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Abstract

Colocation services offered by stock exchanges enable market participants to achieve
execution costs for large orders that are substantially lower and less sensitive to
transacting against high-frequency traders. However, these benefits manifest only
for orders executed on the colocated brokers’ own behalf, whereas customers’ order
execution costs are substantially higher. Analyses of individual order executions
indicate that customer orders originating from colocated brokers are less actively
monitored and achieve inferior execution quality. This suggests that brokers do
not make effective use of their technology, possibly due to agency frictions or poor
algorithm selection and parameter choice by customers.

Keywords: Execution Cost, Institutional Investor, Broker, High-Frequency Trad-
ing, Colocation

JEL classification: G10, G14, G15
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1 Introduction

“[B]rokers and other industry players are learning from [...] HFT strategies

and in turn offering tools to their clients[...] that take advantage of the same

sophisticated technology and logic. We’re all high frequency traders now.”

Credit Suisse Whitepaper (Avramovic et al., 2017)

Equity market participants invest heavily in the speed of market access by employ-

ing cutting-edge hardware, relying on real-time market data feeds, and subscribing to

exchanges’ colocation facilities in order to place their servers within the exchanges’ dat-

acenters in close proximity to the matching engine. While the academic literature has

explored the role of trading speed in the context of high-frequency trading (HFT), the im-

pact of the speed of institutional investors and broker-dealers on their trading outcomes

remains unexplored.1

We investigate how the execution costs for large orders traded in a proprietary or

agency capacity are affected by the use of exchanges’ colocation facilities. Trades ex-

ecuted by colocated exchange members in a proprietary capacity achieve about 6 basis

points (henceforth bps) lower execution costs compared to similar orders executed without

colocation. However, agency orders do not benefit to any extent from brokers’ colocation.

After controlling for commonly used predictors of execution costs (market conditions, or-

der characteristics, and trading strategy), agency orders executed by colocated brokers

experience higher costs as compared to proprietary ones. The difference in execution

costs between the two capacities is almost 5 bps across all exchange members and 9 bps

within the subsample of broker-dealers who execute orders in both agency and proprietary

1For the remainder of the paper, we use the terms exchange member, broker, and broker-dealer
interchangeably.
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capacities.

The magnitude of these differences in execution costs are economically large compared

to average quoted spreads of 9 bps for the largest tercile of stocks, which account for the

majority of trading volume in our sample. A back-of-the envelope calculation further

suggests that the incremental costs incurred by agency compared to proprietary orders

executed by colocated brokers are economically sizable at more than 300 million euros

annually.2

We also find that the execution costs of brokers using colocation for proprietary or-

ders are less affected by the extent to which they interact with the flow of HFT firms.

Trading against HFT firms is generally associated with higher execution costs, though

this is driven by transactions against HFTs acting as aggressive counterparties, whereas

the opposite holds for passive, liquidity providing HFT counterparties. The magnitude

of these effects is around 3.5 bps and −3.0 bps for a 10 percentage point increase in the

share of the aggressive and passive HFT as counterparties to the large order, respectively.

Conditional on exchange members being colocated, the effect of aggressive HFT on ex-

ecution costs of proprietary orders is reduced by more than half but remains positive,

whereas the conditional effect of passive HFT is smaller in magnitude but remains neg-

ative. These results indicate that access to speed-enhancing facilities potentially allows

large traders to reduce the sensitivity of execution outcomes to the nature and techno-

logical sophistication of their counterparties.

There are several potential explanations for the fact that, while colocation allows

broker-dealers to obtain better execution outcomes for large orders, these benefits are

largely limited to their proprietary orders. To the extent that broker-dealers provide the

2This number is obtained by multiplying the average trade size by the number of colocated agency
trades, the difference in execution costs, the ratio of the length of a year relative to our sample period,
and the ratio of the number of stocks relative to the number contained in our sample.
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same algorithmic execution strategies to their customers that they use when trading in

a principal capacity, the differences in execution outcomes indicate the presence of in-

efficiencies in the choice of algorithm and/or the parameters governing such algorithms

employed by the customers. The use of algorithms developed by third party providers

or by large buy-side investors in-house (see, for example, Frazzini et al., 2018) – possibly

inferior to algorithms provided by brokers – and then deployed using an exchange mem-

ber’s direct electronic access infrastructure may also help explain the results. Finally, an

alternative or supplemental explanation of our results may be that the choice of execu-

tion algorithms brokers make available to customers is different to those used for their

proprietary trades.

