficiently small ε > 0 for all the conditions to be satisfied.

9.1.4 Polynomial Approximation

Above, we have shown that the test statistic T = T (X) strongly separates P and Q, but T is not
a polynomial. We will now show that when τ(c) < θ

1−θ there is a degree-O(lnn) polynomial that
strongly separates P and Q, and we will do this using a polynomial approximation for T .

Recall T =
∑N

i=1 1di≥d where di is the degree of individual i in the graph. We define the
following polynomial approximation for the indicator 1x≥d: for a := dde and some integer b > a
(to be chosen later),

Ib(x) =
∑

a≤j<b

∏

0≤`<b
`6=j

x− `
j − ` .

Note that Ib is a polynomial in x of degree b − 1, which we will choose to be O(lnn). By con-
struction, Ib(x) = 1x≥d for all x ∈ {0, 1, 2, . . . , b− 1}. Therefore

Ib(di) = 1di≥d + 1di≥b · (Ib(di)− 1).

The key calculation we need is a bound on the second moment of the error term

Ei,b := 1di≥b · (Ib(di)− 1).

Recall di ∼ Bin(M, q̄) where q̄ is either q or 2q (depending on whether individual i is infected).

Lemma 9.2. Suppose di ∼ Bin(M, q̄) for q̄ ∈ {q, 2q}. For any constant C > 0 there exists a
constant B = B(C, θ, c) > 0 such that when choosing b to be the first odd integer greater than
B lnn,

E[E2
i,b] ≤ n−C .

Proof. We first note that it suffices (up to a change in the constant B) to show the result for

Ẽi,b := 1di≥b Ib(di)

in place of Ei,b. This is because
E2
i,b ≤ 2(Ẽ2

i,b + 1di≥b)

56

132



and
E[1di≥b] = Pr(di ≥ b),

which can be made smaller than n−2C by choosing B large enough (similarly to the calculation in
Section 9.1.1).

Now for any x ≥ b we have the bound

|Ib(x)| ≤ (b− a)
xb−1

[(
b−1

2

)
!
]2

where we have used the fact that
∏

0≤`<b, ` 6=j |j − `| is minimized when j lies at the center of the

range {0, 1, . . . , b− 1}. We will also make use of the bounds
(
n
k

)
≤
(
ne
k

)k (for all 1 ≤ k ≤ n) and
n! ≥

(
n
e

)n (for all n ≥ 1). We have

E[Ẽ2
i,b] =

∞∑

x=b

Pr(di = x)Ib(x)2

≤
∞∑

x=b

(
M

x

)
q̄x(1− q̄)M−x · (b− a)2 x2(b−1)

[(
b−1

2

)
!
]4

≤
∞∑

x=b

(
Me

x

)x
q̄x(1− q̄)M−x · (b− a)2 x2(b−1)

[(
b−1
2e

)(b−1)/2
]4

=
∞∑

x=b

(b− a)2(1− q̄)M
(
Me

x

)x(
q̄

1− q̄

)x(
2ex

b− 1

)2(b−1)

≤
∞∑

x=b

b2

(
Me

x

)x
(3q)x

(
2ex

b− 1

)2(b−1)

=
∞∑

x=b

b2

(
3eMq

x

)x(
2ex

b− 1

)2(b−1)

=:
∞∑

x=b

rx.

To complete the proof, we will show that the first term is rb ≤ 1
2
n−C and the ratio of successive

terms is rx+1

rx
≤ 1

2
for all x ≥ b. For the first step,

rb = b2

(
3eMq

b

)b(
2eb

b− 1

)2(b−1)

= b2

(
b− 1

2eb

)2(
12e3Mqb2

b(b− 1)2

)b

≤ b2

(
12e3Mqb2

b(b− 1)2

)b

= b2

(
12e3(cν/2 + o(1))(1− θ) · b lnn

(b− 1)2

)b
.
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Recalling B lnn ≤ b ≤ B lnn+ 2 and choosing B sufficiently large, the above is

≤ b2(1/e)b ≤ (B lnn+ 2)2e−B lnn ≤ 1

2
n−C

as desired. For the second step, for x ≥ b,

rx+1

rx
= 3eMq · xx

(x+ 1)x+1

(
x+ 1

x

)2(b−1)

=
3eMq

x+ 1

(
x+ 1

x

)2(b−1)−x

≤ 3eMq

x+ 1

(
1 +

1

x

)b−2

≤ 3eMq

x+ 1

(
1 +

1

b

)b

≤ 3eMq

x+ 1
· e

=
3e2(cν/2 + o(1))(1− θ) lnn

x+ 1

≤ 3e2(cν/2 + o(1))(1− θ) lnn

B lnn

which can be made ≤ 1
2

by choosing B sufficiently large.

Using Lemma 9.2 we can now show that under either P or Q, the first two moments of Ib(di)
and 1di≥d nearly match:

∣∣∣∣EQ[Ib(di)]− E
Q

[1di≥d]

∣∣∣∣ =

∣∣∣∣EQ Ei,b
∣∣∣∣ ≤

√
E
Q
E2
i,b ≤ n−C/2,

∣∣∣∣EQ[Ib(di)Ib(dj)]− E
Q

[1di≥d1dj≥d]

∣∣∣∣ =

∣∣∣∣EQ[1dj≥dEi,b + 1di≥dEj,b + Ei,bEj,b]

∣∣∣∣

≤
√
E
Q
E2
i,b +

√
E
Q
E2
j,b +

√
E
Q
E2
i,b · EQ E

2
j,b

≤ 3n−C/2,

and similarly for P.
Define the polynomial

T̃ (X) =
N∑

i=1

Ib(di),

which has degree b − 1 = O(lnn). Using the bounds above, the first two moments of T̃ and T
nearly match:

∣∣∣∣EQ[T̃ ]− E
Q

[T ]

∣∣∣∣ =

∣∣∣∣∣
N∑

i=1

E
Q

[Ib(di)− 1di≥d]

∣∣∣∣∣ ≤ N · n−C/2 = nO(1)−C/2,
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∣∣∣∣EQ[T̃ 2]− E
Q

[T 2]

∣∣∣∣ =

∣∣∣∣∣
∑

1≤i,j≤N
E
Q

[Ib(di)Ib(dj)− 1di≥d1dj≥d]

∣∣∣∣∣

≤ N2 · 3n−C/2 = nO(1)−C/2,

∣∣∣∣Var
Q

[T̃ ]− Var
Q

[T ]

∣∣∣∣ =

∣∣∣∣EQ[T̃ 2]− E
Q

[T 2]− E
Q

[T̃ ]2 + E
Q

[T ]2
∣∣∣∣

≤
∣∣∣∣EQ[T̃ 2]− E

Q
[T 2]

∣∣∣∣+

∣∣∣∣EQ[T̃ − T ]E
Q

[T̃ + T ]

∣∣∣∣

≤ 3N2n−C/2 +Nn−C/2
∣∣∣∣EQ[T̃ + T ]

∣∣∣∣

≤ 3N2n−C/2 +Nn−C/2
(

2E
Q

[T ] +Nn−C/2
)

≤ 3N2n−C/2 +Nn−C/2
(
2N +Nn−C/2

)

= nO(1)−C/2

and similarly for P (where the O(1) terms do not depend on C).
Suppose τ(c) < θ

1−θ . We have shown previously (see Section 9.1.3) that T strongly separates
P and Q with separation EP[T ] − EQ[T ] = (1 − o(1))kp+ ≥ n−O(1). (In fact, the separation is
larger than 1, but the simpler bound n−O(1) will suffice.) By taking C sufficiently large, the mean
and variance of T̃ match those of T (under either P or Q) up to an error that is negligible compared
to the separation EP[T ]− EQ[T ]. Therefore T̃ strongly separates P and Q.

9.2 Lower Bounds: Proof of Theorem 3.3(b) and Theorem 3.4(b)
The proofs in this section are based on bounding the chi-squared divergence and its conditional/low-
degree variants as described in Section 7.

9.2.1 Conditional Planted Distribution

We will condition P on the following “good” event A. Let A be the event that all infected individu-
als have degree at most d, for a particular d which will be chosen so that P(A) = 1− o(1). Below,
we will show that it is sufficient to take d = 2tqM for any constant t > 1 satisfying (9.5). Let P̃
be the conditional distribution P |A.

Suppose individual i is infected and let a be a test. Letting Xia be the indicator for edge (i, a)
and letting Ea be the event that a is connected to at least one infected individual,

q = E
Q

[Xia] = Q(Ea)E
Q

[Xia|Ea] + Q(Ea)E
Q

[Xia|Ea] =
1

2
· E
Q

[Xia|Ea] +
1

2
· 0

and so
E
P
[Xia] = E

Q
[Xia|Ea] = 2q. (9.3)

59

135



So under P, the degree di of individual i is distributed as di ∼ Bin(M, 2q) (but these are not
independent across i).

Using the Binomial tail bound (Proposition A.2), for any constant t > 1,

Pr (di ≥ 2tqM) ≤ exp (−MD (2tq ‖ 2q))

where, using Lemma A.4,

D(2tq ‖ 2q) ≥ 2q(t ln t− t+ 1)−O(q2),

where O(·) hides a constant depending only on t. This means, letting V+ denote the set of infected
individuals,

Pr (∃i ∈ V+, di ≥ 2tqM) ≤ k exp [−2qM(t ln t− t+ 1−O(q))]

= nθ+o(1)n−(1−θ)c(ln 2)(t ln t−t+1)+o(1)

= nθ−(1−θ)c(ln 2)(t ln t−t+1)+o(1). (9.4)

To ensure that A is a high-probability event under P, we need to choose d so that (9.4) is o(1), that
is, d = 2tqM where t > 1 is a constant satisfying

c(ln 2)(t ln t− t+ 1) >
θ

1− θ . (9.5)

9.2.2 Conditional Chi-Squared

With some abuse of notation, we will use u to refer to both the set of infected individuals and
its indicator vector u ∈ {0, 1}N . Let A = A(u,X) be the “good” event defined in Section 9.2.1
above (namely, the individuals in u all have degree at most d), and let P̃ denote the conditional
distribution P |A. For a test a, let Ea = Ea(u,X) be the event that a contains at least one infected
individual. Let E = ∩aEa. Define U , P̃u, and Lu = dP̃u/dQ as in Section 7.4. Compute

Lu(X) =
dP̃
dP

(X) · dP
dQ

(X) = P(A)−1
1A(u,X) ·Q(E(u,X))−1

1E(u,X)

= P(A)−1 2M1E(u,X)1A(u,X)

and
〈Lu, Lu′〉Q = P(A)−2 22M Pr

X∼Q
(E(u,X) ∩ E(u′, X) ∩ A(u,X) ∩ A(u′, X)) . (9.6)

Letting ` = 〈u, u′〉,

χ2(P̃ ‖Q) + 1 = E
u,u′∼U

〈Lu, Lu′〉Q =
k∑

`=0

Pr(`)〈Lu, Lu′〉Q, (9.7)

where Pr(`) is shorthand for

Pr
u,u′∼U

(〈u, u′〉 = `) =

(
k
`

)(
N−k
k−`
)

(
N
k

) . (9.8)
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Note that the term 〈Lu, Lu′〉Q in (9.7) depends on u, u′ only through ` = 〈u, u′〉 and is thus well-
defined as a function of ` alone.

We will now work on bounding various parts of the formula (9.7). First recall P(A) = 1−o(1).
To handle Pr(`) we have

(
N−k
k−`
)

(
N
k

) ≤
(
N
k−`
)

(
N
k

) =
k!(N − k)!

(k − `)!(N − k + `)!
≤
(

k

N − k

)`
= n−`[(1−θ)(1−

c
2

ln 2)+o(1)] (9.9)

provided c < 2
ln 2

(so that k = o(N)). Also, for ` ≥ 1 we have the standard bound

(
k

`

)
≤
(
ek

`

)`
. (9.10)

Next we will bound the final term PrX∼Q(· · · ) in (9.6). Let Ẽa(u, u′, X) be the event that test
a contains at least one individual from u ∩ u′. Note that Ẽa(u, u′, X) ⊆ Ea(u,X) ∩ Ea(u′, X).
Recalling (1− q)k = 1/2, we have

Pr
X∼Q

(Ẽa(u, u
′, X)) = 1− (1− q)` = 1− 2−`/k

and

Pr
X∼Q

(Ea(u,X) ∩ Ea(u′, X)) = (1− 2−`/k) + 2−`/k(1− 2−(k−`)/k)2

= 1− 2 · 2−`/k−(1−`/k) + 2−`/k−2(1−`/k)

= 2`/k−2.

Note that A(u,X) ∩ A(u′, X) implies that the sum of all degrees in u ∩ u′ is at most `d, which
means Ẽa(u, u′, X) holds for at most `d tests a. Thus,

Pr
X∼Q

(E(u,X) ∩ E(u′, X) ∩ A(u,X) ∩ A(u′, X)) ≤ (2`/k−2)M Pr(Bin(M, r) ≤ `d) (9.11)

where r is the conditional probability

r := Pr
X∼Q

(Ẽa(u, u
′, X) | Ea(u,X) ∩ Ea(u′, X)) =

1− 2−`/k

2`/k−2
= 4 · 2−`/k(1− 2−`/k).

We will treat the contributions to (9.7) from small ` and large ` separately.

Small `. First consider the terms in (9.7) where ` ≤ εk for a small constant ε > 0 to be chosen
later. We need to bound the expression Pr(Bin(M, r) ≤ `d) from (9.11). To this end, we have4

2−`/k = exp

(
− `
k

ln 2

)
= 1− `

k
ln 2 +O((`/k)2),

4Here and in the remainder of this section, we useO(·) with the understanding that its argument is small. Formally,
O(·) hides an absolute constant factor provided that its argument is smaller than some absolute constant, and may also
hide 1 + o(1) factors (in the usual sense).
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r = 4(1−O(`/k))

(
`

k
ln 2−O((`/k)2)

)
= (1−O(ε)) · 4 ln 2 · `

k
= (1−O(ε)) · 4`q,

`d = 2t`qM,

and

E[Bin(M, r)] = rM = (1−O(ε)) · 4`qM.

Note that if t ≥ 2 then {Bin(M, r) ≤ `d} is not a rare event and so we will simply upper-bound
its probability by 1; in this case, we do not gain anything from using the conditional planted
distribution P̃ instead of P. On the other hand, if t < 2 then we can apply the Binomial tail bound
(Proposition A.2): writing r = 4t′`q where t′ = 1 − O(ε), and taking ε small enough so that
t < 2t′,

Pr(Bin(M, r) ≤ `d) ≤ exp

(
−MD

(
`d

M

∥∥∥ r
))

= exp (−MD(2t`q ‖ 4t′`q))

where (using Lemma A.4)

D(2t`q ‖ 4t′`q) ≥ 2`q(t ln
t

2t′
+ 2t′ − t)−O((`q)2).

This means

Pr(Bin(M, r) ≤ `d) ≤ exp

(
−2M`q(t ln

t

2t′
+ 2t′ − t) +M`q ·O(ε)

)

= exp

(
−2M`q

(
t ln

t

2
+ 2− t−O(ε)

))

= n−`[(1−θ)c(ln 2)(t ln t
2

+2−t)−O(ε)]. (9.12)

We can now put everything together to bound the chi-squared divergence: using (9.11) and
P(A) = 1− o(1), the contribution to (9.7) from ` ≤ εk is at most

T≤εk(t) : = E
u,u′∼U

1〈u,u′〉≤εk 〈Lu, Lu′〉

= P(A)−2 22M
∑

0≤`≤εk
Pr(`) (2`/k−2)M Pr(Bin(M, r) ≤ `d)

= P(A)−2
∑

0≤`≤εk
Pr(`) (2`/k)M Pr(Bin(M, r) ≤ `d)

≤ P(A)−2

[
1 +

∑

1≤`≤εk
Pr(`) (2`/k)M Pr(Bin(M, r) ≤ `d)

]
. (9.13)

Note that we have made the dependence of T≤εk(t) on t explicit; recall that t is a constant appearing
in the definition of P̃. Using

2M/k = 2(c/2+o(1)) ln(n/k) =
(n
k

) c
2

ln 2+o(1)

= n(1−θ) c
2

ln 2+o(1)
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along with (9.8),(9.9),(9.10),(9.12)(9.13), we have

T≤εk(t) ≤ P(A)−2

[
1 +

∑

1≤`≤εk

(
ek

`

)`
n−`[(1−θ)(1−

c
2

ln 2)+o(1)] (9.14)

n`[(1−θ)
c
2

ln 2+o(1)]n−`[(1−θ)c(ln 2)(t ln t
2

+2−t)−O(ε)]

]

= P(A)−2

[
1 +

∑

1≤`≤εk

(e
`
nθ−(1−θ)[1+c(ln 2)(t ln t

2
−t+1)]+O(ε)

)`
]
. (9.15)

This is 1 + o(1) for sufficiently small ε provided that the following three conditions hold:

(i) t > 1 and c(ln 2)(t ln t− t+ 1) > θ
1−θ so that P(A) = 1− o(1); see (9.5),

(ii) t < 2 so that the bound (9.12) is valid,

(iii) θ − (1− θ)[1 + c(ln 2)(t ln t
2
− t+ 1)] < 0 so that (9.15) is 1 + o(1).

Provided 1
2(ln 2)2 < c < 1

(ln 2)2 and c ln 2 − 1
ln 2

[1 + ln(c(ln 2)2)] > θ
1−θ , the choice t = 1

c(ln 2)2

satisfies (i),(ii),(iii) above. This means we have proved the following.

Lemma 9.3. For any fixed θ ∈ (0, 1) and c ∈
(

1
2(ln 2)2 ,

1
(ln 2)2

)
satisfying

c ln 2− 1

ln 2
[1 + ln(c(ln 2)2)] >

θ

1− θ ,

there exist constants ε > 0 and t > 1 such that P(A) = 1− o(1) and T≤εk(t) = 1 + o(1).

Alternatively, we can drop the requirement (ii) t < 2 and replace (9.12) with the trivial bound
Pr(Bin(M, r) ≤ `d) ≤ 1 (which reverts to the non-conditional chi-squared). In this case the result
is, similarly to (9.15),

T≤εk(t) ≤ P(A)−2

[
1 +

∑

1≤`≤εk

(
ek

`

)`
n−`[(1−θ)(1−

c
2

ln 2)+o(1)]n`[(1−θ)
c
2

ln 2+o(1)]

]

= P(A)−2

[
1 +

∑

1≤`≤εk

(e
`
nθ−(1−θ)(1−c ln 2)+o(1)

)`
]
. (9.16)

This is 1 + o(1) for any ε ∈ (0, 1] (we have not required ε to be small in this case) provided that
the following two conditions hold:

(i) t > 1 and c(ln 2)(t ln t− t+ 1) > θ
1−θ so that P(A) = 1− o(1); see (9.5),

(ii) θ − (1− θ)(1− c ln 2) < 0 so that (9.16) is 1 + o(1).

We can satisfy (i) by choosing t = ∞ (i.e., P̃ = P), so we are left with the condition (ii), which
simplifies to 1− c ln 2 > θ

1−θ . This means we have proved the following.

Lemma 9.4. For any fixed θ ∈ (0, 1) and c > 0 satisfying

1− c ln 2 >
θ

1− θ ,

and for any ε ∈ (0, 1], we have T≤εk(∞) = 1 + o(1).
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Large `. Now consider the contribution to (9.7) from εk ≤ ` ≤ k for any fixed constant ε > 0.
Use the trivial bound instead of (9.12); the conditioning will not be important here. Similarly
to (9.16), the contribution is at most

T>εk(t) : = E
u,u′∼U

1〈u,u′〉>εk 〈Lu, Lu′〉

= P(A)−2
∑

εk<`≤k

(
ek

`

)`
n−`[(1−θ)(1−

c
2

ln 2)+o(1)]n`[(1−θ)
c
2

ln 2+o(1)]

≤ (1 + o(1))
∑

εk<`≤k

(e
ε
n−(1−θ)(1−c ln 2)+o(1)

)`
,

which is o(1) provided c < 1
ln 2

. This means we have proved the following.

Lemma 9.5. For any constants θ ∈ (0, 1), c ∈
(
0, 1

ln 2

)
, ε > 0, and t > 1, we have T>εk(t) = o(1).

9.2.3 Impossibility of Detection: Proof of Theorem 3.4(b)

Proof of Theorem 3.4(b). Recalling Lemma 7.1 and the reformulation in (9.1), our goal is to show
χ2(P̃ ‖Q) = o(1) provided c < 1/ ln 2 and τ(c) > θ

1−θ . Recall χ2(P̃ ‖Q)+1 = T≤εk(t)+T>εk(t).
For 1

2(ln 2)2 < c < 1
ln 2

< 1
(ln 2)2 , the result follows from Lemmas 9.3 and 9.5. For 0 < c ≤ 1

2(ln 2)2 ,
the result follows from Lemma 9.4 with ε = 1.

9.2.4 Low-Degree Hardness of Detection: Proof of Theorem 3.3(b)

Proof of Theorem 3.3(b). Recalling Lemma 7.3 and the reformulation in (9.1), our goal is to show
χ2
≤D(P̃ ‖Q) = o(1) provided τ(c) > θ

1−θ . Note that from (9.1), the assumption τ(c) > θ
1−θ

implies c < 1/(ln 2)2, so we can assume this throughout this section. We will follow the proof
outline explained in Section 7.4. We need an orthonormal basis of polynomials for Q. Such a
basis is given by {hS}S⊆[N ]×[M ] where hS(X) = [q(1 − q)]−|S|/2

∏
(i,a)∈S(Xia − q). These are

orthonormal with respect to the inner product 〈·, ·〉Q. Furthermore, {hS}|S|≤D is a basis for the
subspace consisting of polynomials of degree (at most) D.

Following Section 7.4, define U , P̃u, and Lu = dP̃u/dQ, and recall the decomposition

χ2
≤D(P̃ ‖Q) + 1 = R≤εk(t,D) +R>εk(t,D),

where we have made explicit the dependence on t (the constant appearing in the definition of P̃)
and D. The following key fact is proved later in this section.

Lemma 9.6. For any u, u′, we have 〈L≤Du , L≤Du′ 〉Q ≤ 〈Lu, Lu′〉Q.

In light of Lemma 9.6, we have

R≤εk(t,D) := E
u,u′∼U

1〈u,u′〉≤εk 〈L≤Du , L≤Du′ 〉Q
≤ E

u,u′∼U
1〈u,u′〉≤εk 〈Lu, Lu′〉Q =: T≤εk(t),

and we have already shown T≤εk(t) = 1 + o(1) (Lemmas 9.3, 9.4) under the assumption τ(c) >
θ

1−θ . The other term R>εk(t,D) can be controlled by the following lemma, proved later in this
section. (Recall we are assuming c < 1

(ln 2)2 <
2

ln 2
in this section.)
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Lemma 9.7. For any constants θ ∈ (0, 1), c ∈
(
0, 2

ln 2

)
, ε > 0, and t > 1, and for any D = Dn

satisfying D = o(k), we haveR>εk(t,D) = o(1).

This completes the proof of the theorem, modulo the two lemmas that remain to be proved below.

Proof of Lemma 9.6. We use a symmetry argument from [BEH+22, Proposition 3.6]. Expanding
in the orthonormal basis {hS}, we have

〈L≤Du , L≤Du′ 〉Q =
∑

|S|≤D
〈Lu, hS〉Q〈Lu′ , hS〉Q =

∑

|S|≤D
E

X∼P̃u
[hS(X)] E

X∼P̃u′
[hS(X)]. (9.17)

Let V (S) = {i ∈ [N ] : ∃a ∈ [M ], (i, a) ∈ S}, the set of all individuals “involved” in the basis
function S. Note that if V (S) 6⊆ u then there exists some (i, a) ∈ S such that under X ∼ P̃u we
have Xia ∼ Bernoulli(q) independently from the rest of X , and thus EX∼P̃u [hS(X)] = 0. (Here
it is important that conditioning on the event A only affects infected individuals.) Similarly, if
V (S) 6⊆ u′ then EX∼P̃u′ [hS(X)] = 0. On the other hand, if V (S) ⊆ u ∩ u′ then (by symmetry) P̃u
and P̃u′ have the same marginal distribution when restricted to the variables {(i, a) : i ∈ u ∩ u′}
and so EX∼P̃u [hS(X)] = EX∼P̃u′ [hS(X)]. As a result, we have EX∼P̃u [hS(X)]EX∼P̃u′ [hS(X)] ≥ 0

for all S, i.e., every term on the right-hand side of (9.17) is nonnegative. This means 〈L≤0
u , L≤0

u′ 〉Q ≤
〈L≤1

u , L≤1
u′ 〉Q ≤ 〈L≤2

u , L≤2
u′ 〉Q ≤ · · · ≤ 〈L≤∞u , L≤∞u′ 〉Q = 〈Lu, Lu′〉Q.

Proof of Lemma 9.7. For any S and X , we have the bound |hS(X)| ≤
(

1−q
q

)|S|/2
≤ q−|S|/2 (as-

suming q ≤ 1/2, which holds for sufficiently large n). Expanding R>εk(t,D) using (9.17), and
using the fact that the number of subsets S ⊆ [N ]× [M ] of size |S| ≤ D is at most (NM + 1)D,

R>εk(t,D) = E
u,u′

1〈u,u′〉>εk
∑

|S|≤D
E

X∼P̃u
[hS(X)] E

X∼P̃u′
[hS(X)]

≤ E
u,u′

1〈u,u′〉>εk
∑

|S|≤D
q−|S|

≤ Pr
u,u′

(〈u, u′〉 > εk) (NM + 1)Dq−D.

Similarly to (8.10),

Pr
u,u′

(〈u, u′〉 > εk) ≤
(

k

dεke

)(N−dεke
k−dεke

)
(
N
k

) ≤
(

k

dεke

)(
k

N − dεke+ 1

)dεke

≤
(

ek

dεke

)dεke(
k

N − k

)dεke
= n−Ω(k)

provided c < 2
ln 2

(so that k = o(N)). Also,

(NM + 1)Dq−D = nO(D)

and so
R>εk(t,D) ≤ n−Ω(k)nO(D)

which is o(1) provided D = o(k).
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A Tool Box
The following lemmas will be useful to us.

Lemma A.1 (Stirling approximation [Mar65]). We have for n→∞ that

n! = (1 +O(1/n))
√

2πnnn exp (−n) .

We will use the following standard Binomial tail bound.

Proposition A.2 ([AG89]). Let n ∈ N and p ∈ (0, 1). For a ∈ (0, 1), define

D(a ‖ p) := a ln
a

p
+ (1− a) ln

1− a
1− p. (A.1)

• For all 0 < k < pn,

Pr (Bin(n, p) ≤ k) ≤ exp

(
−nD

(
k

n

∥∥∥ p
))

.

• For all pn < k < n,

Pr (Bin(n, p) ≥ k) ≤ exp

(
−nD

(
k

n

∥∥∥ p
))

.

There is also a nearly-matching lower bound on the tail probability.

Proposition A.3 ([Ash90]). Let n ∈ N and p ∈ (0, 1). Define D(a ‖ p) as in (A.1).

• For all 0 < k < pn,

Pr (Bin(n, p) ≤ k) ≥ 1√
8k(1− k/n)

exp

(
−nD

(
k

n

∥∥∥ p
))

.

• For all pn < k < n,

Pr (Bin(n, p) ≥ k) ≥ 1√
8k(1− k/n)

exp

(
−nD

(
k

n

∥∥∥ p
))

.

The following bounds on D(a ‖ p) will be convenient.

Lemma A.4. Suppose a, p ∈ (0, δ] for some δ ∈ (0, 1/2]. Then

a ln
a

p
+ p− a− 3δ2 ≤ D(a ‖ p) ≤ a ln

a

p
+ p− a+ 3δ2.
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Proof. For the first inequality, bound the second term in the definition (A.1) as follows:

(1− a) ln
1− a
1− p ≥ (1− a) ln[(1− a)(1 + p)]

= (1− a) ln(1 + p− a− ap).

Note that 1 − δ ≤ (1 − a)(1 + p) ≤ 1 + δ and so −δ ≤ p − a − ap ≤ δ. Taylor-expand the
logarithm:

= (1− a)
∞∑

k=1

(−1)k+1

k
(p− a− ap)k

≥ (1− a)

(
p− a− ap− 1

2

∞∑

k=2

δk

)

≥ (1− a)
(
p− a− 2δ2

)

= p− a− 2δ2 − ap+ a2 + 2aδ2

≥ p− a− 3δ2

as desired.
Now, for the second inequality,

ln
1− a
1− p = ln(1− a) + ln(1 + p+ p2 + p3 + · · · ) ≤ ln(1− a) + ln(1 + p+ 2p2) ≤ p− a+ 2p2

where we have used p ≤ 1/2 and ln(1 + x) ≤ x. This means

(1− a) ln
1− a
1− p ≤ p− a+ 2p2 − ap+ a2 − 2ap2 ≤ p− a+ 2p2 + a2 ≤ p− a+ 3δ2

as desired.

B Orthogonal Polynomials
In this section we give more details about the orthogonal polynomials on a slice of the hypercube.
In particular, we explain how to deduce the claims in Section 8.2.1 from the results of [Fil16]
(definition/theorem numbers for [Fil16] pertain to arXiv v2).

Throughout this section, the inner product and norm for functions are with respect to the uni-
form distribution on the slice

(
[M ]
∆

)
, as defined in Section 8.2.1. The basis elements are χ̂B :=

χB/‖χB‖ where χB is defined in [Fil16, Definition 3.2]. The indices B are elements of a particu-
lar set BM ; each B ∈ BM is a strictly increasing sequence of elements from [M ], whose length we
denote |B|. The set BM does not contain all such sequences, only those that are “top sets” [Fil16,
Definition 2.3] but the details of this will not be important for us. The functions χB (and therefore
also χ̂B) are orthogonal; see Theorems 3.1 and 4.1 of [Fil16].

For convenience, we recap the definition of χB from [Fil16]. For sequences A = a1, . . . , ad
and B = b1, . . . , bd where a1, . . . , ad, b1, . . . , bd are 2d distinct numbers from [M ], define

χA,B =
d∏

i=1

(xai − xbi)
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as in [Fil16, Definition 2.2]. Now following [Fil16, Definition 3.2], define

χB =
∑

A<B

χA,B

where the sum over A < B is over sequences A = a1, . . . , ad of length d = |B|, whose elements
are distinct and disjoint from those of B, with ai < bi entrywise.

Proof of Fact 8.9. The basis elements χ̂B = χB/‖χB‖ have norm 1 by construction. By [Fil16,
Theorem 4.1], the set {χB : B ∈ BM , |B| ≤ ∆} is a complete orthogonal basis (as a vector space
over R) for all functions

(
[M ]
∆

)
→ R. This means for any degree-D polynomial f : RM → R, there

is a unique collection of coefficients αB ∈ R such that the linear combination
∑

B∈BM
|B|≤∆

αBχ̂B

is equivalent to f on
(

[M ]
∆

)
. It remains to show that this expansion only uses basis functions with

|B| ≤ D, that is, we aim to show αB = 0 for all |B| > D. Since αB = 〈f, χ̂B〉, this follows from
Lemma B.1 below.

Lemma B.1. If f : RM → R is a degree-D polynomial and |B| > D then 〈f, χB〉 = 0.

Proof. By linearity, it suffices to prove 〈f, χA,B〉 = 0 for an arbitrary A < B in the case where f
is a single degree-D monomial. Since f involves only D different variables and |B| > D, there
must be an index j such that both xaj and xbj do not appear in f . Now write

〈f, χA,B〉 = E
x∼Unif([M ]

∆ )

(
f(x)

∏

i 6=j
(xai − xbi)

)
(xaj − xbj),

which is equal to zero by symmetry, since for any fixed values for {xi : i 6= j}, the events
{xaj = 0, xbj = 1} and {xaj = 1, xbj = 0} are equally likely.

We now prove Fact 8.10, which recall is the claim |χ̂B(x)| ≤ M2|B| for all x ∈
(

[M ]
∆

)
and all

B ∈ BM with |B| ≤ ∆.

Proof of Fact 8.10. Since χ̂B = χB/‖χB‖, the claim follows immediately from Lemmas B.2
and B.3 below.

Lemma B.2. For any x ∈
(

[M ]
∆

)
and any B ∈ BM with |B| ≤ ∆, we have |χB(x)| ≤M |B|.

Proof. There are at most M |B| length-|B| sequences of elements from [M ]. Therefore, χB is the
sum of at most M |B| terms χA,B, and each χA,B can only take values in {−1, 0, 1}.

Lemma B.3. For any B ∈ BM with |B| ≤ ∆, we have ‖χB‖ ≥M−|B|.
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Proof. Let d = |B|. Theorem 4.1 of [Fil16] states that

‖χB‖2 = cB2d
∆d(M −∆)d

M2d

where nk := n(n− 1) · · · (n− k + 1) and (see [Fil16], Theorem 3.2)

cB :=
d∏

i=1

(
bi − 2(i− 1)

2

)
. (B.1)

We know that cB > 0 because ‖χB‖2 > 0 for all B ∈ BM with |B| ≤ ∆ (see the proof of
Theorem 4.1 in [Fil16]), and from (B.1) it is clear that cB is an integer. This means cB ≥ 1. We
now have

‖χB‖2 ≥ 1

M2d
≥M−2d

as desired.

C Reducing Detection to Approximate Recovery
In this section we show that any algorithm for approximate recovery can be made into an algorithm
for strong detection, in both the Bernoulli (Proposition C.1) and constant-column (Proposition C.2)
designs. We first focus on the Bernoulli design after the pre-processing step of COMP as discussed
in Section 2.1.

Proposition C.1. Assume the Bernoulli design for group testing with c > 1/ ln 2 and any θ ∈
(0, 1). If an algorithm A defined on N × M bipartite graphs with worst-case termination time
T (A) achieves approximate recovery, then there is an algorithm B that achieves strong detection
with worst-case termination time at most T (A) + poly(N,M).

Recall that c > 1/ ln 2 is the condition for information-theoretic possibility of approximate recov-
ery.

Proof. We choose δ > 0 such that cD(δ ‖ 2−(1+δ))/(1 + δ) > 1, where D is defined according to
(A.1). Notice that such a δ > 0 exists since c > 1/ ln 2.

The algorithm B acts as follows: it first runs A on the group testing instance and then checks
if the output of A is a set of size at most (1 + δ)k that explains all but δM of the (positive) tests.
If YES, output that the distribution is planted. If NO, output that the distribution is the null. The
termination time is immediate. We proceed with the analysis.

Success on the null model In this case, we will show the stronger result that with probability
1 − o(1), there is not a set of size at most (1 + δ)k individuals which explains all but δM of the
tests.

First notice that for a size-` set of individuals, the number of tests they don’t explain is dis-
tributed as Bin(M, (1− ν/k)` = 2−`/k). Hence, by a direct union bound the probability that there
is a set of individuals of size (1 + δ)k which satisfies all but δM of the tests is at most
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∑

0≤`≤(1+δ)k

(
N

`

)
Pr[Bin(M, 2−`/k) ≤ δM ]

≤ k

(
N

(1 + δ)k

)
Pr[Bin(M, 2−1−δ) ≤ δM ]

≤ k exp[(1 + δ)k ln(N/k)−D(δ ‖ 2−1−δ)M ]

= k exp[(1 + δ − cD(δ ‖ 2−1−δ))k ln(N/k)]

= o(1).

Success on the planted model Choose an arbitrary fixed δ′ ∈ (0, δ
2 ln 2

). Note the success of A
in approximate recovery immediately implies that with probability 1− o(1), the size of A’s output
is at most (1 + δ′)k individuals and among these there are at least (1− δ′)k infected individuals.

Given the above, we have the following: the probability that A’s output explains fewer than
(1 − δ)M tests is, up to a o(1) additive factor, at most the probability that there exists a subset of
at most δ′k infected individuals with at least one participant in at least δM tests. This by a union
bound and Proposition A.2 (since δ′ν < δ for large values of N ) is at most

(
k

δ′k

)
Pr[Bin(δ′Mk, ν/k) ≥ δM ] ≤ exp(−δ′MkD(1/k ‖ ν/k) +O(k))

= exp(−Ω(M) +O(k))

= o(1).

This completes the proof.

We now prove the analogous result for the constant-column design.

Proposition C.2. Assume the constant-column design for group testing with c > 1/ ln 2 and any
θ ∈ (0, 1). If an algorithm A defined on N ×M bipartite graphs with worst-case termination time
T (A) achieves approximate recovery, then there is an algorithm B that achieves strong detection
with worst-case termination time at most T (A) + poly(N,M).

Proof. This proof follows along the lines of the Bernoulli case but it becomes a little bit easier.
Intuitively, this is clear: the probability that a set of ` individuals is connected to all tests is compa-
rable in the two designs but in the Bernoulli design the individual degrees fluctuate significantly.

Let η > 1
2c ln2 2

. The decision algorithm B reads as follows:

• Check the outcome of algorithm A.

– If the outcome is a set of at most (1 + η)k individuals that are connected to at least
(1− η)M tests, return planted.

– Otherwise, return null.

• This checking works in polynomial time.
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Success on the planted model Let 0 < δ < η
2 ln 2

. The algorithm A returns by assumption a set
of at most (1 + δ)k individuals, out of which at least (1 − δ)k are truly infected, with probability
1 − o(1). As the model is a planted model, we know that there are at most δk additional infected
individuals that can be used to explain the tests. Those δk individuals can be connected to at most

δk∆ =
δM

2 ln 2
< ηM

tests by construction. Therefore, the output of B is correct with probability 1− o(1).

Success on the null model It suffices to prove that in a random almost regular graph with N
individual nodes, M test-nodes and individual degree ∆, there is with high probability no set of at
most (1 + η)k individuals that is connected to at least (1− η)M tests.

We employ the balls-into-bins experiment. (We ignore the issue of multi-edges here, as this can
be handled similarly to Section 6.3.1.) If `∆ balls are thrown onto M = k∆

2 ln 2
boxes, the expected

number of empty boxesA` is

E [A`] = `∆

(
1− 1

`∆

) k∆
2 ln 2

.

Let p` =
(
1− 1

`∆

) k∆
2 ln 2 . It is a well known fact that the indicator functions for the different boxes

being empty are negatively associated Bernoulli random variables [DR96]. Therefore, the Chernoff
bound implies

Pr (A` ≤ p``∆− t`∆) ≤ exp (−`DKL(p` − t ‖ p`)) .

Therefore, the probability that a set of individuals of size at most (1 + η)k exists that explains all
but ηM tests is upper bounded by

(1+η)k∑

`=0

(
N

`

)
Pr (A` ≤ ηM) ≤ (1 + η)k

(
N

(1 + η)k

)
Pr
(
A(1+η)k ≤ ηM

)
.

The calculus is now identical to the Bernoulli case.

D Comparison with [TAS20]
The detection boundary in Bernoulli group testing was studied by [TAS20], in a model similar to
ours but with a slight difference. In the present work, we study detection in the Bernoulli design in
the “post-COMP” setting discussed in Section 2. We repeat here the setting for convenience.

