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       Affi  nity maturation of B cells occurs within the 
microenvironment of germinal centers (GCs), 
and this localized immune response gives rise to 
long-lived antibody-secreting plasma and mem-
ory cells. In the course of the GC reaction, a 
specifi c spatial cell organization is observed with 
two main compartments: the light zone and the 
dark zone ( 1 ). In the dark zone, B cells prolifer-
ate and undergo somatic hypermutation of their 
immunoglobulin genes ( 2 – 4 ). In the light zone, 
follicular DCs (FDCs) retain antigen in the form 
of immune complexes. B cells in the light zone 
engage these immune complexes held on FDCs 
and compete for survival signals provided by 
both FDCs ( 5 ) and T helper cells ( 6 ), which are 
required for their diff erentiation into plasma 
and memory cells ( 7 – 8 ). 

 Intravital two-photon microscopy allows 
the visualization of fl uorescently labeled cells as 
they move through living tissue. This minimally 
invasive imaging technique generates time-re-
solved data of cell shape, motility, and contact 
( 9 – 11 ). Recently, data obtained with intravital 

microscopy have been published by three groups 
detailing the dynamic features of lymphocytes 
in GCs during the process of affi  nity maturation 
( 12 – 14 ). These results have the potential to un-
ravel the functional implications of the peculiar 
migratory behavior and cellular interactions of 
GC B cells, as well as the specifi c spatial orga-
nization of the GC into two zones. Both mi-
gration and zoning are connected problems and 
subject to long-standing speculation and con-
fl icting conclusions ( 15 – 19 ). 

 All three groups ( 12 – 14 ) agree on the inter-
pretation that B cell motility follows random 
walk migration with a directional persistence 
time of  � 1 min. This means that during the per-
sistence time, a cell migrates in one direction 
before changing randomly to a new migration 
direction. Furthermore, all three groups agree 
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 Recently, two-photon imaging has allowed intravital tracking of lymphocyte migration and 

cellular interactions during germinal center (GC) reactions. The implications of two-photon 

measurements obtained by several investigators are currently the subject of controversy. 

With the help of two mathematical approaches, we reanalyze these data. It is shown that 

the measured lymphocyte migration frequency between the dark and the light zone is 

quantitatively explained by persistent random walk of lymphocytes. The cell motility data 

imply a fast intermixture of cells within the whole GC in approximately 3 h, and this does 

not allow for maintenance of dark and light zones. The model predicts that chemotaxis is 

active in GCs to maintain GC zoning and demonstrates that chemotaxis is consistent with 

two-photon lymphocyte motility data. However, the model also predicts that the chemokine 

sensitivity is quickly down-regulated. On the basis of these fi ndings, we formulate a novel 

GC lymphocyte migration model and propose its verifi cation by new two-photon experi-

ments that combine the measurement of B cell migration with that of specifi c chemokine 

receptor expression levels. In addition, we discuss some statistical limitations for the inter-

pretation of two-photon cell motility measurements in general. 
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captures the migration and interaction of individual GC cells 
and permits analysis of affi  nity maturation during the GC reac-
tion. In addition, the spatiotemporal GC organization, contact 
times between cells, and other dynamic quantities can be as-
sessed. Application of this approach reveals that the GC zones, 
although not strictly required for affi  nity maturation, are only 
observed if B cells are sensitive to the soluble factors CXCL12 
and CXCL13 ( 23 ). Furthermore, this model predicts that a 
down-regulation in sensitivity occurs for these chemokines. 
Collectively, our simulations reconcile an interesting contro-
versy, demonstrating that two-photon motility data that sup-
port random walk migration turn out to be compatible with 
transient sensitivity to chemokines. 

  RESULTS  

 Statistical model analysis 

 This approach involves a three-dimensional reconstruction of 
B cell tracks that relies on the speed and turning angle distribu-
tions obtained by two-photon imaging. Statistical analysis of 
B cell tracks allows one to test whether the observed B cell 
motility and inter-zonal migration frequency can be recon-
ciled with the hypothesis of a random walk with directional 
persistence time. Details of the statistical model and the fi tting 
procedure, which is similar to the approach used in a recent 
study ( 26 ), are described in the Materials and methods and the 
Supplemental materials and methods (available at http://www
.jem.org/cgi/content/full/jem.20081160/DC1). 

 From the simulation of 10 5  cell tracks of homogeneously 
distributed B cells within a spherical GC of radius R = 160  μ m, 
we compute the motility coeffi  cient M =  ‹ | r  i (t)| ›  2 /6t from 
the time-dependent mean displacement  ‹ | r  i (t)| › , where  r  i (t) 
denotes the position of the  i th cell as a function of time (t) 
and the average is taken over all cells). The resulting time 
dependence of the mean displacement is shown in  Fig. 1 A  
(red line) and compared with experimental data for B cells in 
WT mice (green line).  When this is performed for B cells from 
WT versus CXCL13 knockout (KO) mice, we obtain motil-
ity coeffi  cients of M = 21.4  μ m 2 /min and M = 8.5  μ m 2 /min 
for WT and CXCL13 KO mice, respectively. These values 
are in agreement with the experimentally determined motility 
coeffi  cients of M = 21.4  ±  4.2  μ m 2 /min and M = 8.5  ±  3.5 
 μ m 2 /min, respectively, reported by Allen et al. ( 12 ). Impor-
tantly, this agreement is found for persistence times of  � t p  = 
1.24 min and  � t p  = 1.05 min, respectively. We conclude from 
the consistent description of the motility data ( Fig. 1 A  and 
Figs. S1 – S3, available at http://www.jem.org/cgi/content/
full/jem.20081160/DC1, for WT mice) that the B cell motil-
ity in GCs can be interpreted as random walk migration with a 
directional persistence time. The  � t p  for B cells in WT versus 
CXCL13 KO mice is 20% longer and refl ects the impact of 
chemotactic signaling on persistence time. 

 Experimental frequency of trans-zone migration 

is compatible with random walk 

 The experimental two-photon data consistently report that 
5 – 10% of B cells migrate between the GC zones per hour 

that during measurements of 1 h, 5 – 10% of the observed 
B cells will have migrated from one zone to the other. As two-
photon data are largely descriptive, the general conclusions 
drawn from these data for a GC migration model of B cells, 
however, are quite diff erent ( 18, 19 ). Three migration models 
have been proposed, the widely accepted cyclic reentry 
model ( 20 – 22 ), the intra-zonal circulation model ( 14, 18 ), 
and the one-way migration model ( 17 ). 

 The cyclic reentry model assumes that a functional depen-
dence exists between the light and the dark zone. According to 
this view, B cells proliferate and mutate in the dark zone and 
then follow a gradient provided by the chemokine CXCL13 
to the light zone, where they compete for FDC- and T cell –
 derived survival signals. The successful B cell clones emerging 
from this selection process may either diff erentiate into output 
cells (plasma and memory cells) or migrate back to the dark 
zone attracted by the chemokine CXCL12 to reproliferate 
( 23 ). Despite the measured motility data suggesting persistent 
random walk, the results of two experimental groups are con-
sidered to be in accordance with this chemokine-driven mi-
gration model ( 12, 13 ). 