To better understand the channels behind our main results, we investigate the or-

der submission behavior and the execution quality at the level of the child orders that

constitute the large parent orders. In an algorithmic trading setup, one major charac-

teristic of an algorithm is its’ ability to monitor orders actively with low latency. We

find that, compared to colocated agency orders, the proprietary counterparts on aver-

age have higher order-to-trade ratios. This suggests that the algorithms used to execute

proprietary orders monitor the limit order book more actively – possibly in event time

as opposed to calendar time (Bacidore, 2020). We furthermore find a higher degree of

periodicity in colocated agency as compared to proprietary orders, which is consistent

with a more prevalent use of timer-based algorithms for agency trades. Brugler (2015)

and Sağlam (2020) also provide evidence of calendar-time periodicity in trading activity,

which in Sağlam (2020) is associated with poor execution quality. Finally, the individ-

ual child order executions of proprietary orders experience better execution quality when

measured in terms of effective spreads and price impacts in comparison to observation-
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ally similar agency orders. These results altogether suggest that the quality of child order

executions for agency orders is inferior compared to that of proprietary orders.

It is unclear whether our results constitute evidence for a formal violation of brokers’

best execution obligations for at least two reasons. First, in contrast to the US, brokers

in the EU have significant flexibility when defining their best execution policies. Second,

to the extent customers make poor choices when using the algorithms provided by the

brokers, brokers are not in violation of any obligations. However, if the clients make these

poor execution decisions, brokers could better educate their customers to eliminate such

inefficiencies. Regardless of whether our results are interpreted as consistent with best

execution, our approach of benchmarking client execution outcomes against brokers’ own

orders may be useful for brokers to demonstrate, and regulators to verify, best execution.

Our results are based on a pan-European equity market dataset made available by

the European Securities and Markets Authority (ESMA). The data contains exchange

message-level information including masked identifiers of exchange members whose ac-

tivity can be tracked across stocks and exchanges. We aggregate individual order exe-

cutions to 11,724 parent orders based on unidirectional order flow of non-HFT exchange

members and examine the determinants of execution costs for these parent orders using

a doubly robust estimator combining panel regressions with inverse probability weights.

Our results also hold for simple fixed effects models and are robust to including exchange

fees in the execution costs.

A potential concern in our analysis is that our regression design does not fully control

for the differences in trading motives or investment styles across agency and proprietary

orders. While investors’ trading motives are not directly observable in our dataset, our

choice of control variables and fixed effects indirectly controls for trading motives and
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differences in execution strategy originating from heterogeneous trading motives. Specif-

ically, our regressions are estimated within stock-day and also control, inter alia, for the

time of day the execution begins. Additionally, we control for the volatility and short-term

return of the stock immediately before trading, the size of the parent order, its total time

of execution, its number of executed child orders, the proportion of liquidity-consuming

child orders, the total trading volume in the stock, the proportion of trading executed

away from the primary exchange, and the information content of the order. Thus, we

consider it unlikely that unobserved trading motives would affect execution costs to any

substantial extent.