“Post-COMP” Bernoulli design (testing) Let n, k = kn, N = Nn and M = Mn scale as
k = nθ+o(1), N = n1−(1−θ) c

2
ln 2+o(1) and M = (c/2 + o(1))k ln(n/k). Consider the following

distributions over (N,M)-bipartite graphs (encoding adjacency between N individuals and M
tests).
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• Under the null distribution Q, each of the N individuals participates in each of the M tests
with probability q = ν/k with ν > 0 such that (1− ν/k)k = 1/2 (defined also in Section 2)
independently.

• Under the planted distribution P, a set of k infected individuals out of N is chosen uni-
formly at random. Then a graph is drawn from Q conditioned on having at least one infected
individual in every test.

As described in Theorem 3.4, we have established in this work the exact detection boundary
for the above setting. Previously, [TAS20] provided upper and lower bounds for the detection
boundary in the “pre-COMP” Bernoulli design, defined as follows.

“Pre-COMP” Bernoulli design (testing) Let n, k = kn, m = mn scale as k = nθ+o(1) and
m = (c + o(1))k ln(n/k). Consider the following distributions over (G, σ̂) pairs, where G is an
(n,m)-bipartite graph (encoding adjacency between n individuals and m tests) and σ̂ ∈ {0, 1}m
encodes positive/negative test results.

• Under the null distribution Q, each of the n individuals participates in each of the m tests
with probability q (defined above) independently. The test results are chosen independently
to be positive or negative with probability 1/2.

• Under the planted distribution P, a set of k infected individuals out of n is chosen uniformly
at random. Then a graph is drawn from Q. Finally, each test result is labelled positive if at
least one infected individual participated in it. Otherwise, it is labelled negative.

In this section we provide a short proof that our Theorem 3.4 can be used to establish the
detection boundary of the pre-COMP Bernoulli design as well. We prove the following result, in
particular improving both the upper and lower bounds of [TAS20].

Theorem D.1. Consider the pre-COMP Bernoulli design with parameters θ ∈ (0, 1) and c > 0.
Recall cinf := 1/ ln 2 and cB

LD as defined in (3.2).

(a) (Possible) If c > min{cinf , c
B
LD} then strong detection is possible.

(b) (Impossible) If c < min{cinf , c
B
LD} then weak detection is impossible.

D.1 Proof of Theorem D.1
For the proof of Theorem D.1 we need a lemma which almost follows immediately from standard
results.

Lemma D.2. Assume the pre-COMP planted distribution P for the Bernoulli design. For all θ ∈
(0, 1) and c ∈ (0, 1/ ln 2) it holds that the number of post-COMP remaining individuals N and
post-COMP remaining tests M are distributed as M ∼ Bin(m, 1/2) and N |M ∼ k + Bin(n −
k, 2−(m−M)/k). In particular, it holds with probability 1− o(1) that

M ∈ [m/2−
√
m lnn, m/2 +

√
m lnn]

and
N ∈ [n

1−(1−θ) c
2

ln 2− 1√
lnn , n

1−(1−θ) c
2

ln 2+ 1√
lnn ].
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Proof. The distribution of M follows directly. Now, given M , each non-infected individual is
removed by COMP with probability (1 − ν/k)m−M = 2−(m−M)/k. The high-probability event
follows directly from a multiplicative Chernoff bound and the fact c < 1/ ln 2 < 2/ ln 2.

We start with the fairly intuitive direction, proving that any successful algorithm for strong
detection in the post-COMP model also achieves strong detection in the pre-COMP model. In
particular, given Theorem 3.4, we conclude that if c > min{cinf , c

B
LD} then strong detection is

possible in the pre-COMP Bernoulli design.

Proposition D.3. Fix parameters θ ∈ (0, 1) and c ∈ (0, 1/ ln 2). If strong detection is information-
theoretically possible in the post-COMP Bernoulli design then it is also information-theoretically
possible in the pre-COMP Bernoulli design.

Proof. Consider any algorithm A achieving strong detection in the post-COMP Bernoulli design.
Then we claim the following algorithmB achieves strong detection in the pre-COMP Bernoulli de-
sign: First run COMP on the received input. If the remaining number of tests M and the remaining
number of individuals N do not both satisfy

M ∈ [m/2−
√
m lnn, m/2 +

√
m lnn]

and
N ∈ [n

1−(1−θ) c
2

ln 2− 1√
lnn , n

1−(1−θ) c
2

ln 2+ 1√
lnn ]

then output that the distribution is Q. Otherwise, run A on the post-COMP instance and return the
output of A.

The analysis is as follows.

Planted model Assume that the algorithm receives input from the planted model. In that case,
based on Lemma D.2, after running COMP the parameters M,N satisfy the desired constraints,
with probability 1 − o(1). Hence, with probability 1 − o(1), the algorithm does not terminate in
the second step. In the third step, the algorithm then receives an instance of the planted distribu-
tion based on the post-COMP Bernoulli design, where in particular the assumptions on M,N are
satisfied. Hence, it outputs that the distribution is P with probability 1 − o(1), by assumption on
the performance of A.

Null model Assume that the algorithm receives input from the null model. In that case, either the
algorithm outputs that the distribution is Q in the second step (which is correct), or after COMP
is applied to the group testing instance the output has M = (c/2 + o(1))k ln(n/k) remaining tests
and N = n1−(1−θ) c

2
ln 2+o(1) remaining individuals. In that case, the output of the second step is an

instance of the null distribution based on the post-COMP Bernoulli design satisfying the desired
assumptions on N,M . Hence, it outputs that the distribution is Q with probability 1 − o(1), by
assumption on the performance of A in the post-COMP model. The proof is complete.

Finally, we also prove the following, perhaps less immediate, direction. In particular, given
Theorem 3.4, this implies that if c < min{cinf , c

B
LD} then strong detection is impossible in the

pre-COMP Bernoulli design.
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Proposition D.4. Fix parameters θ ∈ (0, 1) and c > 0 with c < min{cinf , c
B
LD}. If weak detec-

tion is impossible in the post-COMP Bernoulli design then it is also impossible in the pre-COMP
Bernoulli design.

Proof. Let us first decompose any pre-COMP Bernoulli group testing graph instance (produced
by either the planted or null distribution), seen as a bipartite graph between n individuals and m
tests into two edge-disjoint parts: the graph G1 between the N post-COMP individuals and the M
positive tests, and the graph G2 between the n−N (healthy) individuals that COMP deleted, and
the m (both positive and negative) tests.

We first show that under our assumptions, the distribution over (N,M) produced by the planted
(pre-COMP) model and the distribution over (N,M) produced by the null (pre-COMP) model have
vanishing total variation distance. It is straightforward to see that in both models the distribution of
M is Bin(m, 1/2).Hence, using Lemma D.2 it suffices to couple forX := m−M ∼ Bin(m, 1/2),
the distribution NP ∼ k + Bin(n − k, r = e−(ln 2)X/k)|M (coming from the planted) and the
distribution NQ ∼ Bin(n, r = e−(ln 2)X/k)|M (coming from the null). By Pinsker’s inequality it
suffices to prove that the KL divergence vanishes. We have by elementary inequalities,

DKL(NP |M ‖NQ|M) = E
s∼NP |M

ln
Pr(NP = s)

Pr(NQ = s)

= E
s∼NP |M

ln

(
n−k
s−k
)
rs−k(1− r)n−s(

n
s

)
rs(1− r)n−s

= E
s∼NP |M

ln
s!(n− k)!

(s− k)!n!
r−k

≤ E
s∼NP |M

ln
sk

(n− k)krk

= k E
s∼NP |M

ln
s

(n− k)r

≤ k E
s∼NP |M

s− (n− k)r

(n− k)r

= k E
X∼Bin(m,1/2)

k + nr − (n− k)r

(n− k)r

≤ 2k2

n
E

X∼Bin(m,1/2)
e(ln 2)X/k.

Now, using the MGF of a Binomial distribution,

DKL(NP |M ‖NQ|M) ≤ 2k2

n
((eln 2/k + 1)/2)m

=
2k2

n
(1 + ln 2/(2k) +O(1/k2))m

=
2k2

n
em ln 2/(2k)+O(m/k2)

= n2θ−1+c(ln 2)(1−θ)/2+o(1).
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We will next show that the assumption c < min{cinf , c
B
LD} implies 2θ − 1 + c(ln 2)(1− θ)/2 < 0,

which means DKL(NP |M ‖NQ|M) = o(1) and so we can couple (M,N) under the planted and
the null models with probability 1− o(1).

Under our assumption c < cB
LD we have that equivalently for the function

τ(c) =

{
1− c ln 2 if 0 < c ≤ 1

2(ln 2)2 ,

c ln 2− 1
ln 2

[1 + ln(c(ln 2)2)] if 1
2(ln 2)2 < c < 1

(ln 2)2 ,

that it holds τ(c) > θ
1−θ . But for all 1/ ln 2 > c > 0, we have

τ(c) < 1− c ln 2/2.

Indeed if c < 1
2 ln2 2

that is clear. Now it also holds c ln 2− 1
ln 2

[1 + ln(c(ln 2)2)] < 1− c ln 2
2

when
1

2(ln 2)2 < c < 1
(ln 2)2 . This follows as

F (c) := c ln 2− 1

ln 2
[1 + ln(c(ln 2)2)]− (1− c ln 2/2),

1

2(ln 2)2
< c <

1

(ln 2)2
,

is a convex function on c which is negative in the endpoints: F ( 1
2(ln 2)2 ) = − 1

4 ln 2
< 0 and also

F ( 1
(ln 2)2 ) = 1

2 ln 2
− 1 < 0.

Hence, we have indeed established θ
1−θ < 1− c ln 2

2
and therefore 2θ− 1 + c ln 2(1− θ)/2 < 0.

In particular, DKL(NP |M ‖NQ|M) = o(1) and indeed we can couple (M,N) under the planted
and the null model with probability 1− o(1).

Now that we have coupled the planted and null distributions for (N,M), we will use this to
couple the entire pre-COMP planted distribution with the pre-COMP null distribution with proba-
bility 1− o(1), implying impossibility of pre-COMP weak detection.

Recall from Lemma D.2 that (N,M) satisfy

M ∈ [m/2−
√
m lnn,m/2 +

√
m lnn]

and
N ∈ [n

1−(1−θ) c
2

ln 2− 1√
lnn , n

1−(1−θ) c
2

ln 2+ 1√
lnn ]

with probability 1 − o(1). Conditioned on such an (N,M) pair, and conditioned on the identity
of the N post-COMP individuals and M positive tests, it remains to couple the graphs G1 and G2.
These graphs are conditionally independent so we can consider them separately. The assumption
that post-COMP weak detection is impossible implies that the planted and null distributions over
G1 can be coupled with probability 1 − o(1). Also, the planted and null distributions over G2 are
identical, namely every individual among the n−N deleted by COMP is independently connected
to every test with probability q, conditioned on being connected to at least one negative test. This
completes the proof.
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Near-Optimal Sparsity-Constrained Group Testing:
Improved Bounds and Algorithms

Oliver Gebhard, Max Hahn-Klimroth, Olaf Parczyk, Manuel Penschuck,
Maurice Rolvien, Jonathan Scarlett, and Nelvin Tan

Abstract

Recent advances in noiseless non-adaptive group
testing have led to a precise asymptotic characterization
of the number of tests required for high-probability
recovery in the sublinear regime k = nθ (with θ ∈
(0,1)), with n individuals among which k are infected.
However, the required number of tests may increase
substantially under real-world practical constraints, no-
tably including bounds on the maximum number ∆ of
tests an individual can be placed in, or the maximum
number Γ of individuals in a given test. While previous
works have given recovery guarantees for these settings,
significant gaps remain between the achievability and
converse bounds. In this paper, we substantially or
completely close several of the most prominent gaps.
In the case of ∆-divisible items, we show that the
definite defectives (DD) algorithm coupled with a ran-
dom regular design is asymptotically optimal in dense
scaling regimes, and optimal to within a factor of e
more generally; we establish this by strengthening both
the best known achievability and converse bounds. In
the case of Γ-sized tests, we provide a comprehensive
analysis of the regime Γ = Θ(1), and again establish a
precise threshold proving the asymptotic optimality of
SCOMP (a slight refinement of DD) equipped with a
tailored pooling scheme. Finally, for each of these two
settings, we provide near-optimal adaptive algorithms
based on sequential splitting, and provably demonstrate
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gaps between the performance of optimal adaptive and
non-adaptive algorithms.

I. INTRODUCTION

The group testing problem, originally introduced by Dorf-
man [2], is a prominent example of a classical inference
problem that has recently regained considerable attention
[3], [4], [5]. Briefly, the problem is posed as follows: Among a
population of n individuals, a small subset of k individuals
is infected with a rare disease. We are able to test groups
of individuals at once, and each test result returns positive
if (and only if) there is at least one infected individual in
the test group. The challenge is to develop strategies for
pooling individuals into tests such that the status of every
individual can be recovered reliably from the outcomes, and
to do so using as few tests as possible.

While the preceding terminology corresponds to med-
ical applications, group testing also has many other key
applications [3, Sec. 1.7], ranging from DNA sequencing
[6], [7] to protein interaction experiments [8], [9]. Particular
attention has been paid to group testing as a tool for the
containment of an epidemic crisis. On the one hand, mass
testing appears to be an essential tool to face pandemic
spread [10], while on the other hand, the capability of
efficiently identifying infected individuals fast and at a low
cost is indispensable [11]. For the sake of pandemic control,
risk surveillance plans aim at an early, fast and efficient
identification of infected individuals to prevent diseases
from spreading [12], [13], [14].

The group testing problem includes many variants, de-
pending on the presence/absence of noise, possible adap-
tivity of the tests, recovery requirements, and so on. Our
focus in this paper is on the following setup, which has
been the focus of numerous recent works (see [3] for a
survey):

• The tests are non-adaptive, meaning they must all be
designed in advance before observing any outcomes.
This is highly desirable in applications, as it permits
the tests to be implemented in parallel.

• The tests are noiseless; this assumption is more realistic
in some applications than others, but serves as an im-
portant starting point for understanding the problem.

• The goal is high-probability identification of each indi-
vidual’s defectivity status (i.e., probability approaching
one as n →∞). While a deterministic (probability-one)
recovery guarantee is also feasible in the noiseless set-
ting [5], it requires considerably more tests, incurring a

ar
X

iv
:2

00
4.

11
86

0v
4 

 [
cs

.D
S]

  2
2 

D
ec

 2
02

1
157

APPENDIX C. NEAR-OPTIMAL SPARSITY-CONSTRAINED GROUP TESTING: IMPROVED

BOUNDS AND ALGORITHMS



2

k2 dependence on the number of infected individuals
(whenever k ≤O(

p
n)) instead of k.

• The number of infected individuals k is taken to equal
nθ for some θ ∈ (0,1),1 i.e., the sublinear regime. Heaps’
law of epidemics [15], [16] indicates that this regime is
of major interest. In addition, recent hardness results
preclude non-trivial recovery guarantees in the linear
regime k = Θ(n) [17], at least under the most widely-
adopted recovery criterion.

Under this setup, Coja-Oghlan et al. [18], [4] recently
established the exact information-theoretic threshold on
the number of tests, in an asymptotic sense including the
implied constant. This threshold was originally attained
using a random regular testing design [18] (see also [19]),
improving on earlier results for Bernoulli testing [20], [21].
While the recovery algorithm used in [18] is not computa-
tionally efficient, the subsequent work [4] attained the same
threshold using a spatially coupled random regular design
and a computationally efficient recovery algorithm.

All of the preceding test designs have in common that
each individual takes part in O(lnn) tests, and each test
contains O(n/k) individuals. As a result, these designs face
limitations in real-world applications. Firstly, one may face
dilution effects: If an infected individual gets tested within a
group of many uninfected individuals, the signal of the in-
fection (e.g., concentration of the relevant molecules) might
be too low. For instance, a testing scheme for HIV typically
should not contain more than 80 individual samples per
test [22]. More recently, evidence was found that certain
laboratory tests allow pooling of up to 5 individuals [23] or
64 individuals [24] per test for reliably detecting COVID-19
infections. Secondly, it is often the case that each individual
can only be tested a certain number of times, due to the
limited volume of the sample taken. More generally, test de-
signs with few tests-per-individual and/or individuals-per-
test may be favorable due to resource limitations, difficulties
in manually placing samples into tests, and so on.

In light of these practical issues, there is substantial
motivation to study the group testing problem under the
following constraints on the test design:

• Under the ∆-divisible items constraint (or bounded
resource model), any given individual can only be tested
at most ∆ times;

• Under the Γ-sized tests constraint (or bounded test-
size model), any given test can only contain at most
Γ individuals.

Previous studies of group testing under these constraints
[25], [26], [27], [1] are surveyed in Section I-A. We note
that some of the above practical motivations may warrant
more sophisticated models (e.g., random noise models for
dilution effects), but nevertheless, noiseless group testing
under the preceding constraints serves as an important
starting point towards a full understanding. In addition,
as with previous works, we only consider the above two

1To simplify notation, we assume that k = nθ exactly, but all of our
analysis and results extend easily to the more general case that k = cnθ

for any c =Θ(1).

constraints separately, though the case that both are present
simultaneously may be of interest for future studies.

A. Related Work

As outlined above, the asymptotically optimal perfor-
mance limits are well-understood in the case of uncon-
strained test designs, with optimal designs placing each
item in ∆=Θ(lnn) tests, and each test containing Γ=Θ( n

k

)

items. We refer the reader to [3] for a more detailed survey,
and subsequently focus our attention on the (much more
limited) prior work considering the constrained variants
with ∆= o(lnn) and Γ= o

( n
k

)
.

The most relevant prior work is that of Gandikota et
al. [25], who gave information-theoretic lower bounds on
the number of tests under both kinds of constraint, as well
as upper bounds via the simple COMP algorithm [28].2 The
main results therein are summarised as follows, assuming
the sublinear regime k = nθ with θ ∈ (0,1) throughout (we
sometimes refer to θ as the density parameter):

• ∆-divisible items setting:

– (Converse) For ∆ = o(lnn), any non-adaptive de-
sign with error probability at most ξ requires m ≥
∆k

( n
k

) 1−5ξ
∆ , for sufficiently small ξ and sufficiently

large n . (Theorem 4.1 in [25])
– (Achievability) Under a suitably-chosen random

test design and the COMP algorithm, the er-
ror probability is at most ξ provided that m ≥
de∆k

( n
ξ

) 1
∆ e. (Theorem 4.2 in [25])

• Γ-sized tests setting:

– (Converse) For Γ = Θ
(( n

k

)β)
with β ∈ [0,1), any

non-adaptive design with error probability at most
ξ requires m ≥ 1−6ξ

1−β · n
Γ , for sufficiently large n.

(Theorem 4.5 in [25])
– (Achievability) Under a suitably-chosen random

test design and COMP recovery, for Γ = Θ(( n
k

)β)

with β ∈ [0,1) and ξ = n−ζ with ζ > 0, the error
probability is at most ξ when m ≥ d 1+ζ

(1−θ)(1−β) e·dn
Γ e.

(Theorem 4.6 in [25])

A sizable gap remains between the achievability and con-
verse bounds in the case of ∆-divisible items, since typ-

ically
( 1
ξ

) 1
∆ À ( 1

k

) 1
∆ . For Γ-sized tests, the bounds match

to within a constant factor, but the optimal constant re-
mains unknown. In particular, the two differ by at least a
multiplicative 1

1−θ factor, and even for θ close to zero, the
two can differ by a factor of 2 due to the rounding in the
achievability part.

As we outline further below, we nearly completely close
these gaps for ∆-divisible items, and we close them com-
pletely for Γ-sized tests in the special case β = 0 (i.e.,
Γ = Θ(1)) for all θ ∈ (0,1). We achieve these results using
both the DD and SCOMP algorithms introduced in [20].
While the regime β ∈ (0,1) is also of interest, it appears to
require different techniques, and is deferred to future work.

2The COMP algorithm declares any individual in a negative test as
uninfected, and all other individuals as infected. It is called Column
Matching Algorithm in [25].
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Reference Number of tests

∆
-d

iv
. Lower Bound [25] ∆k1+(1−θ)/(∆θ)

Lower Bound (Theorem 3.2) max
{
e−1∆k1+(1−θ)/(∆θ),∆k1+1/∆}

COMP [25] e∆kn
1
∆

DD (Theorem 3.3) max
{
∆k1+(1−θ)/(∆θ),∆k1+1/∆}

Γ
-s

iz
ed

Lower Bound [25] n
Γ

Lower Bound (Theorem 4.1) max
{(

1+b θ
1−θ c

) n
Γ , 2n
Γ+1

}

COMP [25] d 1
1−θ ed

n
Γ e

SCOMP (Theorems 4.10 and 4.18) max
{(

1+b θ
1−θ c

) n
Γ , 2n
Γ+1

}

TABLE I: Overview of noiseless non-adaptive sparsity-constrained group testing results under the scaling k = nθ (θ ∈ (0,1)).
For the setting of Γ-sized tests, this table only corresponds to Γ=Θ(1), and in both settings we neglect higher-order terms
and the dependence on the error probability. See the main text for more complete and precise statements.

Gandikota et al. [25] additionally gave explicit designs
(i.e., test matrices that can be deterministically constructed
in polynomial time), but these give worse scaling laws,
and are therefore of less relevance to our results based
on random designs. In a distinct but related line of works,
Macula [27] and Inan et al. [26], [29] developed designs
for the much stronger guarantee of uniform recovery, i.e., a
single test matrix that uniquely recovers any infected set of
size at most k, without allowing any error probability. This
stronger guarantee comes at the price of requiring consid-
erably more tests, and we thus omit a direct comparison
and refer the interested reader to [27], [26], [29] for details.

B. Contributions

Our main contributions are informally outlined as follows
(with k = nθ for θ ∈ (0,1), and ε being an arbitrarily small
constant throughout), with “w.h.p.” meaning probability
approaching one as n →∞. The formal statements are given
in the theorems referenced. The results are also summarised
in Table I (non-adaptive only), and exemplified in Figure 1
(∆-divisible) and Figure 2 (Γ-sparse).

• ∆-divisible items setting. Assuming that

∆ = (lnn)1−Ω(1) (and in some cases, any ∆ = o(lnn) is
allowed), we have the following:

– (General converse – Theorem 3.1) If m ≤ (1 −
ε)e−1∆k1+ 1−θ

∆θ , then w.h.p. any (possibly adaptive)
group testing strategy fails.3

– (Non-adaptive converse – Theorem 3.2) Under
any non-adaptive test design, if ∆ > θ/(1 − θ)
and m ≤ (1 − ε)∆k1+ 1

∆ , then w.h.p. any infer-
ence algorithm fails. Combining with the gen-
eral lower bound, the same holds for m ≤ (1 −
ε)max

{
e−1∆k1+ 1−θ

∆θ ,∆k1+ 1
∆

}
.

– (Non-adaptive achievability via DD – Theorem
3.3) Under a random regular test design, DD

succeeds when m ≥ (1 + ε)max
{
∆k1+ 1−θ

∆θ ,∆k1+ 1
∆

}

(w.h.p. when ∆ = ω(1), and with probability Ω(1)
when ∆=Θ(1)).

3These expressions are obtained after substituting k = nθ . In the more
general case that k equals a positive constant times nθ , the results remain

unchanged upon replacing k1+ 1−θ
∆θ by k

( n
k

) 1
∆ everywhere. Note also that

the achievability bounds may exceed n in some scaling regimes, but in
such cases m = n tests still suffice, since one can instead resort to one-
by-one testing.

– (DD-specific converse – Theorem 3.4) Under ran-
dom regular testing, DD fails when m is slightly be-
low the achievability bound (w.h.p. when ∆=ω(1),
and with Ω(1) probability when ∆=Θ(1)).

– (Adaptive achievability – Theorem 5.1) There
exists an efficient adaptive algorithm succeeding

with probability one when m ≥ (1+ε)∆k1+ 1−θ
∆θ .

• Γ-sized tests setting: Assuming that Γ = Θ(1) in the
non-adaptive setting (whereas the adaptive results al-
low general Γ= o

( n
k

)
), we have the following:

– (Non-adaptive converse – Theorem 4.1) If m ≤
(1 − ε)max

{(
1 + ⌊

θ
1−θ

⌋) n
Γ , 2n
Γ+1

}
and Γ ≥ 1 +

⌊
θ

1−θ
⌋

,
then any non-adaptive group testing strategy fails
(w.h.p. if θ

1−θ is non-integer, and with Ω(1) proba-
bility if θ

1−θ is an integer).
– (Non-adaptive achievability via SCOMP – The-

orems 4.10 and 4.18) Under a suitably-chosen
random test design, SCOMP succeeds w.h.p. when
m ≥ max

{(
1+ ⌊

θ
1−θ

⌋) n
Γ , 2n
Γ+1

}
. We use different test

designs and analyses for the dense regime θ ≥ 1
2

(Theorem 4.10) and sparse regime θ < 1
2 (Theorem

4.18), and combine the two results to get the
overall condition in m in Section IV-F. For the
dense regime, our analysis shows that DD has the
same guarantee, whereas for the sparse regime, we
crucially require the refined SCOMP algorithm.

– (Adaptive achievability – Theorem 6.1) There
exists an efficient adaptive algorithm succeeding
with probability one when m ≥ (1+ ε) n

Γ + klog2Γ.
In particular, when Γ = o

( n
k lnn

)
, it suffices that

m ≥ (1+ε) n
Γ .

– (General converse – Theorem 6.2) If m ≤ (1−ε) n
Γ ,

then the error probability is bounded away from
zero for any (possibly adaptive) group testing strat-
egy.

These results have several interesting implications, which
we discuss as follows. In the ∆-divisible setting, our first
converse bound strengthens that of [25] (removing the −5ξ
term in the exponent) and extends it to the adaptive setting,
and our second converse provides a further improvement
for non-adaptive designs. Our DD achievability result scales

as O
(
∆k

(
max

{
k, n

k

}) 1
∆
)
, which is strictly better than the

O
(
∆k

( n
ξ

) 1
∆
)

scaling of COMP [25] for all θ ∈ (0,1). In fact,
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CConverse = 1
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Fig. 1: Illustration of values of η (vertical axis) and C
(labeled with text) such that m = C∆kη(1+ o(1)) under
∆-divisible item constraints, with ∆= 5.
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Fig. 2: Illustration of threshold C such that m = (C+o(1)) n
Γ

under Γ-sized test constraints, with Γ= 4.

for θ > 1
2 and ∆ = ω(1), our results demonstrate that DD

is asymptotically optimal among non-adaptive strategies,
with a precise phase transition between success and failure
at m ≈ ∆k1+ 1

∆ . For θ < 1
2 , while establishing a precise

phase transition remains an open problem, our results
establish DD’s optimality up to a multiplicative factor of
e, and demonstrate that one cannot reduce the number
of tests further under DD and the random regular design.
Finally, our results prove a strict adaptivity gap for θ > 1

2 ,
and demonstrate that our adaptive algorithm is optimal to
within a factor of e for all θ ∈ (0,1).

In the Γ-sized tests setting, our results provide an ex-
act asymptotic threshold on the number of tests in the
Γ=Θ(1) regime, and we establish the asymptotic optimality
of SCOMP in all such cases. To achieve this, we adopt
novel analysis techniques specific to this scaling, including
a novel test design in the case θ < 1

2 , as described in the next
section. This case of θ < 1

2 also has the interesting feature
that using SCOMP instead of DD appears to be crucial,
in stark contrast with other settings in which the two
algorithms tend to have identical asymptotic performance
[18]. We note that the distinction between integer and
non-integer valued θ

1−θ arises due to rounding issues in the
analysis, e.g., counting the number of individuals appearing
in at most

⌊
θ

1−θ
⌋

tests. Our results again demonstrate a strict
adaptivity gap (this time for all θ ∈ (0,1)), and we provide
a precise phase transition at n

Γ for adaptive algorithms
under most scalings of Γ. Finally, in Section VIII, we present
numerical results for small population sizes to support our
theoretical findings.

II. FUNDAMENTALS OF NON-ADAPTIVE GROUP TESTING

A. General Notation

Given the number of individuals n, the number of in-
fected individuals k ∼ nθ(θ ∈ (0,1)), and the number of tests
m, we let G = (V ∪F,E) be a random bipartite (multi-)graph

with |F | = m factor nodes (a1, ..., am) and |V | = n variable
nodes (x1, ..., xn). The variable nodes represent individuals,
the factor nodes represent tests, and an edge between
individual xi and test a j indicates, that xi takes part in test
a j . Furthermore, let (∂G a1, ...,∂G am) and (∂G x1, ..., ,∂G xn)
denote the neighbourhoods in G . Whenever the context
clarifies what G is, we will drop the subscript. The test-node
degrees are given by Γi (G ) = |∂G ai |, and the individual-
node degrees by ∆i (G ) = |∂G xi |. We can visualise any non-
adaptive group testing instance by a pooling scheme in the
form of such a graph G .

We indicate the infection status of each individual of
the population by σ ∈ {0,1}n , a uniformly chosen vector
of Hamming weight k. Formally, σx = 1 iff x is infected.
Then, we let σ̂ = σ̂(G ,σ) ∈ {0,1}m denote the sequence of
test results, such that σ̂a = 1 iff test a contains at least one
infected individual, that is

σ̂a = max
x∈∂a

σx .

Throughout the paper, we use standard Landau notation,
e.g., o(1) is a function converging to 0 while ω(1) stands for
an arbitrarily slowly diverging function. Moreover, we say
that a property P holds with high probability (w.h.p.), if
P (P ) = 1−o(1) as n →∞.

B. Pooling Schemes

The random (almost-)regular bipartite pooling scheme is
known to be information-theoretically optimal in the un-
constrained variant of group testing [18], and is conceptu-
ally simple and easy to implement. In this work, depending
on the setup, we sometimes require less standard schemes,
as described in the following. It is important to note that
in each of these designs, we are constructing a multi-graph
rather than a graph, and every multi-edge is counted when
referring to a node degree. In the following we will define
our choices of the restricted pooling scheme and denote
them G∆ and G̃Γ
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1) ∆-divisible: In this setup, we adopt the design of
[18], [19], but with fewer tests per individual in accor-
dance with the problem constraint: Each individual chooses
∆ tests uniformly at random with replacement; thus, an
individual may be placed in the same test more than
once. By construction of G∆, any individual has degree
exactly ∆, whereas the test degrees fluctuate. We denote
by Γ (G∆) = {Γ1 (G∆) , . . . ,Γm (G∆)} the (random) sequence of
test-degrees.

2) Γ-sparse: In the Γ-sparse case, our choice of pooling
scheme requires additional care; we define G̃Γ(θ) separately
for two cases:

G̃Γ(θ) =
{

GΓ if θ ≥ 1/2

G∗
Γ otherwise

(1)

with GΓ and G∗
Γ defined in the following. Throughout the

paper, we will always clarify which of the cases we assume,
and we will therefore refer to G̃Γ(θ) as G̃Γ. Starting with
GΓ, we employ the configuration model [30]. Given n,m,Γ,
set ∆= mΓ/n and create for each individual x ∈ [n] exactly
∆ clones {x}× {1} , . . . , {x}× {∆}. We assume throughout, that
∆,Γ,n,m are integers, thus all divisibility requirements are
fulfilled.4 Analogously, create Γ clones {a}× {1} . . . {a}× {Γ}
for each test a ∈ [m]. Then, choose a perfect matching
uniformly at random between the individual-clones and the
test-clones and construct a random multi-graph by merging
the clones to vertices and adding an edge (x, a) whenever
there are i ∈ [∆], j ∈ [Γ] such that the edge ({x}×{i } , {a}×

{
j
}
)

is part of the perfect matching (in other words, the edge
(x, a) exists in the graph as a result of the i -th clone of
x and the j -th clone of a being matched). We denote by
GΓ the random regular multi-graph that comes from this
procedure.

For G∗
Γ , we adopt a different approach. First, we select

γ ≤ 2n
Γ+1 individuals randomly and put them apart for the

moment (denote by X = {
x1 . . . xγ

}
the set of those vertices).

The precise γ value is chosen such that we can create a
random bipartite regular graph on the remaining vertices
with each individual having degree 2 and each test having
degree Γ − 1 (thus, an instance of GΓ−1). By a simple
comparison of degrees, this is only possible if m ≥ 2 n

Γ+1 .
Now, we draw a uniformly random matching between the
tests (of degree Γ−1) and the remaining individuals x1 . . . xγ.
By definition, each of those individuals takes part in exactly
one test.

In both cases above, G∗
Γ is an almost-regular bipartite

graph with each test comprising at most Γ individuals.

C. Choice of recovery algorithm

We make use of the definite defectives (DD) and sequen-
tial combinatorial orthogonal matching pursuit (SCOMP)
algorithms [20], which are described as follows. Note that
SCOMP amounts to running DD and then performing
greedy improvements.

4It will turn out in due course that mΓ/n is an integer under the choice
of Γ used in the analysis.

5A positive test is unexplained if it does not contain any individuals that
have already been marked as infected.

1 Declare every individual x that appears in a negative
test as non-infected; remove all such individuals.

2 Declare all individuals that are now the sole
individual in a (positive) test as infected.

3 Proceed as follows depending on the algorithm:
• For DD, declare all remaining individuals as

uninfected.
• For SCOMP, repeat the following step until no

unexplained5positive tests remain:
Declare as infected the (previously undeclared)
individual in the largest number of unexplained
positive tests.

Algorithm 1: The DD and SCOMP algorithms as
defined by [20].

D. The combinatorics behind group testing

In this section, we introduce four types of individuals
(see Figure 3) that might appear in any group testing
instance and which the student can make use of. It turns
out that the sizes of the sets of these individuals are the
key to understanding group testing combinatorially. Given
a pooling scheme G , let

V0(G ) = {x ∈V (G ) :σx = 0}

and V1(G ) = {x ∈V (G ) :σx = 1}

be the uninfected and infected individuals, respectively.
Then we can define easy uninfected individuals to be the
uninfected individuals that appear in a negative test –
clearly, they can easily be identified. We will call the set
of such individuals V0−; formally,

V0−(G ) = {x ∈V0(G ) : ∃a ∈ ∂G x : σ̂a = 0} . (2)

Then, there the easy infected individuals (sometimes re-
ferred to as definitive defectives). These are those infected
individuals that appear in at least one test with only easy
uninfected individuals. Thus, upon removing the easy un-
infected individuals, there will be at least one positive test
with exactly one undeclared individual, and this individual
has to be infected. We call this set

V1−−(G ) = {x ∈V1(G ) : ∃a ∈ ∂G x : (∂G a \ {x}) ⊂V0−(G )} . (3)

Subsequently, there might be disguised uninfected individ-
uals, that are uninfected themselves but only appear in
positive tests. It is well known [31], [18], [4] that since the
prior probability of being uninfected is very large, a group
testing instance can tolerate a certain number of individuals
of this type. Formally,

V0+(G ) = {x ∈V0(G ) : ∀a ∈ ∂G x : σ̂a = 1} . (4)

Finally, there might be disguised infected individuals, thus
infected individuals appearing only in tests that contain at
least one more infected individual. Formally,

V1+(G ) = {x ∈V1(G ) : ∀a ∈ ∂G x : (∂G a \ {x})∩V1(G ) 6= ;} . (5)
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x1 ∈V0−

x1

x2 ∈V1−−

x2

x3 ∈V0+∪V1+

x3

Fig. 3: Rectangles represent tests and circles individuals.
Dark blue individuals are elements of V0− and can be
easily identified as uninfected. Light blue individuals are
elements of V0+, and even if uninfected themselves, they
only appear in positive tests and might be hard to identify.
Infected individuals (red) that appear only in such tests are
impossible to identify. Finally, infected individuals of V1−−
appear in at least one test with only elements of V0−. Thus,
after identifying all elements of V0−, they can be identified.
The dashed lines represent the fact that the individuals may
also participate in other tests; these may include negative
tests classifying their participants as uninfected (elements
of V0−) even though the particular test displayed is positive.

While the above types of individuals are not exhaustive, we
will see in Section II-E that they are the relevant types for
the information-theoretic and algorithmic analyses.

1) Remarks on information-theoretic and combinatorial
bounds: It turns out that in the sparse group testing prob-
lem – as well as in the unrestricted version [20], [4] – the
non-adaptive information-theoretic phase transition comes
in two installments. First, there are universal information-
theoretic bounds, e.g., counting bounds, that account for
the fact that a given number of tests can carry only a
certain amount of information. Such bounds directly apply
to the non-adaptive as well as the adaptive setting. Second,
there are combinatorial / graph theoretical restrictions:
Given that there exist a large number of disguised infected
individuals (i.e., individuals such that in each of its tests

there is a second infected individual), any non-adaptive
algorithm fails with high (conditional) probability [18], [4].
This non-adaptivity gap becomes stronger if we increase
the infection density parameter θ, because for larger θ, the
chance of finding multiple infected individuals in a small
neighborhood increases as well. In this section we deal
with the combinatorial part. In our setting, the transition
where the combinatorial bound dominates the information-
theoretic bound happens at k ∼ p

n, i.e., at the point
where we find multiple infected individuals in a bounded
neighborhood w.h.p..

E. The Nishimori property

Given a pooling scheme G , a ground truth infection
status vector σ (drawn uniformly from the vectors of
Hamming weight k) and a sequence of test results σ̂, we
denote by Sk (G ,σ) the set of all colorings (i.e., infection
status assignments) of individuals τ ∈ {0,1}n that would
have led to the test outcomes σ̂ (clearly including σ itself).
Furthermore, we define Zk (G ,σ) = |Sk (G ,σ)|. The following
proposition states that all sets in Sk (G ,σ) are equally likely
given the test outcomes.

Proposition 2.1: [Corollary 2.1 of [18]] For all τ ∈ {0,1}n

we have

P(σ= τ|G ,σ̂) = 1{τ ∈ Sk (G ,σ)}

Zk (G ,σ)
.

This immediately implies the following corollary.
Corollary 2.2: If Zk (G ,σ) ≥ ` w.h.p., then any inference

algorithm recovers σ from (G ,σ̂) with probability at most
`−1(1+o(1)).
In other words, as soon as multiple satisfying assignments
exist, one cannot do any better than selecting one uniformly
at random, as no further information is included in G and
σ̂ [32]. The following claims will also be useful.

Claim 2.3: For any test design, we have Zk (G ,σ) ≥
|V1+(G )| |V0+(G )|. Hence, conditioned on the sets V1+(G )
and V0+(G ), any inference algorithm fails with probability
at least 1− 1

|V1+(G )||V0+(G )| .
Proof: The first statement is straightforward and was

already given in [18, Fact 3.3], and the second statement
follows directly from Corollary 2.2.

Finally, we have the following well-known result on the
DD algorithm.

Claim 2.4: The DD algorithm succeeds if and only if
V1(G ) =V1−−(G ).

Proof: By definition, DD first classifies all x ∈ V0−(G )
correctly. In the second step, DD classifies those individuals
x as infected, which belong to a positive test a such that
∂a \ {x} ⊂ V0−(G ). Thus, DD finds all x ∈ V1 ∩V1−−(G ). As
DD classifies the remaining individuals as uninfected, it
fails as soon as there exists an individual x ∈ V1 \ V1−−(G ).