 The intra-zonal circulation model ( 14, 18 ) views the light 
and the dark zones as functionally independent zones. Each 
B cell primarily circulates only within one of the two zones. 
The exchange of cells between the two zones occurs rarely 
and is considered to be of minor importance. 

 The third model, referred to as the one-way migration 
model ( 17 ), suggests that cells perform a persistent random 
walk and that reentry of selected B cells from the light zone 
to the dark zone is neither necessary for reproliferation nor 
are these cells actively moving toward the dark zone. As a 
consequence, selected B cells also reproliferate in the light 
zone and migration between the zones occurs only by chance 
as a result of random migration. 

 We use a mathematical approach to clarify the interpreta-
tion of intravital data. Although mathematical analyses of two-
photon data have proven to be conclusive ( 24 – 26 ), suitable 
spatially resolved mathematical analyses of these data are lim-
ited. In this article, statistical and functional modeling approaches 
are used to interpret the experimental results from the three 
aforementioned studies ( 12 – 14 ). In addition, predictions of the 
B cell behavior on a time scale not yet accessible by two-
photon imaging are made. 

 The statistical model assumes a minimum number of param-
eters, relies exclusively on the two-photon data, and allows sta-
tistical analysis of B cell trans-zone migration to be performed. 
The results of applying this model demonstrate that the experi-
mental frequency of trans-zone migration can be explained by 
the assumption of persistent random walk. A very high number 
of trans-zone migration events must be collected and analyzed to 
deduce statistically reliable statements about GC migration mod-
els, even more than the currently available datasets ( 12 – 14 ). In 
addition, it is shown that a threshold for the migration distance 
of cells improves analysis of trans-zone migration events. 

 The functional model relies on mathematical techniques 
previously applied to the GC reaction ( 17, 21, 22, 27 – 32 ). It 
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migration comprises cells that cross the zone boundary unidirec-
tionally, i.e., that are traversing the zone boundary only once, 
and cells that are wiggling at the zone boundary. The unidi-
rectional migration paths are relatively straight across the zone 
boundary, whereas wiggling is characterized by the indecisive 
tossing of cells at the zone boundary as a consequence of the 
random walk migration. The number of wiggling migration 
events at the zone boundary is defi ned as the diff erence of 
inter-zone and unidirectional migration events. 

 We compute fractions for all types of zonal migration, 
i.e., the number of cells traversing the zone boundary divided 
by the total B cell population per hour. Here, it is assumed 
that the zone boundary divides the GC into two equal parts. 
We start again from a homogeneous distribution of 10 5  WT 
B cells in the spherical GC with radius R = 160  μ m. The 
fraction of wiggling cells ( Fig. 2 A , diamonds) and of unidi-
rectional migration events ( Fig. 2 A , triangles) depend strongly 
on the minimal migration range (r min ).  The minimal migration 
range is defi ned as the thickness in micrometers of the zone 
boundary that has to be traversed by a cell to be counted as a 

( 12 – 14 ), which is generally considered to be a small value. 
However, a rough estimate reveals that this value corresponds 
to 40% of the maximal possible frequency: for a homogeneous 
distribution of B cells in zones of equal size, the probability 
to randomly choose a B cell from one of the two zones is 50%. 
With a probability of  � 50%, the chosen B cell migrates to-
ward the other zone and will reach it after a suffi  ciently long 
time. Thus, the maximal frequency of this event is estimated 
to be 25%. Relative to this value, the observed trans-zone 
migration frequency of  � 10% per hour corresponds to 40% of 
the maximal possible frequency. 

 Using the statistical model, we investigate whether the ex-
perimentally determined trans-zone migration frequency of 
5 – 10% is consistent with the assumption of random walk mi-
gration. To address this question, we have to distinguish be-
tween the inter-zone migration, i.e., the frequency of B cells 
crossing the boundary between zones (zone boundary) and 
ending up in either of the two zones, and the more restricted 
trans-zone migration, i.e., the frequency of B cells crossing the 
zone boundary and ending up in the opposite zone. Inter-zone 

  Figure 1.   GC B cell migration data as obtained from the mathematical modeling.  (A) Mean displacement of B cells in WT mice as a function of the 

square root of time. Simulation results of the statistical model (red) and the functional model (blue) are compared with experimental results (green) by 

Allen et al. ( 12 ). The linear relation after a time-lag, which is induced by the persistence time, is a qualitative indication for random walk migration. (B) Posi-

tion probability distribution P(r,t) depending on the radial distance as obtained from the statistical model for GC B cells in WT mice at four different times. 

At t = 60 min, the distribution P(r,t) is affected by the fi nite GC volume, whereas at t = 180 min, the quadratic dependence of P(r,t) refl ects a homogeneous 

distribution of B cells in the GC volume. (C) GC B cell tracks as obtained from the functional model at day fi ve after onset of proliferation (transient model 

with weak chemotaxis). The three-dimensional cell tracks have been projected on the x – z plane with the cell starting positions set relative to the center of 

the plane. The 90 cells have been randomly chosen and tracked over a period of half an hour. (D) The same as in C, but with a tracking period of 3 h.   
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that monitored cell tracks of unidirectional migration across the 
boundary during half-hour measurements follow relatively 
straight paths that are of a typical length of  > 20  μ m ( 12 ). Fur-
thermore, in one-hour measurements, the corresponding zone 
boundary thickness is r min   >  40  μ m ( Fig. 2 B , red line). There-
fore, meaningful experimental analyses that distinguish wiggling 
cells from unidirectionally moving cells require the defi nition of 
a minimal migration range across the zone boundary. 

 Next, we address the question whether B cell trans-zone 
migration exhibits a directional preference between zones. As 
a directional preference may depend on the position of the 
zone boundary in the GC, we introduce an intercepting 
plane that is oriented parallel to the zone boundary and can 
be moved through the GC volume. We measure trans-zone 
migration through this intercepting plane in silico. Results 
are shown for diff erent r min  after measurements of 30 min 
( Fig. 3 A ) and 1 h ( Fig. 3 B , all but gray lines).  The frequency 
of trans-zone migration is maximal for the plane intercept lo-
cated at 0  μ m, i.e., where the GC consists of two equal parts, 
as there the area of the intercepting plane is maximal. The 
directional preference of trans-zone migration is measured as 
the diff erence of B cells moving up ( Fig. 3 , solid lines) and 
down ( Fig. 3 , dotted lines) through the intercepting plane. 
No statistically relevant diff erence is observed in the statistical 
model ( Fig. 3, A and B , dashed line). 

 Intermixture of B cells in GCs is quick 

 Having validated the statistical model, we can now go be-
yond the time scale that limits two-photon experiments and 
perform simulations of B cell migration on a time scale of 
several hours. Computed cell tracks allow the calculation of 
the position distribution P(r,t) of the probability to fi nd a 
B cell after a time interval (t) at a radial distance (r) from its ini-
tial position at the center of the GC ( Fig. 1 B ). We use P(r,t) 
to compute the migration distance  ‹ | r  i (t)| ›  for WT B cells in 
a GC with radius R = 160  μ m. During the time intervals of 
10, 30, 60, and 180 min, the cells migrate distances of 31, 57, 
82, and 113  μ m, respectively. These results deviate from a 
Gaussian random walk in free space, which leads to the mi-
gration distances ( ‹ | r  i (t)| ›  = [6Mt] 1/2 ) of 36, 62, 88, and 152 
 μ m for the same time intervals, respectively. For shorter time 
intervals, the deviation is related to the cell ’ s persistence time, 
whereas during longer intervals the boundary of the GC vol-
ume adds to the diff erence. 