Our paper contributes to the literature on brokers’ order handling practices and their

impact on institutional execution costs. Barbon et al. (2019) find evidence that brokers

leak information on institutional trades to other customers, which leads to increased

execution costs for those trades. Conrad et al. (2001) show that institutional investors’

use of soft dollar brokers, i.e., those providing sell-side research in exchange for executing

trades, is associated with higher transaction costs. Anand et al. (2011), while mainly

concerned with the performance of trading desks of institutional investors, find that

broker execution performance is persistent and related to trading commissions. Anand

et al. (2021) show that institutional execution costs are higher for brokers sending a large

share of orders to affiliated alternative trading systems. Battalio et al. (2018) study the

effect of routing orders to off-exchange high-frequency liquidity providers and find that

such behavior leads to higher execution costs on institutional orders. However, apart

from trading venue choices, prior literature provides little evidence on how and why

execution costs differ across brokers. Our paper fills this gap by focusing on the role of

technology, specifically colocation, as a differentiating factor that enables the effective
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use of sophisticated algorithms.

Our paper also contributes to the literature on speed dispersion. This literature finds

that the effect of faster HFTs on slower non-HFTs depends on whether the former use

their speed advantage to provide liquidity (as in Ait-Sahalia and Saglam, 2017; Brogaard

et al., 2015) or to engage in arbitrage or back-running (as in Foucault et al., 2016; Shkilko

and Sokolov, 2020). Our paper, while obtaining results consistent with both views, shows

that broker-dealers’ investment in enhancing their speed of market access can reduce the

sensitivity of execution costs to trading against HFTs.

We also contribute to the literature studying the effects of HFT on the trading aci-

tivity and associated costs of institutional investors.3 Yang and Zhu (2020) extend the

two-period Kyle (1985) model by including a “back-runner” – a trader who infers the

fundamental information by observing the order flow – alongside the informed trader.

The former’s presence leads to less aggressive trading by the informed trader, thereby

delaying price discovery.4 Korajczyk and Murphy (2019) show that, in the Canadian

equity market, the presence of HFT firms engaging in market-making activity leads to

higher transaction costs for large institutional trades. Van Kervel and Menkveld (2019)

find that, in the Swedish equity market, HFTs provide liquidity early-on during institu-

tional trades but later turn to trade in the same direction. Sağlam (2020) observes that

3More broadly, prior research shows that HFT has a positive or, at least, benign effect on common
measures of market liquidity, such as bid-ask spreads, and price efficiency, such as variance ratios (e.g.
Hasbrouck and Saar, 2013; Menkveld, 2013; Brogaard, Hendershott, and Riordan, 2014). See Menkveld
(2016) for a survey.

4In addition to HFTs affecting the profitability of investors’ trading strategies and price discovery in
the market, several studies have shown that rent seeking behaviour by HFTs negatively affects investors’
information acquisition decision. Baldauf and Mollner (2020) model a fragmented market in which HFTs
can both demand and supply liquidity. HFTs anticipate other participants’ order flow and, as they
become faster, information acquisition decreases. Dugast and Foucault (2018) show that the existence of
inexpensive unprocessed but imprecise information can lead market participants to reduce their demand
for processed and more accurate information, leading to a decrease in price informativeness. Weller
(2017), in a study of algorithmic trading – a superset of HFT – in the U.S. equity market, and Gider,
Schmickler, and Westheide (2021), in an international study on HFT, find evidence consistent with this
idea.
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execution algorithms such as the Volume-Weighted Average Price (VWAP) can lead to

predictable patterns in order flow that can be picked up by HFTs. Putniņš and Barbara

(2016) find that, in the Australian equity market, the effects of HFT firms on institu-

tional transaction costs differ in the cross-section of HFT firms, with some affecting them

positively and others negatively. Tong (2015), in a study of the U.S. equity market, ob-

tains evidence that institutional execution costs increase with the amount of HFT. She

also observes that this effect is alleviated for some institutional investors with high levels

of trading skills, as measured by historical transaction costs, though her data do not

allow her to explore the determinants of institutional trading skills. Chen and Garriott

(2020) find that HFT in the Canadian bond futures market leads to lower institutional

execution costs for relatively small parent orders. Finally, Brogaard, Hendershott, Hunt,

and Ysusi (2014) do not find any causal effect of HFT on institutional transaction costs

on the London Stock Exchange. Our paper contributes to this literature by establishing

differential effects of trading against aggressive and passive HFT orders, and by showing

that brokers can reduce these effects through their own trading speed.