We note that even if V1(G )\V1−−(G ) 6= ;, the DD-algorithm
does not produce any false positives but only false nega-
tives. In addition, if DD succeeds then SCOMP is guaranteed
to succeed [33], but unlike DD, in general SCOMP may
produce both false positive and false negatives.
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F. The two-round exposure technique

A key tool to deal with an arbitrary test design is to
introduce certain levels of independent randomness. For
example, the only randomness in (G ,σ) is the infection
status of each individual. We will see in due course we
can study an independent infection model (denoted by
σ∗) instead of dealing with exactly k infected individuals,
specifically considering each individual as being infected

independently from all others with probability p = k−
p

k lnn
n

(see Corollary 3.6). For the purposes of establishing a
converse, the main step is to show that V1+(G ) 6= ;, and
we will establish this in two steps. We denote by V+(G )
the set of disguised individuals, i.e., all tests containing this
individual x contain at least one other individual (differing
from x) that is infected, and hence

V+(G ) =V1+(G )∪V0+(G ).

Once we find a large enough set |V+(G )|À n/k, there will be
some infected individuals in V+(G ) w.h.p.. The main chal-
lenge is that in order to find the set of disguised individuals,
one uses infected individuals, therefore the events |V+(G )|
exceeding a specific size and infected individuals existing
in V+(G ) are not independent in (G ,σ∗). This is where the
two-round exposure technique, used very prominently in
the study of random graphs [30], comes into account.

More specifically, our analysis will take the following steps
in which individuals are randomly infected:

1) We first mark each individual as infected with proba-
bility αk/n for some fixed constant α ∈ (0,1) and find
a set K1 of infected individuals whose neighbourhood
(the tests they belong to) has certain properties.

2) Next, we mark the remaining individuals in the second
neighbourhood of K1 (hence, we look at the indi-
viduals that are contained in the tests together with
the vertices of K1) as infected independently with
probability (1−2α)k/n for establishing the property of
being disguised.

3) After the previous step, each individual has been in-
fected with probability at most αk/n + (1−αk/n)(1−
2α)k/n < p. To attain the desired final distribution of
σ∗, we independently mark each individual i ∈ [n]
as infected with probability p − pi , where pi is the
probability already incurred from the first two steps.
By doing so, the overall distribution of σ∗ is i.i.d. with
probability p, as desired. While these extra infections
are not actually analyzed, the idea is that they produce
the desired overall distribution, while only enlarging
(or keeping unchanged) the set of individuals that are
disguised.

III. NON-ADAPTIVE GROUP TESTING WITH ∆-DIVISIBLE

INDIVIDUALS

In this section, we formally state and prove our main re-
sults regarding non-adaptive group testing with ∆-divisible
individuals.

A. Model

As we highlighted earlier, optimal unconstrained designs
are known that place each individual in Θ(lnn) tests.
Accordingly, we only consider the regime ∆ = o(lnn), and
specifically suppose that ∆ ≤ ln1−δn for some constant
δ ∈ (0,1).

B. Results

Define

minf(∆) =∆k max
{

e−1k
(1−θ)
∆θ ,k

1
∆

}
,

mDD(∆) =∆k max
{

k
(1−θ)
∆θ ,k

1
∆

}
, (6)

which will represent the information theoretic converse
bound for any non-adaptive group testing scheme and the
algorithmic barrier for DD, respectively.

In the following, we assume that ∆≥ 2 and ∆> θ/(1−θ). If
the latter inequality is reversed, then we find that mDD(∆) =
ω(n), in which case one is better off resorting to one-by-one
testing.

Our first main result provides a simple counting-based
converse bound for any adaptive or non-adaptive test de-
sign. This result, and all subsequent results, will be proved
throughout the rest of the section. An overview of the proof
strategy will be provided in Section III-B1

Theorem 3.1: Fix ε ∈ (0,1), and suppose that k = nθ with

θ ∈ (0,1) and ∆ = o(ln(n)). Then, if m ≤ (1− ε)e−1∆k1+ (1−θ)
∆θ

for fixed ε> 0, we have w.h.p. that any (possibly adaptive)
group testing procedure that tests each individual at most
∆ times fails to recover σ.

This bound recovers the first term of max{·, ·} appearing
in the definition of minf(∆) above, which is dominant for
θ ≤ 1/2. For the second term (which is dominant for θ ≥
1/2), we require a more sophisticated argument that only
holds for non-adaptive designs; as we will see in Section V,
adaptive designs can in fact go beyond this threshold. The
proof of Theorem 3.1 is given in Section III-C.

Theorem 3.2: Given any non-adaptive pooling scheme G

where any individual gets tested at most ∆ times (with
θ/(1−θ) <∆≤ (lnn)1−δ for some δ> 0), if m ≤ (1−ε)∆k1+1/∆

for some ε ∈ (0,1), any algorithm (efficient or not) fails at
inferring σ from (G ,σ̂), with probability 1−o(1) if ∆=ω(1),
and with probability Ω(1) if ∆=O(1).

Combining these results, we find that any non-adaptive
group testing strategy using at most (1 − ε)minf(∆) tests
fails w.h.p. if ∆ = ω(1), and fails with constant non-zero
probability if ∆=O(1). We provide the proof of Theorem 3.2
in Section III-D. Next, we state our main upper bound,
corresponding to the random regular design and the DD
algorithm.

Theorem 3.3: Suppose that m = (1+ε)mDD(∆) for some ε>
0. Then, under the random regular design with parameter
∆, DD recovers σ from (G∆,σ̂) with probability at least
1− (1+ε)−∆ (1+o(1))−O(n−Ω(1)).

Note that the success probability tends to one as ∆→∞;
if ∆=O(1) then we need to take ε→∞ for the probability
to approach one (but it can be close to one for finite
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ε). The proof of Theorem 3.3 is given in Section III-E.
Comparing this result with Theorem 3.1, we find that DD
is asymptotically optimal for θ ≥ 1/2. On the other hand,
a gap between minf(∆) and mDD(∆) remains for θ < 1

2 . In
principle, this could be due to a weakness in the converse, a
fundamental limitation of DD, or a weakness in our analysis
of DD. However, the following theorem rules out the latter
of these.

Theorem 3.4: Let θ < 1/2. Given the random regular
pooling scheme G∆ on m = (1− ε)mDD(∆) tests for fixed
ε ∈ (0,1), we have the following:

1) If ∆ = Θ(1), then DD fails with positive probability
bounded way from zero.

2) If ∆= (lnn)1−δ for δ ∈ (0,1), then DD fails w.h.p..

Thus, Theorem 3.4 settles a coarse phase transition of
DD in the random regular model when there are finitely
many tests-per-individual, and a sharp phase transition
when the number of tests-per-individual is diverging. The
proof of Theorem 3.4 is provided in Section III-F. We expect
that DD is in fact provably suboptimal for θ < 1

2 , but leave
this as an open problem.

1) Overview of proofs: Before proving Theorems 3.1–3.4,
we provide a brief overview:

• To prove Theorem 3.1, we establish an upper bound on
the probability that an arbitrary inference algorithm re-
covers σ correctly based on the amount of information
provided by the test results (which is inherently limited
due to the testing constraints). This already suffices
to show that as soon as the number of tests crosses
a certain lower bound, any inference algorithm must
have an error probability approaching one.

• Theorem 3.2 deals with non-adaptive designs, which
can be represented as a bipartite graph. The main
argument is that when there are too many disguised in-
fected and disguised uninfected individuals, perfect re-
covery becomes impossible, since interchanging these
two types of individuals would not impact the test
results. We carefully analyse the number of occurrences
of these disguised individuals by the means of local
structures in the graph (see Figure 3).

• Theorem 3.3 provides performance guarantees for the
DD-algorithm in the ∆−divisible setting. As this algo-
rithm succeeds if and only if all infected individuals
appear in one test containing only definitive uninfected
individuals (c.f., Sections II-D and II-E), it suffices
to analyse a carefully-chosen pooling scheme and
pinpoint the number of tests required such that all
infected individuals exhibit this property.

• Finally, we prove Theorem 3.4 by showing that as soon
as the number of tests is too small, there exists a large
number of infected individuals that fail to participate
in any tests containing only definitive uninfected indi-
viduals.

C. Universal counting-based converse: Proof of Theorem 3.1

We first prove a counting-based upper bound on the
success probability for any test design and inference

algorithm. Afterwards, we will use this bound on the
success probability to prove our main converse bound,
providing a lower bound on m for attaining a given target
error probability.

Let A (G ,σ̂,k) be the output of a group testing inference
algorithm with input G (pooling scheme), σ̂ (test results),
and k (number of infected individuals). The inference algo-
rithm is successful if A (G ,σ̂,k) =σ, and P (A (G ,σ̂,k) =σ)
is the success probability. We first prove the following non-
asymptotic counting-based bound via a similar approach to
[34] with suitable adjustments, and also using the Nishimori
property similarly to [18].

Lemma 3.5: Under the preceding setup, for any pooling
scheme G and inference algorithm A (G ,σ̂,k), we have

P(A (G ,σ̂,k) =σ) ≤
∑∆k

i=0

(m
i

)
(n

k

) . (7)

Proof: Any given pooling scheme can be viewed as
a deterministic mapping from an infection status vector
σ ∈ {0,1}n to an outcome vector σ̂ ∈ {0,1}m . Recall that in
Proposition 2.1, Sk (G ,σ) is the set of all colorings of indi-
viduals that lead to the testing sequence σ̂, and Zk (G ,σ) is
its cardinality. In the following, we additionally let Ẑk (G ,σ̂)
denote Zk (G ,σ) when the test outcomes produced by (G ,σ)
are equal to σ̂, and let Ŝk (G ,σ̂) be the set of all σ sequences
that produce test outcomes σ̂.

Proposition 2.1 shows that the optimal inference algo-
rithm outputs an arbitrary element of Sk (G ,σ), and is
correct with probability (conditioned on σ) equal to 1

Zk (G ,σ) .
Thus, averaging over the

(n
k

)
possible k-sparse vectors σ, we

have the following:

P(A (G ,σ̂,k) =σ) = 1(n
k

)
∑
σ

1

Zk (G ,σ)

= 1(n
k

)
∑

σ̂ : Ẑk (G ,σ̂)≥1

∑
σ∈Ŝk (G ,σ̂)

1

Ẑk (G ,σ̂)

(a)≤ |{σ̂ ∈ {0,1}m : Ẑk (G ,σ̂) ≥ 1}|(n
k

)

(b)≤ |{σ̂ with at most ∆k ones}|(n
k

)

=
∑∆k

i=0

(m
i

)
(n

k

) ,

where (a) follows since there are Ẑk (G ,σ̂) terms in the
second summation, thus canceling the 1

Ẑk (G ,σ̂)
term, and (b)

uses the fact that at most ∆k test outcomes can be positive,
even in the adaptive setting; this is because adding another
infected individual always introduces at most ∆ additional
positive tests.
We now use the result in (7) to prove Theorem 3.1 - 3.1. In
the following we want to provide a short overview of how
we obtain these results

Proof of Theorem 3.1: Let mcount(∆) = e−1∆k1+ (1−θ)
∆θ

denote the threshold in the theorem statement. It suffices to
prove the claim for m = (1−ε)mcount(∆), since the inference
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algorithm could choose to ignore tests. We use the non-
asymptotic bound in Lemma 3.5, and upper bound the sum
of binomial coefficients via [35, Section 4.7.1] to obtain the
following for a fixed target success probability of 1−ξ (for
some ξ ∈ (0,1)):

P (A (G ,σ̂,k) =σ) ≤ emh( ∆k
m )

(n
k

) ≡ 1−ξ, (8)

where h(·) is the binary entropy function in nats (logs to

base e). From (8), we have emh( ∆k
m )/

(n
k

)= 1−ξ, which implies
that

ln
(
(1−ξ)

(
n

k

))
= mh

(∆k

m

)

=∆k ln
m

∆k
+ (m −∆k) ln

1

1− ∆k
m

(a)= ∆k ln
m

∆k
+∆k(1+o(1)), (9)

where (a) uses a Taylor expansion and the fact that ∆k
m ∈ o(1)

(due to ∆ = o(lnn) and m = (1− ε)mcount(∆)). Hence, we
have (1− ∆k

m )−1 = exp(∆k
m )(1+o(1)) which is used to obtain

the simplification. Rearranging (9), we obtain

ln
m

∆k
= 1

∆k
ln

(
(1−ξ)

(
n

k

))
− (1+o(1)),

which gives

m = e−(1+o(1))∆k

(
(1−ξ)

(
n

k

)) 1
∆k

(a)≥ e−(1+o(1))(1−ξ)
1
∆k ∆k1+ 1−θ

θ∆ , (10)

where (a) follows from the fact that
(n

k

)≥ ( n
k

)k and k = nθ.
Finally, we note that (1−ξ)1/(∆k) → 1 for any fixed ξ ∈ (0,1),

since k →∞ by assumption. This means that m must be

at least (1−o(1))e−1∆k1+ (1−θ)
∆θ to obtain any arbitrarily small

success probability, and hence, if m is instead a (1−ε) factor
below this threshold (as we have assumed) then the success
probability must tend to zero.

D. Universal converse for non-adaptive designs: Proof of
Theorem 3.2

It suffices to prove the assertion of the theorem for
m = (1−ε)∆k1+1/∆, since extra tests can only help (or can
be ignored). Let ε,θ,δ ∈ (0,1), and θ/(1− θ) ≤ ∆ ≤ ln1−δn.
Furthermore, let G be an arbitrary non-adaptive pooling
scheme with V (G ) the set of n individuals and F (G ) the
set of m = (1−ε)∆k1+1/∆ tests such that each individual is
tested at most ∆ times. Let

¯̀= 1

1−εk− 1
∆ and Γ̄= 1

m

∑
a∈F (G )

Γa = n∆

m
≥ ¯̀n

k
. (11)

Thus, Γ̄ represents the average degree of the tests in
F (G ), where Γa is the size of test a. We pick a set of k
infected individuals uniformly at random and let σ be the

{0,1}-vector representing them. We introduce p = k−
p

k lnn
n

and σ∗ as a binomial {0,1}-vector, such that each entry

represents one individual and equals 1 with probability
p independently of the others. Our next result relates σ
and σ∗. As in [17], [4] the way to establish a lower bound
is to establish that the underlying graph structure always
contains a certain number of disguised infected as well as
disguised uninfected individuals. We note that due to the
∆-divisibility condition, a straightforward application of the
FKG inequality does not appear to provide a sufficiently
strong bound, since the variances of the random variables
of interest may become too large.

Corollary 3.6: Under the preceding setup, for fixed ε ∈
(0,1) and n large enough, if there is a non-negative integer
C (possibly C = 0) such that

P
(∣∣V1+(G ,σ∗)

∣∣> 2C
)≥ 1−ε

and P
(∣∣V0+(G ,σ∗)

∣∣> 2C
)≥ 1−ε,

then it also holds that

P (|V1+(G ,σ)| >C ) ≥ 1−ε−o(1)

and P (|V0+(G ,σ)| >C ) ≥ 1−ε−o(1).

Proof: The proof follows along the lines of the proof
of [4, Lemma 3.6]. Let B be the event that |σ∗| ∈ [k −
2
p

k lnn,k]. Then a standard application of the Chernoff
bound guarantees that P (B) = 1−o(1).

Given B, we couple σ∗ and σ by flipping at most
2
p

k lnn uninfected individuals in σ∗ to infected, uniformly
at random. This yields the correct distribution, since by
definition the set I1 =

{
i :σ∗

i = 1
}

is a uniform subset of size
|σ∗| (conditioned on |σ∗|). Hence, when we infect another
random subset of size k − |I1| uniformly at random, the
overall infected set is uniform over the subsets of size k.
Clearly, the number of disguised infected individuals can
only increase, and hence

∣∣V1+(G ,σ∗)
∣∣≤ |V1+(G ,σ)| . (12)

However, it might happen that previously disguised unin-
fected individuals do now contribute to |V1+(G ,σ)| instead
of |V0+(G ,σ)|. Let

V :=
∣∣|V0+(G ,σ)|−

∣∣V0+(G ,σ∗)
∣∣∣∣ .

By the above coupling argument, we have

E[V |B] ≤ 2
p

k lnn

n −k

∣∣V0+(G ,σ∗)
∣∣< n−(1−θ) ∣∣V0+(G ,σ∗)

∣∣ .

Therefore, Markov’s inequality implies

P
(|V0+(G ,σ)| ≤

∣∣V0+(G ,σ∗)
∣∣/2 |B)

≤P
(

V ≥ E [V |B]

2n−(1−θ)
|B

)
= o(1). (13)

The desired result now follows directly from (12), (13), and
P (B) = 1−o(1).

Corollary 3.7: Under the preceding setup, we have the
following:

(i) If P (|V1+(G ,σ∗)| > 0) = 1−o(1), then it also holds that
P (|V0+(G ,σ)| > lnn) = 1−o(1).

(ii) If P (|V1+(G ,σ∗)| > 0) = Ω(1), then it also holds that
P (|V0+(G ,σ)| > lnn) =Ω(1).
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Proof: We use the fact that the property of being
disguised is independent of the infection status. Indeed,
given the number of disguised individuals |V+(G ,σ∗)|, we
have |V1+(G ,σ∗)| ∼ Bin(|V+(G ,σ∗)| ,k/n) and |V0+(G ,σ∗)| ∼
Bin(|V+(G ,σ∗)| ,1−k/n). Let δ> 0 be such that, by assump-
tion, P (|V1+(G ,σ∗)| > 0) = 1−δ. Therefore,

δ=
n∑

n′=1

P
(∣∣V+(G ,σ∗)

∣∣= n′)

·P(∣∣V1+(G ,σ∗)
∣∣= 0 |

∣∣V+(G ,σ∗)
∣∣= n′)

=
n∑

n′=1

P
(∣∣V+(G ,σ∗)

∣∣= n′)
(
1− k

n

)n′

. (14)

Observe that if n′ < n
k lnn , then we have (1−k/n)n′ = 1−o(1).

Therefore, due to (14), we require

n/(k lnn)∑
n′=1

P
(∣∣V+(G ,σ∗)

∣∣= n′)≤ δ+o (1) (15)

and we conclude that |V+(G ,σ∗)| = Ω̃
( n

k

) = nΩ(1) with
probability at least 1−δ− o(1). Moreover, conditioned on
|V+(G ,σ∗)| = nΩ(1), the Chernoff bound yields w.h.p. that
|V0+(G ,σ∗)| = nΩ(1) > 2lnn. The desired result then follows
directly from Corollary 3.6, distinguishing between δ= o(1)
and δ ∈ (Ω(1),1−Ω(1)).

By adopting the two-round exposure technique from
Section II-F, Theorem 3.2 will follow from the next lemma,
which establishes the conditions in Corollary 3.7 regarding
σ∗.

Lemma 3.8: For any ε,θ,δ ∈ (0,1) the following holds.
Consider the i.i.d. infection model σ∗, and let G be a
test design such that any of the n = V (G ) individuals is
tested at most ∆ times (with θ/(1−θ) < ∆ ≤ (lnn)1−δ) and
m = |F (G )| = (1−ε)∆k1+1/∆, where k = nθ . Then, if ∆=ω(1)
we have w.h.p. that |V1+ (G ,σ∗)| > 0, whereas if ∆=O(1), we
have with Ω(1) probability that |V1+ (G ,σ∗)| > 0.

Proof: We first give a brief overview of the proof:

• We first establish that there must be no tests in G with
too few individuals (Claim 3.9).

• Second, we apply the two-round exposure technique
described in Section II to create a set K1 of infected
individuals of size roughly αk.

• Third, we remove any tests that already contain two
infected individuals, since individuals of K1 are dis-
guised if and only if they are disguised upon the
removal of such tests (Fact 3.10).

• Next, we show that, upon applying the second stage
of the two-round exposure technique to the second
neighbourhood of the individuals of K1 in the remain-
ing graph, the probability an individual x ∈ K1 being
disguised is minimised in the case that its tests are
disjoint (Claim 3.11).

• The preceding result is used to lower bound the av-
erage probability of being disguised by employing a
hypothetical model in which all tests are mutually
disjoint and therefore independent (Claim 3.12).

• Finally, carefully applied concentration results are used
complete the proof.

Proceeding more formally, we first show that G satisfies
certain degree properties, namely, there cannot be any tests
that are too small.

Claim 3.9: For any fixed integer D , we can assume
without loss of generality (for proving Lemma 3.8) that, for
n large enough, every test has size at least D .

Proof of Claim 3.9: We obtain an alternative design
G ′ from G by iteratively deleting a test of size less than
D and all individuals contained in the test, until all tests
have size at least D . In each step, we remove one test,
between one and D individuals, and at most ∆D edges.
Without loss of generality, assume that in G there are
only o(n) individuals that are not contained in any tests
(otherwise, the error probability would trivially tend to one).
Therefore, the test-design G ′ contains at least (1−o(1))n −
m∆D = (1− o(1))n edges, and since the individual degree
is still at most ∆, its number of individuals n′ = |V (G ′)|
satisfies n′ ≥ (1− o(1))n/∆. This lower bound on n′ along
with the assumption ∆ ≤ (lnn)1−δ additionally imply that
∆≤ (lnn′)1−δ/2 when n is sufficiently large.

As for the remaining number of tests m′ = |F (G ′)|, we
claim that for all large enough n,

m′ ≤ (1−ε)∆nθ+θ/∆− (n −n′)/D ≤ (1−ε/2)∆(n′)θ+θ/∆. (16)

Indeed, the first inequality follows since m ≤ (1−ε)∆k1+1/∆ =
(1−ε)∆nθ+θ/∆ and the fact that we delete at least one test
per D deleted individuals. For the second inequality, let ζ :=
θ+θ/∆, which yields ζ< 1 by our assumption ∆> θ/(1−θ).
Then, we distinguish two cases:

• If n −n′ ≥p
n, then we have the following:

(n −n′)/D ≥∆(n −n′)ζ

≥∆
(
nζ− (n′)ζ

)

≥ (1−ε)∆
(
nζ− (n′)ζ

)
,

where the first inequality holds for sufficiently large
n since D is constant, ζ ∈ (0,1), and ∆ is at most
logarithmic, and the second inequality holds because
the function f (x) = xζ (for ζ ∈ (0,1)) is concave and
monotone, so for any δ> 0 it holds that f (x+δ)− f (x)
is largest when x = 0. Substituting the above finding
yields the desired second inequality in (16).

• On the other hand, if n−n′ <p
n, we have the following

for large enough n:

(1−ε)∆nζ < (1−ε)∆(n′)ζ · (1+p
n/n′)ζ

≤ (1−ε)∆(n′)ζ · (1+p
n/n′)

≤ (1−ε/2)∆(n′)ζ,

since n −n′ <p
n implies that

p
n/n′ = o(1). Hence, in

this case we get the desired result even after trivially
bounding (n −n′)/D by zero.

Since V1+(G ′) ⊆ V1+(G ), we can continue working with G ′

and the desired claim holds.
Recall that in the multi-step argument in Section II-F, for

some α> 0, the first step is to infect each individual inde-
pendently with probability αk/n, and denote the resulting
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set of infected individuals by K1. We seek to characterize
the number of disguised individuals in K1 following a sec-
ond step of infections, in which each previously-uninfected
individual is infected with probability (1− 2α)k/n. Given
K1, let X ∗

v be the probability that v ∈K1 is disguised after
this second step, and let X ∗ =∑

v∈K1 X ∗
v . To prove that X ∗

is large, we need the following two statements.
Fact 3.10: Let a be a test such that |∂a ∩K1| ≥ 2. Then any

individual in K1 is disguised if and only if it is disguised
when removing the test a.

This fact is immediate as any infected individual is
disguised in a by definition. Furthermore, to get a handle
on the subtle dependencies between overlapping tests, we
prove that the probability for an individual to be disguised
in two tests is minimised when the tests are disjoint. For
this, denote by ∂(x)a = ∂a \ {x} the individuals in test a
without x.

Claim 3.11: Consider marking each individual in ∂(x)a ∪
∂(x)a′ as infected with some probability q independent of
the others. Then, for any integer z > 0, any individual x ∈
V (G ) and any two tests a, a′ ∈ ∂x, we have

P

(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; | ∂(x)a ∩∂(x)a′ =;

)

≤P
(
∂(x)a ∩V1(G ) 6= ;,

∂(x)a′∩V1(G ) 6= ; |
∣∣∂(x)a ∩∂(x)a′∣∣= z

)
.

Proof: We first note that

P
(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; | ∂(x)a ∩∂(x)a′ =;)

=
(
1− (1−q)

∣∣∂(x)a
∣∣)(

1− (1−q)
∣∣∂(x)a′∣∣)

, (17)

as the infected individuals in the two tests are independent
due to the conditioning event.

On the other hand, suppose that
∣∣∂(x)a ∩∂(x)a′∣∣ = z > 0.

In order to make both tests contain at least one infected
individual that is not x, we can either have at least one of
the z common individuals which is infected (happening
with probability

(
1− (1−q)z

)
), or we need both tests to

contain an infected individual outside of the intersection.
Hence,

P
(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; |

∣∣∂(x)a ∩∂(x)a′∣∣= z
)

= (
1− (

1−q
)z)+ (

1−q
)z

(
1− (1−q)

∣∣∂(x)a
∣∣−z

)

·
(
1− (1−q)

∣∣∂(x)a′∣∣−z
)

(18)

Using (17) and (18), we conclude the proof with a short
calculation:

P
(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; |

∣∣∂(x)a ∩∂(x)a′∣∣= z
)

−P(
∂(x)a ∩V1(G ) 6= ;,∂(x)a′∩V1(G ) 6= ; | ∂(x)a ∩∂(x)a′ =;)

= (
1− (

1−q
)z)

+ (
1−q

)z
(
1− (1−q)

∣∣∂(x)a
∣∣−z

)(
1− (1−q)

∣∣∂(x)a′∣∣−z
)

−
(
1− (1−q)

∣∣∂(x)a
∣∣)(

1− (1−q)
∣∣∂(x)a′∣∣)

= (
1− (

1−q
)z)(

1−q
)∣∣∂(x)a

∣∣+
∣∣∂(x)a′∣∣−z ≥ 0,

where the last step follows by expanding and simplifying.

With this in mind, we can consider a simplified model in
which the test degrees are unchanged, but the tests are all
disjoint.6 More precisely, we define the following: Given an

infection rate q ∈ (0,1), we let Y a = Y a(q) :=
(
1− (

1−q
)Γa−1

)

be the probability that in a test a of size Γa with one fixed
individual x, there is at least one infected individual that
is not x. For any individual v , we then denote by X v =
X v (q) :=∏

a∈∂v Y a(q) the probability that v is disguised in
this model, where all tests are mutually disjoint. Observe
that, by Claim 3.11, X ∗

v ≥ X v , and therefore, X ∗ ≥ X . The
advantage is that in this model, X v and X u are independent
for v 6= u. Recall that

¯̀= 1

1−εk−1/∆ = o(1),

because ∆=O(ln1−δn) and k = nθ, and let `a = Γak/n.
Note that X v describes the probability of being disguised

for one individual; we proceed by considering the entire set
of individuals. The following lemma provides a useful lower
bound on n−1 ∑

v∈V (G ) X v .
Claim 3.12: Under the preceding setup with q = (1 −

2α)k/n, we have

n−1
∑

v∈V (G )
X v ≥ (1−exp(−(1−3α) ¯̀))∆.

Proof: By the inequality of arithmetic and geometric
means, we have

n−1
∑

v∈V (G )
X v ≥

∏
v∈V (G )

( ∏
a∈∂v

Y a

)1/n

=
∏

a∈F (G )
Y Γa /n

a . (19)

Furthermore, by Claim 3.9, we may assume that Γa ≥ (3α)−1,
and we deduce that

Y a ≥ 1−exp
(−q (Γa −1)

)≥ 1−exp(−(1−3α)`a) .

Hence, (19) yields

n−1
∑

v∈V (G )
X v ≥

∏
a∈F (G )

(
1−exp(−(1−3α)`a)

)`a /k . (20)

Next, we note that
∑

a∈F (G )Γa ≤∆n by the ∆-divisibility con-
straint, which further implies

∑
a∈F (G )`a ≤ k∆. The choice

m = (1 − ε)∆k1+1/∆ also implies ¯̀ = ∆km−1, and we can
characterise the logarithm of the right-hand side of (20)
as follows:

k−1 ∑
a∈F (G )

`a ln
(
1−exp(−(1−3α)`a )

)

= mk−1 ∑
a∈F (G )

m−1 (
`a ln

(
1−exp(−(1−3α)`a )

))

≥ mk−1

( ∑
a∈F (G )

m−1`a

)
ln

(
1−exp

(
−(1−3α)m−1 ∑

a∈F (G )
`a

))

≥∆ ln
(
1−exp

(−(1−3α) ¯̀
))

,
(21)

where the first inequality applies Jensen’s inequality applied
to the convex function f (x) = x ln(1− exp(−(1− 3α)x)) on
(0,1), and the second inequality uses ¯̀ ≥ m−1 ∑

a∈F (G )`a

6This suggests an increase in the number of individuals, but the total
number of individuals does not play a role in this part of the analysis.
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(by the above calculations regarding ¯̀ and `a above), along
with the fact that ¯̀=∆km−1 = o(1) and f (x) is a decreasing
function for small enough x. Finally, the assertion of the
claim follows from (20) and (21).

We note from this claim that if we let v be a uniformly
random individual, we have (also using ¯̀= o(1)) that

E [X v ] ≥
(
1−exp

(−(1−3α) ¯̀
))∆ ≥ (1−4α)∆ ¯̀∆

= (1−4α)∆

(1−ε)∆k
≥ (1−ε/2)−∆k−1,

provided that α≤ ε/8.
Now, recall that X =∑

v∈K1 X v , and that each individual
is in K1 with probability αk/n. Then we deduce from the
above that

E[X ] =αk E[X v ] ≥α(1−ε/2)−∆.

As X v and X u are independent for v 6= u, we can apply the
Chernoff bound (Lemma 7.1, or more precisely a one-sided
version that saves a factor of 2) to obtain

P
(

X <α(1−ε/2)−∆/2
)≤ exp(−α(1−ε/2)−∆/12). (22)

Now, as described earlier, consider infecting any unin-
fected individual with probability q = (1−2α)k/n indepen-
dent of all the others. Then, as

∑
v∈K1 P(v ∈V1+(G )) = X ∗ ≥

X , we find that conditioned on K1 and X , it holds with
probability at least

1−
∏

v∈K1

(1−P(v ∈V1+(G ))) ≥ 1−
(
1− X

|K1|

)|K1|
≥ X

1+X

that at least one individual from K1 is disguised. Here we
used the inequality of arithmetic and geometric means to
upper bound the product, and the last step uses Bernoulli’s
inequality to write (1 − x/c)c ≤ 1 − x ≤ 1

1+x . With α = ε/8
and the upper bound (22) on the probability that X < ε(1−
ε/2)−∆/16, it follows that there exists a disguised individual
in K1 with probability at least

ν= ν(∆,ε) := (1−exp(−ε(1−ε/2)−∆/96))

which yields the statement of Lemma 3.8; note that ν =
1−o(1) when ∆=ω(1), and that ν=Ω(1) when ∆=O(1). The
latter assertion holds via the Taylor expansion 1−exp(−x) =
x +Θ(x2) as x → 0.

Recall that p = k−
p

k lnn
n , and note that any individual is

infected with probability at most

p̃ =αk/n + (1−αk/n)(1−2α)k/n < p,

independent of all the others. As discussed in Section II-F
we can in hindsight raise the infection probability of each
individual to p, which can only increase the size of the set
V1+(G ) (i.e., the number of disguised infected individuals).
This yields the assertion of Lemma 3.8 for the i.i.d. infection
model.

Proof of Theorem 3.2: The theorem now follows easily
by combining Lemma 3.8 with Corollary 3.7: With at least
one disguised infected individual and at least lnn disguised
uninfected individuals, the conditional error probability is
1−o(1) due to Claim 2.3.

E. Algorithmic achievability on the random regular model:
Proof of Theorem 3.3

1) Further notation: Recall the random regular model
G∆ from Section II-B1. We let (Γ1, . . . ,Γm) be the (random)
sequence of test-degrees, which satisfies the following by
construction:

m∑
i=1

Γi = n∆. (23)

Furthermore, given the sequence (Γi )i∈[m], we define

Γmin = min
i∈[m]

Γi , Γ̄= 1

m

m∑
i=1

Γi =
n∆

m

and
Γmax = max

i∈[m]
Γi .

We stress at this point that the construction of G∆ allows
for multi-edges, and hence one individual might take part
in a test multiple times and contribute more than one to
its degree.

Moreover, we parametrise the average degree as Γ̄= `n/k,
such that ` denotes the expected number of infected
individuals a test would contain in a binomial random
bipartite graph. The definition of Γ̄ implies ` = k∆

m , and
substituting m = (1+ε)mDD yields

`= (1+ε)−1
(
min

{
n−(1−θ)/∆,n−θ/∆

})
. (24)

Note that with θ
1−θ < ∆ ≤ (lnn)1−Ω(1), we have ω(n1−θ) ≤

`≤ o(1). We will make use of a stronger version of the left
inequality stating that `

n1−θ ≥ nΩ(1), which follows from ∆>
θ

1−θ and checking both cases of which term in (24) attains
the minimum.

We first argue that each test degree is tightly concentrated
with high probability, defining the concentration event CΓ

as follows:

CΓ =
{(

1−O
(
n−Ω(1))) `n

k
≤ Γmin ≤ Γ̄≤ Γmax

≤ (
1+O

(
n−Ω(1))) `n

k

}
. (25)

Lemma 3.13: For ` given in (24), we have P(CΓ) = 1−
Õ(n−3).

Proof: Each individual chooses ∆ tests with replace-
ment. Hence, each individual has a chance of picking a
given test ∆ times independently, yielding

Γi =
n∑

j=1

∆∑
h=1

1
{

x j chooses ai in h-th selection
}

and
Γi ∼ Bin(n∆,1/m) .

Thus, we have E [Γi ] = `n/k, which scales as ω(1) since we
have established `≥ω(n1−θ).

Applying the Chernoff bound (Lemma 7.1) and the above-
established fact `

n1−θ ≥ nΩ(1), we obtain

P (Γi < (1− t )`n/k) ≤ exp
(
−t 2`n1−θ/3

)
≤ exp

(−Ω(
t 2nΩ(1))) .
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Hence, we can choose t of the form O(n−Ω(1) lnn) =
O(n−Ω(1)) to attain

P (Γi < (1− t )`n/k) = Õ(n−4). (26)

An analogous calculation shows

P (Γi > (1+ t )`n/k) = Õ(n−4). (27)

Therefore, the lemma follows from (26), (27), and a union
bound over all m ≤ n tests.

2) Analysis of the different types of individuals: Let Y i

denote the number of infected individuals (including all
multi-edges) in test ai (for i = 1. . .m). These variables
are not mutually independent, as a single individual takes
part in multiple tests. Luckily, it turns out that the family
of the Y i can be approximated by a family of mutu-
ally independent random variables sufficiently well. Given
Γ1 . . .Γm , let (X i )i∈[m] be a sequence of mutually indepen-
dent Bin(Γi ,k/n) variables. Furthermore, let

E∆ =
{

m∑
i=1

X i = k∆

}
(28)

be the event that the sequence (X i ) renders the correct
number of infected individuals. Stirling’s approximation
(Lemma 7.2) guarantees that E∆ is not too unlikely; specif-
ically, P (E∆ | (Γi )i ) = Ω((n∆)−1/2). Furthermore, the X i are
indeed a good local approximation to the correct distribu-
tion, as stated in the following known result.

Lemma 3.14: [18, Appendix B.2] Conditioned on (Γi )i and
E∆, the sequences (Y i )i∈[m] and (X i )i∈[m] are identically
distributed. ■
Next, we establish that the number of negative tests m0 =
m0(G∆,σ) and the number of positive tests m1 = m −m0

are highly concentrated.
Lemma 3.15: With probability at least 1−o(n−2) we have

m0 =
(
1+O

(
n−Ω(1)))m exp(−`)

and
m1 =

(
1+O

(
n−Ω(1)))m

(
1−exp(−`)

)
.

Proof: Let m′
0 =

∣∣{(X i )i∈[m] : X i = 0
}∣∣. Combining the

definition of X i with (7.5), we get

E
[
m′

0 | (Γi )i
]=

m∑
i=1

P (X i = 0 |Γi ) =
m∑

i=1
(1−k/n)Γi ,

which represents the expected number of negative tests
approximated through (X i )i . Hence, when (Γi )i satisfies the
concentration event defining CΓ (see (25)), a second order
Taylor expansion (Lemma 7.4) yields

E
[
m′

0 | (Γi )i
]= (

1+O
(
n−Ω(1)))m exp(−`). (29)

Then, conditioned on (Γi )i , the Chernoff bound implies
implies with probability at least 1−o(n−10) that

m′
0 = E

[
m′

0 | (Γi )i
](

1+O(m−1/4)
)

. (30)

The first assertion of the lemma now follows from (29), (30),
Lemma 3.13, Lemma 3.14, and the fact that E∆ has probabil-
ity Ω((n∆)−1/2): Letting A be the above probability-o(n−10)
event, we simply write P(A |E∆) ≤ P(A )

P(E∆) , and substitute the

upper bound on the numerator and lower bound on the
denominator.

For the second assertion of the lemma, we need to
additionally take note of the fact that ` = o(1) and hence
m(1 − e−`) = O(m`) ¿ m. But since m` = k∆, this only
amounts to replacing m−1/4 by k−1/4 in the counterpart
of (30), and otherwise has no impact.

Next, we provide a characterization of the size of V0+(G∆),
i.e., the number of disguised uninfected individuals.

Lemma 3.16: We have with probability at least 1 −
O

(
n−Ω(1)

)
that

|V0+(G∆)| = (
1+O

(
n−Ω(1)))n

(
1−exp(−`)

)∆ .

Proof: Without loss of generality, given m1 and CΓ, we
suppose that tests a1 . . . am1 are the positive tests. By the
degree bounds in (25) and Lemma 3.15, the total number
of edges connected to a positive test is w.h.p. given by

m1∑
i=1

Γi =
(
1+O

(
n−Ω(1)))mΓ̄

(
1−exp(−`)

)
. (31)

We need to calculate the probability that a given uninfected
individual belongs to V0+ (G∆), i.e., each of its ∆ edges is
connected to a positive test. By a counting argument, we
have

PG∆ (x ∈V0+(G∆) | x ∈V0(G∆),m1,CΓ, (Γi )i )

=
(∑m1

i=1Γi

∆

)(∑m
i=1Γi

∆

)−1

= (
1+O

(
n−Ω(1)))(1−exp(−`)

)∆ ,

where the simplification follows via Claim 7.3 along with
(31) and

∑m
i=1Γi = mΓ̄.

Therefore,

EG∆ [|V0+(G∆)| |CΓ] =
(
1+O

(
n−Ω(1)))n

(
1−exp(−`)

)∆ . (32)

Analogously, the second moment turns out to be

EG∆

[|V0+(G∆)|2 |CΓ

]≤
(n−k

2

)((1+O
(
n−Ω(1)))mΓ̄(1−exp(−`))

2∆

)
((1+O(n−Ω(1)))mΓ̄

2∆

)

= (
1+O

(
n−Ω(1)))n2 (

1−exp(−`)
)2∆ . (33)

The idea of the first line of (33) is to consider pairs
of uninfected individuals whose 2∆ combined edges only
participate in positive tests.7 The second line of (33) follows
from Stirling’s approximation in the form of Claim 7.3. We
lemma is now obtained using (32), (33), and Chebyshev’s
inequality, and noting that n(1− e−`)∆ = n−Ω(1) (which is
seen by using `= o(1) to approximate (1−e−`)∆ by `∆, and
applying (24)).