 B cells can reach the GC boundary already after 1 h ( Fig. 1 B , 
green line). Most B cells travel this distance within 3 h, which is 
refl ected by the quadratic dependence of the position probability 
on the radial distance ( Fig. 1 B , blue line). This means that in the 
absence of additional factors, the GC quickly evolves into an in-
termixed cell system within 3 h, which is even shorter than the 
estimate of 18 h by Schwickert et al. ( 13 ). 

 Functional model analysis 

 The quick intermixture, as observed in the statistical model, 
requires mechanisms to maintain the observed zonal GC mor-
phology for several days of the GC reaction. This is investigated 

zonal transition. The contribution of wiggling cells is an ex-
ponentially decreasing function of r min  ( Fig. 2 A , diamonds, 
and Fig. S4, available at http://www.jem.org/cgi/content/
full/jem.20081160/DC1), such that for suffi  ciently large r min  
all zonal transitions correspond to cells that cross the bound-
ary unidirectionally ( Fig. 2 A , triangles, and Fig. S4). For a 
minimal migration range of 40  μ m, the model predicts trans-
zone migration frequencies of 8% per hour ( Fig. 2 A , circles), 
which is in agreement with the experimental data. 

 Trans-zone migration is dominated by cells that change be-
tween zones unidirectionally for a suffi  ciently large zone bound-
ary thickness r min   >  25  μ m after a simulation time of half an hour 
( Fig. 2 B , blue line). These results agree with the observation 

  Figure 2.   B cell migration between the dark zone and the light zone 

in the statistical model.  (A) Fraction of cells that perform migration of 

type inter-zone, trans-zone, unidirectional, and wiggling as a function of the 

minimal migration range r min  across the zone boundary during simulation 

times of half an hour (blue) and 1 h (red). The fraction of cells that perform 

inter-zone migration consists of the cell fractions that perform unidirec-

tional migration and that are wiggling at the zone boundary. (B) Fraction of 

unidirectional migration events across the zone boundary relative to all inter-

zone migration events. B cells that traverse the zone boundary by migrating 

a minimal range of 25  μ m (40  μ m) within 30 min (60 min) perform with 

high probability of  � 90% unidirectional migration events.   
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a dominance of high affi  nity clones is found at day eight after 
onset of proliferation ( 35, 36 ). The number of accumulated 
mutations that impact on the antibody-affi  nity is fi ve to eight 
in high affi  nity clones ( 37, 38 ). Finally, the ratio of output 
cells at day twelve to output cells at day six measured earlier 
( 29, 39 ) is reproduced. Note that all simulations discussed 
from this point forward exhibit the aforementioned dynamic 
properties unless stated otherwise (Fig. S5). 

 Short centrocyte – FDC contacts are dominant in vivo 

and in silico 

 Next, the duration of contacts between centrocytes and 
FDCs is analyzed. The functional model assumes, similar to 
biological observations ( 40 ), that centrocytes bind antigen on 
FDCs to obtain survival signals and that the binding process 
is affi  nity dependent. Furthermore, depending on the affi  nity 
of the encoded antibody, the B cells either contact FDCs in 
a static condition of 30 min or in a transient manner that lasts 
until the B cell moves on, i.e., continues to migrate. No pa-
rameters other than those related to cell motility and anti-
body affi  nity enter this description of cell – cell contact. 

with a functional mathematical model. The essential feature of 
this model is that it captures the whole GC reaction compris-
ing the population kinetics, cellular interactions, and affi  nity 
maturation. This level of description allows one to distinguish 
between centroblasts, proliferating B cells that undergo so-
matic hypermutation, and centrocytes, nondividing B cells 
with activated apoptosis competing for survival signals. 

 For a functional analysis, the GC reaction has to be repre-
sented either by a set of diff erential equations for each possible 
clone ( 33 ) or by discrete event simulators ( 17, 30 – 32, 34 ). Here, 
a stochastic discrete event simulator in three spatial dimensions 
is used, which is based on the extension of a previously pub-
lished agent-based model ( 32 ). The included mechanisms fol-
low, to a large extent, the classical model of the GC reaction 
( 1, 15 ). A detailed description of the model ’ s assumptions is 
provided in the Supplemental materials and methods. 

 The simulated GC reactions are validated by experimen-
tal data. For example, the resulting population kinetics are 
typical of secondary immunizations (Fig. S5 A, available at 
http://www.jem.org/cgi/content/full/jem.20081160/DC1). 
Furthermore, affi  nity maturation takes place (Fig. S5B), and 

  Figure 3.   B cell migration between the dark zone and the light zone.  (A) Fraction of cells performing trans-zone migration after half an hour 

simulation time within the statistical model as a function of the location of the intercepting plane along the z direction and for various minimal migration 

ranges r min . A very small difference is observed between up-moving (solid lines) and down-moving (dotted lines) B cells within the statistical model. The 

black dashed line corresponds to the fraction of up-moving minus down-moving B cells for r min  = 0  μ m. (B) As before, with the same color coding but for 

1 h of simulation time. In addition, for r min  = 0  μ m, the corresponding result from the functional model (transient weak chemotaxis model) at day fi ve 

after onset of proliferation is shown for comparison (gray lines). The position of the maximum coincides with the position of the boundary between the 

dark and light zone in the functional model ( Fig. 5 B ). (C) The same color coding as before, but for a simulation time of 10 h using the transient weak 

chemotaxis model. After 10 h, a clear preference of up-moving (solid lines) over down-moving (dotted lines) cells is observed. (D) Results from the func-

tional model (transient weak chemotaxis model) for 50 centrocytes and 50 centroblasts tracked for 1 h at day fi ve after onset of proliferation. The ob-

served curves are dominated by statistical fl uctuations.   
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the experimental contact data that centrocytes integrate sig-
nals from short contacts with FDCs ( 13 ). Instead, even though 
signal integration cannot be ruled out, the simulations lead us 
to propose that it is the rare static contacts that are suffi  cient 
to drive affi  nity maturation. 

 Experimental data supporting B cell random walk migration 

are compatible with chemotaxis 

 The experimental two-photon data ( 12 – 14 ) suggest that 
B cells perform a random walk with directional persistence 
time in the absence of chemotaxis. Thus, we investigate using 
the functional model under which circumstances the measured 
two-photon imaging data can be reconciled with chemotaxis. 
Based upon the results of the statistical model a directional 
persistence time of 1.24 min is used in the simulations, per-
formed with or without chemotaxis. When the simulations are 
performed with chemotaxis, centrocytes are assumed to respond 
to the chemokine CXCL13 and centroblasts to CXCL12. 
Furthermore, it is assumed that CXCL13 is FDC-derived, 
whereas CXCL12 is secreted by stromal cells at the border of 

 Contacts between centrocytes and FDCs observed in 
vivo have rarely been found to be longer than 5 min ( 13 ), al-
though the fi nding that apoptosis is switched off  after 2 h of 
signaling ( 41 ) would have suggested longer contact times. 
We have therefore investigated how long centrocyte – FDC 
contacts would appear under the imposed condition that 
static functional contacts would last for 30 min. As can be 
seen in  Fig. 4 , only 2 – 4% of the cells are in a static contact in 
the simulations.  The histogram ( Fig. 4 B ) depicts the dura-
tion of all (static and transient) centrocyte – FDC contacts 
in the simulations. In agreement with the two-photon mea-
surements ( 13 ), the simulation suggests that the majority of 
B cells in the functional model exhibit only short contacts with 
FDCs, i.e.,  ≤  5 min, and that static contacts are rare events. 
Indeed, around day fi ve of the reaction, affi  nity maturation is 
not fully accomplished and most cells are deleted because of 
disadvantageous mutations. Thus, it cannot be concluded from 

  Figure 5.   GC morphology for different B cell migration models.  