The remainder of the paper is structured as follows. Section 2 presents the data and

discusses the variables used. In section 3, we discuss the measurement and potential de-

terminants of execution costs. The estimation approach is detailed in section 4. Section 5

contains descriptive statistics at the levels of exchange members and parent orders. In

section 6, we present the parent order level results. Section 7 contains analyses of order

submissions and the execution quality of child orders. Section 8 concludes.
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2 Data

Our analysis is based on the proprietary high-frequency database of the European Secu-

rities and Markets Authority (ESMA). This database was designed by the regulator to

study HFT activity in fragmented equity markets in the EU. The original sample com-

prises 98 stocks from nine countries – Belgium, Germany, Spain, France, Ireland, Italy,

the Netherlands, Portugal and the United Kingdom – that were members of the EU at

the time. Dependent on the size of the national markets, between 5 and 16 stocks are

chosen for each country via a stratified sampling approach to ensure it is representative of

the EU market with respect to market value, trading volume, and level of fragmentation.

The database includes all order messages and trades for each stock from the respective

primary market and the three main lit multilateral trading facilities (MTFs) – Chi-X,

BATS, and Turquoise – for the 22 trading days in May 2013. The data allow us to

track individual exchange members’ activity across all trading venues. Bouveret et al.

(2014) provide detailed information on the sample selection approach and the database

construction, as well as a first analysis of HFT activity based on the data.5

2.1 Member Categorization, Trading Capacity, and Colocation

While individual members’ identities remain unknown to us, ESMA groups them into

three categories: HFTs, Investment Banks, and Others. Previous studies identify HFT

firms either based on their primary business model or on measures of trading and quoting

activity such as order-to-trade ratios or order lifetimes. Bouveret et al. (2014) compare

5The dataset, however, excludes trading activity in off-exchange venues such as dark pools, systematic
internalizers, and the over-the-counter market. To the best of our knowledge, statistics on institutional
usage of such venues in the EU are unavailable. However, Beason and Wahal (2020) observe that, for a
single firm providing algorithmic execution services in the US, over 77% of child orders are routed to lit
venues.
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these two identification approaches and find that the former provides a conservative esti-

mate by only including proprietary trading firms and excluding HFT activity originating

at investment banks. It also prevents the erroneous classification of sophisticated traders

employing low latency infrastructure as HFTs, even though their business model sub-

stantially differs from that of HFTs. For example, Avramovic et al. (2017) argue that the

quoting and trading behavior (speed of response to market events, order-to-trade ratios,

etc.) of large technologically sophisticated broker-dealers may resemble that of HFTs,

even though the size and holding period of their positions are vastly different. We hence

rely on the HFT flag based on the former approach, which categorizes 20 exchange mem-

bers as HFTs, 18 of which serve as counterparties to the institutional trades identified

below.

Trading activity by individual exchange members is further split by capacity into trad-

ing on behalf of customers (agency) and trading on the firm’s own account (proprietary).

We rely on this flag to identify differences in execution quality between institutional

trades executed by exchange members on behalf of their clients and on a proprietary

basis. This flag is generated by ESMA based on the reporting of this information by

trading venues.6

Finally, the database also contains a binary variable indicating whether members use

the colocation service offered by the different trading venues, i.e. whether members have

located their equipment within the venues’ data centers. Colocation, combined with a

subscription to the venues’ low latency market data feeds, allows members to minimize

the round-trip latency between their servers and the venues’ matching engines.7 We

6While Bouveret et al. (2014) report inconsistencies in the reporting of this information by the venues,
those issues were subsequently fixed. This has been confirmed to us by ESMA. Furthermore, the reporting
of riskless principal orders by some brokers as proprietary may introduce some noise in our results.
However, we do not expect the magnitude of this noise to be substantial or to bias our results.

7We acknowledge that colocation, potentially, could also be used as a cost-efficient alternative for
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distinguish colocation on the primary markets from that on the MTFs. While we are able

to directly observe whether an individual exchange member is colocated on the primary

listing venue, we proxy for colocation on the MTFs based on whether the member is

colocated on Turquoise. This is because we cannot directly observe such a flag for BATS

Chi-X. We also exclude the 12 Spanish stocks from our sample as the colocation flag for

the Spanish stock exchange is missing.