Let A denote the number of infected individuals that
do not belong to the easy uninfected set V1−−(G∆). The
following lemma allows us to bound its size.

Lemma 3.17: If m = (1 + ε)mDD(∆), then A = 0 with
probability at least 1− (1+ε)−∆(1+o(1))−O(n−Ω(1)).

7The contribution of “self-pairs” where a individual just chooses its own
∆ edges from the corresponding set is strictly smaller, which is why the
expression given is an upper bound rather than an equality.
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Proof: We can split (24) into two cases, depending on
the sparsity level θ:

`=
{

(1+ε)−1n−(1−θ)/∆, if θ ≤ 1/2

(1+ε)−1k−1/∆, if θ > 1/2.
(34)

Recall that m1 is the number of positive tests, and define

F∆ = {
m1 =

(
1+O

(
n−Ω(1)))m

(
1−exp(−`)

)}

∩
{
|V0+(G∆)| = (

1+O
(
n−Ω(1)))n

(
1−exp(−`)

)∆}

(35)

as the event that both the number of positive tests as well
as the size of V0+(G∆) behave as expected. Lemmas 3.15 and
3.16 guarantee that F∆ is a high probability event, namely,
P {F∆} ≥ 1− Õ(n−1). Given m1, we suppose without loss of
generality that a1 . . . am1 are the tests rendering a positive
result.

We describe the number of occurrences of different types
of individuals by introducing two sequences of random
variables. Define R i = (R1

i ,R0+
i ,R0−

i )i∈[m1] as the number
of infected individuals, disguised uninfected individuals of
V0+(G∆), and non-disguised uninfected individuals (those of
V0−(G∆)) appearing in test i , respectively. By construction,
we have R0−

i = Γi −R0+
i −R1

i .

Given |V0+(G∆)| and m1, we approximate these vari-
ables by a sequence of mutually independent multinomials.
Specifically, let

H i = (H 1
i , H 0+

i , H 0−
i )i∈[m1] (36)

i.i.d.∼ Mult≥(1,0,0)

(
Γi ,

(
k

n
,
|V0+(G∆)|

n
,1− k +|V0+(G∆)|

n

))
,

where Mult≥(1,0,0) means multinomial conditioned on the
first coordinate being at least one. We introduce the event

D∆ =
{

m1∑
i=1

H 1
i = k∆,

m1∑
i=1

H 0+
i = |V0+(G∆)|∆

}
,

and make use of the following.

Claim 3.18: Given (Γi )i , |V0+(G∆)|, and m1, the dis-
tribution of R i equals the distribution of H i given D∆.
Furthermore, P (D∆) ≥Ω(n−2).

Proof: Let (ri )i∈[m1] be a sequence with ri =
(r 1

i ,r 0+
i ,r 0−

i ) satisfying

S1 :=
m1∑
i=1

r 1
i = k∆, S0+ :=

m1∑
i=1

r 0+
i = |V0+(G∆)|∆

and

r 0−
i = Γi − r 1

i − r 0+
i .

In addition, let

S0− :=
m1∑
i=1

r 0−
i

denote the number of connections from individuals in
V0−(G∆) to positive tests. Then, a counting argument gives

PG∆ (∀i ∈ [m1] : R i = ri | (Γi )i , |V0+(G∆)| ,m1)

=

( S1

r 1
1 ...r 1

m1

)( S0+
r 0+

1 ...rm0+
1

)( S0−
r 0−

1 ...r 0−
m1

)

(S1+S0++S0−
Γ1,...,Γm1

)

=
(

S1 +S0++S0−
S1,S0+,S0−

)−1 m1∏
i=1

(
Γi

r 1
i ,r 0+

i ,r 0−
i

)
.

Letting (r
′
i )i∈[m1] be a second sequence as above, it follows

that

PG∆ (∀i ∈ [m1] : R i = ri | (Γi )i , |V0+(G∆)| ,m1)

PG∆ (∀i ∈ [m1] : R i = r
′
i | (Γi )i , |V0+(G∆)| ,m1)

(37)

=
m1∏
i=1

( Γi

r 1
i r 0+

i r 0−
i

)

( Γi

r 1′
i r 0+′

i r 0−′
i

) . (38)

Next, define

R1 =
m1∑
i=1

r 1
i , R+ =

m1∑
i=1

r 0+
i , and R− =

m1∑
i=1

r 0−
i

and analogously for R ′
1,R ′

+,R ′
−. By definition, we have

R1 = R ′
1, R+ = R ′

+ and R− = R ′
−.

Then, by the definition of H , we have

PG∆ (∀i ∈ [m1] : H i = ri | (Γi )i , |V0+(G∆)| ,m1,D∆)

PG∆ (∀i ∈ [m1] : H i = r
′
i | (Γi )i , |V0+(G∆)| ,m1,D∆)

= (k/n)R1 (|V0+(G∆)|/n)R+ (1−k/n −|V0+(G∆)|/n)R−

(k/n)R ′
1 (|V0+(G∆)|/n)R ′

+ (1−k/n −|V0+(G∆)|/n)R ′−

·
m1∏
i=1

( Γi

r 1
i ,r 0+

i ,r 0−
i

)

( Γi

r
′1
i ,r

′0+
i ,r

′0−
i

) =
m1∏
i=1

( Γi

r 1
i ,r 0+

i ,r 0−
i

)

( Γi

r
′1
i ,r

′0+
i ,r

′0−
i

) . (39)

Thus, the first statement of Claim 3.18 follows from (37)
and (39), and the second statement follows from Claim 7.5

We now introduce a random variable that counts (pos-
itive) tests featuring only one infected individual and no
disguised uninfected individuals. Formally, let

B =
m1∑
i=1

1
{

R1
i +R0+

i = 1
}

and B ′ =
m1∑
i=1

1
{

H 1
i +H 0+

i = 1
}

. (40)

By the definition of H i (see (36)), we have

EG∆

[
B ′ | (Γi )i , |V0+(G∆)| ,m1

]

=
m1∑
i=1

(
Γi

1,0,Γi −1

)
k/n(1−k/n −|V0+(G∆)|/n)Γi−1

1− (1−k/n)Γi
. (41)

In the following, we suppose that Γi satisfies the concen-
tration around Γ̄ defining event CΓ (see (25)), and m1 and
|V0+(G∆)| satisfy the concentration defining event F∆ (see
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(35)). Using the concentration of Γi and the asymptotic
expansion (1−k/n)Γ̄ = exp(−`(1+O(n−Ω(1)))), we find that

EG∆

[
B ′ |CΓ, |V0+(G∆)| ,m1

]

= (
1+O

(
n−Ω(1)))m1Γ̄

n−(1−θ)(1−n−(1−θ) −|V0+(G∆)|/n)Γ̄

1−exp(−`(1+O(n−Ω(1))))
,

(42)

and further applying Γ̄= n∆
m , k = nθ, and the concentration

of m1, we obtain

EG∆

[
B ′ |CΓ, |V0+(G∆)| ,m1

]

= (
1+O

(
n−Ω(1)))k∆

(
1− k +|V0+(G∆)|

n

)Γ̄
. (43)

Now, let us distinguish between the cases θ ≤ 1/2 and θ >
1/2.
Case 1: θ > 1/2: In this case, we have n/k = o(k), and ` =
(1+ε)−1k−1/∆. We recall the event F∆ from (35) that gives a
concentration condition for |V0+(G∆)| and m1. Substituting
` into (35), we find that given F∆, there is some γ ∈ (0,1)
such that

|V0+(G∆)| =Θ(
(1+ε)−∆n/k

)=O
(
k1−γ) .

Hence, using (43) and applying Γ̄= `n/k, we obtain

EG∆

[
B ′ |CΓ,F∆

]=
(
1+O

(
n−Ω(1)

))
k∆


1−

(
1+O

(
n−Ω(1)

))
k

n



Γ̄

=
(
1+O

(
n−Ω(1)

))
k∆exp(−`)

=
(
1+O

(
n−Ω(1)

))
k∆(1−`+O(`2)), (44)

by a second-order Taylor expansion of e−`. Now, B ′ is
a binomial random variable with a random number of
trials and a random probability parameter. Clearly, when
conditioning on a specific number of trials and a specific
probability, B ′ is a binomial random variable. Therefore,
recalling the expression for ` in (34), the Chernoff bound
guarantees that under the concentration events CΓ and F∆,
we have

B ′ = (
1+O

(
n−Ω(1)))∆k · (1− (1+ε)−1k−1/∆+O(k−2/∆))

with probability at least o(n−10). Then, similar to the proof
of Lemma 3.15, Claim 3.18 yields that

B = (
1+O

(
n−Ω(1)))∆k · (1− (1+ε)−1k−1/∆+O(k−2/∆)) (45)

with probability 1−O(n−Ω(1)). Thus, we can calculate the
probability of an infected individual not belonging to
V1−−(G ) (i.e., not being in the easily-identified infected set)
as follows. Such an individual has to choose all of its ∆
edges out of the k∆−B edges that would lead to a test in
which the individual could be identified by DD. Hence, we
have

P (x 6∈V1−−(G∆) | x ∈V1(G ),B ) =
(

k∆−B

∆

)(
k∆

∆

)−1

= (1+o(1))
(
(1+ε)−1k−1/∆)∆

,
(46)

where the simplification holds using (45) and Claim 7.3.8

Interpreting the average of A as a sum of k probabilities, it
follows that

EG∆ [A | B ] ≤ (1+o(1))(1+ε)−∆. (47)

Case 2: θ ≤ 1/2: In this case, we have `= (1+ε)−1n−(1−θ)/∆.
Hence, given F∆,

|V0+(G∆)| = (
1−O

(
n−Ω(1)))k(1+ε)−∆. (48)

In contrast to the first case, here we find that the influence
of the size of disguised uninfected individuals does not
vanish asymptotically in relation to the number of infected
individuals in (43).

By a similar argument as the first case, (48) and (43) imply

EG∆

[
B ′ |CΓ,F∆

]

=
(
1+O

(
n−Ω(1)

))
k∆

(
1− k

n

(
1− (1+ε)−∆−O

(
n−Ω(1)

(1+ε)∆

)))Γ̄

(49)

=
(
1+O

(
n−Ω(1)

))
k∆exp

(
−

(
1− (1+ε)−∆−O

(
n−Ω(1)

(1+ε)∆

))
`

)

=
(
1+O

(
n−Ω(1)

))

·∆k
(
1−

(
1− (1+ε)−∆−O

(
n−Ω(1)(1+ε)−∆

))
(`+O(`2))

)
,

(50)

and similarly to (45), combining this with the Chernoff
bound and Claim 3.18 yields that

B = (
1+O

(
n−Ω(1)))∆k · (1− (1+ε)−1n−(1−θ)/∆+O(n−2(1−θ)/∆))

(51)

with probability 1−O(n−Ω(1)). Therefore, the probability of
an infected individual not belonging to V1−−(G ) satisfies the
following analog of (46):

P (x 6∈V1−−(G∆) | x ∈V1(G ),B ) =
(

k∆−B

∆

)(
k∆

∆

)−1

= (1+o(1))(1+ε)−∆n−(1−θ).

Since 2θ−1 ≤ 0 by assumption, it follows that

E [A | B ] = (1+o(1))(1+ε)−∆nθn−(1−θ) ≤ (1+o(1))(1+ε)−∆.
(52)

Thus, Lemma 3.17 follows from (47) and (52) followed by
Markov’s inequality.

Theorem 3.3 now follows directly from Lemma 3.17 and
Claim 2.4.

F. A converse for DD in the sparse regime: Proof of Theo-
rem 3.4

In accordance with Claim 2.4, we first provide a lemma
bounding the size of V1−−(G∆), the set of infected individu-
als appearing in at least one test with only easy uninfected
individuals.

8The O(k−2/∆) term in (45) amounts to multiplying by (1+O(k−1/∆))∆ in
(46). This simplifies to 1+o(1), since k1/∆ =ω(∆) due to our assumptions
∆≤ (lnn)1−Ω(1) and k = nθ (this is verified by comparing the logarithms).
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Lemma 3.19: For θ < 1/2 and m = (1−ε)mDD(∆), we have
under the random regular design that

E [|V1−−(G∆)|]
= (

1+O
(
n−Ω(1)))k

(
1− (

1−exp
(−(1−ε)−∆ (1−1/∆)

))∆)
.

Proof: We re-use the notations ¯̀ and Γ̄ in (11), but their
expressions are modified as follows in accordance with the

choice m = (1−ε)∆k1+ (1−θ)
∆θ associated with θ < 1

2 :

¯̀= (1−ε)−1n−(1−θ)/∆ and Γ̄= (1−ε)−1n(1−θ)(1−1/∆).
(53)

We additionally recall B from (40) as the number of tests
featuring exactly one infected individual and no elements
of V0+. By the same calculation as in (50) and (51) with `

and Γ̄ replaced by the values in (53), we obtain

B = (
1+O

(
n−Ω(1)))k∆

(
1− (1−ε)−∆kn−1)Γ̄

= (
1+O

(
n−Ω(1)))k∆exp

(−(1−ε)−∆ (1−1/∆)
)

(54)

with probability at least 1−o(n−8). Therefore, we can cal-
culate the probability that an infected individual does not
belong to V1−−(G∆) via Claim 7.3 as follows:

P (x 6∈V1−−(G∆) | x ∈V1(G ))

= (
1+O

(
n−Ω(1)))

(k∆−B
∆

)
(k∆
∆

)

= (
1+O

(
n−Ω(1)))(1−exp

(−(1−ε)−∆ (1−1/∆)
))∆

.

Since there are k individuals in x ∈ V1(G ) by assumption,
we obtain

E [|V1(G ) \V1−−(G∆)|] (55)

= (
1+O

(
n−Ω(1)))k

(
1−exp

(−(1−ε)−∆ (1−1/∆)
))∆

(56)

and the lemma follows using |V1−−(G∆)| =
k −|V1(G ) \V1−−(G∆)|.
Knowing the expected size of |V1−−(G∆)|, Markov’s inequal-
ity leads to the following.

Corollary 3.20: Let θ < 1/2 and m = (1− ε)mDD(∆) and
∆=Θ(1). Then, with probability at least

1− 1− (
1−exp

(−(1−ε)−∆ (1−1/∆)
))∆

1−γ (57)

there are at least γk infected individuals x ∈ V1(G ) \
V1−−(G∆).
Claim 2.4 and Corollary 3.20 immediately imply Theo-
rem 3.4, since (57) is always positive for sufficiently small
γ, and approaches one as ∆→∞.

IV. NON-ADAPTIVE GROUP TESTING WITH Γ-SIZED TESTS

In this section, we formally state and prove our main
results concerning non-adaptive group testing Γ-sized tests,
namely, a universal lower bound and an algorithmic upper
bound that matches the lower bound. Recall that we focus
on the regime Γ=Θ(1). Within this section, G denotes an
arbitrary non-adaptive pooling scheme with respect to the

Γ-sparsity constraint. The section contains two main parts,
outlined as follows:

• Theorem 4.1 states our universal lower bound for non-
adaptive designs. The proof is based on a careful
analysis of the appearance of disguised individuals (see
Section II-D), with the idea being that too many such
individuals leads to failure. For θ < 1

2 , we additionally
use the idea of identifying sufficiently many tests with
multiple individuals of degree one, prohibiting reliable
inference.

• Theorems 4.10 and 4.18 analyze the performance of the
DD and SCOMP algorithms. The proofs are again based
on the idea that in the underlying pooling scheme,
any infected individual appears in at least one test
with only definitive uninfected individuals (elements of
V0−(G )). We refer the reader to Sections II-D and II-E
for further insights on these properties. The test size
constraints pose additional technical challenges com-
pared to the unconstrained setting [18], in particular
leading us to adopt a less standard matching-based
test design when θ < 1

2 .

A. A universal information-theoretic bound

The first statement that we prove is an information-
theoretic converse that applies to any non-adaptive group
testing scheme with maximum test size Γ. Denote by

minf,Γ = max

{(
1+

⌊
θ

1−θ

⌋)
n

Γ
,2

n

Γ+1

}
, (58)

which we will show to be the sharp information-theoretic
phase transition point when Γ ≥ 1 +

⌊
θ

1−θ
⌋

; note that if
this inequality is reversed, then minf,Γ > n, whereas n tests
trivially suffice via one-by-one testing. In [25] a lower bound
of (n/Γ)(1+o(1)) was proved, and we see that in the regime
Γ=Θ(1), our lower bound improves on this for all θ ∈ (0,1).

Theorem 4.1: Let θ ∈ (0,1), Γ ≥ 1 +
⌊

θ
1−θ

⌋
, and δ > 0.

Furthermore, let G be any non-adaptive pooling scheme
(deterministic or randomised) with m = (1−δ)minf,Γ tests
such that each test contains at most Γ individuals. Then
any inference algorithm A fails in recovering σ from (σ̂,G )

• with probability 1−o(1) if θ/(1−θ) 6∈Z,
• with probability Ω(1) if θ/(1−θ) ∈Z.

Thus, even with unlimited computational power, there
cannot be any algorithm with a maximum test size of Γ that
is able to infer the infected individuals correctly w.h.p. once
the number of tests drops below (58). The distinction
between integer vs. non-integer values of θ/(1− θ) arises
for technical reasons (e.g., counting the number of nodes
with degree at most bθ/(1−θ)c), and we found it difficult to
prove a high-probability (rather than constant-probability)
failure result in the integer case.

The proof of the universal information-theoretic converse
resembles the proof of [4] for the existence of a universal
information-theoretic bound for unrestricted non-adaptive
group testing, but several modifications are required to
handle the test size constraint. We provide the details in
the following subsection.
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B. Proof of Theorem 4.1

We start by defining

d+ = 1+
⌊

θ

1−θ

⌋
and d− =

⌊
θ

1−θ

⌋
.

For the proof, we distinguish two different regimes for θ,
as stated in Proposition 4.2 and Proposition 4.6. We start
with the following proposition addressing the existence of
disguised individuals.

Proposition 4.2: Let 1/2 ≤ θ < 1, Γ≥ d+, and let G be an
arbitrary pooling scheme with tests of size at most Γ. For
any ε ∈ (0,1), if m = (1−ε)d+ n

Γ , then

• P (|V1+(G )| > lnn) ≥ 1−o(1) and P (|V0+(G )| > lnn) ≥ 1−
o(1) if θ

1−θ 6∈Z
• P (|V1+(G )| ≥ 1) = Ω(1) and P (|V0+(G )| > lnn) ≥ 1−o(1)

if θ
1−θ ∈Z

1) Proof of Proposition 4.2: Let G be an arbitrary pooling
scheme such that each test contains at most Γ individuals.
We denote by V (G ) the set of individuals, and by F (G )
the set of tests in G (by the identification of G with a
bipartite graph). Instead of analysing (G ,σ̂), similarly to
in the ∆-divisible case, we analyse a related model that
eliminates nuisance dependencies between the infection
status of different individuals.

Specifically, let p = k−
p

k lnn
n , and let σ∗ be a {0,1}-

valued vector, where every entry is one with probability p.
Corollary 3.6 guarantees that if the modified model satisfies

P
(∣∣V1+(G ,σ∗)

∣∣> 2C
)≥ 1−o(1)

and P
(∣∣V0+(G ,σ∗)

∣∣> 2C
)≥ 1−o(1),

then the original model satisfies

P (|V1+(G ,σ)| >C ) ≥ 1−o(1)

and P (|V0+(G ,σ)| >C ) ≥ 1−o(1)

Thus, working with the modified model is sufficient. For the
sake of brevity, we henceforth write GΓ in place of (G ,σ∗),
leaving the dependencies on σ∗ implicit.

We proceed by finding a set of (many) individuals, that
have a high probability of being disguised. We will apply
the probabilistic method iteratively to create the desired
set. Creating this set turns out to be delicate due to the
dependencies in an arbitrary pooling scheme. Luckily, it will
suffice for our purposes to note that whenever individuals
have distance at least 6 (i.e., the shortest path between two
individuals has at least 6 edges) in the underlying graph, the
events of being disguised are independent [4]. To see this,
note that we can identify whether an individual is disguised
by looking at the tests it is in, and the defectivity status
of all other individuals in those tests. This procedure only
reaches the second neighborhood, so a separation of 6 is
enough to ensure there is no overlap when doing this for
two different nodes (which implies independence under an
i.i.d. defectivity model).

In the following, we denote the set of all disguised
individuals by

V +(G ) =V0+(G )∪V1+(G ).

We first present a claim establishing that we may safely
assume that each individual gets tested Θ(1) times.

Claim 4.3: Given any pooling scheme G ′ with m = (1−
2ε)d+ n

Γ (for some ε > 0) such that each test contains at
most Γ=Θ(1) individuals, there is another pooling scheme
G such that each test contains at most Γ=Θ(1) individuals
with m = (1−ε)d+ n

Γ , while also satisfying the following:

• Each individual is contained in at most C =Θ(1) tests;
• Recovery of σ from (G ′,σ̂′) implies recovery from

(G ,σ̂).

Proof: Given G ′ and a constant C ∈N, there is C ′ ∈N
such that there are at most n/C individuals of degree at
least C ′ in G ′, which is an immediate consequence of m
being linear in n (due to Γ = Θ(1)). Design G such that
each individual of G ′ with degree larger than C ′ gets tested
individually (causing n/C additional tests) and all other
individuals and tests stay the same as under G ′. Clearly,
if recovery in G ′ was possible, then it is possible in G as
well. Setting C = Γ

εd+ , the claim follows.
In addition to being able to assume there are no indi-

viduals with an overly high degree, we can also prove that
there cannot be too many individuals with an overly low
degree.

Lemma 4.4: Let G be the given pooling scheme and m ≤
(1−ε)d+ n

Γ , where Γ≥ d+. If there is a constant α> 0 such
that the number of individuals of degree at most d− is αn,
then we have the following:

• |V1+(G )| > 2lnn w.h.p. if θ/(1−θ) 6∈Z,
• |V1+(G )| > 0 with probability Ω(1) if θ/(1−θ) ∈Z.

Proof: Suppose that the number of individuals with

degree at most d− is αn, and recall that p = k−
p

k ln(n)
n .

Without loss of generality, we can assume that there are
no tests of degree zero or one. Otherwise, remove them
and each connected individual from the testing scheme and
note that, by the assumed lower bound Γ ≥ d+, there are
at least εn individuals left. This manipulated graph satisfies
the same inequality between the number of individuals and
number of tests and, clearly, if the inference of σ does
not succeed on this manipulated graph, then it cannot
succeed in G . Before proceeding, we introduce the following
auxiliary result.

Claim 4.5: Under the preceding setup, suppose that there
exists a set I− ⊂V of individuals of degree at most d− with
|I−| ≤αn (α ∈ (0,1)). Then, there exists β ∈ (0,α) (depending
only on d− and Γ) such that there must also exist I+ ⊂ I−

with
∣∣I+

∣∣= βn, having the property that for all pairs x 6= y
in I+ it holds that dist(x, y) ≥ 6.

Proof: First recall from Claim 4.3 that all degrees in
the graph are bounded. Consider the procedure of iterating
through all individuals x ∈ I−, and deleting all y ∈ I−

of distance at most four from x, and repeating until no
individuals remain. Let I+ denote set of x’s visited by this
process. Since the degrees in the graph are finite, each
removal only decreases the size of the set I− by at most
a constant, and the assertion of the claim follows.

Let B be the largest possible subset of individuals satis-
fying the requirements of Claim 4.5. Thus, B is a set of βn
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individuals such that for all x 6= x ′ ∈ B we have

(B1) deg(x) ≤ d−

(B2) dist(x, x ′) ≥ 6.

We analyze a single individual x ∈ B using the FKG inequal-
ity (e.g., see [36, Proposition 1]); as noted in [17, Lemma
4], the events of x being disguised in each of its tests are
increasing with respect to σ∗ (in the sense that marking
additional individuals as infected in σ∗ can only increase
the probability that an individual x is disguised). Hence,
the FKG inequality yields the following, recalling that we
are considering the case that deg(a) ≥ 2 for all a:

P
(
x ∈V +(G )

)≥
∏

a∈∂x

(
1− (

1−p
)deg(a)−1

)
.

Then, by the fact that deg(x) ≤ d− =O(1) within B , Claim 7.4
guarantees that

∏
a∈∂x

(
1− (

1−p
)deg(a)−1

)
≥C pd−

for some constant C depending on θ and Γ.

We now turn to the total number of disguised individuals
in B . As noted above, for two individuals x, x ′ ∈ B , the
events of being disguised are independent due to the
pairwise distances being at least 6, as described above.
Thus, the number of disguised infected individuals |V1+(G )|
dominates a binomial random variable Bin(βn, p ·C pd−

).
Since np ∼ k = nθ, the mean of this binomial distribution
scales as Θ(nθ−(1−θ)d−

). In particular, when θ
1−θ is non-

integer, the choice d− =
⌊

θ
1−θ

⌋
ensures that the exponent

is positive, and the Chernoff bound gives w.h.p. that

|V1+(G )| ≥ nΩ(1). (59)

On the other hand, if θ
1−θ is integer-valued, then the mean

of the binomial is Θ(1), which is enough to ensure that
|V1+(G )| > 0 with Ω(1) probability. Combining these two
cases completes the proof of Lemma 4.4.

As an immediate consequence of Lemma 4.4, in any
group testing instance that succeeds w.h.p., there are
at most o(n) individuals of degree up to d−. However,
if m ≤ (1 − ε)d+n/Γ we find at least αn individuals of
degree at most d− (for some α depending on ε) by
the handshaking lemma [37, Corollary 1.3], yielding
a contradiction. Therefore, Proposition 4.2 is a direct
consequence of Lemma 4.4, with the claims regarding
|V0+(G )| following easily from those regarding |V1+(G )| in
the same way as Corollary 3.7. ■

We now turn to the sparse regime θ < 1
2 , establishing the

following proposition as a stepping stone to Theorem 4.1.

Proposition 4.6: Let 0 < θ < 1/2, and let G be an arbitrary
pooling scheme with tests of size at most Γ. For all ε∗ > 0
and sufficiently large n, if m ≤ (2−ε) n

Γ+1 , then any algorithm
(efficient or not) fails at recovering σ from σ̂ and G w.h.p..

2) Proof of Proposition 4.6: The proof hinges on a fairly
straightforward observation. We can again assume without
loss of generality that there are no tests containing only
one individual (otherwise, we remove them and their corre-
sponding individuals from the testing scheme). By a simple
counting argument, there can be only o(n) such tests (since
otherwise m > 2n/Γ, which is a contradiction). In addition,
we can assume that there are no degree-zero individuals; if
there were Ω(n) of them, high-probability correct inference
would trivially be impossible, whereas with o(n) of them,
they can be removed and the subsequent analysis still holds
for those remaining, with the o(n) difference not impacting
the final result.

Then, another counting argument leads to the fact that
the number of individuals of degree 1 is large when m <
2n/Γ, as stated in the following.

Lemma 4.7: If m = (2−ε)n/Γ, then there are at least εn
individuals of degree 1.

Proof: Denote by αn the number of individuals of
degree 1, i.e., α > 0 is the proportion of such individuals.
Then the lemma follows by double counting edges (on the
individual side and on the test-side):

(2−ε)n = mΓ≥
∑

a∈F (G )
deg(a) =

∑
x∈V (G )

deg(x) ≥αn+2(1−α)n.

Solving for α yields α≥ ε, and the lemma follows.
The next lemma shows that there can only be a small

number of tests containing more than one individual of
degree 1.

Lemma 4.8: If there is any algorithm recovering σ from
the test results with Ω(1) probability, then the number of
tests containing more than one individual of degree one is
below n/

p
k = o(n).

Proof: Suppose that at least n/
p

k tests contain at least
two individuals of degree one, and consider any resulting
subset of 2n/

p
k individuals (two per test). The average

number of infected individuals among these is (2n/
p

k) ·
(k/n) = 2

p
k. Hence, by the Chernoff bound for the hyperge-

ometric distribution, w.h.p. there are at least
p

k/lnn such
infected individuals. On the other hand, among these tests,
the average number in which both of these degree-one
individuals are infected is (n/

p
k)·O((k/n)2) =O(k

p
k/n), so

Markov’s inequality implies that w.h.p. the actual number
is O(

p
kn−Ω(1)).

Hence, all but an o(1) fraction of the above-mentionedp
k/lnn infected individuals must be in a test with both

a degree-one infected and a degree-one uninfected indi-
vidual. For these tests, the inference algorithm cannot do
better than guess which one is the infected one, but then
the probability of all guesses being correct is (1/2)ω(1) = o(1),
from which the lemma follows.
We are now in a position to prove Proposition 4.6. For m =
(2−ε)n/Γ, we find by Lemma 4.7 that there are at least εn
individuals of degree 1. By Lemma 4.8 and the fact that
Γ=Θ(1), only o(n) such individuals can be placed together
in any tests, and hence, the total number of tests is at least
εn −o(n). Formally,

(2−ε)n/Γ= m ≥ εn −o(n). (60)
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Solving (60) for ε, we find ε≤ 2
Γ+1 +o(1). Hence,

m ≥
(
2− 2

Γ+1
−o(1)

)
n

Γ
= 2

n

Γ+1
−o(n),

and the proposition follows. ■
The universal lower bound in the considered regime is a

direct consequence of Proposition 4.2, Proposition 4.6, and
Claim 2.3. The proof of Theorem 4.1 is thus complete.

C. Algorithmic bound: Preliminaries and statement of result

We now turn to the problem of establishing an up-
per bound, with a suitably-chosen test design and an
efficient inference algorithm, that matches the universal
lower bound. We start by recalling the definition of G̃Γ in
Section II-B2:

G̃Γ(θ) =
{

GΓ if θ ≥ 1/2

G∗
Γ otherwise

(61)

We equip this pooling scheme with the efficient DD algo-
rithm (see Algorithm 1). In the following, we will see that
the combination of these tools will lead to information-
theoretically optimal performance in the Γ-sparse setting
with Γ=Θ(1).

Proposition 4.9: Define

mSCOMP(G̃Γ) = max

{(
1+

⌊
θ

1−θ

⌋)n

Γ
,2

n

Γ+1

}
.

For Γ=Θ(1) and m = (1+ε)mSCOMP, we have

P(ADD(G̃Γ,σ̂,k) =σ) = 1−o(1).

To prove this result, we handle the dense regime θ > 1
2

in Theorem 4.10 below, the sparse regime θ < 1
2 in Theo-

rem 4.18, and combine them in Section IV-F. We observe
that mSCOMP = minf,Γ, i.e., the achievability and converse
results match for all θ ∈ (0,1).

D. Algorithmic feasibility I: The configuration model

We first show that the DD algorithm succeeds with

a slightly higher threshold, namely max
{

2,1+
⌊

θ
1−θ

⌋}
n
Γ ,

employing the configuration model GΓ. We define

∆DD(θ) = max

{
2,1+

⌊
θ

1−θ

⌋}
,mDD(GΓ) =∆DD(θ)

n

Γ
, (62)

representing this achievability bound for DD in GΓ.
Theorem 4.10: Let ε > 0 and m ≥ mDD(GΓ). Then

w.h.p. DD infers σ from (GΓ,σ̂) correctly.
We stress at this point that Theorem 4.10 gives a per-

formance guarantee for the configuration model with any
sparsity level, but it will turn out in due course that for θ < 1

2
a different model performs slightly better. Note also that for

θ ≥ 1
2 , we can simplify max

{
2,1+

⌊
θ

1−θ
⌋}

= 1+
⌊

θ
1−θ

⌋
.

1) Proof of Theorem 4.10: The proof of Theorem 4.10
hinges on a slightly delicate combinatorial argument. Recall
from Figure 3 that V1−− consists of those infected individ-
uals that appear in at least one test with only individuals
that are removed in the first step of DD (i.e., the easy
uninfected individuals V0−). By Claim 2.4, DD succeeds if
and only if V1(G ) =V1−−.

Lemma 4.11: Let A = |V1(G ) \V1−−(GΓ)| denote the num-
ber of infected individuals that are not identified in the
second step of DD. If m ≥ mDD , then it holds w.h.p. that
A = 0.

The proof of Lemma 4.11, while conceptually not difficult
and similar to [18], is technically challenging, as we have
to deal with subtle dependencies in the pooling scheme,
caused by the mutli-edges given through the configuration
model. A heuristic argument with a (false) independence
assumption can provide some intuition as follows: In order
for an individual x to be part of a test containing no
infected individual (besides possibly x itself) is roughly
(1 − k/n)Γ−1. For x to be disguised, thus being element
of V0+(GΓ) or V1+(GΓ), x may not be part of such a
test. Hence, the probability of x being disguised would be
roughly

(
1− (1−k/n)Γ−1

)∆
if the associated ∆ events were

independent (recall that ∆ = mΓ/n is the degree of each
individual in the random regular design).

To formally deal with the dependencies in the graph,
we proceed as follows. Denote by (Y 1, . . . ,Y m) the number
of infected individuals in the tests. There are n∆ edges
connected to individuals, out of which exactly k∆ corre-
spond to infected individuals. Each test chooses exactly Γ
individuals without replacement, and hence, the number
of infected individuals in any test follows a hypergeometric
distribution. In order to get a handle on this distribution,
we introduce a family (X 1, ..., X m) of independent binomial
variables, such that X i ∼ Bin(Γ,k/n). These variables can
accurately describe the local behaviour of how many in-
fected individuals belong to test ai . We define EΓ to be the
event that the overall number of edges containing infected
individuals is correct, i.e.,

EΓ =
{

m∑
i=1

X i = k∆

}
. (63)

Claim 7.5 implies that P (EΓ) =Ω((n∆)−1/2). In addition, we
have the following.

Lemma 4.12: The sequence (Y 1, ...,Y n) is identically dis-
tributed with (X 1, ..., X n) given the event EΓ

Proof:
By the definition of Y i , we find for any (yi )i satisfying∑

i yi = k∆ that

P(Y i = yi ,∀i ∈ [m])

=
(

k∆

y1, ..., ym

)(
(n −k)∆

Γ− y1, ...,Γ− ym

)(
n∆

Γ, ...,Γ

)−1

=
∏m

i=1

( Γ
yi

)
(n∆

k∆

) .
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where the equality follows by rewriting in terms of factorials
and simplifying. Furthermore, given

∑
i xi = k∆, we have

P(X i = xi ,∀i ∈ [m]|EΓ)

=
m∏

i=1

(
Γ

xi

)
(k/n)xi (1−k/n)Γ−xi (P (EΓ))−1 .

Now, for two sequences (yi )i∈[m] and (y ′
i )i∈[m] such that∑m

i=1 yi =
∑m

i=1 y ′
i = k∆, we obtain

P(∀i ∈ [m] : Y i = yi )

P(∀i ∈ [m] : Y i = y ′
i )

=
m∏

i=1

( Γ
yi

)
( Γ

y ′
i

) = P(∀i ∈ [m] : X i = yi |EΓ)

P(∀i ∈ [m] : X i = y ′
i |EΓ)

.

This implies the lemma.
Thus, similarly to the analysis following Lemma 3.14, we are
able to carry out all necessary calculations with respect to
(X 1, ..., X n) and transfer the results to the original pooling
scheme. For the next step, we need to get a handle on
the number of positive and negative tests occurring in this
setting. Let m0 = m0(GΓ,σ) be the number of tests that
render a negative result, and let m1 = m1(GΓ,σ) be the
number of tests that render a positive result. Then m0 and
m1 are highly concentrated around their means as follows.

Lemma 4.13: With probability 1−o(n−2), we have

m0 =
(
1+n−Ω(1))m (1−k/n)Γ

and
m1 =

(
1+n−Ω(1))m

(
1− (1−k/n)Γ

)
.

Proof: Recalling the definitions of (Y i )i and (X i )i from
(63), we have

m0 =
m∑

i=1
1 {Y i = 0} ,

and we further denote by

m′
0 =

m∑
i=1

1{X i = 0} and m′
1 = m −m′

0

the number of negative and positive tests as modelled by
the family of independent binomial variables (X i )i . Clearly,
as the X i are mutually independent,

E
[
m′

1

]= m · (1−P (Bin(Γ,k/n) = 0)) = m

(
1−

(
1− k

n

)Γ)
.

Observing that E
[
m′

1

] = Θ(k) (since m = Θ(n) due to Γ =
Θ(1)), the Chernoff bound (Lemma 7.1) guarantees that

P
(∣∣m′

1 −E(m′
1)

∣∣>
p

k ln(n) | Γ
)
= o(n−10)

and, similar to the proof of Lemma 3.15, by combining
Lemma 4.12 with Claim 7.5, we obtain

P
(∣∣m1 −E(m′

1)
∣∣>

p
k ln(n) | Γ

)
= o(n−8).

Thus, the first part of the lemma follows. The second part
is immediate, as m0 +m1 = m.
The above-mentioned naive calculation (assuming inde-
pendence) can now be rigorously justified, and we can
establish the sizes of the disguised individuals w.h.p. as
follows.

Lemma 4.14: Given n and k = nθ as well as Γ=Θ(1) and
∆≥ 2, we have w.h.p. that |V0+(GΓ)| = o(k).

Proof: By the definition of GΓ via the configuration
model, Lemma 4.13 guarantees that the total number of
edges connected to a positive test is, with probability at
least 1−o(n−2), given by

m1Γ=
(
1+O

(
n−Ω(1)))mΓ

(
1− (1−k/n)Γ

)
. (64)

Let x be an uninfected individual. We can calculate the
probability of x belonging to V0+(GΓ) (i.e., being disguised
and uninfected) as follows: Each of the ∆ = Θ(1) edges9

that are mapped to x in the configuration model have to
be connected to a positive test. Thus, by (64) along with
Claim 7.3, we obtain

P (x ∈V0+(GΓ) | x ∈V0(GΓ),m1)

=
(

m1Γ

∆

)(
mΓ

∆

)−1

= (
1+O

(
n−Ω(1)))(1− (1−k/n)Γ

)∆

=O

((
k

n

)∆)
.

Therefore,

E [|V0+(GΓ)|] =O

(
(n −k)

(
k

n

)∆)
=O

(
k

(
k

n

)∆−1
)
= o(k). (65)

Combining (65), ∆≥ 2, and Markov’s inequality, we obtain
the assertion of Lemma 4.14.
Next, we define the event

FΓ =
{

m1 = (1+o(1))m
(
1− (1−k/n)Γ

)}∩ {|V0+(GΓ)| = o(k)} ,
(66)

in which the number of positive tests and disguised unin-
fected individuals behave as expected. By Lemmas 4.13 and
4.14, we have P (FΓ) ≥ 1−o(1). We assume without loss of
generality that the first m1 tests render a positive result.

Letting

DΓ =
{

m1∑
i=1

H 1
i = k∆,

m1∑
i=1

H 0+
i = |V0+(GΓ)|∆

}

be the event that H = ∑m1
i=1 H i equals its expectation, we

have the following analog of Corollary 3.18.
Claim 4.15: The distribution of R i equals the distribution

of H i given DΓ and Γ, and furthermore, P(DΓ) =Ω(n−1).
Proof of Claim 4.15: Let (ri )i∈[m1] be a sequence such

that ri = (r 1
i ,r 0+

i ,r 0−
i ) and

∑
i r 1

i = k∆,
∑

i r 0+
i = |V0+(GΓ)|∆,

and r 0−
i = Γ− r 1

i − r 0+
i . Let

S1 = k∆, S0+ =∆ |V0+(GΓ)| and

S0− = n∆−n∆(1− (1−k/n)Γ)−k∆.