25- μ m-thick slices through the center of the three-dimensional GC 

showing its morphology at day fi ve after onset of proliferation. Results 

are obtained from the functional model simulation for different B cell 

migration models. Color code: FDC (large, dark yellow); proliferating 

B cells (large, blue); centrocytes (small, green); selected centrocytes (small, 

light green); T cells (red); output cells (gray). (A) Without chemotaxis, the 

fast intermixture of cells leads to the dissolution of any zonal structure. 

(B) With weak chemotaxis, two zones develop with a substantial number 

of proliferating B cells in the light zone. (C) In the case of moderate che-

motaxis, where cell polarity is determined to equal parts by randomness 

and chemotactic signals, cells artifi cially accumulate in their respective 

zones. (D) Moderate chemotaxis together with chemokine concentration-

dependent desensitization yields clear zonal separations as for weak che-

motaxis (B).   

  Figure 4.   Analysis of centrocyte – FDC contacts obtained in the 

functional model.  Despite the model assuming static contacts of 30 min 

for signaling to high-affi nity clones, the vast majority of contacts moni-

tored during a tracking period of 1 h is of dynamic nature and last only 

 � 3 min. Only a few cells exhibit contact times of  > 10 min. This is refl ected 

in the fraction of centrocytes in static contact to FDCs, which is in the 

range of only a few percent (A) and in the histogram of centrocyte – FDC 

contact times (B). The star indicates the mean contact time of 2 – 3 min.   
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taxis, cell repolarization occurs with a weight of one tenth 
because of chemokine gradients. These simulations demon-
strate that the dark zone is maintained for a physiological pe-
riod of time during the GC reaction ( Fig. 5 B ). Increasing the 
strength of chemotaxis to a moderate level, where both con-
tributions to repolarization are of equal weight, already in-
duces an unphysiological cell accumulation ( Fig. 5 C ). This 
eff ect of cell accumulation is even more pronounced for 
strong chemotaxis (unpublished data), where the contribu-
tion of the chemokine gradient is further increased 10-fold. 

 Unphysiological cell accumulation may be avoided by in-
troducing an additional mechanism, i.e, desensitization. The 
desensitization model describes a scenario in which the cell 
sensitivity also depends on the absolute chemokine concen-
tration and is shut-off  when a critical concentration is en-
countered (Supplemental materials and methods, section Cell 
motility and chemotaxis). Indeed, cell accumulation is dis-
solved for moderate chemotaxis in the desensitization model 
( Fig. 5 D ). 

 Trans-zone migration is subject to statistical fl uctuations 

and sensitive to tracking durations 

 An important issue of the recent series of intravital GC exper-
iments refers to trans-zone migration of B cells. Our analysis 
within the statistical model revealed that undirected persistent 
cell migration leads to the amount of trans-zone migration per 
hour that is found in intravital experiments ( 12 – 14 ). How 
does this result, then, depend on the functional environment 
and on the presence of chemotaxis? In the functional model, 
the frequency of trans-zone migration events is evaluated by 
monitoring 6,000 cell tracks ( Fig. 3, B  [gray line] and  C ) and, 
within 1 h of tracking, the frequency of trans-zone migration 
is consistent with experimental data. Compared with the sta-
tistical model, the maximum is shifted to the actual boundary 
between dark and light zone ( Fig. 3 B , gray line) which is 
around the plane intercept at  � 50  μ m (dark zone at even 
more negative values). This refl ects a diff erent density of cells 
in both zones. After 10 h of tracking, the amount of observed 
trans-zone migration is increased to a maximal value of 25% 
( Fig. 3 C , black solid line), which is expected on the basis of 
the simple estimate given above. In contrast to shorter track-
ing times, more B cells move from the dark to the light zone 
than from the light to the dark zone ( Fig. 3 C , black dashed 
line). It is important to realize that tracking  > 1,000 cells is re-
quired to obtain statistically reliable results. Tracking 100 cells, 
as is typically done in today ’ s tracking experiments, leads to 
trans-zone migration frequencies that are dominated by statis-
tical fl uctuations ( Fig. 3 D  and Discussion). 

  DISCUSSION  

 There is agreement in all three two-photon microscopy stud-
ies ( 12 – 14 ) that the B cell motility in GCs can be interpreted 
as a random walk with persistence time. This interpretation 
can be reconciled with both the statistical and the functional 
model. The simulations show that chemotaxis and desen-
sitization mechanisms have a prominent impact on the GC 

the follicle with the T zone. The spatial distribution of che-
mokines is shown in Fig. S6 (available at http://www.jem
.org/cgi/content/full/jem.20081160/DC1). 

 The simulations in the absence of chemokines reproduce 
the experimentally observed motility coeffi  cient. We refer to 
this scenario as the random model. When chemotaxis is perma-
nently switched on, interestingly, this does not lead to a larger 
motility coeffi  cient. On the contrary, an attraction occurs to 
the center of the chemotactic sources leading to unphysiologi-
cal cell accumulation (unpublished data) and concomitant re-
duction of the motility coeffi  cient (Fig. S5, C and D). This cell 
accumulation is not the result of an artifi cially induced space 
restriction on the lattice, as cell motility is maintained in all 
simulations by allowing cells to exchange lattice positions 
even if no free lattice site is available (Supplemental materials 
and methods, section Cell motility and chemotaxis). 

 As an intermediate solution, the transient model is intro-
duced, that is, the sensitivity of newly diff erentiated centro-
cytes for CXCL13 is assumed to be down-regulated after 6 h, 
or after successful encounter with antigen on FDC. Similarly, 
the sensitivity of centroblasts for CXCL12 is down-regulated 
after 6 h or upon diff erentiation to centrocytes. The transient 
model is still compatible with the measured mean displace-
ment curve ( Fig. 1 A  and Fig. S5 C). These results suggest 
that B cells undergo temporarily directed migration, imply-
ing that transient chemotaxis might well be hidden in the ex-
perimental motility data. Ignoring the complex functional 
environment of the GC, a similar result was found for Brown-
ian particles in weak external fi elds ( 42 ). Temporarily di-
rected migration is further supported by the observation that 
trans-zone migration paths are relatively straight as compared 
with B cell migration within the zones ( 12 ). 