2.2 Identification of Institutional Orders

Large institutional parent orders are typically split into multiple smaller child orders

and then executed over time and across venues. While our dataset allows us to track the

message traffic (order submissions, cancellations, and transactions) of individual exchange

members, we do not have information on the parent order’s size. Korajczyk and Murphy

(2019) and Van Kervel and Menkveld (2019) solve this problem by stitching together a

string of child order executions.

Korajczyk and Murphy (2019) define an institutional parent order as an uninterrupted

sequence of one or more trades on the same side by the same exchange member if the

total volume of those trades is at least CAD 100,000.8 Van Kervel and Menkveld (2019),

on the other hand, start by first lumping together all executions on a given stock-day

and then applying a directionality (the difference of buy and sell volume relative to total

volume) cutoff of 90%. Both combine parent orders across days if there is a child order

executed during both the last and first 30 minutes of two consecutive days. We employ

foreign firms to establishing an office in a country. If that were true for a subset of the exchange members
in our sample, it would attenuate our results related to the differences in execution costs between orders
originating from colocated versus non-colocated members. Furthermore, EU’s single passport rights
allows non-EU firms to trade across the European single market by using an office in one EU-member
country, thus eliminating the need to colocate on multiple venues. However, the most active exchange
members in our sample are in fact colocated across multiple venues.

8Korajczyk and Murphy (2019) use this cutoff based on the distribution of institutional order size in
the US market as reported by Chan and Lakonishok (1995) and Cready et al. (2014).
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the methodology of Korajczyk and Murphy (2019) to identify parent orders by applying

an order size cutoff of e 100,000.9 Following Putniņš and Barbara (2016), we further

require that a parent order is worked in the market for at least two hours. For our final

sample of institutional orders, we additionally require an exchange member to have at

least ten parent orders across all stocks. We use the capacity flag to further classify

orders into those executed on behalf of a customer (agency execution) or on the exchange

member’s own account (proprietary execution) and construct parent orders separately

for each capacity such that a single parent order consists of agency or proprietary child

orders only.

3 Measuring and Explaining Execution Costs

In this section, we explain how we measure the execution costs of large orders. We also

describe the commonly-used determinants of execution costs that act as controls in our

main analysis.

3.1 Measuring Parent Order Level Execution Costs

Perold (1988) defines implementation shortfall as the cost of implementing investment de-

cisions and further decomposes it into execution costs and opportunity costs. The former

relates to transactions actually executed while accounting for the fact that individual

child orders may execute at different prices. Implicitly, the execution cost component

includes instantaneous transaction costs such as the bid-ask spread as well as the price

impact associated with the actions taken by other market participants upon detecting

9All parent orders identified using our approach originate from non-HFT members. This is unsur-
prising considering HFT firms generate their profits, not by acquiring large positions, but by rapidly
turning over their positions at high-frequencies, while providing liquidity and/or exploiting short-term
informational asymmetries.
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the presence of a large institution in the market as in Brunnermeier and Pedersen (2005),

Ait-Sahalia and Saglam (2017), and Yang and Zhu (2020). The latter component relates

to transactions that cannot be executed. As in most other studies of institutional trans-

action costs (Keim and Madhavan, 1997; Korajczyk and Murphy, 2019; Van Kervel and

Menkveld, 2019), we ignore the opportunity cost of non-execution as we cannot observe

the initially planned parent order size.

For parent order k executed by exchange member i in stock s on day t, the execution

cost is defined as

Execution Costistk =

(
VWAPistk

P 0
istk

− 1

)
×Qistk (1)

where VWAP is the value-weighted average price of all child order executions, Q ∈ {−1, 1}

is the sign of the order which equals 1 (-1) for buy (sell) orders, and P 0 is the benchmark

price. The quote midpoint immediately before the execution of the first child order serves

as the benchmark price. We express the execution cost in basis points.