9By counting degrees, we have n∆ = mΓ, so the assumption Γ = Θ(1)
leads to m = Θ(n∆). Since ∆ is integer-valued and we are considering
m > 0 and m ≤ n (otherwise, individual testing would be preferred), it
follows that ∆=Θ(1).
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By the definition of R i , we have

P(∀i ∈ [m1] : R i = ri | |V0+(GΓ)| ,m1)

=

( S1

r 1
1 ...r 1

m1

)( S0+
r 0+

1 ...rm0+
1

)( S0−
Γ−r 1

1−r 0+
1 ...Γ−r 1

m1
−r 0+

m1

)

( n∆
Γ,...,Γ

)

=
(

n∆

S1,S0+,S0−

)−1 m1∏
i=1

(
Γ

r 1
i ,r 0+

i ,r 0−
i

)
.

Letting (r
′
i )i∈[m1] be a second sequence as above, it follows

that

P(∀i ∈ [m1] : R i = yi | |V0+(GΓ)| ,m1)

P(∀i ∈ [m1] : R i = y
′
i | |V0+(GΓ)| ,m1)

=
m1∏
i=1

( Γ
r 1

i r 0+
i r 0−

i

)

( Γ
(r ′)1

i (r ′)0+
i (r ′)0−

i

) .

(67)

Furthermore, by the definition of X , we have

P(∀i ∈ [m1] : H i = ri | |V0+(GΓ)| ,m1,DΓ)

P(∀i ∈ [m1] : H i = r
′
i | |V0+(GΓ)| ,m1,DΓ)

=

(
k
n

)∑m1
i=1 r 1

i
( |V0+(GΓ)|

n

)∑m1
i=1 r 0+

i
(

n−k−|V0+(GΓ)|
n

)∑m1
i=1 r 0−

i

(
k
n

)∑m1
i=1(r ′)1

i
( |V0+(GΓ)|

n

)∑m1
i=1(r ′)0+

i
(

n−k−|V0+(GΓ)|
n

)∑m1
i=1(r ′)0−

i

·
m1∏
i=1

( Γ
r 1

i ,r 0+
i ,r 0−

i

)

( Γ
(r ′)1

i ,(r ′)0+
i ,)(r ′)0−

i

) =
m1∏
i=1

( Γ
r 1

i ,r 0+
i ,r 0−

i

)

( Γ
(r ′)1

i ,(r ′)0+
i ,(r ′)0−

i

) . (68)

The first part of the claim follows from Equations (67)
and (68). The probability follows by applying Claim 7.5 for
∆=Θ(1)

We are interested in the number of positive tests that
contain exactly one infected individual and no elements of
V0+(GΓ). Therefore, we define

B =
m1∑
i=1

1
{

R1
i +R0+

i = 1
}

and B ′ =
m1∑
i=1

1
{

H 1
i +H 0+

i = 1
}

.

Claim 4.16: We have w.h.p. that

B ≤∆k
(
1−O

(
Γn−(1−θ)

))

Proof of Claim 4.16: We use Claim 4.15 to simulate B
through independent random variables as in B ′. Since B ′

is a sum of independent multinomial variables, we obtain
its expectation by applying (66), Lemma 7.2 and Bayes
Theorem:

E
[
B ′ | |V0+(GΓ)| ,m1

]

=
m1∑
i=1

P (H i = (1,0,Γ−1) | |V0+(GΓ)|)

= m1Γ
k/n · (1− (k +|V0+(GΓ)|)/n)Γ−1

1− (1−k/n)Γ

=
(
1+O

(
Γ

k

n

))
m1

(
1− k +|V0+(GΓ)|

n

)Γ−1

, (69)

where the last step follows from Lemma 7.4 and Γ=Θ(1).
Conditioning on FΓ defined in (66), we obtain

E
[
B ′ |FΓ

]

=
(
1+O

(
Γk

n

))
mΓk

n
·
(

1− k +o(k)−O
(
n−Ω(1)

)

n

)Γ−1

=
(
1+O

(
Γk

n

))
mΓk

n
·
(

1− (Γ−1)

(
k +o(k)−O

(
n−Ω(1)

)

n

))

=
(
1+O

(
Γk

n

))
∆k

(
1− (Γ−1)n−(1−θ) −o

(
n−(1−θ)

))

=∆k
(
1+O

(
Γn−(1−θ)

))
, (70)

where the first line uses Lemma 4.14, the second line
uses Claim 7.4 , and we additionally recall that k = nθ,
∆ = mΓ

n , and Γ = Θ(1). Moreover, since B ′ is a binomial
random variable, the Chernoff bound (Lemma 7.1) yield
with probability o(n−10) that

B ′ ≤∆k
(
1+O

(
Γn−(1−θ)

))
.

Thus, similar to the proof of Lemma 3.15, by Claim 4.15 we
have w.h.p. that

B ≤∆k
(
1+O

(
Γn−(1−θ)

))
. (71)

We are now in a position to characterize A =
|V1(G ) \V1−−(GΓ)|.

Claim 4.17: Given B ≤ ∆k
(
1−O

(
Γn−(1−θ)

))
, we have for

some constant C > 0 that

E [A | B ,FΓ] = k

(
k∆−B

∆

)(
k∆

∆

)−1

≤ k(C ·Γ)∆n−(1−θ)∆ (72)

Proof of Claim 4.17: The combinatorial expression
follows by adding k probabilities, one per defective item.
Each probability is the probability that an infected indi-
vidual does not belong to V1−−, which equals the prob-
ability that all of its ∆ connections are disjoint from the
k∆−B connections to tests in which it would have been
the only infected individual with no disguised uninfected
individuals. The assertion then follows by combining the
assumption B ≤∆k

(
1−O

(
Γn−(1−θ)

))
with Claim 7.3.

Proof of Lemma 4.11: We distinguish between θ/(1−
θ) 6∈Z and θ/(1−θ) = T ∈Z, and recall mDD from (62) with
∆ = max

{
2,1+

⌊
θ

1−θ
⌋}

. For simplicity, we assume that the
inequality m ≥ mDD holds with equality, but the general
case is analogous.
Case A: θ/(1−θ) 6∈ Z. In this case, for m = mDD , we have
∆ = max

{
2,1+

⌊
θ

1−θ
⌋}

= max{2,dθ/(1−θ)e}. We distinguish
the two cases θ < 1/2 and θ > 1/2 as follows:

• Case A1: θ > 1/2. In this case, we have ∆= dθ/(1−θ)e.
Defining η = θ− (1−θ) · dθ/(1−θ)e < 0, using (72) and
Γ,∆=Θ(1), we find

E [A | B ,FΓ] ≤O(1)nθ−(1−θ)·dθ/(1−θ)e =O(nη). (73)

• Case A2: θ < 1/2. In this case, we have ∆= 2, and hence

E [A | B ,FΓ] ≤O(1)Γ∆n3θ−2 ≤ o(1). (74)
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Case B: θ/(1−θ) = T ∈ Z. Again, we distinguish the cases
θ = 1/2 and θ > 1/2:

• Case B1: θ > 1/2. We have ∆ = T + 1, so by (72) and
Γ,∆=Θ(1), we find

E [A | B ,FΓ] ≤O(1)nθ−(1−θ)·(T+1) =O(n−(1−θ)), (75)

where the last step uses 1−θ ≥ θ and T > 1.
• Case B2: θ = 1/2. We have ∆= 2, and hence

E[A | B ,FΓ] ≤O(n−1/2). (76)

Combining (73)–(76) with Markov’s inequality and the
fact that FΓ occurs w.h.p., we deduce that A = 0 w.h.p.,
completing the proof of Lemma 4.11.

Theorem 4.10 now follows directly by combining
Lemma 4.11 and Claim 2.4. So far, we have addressed the
case where the test design is formed using the configuration
model, and showed that the DD-algorithm is optimal in this
regime if applied to the random regular pooling scheme GΓ.
However, the preceding analysis does not provide a tight
bound for the matching-based design.

E. Algorithmic feasibility II: Matching-based model

Recall from from Section II-B2 that the matching-based
model with parameter γ is denoted by G∗

Γ . While the
DD algorithm does not appear to be optimal in this case,
it turns out that turning to SCOMP (a slight refinement of
DD) suffices for optimality.

Theorem 4.18: If m ≥ 2n/(Γ+ 1) and 0 < θ < 1/2, then
w.h.p. SCOMP recovers σ from G∗

Γ and σ̂.
1) Proof of Theorem 4.18: We prove the theorem for m =

2n/(Γ+1) (which implies γ = 2
Γ+1 n), but the more general

case follows analogously; intuitively, a higher number of
tests can only help. We analyse the DD algorithm on G∗

Γ
in two steps, starting with the regular part of the graph.
Denote by G∗,r

Γ
the (Γ− 1,2) regular part, in which we

select n−γ individuals and pool them into two tests each.
Denote by σ[G∗,r

Γ
] and σ̂[G∗,r

Γ
] the infection status vector

and outcome vector resulting from the regular part alone.
Lemma 4.19: If m ≥ 2n/(Γ+1), then w.h.p. DD recovers

σ[G∗,r
Γ

] from (G∗,r
Γ

,σ̂[G∗,r
Γ

]) correctly.
Proof: This follows from Theorem 4.10, as G∗,r

Γ
is

identically distributed with GΓ−1 therein. With γ= 2
Γ+1 n in-

dividuals removed from the population, we have n′ = Γ−1
Γ+1 n

individuals being tested in G∗,r
Γ

. Thus, we require at most

m′ = 2 n′
Γ−1 = 2 n

Γ+1 tests in order for DD to succeed w.h.p. on
G∗,r
Γ

.
It remains to handle the second step, and specifically,

argue that after adding the γ = 2 n
Γ+1 individuals (one to

each test) we can guarantee the success of SCOMP. We
denote by k ′ the number of infected individuals under the
remaining n′ individuals, and let θ′ be the value such that
k ′ =Θ((n′)θ

′
), which is well-defined due to the following.

Claim 4.20: Under the preceding setup, we have
w.h.p. that θ′ = θ.

Proof: As we remove γ = 2
Γ+1 n individuals randomly,

the number of infected individuals in the remaining part
is a hypergeometrically distributed random variable K ′ ∼

H
(
n,k,n′). Thus, the Chernoff bound for the hypergeomet-

ric distribution guarantees w.h.p. that

K ′ = (1+o(1))kn′/n = (1+o(1))
Γ−1

Γ+1
k,

and the assertion follows.
In the second step, we analyse the remaining part of the
graph, in which the γ remaining individuals are placed into
one test each. To do so, the following lemma turns out to
be useful.

Lemma 4.21: Under the matching-based model G∗
Γ with

θ < 1
2 , it holds w.h.p. that there are no two infected individ-

uals within distance 4 in the graph.
Proof: By construction, it holds with probability one

that G∗
Γ has individual-degree at most two, and test-degree

at most Γ = Θ(1). Hence, all degrees are bounded. This
means that for any given individual x, the set of individuals
x ′ with dist(x, x ′) ≤ 4 has size O(1). For any two individuals
x and x ′, the probability of both being infected is O((k/n)2),
and a union bound over the O(n) possible pairs with
dist(x, x ′) ≤ 4 increases this probability to O(n(k/n)2). The
assumption θ < 1

2 implies that k = o(
p

n), and thus, we have
O(n(k/n)2) = o(1), which establishes the lemma.

We now combine the preceding lemmas to establish the
success of the DD algorithm.

Lemma 4.22: Conditioned on the DD algorithm recov-
ering σ[G∗,r

Γ
] from (G∗,r

Γ
,σ̂[G∗,r

Γ
]), and on all infected in-

dividuals having pairwise distance exceeding 4, it holds
with conditional probability one that the SCOMP algorithm
recovers σ from (G∗

Γ ,σ̂).
Proof: By the construction of G∗

Γ , there are γ = 2
Γ+1 n

individuals added to G∗,r
Γ

to produce G∗
Γ . Denote the set

of these individuals by X = {
x1 . . . xγ

}
. As γ ≤ m, there is a

matching from X to the the m tests.
Having assumed success on the regular part G∗,r

Γ
, we

only need to show that the newly added individuals in
X are also correctly identified, and additionally do not
impact the identifications in G∗,r

Γ
. Recall from Claim 2.4

that DD succeeds if and only if all infected individuals
are easy infected (i.e., are in V1−−(G∗

Γ )), and recall also
that the success of DD implies the success of SCOMP [33].
We distinguish four different cases, which are illustrated in
Figure 4.
Case A: Connecting to a negative test. Suppose that an
individual x ∈ X connects to a (previously) negative test a.
Then, for all y ∈ ∂G∗,r

Γ
(a) we have y ∈V0−(G∗,r

Γ
).

• Case A-1: σx = 0. If x is uninfected and connects
to a negative test, then the test remains negative. It
follows immediately that x ∈ V0−(G∗

Γ ) (i.e., x is easy
uninfected), which further implies that all other indi-
viduals in the test that were previously easy uninfected
or easy infected in G∗,r

Γ
remain so in G∗

Γ , as desired.
• Case A-2: σx = 1. In this case, we have σ̂a(G∗,r

Γ
) = 0

but σ̂a(G∗
Γ ) = 1. To maintain success, we need to

show that all y ∈ ∂G∗,r
Γ

(a) (which were previously easy
uninfected) remain easy uninfected in G∗

Γ ; this implies
both that previous decisions are not affected, and that
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1
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0

1

0

0

B2 (ii)

1

1 0

0

1 0

0

0

Fig. 4: The cases considered in our analysis. Round vertices are items, and square vertices are tests. The blue vertex
is added in the second step of construction of G∗

Γ , and the labels inside the vertices indicate the defectivity status or
test outcome after adding the blue vertex. In case A1, recovery is clearly possible if and only if the same is true the
remainder of the graph. In case A2, the yellow vertices may, in principle, no longer be identifiable as definite non-
defectives. This happens if and only if the corresponding red individual is infected, which in turn implies a length-4 path
between defectives, contradicting a high-probability event that we show. In case B1, there is a path of length two from
the infected blue individual to the infected yellow individual, which is again a contradiction. In case B2(i), the infected
yellow vertex can still be recovered as it is element of V1−− in the regular part and will be recovered successfully during
the first two steps of SCOMP. In case B2(ii), the two red tests could either be explained by the yellow infected individual
or by the two blue (uninfected) individuals, and due to its greedy selection rule, SCOMP declares the yellow individual
as infected and the blue individuals as uninfected.

the decision for x is correct due to x ∈ V1−−(G∗
Γ ). To

establish that each y ∈ ∂G∗,r
Γ

(a) is easy uninfected, we
argue that the second test that y belongs to is negative.
Indeed, suppose for contradiction that y is in another
positive test a′ with an infected individual x ′. Then,
there is a path of length 4 in G∗

Γ from x to a to y to
a′ to x ′, and this contradicts Lemma 4.21.

Case B: Connecting to a positive test. Suppose that an
individual x ∈ X connects to a (previously) positive test a.
Therefore, there exists at least one y ∈ V1(G∗,r

Γ
)∩ ∂G∗,r

Γ
(a).

As DD succeeds on G∗,r
Γ

by assumption, we have y ∈
V1−−(G∗,r

Γ
).

• Case B-1: σx = 1. This case does not occur, because it
implies a length-2 path from x to y , both of which are
infected, in contradiction with the lemma assumption.

• Case B-2: σx = 0. Since the first two steps of SCOMP
(Algorithm 1) never make mistakes, the only way that
an error can occur in this case is that (i) x is added in
some step of the final (sequential greedy) step, or (ii)
y ∉ V1−−(G∗

Γ ) and y fails to be chosen throughout the
final step. We argue that neither of these events occur.
To see this, first note that in G∗,r

Γ
, y is not only part of

V1−−(G∗,r
Γ

) because of a, but also because the second
test that y belongs to consists only of y and individuals
from V0−(G∗

Γ ): If this were not the case, then we could
create a path from y to another infected individual
using a path of length at most 4. We then have the
following:

– If y ∈V1−−(G∗
Γ ) then y is trivially decoded correctly,

and x is certainly not added in the final step (since
its only test is already explained).

– If y ∉ V1−−(G∗
Γ ) then the two tests containing y

are unexplained at the start of the final step. Due
to the above-established property of both of these
tests leading to y ∈V1−−(G∗,r

Γ
) in the regular part,

we have that in G∗
Γ , only y and/or the newly added

elements of X can explain these two tests. But
since y explains both of them, but the elements of
X can only explain one each (since their degree is
one), it is clearly y (and not x) that will be chosen,
as desired.

We now have all the ingredients to prove Theorem 4.18.
Proof of Theorem 4.18: By construction, G∗

Γ consists
of n individuals and m = 2n/(Γ+1) tests. By Lemma 4.19,
this m suffices for DD to succeed w.h.p. on the regular
part of G∗

Γ (i.e., on G∗,r
Γ

). In addition, Lemma 4.21 gives
the convenient distance-4 property w.h.p., and Lemma 4.22
guarantees that the preceding two findings suffice to ensure
that SCOMP infers σ correctly from G∗

Γ and σ̂. Hence, the
theorem follows.

F. Putting the pieces together

Theorem 4.10 proves that DD succeeds on the bi-
regular graph GΓ created by the configuration model using

max
{

2,1+
⌊

θ
1−θ

⌋}
tests, and hence so does SCOMP [33].
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Furthermore, as Theorem 4.18 shows, for θ < 1/2, 2n
Γ+1 tests

suffice employing G∗
Γ and using SCOMP.

Finally, we show that the results of Theorem 4.10 and
Theorem 4.18 combine to match the information-theoretic
lower bound (58), i.e., max

{(
1+

⌊
θ

1−θ
⌋)

n
Γ ,2 n

Γ+1

}
. On the one

hand, for θ < 1
2 , the lower bound simplifies to the desired

quantity 2n
Γ+1 due to the fact that

⌊
θ

1−θ
⌋
= 0 in this regime,

and 2
Γ+1 ≥ 1

Γ for Γ≥ 1. On the other hand, if θ ≥ 1
2 then we

have
⌊

θ
1−θ

⌋
≥ 1, and so the maximum in the lower bound

is achieved by the first term (since 1
Γ ≥ 1

Γ+1 ), thus again
matching the upper bound. Hence, the SCOMP algorithm
is information-theoretically optimal when used with the
pooling scheme G̃Γ.

V. ADAPTIVE GROUP TESTING WITH ∆-DIVISIBLE

INDIVIDUALS

In this section, we turn to adaptive testing strategies
in the case of ∆-divisible individuals, and demonstrate
that in certain cases the number of tests can be reduced
significantly.

A. Converse

Recall that the converse bound proved in Theorem 3.1
already considered adaptive test designs. Thus, any adaptive

strategy fails w.h.p.when m ≤ (1− ε)e−1∆k1+ (1−θ)
∆θ for fixed

ε> 0.

B. Algorithm

We present an algorithm that can be viewed as an analog
of Hwang’s binary splitting algorithm [38], instead using
non-binary splitting in order to ensure that each item is in
at most ∆ tests. Like with Hwang’s algorithm, we assume
that the size k of the infected set is known. In the case
case that only an upper bound kmax ≥ k is known, the same
analysis and results apply with kmax in place of k. However,
such bounds may somewhat loose, and care should be
taken in using initial tests to estimate k as an initial step
(e.g., see [39], [40], [41]), as this may use a significant
portion of the ∆ budget. For clarity, we only consider the
case of known k in this section, and leave the case of
unknown k to future work (see also [1] for some initial
findings).

1) Recovering the infected Set: Our adaptive algorithm is
described in Algorithm 2, where we assume for simplicity
that

( n
k

)1/∆ is an integer.10 Using Algorithm 2, we have
the following theorem, which is proved throughout the
remainder of the subsection. We define

mada(∆) =∆k1+ 1−θ
θ∆ . (77)

Theorem 5.1: For ∆ = o(lnn) and k = nθ with θ ∈ (0,1),
the adaptive algorithm in Algorithm 2 tests each individual

10Note that we assume k = o(n) and ∆ = o
(

ln
( n

k

))
, meaning that( n

k

)1/∆ → ∞. Hence, the effect of rounding is asymptotically negligible,
and is accounted for by the 1+o(1) term in Theorem 5.1.

Require: Number of individuals n, number of infected
individuals k, and divisibility of each individual ∆

1: Initialise ñ ← ( n
k

) ∆−1
∆ and the estimate K̂ ←;

2: Arbitrarily group the n individuals into n/ñ groups of
size ñ

3: Test each group and discard any that return negative
4: Label the remaining groups incrementally as G (0)

j ,
where j = 1,2, . . .

5: for i = 1 to ∆−1 do
6: for each group G (i−1)

j from the previous stage do

7: Arbitrarily group all individuals in G (i−1)
j into

ñ1/(∆−1) sub-groups of size ñ1−i /(∆−1)

8: Test each sub-group and discard any that return a
negative outcome

9: Label the remaining sub-groups incrementally as
G (i )

j
10: Add the individuals from all of the remaining singleton

groups G (∆−1)
j to K̂

11: return K̂

Algorithm 2: Adaptive algorithm for ∆-divisible individ-
uals

Fig. 5: Visualization of splitting in the adaptive algorithm.

at most ∆ times and uses at most mada(∆)(1+o(1)) tests to
recover the infected set exactly with zero error probability.

Proof: Similar to Hwang’s generalised binary splitting
algorithm [38], the idea behind the parameter ñ in Algo-
rithm 2 is that when k becomes large, having large groups
during the initial splitting stage is wasteful, as it results in
each test having a high probability of being positive (not
very informative). Hence, we want to find the appropriate
group sizes that result in more informative tests to minimise
the number of tests. Each stage (outermost for-loop in
Algorithm 2) here refers to the process where all groups of
the same sizes are split into smaller groups (e.g., see Figure
5). We let ñ be the group size at the initial splitting stage of
the algorithm. The algorithm first tests n/ñ groups of size ñ
each,11 then steadily decrease the sizes of each group down
the stages: ñ → ñ1−1/(∆−1) → ñ1−2/(∆−1) →···→ 1 (see Figure
5). Hence, we have n/ñ groups in the initial splitting and

11Note that n/ñ is an integer for our chosen ñ below, which gives n
ñ =

k
( n

k

)1/∆, and
( n

k

)1/∆ was already assumed to be an integer.
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Require: Number of individuals n, number of infected
individuals k, and test size restriction Γ

1: Initialize infected set K ←;
2: Randomly group n individuals into n/Γ groups of size
Γ

3: for each group Gi where i ∈Z : i ∈ [1,n/Γ] do
4: while testing Gi returns a positive outcome do
5: run Algorithm 4 on a copy of Gi , and add its one

infected individual output k∗ into K

6: Gi ←Gi \ {k∗}
7: return K

Algorithm 3: Adaptive algorithm for Γ-sparse tests

ñ
1
∆−1 groups in all subsequent splits.
With the above observations, we can derive an upper

bound on the total number of tests needed. We have n/ñ
tests in the first stage. Since we have k infected and split
into ñ

1
∆−1 sub-groups in subsequent stages, the number

of smaller groups that each stage can produce is at most
kñ

1
∆−1 . This implies that the number of tests conducted at

each stage is at most kñ
1
∆−1 , giving the following bound on

m:

m ≤ n

ñ
+ (∆−1)kñ

1
∆−1 . (78)

We optimise with respect to ñ by differentiating the upper

bound and setting it to zero. This gives ñ = ( n
k

) ∆−1
∆ =

n
(1−θ)(∆−1)

∆ , and substituting ñ = ( n
k

) ∆−1
∆ into the general

upper bound in (78) gives the following upper bound:

m ≤ n

(n/k)
∆−1
∆

+ (∆−1)k
((n

k

) ∆−1
∆

) 1
∆−1 =∆k

(n

k

) 1
∆ =∆k1+ 1−θ

θ∆ .

(79)

Comparisons: We observe that mada(∆) matches the uni-
versal lower bound in Theorem 3.1 to within a factor of e
for all θ ∈ (0,1). For θ < 1

2 , we have mada(∆) = mDD(∆) =
∆k1+ (1−θ)

∆θ , meaning that the best known bounds for the
adaptive and non-adaptive settings are identical (though
the adaptive algorithm attains zero error probability). In
contrast, for θ > 1

2 , we have mDD(∆) =∆k1+ 1
∆ and mada(∆) =

∆k1+ (1−θ)
∆θ . The former is significantly higher, and Theorem

3.2 reveals that this limitation is inherent to any non-
adaptive test design and algorithm. Hence, for θ > 1

2 , there
is a significant gap between the number of tests required
by adaptive and non-adaptive algorithms.

VI. ADAPTIVE GROUP TESTING WITH Γ-SIZED TESTS

Our adaptive algorithm with Γ-sparse tests, shown in
Algorithm 3, is again a modification of Hwang’s generalised
binary splitting algorithm [38], where we initially divide the
n individuals into n

Γ groups of size Γ, instead of k groups
of size n

k as in the original algorithm.
Our main result is stated as follows, in which we define

mada(Γ) = n

Γ
+klog2Γ. (80)

Require: a group of individuals G̃
1: while G̃i consists of multiple individuals do
2: Pick half of the individuals in G̃ and call this set G̃ ′.

Perform a single test on G̃ ′.
3: If the test is positive, set G̃ ← G̃ ′. Otherwise, set

G̃ ← G̃ \G̃ ′.
4: return single individual in G̃

Algorithm 4: Binary splitting

Theorem 6.1: For any Γ = o
( n

k

)
, Algorithm 3 outputs the

correct configuration of infection statuses with probability
one, while using at most mada(Γ)(1+o(1)) tests, each con-
taining at most Γ items.

Proof: Let ki be the number of infected individuals in
each of the initial n

Γ groups. Note that since Γ= o
( n

k

)
implies

k = o( n
Γ ), most groups will not have a infected individual. In

the binary splitting stage of the algorithm, we can round the
halves in either direction if they are not an integer. Hence,
for each of the initial n

Γ groups, we take at most dlog2Γe
adaptive tests to find a infected individual, or one test to
confirm that there are no infected individuals. Therefore, for
each of the initial n

Γ groups, we need max{1,ki log2Γ+O(ki )}
tests to find ki infected individuals. Summing across all n

Γ
groups, we need a total of m =∑n/Γ

i=1 max{1,ki log2Γ+O(ki )}
tests. This has the following upper bound:

m ≤ n

Γ
+klog2Γ+O(k)

(a)= n

Γ
(1+o(1))+klog2Γ

= mada(Γ)(1+o(1)), (81)

where (a) uses k = o
( n
Γ

)
.

If we slightly strengthen the requirement Γ= o
( n

k

)
to Γ=

o
( n

k ln(n/k)

)
(which, in particular, includes the regime Γ =( n

k

)1−Ω(1) studied in [25]), then we have n
Γ =ω(

k ln
( n

k

))
and

hence n
Γ =ω(k lnΓ). Thus, we obtain

mada(Γ) = n

Γ
(1+o(1)). (82)

This simplified upper bound is tight, due the simple fact
that n

Γ (1−o(1)) tests (of size at most Γ) are needed just to
test a fraction 1−o(1) of the items at least once each (which
is a minimal requirement for recovering σ w.h.p.). Formally,
this argument reveals the following.

Theorem 6.2: In the setup of Γ-sparse tests with k = nθ

for some θ ∈ (0,1), any (possibly adaptive) group testing
procedure that recovers σ w.h.p. must use at least n

Γ (1−o(1))
tests.

VII. AUXILIARY RESULTS

The following variant of the Chernoff bound is conve-
nient to work with (e.g., see [42, Sec. 4.1]).

Lemma 7.1 (Multiplicative Chernoff Bound): Let
X 1, . . . , X n be independent random variables such that
0 ≤ X i ≤ 1 a.s., and fix δ ∈ (0,1). Then, we have

P(|X −E[X ]| ≥ δE[X ]) ≤ 2exp(−δ2E[X ]/3).
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Fig. 6: Performance of adaptive and non-adaptive ∆-divisible algorithms as function of number of tests.
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Fig. 7: Performance of adaptive and non-adaptive Γ-sparse algorithms as function of number of tests.

Lemma 7.2 (Stirling Approximation, [43]): We have for
n →∞ that

n! = (1+O(1/n))
p

2πnnn exp(−n) .

Claim 7.3: Let n > 0, ∆= lnO(1) n be integers, and let α ∈
(0,1). Then

(
αn

∆

)(
n

∆

)−1

= (
1+O

(
n−Ω(1)))α∆.

Proof: By definition, we have
(αn
∆

)
(n
∆

) = (αn)!(n −∆)!

n!(αn −∆)!
.

Hence, applying Lemma 7.2 on each factor yields
(αn
∆

)
(n
∆

) = (1+O(n−1))exp(−αn + (n −∆)− (αn −∆)−n)

· (αn)αn (n −∆)n−∆(αn −∆)−(αn−∆)n−n

√
(αn)(n −∆)

n(αn −∆)
.

(83)

As ∆= lnO(1) n, we find that (83) equals
(αn
∆

)
(n
∆

) = (
1+O

(
n−Ω(1))) (αn)αnnn(αn)−(αn−∆)n−n

= (
1+O

(
n−Ω(1)))α∆, (84)

and the assertion follows.
We also use the following direct consequence of the

binomial expansion.
Claim 7.4: For any real number x ≥ −1 and any integer

t ≥ 0 the following holds:

(1+x)t = 1+ t x +O(t 2x2).

Finally, we state the following useful result relating to
Stirling’s approximation and the local limit theorem.

Claim 7.5: [Appendix B1 of [18]] For any m,∆ ∈ N,θ ∈
(0,1),k ∼ nθ, let (X i )i∈[m] denote a sequence of independent
Bin(Γi ,k/n) and define

E =
{ ∑

i∈[m]
X i = k∆

}
.

Then, we have P (E ) =Ω(1/
p

n∆).

182



27

VIII. SIMULATIONS

In Figures 6 and 7, we compare our theoretical findings to
empirical results obtained as follows:

• In the non-adaptive case, we fix the number of indi-
viduals n, the infection parameter θ, and, depending
on the setup considered, the individual degree ∆ or
test degree Γ. We vary the number m of tests (x-axis),
and simulate 104 independent trials per parameter set.
DD’s performance (y-axis) is reported as the fraction
of simulations per parameter point that inferred the
infected set without errors.

• In the adaptive case, we cannot directly control the
number of tests m a priori. Instead, we fix the same
parameter set as in the non-adaptive case, and carry
out 106 simulations. We then report the cumulative
distribution of tests required, i.e., the y-value corre-
sponding to some m is given as the fraction of runs
that required at most m tests.

We observe that the empirical results are consistent with
our theoretical thresholds in all cases. The adaptive testing
strategies show a particularly rapid transition at mada(∆)
and mada(Γ) respectively. We find that the non-adaptive
DD algorithm requires more tests in comparison to the
adaptive schemes, and has a much broader range of tran-
sient behaviour. This suggests that convergence rates to the
first-order asymptotic threshold may reveal an even wider
gap between adaptive and non-adaptive designs, in analogy
with studies of channel coding [44]. Note that the change
of slope in Figure 7 (right) at m=2000 is due to rounding
of ∆.

IX. CONCLUSION

We have studied the information-theoretic and algorith-
mic thresholds of group testing with constraints on the
number of items-per-test or test-per-item. For ∆-divisible
items, we proved that at least for ∆=ω(1), the DD algorithm
is asymptotically optimal for θ > 1

2 , and is optimal to within
a factor of e for all θ ∈ (0,1), thus significantly improving on
existing bounds for the COMP algorithm having suboptimal
scaling laws. For Γ-sized tests with Γ=Θ(1), we improved on
both the best known upper bounds and lower bounds, es-
tablished a precise threshold for all θ ∈ (0,1), and introduced
a new randomised test design for θ > 1

2 . In both settings,
we additionally provided near-optimal adaptive algorithms,
and demonstrated a strict gap between the number of tests
for adaptive and non-adaptive designs in broad scaling
regimes.
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ABSTRACT. The group testing problem is concerned with identifying a small set of infected individuals in a
large population. At our disposal is a testing procedure that allows us to test several individuals together. In
an idealized setting, a test is positive if and only if at least one infected individual is included and negative
otherwise. Significant progress was made in recent years towards understanding the information-theoretic
and algorithmic properties in this noiseless setting. In this paper, we consider a noisy variant of group test-
ing where test results are flipped with certain probability, including the realistic scenario where sensitivity
and specificity can take arbitrary values. Using a test design where each individual is assigned to a fixed
number of tests, we derive explicit algorithmic bounds for two commonly considered inference algorithms
and thereby naturally extend the results of Scarlett & Cevher (2016) and Scarlett & Johnson (2020). We pro-
vide improved performance guarantees for the efficient algorithms in these noisy group testing models –
indeed, for a large set of parameter choices the bounds provided in the paper are the strongest currently
proved.
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1. INTRODUCTION

1.1. Motivation and background. Suppose we have a large collection of n people, a small number k of
whom are infected by some disease, and where only m ¿ n tests are available. In a landmark paper [16]
from 1943, Dorfman introduced the idea of group testing. The basic idea is as follows: rather than screen
one person using one test, we could mix samples from individuals in one pool, and use a single test for
this whole pool. The task is to recover the infection status of all individuals using the pooled test results.
Dorfman’s original work was motivated by a biological application, namely identifying individuals with
syphilis. Subsequently, group testing has found a number of related applications, including detection
of HIV [51], DNA sequencing [29, 37] and protein interaction experiments [35, 49]. More recently, it
has been recognised as an essential tool to moderate pandemic spread [12], where identifiying infected
individuals fast and at a low cost is indispensable [32]. In particular, group testing has been identified as a
testing scheme for the detection of COVID-19 [2, 17, 21]. From a mathematical perspective, group testing
is a prime example of an inference problem where one wants to learn a ground truth from (possibly
noisy) measurements [1, 8, 15]. Over the last decade, it has regained popularity and a significant body
of research was dedicated to understand its information-theoretic and algorithmic properties [9, 13, 14,
44, 45, 46]. In this paper, we provide improved upper bounds on the number of tests that guarantee
successful inference for the noisy variant of group testing.

1.2. Related Work.

1.2.1. Noiseless Group Testing. In the simplest version of group testing, we suppose that a test is positive
if and only if the pool contains at least one infected individual. We refer to this as the noiseless case. In
this setting, each negative test guarantees that every member of the corresponding pool is not infected,
so they can be removed from further consideration. However, a positive test only tells us that at least
one item in the test is defective (but not which one), and so requires further investigation. Dorfman’s
original work [16] proposed a simple adaptive strategy where a small pool of individuals is tested, and
where each positive test is followed up by testing every individual in the corresponding pool individually.
Since then it has been an important problem to find the optimal way to recover the whole population’s
infection status in the noiseless case (see [7] for a detailed survey). A simple counting argument (see for
example [7, Section 1.4]) shows that to ensure recovery with zero error probability, since every possible
defective set must give different test outcomes, the following must hold in the noiseless setting:

2m ≥
(

n

k

)
⇒ m ≥ m0

inf := 1

log2
k log(n/k)(1.1)

This can be extended to the case of recovery with small error probability, for example with the bound
(see [7, Eq. (1.7)]) that the success probability

P(suc) ≤ 2m

(n
k

) ,(1.2)

meaning that the success probability must decay exponentially with the number of tests below m0
inf.

Hwang [24] provided an algorithm based on repeated binary search, which is essentially optimal in terms
of the number of tests required in that it requires m0

inf+O(k) tests, but may require many stages of testing.
The question of whether non-adaptive algorithms (or even adaptive algorithms with a limited number of
stages) can attain the bound (1.1) remained open until recently. [4, 14] showed that the answer depends
on the prevalence of the disease, for example on the value of θ ∈ (0,1) in a parameterisation1 where the
number of infected individuals k ∼ nθ. Non-adaptive testing schemes can be represented through a

1The result of [14] is two-fold. On the one hand, it provides a method to recover infected individuals w.h.p.as well as attaining
(1.1) for a certain range of θ < θ∗. On the other hand they show that (1.1) cannot be attained by any testing procedure for larger
θ > θ∗. One finds θ∗ = log(2) · (1+ log(2))−1.
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binary (m×n)-matrix that indicates which individual participates in which test. Significant research was
dedicated to see which design attains the optimal performance, although much of the recent research
analysed the performance of randomized designs. Initial research focused on the case where the matrix
entries are i.i.d. [3, 5, 46], which we will refer to as Bernoulli pooling. Later work considered a constant
column design where each individual is assigned to a (near-)constant number of tests [6, 13, 14, 26].
Indeed [14] showed that such a design is information-theoretically optimal in the noiseless setting and
it is to be expected that this remains true for the noisy case. To recover the ground truth from the test
results and the pooling scheme, this paper focuses on two non-adaptive algorithms, COMP and DD, which
are relatively simple to perform and interpret in the noiseless case. We describe them in more detail
below, but in brief COMP [10] simply builds a list of all the individuals who ever appear in a negative test
and are hence certainly healthy, and assumes that the other individuals are infected. DD [5] uses COMP as
a first stage and builds on it by looking for individuals who appear in a positive test that only otherwise
contains individuals known to be healthy. While the noiseless case provides an interesting mathematical
abstraction, it is clear that it may not be realistic in practice [40].

1.2.2. Noisy Group Testing. In medical applications [42] the two occurring types of noise in a testing
procedure are related to sensitivity (the probability that a test containing an infected individual is in-
deed positive) and specificity (the probability that a test with only healthy individuals is indeed nega-
tive), and in that language we cannot assume the gold standard of tests with unit specificity and sen-
sitivity. Thus, research attention in recent years has shifted towards the noisy version of group testing
[10, 43, 44, 46, 47, 48]. On the one hand, the adaptive noisy case was considered in [43, 44]. On the other
hand [10, 27, 28, 33, 46, 47, 48] looked at the non-adaptive noise case from different angles (for instance
linear programming, belief propagation, and Markov Chain Monte Carlo). In [46, 47, 48] the algorithmic
performance guarantees within noisy group testing under Bernoulli pooling are discussed. First of all
[46] obtained a converse as well as a theoretical achievability bound, but stated the practical recovery as
an direction for further research. In the following [47, 48] shed light on this question by using Bernoulli
pooling.2 In this paper we focus on the COMP and DD algorithms, since it is possible to deduce explicit
performance guarantees for them. The original COMP and DD were designed for the noiseless case and
do not automatically carry over to general noisy models. However, recent work of Scarlett and Johnson
[48] showed that noisy versions of these algorithms can perform well under certain noise models using
i.i.d. (Bernoulli pooling) test designs, particularly focusing on Z channel and reverse Z channel noise.
As common medical tests have different values for sensitivity and specificity [31] the analysis of a gener-
alized noise model beyond the Z and reverse Z channel is warranted.