 GC zoning requires B cell chemotaxis with desensitization 

 Next, the morphological implications of chemotaxis are ad-
dressed using the functional model. As in the statistical model, 
the experimentally observed high motility of B cells leads to 
a quick intermixture of cells between the GC zones. For ex-
ample, this is shown in  Fig. 1 (C and D)  when applying the 
transient model. After half an hour, the distribution of cell 
tracks ( Fig. 1 C ) is once again similar to experimental results 
( 19 ). In the absence of chemotaxis, the quick intermixture 
implies that the maintenance of dark and light zones is not 
possible ( Fig. 5 A ).  

 To maintain a dark zone, newly diff erentiated centrocytes 
could be actively driven out of the dark zone into the light 
zone by chemotaxis. Therefore, we analyze the GC mor-
phology using diff erent chemotaxis models (Supplemental 
materials and methods, section Cell motility and chemotaxis). 
As permanent chemotaxis leads to artifi cial cell accumula-
tions and unphysiological motility coeffi  cients (Fig. S5 D), 
only the results using the transient model are reported here. 

 Applying this model, cells repolarize both randomly as 
well as in the direction of chemokine gradients. The extent 
of random versus chemokine contribution defi nes the three 
levels of chemotactic strength. In the case of weak chemo-
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 The model predicts that chemotactic sensitivity of B cells 
has to be down-regulated again after a characteristic duration, 
or in response to signals provided by FDCs or T cells, or after 
encounter of overcritical chemokine concentrations in some 
regions of the GC. Desensitization is known to be related to 
chemokine receptor internalization ( 43 ). CXCR5 up-regu-
lation after contact with dendritic cells was observed for T 
cells ( 44,45 ) and CCR7 up-regulation after contact with an-
tigen was observed for follicular B cells ( 46 ). B cells also regu-
late CXCR4-receptor expression in dependence of SDF-1 �  
( 47 ). A concentration-dependent response of T cells to SDF-1 
was observed ( 48 ). A bell-shaped response curve was also 
shown for B cells ( 49 ), and for CXCL13 in particular ( 50 ). 
Thus, experimental evidence exists for the regulation of 
B cell sensitivity to chemokines. 

 If B cells were not desensitized by at least one of the afore-
mentioned mechanisms, chemotaxis would get into confl ict 
with experimentally observed motility data (Fig. S5 D) and 
chemotaxis would induce artifi cial cell accumulation in the 
FDC network and at the T zone boundary ( Fig. 5 C ). It turns 
out that transient chemotactic sensitivity of B cells is consistent 
with all motility data and induces a realistic GC morphology 
( Fig. 5, B and D ). Then, a dominance of proliferating B cells 
in the dark zone and a dominance of centrocytes in the light 
zone is observed. However, the simulations exhibit a nonneg-
ligible amount of B cell proliferation in the light zone, as is also 
observed in in vivo experiments ( 12, 51, 52 ). 

 It is striking that the population kinetics (Fig. S5 A) and 
affi  nity maturation (Fig. S5 B) are widely independent of the 
chosen chemotaxis model and, by this, of the morphological 
organization of the GC. Thus, GCs without dark zones might 
well exist ( 17 ). In fact, CXCR5-defi cient mice exhibit dis-
organised follicles but still show signs of affi  nity maturation 
( 53 ). From this vantage point, the function of the dark zone 
may be less related to affi  nity maturation than to GC onset 
by providing space with reduced selection pressure ( 30 ). It 
would be very interesting to investigate experimentally how 
affi  nity maturation compares with and without antagonists of 
B cell chemokine receptors in normal mice. 

 In conclusion, we come to the result that the intra-zonal 
circulation model ( 14, 18 ) is unlikely and that the data sup-
port a compromise between the one-way ( 17 ) and the cyclic 
reentry model ( 20 – 22 ); the intra-zonal circulation model is 
incompatible with the trans-zone migration data that are fully 
explained by the assumption of persistent random walk mi-
gration. We conclude from the functional model simulations 
that an intra-zonal circulation model would induce far less trans-
zone migration than that found in all three experiments dur-
ing 1 h. The one-way migration model, which relies on pure 
random walk migration, would give rise to an unphysiologi-
cal GC morphology caused by the high motility of B cells 
and by this the fast intermixture of all cells. Finally, the cyclic 
reentry model assumes a strong and chemokine-driven recir-
culation of recycled B cells to the dark zone. If CXCL12 sen-
sitivity was suffi  ciently strong to redirect almost all recycled 
B cells back to the dark zone, the motility coeffi  cient and the 

organization and guarantee the existence of distinguishable 
zones without getting into confl ict with the two-photon 
motility data. 

 Experimental results also consistently suggest that the fre-
quency of B cells that migrate between the GC zones is as 
small as a few percent per 1 h of cell tracking. In silico, both the 
statistical and functional models yield a frequency of trans-zone 
migration events that is in agreement with the experimental 
data. We have shown that the seemingly limited trans-zone 
migration events imply a fast intermixture of all B cells in the 
whole GC within 3 h. 

 Trans-zone migration data have to be interpreted very 
carefully. If no minimal migration range for cells crossing be-
tween the two zones is imposed, the observed migration 
events may be dominated by cells wiggling along the bound-
ary without any directional preference for one of the zones 
( Fig. 2 ). Our calculations provide an experimental guideline 
for the required minimal migration range ( Fig. 2 B ). 

 All three experiments suggest a slight preference for trans-
zone migration from the dark zone to the light zone, even 
though they are statistically not very fi rm. Although the 
imaging duration and the number of tracked cells in current 
two-photon measurements is limited for technical reasons, 
mathematical models do not suff er from these restrictions. 
Tracking several thousand B cells within the functional model, 
a signifi cant preference is only observed for long tracking 
times of 10 h, which is in the order of the centrocyte lifetime 
( Fig. 3 , black dashed lines). In this range, selection of centro-
cytes acts as a sink of cells on the side of the intercepting plane 
containing the FDC network and aff ects the frequency of 
trans-zone migration events. Thus, the model is in agreement 
with the measured small preference of trans-zone migration 
events but predicts that for much longer tracking times a more 
substantial directional preference is expected. 

 Two-photon experiments are to some extent limited by 
the cell track analysis, which today cannot be done fully au-
tomatically such that the number of tracked cells is typically 
not more than a few hundreds. Because of the small frequency 
of trans-zone migration events, monitoring several thousand 
cells is necessary to obtain a reliable certainty of the numeri-
cal results. For 1,000 monitored cells, the statistical fl uctua-
tions are in the order of 10%, which increases to 100% for 
100 cells. Next, rather irregular trans-zone migration patterns 
are observed ( Fig. 3 D ). These are in parts comparable to ex-
perimental results of trans-zone migration ( 14 ). Therefore, 
we think that the conclusion that trans-zone migration is 
suppressed at the interface between dark zone and light zone 
of the GC ( 14 ) has to be reconsidered. 

 The simulations show that the measured quick random mi-
gration of all cells throughout the GC makes a durable dark 
zone impossible. This implies that the specifi c morphology of 
the GC requires an additional mechanism that conducts freshly 
diff erentiated centrocytes from the dark zone to the light zone 
and recycled B cells back to the dark zone. Natural candidates 
for such a random walk with a drift are the chemokines 
CXCL12 and CXCL13 ( 23 ). 
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 � t p  =  � t p  (0.5 +  � ), where  �  is a uniformly distributed random variable between 

0 and 1, such that  ‹  � t p  ›  =  � t p  on average. 