3.2 Determinants of Institutional Execution Costs

Our objective is to evaluate how brokers’ use of colocation services affects the execution

costs of their parent orders, and whether these effects differ for the brokers’ proprietary

versus agency executions. The use of exchanges’ colocation facilities potentially allows

exchange members to get better execution by strategically choosing when to supply and

consume liquidity, better managing adverse selection costs, and reacting to changes in

market conditions at high speeds. We construct a binary variable for each broker-stock

combination based on whether the broker is colocated on any of the markets where the

stock trades. A second binary flag associated with each message allows us to identify the
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capacity (agency or proprietary) in which the orders are submitted.

We control for several factors expected to affect institutional execution costs (see e.g.

Chan and Lakonishok, 1997; Keim and Madhavan, 1997; Jones and Lipson, 1999, 2001).

Keim and Madhavan (1997, 1998) argue that trading costs are driven by trade difficulty,

which they proxy for using trade size, stocks’ market capitalization, trader’s investment

style and other factors. We divide the previously established determinants of execution

costs into three broad categories: order characteristics, market conditions, and execution

strategy.

Several studies (Keim and Madhavan, 1997; Chan and Lakonishok, 1997; Jones and

Lipson, 1999) find that institutional trading costs are higher for larger orders as counter-

parties require larger price concessions to take the other side of the trade. This is because

displayed liquidity, even for the most actively traded stocks, is finite and may not fully

absorb a large trade. Investors also perceive traders executing large quantities as better

informed (Easley and O’Hara, 1987). To capture these effects, we include the parent

order size as a control variable. Furthermore, Chan and Lakonishok (1995) and Engle

et al. (2012) argue that trade size should be compared with the stock’s typical trading

volume when measuring execution costs. Higher overall volume in the market potentially

allows the institution to better hide its trading intentions (Kyle, 1985). Hence, we also

control for the total volume of all other executed orders across the primary market and

the 3 MTFs in our sample during the execution of the parent order.

Previous studies (see for example Chan and Lakonishok, 1993; Saar, 2001; Jones

and Lipson, 2001) have also shown that the execution costs of buy versus sell orders

are different. For example, Saar (2001) predicts that institutional buy orders are more

difficult to execute as they are perceived to be more informed than large sell orders.
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Jones and Lipson (2001), on the other hand, argue that buy orders tend to be cheaper

to execute than sell orders. To capture any potential differences between buys and sells,

we include a dummy variable for buy orders.

Keim and Madhavan (1996) find that establishing a long (short) position when prices

are rising (falling) is more difficult due to potential information leakage before the order

starts trading. We control for this pre-trade momentum by including the signed return of

the stock during the 10-minute window before the first child order execution. Similarly,

volatility in the market influences the algorithms’ trading strategy – for instance, how

finely should a parent order be sliced or how aggressively should the order be worked

in the market – as they seek to minimize the cost and risk of execution (Engle et al.,

2012). Hence, we include pre-trade volatility, defined as the standard deviation of ten-

millisecond quote midpoint returns during the 10-minute period before the first child

order execution, as a control variable.

Previous studies have also shown that execution costs are affected by the fund man-

ager’s identity (Chan and Lakonishok, 1993, 1995) and their investment style (Keim and

Madhavan, 1997; Jones and Lipson, 1999). Keim and Madhavan (1997) also observe sub-

stantial variation in trading costs within the same investment style which they attribute

to trading skill which is largely unobservable (see also Anand et al., 2011). These variables

affect institutional execution costs as they are related to investors’ need for immediacy,

order aggressiveness, level of informational advantage, etc. While we cannot directly ob-

serve fund manager identity and investment style, we include several control variables

that capture differences in trading behavior originating from heterogeneous investment

styles.