1.2.3. Model Justification. As described for example in pandemic plans developed by the EU, US and
WHO [19, 38, 39], and in COVID-specific work [36], adaptive strategies may not be suitable for pandemic
prevention. For example, if a test takes one day to prepare and for the results to be known, then each
stage will require an extra day to perform, meaning that adaptive group testing information can be re-
ceived too late to be useful. Hence the need to perform large-scale testing to identify infected individuals
fast relative to the doubling time [12, 32, 36] can make adaptive group testing unsuitable to prevent an
infectious disease from spreading. Furthermore it may be difficult to preserve virus samples in a usable
state for long enough to perform multi-round testing [22]. Due to its automation potential and the fact
that tests can be completed in parallel (for example by the use of 96-well PCR plates [18]), the main ap-
plications of group testing such as DNA screening [11, 29, 37], HIV testing [51] and protein interaction

2[47] introduced an approach based on separate decoding of items for symmetric noise models. While this approach works
well for small θ (in particular θ→ 0), the performance drops dramatically for larger θ. For most θ this approach is worse off
than the noisy DD discussed in [48]. Note there exist some noise levels with the very strong restriction assuming p = q where
[47] improve over our results in the θ very close to 0 regime. Due to the generality of our model we will from now on focus on
[48] as benchmark for our results.

3
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analysis [35, 49] are non-adaptive, where all tests are specified upfront and performed in parallel. For ex-
ample, while group testing strategies appear to be useful to identify individuals infected with COVID-19
(see for example [17, 21]), testing for the presence of the SARS-CoV-19 virus is not perfect [52], and so we
need to understand the effect of both false positive and false negative errors in this context, with non-
identical error probabilities. For this reason, we consider a general p−q noise model in this paper. Under
this model, a truly negative test is flipped with probability p to display a positive test result, while a truly
positive test is flipped to negative with probability q (Figure 1). Its formulation is sufficiently general
to accommodate the recovery of the noiseless results (p = q = 0), Z channel (p = 0), reverse Z channel
(q = 0) and the Binary Symmetric Channel (p = q). However, our results include the case of non-zero
p and q without having to make the somewhat artificial assumption that false negative and false posi-
tive errors are equally likely. We note that it may be unrealistic to assume that the noise parameters are
known exactly, and more sophisticated models may be needed to understand the real world. Neverthe-
less our analysis of a generalised noise model serves as a starting point towards a full understanding of
the difficulties occurring while implementing group testing algorithms in laboratories.

0 0

11

p

1−p

q

1−q

FIGURE 1. The p − q-noise model: the result of each standard noiseless group test is
transmitted independently through the given noisy communication channel.

1.3. Contribution. This paper provides a simultaneous extension of [13] and [26, 48], by analysing noisy
versions of COMP and DD under more general noise models for constant-column weight designs. In con-
trast to prior work [5, 26] assuming sampling with replacement, in this paper we use sampling without
replacement, meaning that our designs have exactly the same number of tests for each item, rather than
approximately the same as in those previous works. This makes little difference in practice, but may be
closer to the spirit of LDPC codes for example.

We provide explicit bounds on the performance of these algorithms in a generalized noise model.
We will prove that (noisy versions of) COMP as well as DD succeed with Θ(k log(n/k)) tests. Our analysis
reveals the exact constants to ensure the recovery with these two inference algorithms. The main results
will be stated formally in Theorems 2.1 and 2.2, but we would like to give the reader a first insight of
what will follow. We analyze Algorithms 1 and 2 for the constant degree model, where there are m =
ck log(n/k) tests performed and each individual chooses ∆= cd log(n/k) tests uniformly at random. Let
p, q ≥ 0, p +q < 1 and ε> 0.

We start with the performance of COMP (Algorithm 1), as stated in Theorem 2.1:
For any∆ :=∆(c,d) we find a thresholdα :=α(d , p, q) such that COMP succeeds in inferring the infected

individuals if the number of tests

m ≥ (1+ε)mCOMP = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

The next step on our agenda is the performance of DD (Algorithm 2), as stated in Theorem 2.1:
For any ∆ :=∆(c,d) we find thresholds α := α(d , p, q) and β := β(d , q) such that DD succeeds in infer-

ring the infected individuals if the number of tests

m ≥ (1+ε)mDD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k log(n/k)
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For all typical noise channels (Z, reverse Z and BSC) we compare the constant-column and Bernoulli
design and find for all such instances that the required number of tests in the former is lower than the
number needed in the latter thereby improving on results from [48], and providing the strongest perfor-
mance guarantees currently proved for efficient algorithms in noisy group testing.

As group testing offers an essential tool for pandemic prevention [32] and as the the accuracy of med-
ical testing is limited [31, 40] this paper provides the natural next step in the group testing literature.

1.4. Test design and notation. To formalize our notation, we write n for the number of individuals in the
population, σ for a binary vector representing the infection status of each individual, k (the Hamming
weight ofσ) for the number of infected individuals and m for the number of tests performed. We assume
that k is known for the purposes of matrix design, though in practice (see [7, Remark 2.3]) it is generally
enough to know k up to a constant factor to design a matrix with good properties. In this paper, in line
with other work such as [5], we consider a scaling k ∼ nθ for some fixed θ ∈ (0,1), referred to in [7, Remark
1.1] as the sparse regime3. In addition to the interesting phase transitions observed using this scaling,
this sparse regime is particularly relevant as it was found suitable to model the early state of a pandemic
[50].

Let us next introduce the test design. With V = (xi )i∈[n] denoting the set of n individuals4 and F =
(ai )i∈[m] the set of m tests, the test design can be envisioned as a bipartite factor graph with n variable
nodes "on the left" and m factor nodes "on the right". We draw a configuration σ ∈ {0,1}V , encoding the
infection status of each individual, uniformly at random from vectors of Hamming weight k. The set of
healthy individuals will be denoted by V0 and the set of infected individuals by V1. In symbols,

V0 = {x ∈V :σ(x) = 0} and V1 =V \V0 = {x ∈V :σ(x) = 1}

The lower bound from (1.1) suggests that in the noisy group testing setting it is natural to compare the
performance of algorithms and matrix designs in terms of the prefactor of k log(n/k) in the number of
tests required. To be precise, we carry out m tests, and each item is assigned to exactly ∆ tests chosen
uniformly at random without replacement. We parameterize m and ∆ as

m = ck log(n/k) and ∆= cd log(n/k)(1.3)

for some suitably chosen constants c,d ≥ 0.
Let ∂x denote the set of tests that individual x appears in and ∂a the set of individuals assigned to test

a. The resulting (non-constant) collection of test degrees will be denoted by the vector Γ = (Γa)a∈[m].
Further, let

Γmin = min
a∈[m]

Γa and Γmax = max
a∈[m]

Γa .(1.4)

Throughout, G =G(n,m,∆) describes the random bipartite factor graph from this construction.
Now consider the outcome of the tests. Recall from above that a standard noiseless group test a gives

a positive result if and only if there is at least one defective item contained in the pool, or equivalently if∑
x∈∂aσ(x) ≥ 1. Even in the noisy case, this sum is a useful object to consider. Writing 1 for the indicator

function, we define

(1.5) σ∗(a) = 1

{ ∑
x∈∂a

σ(x) ≥ 1

}

to be the outcome we would observe in the noiseless case using the test matrix corresponding to G . We
will say that test a is truly positive if σ∗(a) = 1 and truly negative otherwise.

However, we do not observe the values of σ∗(a) directly, but rather see what we will refer to as the
displayed test outcomes σ̂(a) – the outcomes of sending the true outcomesσ∗(a) independently through

3Note that the analysis directly extends to k =Θ(nθ) as a constant factor in front does not influence the analysis.
4[n] will be used as an abbreviated notation for the set {1, . . . ,n}.
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the p − q channel of Figure 1. Since in this model a truly positive test remains positive with probability
1−q and a truly negative test is displayed as positive with probability p we can write

σ̂(a) = 1
{
Be(p) = 1

}(
1−σ∗(a)

)+1
{
Be(1−q) = 1

}
σ∗(a)(1.6)

where Be(r ) denotes a Bernoulli random variable with parameter r independent of all other randomness
in the model. For models with binary outputs, this is the most general channel satisfying the noisy de-
fective channel property of [7, Definition 3.3], though more general models are possible under the only
defects matter property [7, Definition 3.2], where the probability of a test being positive depends on the
number of infected individuals it contains.

Note that if p +q > 1, we can preprocess the outputs from (1.6) by flipping them, i.e. setting p̃ = 1−p
and q̃ = 1−q , where p̃+ q̃ < 1. Hence without loss of generality we will assume throughout that p+q < 1.
In the case p + q = 1, the test outcomes are independent of the inputs, and we cannot hope to find the
infected individuals – see Corollary 2.3.

With m0 being the number of truly negative tests, let m f
0 be the number of truly negative tests that are

flipped to display a positive test result and mu
0 be the number of truly negative tests that are unflipped.

Similarly, define m1 as the number of truly positive tests, of which m f
1 are flipped to a negative test result

and of which mu
1 are unflipped. For reference, for t ∈ {0,1} we write

mt =
∣∣{a :σ∗(a) = t

}∣∣

m f
t =

∣∣{a :σ∗(a) = t ,σ̂(a) 6= t
}∣∣ and mu

t =
∣∣{a :σ∗(a) = t ,σ̂(a) = t

}∣∣

Here we use bold letters to indicate random variables. Throughout the paper, we use the standard Lan-
dau notation o(·),O(·),Θ(·),Ω(·),ω(·) and define 0log0 = 0. Furthermore we say that a property P holds
with high probability ( w.h.p.), if P (P ) = 1 as n →∞. In order to quantify the performance of our algo-
rithms, for any 0 < r 6= s < 1, we write

DKL (r‖s) := r log
(r

s

)
+ (1− r ) log

(
1− r

1− s

)
,(1.7)

for the relative entropy of a Bernoulli random variable with parameter r to a Bernoulli random variable
with parameter s, commonly referred to as the Kullback–Leibler divergence. Here and throughout the
paper we use log to denote the natural logarithm. For r or s equal to 0 or 1 we define the value of DKL (·‖·)
(possibly infinite) on grounds of continuity, so for example DKL (0‖s) =− log(1− s).

2. MAIN RESULTS

With the test design and notation in place, we are now in a position to state our main results. The-
orems 2.1, 2.2 are the centerpiece of this paper, featuring improved bounds for the noisy group testing
problem for the general p −q model. We follow up in Section 2.2 with a discussion of the combinatorics
underlying both algorithms, and provide a converse bound in Section 2.3. Subsequently, in Section 2.4
we show how the bounds simplify when we consider the special cases of the Z, the reverse Z and Bi-
nary Symmetric Channel. Finally, in Section 2.5 we derive sufficient conditions under which DD requires
fewer tests than the COMP algorithm and compare the bounds of our constant-column design against the
Bernoulli design employed in prior literature.
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2.1. Bounds for Noisy Group Testing. We will consider two well-known algorithms from the noiseless
setting to identify infected individuals in this paper. First, we study a noisy variant of the COMP algorithm,
originally introduced in [10].

1 Declare every individual that appears in α∆ or more displayed negative tests as healthy.
2 Declare all remaining individuals as infected.

Algorithm 1: The noisy COMP algorithm

Note that forα∆= 1 the formulation of Algorithm 1 coincides with the standard COMP algorithm where
an individual is classified as healthy if it appears in at least one displayed negative test which constitutes
a sufficient condition in the noiseless case. We now state the first main result of this paper.

Theorem 2.1 (Noisy COMP). Let p, q ≥ 0, p+q < 1,d ∈ (0,∞),α ∈ (q,e−d (1−p)+(
1−e−d

)
q). Suppose that

0 < θ < 1 and let

mCOMP = mCOMP(n,θ, p, q) = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

where b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

If m ≥ (1+ε)mCOMP for some ε> 0, noisy COMP will recover σw.h.p. given test design G and test results σ̂.

The noisy variant of the DD algorithm of [5] was introduced in [48] and reads as follows:

1 Declare every individual that appears in α∆ or more displayed negative tests as healthy and
remove such individual from every assigned test.

2 Declare every yet unclassified individual who is now the only unclassified individual in β∆ or
more displayed positive tests as infected.

3 Declare all remaining individuals as healthy.

Algorithm 2: The noisy DD algorithm [48]

Note that the formulation of Algorithm 2 reduces to the noiseless version of DD introduced in [5] by
taking α∆ = β∆ = 1. This is because in the noiseless setting a single negative test or a single positive
test with just individuals already classified as uninfected is sufficient in the noiseless case. Furthermore
note that for β = 0 noisy DD and noisy COMP are the same. From now on we assume β > 0. The proof of
Theorem 2.1 can be found in Appendix B. We now state the second main result of the paper.
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Theorem 2.2 (Noisy DD). Let p, q ≥ 0, p+q < 1,d ∈ (0,∞),α ∈ (q,e−d (1−p)+(
1−e−d

)
q) andβ ∈ (0,e−d (1−

q)) and define w = e−d p + (1−e−d )(1−q). Suppose that 0 < θ < 1 and let

mDD = mDD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k log(n/k)

where c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

and c2(α,d) = 1

dDKL (α‖1−w)

and c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)

and c4(α,β,d) = max
1−α≤z≤1





1

1−θ
1

d
(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β
z ‖

e−d p
w

))




If m ≥ (1+ε)mDD for some ε> 0, then noisy DD will recover σw.h.p. given test design G and test results σ̂.

The proof of Theorem 2.2 can be found in Appendix C. While the bounds appear cumbersome at first
glance, the optimization is of finite dimension and for every specific value of p and q can be efficiently
solved to arbitrary precision yielding explicit values for mCOMP and mDD. For illustration purposes, we
will calculate those bounds for several values of p, q and θ.

2.2. The combinatorics of the noisy group testing algorithms. In the following, we outline the combi-
natorial structures that Algorithm 1 and 2 take advantage of.
We start with defining the three types of tests that are relevant for the classification of an individual xi

while using COMP and DD. In the first stage we find

• Type DN: Displayed negative tests
• Type DP: Displayed positive tests

Note that the only available information during the first stage of the algorithms is the test result and
the pooling structure – no information about the individuals’ infection status is available. We give an
illustration on the left hand side of Figure 2. After this step COMP terminates by declaring all remaining
individuals as infected.

The DD algorithm continues with a second step which considers just the displayed positive tests. From
the first step of the algorithm one receives the estimate of the set of non-infected individuals obtained in
the first round. Now distinguish the following two types, illustrated on the right hand side in Figure 2:

• Type Displayed-Positive-Single (DP-S): Displayed positive tests in which all other individuals are
already declared as uninfected.

• Type Displayed-Positive-Multiple (DP-M): Displayed positive tests with at least one other indi-
vidual that is not contained in the estimated set of uninfected individuals.

2.2.1. The noisy COMP algorithm. To get started, let us shed light on the combinatorics of noisy COMP
(Algorithm 1). For the noiseless case, the COMP algorithm classifies each individual that appears in at least
one negative test as healthy and all other individuals as infected, since the participation in a negative test
is a sufficient condition for the individual to be healthy.

For the noisy case, the situation is not as straightforward, since an infected individual might appear in
displayed negative tests that were flipped when sent through the noisy channel. Thus, a single negative
test is not definitive evidence that an individual is healthy. Yet, we can use the number of negative tests
to tell the infected individuals apart from the healthy individuals.

Clearly, noisy COMP (Algorithm 1) using a threshold α∆ succeeds if no healthy individual appears in
fewer than α∆ displayed negative tests and no infected individual appears in more than α∆ displayed
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negative tests. To this end, we define

N x = |{a ∈ ∂x : σ̂(a) = 0}|(2.1)

for the number of displayed negative tests that item x appears in. In terms of Figure 2, the algorithm
determines the infection status by counting the number of tests of Type DN.

xi

DNDP

xi

DP-SDP-M

FIGURE 2. The relevant neighborhood structures for the analysis of the algorithms, on
the left for the first stage and on the right for the second step. Rectangles represent tests
(displayed positive in red, displayed negative in blue). Blue circles represent individuals
that have been classified as healthy in the first step of DD (or by COMP). White circles repre-
sent individuals that are unclassified in the current stage. We refer to displayed negative
tests as Type DN, displayed positive tests as Type DP, displayed positive with a single
unclassified individual as Type DP-S and displayed positive with a multiple unclassified
individual as Type DP-M

2.2.2. The noisy DD algorithm. As in the prior section, let us first consider the noiseless DD algorithm. The
first step is identical to COMP classifying all individuals that are contained in at least one negative test
as healthy. In a second step, the algorithm checks each individual to see if it is contained in a positive
test as the only remaining unclassified individual after the first step of the algorithm and thus must be
infected.

Again, the situation is more intricate when we add noise, since neither a single negative test gives us
confidence that an individual is healthy nor does a positive test where the individual is the single re-
maining unclassified individual after the first step of the algorithm inform us that this individual must
be infected. Instead we count and compare the number of such tests. The first step of the noisy DD algo-
rithm is identical to noisy COMP, but we are not required to identify all healthy individuals in the first step
(we are able to keep some unclassified for the second round). Thus, after the first step, we are left with all
infected individuals V1 (as the algorithm did not try to classify any individual as infected in the first step)
and a set of yet unclassified healthy individuals (as some of them might exhibit a first neighbourhood
that is not sufficient for a clear first round classification) which we will denote by V0,PD.These are healthy
individuals who did not appear in sufficiently many displayed negative tests to be declared healthy with
confidence in the first step5. In symbols, for some α ∈ (0,1)

V0,PD = {x ∈V0 : N x <α∆}

To tell V1 and V0,PD apart, we consider the number of displayed positive tests P x where the individual x
appears on its own after removing the individuals , which were declared healthy already, V0 \ V0,PD from
the first step, i.e.

P x =
∣∣{a ∈ ∂x : σ̂(a) = 1 and ∂a \ {x} ⊂V0 \V0,PD

}∣∣(2.2)

Referring to Figure 2, the second step of the algorithm is based on counting tests of Type DP-S. Tests
of Type DP-M contain another remaining unclassified individual after the first step of the algorithm
from V0,PD ∪V1. The noisy DD algorithm takes advantage of the fact that it is less likely for an individ-
ual x ∈V0,PD to appear as the only yet unclassified individual in a displayed positive test than it is for an

5Note that the bounds are taken in a way such that no infected individual is classified as uninfected in the first round.
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individual in x ∈V1. For x ∈V0,PD such a test would be truly negative and would have been flipped (which
occurs with probability p) to display a positive test result. Conversely, an individual x ∈V1 renders any of
its tests truly positive and thus the only requirement is that the test otherwise contains only individuals
which were declared healthy already, and is not flipped (which occurs with probability 1− q). For this
reason, we will see that the distribution of P x differs between x ∈ V1 and x ∈ V0,PD, and the difference
(1−q)−p > 0 helps determine the size of this difference. The second step of DD exploits this observation
by counting tests of Type DP-S.

2.3. The Channel Perspective of noisy group testing. Motivated by (1.1), we can describe the bounds
in terms of rate, in a Shannon-theoretic sense. That is, we follow the common notion to define the rate
(bits learned per test) of an algorithm in this setting (for instance as in [9]) to be

R :=
log

(n
k

)

m log2
∼ k log(n/k)

m log2
.

(Recall that we take logarithms to base e throughout this paper). For example the fact that Theorems 2.1
and 2.2 show that noisy COMP and DD respectively can succeed w.h.p. ; with m ≥ (1+ ε)ck log(n/k) tests
for some c is equivalent to the fact that R = 1/(c log2) is an achievable rate in a Shannon-theoretic sense.

We now give a counterpart to these two theorems by stating a universal converse for the p−q channel
below, improving on the universal counting bound from (1.1). The starting observation (see [7, Theorem
3.1]) is that no group testing algorithm can succeed w.h.p. with rate greater than CChan, the Shannon
capacity of the corresponding noisy communication channel. Thus, we cannot hope to succeed w.h.p.
with m < (1−ε)ck log(n/k) tests where c = 1/(CChan log2). Hence as a direct consequence of the value of
the channel capacity of the p −q channel, we deduce the following statement.

Corollary 2.3. Let p, q ≥ 0, p +q < 1 and ε> 0, write h(·) for the binary entropy in nats (logarithms taken
to base e) and φ=φ(p, q) = (h(p)−h(q))/(1−p −q). If we define

mCOUNT =
(

1

DKL
(
q‖1/(1+eφ)

)
)

k log(n/k),

then for m ≤ (1−ε)mCOUNT no algorithm can recover σw.h.p. for any matrix design.

Remark 2.4. This result follows from Lemma F.1 derived in Appendix F below. As discussed there, this
derivation (combined with the fact that each test is negative with probability e−d ) suggests a choice of
density for the matrix:

d = d∗
ch = log(1−p −q)− log

(
1

1+eφ
−q

)
.

While a choice of ∆= c ·d∗
ch · log(n/k) is not necessarily optimal, it may be regarded as a sensible heuristic

that provides good rates for a range of p and q values.

2.4. Applying the results to standard channels. With Theorem 2.1 and Theorem 2.2 we derived achiev-
able rates for the generalized p-q-model (see Figure 1). Prior research considered the Z channel where
p = 0 and q > 0, the Reverse Z channel where p > 0 and q = 0 and the Binary Symmetric Channel with
p = q > 0. These channels are common models in coding theory [41], but are also often considered in
medical applications [30, 31] concerned with taking imperfect sensitivity (q > 0), specificity (p > 0) or
both (p > 0 and q > 0) into account. As a consequence we also compare our results with the most re-
cent results of Johnson and Scarlett [48]. In the following section we will demonstrate how performance
guarantees on these channels can directly be obtained from our main theorems.

2.4.1. Recovery of the noiseless model. Note that the bounds Corollary 2.5 and Corollary 2.6 are already
known [10, 26]. We would like to give the reader an idea of how one can see that our cumbersome looking
bounds relate to the more accessible bounds given for the noiseless case. First, we show the noiseless
bounds can be simply recovered by letting p, q → 0. In the noiseless setting, it is sufficient, by definition

10

194



of the algorithm, to set both α∆ = 1 and β∆ = 1. To see why, observe that in the absence of noise a
single negative test is sufficient evidence that an individual is healthy. Conversely, a single positive test
where the individual only appears with individuals , which were declared healthy already, implies that
particular individual must surely be infected. As shown in [13] the optimal parameter choice for the
density parameter d in the constant-column design in the noiseless setting is log(2). Applying these
values to Theorem 2.1 we recover the noiseless bound for COMP.These bounds were first stated in [10].

Corollary 2.5 (COMP in the noiseless setting). Let p, q → 0, 0 < θ < 1 and ε> 0. Further, let

mCOMP,noiseless =
1

(1−θ) log2 2
k log(n/k).

Furthermore let mCOMP(n,θ, p, q) be defined as in Theorem 2.1 Then we find

mCOMP(n,θ, p, q) −→
p,q→0

mCOMP,noiseless

Proof. We start by taking the bounds b1(α,d) and b2(α,d). To see how this boils down to mCOMP,noiseless,
we start with using the well-known fact that within the near constant column design d = log(2) is the
optimal choice [13]. Now by taking both p, q → 0 one realizes that b1(α, log(2)) vanishes as log(p) →−∞
as p → 0. Turning our focus to the second bound we see that it boils down to

b2(α, log(2))) = 1

(1−θ) log(2)

1

log(2)+α log(α)+ (1−α) log(1−α)

On the one hand we realize that α log(α)+ (1−α) log(1−α) is negative for all α ∈ (0,1). This leads to

b2(α, log(2)) > b2(0, log(2))

On the other hand we realize that in the noiseless case a single negative test is sufficient for a classifi-
cation as uninfected. Therefore we may choose α > 0 sufficiently small. One indeed realizes that for
each α we can choose ε := ε(α) > 0 appropriately, such that the bounds given in Theorem 2.1 recover the
noiseless case. �

We also recover the noiseless bounds for the DD algorithm as stated in [26].

Corollary 2.6 (DD in the noiseless setting). Let p, q → 0,0 < θ < 1 and ε> 0. Further, let

mDD,noiseless = max

{
1,

θ

1−θ

}
1

log2 2
k log(n/k).

Furthermore let mDD(n,θ, p, q) be defined as in Theorem 2.2 Then we find

mDD(n,θ, p, q) −→
p,q→0

mDD,noiseless

Proof. We start with taking c1(α,d),c2(α,d),c3(β,d) and c4(α,β,d) as defined in Theorem 2.2. First of all
we take c4(α,β,d). By assumption we find β> 0 and therefore the indicator is 1 as soon as we let p → 0.
Furthermore for p → 0 we get − log(p) →∞ and find c4 → 0. Second of all we take c1(α,d). With a similar
argument as before we see that c1(α,d) → 0 for q → 0 as in this case we find − log(q) →∞. Therefore we
are left with c2(β,d) and c3(α,β,d). Again, we use the well known fact that in the noiseless case d = log(2)
is the optimal choice. Therefore with p, q → 0 the two remaining bounds read as follows:

c2(α, log(2)) = 1

log(2)
(
log(2)+α log(α)+ (1−α) log(1−α)

)

c3(α,β, log(2)) = θ

(1−θ)

1

log(2)
(
log(2)+β log(β)+ (1−β) log(1−β)

)
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Again we see that x log(x)+ (1−x) log(1−x) is negative for x ∈ (0,1). Therefore we find

c2(α, log(2)) > c2(0, log(2))

c3(α, log(2)) > c3(0, log(2))

Now as as before in this case again a single negative test as well as a single test with only already classified
uninfected individuals is sufficient. Therefore we can chooseα,β> 0 sufficiently small. One indeed real-
izes that for each α,β> 0 one can choose ε := ε(α,β) appropriately such that the bounds of Theorem 2.2
recover the noiseless case. �

2.4.2. The Z channel. In the Z channel, we have p = 0 and q > 0, i.e. no truly negative test displays a
positive test result. Thus, in this case finding one positive test with only one unclassified individual is a
clear indication, therefore we again can choose β> 0 sufficiently small and remain agnostic about α and
d . The bounds for COMP and DD thus read as follows.

Corollary 2.7 (Noisy COMP for the Z channel). Let p→0,0 < q < 1,0 < θ < 1 and ε> 0. Further, let

mCOMP,Z = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

with b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

) and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d + (

1−e−d
)

q
) .

If m > (1+ε)mCOMP,Z , noisy COMP will recover σw.h.p. given G ,σ̂.

Corollary 2.8 (Noisy DD for the Z channel). Let p→0,0 < q < 1,0 < θ < 1 and ε> 0. Further, let

mDD,Z = min
α,d

max{c1(α,d),c2(α,d),c3(d)}k log(n/k)

with c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

) and c2(α,d) = 1

dDKL
(
α‖e−d + (

1−e−d
)

q
)

and c3(d) = θ

1−θ
1

−d log
(
1−e−d (1−q)

) .

If m > (1+ε)mDD,Z , noisy DD will recover σw.h.p. given G ,σ̂.

Proof. The bounds c1 and c2 follow directly from Theorem 2.2 by letting p → 0. An immediate conse-
quence of p → 0 is that due to the fact that − log(p) →∞ and one finds that c4 → 0, thus being trivial in
this case. For c3 we use the fact that we can choose β> 0 sufficiently small we find DKL

(
α‖e−d (1−q)

)=
− log

(
1−e−d (1−q)

)−δ(β) for δ(β) > 0. Note that by definition of the noise model, we may choose an
arbitrary βmin very close to zero and as a consequence β = βmin leading to δ(β) → δmin. The assertion
follows as for each β we may choose ε := ε(β) > 0 such that (1+ε) > (

1+ε(
βmin

))
. �

An illustration of the bounds from Corollary 2.7 and 2.8 for sample values of q is shown in Figure 5.

2.4.3. Reverse Z channel. In the reverse Z channel, we have q = 0 and p > 0, i.e. no truly positive test
displays a negative test result. Thus, we may choose α> 0 sufficiently small and remain agnostic about
β and d . The bounds for the noisy COMP and DD thus read as follows.

Corollary 2.9 (Noisy COMP for the Reverse Z channel). Let 0 < p < 1, q → 0,0 < θ < 1 and ε> 0. Further, let

mCOMP,rev Z = 1

1−θ min
d

{
1

−d log
(
1−e−d (1−p)

)
}

k log(n/k).

If m > (1+ε)mCOMP,rev Z, noisy COMP will recover σw.h.p. given G ,σ̂.
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Proof. The corollary follows from Theorem 2.1 and the fact that for q → 0 one finds that DKL (α‖0) di-
verges, Thereby b1 → 0 just gives a trivial bound in this case. Furthermore for sufficiently small α> 0 we
get DKL

(
α‖e−d (1−p)

) →− log
(
1−e−d (1−p)

)−δ(α). Due to the noise assumption, we may choose an
arbitrary αmin very close to zero and α = αmin which leads to δ(α) → δ (αmin). The assertion follows by
choosing ε := ε(α) > 0 such that (1+ε) > (1+ε (αmin)). �

Note that Corollary 2.9 does not yield an immediate closed form expression for the optimal value of d .

Corollary 2.10 (Noisy DD in the Reverse Z channel). Let 0 < p < 1, q → 0,0 < θ < 1 and ε> 0. Further, let

mDD,rev Z = min
β,d

max
{
c2(d),c3(β,d),c4(β,d)

}
k log(n/k)

with c2(d) = 1

−d log
(
1−e−d (1−p)

) and c3(β,d) = θ

1−θ
1

dDKL
(
β‖e−d

)

and c4(β,d) = 1

1−θ
1

d
(
− log

(
1−e−d (1−p)

)+DKL

(
β‖ e−d p

e−d p+(1−e−d )

))

If m > (1+ε)mDD,rev Z, noisy DD will recover σw.h.p. given G ,σ̂.

Proof. First of all we assume q → 0. Therefore we find c1 → 0 as − log(q) → ∞. The bounds c2,c3 fol-
low from Theorem 2.2 and the same manipulations as above. For c4, we again see that by definition
of the noise model we may choose α > 0 as close to zero as we like. Therefore we get (1 −α) close
to 1, which leads to z → 1. The assertion follows as for each α we can choose ε := ε(α) > 0 such that
(1+ε) > (1+ε (αmin)). �

An illustration of the bounds of Corollary 2.9 and 2.10 for sample values of p is shown in Figure 6.

2.4.4. Binary Symmetric Channel. In the Binary Symmetric Channel (BSC), we set p = q > 0. Even
though information-theoretic arguments would suggest setting d = log2, we formulate the expression
below with general d . We also keep the threshold parameters α and β. The bounds for the noisy DD and
COMP only simplify slightly.

Corollary 2.11 (Noisy COMP in the Binary Symmetric Channel). Let 0 < p = q < 1/2,0 < θ < 1 and ε > 0.
Further, let

mCOMP,BSC = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

with b1(α,d) = θ

1−θ
1

dDKL
(
α‖p

) and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d +p −2e−d p

) .

If m > (1+ε)mCOMP,BSC, noisy COMP will recover σw.h.p. given G ,σ̂.

Corollary 2.12 (Noisy DD in the Binary Symmetric Channel). Let 0 < p = q < 1/2,0 < θ < 1 and ε> 0 and
define v = 1−e−d −p +2e−d p. Further, let

mDD,BSC = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k log(n/k)

with c1(α,d) = θ

1−θ
1

dDKL
(
α‖p

) and c2(α,d) = 1

dDKL
(
α‖e−d +p −2e−d p

)

and c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−p)e−d

)

and c4(α,β,d) = max
1−α≤z≤1





1

1−θ
1

d
(
DKL (z‖v)+1

{
β> ze−d p

v

}
zDKL

(
β
z ‖

e−d p
v

))


 .

If m > (1+ε)mDD,BSC, noisy DD will recover σw.h.p. given G ,σ̂.
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Noisy COMP vs. DD bounds for the Binary Symmetric Channel
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FIGURE 3. Comparison of the bound for noisy DD and noisy COMP in the Z-channel and
the Binary Symmetric Channel for different noise level. (Note for black and white prints:
The lines in the diagram are in the same order as given in the legend from top to bottom)

An illustration of the bounds of Corollary 2.11 and 2.12 is shown in Figure 7.

2.5. Comparison of noisy COMP and DD. An obvious next question is to find conditions under which the
noisy DD algorithm requires fewer tests than the noisy COMP. For the noiseless setting, it can be easily
shown that DD provably outperforms COMP for all θ ∈ (0,1). For the noisy case, matters are slightly more
complicated.

Recall that noisy COMP classifies all individuals appearing in less than α∆ displayed negative tests as
infected while noisy DD additionally requires such individuals to appear in more than β∆ displayed pos-
itive tests as the only yet unclassified individual. Thus, it might well be that an infected individual is
classified correctly by noisy COMP, while it is missed by the noisy DD algorithm.

That being said, our simulations indicate that noisy DD generally requires fewer tests than noisy COMP,
but for the reason mentioned above we can only prove that for the reverse Z channel while remaining
agnostic about the Z channel and the Binary Symmetric Channel, as the next proposition evinces.

Proposition 2.13. For all p, q ≥ 0 with p +q < 1 there exists a d∗ ∈ (0,∞) such that mCOMP ≥ mDD as long
as e−d∗

p ≥ q.

In terms of the common noise channels Proposition 2.13 gives the following corollary.

Corollary 2.14. In the reverse Z channel, mCOMP ≥ mDD.

The proof can be found in Appendix D. Our simulations suggest that this superior performance of
noisy DD holds as well for the Z channel and Binary Symmetric Channel. Please refer to Figure 3 for an
illustration.

2.6. Relation to Bernoulli testing. In [48] sufficient bounds for noisy group testing and a Bernoulli test
design where each individual joins every test independently with some fixed probability were derived.
Thus, the variable degrees fluctuate and we end up with some individuals assigned only to few tests.
In contrast, we work under a model in this paper where each individual joins an equal number of tests
∆ chosen uniformly at random without replacement. For the noiseless case, it is by now clear that the
near-constant-column design better facilitates inference than the Bernoulli test design [13, 26]. We find
that the same holds true for the noisy variant of the COMP algorithm. Let us denote by mBer

COMP the number
of tests required for the noisy COMP to succeed under a Bernoulli test design.

Proposition 2.15. For all p +q < 1, we have

mBer
COMP ≥ mCOMP
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We see the same effect for the noisy variant of the DD algorithm for all simulations, but for technical
reasons only prove it for the Z channel.

Proposition 2.16. For the Z channel where p = 0 and 0 < q < 1, we have

mBer
DD > mDD

For an illustration on the magnitude of the difference, we refer to Figure 4 and Figure 8.
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FIGURE 4. Comparison of DD bounds under a Bernoulli test design ([48]) and constant
column test design (present paper) for the reverse Z and Binary Symmetric Channel.
(Note for black and white prints: The solid lines as well as the dashed lines in the diagram
are in the same order as given in the legend from top to bottom)
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APPENDIX

The core of the technical sections is the proof of Theorems 2.1 and Theorem 2.2. Some groundwork
with standard concentration bounds and group testing properties can be found in Section A. We con-
tinue with the proof of Theorems 2.1 and 2.2 in Sections B and C, respectively. The structure of the
proofs follows a similar logic. First, we derive the distributions for the number of displayed positive and
negative tests for infected and healthy individuals. Second, we threshold these distributions using sharp
Chernoff concentration bounds to deduce the bounds stated in Theorem 2.1 and Theorem 2.2. There-
after, we proceed to the proof of Proposition 2.13 in Section D, while the proofs of Propositions 2.15 and
2.16 follow in Section E. The proof of Corollary 2.3 can be found in Section F. Additional illustrations of
our results for the different channels can be found in Section G.

APPENDIX A. GROUNDWORK

For starters, let us recall the Chernoff bound for binomial and hypergeometric distributions.

Lemma A.1 (Chernoff bound for the binomial distribution [25]). Let p < q < r ∈ (0,1) and X ∼ Bin(n, q)
be a binomially distributed random variable. Then

P
(

X ≤ dpne)= exp
(−(

1+n−Ω(1))nDKL
(
p‖q

))

P (X ≥ dr ne) = exp
(−(

1+n−Ω(1))nDKL
(
r‖q

))

Lemma A.2 (Chernoff bound for the hypergeometric distribution [23]). Let p < q < r ∈ (0,1) and Y ∼
H(N ,Q,n) be a hypergeometrically distributed random variable. Further, let q =Q/N . Then

P
(
Y ≤ dpne)= exp

(−(
1+n−Ω(1))nDKL

(
p‖q

))

P (Y ≥ dr ne) = exp
(−(

1+n−Ω(1))nDKL
(
r‖q

))

The next lemma provides that the test degrees, as defined in (1.4) above, are tightly concentrated.
Recall from (1.3) that the number of tests m = ck log(n/k) and each item appears in ∆ = cd log(n/k)
tests.

Lemma A.3. With probability 1−o(n−2) we have

dn/k −
p

dn/k logn ≤Γmin ≤Γmax ≤ dn/k+
p

dn/k logn

Proof. The probability that an individual x is assigned to test a is given by

P (x ∈ ∂a) = 1−P (x ∉ ∂a) = 1−
(

m −1

∆

)(
m

∆

)−1

=∆/m = d/k(A.1)

Since each individual is assigned to tests independently, the total number of individuals in a given test
follows the binomial distribution Bin(n,d/k). The assertion now follows from applying the Chernoff
bound for this binomial distribution at the expectation (Lemma A.1). �

Next, we show that the number of truly negative tests m0 (and thus the number of truly positive tests
m1) is tightly concentrated.

Lemma A.4. With probability 1−o(n−2) we have m0 = e−d m +O(
p

m log3 n).

Proof. Recall from (A.1) that

P (x ∈ ∂a) = d/k

Since infected individuals are assigned to tests mutually independently, we find for a test a that

P (V1 ∩∂a =;) =P (Bin(k,d/k) = 0) = (1−d/k)k = (
1+n−Ω(1))e−d .
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Consequently, E [m0] =
(
1+n−Ω(1)

)
e−d m. Finally, changing the set of tests for a specific infected individ-

ual shifts the total number of negative tests by at most ∆. Therefore, the McDiarmid inequality (Lemma
1.2 in [34]) yields

P (|m0 −E [m0]| ≥ t ) ≤ 2exp

(
− t 2

4k∆2

)
.

The lemma follows from setting t =O
(p

m log3 n
)
. �

With the concentration of m0 and m1 at hand, we readily obtain estimates for m f
0 ,mu

0 ,m f
1 and mu

1 .
We remind ourselves that these are the number of flipped, unflipped negative tests and the number of
flipped, unflipped positive tests as defined in Sec. 1.4.

Corollary A.5. With probability 1−o(n−2) we have

(i) m f
0 = e−d pm +O

(p
m log3 n

)

(ii) mu
0 = e−d (1−p)m +O

(p
m log3 n

)

(iii) m f
1 = (1−e−d )qm +O

(p
m log3 n

)

(iv) mu
1 = (1−e−d )(1−q)m +O

(p
m log3 n

)

Proof. Since each test is flipped with probability p and q independently, the claims follow from Lemma A.4
and the Chernoff bound for the binomial distribution (Lemma A.1). �

In the following, let E be the event that the bounds from Lemma A.4 and A.5 hold. Note that E holds
with high probability.

APPENDIX B. PROOF OF COMP BOUND, THEOREM 2.1

Recall from (2.1) that we write N x for the number of displayed negative tests that item x appears in
(as illustrated by the right branch of Fig. 2). The proof of Theorem 2.1 is based on two pillars. First,
Lemmas B.1 and B.2 provide the distribution of N x for healthy and infected individuals, respectively.
We will see that these distributions differ according to the infection status of the individual. Second,
we will derive a suitable threshold α∆ via Lemma B.3 and B.4 to tell healthy and infected individuals
apart w.h.p. We start by analysing individuals in the infected set V1. Throughout the section, we assume
α ∈ (q,e−d (1−p)+ (

1−e−d
)

q).