 It is important to note that even though the directional persistence time 

 � t p  is not known a priori, we can nevertheless draw turning angles from the 

experimental distribution that has been evaluated with a time resolution of 

20 s. As shown in the supplemental materials (Fig. S2), the turning angle dis-

tribution in Fig. S1 B is extremely robust and represents a reasonable ap-

proximation for diff erent values of  � t p  ranging from 20 s up to 160 s. 

Determining  � t p  from the condition that the experimentally observed mean 

displacement curve is recovered for B cells in WT mice and in CXCL13 KO 

mice, yields the reasonable values  � t p  = 1.24 min and  � t p  = 1.05 min, re-

spectively. Typical time sequences of the turning angle and the speed for a 

B cell in WT mice are presented in Fig. S3 during 30 min of cell tracking. 

 Functional model.   We developed a hybrid agent-based model for simula-

tions of the GC reaction in three spatial dimensions that relies on previous 

mathematical models for the GC reaction ( 17, 29, 30, 32 ). The model con-

sists of the following three coupled levels: (a) The fi rst level contains the 

main lattice corresponding to the physical space in which cells can migrate 

and interact. Each node of the lattice can carry up to one biological cell. The 

cells migrate and interact according to the assumptions explained in the Sup-

plemental materials and methods. (b) The second level refers to the shape 

space ( 55 ), which is represented by a four-dimensional lattice encoding the 

antibody type of each B cell. Somatic hypermutation is represented by 

switching the antibody type to a neighboring point in the shape space. With-

out loss of generality, the optimal clone for a given antigen is in the center 

of the shape space. The Hamming distance of a clone from the optimal clone 

is mapped to a quantity associated with the antibody-antigen affi  nity ( 29, 56 ). 

This affi  nity determines the binding probability of a cell object to an FDC. 

(c) The third level deals with solving a system of reaction-diff usion equations 

for the solubles. An Alternating-Direction-Implicit method is applied to 

solve the partial diff erential equations on a lattice. The solubles considered in 

the following are the chemokines CXCL12 and CXCL13. It is assumed that 

the source for CXCL12 are stromal cells at the border of the follicle to the 

T zone, and the FDCs in the light zone for CXCL13. 

 A detailed description is given in the Supplemental materials and meth-

ods. The parameters of the model are listed in Table S1 (available at http://

www.jem.org/cgi/content/full/jem.20081160/DC1). 

 Online supplemental material.   The applied mathematical framework is 

explained in the Supplemental materials and methods. Detailed information 

about the statistical model and its validity is provided and presented in Figs. 

S1 – S3. Fig. S4 shows B cell migration between the dark zone and the light 

zone as a function of the number of zonal transitions within the statistical 

model. Additional information on the GC reaction in terms of the popula-

tion kinetics, affi  nity maturation, and B cell mean displacement is presented 

in Figure S5. The corresponding GC chemokine distributions of CXCL12 

and CXCL13 are shown in Figure S6. The functional model and its rela-

tion to physiology are described and all model parameters are summarized 

in Table S1. Online supplemental material is available at http://www.jem

.org/cgi/content/full/jem.20081160/DC1. 
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Figge et al., http://www.jem.org/cgi/content/full/jem.20081160/DC1

Additional information about the mathematics of the statistical and functional modeling approaches.

Statistical model. The experimentally observed speed and turning angle distributions are plotted in Fig. S1. These distributions are derived from B cell tracks 
in WT mice that have been recorded with the experimental time resolution of Dtr = 20 s (1).

It is important to note that analyzing the same cell tracks for various time resolutions, Dtn
r ; n Dtr with n = 1, 2, 3, ..., reveals that the impact of Dtnr on 

the turning angle distribution and the speed distribution is quite different. In general, although the speed distribution changes significantly as a function of the 
underlying time resolution of evaluation, only minor quantitative changes are observed for the turning angle distribution. This can be seen in Fig. S2 (A and 
B), where we plot the normalized distributions as obtained from averaging over k = 5 time resolutions Dtnr with n = 1, . . ., k. In other words, the plotted 
distributions are the averaged results of cell track analyses with time resolutions ranging from Dtnr = 20 s to Dtnr = 100 s. We observe that the mean value of 
the relative standard deviation is an order of magnitude larger for the speed distribution (z70%; see also Fig. S2 C for k = 5) than for the turning angle distri-
bution (z6%; see also Fig. S2 D for k = 5). In Fig. S2 (C and D), we plot the mean standard deviation of the speed distribution and turning angle distribution, 
respectively, for averages greater than n = 1 to k (with k ranging from 1 to 8) involving time resolutions Dtnr = 20 s up to Dtnr = 160 s. It is observed that al-
though the mean standard deviation of the speed distribution is an increasing function of k, for the turning angle distribution, this quantity stays fairly constant 
at z6% over the entire range of k values.

Collectively, this analysis shows that, in contrast to the speed distribution, the turning angle distribution is quite robust against variations in the time resolu-
tion Dtnr of the cell track analysis. We make use of this robustness property in the statistical model by using the turning angle distribution in Fig. S1 B, which 
has been evaluated with a time resolution of Dtnr = 20 s, at larger time resolutions, which correspond to the directional persistence time Dtp. The value of Dtp 
= 1.24 min (Dtp = 1.05 min) for B cells in WT mice (CXCL13 KO mice) is well within the range of time resolutions for which the turning angle distribution 
represents a reasonable approximation. Typical variations in the speed and turning angle of a B cell in WT mice during 30 min of cell tracking within the 
statistical model are plotted in Fig. S3.

The B cell migration between the dark zone and the light zone as measured by the inter-zone migration frequency is plotted in Fig. S4 as a function of 
the number of zonal transitions. It is generally observed that this frequency is an exponentially decreasing function of the number of zonal transitions for each 
individual cell and for various minimal migration ranges rmin. The minimal migration range corresponds to the thickness of the zone boundary and sets a lower 
limit of the distance B cells have to migrate to traverse the zone boundary. For increasing rmin, cell wiggling becomes suppressed, which is initially accompanied 
by an increase of the migration frequency at small zonal transition numbers for a fairly constant total number of zonal transitions. For a simulation time of half 
an hour (1 h), we observe from Fig. S4 A that this is the case for minimal migration ranges rmin # 25 µm (rmin # 40 µm). Increasing rmin further reduces the 
total number of zonal transitions and ultimately allows only for unidirectional migration events between the dark zone and the light zone (see also Fig. 2 B).

Figure S1.  WT B cell speed and turning angle distributions. The speed distribution (A) and turning angle distribution (B) of WT B cells as obtained by 
Allen et al. (Allen, C., T. Okada, H. L. Tang, and J. Cyster. 2007. Science. 315:528–531; dark green) are used as input for the statistical model. Reconstruc-
tions of these distributions from the B cell tracks of the statistical model are shown for comparison after 10 min of simulation time (light green).
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Functional model. We developed a hybrid agent-based model for simulations of the GC reaction in three spatial dimensions that relies on previous math-
ematical models for the GC reaction (2–5). The model consists of three coupled levels. The first level contains the main lattice corresponding to the physical 
space with lattice constant Dx = 5 µm, in which cells can migrate and interact. Each biological cell is represented at a single node and evolves according to reac-
tion rates that define a probability of action or interaction with neighboring cells or solubles that are explained in the following paragraph. The time step of Dt 
= 0.002 h is smaller than the fastest process of the dynamic system.The second level refers to the shape space (6), which is represented by a four-dimensional 
lattice encoding the antibody type of each B cell. Somatic hypermutation is represented by switching the antibody type to a neighboring point in the shape 
space. Without loss of generality, the optimal clone for a given antigen is in the center of the shape space. The Hamming distance of a clone F from the optimal 
clone F* is mapped to a quantity a(F, F*) associated with the antibody–antigen affinity by the followong (2, 7):

	
2
1

2

|| *||
( , *) exp ,a

 Φ − ΦΦ Φ = − Γ 
 (1)

Figure S2.   Normalized speed and turning angle distributions as obtained from averaging over different time resolutions. (A) The speed distri-
bution changes with a mean relative SD of 70%. (B) The turning angle distribution is robust with a mean relative SD of 6%. (C) The mean relative 
standard deviation for the speed distribution is an increasing function of the total number included time resolutions k. (D) The mean relative standard 
deviation for the turning angle distribution as a function of k shows its robustness with respect to the time resolution of the cell track evaluation.
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where G determines the width of the affinity function. This affinity determines the binding probability of a cell object to an FDC. The third level deals with 
solving a system of reaction-diffusion equations for the solubles. An Alternating-Direction-Implicit (ADI) method is applied to solve the partial differential 
equations on a lattice. The solubles considered in the following are the chemokines CXCL12 and CXCL13. It is assumed that the sources for CXCL12 are 
stromal cells at the border of the follicle to the T zone, and the FDCs in the light zone for CXCL13.

The considered reactions are listed as follows (please refer to Table S1 for parameter values): (a) monoclonal expansion of centroblasts in the FDC network 
lasts for 3 d with 6 h cycle time (8). The simulation starts at day one with 60 seeder cells derived from 5 seeder clones. All seeder clones have a distance of five 
mutations from the clone with optimal affinity. The 60 cells are randomly distributed in the GC volume. (b) Centroblast proliferation is modeled by occupation 

Figure S3.   Time-dependent speed and turning angle of a B cell within the statistical model. Typical variations in the speed with time step Dtv = 
20 s (A) and in the turning angle with Dtp = 1.24 min (B) for B cells in WT mice during half an hour of cell tracking.

Figure S4.   B cell migration between the dark zone and the light zone in the statistical model. (A) Inter-zone migration frequency for B cells in 
WT mice as a function of the number of zonal transitions for each individual cell across the zone boundary at plane intercept 0 µm and for different mini-
mal migration ranges rmin across the zone boundary. The simulation time is half an hour. (B) The same as before for 1 h simulation time.
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of a neighboring node (Moore neighborhood). If all Moore neighbors are occupied, cell division is suppressed. (c) Somatic hypermutation is induced with a 
mutation probability of 0.5 in each division (9). Mutations are represented by jumps in the aforementioned four-dimensional shape space to the nearest neigh-
bor points. (d) From day three after onset of proliferation, differentiation of centroblasts into centrocytes is initiated with an inverse rate of 4 h. To guarantee 
similar population kinetics (Fig. S5 A), the inverse rate is increased to 4.5 h in the case of the transient model with moderate chemotaxis strength. Differentia-
tion is smoothly switched on after a sigmoidal function with a width of 3 h at approximately t = 69 h. (e) The preformed FDC network consists of 200 FDCs 
that are distributed randomly within two-thirds of the maximum GC volume. (f) Interaction with FDCs is mediated by presented antigen portions. One such 
portion corresponds to the number of molecules sufficient to induce signaling in the B cell. A finite amount of such portions is distributed on the dendrites of 
each FDC at the beginning of the simulation. Each FDC has six dendrites of 40 µm length. The nodes associated with the dendrites can still be occupied by 
B cells. Antigen on the dendrites can be accessed by B cells from the site itself and from all nearest-neighbor sites. (g) Centrocytes are rescued from apoptosis 

Figure S5.   Analysis of the GC reaction in the functional models. The population kinetics (A), affinity maturation (B), and mean displacement curves 
(C) during the GC reaction for the random migration model (red), the transient model with weak (green) and moderate (blue) chemotaxis, and the desen-
sitization model with moderate chemotaxis (black). Both B cells (B, solid lines) and accumulated output cells (B, dotted lines) are shown. The results are 
comparable with each other, even though the corresponding GC morphologies are quite different (Fig. 5). In the absence of desensitization mechanisms, 
the observed mean displacement is significantly reduced (D). This is shown for moderate (cyan) and strong (magenta) chemotaxis.
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Figure S6.   GC chemokine distribution of CXCL12 and CXCL13 in the functional model. B cells are sensitive to the gradient of the chemokine 
CXCL12 released by stromal cells at the border of the follicle toward the T zone (A) and of the chemokine CXCL13 released by FDCs in the light zone (B). In 
the simulations, B cells are optionally desensitized by sufficiently high values of the chemokine concentrations nearby the sources. The amount of 
chemokine is proportional to the color intensity (arbitrary units).

by interaction with antigen presented on FDC. The binding probability depends on the antibody affinity to the antigen. In the model, affinity is described by 
the Gauss function eq. (1) in the shape space centered at the clone of highest affinity. If antigen is accessible from the node occupied by a centrocyte, the bind-
ing probability is given by this Gauss function. (h) We account for antigen consumption by modeling the uptake of antigen by B cells. Above a threshold of 
20 antigen portions (at each FDC site), the binding probability is solely determined by the antibody–antigen affinity. Below that threshold, it is linearly decreas-
ing down to zero when the antigen is fully consumed. (i) The survival signal for centrocytes is assumed to be provided within 30 min. In the model, centrocytes 
are immobile during this period. (j) Centrocytes die by apoptosis in z10 h (10) and are quickly internalized by phagocytosis. This is modeled by removal of 
unselected centrocytes from the cell lattice with an inverse rate of 10 h. (k) Re-testing of centrocytes is assumed to remain possible during their lifetime. 
However, two attempts to bind antigen are assumed to be separated by a refractory time of 12 min (5). (l) FDC-selected centrocytes have to find T cell help 
for final selection and further differentiation signals. The number of T cells in the GC is fixed to 1,500, which roughly corresponds to 10% of the peak cell 
population (11). If modeled centrocytes find a T cell on a neighboring site, the interaction is assumed to last for 36 min. (m) Experiments reveal that T helper 
cells interacting with different B cells polarize toward the B cell with strongest stimulus (12). In the model, T cells polarize their signaling apparatus toward 
the B cell in contact with highest affinity of the presented antibody. Only if the T cell remains polarized to a B cell for half an hour is the B cell selected, after 
which it receives further differentiation signals. The apoptotic state is attributed to all other B cells, which may correspond to induction of Fas-mediated apop-
tosis. Apoptotic cells are quickly removed from the lattice, corresponding to fast phagocytosis. Such an affinity-dependent T cell help was previously hypoth-
esized (5) and is meanwhile supported by experimental findings (13). (n) Positively selected B cells are assumed to get different T cell signals: a probabilistic 
decision is taken whether the centrocytes differentiate to plasma cells, memory cells, or recycle to proliferating and mutating centroblasts. The latter back-
differentiation is assumed to take 5 h. The recycling probability of positively selected centrocytes is set to 1 between day 3 and 5, and to 0.8 from day 5 after 
onset of proliferation (2), implying a delayed production of plasma cells and memory cells. The transition of the output probability is smoothly controled by 
a sigmoidal function with a width of 3 h centered at approximately t = 120 h.