Lemma B.1. Given x ∈V1, its number of displayed negative tests N x is distributed as Bin(∆, q).

Proof. Any test containing an infected individual is truly positive because of the presence of the infected
individual. Since an infected individual is assigned to ∆ different tests and each such test is flipped with
probability q independently, the lemma follows immediately. �

Next, we consider the distribution for healthy individuals. Recall that E denotes the event that the
bounds from Lemma A.4 and Corollary A.5 hold.

Lemma B.2. Given x ∈V0 and conditioned on E , the total variation distance of the distribution of N x and
T h that is distributed as H

(
m,m

(
e−d (1−p)+ (

1−e−d
)

q
)

,∆
)

tends to zero with n, that is

dT V (N x ,T h) = n−Ω(1)

Proof. Since x is healthy, the outcome of all the tests remains the same if it is removed from consideration
(if we perform group testing with n −1 items and the corresponding reduced matrix).
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Thus, given E , we find that with x removed the m f
0 ,mu

0 ,m f
1 ,mu

1 still satisfy the bounds from Corol-
lary A.5. As a result the number of displayed negative tests (which consist of unflipped truly negative
tests and flipped truly positive tests) is given by

(B.1) mu
0 +m f

1 =
(
e−d (1−p)+ (1−e−d )q

)
m +O

(p
m log3 n

)

Now, adding x back into consideration: x ∈ V0 chooses ∆ tests without replacement independently of

this. Hence, given that the random quantity mu
0 +m f

1 = `, the N x (the number of displayed negative
tests that item x appears in) is distributed as H(m,`,∆). Hence, a conditioning argument shows that the
linear combination of distribution functions

∑
`

P
(
mu

0 +m f
1 = `

)
P(H (m,`,∆) ≤ x)

tends to the distribution function of H
(
m,m

(
e−d (1−p)+ (

1−e−d
)

q
)

,∆
)

in total variation distance, due

to the concentration of mu
0 +m f

1 as obtained in Corollary A.5. �
Moving to the second pillar of the proof, we need to demonstrate that no infected individual is as-

signed to more than α∆ displayed negative tests as shown by the following lemma.

Lemma B.3. If c > (1+η) θ
1−θ

1
dDKL(α‖q) for some small η> 0, N x <α∆ for all x ∈V1 w.h.p.

Proof. We have to ensure that P(∃x ∈V1 : N x ≥α∆) = o(1). By Lemma B.1 and the union bound, we thus
need to have

o(1) = k ·P (N x ≥α∆ : x ∈V1) = k ·P(
Bin(∆, q) ≥α∆)= k ·exp

(−(
1+∆−Ω(1))∆DKL

(
α‖q

))
,

by the Chernoff bound for the binomial distribution (Lemma A.1). Since k ∼ nθ and ∆ = cd(1−θ) logn
the following must hold

θ− cd(1−θ)DKL
(
α‖q

)< 0

The lemma follows from rearranging terms and the fact that if we choose the number of tests slightly
above the required number of tests (larger by a factor of 1+η for η > 0), the assertion holds w.h.p. as
n →∞. �

We proceed to show that no healthy individual is assigned to less than α∆ displayed negative tests.

Lemma B.4. If c > (1+η) 1
1−θ

1
dDKL(α‖e−d (1−p)+(1−e−d )q) for some small η> 0, N x >α∆ for all x ∈V0 w.h.p.

Proof. We need to ensure that P(∃x ∈ V0 : N x < α∆) = o(1). Since E occurs w.h.p. by Lemma A.4 and
Corollary A.5, we need to have by Lemma B.2 and the union bound that

(n −k) ·P (N x ≤α∆|x ∈V0,E ) ≤ n ·P (T h ≤α∆) = o(1).(B.2)

We remind ourselves that T h ∼ H
(
m,m

(
e−d (1−p)+ (

1−e−d
)

q
)

,∆
)

and together with the Chernoff
bound for the hypergeometric distribution (Lemma A.2) this leads to the following condition6

1− cd(1−θ)DKL

(
α‖(1−p)e−d + (1−e−d )q

)
< 0

in a similar way to the proof of Lemma B.3. The lemma follows from rearranging terms and the fact that
if we choose the number of tests slightly above the required number of tests (larger by a factor of 1+η for
η> 0), the assertion holds w.h.p. as n →∞. �
Proof of Theorem 2.1. The theorem is now an immediate consequence of Lemma B.3 and B.4 which guar-
antee that w.h.p. classifying individuals according to the thresholdα∆ for negative displayed tests recov-
ers σ, and the fact that the choice of α and d is at our disposal. �

6Note that the additive rule of the logarithm allows us to move the error term from inside the KL-divergence to outside
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APPENDIX C. PROOF OF DD BOUND, THEOREM 2.2

The proof of Theorem 2.2 follows a similar two-step approach as the proof of Theorem 2.1 by first
finding the distribution of P x (the number of displayed positive tests where individual x appears on its
own after removing the individuals, which were declared healthy already, V0 \ V0,PD, illustrated by DP-S
in Fig. 2). We then threshold the distributions for healthy and infected individuals. To get started, we
revise the second bound from Theorem 2.1 to allow kn−Ω(1) healthy individuals to not be classified yet
after the first step of DD. Recall that, we assume α ∈ (q,e−d (1−p)+ (

1−e−d
)

q) and β ∈ (0,e−d (1−q)).

Lemma C.1. If

c > (1+η)
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

for some small η> 0, we have
∣∣V 0,PD

∣∣= kn−Ω(1) w.h.p.

Proof. The lemma follows immediately by replacing the r.h.s. of (B.2) with kn−δ for some small δ= δ(η),
rearranging terms and applying Markov’s inequality. �

For the next lemmas, we need an auxiliary notation denoting the number of tests m0,nd that only
contain individuals from V0 \V0,PD. In symbols,

m0,nd =
∣∣{a ∈ F : ∂a ⊂V0 \V0,PD

}∣∣ .

Lemma C.2. If

c > (1+η)
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

for some small η> 0, we have m0,nd = (
1−n−Ω(1)

)
e−d m with probability 1−o(n−2).

Proof. As in the proof of Lemma B.2 above, we consider the graph in two rounds: in the first round we
consider the tests containing infected individuals. Since each healthy individual x ∈V0 does not impact
the number of positive and negative tests, we know by Lemma A.4 that with probability 1−o(n−2) we find
that the number of truly negative tests m0 = e−d m+O

(p
m log4 n

)
after the first round. Furthermore the

presence of a healthy individual has no impact on the number of displayed negative tests, as unflipped
negative tests remain unflipped and flipped positive tests remain flipped. In the second round, we con-
sider the effect of adding healthy individuals into the tests. Knowing the number of negative tests w.h.p.
we can think of the participation of individuals x ∈ V0,PD in these tests as a balls into bins experiment.
Starting with the number of truly negative tests m0 (given by the first round) we conduct a worst case
analysis to see how many of those tests may include one of the x ∈V0,PD. Consider some particular truly
negative test a. We are interested in the probability that none of the elements of V0,PD is contained. The
probability that a given individual x ∈ V0,PD (knowing that it participates in Nx ≤ α∆ displayed negative
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tests, which is of lower order than m) is assigned to this test is given by7

P
(
x ∈ ∂a|x ∈V0,PD

)= 1−P(
x ∉ ∂a|x ∈V0,PD

)
(C.1)

= 1−
α∆∑
i=0

P
(
N x = i |x ∈V0,PD

)
(

m −1

∆− i

)(
m

∆− i

)−1

(C.2)

≤ 1− (
1+n−Ω(1)) α∆∑

i=0
P

(
N x = i |x ∈V0,PD

)(
1− 1

m

)∆−i

(C.3)

≤ 1− (
1+n−Ω(1)) α∆∑

i=0
P

(
N x = i |x ∈V0,PD

)(
1− 1

m

)∆
= (

1+n−Ω(1))
(
∆

m
+O(k−2)

)
= d

k
+O(k−2)(C.4)

We can now calculate the probability that no individual x ∈V0,PD is assigned to a, bearing in mind that
the size of V0,PD is random, and that each such individual is assigned to tests mutually independently.
Using (C.4), and decomposing the sum into two parts, this is given by (for a given V )

P
({

V0,PD ∩∂a
}=;)=

n∑
j=0

P
(∣∣V 0,PD

∣∣= j
)
P

({
V0,PD ∩∂a

}=;
∣∣∣
∣∣V 0,PD

∣∣= j
)

=
V∑

j=0
P

(∣∣V 0,PD
∣∣= j

)(
1− d

k
+O

(
k−2)

) j

+
n∑

j=V +1
P

(∣∣V 0,PD
∣∣= j

)(
1− d

k
+O

(
k−2)

) j

≥
V∑

j=0
P

(∣∣V 0,PD
∣∣= j

)(
1− d

k
+O

(
k−2)

)V

=P(∣∣V 0,PD
∣∣≤V

)(
1− d

k
+O

(
k−2)

)V

By Lemma C.1, we can choose V = kn−Ω(1) such that P
(∣∣V 0,PD

∣∣≤V
)

is arbitrarily close to 1, and knowing

that
(
1− d

k +O
(
k−2

))V
' exp(−dV /k) = exp(−dn−Ω(1)) we find

P
({

V0,PD ∩∂a
}=;)= 1−n−Ω(1).

By combining this with the findings of Lemma A.4 we find E
[
m0,nd

] = (
1−n−Ω(1)

)
e−d m. The lemma

follows by a similar application of the McDiarmid inequality as used in the proof of Lemma A.4.
�

Note that, changing the set of tests for a specific individual x ∈ V1 ∪V0,PD shifts m0,nd by at most ∆.
Thus, such an individual choosing from this set is not affecting the order of m0,nd.
Let F be the event that m0,nd = (

1−n−Ω(1)
)

e−d m. By Lemma C.2, P (F ) = 1−o(n−2) if

c > (1+η)
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

for some small η> 0. With Lemma C.2 at hand, we are in a position to describe the distribution of P x for
healthy and infected individuals (recall the definition of P x in (2.2)). Let us start with infected individuals.

Lemma C.3. Given x ∈ V1 and conditioned on F , the total variation distance between P x and Q H , a
random variable with hypergeometric distribution H

(
m,me−d (1−q),∆

)
, tends to zero with n, that is

dT V
(
P x ,Q H

)= n−Ω(1).

7We refer the reader to [20] for two results we use while obtaining (C.3) (apply Claim 7.3 to the binomial coefficients) as well
as (C.4)(apply Claim 7.4 as error corrected version of Bernoulli’s inequality).Please note that these bounds in particular hold for
∆=Θ(log(n)) and k ∼ nθ .
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Proof. We are interested in the neighborhood structure of one given infected individual x ∈ V1, and we
check how the remaining individuals influence the test types. In particular we are interested in the num-
ber of tests a ∈ F such that ∂a ⊂ V0 \ V0,PD are contained in the neighborhood of an infected individual
x. Knowing the total number of tests m and fixed degree ∆, for a given value of the random quantity
m0,nd = `, we find that this quantity of interest follows a H (m,`,∆)-distribution. Given F , Lemma C.2
gives that m0,nd is highly concentrated,

m0,nd = (
1−n−Ω(1))e−d m

with high probability. Hence a conditioning argument, similar to Lemma B.2, shows that the linear com-
bination of distribution functions

∑
`

P(m0,nd = `)P(H (m,`,∆) ≤ x)

tends to the distribution function of H
(
m,me−d ,∆

)
in total variation distance, due to the concentration

result obtained in Lemma C.2. Since each test featuring x will truly be positive (as we assume x to be
infected) and will be displayed positive with probability 1−q independently, the lemma follows imme-
diately. �

To describe the distribution of P x for healthy individuals, let us introduce the random variable P x (P ),
which is P x conditioned on the individual appearing in P displayed positive tests, as follows:

P (P x (P ) = t ) =P (P x = t |N x =∆−P )

Then, we find for healthy individuals the following conditional distribution.

Lemma C.4. Given x ∈V0 ,conditioned on E and F , the total variation distance between P x (P ) and
B h ∼ H

(
m

(
e−d p + (1−e−d )(1−q)

)
,m

(
e−d p

)
,P

)
tends to zero with n. That is

dT V (P x (P ),B h) = n−Ω(1).

Proof. We proceed with the same exposition and reasoning as in the proof of Lemma C.3. Due to the
fact that x is healthy we can remove it without affecting the test result. Therefore we can analyse its
neighborhood structure induced by the pooling graph while excluding it. Since by assumption individual
x ∈V0 is assigned to exactly P displayed positive and the total number of displayed positive test is given

by m f
0 +mu

1 , we see that P x (P ) is H
(
m f

0 +mu
1 ,m0,nd,P

)
-distributed. Due to the fact that the event E

pinpoints the amount of displayed positive and negative tests we can derive the distribution of neighbors
the individual may choose from. Recalling the results of Corollary A.5, we see that w.h.p.

m f
0 = e−d pm +O

(p
m log3 n

)
,

and mu
1 = (1−e−d )(1−q)m +O

(p
m log3 n

)
.

Furthermore we get from Lemma C.2 that w.h.p.

m0,nd = (
1−n−Ω(1))e−d m.

Now we apply the concentration results obtained in Corollary A.5 and Lemma C.2 to obtain a linear
combination of distribution functions

∑
`,v
P(m0,nd = `,m f

0 +mu
1 = v) ·P(H (v,`,∆) ≤ x)

that tends to H
(
m

(
e−d p + (1−e−d )(1−q)

)
,me−d ,P

)
. The lemma follows since truly negative tests get

flipped independently with probability p. �
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Having derived the distributions for P x for x ∈ V1 and P x (P ) for x ∈ V0 we can now determine a
threshold β∆ of displayed positive tests where the individual appears only with individuals from the
set V0 \ V0,PD such that we can tell V1 and V0,PD apart and thus recover σ. Let us start with infected indi-
viduals.

Lemma C.5. As long as

c > (1+η)max

{
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
) ,

θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)
}

for some small η> 0, we have P x >β∆ for all x ∈V1 w.h.p.

Proof. We need to ensure that P(∃x ∈V1 : P x <β∆) = o(1). For the bound on c from the lemma, we know
that F occurs w.h.p. by Lemma C.2. In combination with Lemma C.3 and the union bound we need to
ensure that

k ·P(
P x ≤β∆|x ∈V1,F

)= k ·P(Q H ≤β∆)+kn−Ω(1) = o(1),(C.5)

where as before Q H is a random variable with hypergeometric distribution H
(
m,me−d (1−q),∆

)
. Using

the Chernoff bound for the hypergeometric distribution (Lemma A.2), the following condition for (C.5)
to hold arises

θ− cd(1−θ)DKL

(
β‖(1−q)e−d

)
< 0(C.6)

The lemma follows from rearranging terms in (C.6) and the fact that if we choose the number of tests
slightly above the required number of tests (larger by a factor of 1+η for η> 0), the assertion holds w.h.p.
as n →∞. �

We proceed with the set of individuals V0,PD.

Lemma C.6. As long as

c > (1+η)max

{
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
) ,

max
1−α≤z≤1





1

1−θ
1

d
(
DKL

(
z‖e−d p + (1−e−d )(1−q)

)+ zDKL

(
β
z ‖

e−d p
e−d p+(1−e−d )(1−q)

))




}

for some small η> 0, we have P x <β∆ for all x ∈V0,PD w.h.p.

Proof. We need to ensure that P(∃x ∈ V0,PD : P x > β∆) = o(1). For the bound on c from the lemma, we
know that F occurs w.h.p. by Lemma C.2. Moreover, E occurs w.h.p. by Lemma A.4 and Corollary A.5.
We write w = e−d p +(

1−e−d (1−q)
)

for brevity. Combining this fact with Lemma B.2 and C.4 we need to
ensure

(n −k)
∆∑

P=(1−α)∆
P (N x =∆−P |x ∈V0,E )P

(
P x (P ) ≥β∆|x ∈V0,F

)
(C.7)

= (
1−n−Ω(1))n

∆∑
P=(1−α)∆

P (T h = P ) ·P
(
B h ≥β∆)= o(1)(C.8)

We remind ourselves that

T h ∼ H
(
m,m

(
e−d (1−p)+

(
1−e−d

)
q
)

,∆
)

and B h ∼ H
(
m

(
e−d p + (1−e−d )(1−q)

)
,m

(
e−d p

)
,P

)
.
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Now by the Chernoff bound for the hypergeometric distribution (Lemma A.2) and setting z = P/∆, we
establish the following two bounds for the probability terms:

P
(
H

(
m,m

(
w +n−Ω(1)) ,∆

)= P
)= exp

(−(1+n−Ω(1))∆ (DKL (z‖w))
)

(C.9)

P
(
H

(
m

(
w +n−Ω(1)) ,m

(
e−d p +n−Ω(1)

)
,P

)
≥β∆

)

= exp

(
−(

1+n−Ω)
z∆1

{
β> ze−d p

w

}
zDKL

(
β

z
‖e−d p

w

))
(C.10)

(Note that the indicator in (C.10) appears due to the condition given by Lemma A.2) We reformulate the
left-hand-side of (C.8) to

n
∆∑

P=(1−α)∆
exp

(
−(1+o(1))∆

(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β

z
‖e−d p

w

)))

= (
1+n−Ω(1))n max

1−α≤z≤1

{
exp

(
− (1+o(1))∆

(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β

z
‖e−d p

w

)))}

where the second equality follows since the sum consists of Θ(∆) = Θ(logn) many summands. Since
P (F ) = 1−n−Ω(1) for our choice of c by Lemma C.2 rearranging terms readily yields that the expression
in (C.7) is indeed of order o(1).

To see this, we remind ourselves that by definition ∆ = cd log
(n

k

) = (1− θ)cd log(n). Furthermore we

plug in the definition for w = e−d p + (
1−e−d (1−q)

)
. In the end we have to ensure that

1 < (1−θ)cd

(
DKL (z‖w)+1

{
β> ze−d p

e−d p + (
1−e−d (1−q)

)
}

zDKL

(
β

z
‖ e−d p

e−d p + (
1−e−d (1−q)

)
))

We solve this inequality for c. As we are only interested in a worst case bound, the assertion follows from
the non-negativity of DKL (∗‖∗).

�

Proof of Theorem 2.2. The theorem is now immediate from Lemma B.3, C.1, C.5 and C.6 and the fact that
the choice of α,β and d is at our disposal. �

APPENDIX D. COMPARISON OF THE NOISY DD AND COMP BOUNDS

The following section is intented to provide sufficient conditions under which the DD algorithm attains
reliable performance requiring fewer tests than the COMP. However, these conditions are not necessary
and DD might (and for all performed simulations does) require fewer tests than COMP for even wider set-
tings.

Proof of Proposition 2.13. In order to prove the proposition, we need to find conditions under which

min
α,d

max{b1(α,d),b2(α,d)} ≥ min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}

We write α∗ and d∗ for the values that minimise the maximum of the two terms at the LHS, at which
point we know that b1(α∗,d∗) = b2(α∗,d∗). Then it is sufficient to show that there exists β∗ such that

b1(α∗,d∗) = b2(α∗,d∗) ≥ max
{
c1(α∗,d∗),c2(α∗,d∗),c3(β∗,d∗),c4(α∗,β∗,d∗)

}

By inspection for any α and d b1(α,d) = c1(α,d) and b2(α,d) ≥ c2(α,d) since θ ∈ (0,1).
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Next, we will show that b2(α,d) ≥ c4(α,β,d) for any α,β in the respective bounds and d ∈ (0,∞). Writ-
ing w = e−d p + (1−e−d )(1−q), and recalling that by assumption that α≤ 1−w (or w ≤ 1−α) we readily
find that

(D.1) DKL (α‖1−w) = min
1−α≤z≤1

(DKL (z‖w)) ≤ min
1−α≤z≤1

(
DKL (z‖w)+ z1

{
β> ze−d p

w

}
DKL

(
β

z
‖e−d p

w

))

where the first equality follows since DKL (α‖1−w) = DKL (1−α‖w) and DKL (z‖w) > DKL (1−a‖w) for
any z > 1 −α. The bound follows. Note that (D.1) indeed holds for any choice of α,β and d in the
respective bounds stated in the theorem.

Finally, we need to demonstrate that c3(β∗,d∗) ≤ b2(α∗,d∗). Since β is not an optimisation parame-
ter in b2(α∗,d∗) and the bound in (D.1) holds for any value of β, we can simply set it to the value that
minimizes c3(β∗,d∗) which is β= 1/∆ and for which we find

c3(β∗,d∗) = θ

1−θ
1

d∗ log
(
1−e−d∗(1−q

) .

Thus, to obtain the desired inequality we need to ensure that for the optimal choice α∗ from COMP

θDKL

(
α∗‖e−d∗

(1−p)+
(
1−e−d∗)

q
)
≤− log

(
1−e−d∗

(1−q)
)

Using the bound

θDKL

(
α‖e−d (1−p)+

(
1−e−d

)
q
)
≤−θ log

(
1−

(
e−d (1−p)+

(
1−e−d

)
q
))

≤− log
(
1−

(
e−d (1−p)+

(
1−e−d

)
q
))

which is obtained by setting α= 1/∆, we find that c3(β∗,d∗) ≤ b2(α∗,d∗) if

− log
(
1−e−d∗

(1−q)
)
≥− log

(
1−e−d∗

(1−p)+
(
1−e−d∗)

q
)
⇔ e−d∗

p ≥ q

�
As mentioned before, due to bounding b2(α∗,d∗) the result is not sharp. However, one immediate

consequence of Proposition 2.13 is that DD is guaranteed to require fewer tests than COMP for the reverse
Z channel.

APPENDIX E. RELATION TO BERNOULLI TESTING

In the noiseless case [26] shows that the constant column weight design (where each individual joins
exactly∆ different tests) requires fewer tests to recoverσ than the i.i.d. (Bernoulli pooling) design (where
each individual is included in each test with a certain probability independently). In this section we show
that in the noisy case, the COMP algorithm requires fewer tests for the constant column weight design
than for the i.i.d. design, and derive sufficient conditions under which the same is true for the noisy DD
algorithm.

To get started, let us state the relevant bounds for the Bernoulli design, taken from [48, Theorem 5]
and rephrased in our notation.

Proposition E.1 (Noisy COMP under Bernoulli). Let p, q ≥ 0, p + q < 1, d ∈ (0,∞), α ∈ (q,e−d (1− p)+(
1−e−d

)
q). Suppose that 0 < θ < 1 and ε> 0 and let

mBer
COMP = mBer

COMP(n,θ, p, q) = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

where b1(α,d) = θ

1−θ
1

kDKL
(
αd/k‖qd/k

)

and b2(α,d) = 1

1−θ
1

kDKL
(
αd/k‖(e−d (1−p)+ (1−e−d )q)d/k

)
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If m > (1+ε)mBer
COMP, COMP will recover σ under the Bernoulli test design w.h.p. given G ,σ̂.

Proposition E.2 (Noisy DD under Bernoulli). Let p, q ≥ 0, p + q < 1, d ∈ (0,∞), α ∈ (q,e−d (1 − p) +(
1−e−d

)
q) and β ∈ (e−d p,e−d (1−q)). Suppose that 0 < θ < 1,ζ ∈ (0,θ) and ε> 0 and let

mBer
DD = mBer

DD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(β,d)

}
k log(n/k)

where c1(α,d) = θ

1−θ
1

kDKL
(
αd/k‖qd/k

)

and c2(α,d) = 1−ζ
1−θ

1

kDKL
(
αd/k‖(e−d (1−p)+ (1−e−d )q)d/k

)

and c3(β,d) = θ

1−θ
1

k ·DKL
(
βd/k‖e−d (1−q)d/k

)

and c4(β,d) = ζ

1−θ
1

k ·DKL
(
βd/k‖e−d pd/k

)

If m > (1+ε)mBer
DD, DD will recover σ under the Bernoulli test design w.h.p. given G ,σ̂.

To compare the bounds of the Bernoulli and constant-column test design we employ the following
handy observation.

Lemma E.3. Let 0 < x, y < 1 and d > 0 be constants independent of k. As k →∞

kDKL

(
xd

k
‖ yd

k

)
= d

(
DKL

(
x‖y

)+ v(x, y)
)+o(1/k)

with

v(x, y) = y −x + (1−x) log

(
1− y

1−x

)
≤ 0(E.1)

Proof. Applying the definition of the Kullback-Leibler divergence and Taylor expanding the logarithm
we obtain

k ·DKL

(
xd

k
‖ yd

k

)
=xd · log

(
x

y

)
+ (k −xd)

(
log

(
1− xd

k

)
− log

(
1− yd

k

))

= xd · log

(
x

y

)
+ (k −xd)

(
−xd

k
+ yd

k
+o

(
1

k2

))

= d

(
x · log

(
x

y

)
−x + y

)
+o(1/k)

= d

(
DKL

(
x‖y

)+ y −x − (1−x) log

(
1−x

1− y

))
+o(1/k).

We can bound v(x, y) from above by writing the final term as (1− x) log
(
1+ x−y

1−x

) ≤ (1− x) x−y
1−x = x − y ,

using the standard linearisation of the logarithm. �

We are now in a position to prove Proposition 2.15 and 2.16.

Proof of Proposition 2.15. The lemma follows by comparing the bounds from Theorem 2.1 and Proposi-
tion E.1 and applying Lemma E.3. �

Proof of Proposition 2.16. As evident from Corollary 2.8, the fourth bound c4(α,β,d) vanishes under the
Z channel. Now comparing the bounds from Theorem 2.2 and Proposition E.2, observing that (1−ζ)/(1−
θ) > 1 for ζ< θ and applying Lemma E.3 immediately implies the lemma. �
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APPENDIX F. NOTES ON COROLLARY 2.3

Lemma F.1. If p +q < 1 the Shannon capacity of the p −q channel of Figure 1 measured in nats is

(F.1) CChan = DKL

(
q‖ 1

1+eφ

)
= DKL

(
p‖ 1

1+e−φ

)
,

where φ= (h(p)−h(q))/(1−p −q). This is achieved by taking

(F.2) P(X = 0) = 1

1−p −q

(
1

1+eφ
−q

)
.

Please note that the proof might be a standard result for readers from some research communities, but
for others it might be less standard. Therefore we state it here to prevent the interested (but unfamiliar)
reader from a long textbook search.

Proof. Write P(X = 0) = γ and P(Y = 0) = T (γ) := (1−p)γ+q(1−γ). Then since the mutual information

(F.3) I (X ;Y ) = h(Y )−h(Y |X ) = h
(
T (γ)

)− (
γh(p)+ (1−γ)h(q)

)
,

we can find the optimal T by solving

0 = ∂

∂γ
I (X ;Y ) = (1−p −q) log

(
1−T (γ)

T (γ)

)
− (

h(p)−h(q)
)

,

which implies that the optimal T ∗ = 1/(1+ eφ). We can solve for this for γ∗ = (T ∗−q)/(1−p −q) to find
the expression above. As ∂

∂2γ
I (X ;Y ) < 0 it is indeed a maximum. Substituting this in (F.3) we obtain that

the capacity is given by

h(T ∗)− (
γ∗h(p)+ (1−γ∗)h(q)

) = h

(
1

1+eφ

)
− (

(T ∗−q)φ+h(q)
)

= log(1+eφ)−φ(1−q)−h(q)(F.4)

= DKL
(
q‖1/(1+eφ)

)

as claimed in the first expression in (F.1) above. We can see that the second expression in (F.1) matches
the first by writing the corresponding expression as DKL

(
1−p‖1/(1+eφ)

)= log(1+eφ)−φp−h(p), which
is equal to (F.4) by the definition of φ. �

Note that this result suggests a choice of density for the matrix: since each test is negative with proba-
bility e−d , equating this with (F.2) suggests that we take

d = d∗
ch = log(1−p −q)− log

(
1

1+eφ
−q

)
.

This is unlikely to be optimal in a group testing sense, since we make different inferences from positive
and negative tests, but gives a closed form expression that may perform well in practice. For the noiseless
and BSC case observe that φ= 0, and we obtain d∗

ch = log2.
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APPENDIX G. ILLUSTRATION OF BOUNDS FOR Z, REVERSE Z CHANNEL AND THE BSC
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FIGURE 5. Illustration of achievability bounds for noisy COMP and DD under the Z chan-
nel. (Note for black and white prints: The solid lines as well as the dashed lines in the
diagram are in the same order as given in the legend from top to bottom)
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Noisy COMP bounds for the reverse Z channel
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FIGURE 6. Illustration of achievability bounds for noisy COMP and DD under the reverse Z
channel. (Note for black and white prints: The solid lines as well as the dashed lines in
the diagram are in the same order as given in the legend from top to bottom)
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Noisy COMP bounds for the Binary Symmetric Channel
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FIGURE 7. Illustration of achievability bounds for noisy COMP and DD under the Binary
Symmetric Channel. (Note for black and white prints: The solid lines as well as the
dashed lines in the diagram are in the same order as given in the legend from top to
bottom)
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Noisy DD bounds for the Z channel: CC vs. Bernoulli
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FIGURE 8. Comparison of the noisy DD rates under Bernoulli pooling ([48]) with the DD
bounds with constant-column design as provided in the paper at hand within the Z-
Channel.(Note for black and white prints: The solid lines as well as the dashed lines in
the diagram are in the same order as given in the legend from top to bottom).
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Abstract—In the pooled data problem the goal is to efficiently
reconstruct a binary signal from additive measurements. Given
a signal σ ∈ {0, 1}n, we can query multiple entries at once and
get the total number of non-zero entries in the query as a result.
We assume that queries are time-consuming and therefore focus
on the setting where all queries are executed in parallel. For the
regime where the signal is sparse such that ||σ||1 = o(n) our
results are twofold: First, we propose and analyze a simple and
efficient greedy reconstruction algorithm. Secondly, we derive a
sharp information-theoretic threshold for the minimum number
of queries required to reconstruct σ with high probability. Our
first result matches the performance guarantees of much more
involved constructions (Karimi et al. 2019). Our second result
extends a result of Alaoui et al. (2014) and Scarlett & Cevher
(2017) who studied the pooled data problem for dense signals.
Finally, our theoretical findings are complemented with empirical
simulations. Our data not only confirm the information-theoretic
thresholds but also hint at the practical applicability of our
pooling scheme and the simple greedy reconstruction algorithm.

Index Terms—Reconstruction, Sparse Signal, Pooled Data,
Information Theory, Phase Transitions

I. INTRODUCTION

We consider the binary pooled data problem with additive
queries which is defined as follows. We are given a signal of
length n, a large vector σ ∈ {0, 1}n of Hamming weight k
and a querying method. Each query pools multiple entries of
σ together and returns the exact number of non-zero entries
contained in the pool (see Fig. 1 for an example). The goal is
to reconstruct σ using as few queries as possible.

In many real-world scenarios the time to compute a re-
construction of σ is dominated by the time to perform a
single query. The evaluation of such a query may require,
e.g., computations using a deep neural network on a GPU
[20], biological processes such as DNA screening [7], [26], or
PCR tests in a bio-medical context [4]. To obtain a substantial
speed-up, we therefore focus on parallel schemes where all
queries are specified a priori and executed simultaneously.
This assumption makes sense in the context of a life sci-
ences laboratory: queries can be envisioned as measurements

OG and PL were supported by DFG CO 646/3. MHK was supported by
DFG FOR 2975 and Stiftung Polytechnische Gesellschaft.

σ1 σ2 σ3 σ4 σ5 σ6 σ7

2 2 3 1 1

Fig. 1. A small example with signal σ = (1, 1, 0, 0, 1, 0, 0) ∈ {0, 1}7 at the
top and queries a1, . . . , a5 at the bottom. The edges of the bipartite (multi-)
graph G show which entries are contained in a specific query. The dashed
lines highlight the occurrence of multi-edges. The goal is to reconstruct σ
given only G and the query results (2, 2, 3, 1, 1).

conducted by a liquid handling robot. The time to perform
all (parallel) queries then clearly dominates the time to run
an efficient (sequential) reconstruction algorithm (for practical
input sizes).

In this paper we focus on the sublinear regime where the
number of non-zero entries k scales sub-linearly in the signal’s
length n such that k = nθ for some θ < 1. In this setting, our
main task is to specify a suitable parallel pooling design and
an efficient reconstruction algorithm that allows us to compute
σ efficiently from the queried data. We are interested in two
different types of phase-transitions that commonly arise in the
analysis of reconstruction and statistical inference problems:

1) What is the minimum number of queries that allows
us to infer σ from the query results given unlimited
computational power?

2) How many queries are required such that an efficient
algorithm can compute σ from the query results?

We will refer to the first phase-transition as the information-
theoretic threshold and to the second phase-transition as the
algorithmic threshold.

A. The Teacher-Student Model

As in many related reconstruction problems, the teacher-
student model provides the fundamental means towards ana-
lyzing information-theoretic questions. The challenge in such
reconstruction problems lies in deriving probability distribu-
tions that are dependent on a variety of random variables
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and hard to express per se. However, deriving probability
distributions conditioned on certain high-probability events is
feasible. For an introduction and mathematical justification
of the model, we refer the reader to [10]. The setup is the
following: a teacher aims to convey some ground truth to a
student. Rather than directly providing the ground truth to the
student, the teacher generates observable data from the ground
truth via some statistical model and passes both the data and
the model to the student. The student now aims to infer the
ground truth from the observed data and the model.

In terms of this paper we see σ as the ground truth. Its dis-
tribution is inherited from all vectors in {0, 1}n of Hamming
weight k. The observable data y, together with the conducted
queries (expressed as a graph G) are passed to the student
in order to infer σ. In the following, we analyze the chances
of the student to infer the ground truth from the observable
data. First, we derive the model distribution from the provided
information G and the query results y. Afterwards, we use
the gained knowledge to analyze the chances of the student to
recover the ground truth by estimating the number of possible
input vectors that are consistent with the observed query
results. As our goal is to recover σ with high probability, we
condition on the event that the underlying bipartite multi-graph
G, which will be defined properly in due course, behaves
almost as expected. We exploit the knowledge about G to
derive high-probability events which we can condition on.
Eventually, our analysis conveys the information whether there
is a unique input vector or multiple possible input vectors out
of which the student has to guess the correct one.

B. Related Work

The binary pooled data problem, sometimes called quanti-
tative group testing, finds its roots in early works of Dorfman
[13], Djackov [11], and Shapiro [27]. It has recently gained
a lot of interest in the literature [1], [6], [14], [18], [25],
with applications in a multitude of disciplines such as DNA
screening [26], identifying genetic carriers [7] and machine
learning [20], [23], [33]. Variants of the problem include
binary group testing [2], [9] or threshold group testing [8],
[22]. We start our discussion with an overview of related work
from information theory.

Information-Theoretic Aspects. A simple information-
theoretic lower bound can be obtained by a folklore counting
argument: each query returns a number from 0 to k, thus a
pooling design with m queries can produce at most (k+ 1)m

different outcomes. This number must be larger than
(
n
k

)
in

order to distinguish all possible input vectors of length n with
Hamming weight k. By standard asymptotic bounds, we obtain

mBPD
seq ≥ (1− o(1))

ln n
k

ln k
k. (1)

The universal lower bound on mBPD
seq holds in any case, even if

the queries do not need to be conducted in parallel. Restricted

to the important special case in which all queries are conducted
in parallel, [11] shows that reconstruction of σ requires at least

mBPD
para = (2− o(1))

ln n
k

ln k
k = 2 ·mBPD

seq (2)

queries, even with unlimited computational power. On the
positive side, Bshouty [6] proves that reconstruction of σ
is efficiently possible with (2 + ε)mBPD

seq queries if they are
conducted sequentially and Grebinski and Kucherov [17]
provide a parallelizable design with an exponential-time re-
construction decoding algorithm which guarantees inference
with (2+ε)mBPD

para queries using separating matrices. The latter
positive result was extended to the so-called Subset Select
problem [21], a relaxation of the pooled data problem that asks
to identify only a subset of positive entries correctly. Recently,
[14] improved the result for this relaxation by a factor of 2.
So far, these results hold independently of k. For the linear
regime where k = Θ(n), much stricter results are already
known: Alaoui et al. [1] and Scarlett and Cevher [25] show
that there is an exponential-time construction that achieves
reconstruction with (1 + ε)mBPD

para parallel queries – a result
that is dependent on k scaling linearly in n.

Algorithmic Aspects. If allowed for sequential queries,
Bshouty [6] presents an efficient reconstruction algorithm that
succeeds at recovery of σ with no more than (2 + o(1))mBPD

seq
queries. However, for parallel schemes, there are significant
gaps between the information-theoretic lower bound and the
currently best known efficient algorithms [1], [12], [14],
[15], [19], [24]. For instance, Alaoui et al. [1] present an
Approximate Message Passing algorithm for dense signals
(k = Θ(n)). Furthermore, Donoho and Tanner [12] give a
decoding strategy based on `1-minimization, and Foucart and
Rauhut [15] introduce the Basis Pursuit-algorithm. They can
be used to recover σ with

(2 + o(1))k ln
n

k
and (2 + o(1))k lnn ∼ 2

1− θk ln
n

k

queries, respectively, if the signal is sparse (k � n). Note
that these algorithms solve the more general compressed
sensing problem. Various improvements over the Basis Pursuit
algorithm are known (e.g., the Orthogonal Matching Pursuit
[24] and its improved version for discrete signals [29]) but as
Wang and Yin [32] discuss, they do not perform asymptotically
better in the setting discussed in this paper. More recent
algorithms explicitly designed for recovery of σ from additive
queries in the sparse regime are due to Karimi et al. [18], [19].
They provide two algorithms based on graph codes that require

(1.72 + o(1))k ln
n

k
and (1.515 + o(1))k ln

n

k

queries, respectively. Furthermore, in a yet unpublished draft
that appeared subsequently to our work on arXiv, Feige and
Lellouche [14] analyze the Subset Select problem. They prove
that, under mild assumptions, an algorithm succeeding at this
relaxation can be turned into an algorithm for recovery of
σ without significantly increasing the required number of
queries.
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C. Our Contributions
We study the pooled data problem under the random regular

model G which is known to be information-theoretically op-
timal in the linear regime as well as in similar inference prob-
lems [9]. More precisely, we let G = (V ∪F,E) be a random
bipartite multi-graph with query-nodes F = {a1, . . . , am}
representing the queries, entry-nodes V = {x1, . . . , xn} rep-
resenting the coordinates of σ, and edges E indicating how
often a specific entry is contained in a given query. Hereby,
each query ai ∈ F contains exactly Γ = n/2 entries chosen
uniformly at random with replacement.

Algorithmic Results. For the aforementioned pooling
design we present a fairly intuitive greedy algorithm called
Maximum Neighborhood (MN) Algorithm that allows recon-
struction of σ w.h.p.1 It follows a thresholding approach that
is much simpler than the known algorithms by Karimi et al.
[18], [19], which are technically highly challenging. A formal
definition of the MN-Algorithm is given in Algorithm 1.

Algorithm 1: The Maximum Neighborhood Algorithm
Input: m, k, querying method query
Output: estimation σ̃ for σ.

1 for i = 1 to m do in parallel
2 sample a multiset ai of size Γ from [n]
3 compute yi ← query(ai)

// The query method guarantees that
yi =

∑
j∈ai

σ(j).