Cell motility and chemotaxis. The mean speed of B cells and T cells is assumed to be 8 µm/min and 10 µm/min as observed in vitro, respectively. This 
induces a reduced average speed in dense tissue, which is in agreement with intravital two-photon imaging data on GC of mice (1, 14, 15). These velocities 
define displacement probabilities to nearest-neighbor nodes (von Neumann neighborhood). If the target nodes are occupied, the movement is suppressed (with 
exceptions; see next paragraph).

The preferred direction of movement is defined by a polarity vector that is attributed to each cell. If two neighboring cells exhibit a negative scalar product 
of their polarity vectors, the two cells exchange sites with a probability of 0.5. In this way, we model that B cells can pass each other even in overcrowded 
regions of the GC. This procedure removes artifacts in the simulations that might otherwise appear because of the underlying rigid lattice.

The polarity vector is renewed after an average time of 1.24 min for B cells and 1.7 min for T cells, which is associated with the cell persistence time (1, 
16). The new polarity vector p is determined at random and by the influence of chemokine gradients according to the eqaution

{ }1/ 2

,
1 exp ( | |) | |rand

c
K x c c

α ∇= +
+ κ − ∆ ∇ ∇

p p  (2)

where prand is a random polarity vector and a denotes the maximal relative weight of the response to the gradient of the chemokine field c. K1/2 is the gradient 
of half-maximal chemokine weight and k determines the steepness of its dependence on the chemokine gradient. The random part of the new polarity vector 
is chosen from a turning angle distribution as measured in two-photon experiment (Fig. S1 B) (1). p is used as a normalized vector.

CXCL13 is secreted by FDC while CXCL12 is secreted by stromal cells at the border of the follicle toward the T zone. The secretion rate is chosen to 
get relevant chemokine gradients, as shown in Fig. S6. The steady-state solution of the diffusion equation for both chemokines and Dirichlet boundary condi-
tions with value zero is used.
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Three chemotaxis models are considered in the simulations. The first is the random model B cells, which are are insensitive to both chemokines perform-
ing pure random walk migration with a directional persistence time of 1.24 min. The second is the transient model. In addition to random walk, migration 
centrocytes are sensitive to CXCL13 right after differentiation from centroblasts, and proliferating B cells are sensitive to CXCL12 right after accomplished 
recycling (reacquisition of proliferation potential). The relation of random walk migration and chemotaxis is regulated according to eq. (2). B cells down-
regulate their sensitivity to chemokines after 6 h. The third is the desensitization model. This is an extension of the transient model, where B cells down-
regulate their sensitivity to the chemokines after 6 h or in response to an absolute overcritical concentration of these chemokines. The threshold for 
desensitization is set to typical values as found at a 25-µm distance from the chemokine sources. Desensitized cells remain insensitive to CXCL13 (CXCL12) 
until further differentiation to centroblasts (centrocytes).

Note that the relative strength of the chemotaxis response can be varied in the transient model and in the desensitization model because the randomly 
chosen cell polarity is complemented by the chemokine gradient with a tunable weight. Three levels are distinguished in the model: weak chemotaxis (a = 1 
in eq. [2]) induces only a weak bias toward the chemokine sources of z10%; moderate chemotaxis (a = 10 in eq. [2]) induces an equilibrated choice between 
randomness and chemokine gradient at z50%; and strong chemotaxis (a = 100 in eq. [2]) determines the new polarity dominantly toward the chemokine 
gradient well above 50%.
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Table S1. Parameter table of the functional model 
Parameter Value Type Ref. 
Lattice constant �x 
Lattice dimension 
Radius of reaction volume 
FDC network volume per GC volume 
Shape space dimension 
Width of Gaussian affinity weight function � 

5 �m 
3 
160 �m 
2/3 
4 
2.8 

fixed 
experiment 
experiment 
estimated 
fixed 
experiment 

 
 
 
 
1, 2 
3 

Time step �t 
Duration of optimization phase 
Width of sigmoidal for switch 

0.002 h 
51 h 
3 h 

fixed 
experiment 
fixed 

 
4, 5, 6 

Number of seeder clones 
Cell cycle time of CB 
Mutation probability of CB 
Duration of CB differentiation to CC 

5 
6 h 
0.5 
4 h 

experiment 
experiment 
experiment 
varied 

7–10 
8 
11, 12 
8, 13 

Duration of static FDC-CC contact 
CC refractory time 
Duration of differentiation of selected CC 
Probability of recycling for selected CC 
CC lifetime 
Rate of phagocytosis of apoptotic cells 

30 min 
12 min 
5 h 
0.8 
10 h 
0.01 h 

experiment 
fixed 
estimated 
experiment 
experiment 
estimated 

14 
15 
4 
3, 16 
17 

Number of FDCs 
Length of FDC dendrites 
Number of antigen portions per FDC 
Antigen threshold for maximum binding probability 

200 
40 �m 
1,000 
20 

estimated 
estimated 
estimated 
fixed 

 
15 
15 
15 

Number of TC 
Duration of CC–TC interaction before apoptosis 
Duration of CC–TC interaction before selection 

1,500 
36 min 
30 min 

experiment 
fixed 
fixed 

18 
15 
15 

Weight of chemotaxis � 
Gradient of half-maximal chemotaxis weight K1/2 
Steepness of chemotaxis weight � 
CXCL12/13 diffusion constant 
CXCL13 production rate per FDC 
Number of stromal cells 
CXCL12 production rate per stromal cell 
Critical CXCL12 concentration for desensitization 
Critical CXCL13 concentration for desensitization 
Duration of CXCR4/5 expression 

1 
0.2 nM 
10 nM-1 
103 �m2/h 
10 nM/h 
300 
400 nM/h 
0.7 nM 
0.09 nM 
6 hr 

varied 
fixed 
fixed 
fixed 
estimated 
estimated 
estimated 
estimated 
estimated 
fixed 

 

BC speed in vitro 
BC persistence time 
TC speed in vitro 
TC persistence time 

8 �m/min 
1.24 min 
10 �m/min 
1.7 min 

experiment 
experiment 
experiment 
experiment 

19, 20 
19 
19, 20 
19, 21 

All parameters and their assumed values as used in the functional model are listed. A category is attributed to each parameter. A fixed parameter is 
either a purely theoretical parameter or a hypothetical parameter with an assumed value exhibiting robustness against variation. Estimated parameters 
were obtained from experimental constraints on a phenomenological level. Experiment is attributed to parameter values with direct experimental 
evidence. Varied parameters were changed for some simulations and are further discussed in the text. The value given here corresponds to the 
transient weak chemotaxis model. Symbols are given just in the case these are used in the text. TC, T cell; BC, B cell; CB,  centroblast; CC, centrocyte; 
FDC, follicular dendritic cell. 
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