4 for i = 1 to n do
5 calculate Ψi ←

∑m
j=1 1 {i ∈ aj} · yj

6 calculate ∆?
i ←

∑m
j=1 1 {i ∈ aj}

7 sort coordinates of σ̃ in decreasing order by Ψi−∆?
i
k
2

8 set σ̃ to 1 for the first k (sorted) coordinates
9 set σ̃ to 0 for the remaining n− k (sorted) coordinates

On an intuitive level, the MN-Algorithm works as follows.
First, we query m times exactly Γ randomly chosen entries
of the signal in parallel, which yields the graph representation
G. Secondly, we sum up the query results (ya)a∈∂x in the
neighborhood induced by G of each coordinate, counting
multi-edges only once. The sum is then centralized by its
expected value. Finally, those coordinates with a large score
are very likely to have the value 1 under σ. Our first main
theorem states how many parallel queries are required for the
MN-Algorithm to recover the correct σ w.h.p.

Theorem 1. Suppose that 0 < θ < 1, k = nθ, and ε > 0 and
let

mMN(n, θ) = 4

(
1− 1√

e

)
1 +
√
θ

1−
√
θ
k ln(n/k).

If m > (1 + ε)mMN(n, θ), then Algorithm 1 outputs σ w.h.p.
on input m and k and an additive querying method query

1The expression with high probability (w.h.p.) refers to a probability that
tends to 1 as n→ ∞.

that returns the total number of one-entries in a query.

While the MN-algorithm takes k as an input, the proof
reveals that prior knowledge of k is not required in detail.
More precisely, a lower bound on k suffices, as in this
case enough queries are conducted and the design of G is
independent from k. Observe that one additional parallel query
on all entries reveals the exact value of k immediately without
increasing m asymptotically and therefore the only depen-
dence on k in Algorithm 1 (Line 7) can be easily removed by
this one additional query. Beside not being strictly dependent
on k, a main novelty of the MN-algorithm is its greedy
fashion, providing a straightforward approach compared to the
technically challenging algorithms presented in [18], [19].

Parallelized Reconstruction. Observe that our reconstruc-
tion algorithm, apart from sampling the test design and per-
forming all queries in parallel, is specified in a sequential
fashion. This emphasizes the local structure of the recon-
struction algorithm. In the context of a parallel computation
we observe that our algorithm can be readily parallelized.
When individual queries can be conducted much faster, this
further reduces the overall running time of our approach. Such
improved reconstruction algorithms can be used in the context
of machine learning, see, e.g., [33] for an application.

Recall that our test design is described by a random bipartite
graph G and let M = M(G) = (mij) ∈ {0, 1}n×m be the
unweighted biadjacency matrix of G. Intuitively, the entries
of M are those values that are summed up in Line 6 of
Algorithm 1. It follows that the Ψi and ∆?

i vectors are matrix-
vector products ∆∗ = M1 and Ψ = My where 1 = (1, . . . , 1)
is the all-one-vector and y is the query result vector. The sums
computed in Lines 4 to 6 of Algorithm 1 can therefore be
expressed in terms of two matrix-vector products for which
efficient parallelizations are known. Finally, in Lines 7 to 9
of Algorithm 1 the (coordinates of) the resulting vector are
sorted. See [28] for a rather recent survey (with a focus on
but not limited to GPUs) on parallel sorting algorithms.

Information-Theoretic Results. We prove that in the sub-
linear regime where k = nθ for some θ ∈ (0, 1) it is possible
to reconstruct σ from (G,y) with high probability with no
more than (1 + ε)mBPD

para parallel queries for some arbitrarily
small ε > 0. More precisely, we show that there is, with high
probability, no second input vector τ ∈ {0, 1}n leading to the
same sequence of query results.

Theorem 2. Suppose that 0 < θ < 1, k = nθ, and ε > 0 and
let

mBPD
para = 2

k ln(n/k)

ln k
= 2

1− θ
θ

k.

If m > (1+ε)mBPD
para , σ can be computed from G and y w.h.p.

Our result reduces the previously known upper bound of
Grebinski and Kucherov [17] by a factor of two and we
provide the missing counter part of (2) which establishes the
existence of a phase-transition at mBPD

para for parallel designs.
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D. Discussion

Our results extend information-theoretic results of Alaoui
et al. [1] from the linear regime to the sublinear regime. For
θ → 1, our threshold of Theorem 1 turns out to converge
towards the threshold of [1]. The study of the sublinear regime
is inspired by studies of the compressed sensing problem with
a sparse underlying signal [3]. In the special case of the
binary pooled data problem, those studies were initiated by
[19]. The sparse regime is indeed interesting in real-world
applications, with examples including epidemiology where
Heaps law models the early spread of pandemics [5], [31] or
the detection of rare features in image classification in machine
learning [20]. The relevance of the sublinear regime can be
seen in the following example. Suppose a screening for HIV
is conducted. Out of about 67,220,000 residents of the UK,
105,200 are known to be infected with the HI virus. Hence, by
screening n = 10.000 random probes, we expect 16 positive
entries in the signal corresponding to the infection status. Thus,
the choice θ = 0.3 describes the situation quite well.

It is not surprising that also similar problems have been
recently analyzed in the sublinear regime. By now, a vast body
of related literature exists (see, e.g., the survey by Aldridge
et al. [2]). Interestingly, for the (presumably more difficult)
variant in which a query only returns the information whether
at least one non-zero entry was found, a very sophisticated
efficient algorithm is known for θ ≤ ln 2/(1 + ln 2) ≈ 0.409
which requires mGT ∼ ln−1(2)k ln n

k parallel queries [9].
Thus, dropping most of the available information and using
this approach outperforms not only the simple greedy approach
discussed in this paper for small values of θ, but also the quite
involved algorithms by Karimi et al. [18], [19]. This result is
of fundamental theoretical interest, since it solves an open
complexity theoretical question. Nevertheless, their proposed
algorithm appears to be of rather limited interest for practical
applications, as it requires, e.g., that

√
ln lnn is large. This is

in contrast to our simple greedy scheme, which our simulations
have shown to work well for real-world input sizes.

As in state-of-the art designs for similar reconstruction
problems [2], [9], we allow a specific entry to be included
multiple times in one query. While this seems counter-intuitive
in the first place, it does not affect practicability of the
proposed design.

II. MODEL AND NOTATION

In this section we formally introduce the pooling design.
As before, σ ∈ {0, 1}n is the ground truth chosen uniformly
at random from all 0 − 1 vectors of length n with exactly
k non-zero entries, where k = nθ for some θ ∈ (0, 1).
We use G = G(n,m,∆) to denote the random bipartite
multi-graph that models the pooling design, where m de-
notes the total number of queries and ∆ = {∆1, . . . ,∆n}
describes the number of queries each individual participates
in. Observe that ∆i ∼ Bin(mn/2, 1/n). Similarly, we let
∆? = {∆?

1, . . . ,∆
?
n} denote the number of distinct queries

with expected value E [∆?
i ] = (1 − exp(−1/2))m. We let

the vector y ∈ {0, . . . ,Γ}m denote the sequence of query

results. When we refer to any other input vector than σ,
we simply write σ for the input vector and y = y(G, σ)
for the corresponding results’ vector. Additionally, we write
V = {x1, . . . , xn} for the set of the n entries of σ and let
V0 = {xi ∈ V : σ(i) = 0} and V1 = V \ V0 be the set of
entries with value 0 and 1, respectively. For xi ∈ V , we write
∂xi for the multiset of queries aj in which xi is contained.
Similarly, we write ∂?xi for the set of distinct such queries.
Analogously, for a query ai, we denote by ∂ai the multiset of
entries that are contained.

Recall that in our model every query contains exactly
Γ = n/2 entries, and those entries are assigned uniformly
at random with replacement. If a one-entry xi participates in
a query aj more than once, it increases yj multiple times. For
each xi ∈ V , we let Ψi be the sum of its query results for
distinct queries it belongs to. That is, even if the entry appears
more than once in a query and thus contributes to the result
multiple times, this query’s result contributes to Ψi only once.
Of course, the value of xi under σ has a significant impact on
this sum, increasing it by ∆i, if xi is non-zero. To account
for this effect in our analysis, we introduce a second variable
Φi that sums all the query results in which xi is contained
and excludes the impact of xi. Formally, for any configuration
σ ∈ {0, 1}n we define

Ψi(σ) =
∑

j∈∂?xi

yaj and Φi(σ) = Ψi(σ)− 1{σ(i) = 1}∆i

and let Ψ = (Ψ1, . . . ,Ψn) and Φ = (Φ1, . . . ,Φn). When we
consider a specific instance (G,y), we will write Ψi = Ψi(σ)
and Φi = Φi(σ) for the sake of brevity. Notably, while Ψi

is known to the observer or an algorithm instantly from the
queries, Φi is not, since the ground truth σ itself is unknown.

To express the number m of queries conducted, we let
c(n) > 0 denote a positive function from N to R+ such that

m = c(n)k
ln(n/k)

ln k
.

While it turns out that c(n) = Θ(1) suffices in the analysis
of the information-theoretic bound, we will see that the
performance guarantee of the MN-algorithm requires c(n) to
scale as Θ(lnn). Finally, we define a high probability event R
that we will condition on as explained in the teacher-student
model. Let R be the event that, for all i ∈ [n], we have

∆i =
m

2
+O

(√
m lnn

)

and ∆?
i = (1− exp (−1/2))m+O

(√
m lnn

)
,

(3)

meaning that the underlying random graph satisfies concentra-
tion properties. The following lemma states that R is indeed
a high probability event.

Lemma 3. If G is constructed according to our pooling
scheme, then P(R) = 1− o(1).

The proof follows from standard concentration results, see
the appendix for the technical details. Since Theorems 1 and 2
only contain w.h.p.-assertions, we can safely condition on R
for the remainder of our analysis.
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III. MN-ALGORITHM

Outline. Recall that Ψi is the sum over all query results
in which the entry xi is contained (multi-edges counted only
once) and ∆?

i is the (random) number of disjoint such queries.
Furthermore, let Ej be the σ−algebra generated by the edges
connected with xj . As already discussed, we get

∆?
i = (1 + o(1)) (1− exp (−1/2))m

w.h.p. Therefore, intuitively spoken, a non-zero entry xi in-
creases the value of Ψi by ∆i = (1 + o(1))m/2, other than
zero-entries. Moreover, by construction of the random bipartite
(multi-)graph G, we get that the second neighborhood of xi
contains Bin (Γ∆?

i , k/n) non-zero entries. Thus we expect

E
[
Ψi −∆?

i

k

2

∣∣∣Ei
]

= 1{σ(i) = 1}∆i.

Therefore, if Ψi −∆?
i
k
2 is called the score of entry xi, we

observe that the scores differ between zero entries and non-
zero entries. The whole proof of the algorithmic performance
boils down to identify a threshold value T (α) = T (n, k, α)
such that, if sufficiently many queries are conducted, all
scores of zero entries are below T (α) while the scores of
all non-zero entries exceed this threshold w.h.p. If we conduct
m = dk ln n

k queries, with d = c(n) ln(k)−1, we get by a
standard application of a Chernoff bound and a union bound
over all k = nθ non-zero entries xi ∈ V1 and, respectively,
n − k = Θ(n) zero-entries xi ∈ V0 that T (α) is a valid
threshold whenever

−(1− θ)α2d

4 (1− exp (−1/2)) (1 + o(1))
+ θ < 0

and
−(1− θ)(1− α)2d

4 (1− exp (−1/2)) (1 + o(1))
+ 1 < 0,

(4)

which will become clear in a second. Optimizing (4) with
respect to α ∈ (0, 1) and plugging d into m = dk ln(n/k)
yields for any ε > 0 the sufficient condition

m ≥ (4 + ε)(1 + o(1)) (1− exp (−1/2))
1 +
√
θ

1−
√
θ
k ln(n/k).

Formal Analysis. Let Aij ∈ N0 denote how often entry
xi appears in query aj and let A = (Aij)i∈[n],j∈[m] be the
adjacency matrix of G. Then the following holds.

Corollary 4. Let 1 ≤ j ≤ n. Given Ej , the random variable

Sj = ψj −∆j =
m∑

i=1

1 {Aij > 0}
(
yj −Aij

)

has distribution Bin

(
∆?
jΓ−∆j ,

k − 1{σ(j) = 1}
n− 1

)
.

Proof. This is an immediate consequence of the model defini-
tion. There are Γ∆?

j−∆j half-edges connected to query-nodes
in the neighborhood of xj that are connected to entry-nodes
xi 6= xj . Each of these half-edges is connected to one of
k − 1 {σ(j) = 1} entry-nodes belonging to an entry of value
1, independently, from the n− 1 remaining entry-nodes.

Now it is possible to immediately infer the expectation of
Sj conditioned on the event R (as defined in (3)). For the
sake of brevity let γ = 1 − exp (−1/2). Given the event R
which guarantees concentration properties of the underlying
graph, we get w.h.p.

E [Sj | Ej ,R] = (1± δ) γkm
2

(5)

δ :=

√
2 lnn√
γmk

= o(1).where

The Chernoff bound allows us to bound Sj as follows.

Lemma 5. Let α ∈ (0, 1) be a constant and m = dk ln n
k .

Then

P (|Sj − E [Sj | Ej ,R]| ≥ (1− α)m/2 | Ej ,R)

≤ exp

(
− (1 + o(1))

(1− α)2d

4γ(1 + o(1))
ln
n

k

)
.

Proof. The Chernoff bound (Lemma 12) directly implies

P (|Sj − E [Sj | Ej ] | Ej ,R| ≥ (1− α)m/2 | R)

≤ exp

(
− (1 + o(1))

(1− α)2m

8E [Sj | Ej ,R]

)

= exp

(
− (1 + o(1))

(1− α)2d

4γ(1 + o(1))
ln(n/k)

)
.

Next we show that, with a suitable choice of a threshold,
the scores of zero- and one-entries are well separated.

Corollary 6. Let ε > 0 be an arbitrary constant. If m ≥
(4 + ε) (1− exp (−1/2)) 1+

√
θ

1−
√
θ
k ln n

k then there exists an α ∈
(0, 1) such that, w.h.p., we have

Sj + ∆j ≥ E [Sj | Ej ,R] + (1− α)m/2

for all xj where σ(j) = 1, and

Sj < E [Sj | Ej ,R] + (1− α)m/2

for all xj where σ(j) = 0.

Proof. Let xj ∈ V1(G). Again, we make use of the concen-
tration properties guaranteed by conditioning on R. Therefore,
we assume that ∆j = m/2 + O(

√
m lnn). Then Lemma 5

ensures that

P (Sj + ∆j ≤ E [Sj | Ej ,R] + (1− α)m/2 | Ej ,R)

≤ exp
(
−α2d/(4γ(1 + o(1))) ln

n

k

)

= exp

(
(θ − 1)α2d

4γ(1 + o(1))
lnn

)
.

Hence, the union bound shows that the first inequality holds
for all k elements of V1(G) w.h.p. if

(θ − 1)α2d

4γ(1 + o(1))
+ θ < 0. (6)
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Analogously, the second inequality holds for all n−k elements
of V0(G) w.h.p. if

P [Sj ≥ E [Sj | Ej ,R] + (1− α)m/2 | Ej ,R]

≤ exp
((

(1− α)2d/(4γ(1 + o(1)))
)

ln
n

k

)

= exp

(
(θ − 1)(1− α)2d

4γ(1 + o(1))
lnn

)
.

Again, the union bound shows that the second inequality holds
w.h.p. if

(θ − 1)(1− α)2d

4γ(1 + o(1))
+ 1 < 0. (7)

Note that the condition in (6) is monotonically decreasing
in α while the condition in (7) is monotonically increasing in
α. Hence the optimal choice of α is the one that makes the
two terms in (6) and (7) equal:

(θ − 1)α2d

4γ(1 + o(1))
+ θ =

(θ − 1)(1− α)2d

4γ(1 + o(1))
+ 1,

which boils down to

α =
d− 4γ(1 + o(1))

2d
.

By putting this solution for α into (6) we get

(θ − 1)(d− 4(γ + o(1))2

16γd+ o(1)
+ θ < 0.

It now suffices to find the minimal d = d(θ) > 0 such that

(θ − 1)(d− 4γ + o(1))2

16γd+ o(1)
+ θ = 0.

Hence, we solve for (positive) d and obtain that Eqs. (6)
and (7) hold w.h.p. provided

d ≥ 4γ · 1 +
√
θ

1−
√
θ

+ o(1),

which matches the assumption in the lemma statement.

We are now ready to formally prove Theorem 1.

Proof of Theorem 1. According to Lemma 3, the event R is a
high-probability event. Corollary 6 then immediately implies
the theorem, together with the definition m = dk ln n

k .

IV. INFORMATION-THEORETIC ACHIEVABILITY

In the following section we prove Theorem 2. Our approach
is based on counting alternative input vectors σ 6= σ that yield
the same sequence of query results as the ground truth σ.
Note that the underlying techniques are regularly employed
for random constraint satisfaction problems [10].

We start with an outline of the proof. Let Sk(G,y) be the
set of all vectors σ ∈ {0, 1}n of Hamming weight k such that

yai = |{xj ∈ ∂ai : σ(j) = 1}| for all i ∈ [m].

This means, we fix m queries a1, . . . , am and let Sk(G,y)
be the set of all vectors σ ∈ {0, 1}n with exactly k ones that
are consistent with the query results. Let now Zk(G,y) =

|Sk(G,y)|. We need to prove that Zk(G,y) = 1 w.h.p. if the
number of queries m exceeds mBPD

para . Note that we can always
reconstruct σ exactly in this case via an exhaustive search
(recall that from an information-theoretic point of view the
computational power is assumed to be unlimited).

In our analysis, it turns out that it is much more convenient
to study Zk,`(G,y), the number of alternative vectors that are
consistent with the query results and have a so-called overlap
of ` with σ. The overlap is the number of one-entries under
σ that are also present in an alternative vector σ. Formally,
we define

Zk,`(G,y) = |{σ ∈ Sk(G,y) : σ 6= σ, 〈σ, σ〉 = `}| .

It now suffices to prove that
∑k−1
`=0 Zk,`(G,y) = 0 for

m ≥ (1 + ε)mBPD
para w.h.p. To this end, two separate arguments

are needed. First, we show in Proposition 7 via a first moment
argument that no second satisfying input vector σ can exist
with a small overlap with σ. Secondly, we employ in Propo-
sition 11 the classical coupon collector argument to show that a
second satisfying configuration cannot exist for large overlaps.
Intuitively, this means that an entry that is flipped from zero
under σ to one under an alternative configuration σ initiates
a cascade of other changes to maintain the observed query
results. The full technical proofs for the following statements
can be found in the appendix.

Proposition 7. Let ε > 0, 0 < θ < 1 and assume that m >
(1 + ε)mBPD

para . W.h.p., we have

k(1−exp(−1/2))∑

`=0

Zk,`(G,y) = 0.

We now sketch the proof of Proposition 7. By Markov’s
inequality it suffices to show that E[Zk,`(G,y)] → 0 fast
enough for all ` with 0 ≤ ` < k − (1− exp(−1/2)) ln k if
m ≥ (1 + ε)mBPD

para for some ε > 0. For E[Zk,`(G,y)] we
compute

E[Zk,`(G,y)] ≤
(
k

`

)(
n− k
k − `

) m∏

i=1

yai∑

j=1

((
Γ

j, j,Γ− 2j

)

·
(

(1− `/k)
k

n

)2j

·
(

1− 2(1− `/k)
k

n

)Γ−2j
)
.

The combinatorial meaning is the following: The binomial
coefficients count the number of possible input vectors σ 6= σ
of overlap ` with σ. The subsequent term measures the
probability that a specific such σ yields the same results on
queries a1, . . . , am as σ. To see this, we divide the entries
x1, . . . , xn into three categories. The first category contains
those entries that exhibit the same value under σ and σ. The
second and third category feature those entries that are set to
one under σ and to zero under σ and vice versa. Recall that
` determines the number of xi that are set to one under both
vectors σ and σ. The probability for a specific entry to be in
the first category is 1− 2(1− `/k)k/n, while the probability
for a specific entry to be in the second or third categories
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is (1 − `/k)k/n each. The key observation is that the query
results are the same between σ and σ if and only if the number
of entries in the second category is identical to the number of
entries in the third category. We compute (a bound on) the sum
over the number of entries which are flipped. Simplifying the
term and conditioning on the high probability event R yields
the following lemma.

Lemma 8. For every 0 ≤ ` ≤ k − (1− exp(−1/2)) ln k and
a random variable X ∼ Bin≥1(Γ, 2(1− `/k)k/n), we have

E[Zk,`] ≤ (1 +O(1))E[Zk,`(G,y) | R]

≤ (1 +O(1))

(
k

`

)(
n− k
k − `

)(
1√
2π

E
[

1√
X

])m
.

Here, Bin≥i(n, p) is the binomial distribution with parameters
n and p where we condition that its outcome is at least i.

Proof. The product of the two binomial coefficients simply
accounts for the number of vectors σ that have overlap ` with
σ. Let S denote the event that one specific σ ∈ {0, 1}n that
has overlap ` with σ belongs to Sk,`(G,y). It suffices to show
for X ∼ Bin≥1(Γ, 2(1− `/k)k/n) that

P[S | R] ≤ (1 +O(1))

(
1√
2π

E
[

1√
X

])m
. (8)

The remainder of the proof is dedicated to showing Eq. (8).
By the design G, each query contains Γ = n/2 entries

chosen uniformly at random, and we observe that all query
results are statistically independent of each other. Therefore,
we need only to determine the probability that for a specific σ
and a specific query ai the result is consistent with the result
under σ such that yi = yi. Given the overlap `, we know
for σ drawn uniformly at random that P [σi = σi = 1] = `/n,
P [σi = σi = 0] = (n − 2k + `)/n and finally P [σi 6= σi] =
(k − `)/n holds for all xi, i = 1 . . . n. We get

P[S | R] ≤
m∏

i=1

yi∑

j=1

((
Γ

j, j,Γ− 2j

)
·
(

(1− `/k)
k

n

)2j

·
(

1− 2(1− `/k)
k

n

)Γ−2j
)

≤
(

Γ/2∑

j=1

(
Γ

2j

)(
2(1− `/k)

k

n

)2j

·
(

1− 2(1− `/k)
k

n

)Γ−2j (
2j

j

)
2−2j

)m
. (9)

The last two components of (9) describe the probability that
a one-dimensional simple random walk returns to its original
position after 2j steps, which is by Lemma 14 equal to
(1+O(j−1))/

√
πj. The former term describes the probability

that a Bin≥1(Γ, 2(1−`/k)k/n)) random variable X takes the
value 2j. For ` ≤ k− (1− exp(−1/2)) ln k the expectation of
X given G is at least of order ln k such that the asymptotic
description of the random walk return probability is feasible.
Note that if ` gets closer to k, the expectation of X gets

finite, s.t. the random walk approximation is not feasible
anymore. Therefore, using Lemma 15, we can, as long as
Γ(2(1− `/k)k/n) = Ω(lnn), simplify (9) to

P[S | R] ≤ (1 +O(1))

(
Γ/2∑

j=1

(
Γ

2j

)(
2(1− `/k)

k

n

)2j

·
(

1− 2(1− `/k)
k

n

)Γ−2j
1√
πj

)m

= (1 +O(1))

(
1

2

Γ∑

j=1

(
Γ

j

)(
2(1− `/k)

k

n

)j

·
(

1− 2(1− `/k)
k

n

)Γ−j
1√
πj/2

)m

= (1 +O(1))

(
1√
2π

E
[

1√
X

])m

for large n� 1 which implies Lemma 8.

While the expression given through Lemma 8 might look
hard to work with, it can be simplified using standard asymp-
totic arguments as follows.

Lemma 9. For every 0 ≤ ` ≤ k − (1− exp(−1/2)) ln k,
m = ck ln(n/k)

ln(k) and n� 1, we have

1

n
ln (E[Zk,`(G,y) | R])

≤ (1 + o(1))

(
k

n
H

(
`

k

)
+

(
1− k

n

)
H

(
k − `
n− k

)

− ck/n ln(n/k)

2 ln k
ln

(
2π

(
1− `

k

)
k

))
.

The key is to choose c = c(n) such that Zk,`(G,y) →
0 for every ` ≤ k − (1− exp(−1/2)) ln k when n → ∞.
Asymptotically, ln (E[Zk,`(G,y)]/n) takes its maximum at
` = Θ

(
k2/n

)
. Therefore, the r.h.s. of (9) becomes negative

if and only if the number of queries m parametrized by c
exceeds mBPD

para . This is formalized in the following lemma and
concludes the proof of Proposition 7.

Lemma 10. For every 0 ≤ ` ≤ k − (1− exp(−1/2)) ln k,
0 < θ < 1 and ε > 0 it holds if m ≥ (1 + ε)mBPD

para that

1

n
lnE[Zk,`(G,y) | R] < 0.

Proof of Proposition 7. The proposition is a direct conse-
quence of Lemmas 8 to 10 and Markov’s inequality.

While we could already establish that there are w.h.p. no
feasible vectors σ ∈ {0, 1}n that have a small overlap with the
ground truth σ, we still need to ensure that there are w.h.p.
no feasible vectors that have a large overlap with σ. Indeed,
we exclude such vectors with the next proposition.

Proposition 11. Let ε > 0 and 0 < θ ≤ 1 and assume that
m > (1 + ε)mBPD

para . Given R we have Zk,`(G,y) = 0 for all
k − (1− exp(−1/2)) ln k < ` < k w.h.p.
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The proof is fundamentally easy as it follows the classical
coupon collector argument. However, it needs some technical
attention. If we consider a vector σ of length n different from
σ with the same Hamming weight k, at least one entry that is
set to one under σ is labeled zero under σ. Given the event R,
this entry is part of at least ∆?

i > m/4 different queries whose
results all change by at least −1, depending on how often the
entry participates. To compensate for these changes, we need
to find x1 . . . x` that are zero under σ and one under σ such
that their joint neighborhood is a super-set of the changed
queries. We show that this only happens with probability o(1)
following a classical balls-into-bins argument. We now give
the full technical proof.

Proof of Proposition 11. Assume that σ ∈ {0, 1}n is a second
vector that is consistent with the query results y. By definition,
there is an index j ∈ {1, . . . , n} for which σ(j) = 1 but
σ(j) = 0. By Lemma 3 the size of ∂?xj is at least

∆?
i ≥ (1− exp(−1/2))m−O

(√
m lnn

)

and for any query al ∈ ∂xj we have |yl(σ)− yl(σ)| ≥ 1. To
guarantee that y(σ) = y(σ) it is necessary to identify a set of
h entries X for which σ(i) = 1−σ(i) for all i ∈ X with the
property that X ⊇ ∂xj .

By construction of G, the number of queries in ∂?xj
that do not contain any of the entries in X , i.e., H =
|{a ∈ ∂?xj : X ∩ ∂a = ∅}|, can be coupled with the number
of empty bins in a balls-into-bins experiment as follows. Given
G, throw b =

∑h
i=1 deg(xi) balls into deg(xi) bins. Observe

that

deg(xi) ≥ (1− exp(−1/2))m−O
(√
m lnn

)

and denote by H ′ the number of empty bins in this ex-
periment. Since for any xi the deg(xi) edges are not only
distributed over the (1 − o(1)) (1− exp(−1/2))m query-
nodes in ∂xj but over all m query-nodes in G, we get

P [H = 0 | R] ≤ P [H ′ = 0 | R] . (10)

We condition on R and therefore b = (1 + o(1))hm/2.
Furthermore, set L = ln(m)h−1 and let γ = (1−exp(−1/2)).
Then the r.h.s. of (10) becomes

P [H ′ = 0 | R] ≤
(

1−
(

1− 1

γm

)hm/2)γm

= (1 + o(1)) exp
(
−γm1−L/(2γ)

)
.

Therefore, if L < 2γ, or equivalently,

h < 2γ ln (m) ∼ 2γ (ln k + ln ln k) ,

P [H ′ = 0 | R] ≤ n−ω(1).we have

Thus, a Hamming distance of at least one between σ and
σ immediately implies that the Hamming distance is at least
2γ (ln k + ln ln k) with probability 1−n−ω(1). A union bound
over all k one-entries implies the proposition.

Proof of Theorem 2. The theorem follows directly from
Propositions 7 and 11.
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Fig. 2. The required number of queries until σ can be exactly reconstructed
for different vector lengths n and θ regimes. For each value of n, 100
simulations were carried out independently.

V. EMPIRICAL ANALYSIS AND SIMULATION RESULTS

In this section we present simulation results for the MN-
Algorithm (Algorithm 1). Our simulation software is im-
plemented in the C++ programming language. It performs
a faithful simulation of the parallel system. To generate
the random structures, we resort to the Mersenne Twister
mt19937_64 as provided by the C++11 <random> library.
All of our simulations have been carried out on machines
equipped with 20 Intel(R) Xeon(R) E5-2630 v4 CPU cores,
backed by 128GiB memory, and running the linux 5.11 kernel.
All required code to reproduce our figures, including the
gnuplot scripts and various helper tools, can be obtained from
our public github repository.

In our first empirical result in Fig. 2 we analyze the number
of queries required to reconstruct σ for n ∈ [102, 106] and
different values of θ. The dotted lines show our theoretical
asymptotic bounds. Note that the discontinuities in the theoret-
ical bound stem from rounding the number of one-entries k to
the closest integer. We remark that our simulation results align
well with the theoretical predictions for larger values of n. For
smaller values of n, our theoretical results are too optimistic:
the lower-order term hidden in the o(1) in Eq. (4) scales as
Θ
(√

lnn
k

)
, and while this expression decreases polynomially

fast in n, it is far from vanishing for small values of n and θ.
In Figs. 3 and 4 we analyze the success probability for exact

reconstruction of σ and the number of correctly identified
one-entries. For different numbers of queries we conducted
100 independent simulation runs for n = 103 and n = 104

and different values of θ. The dashed lines show the phase-
transitions predicted by Theorem 1. The data in Fig. 4 indicate
that all but a small fraction of one-entries are correctly
detected, even if the exact reconstruction of σ is still quite
unlikely according to Fig. 3. Overall, the implementation hints
at the practical usability of the MN-Algorithm, even for small
values of n.
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Fig. 3. The plot shows the rate of successful recovery of σ among 100 independent simulation runs over the number of queries m for different values of θ
and n = 103 (left) and n = 104 (right).
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Fig. 4. The plots show the overlap – the fraction of correctly classified one-entries – among 100 independent simulation runs over the numbers of queries
m for different values of θ and n = 103 (left) and n = 104 (right).

Remark. The formal proof of the algorithmic bound directly
gives an insight about the convergence speed and thus about
the expected performance of the MN-Algorithm for finite n:
we can compute that the MN-Algorithm requires an additional
multiplicative factor of at least

(
1 +
√

2 lnn (4 (1− exp (−1/2))mk)
−1/2

)

queries in addition to the asymptotic analysis for n → ∞.
This explains the (slight) deviation of the theoretical and the
empirical results for small values of n. See the proof of
Corollary 6 in Section III for the rigorous analysis.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper we analyze the binary pooled data problem
with additive queries both from an information-theoretic and
an algorithmic point of view. Our first result is a simple
greedy reconstruction scheme that performs well even close
to the information-theoretic boundaries. Our main concern
is the design of a reconstruction scheme that works well
when all queries are conducted in parallel. In a series of
simulations we show that this scheme is applicable to a large
range of parameters that can be expected from real-world
instances. For example, our data indicate that on average we

correctly identify 99% of the one-entries when conducting
only 220 queries for n = 1000 and θ = 0.3. Our second
result sheds light on the information-theoretic achievability
threshold, where our theorem closes the open gap between
the results of [11] and [17] by establishing a sharp phase
transition.

An immediate open problem is to close the gap between
the algorithmic and the information theoretic threshold. Fur-
thermore, there are similar reconstruction problems in which
parallel conductance of all queries is crucial. As discussed
in the introduction, group testing is such a prime example
which was recently fully understood using similar techniques
as in the present work. A less well understood reconstruction
problem is threshold group testing [8], [22], in which a query
outputs 1 if and only if the number of positive entries exceeds
a threshold T > 0. It is very likely that the techniques of
the present contribution can be applied to threshold group
testing as well, as they were previously applied to various
reconstruction problems, but the tailor-made application re-
mains a highly non-trivial challenge. Another exciting avenue
for future research are partially parallelizable designs. Suppose
that, for instance, L processing units can be used to evaluate
queries in parallel. Then it is a natural requirement for a design

223



to always conduct up to L queries in parallel. An interesting
open question then is to analyze the trade-offs that arise in
such partially parallelized schemes. In particular, there might
be designs providing efficient reconstruction algorithms that
outperform the completely parallel design studied in this paper.
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APPENDIX

We start this appendix with standard concentration bounds
that we use throughout this paper.

Lemma 12 ([30]). Let X∼Bin(n,p) and δ∈(0,1).

P [X>(1 + δ)np]≤exp
(
−npδ2/(2 + δ)

)
Then

P [X<(1− δ)np]≤exp
(
−npδ2/2

)
.and

For binomial random variables, the Jensen gap provides
good approximations.

Lemma 13 (follows from Eq. (1.1) of [16]). Let Bin≥i(n,p)
be the binomial distribution with parameters n and p where we
condition that its outcome is at least i. Let X∼Binx≥1(n,p)
with np→∞. Then, for `∈{1/2,1}, we have

E
[
X−`

]
=
(
1 + o(n−1)

)
E[X]

−`
.

The following lemmas are results on random walks.

Lemma 14 ([30], Section 1.5). The probability that a simple
random walk on Z with 2j steps will end at its original
position is given by (πj)−1/2 +O(j−3/2).

Lemma 15. The following asymptotic equivalence holds for
every 0<p=p(n)<1 when np→∞.

n/2∑

j=1

(
n

2j

)
p2j(1− p)n−2jj−1/2

=2−1/2
n∑

j=1

(
n

j

)
pj(1− p)n−jj−1/2 +O((np)−1)
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Proof. Let X∼Bin≥1(n,p) and define aj=P(X=j)/
√
j/2

for j=1 . . .n. Then

aj+1/aj=(p/(1− p))
(
j/(j+ 1)3

)1/2
(n− j)

is larger than 1 up to j? ∈ {b(n+ 1)pc ,b(n+ 1)p− 1c},
depending on n being even or odd, and strictly less than 1
for j=j?+1, ...,n. Furthermore, aj=o(1) for every j. Define
j′ as the largest even integer s.t. j′≤j?. Then

n/2∑

j=1

a2j≥
1

2



j′/2∑

j=1

a2j + a2j−1 +

n/2−1∑

j=j′/2+1

a2j + a2j+1




=


1

2

n∑

j=1

aj


+O((np)−2),

The upper bound follows similarly, and together they imply
the lemma.

We now prove the concentration results for the random
regular pooling design.

Proof of Lemma 3. Fix an index i∈ [n]. From the construction
ofG it follows that ∆i is distributed as Bin(mn/2,1/n). Then
Lemma 12 implies

P
(
∆i>m/2 +O

(√
m ln2n

))
=n−ω(1).

Furthermore, the probability that an entry xi is contained in a
specific query aj is given by

p=1−
(
1−n−1

)Γ
=
(

1 +n−Ω(1)
)(

1− 1/
√
e
)
.

Since queries select their participating entries independently of
each other, we observe that ∆?

i ∼Bin(m,p). Thus, Lemma 12
implies

P
(
∆?
i >
(
1− 1/

√
e
)
m+O

(√
m lnn

))
=n−ω(1).

The union bound over all n entries concludes the proof.

Proof of Lemma 9. Let X∼Bin≥1(Γ,2(1− `/k)k/n). Then

E[Zk,`(G,y) |R]≤O(1) ·
(
k

`

)(
n− k
k− `

)(
1

2πE[X]

)m
2

(11)

by Lemmas 8 and 13. We use the well known fact [30] that
as n→∞ we have for p∈(0,1) that

n−1 ln

(
n

np

)
→H(p) :=−p ln(p)− (1− p) ln(1− p).

We apply the ln(·) to (11) and divide it by n. Then we calculate
using m=ck ln(n/k) ln−1(k)

n−1 ln(E [Zk,`(G,y) |R])

≤(1 + o(1))

(
k

n
H

(
`

k

)
+

(
1− k

n

)
H

(
k− `
n− k

)

− ck/n ln(n/k)

2 lnk
ln(2πk (1− `/k))

)
.

Proof of Lemma 10. Let γ=1− exp(−1/2) and recall

m=ck ln
(n
k

)
/ lnk=c

1− θ
θ

k and 0≤`≤k− γ lnk (12)

for a constant c>0. Then define fn,k : [0,k− γ lnk]→R as

` 7→
(
k

n
H

(
`

k

)
+

(
1− k

n

)
H

(
k− `
n− k

)

−ck/n ln(n/k)

2 lnk
ln(2π(1− `/k)k)

)
(13)

and assume, as usual, 0ln0=0. By Lemma 9 we get

n−1 ln(E [Zk,`(G,y) |G])≤(1 + o(1))fn,k(`).

Expanding the entropy yields

fn,k(`)=
1

n

(
− ` ln

(
`

k

)
− (k− `) ln

(
1− `

k

)

− (k− `) ln
(
k− `
n− k

)
− (n− 2k+ `) ln

(
1− k− `

n− k

)

+
ck ln(k/n)

2 lnk
ln

(
2πk

(
1− `

k

)))
,

f ′
n,k(`)=

1

n

(
− ln

(
`

k

)
+ ln

(
1− `

k

)
+ ln

(
k− `
n− k

)

− ln

(
1− k− `

n− k

)
− ck ln(k/n)

2(k− `) lnk

)
, and

f ′′
n,k(`)=

1

n

(
− 1

`
− 2

k− ` −
1

n− 2k+ `
− ck ln(k/n)

2 lnk(k− `)2

)
.

If `=o(k) we get
∣∣∣ 1
k−`

(
2− ck(1−θ)

2θ(k−`)

)∣∣∣� 1
` and therefore

nf ′′n,k(`)=−1

`
− 1

n− 2k+ `
− 1

k− `

(
2− ck(1− θ)

2θ(k− `)

)
<0.

This shows that f ′n,k is monotonically decreasing in ` for large
enough n. Furthermore, f ′n,k is continuous on (0,k− γ lnk].
Let c̃>0 be an arbitrary constant. Then

nf ′n,k

(
c̃
k2

n

)
=− ln(c̃) +

c(1− θ)
θ

+ o(1).

This implies that there are 0<c̃1<c̃2<∞ s.t.

nf ′n,k

(
c̃1
k2

n

)
>0 and nf ′

(
c̃2
k2

n

)
<0.

By the intermediate value theorem it follows that there is ĉ∈
[c̃1, c̃2] s.t. ĉk

2

n is the unique maximizer of fn,k for `=o(k).
Finally, by putting this value into Eq. (13) we obtain that the
highest order terms satisfy

nfn,k

(
ĉ
k2

n

)
<0⇐⇒c>−2

H(k/n)

k/n ln(k/n)
=2 + o(1). (14)

Furthermore, if k− γ lnk≥`=Θ(k), we get

nfn,k(`)=−c(1− θ)
2θ

k ln(k) +O(k) (15)

by definition, which is negative. Therefore, the lemma follows
from Eqs. (12), (14) and (15).
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