To capture the degree to which an institutional investor is informed, we include the
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long term price impact as measured by the trade direction-signed return from the quote

midpoint immediately before the parent order begins trading to the closing quote mid-

point one day after the last child order execution. When determining their execution

strategy, investors’ urgency to trade likely influences how patient or aggressive they are

while trading. For example, Keim and Madhavan (1997) find that value (technical)

traders rely heavily on limit (market) orders and have lower (higher) transactions costs.

Patient institutional investors may be able to lower their transaction costs by spreading

more child orders over a longer period of time and thereby more easily hide among other

traders. They can also trade less aggressively by using passive orders and thus earn the

bid-ask spread. Hence, we include the trade duration (measured as the number of ex-

change trading hours between the first and the last child order execution), the percentage

of volume executed through aggressive orders, and the number of child order executions

in a parent order. Institutions may also choose the trading venue as part of their ex-

ecution strategy. To capture any differences between trading costs associated with the

choice of different trading venues, we include the percentage of volume executed on the

three MTFs.

Finally, one potential channel through which colocation likely helps institutions is by

allowing them to mimic HFT strategies and to minimize the sensitivity of their trading

costs to trading against HFT. To test for this possibility, we include three measures

capturing the interactions of HFT activity and institutional investors’ trades: the fraction

of the order executed against all HFTs, aggressive (liquidity-taking) HFTs, and passive

(liquidity-providing) HFTs. Separating HFT into liquidity taking and liquidity supplying

HFT allows us to capture the impact on execution costs associated with different HFT

strategies. For example, liquidity supplying (consuming) HFTs are more likely to trade
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against (with) “the wind” (Van Kervel and Menkveld, 2019).

4 Estimation Approach

We use order level regressions to examine the determinants of institutional execution

costs and particularly whether the use of colocation services allows members to lower the

execution costs for their trades executed in an agency and a proprietary capacity. We

employ the following panel regression setup for this purpose:

Execution Costistk = α + β1TradeCharistk + β2Agencyistk + β3Colois

+ β4Colois × Agencyistk + β5HFTistk + β6ColoHFTistk

+ β7Agencyistk × HFTistk + β8Agencyistk × ColoHFTistk

+ µst + ηk + νi + εistk

where for parent order k on day t in stock s by exchange member i, TradeChar is a vector

of the order and execution characteristics defined in Subsection 3.2, Agency indicates

agency orders, Colo indicates whether an exchange member is colocated on the stock’s

primary listing venue or Turquoise10, HFT is a vector containing the fraction of the parent

order executed against all, passive, or aggressive HFT counterparties, and ColoHFT is

the fraction of the parent order executed against an HFT on a venue where the exchange

member is colocated. Stock-day fixed effects µst capture any unobservables affecting

the execution cost for a stock on the day the order starts trading. For example, trend-

chasers, momentum (Jegadeesh and Titman, 1993) and contrarian traders (De Bondt

and Thaler, 1985), trade stocks based on their past performance. Quarter-hour fixed

10As discussed above, we use colocation on Turquoise as a proxy for colcation on the MTFs.
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effects ηk capture systematic differences in execution costs depending on when during

the trading day the execution begins. This includes differences in execution costs likely

arising due to distinct patterns in intraday price formation.11 For example, Madhavan

et al. (1997) find that intraday patterns in liquidity and volatility are consistent with a

decreasing level of informational asymmetry and increasing inventory costs through the

day. Another example is the potential impact of the increased trading activity around

the US market open. Exchange-member fixed effects νi capture the impact of broker

skill and other unobserved effects associated with the individual brokers, for example

differences between high-touch versus low-touch brokers. We estimate the above model

with and without exchange-member fixed effects to separately understand the differences

in execution costs by trading capacity and colocation within individual brokers. In all

models, standard errors are clustered by exchange member and stock. We winsorize all

variables, except the dummy variables and those expressed in percentages, at the 99.5%

level.

A potential concern in our analysis is that our regression design does not fully control

for the differences in trading motives or investment styles across agency and proprietary

orders. While investors’ trading motives are not directly observable in our dataset, our

choice of control variables and fixed effects indirectly controls for trading motives and

differences in execution strategy originating from heterogeneous trading motives. Fur-

thermore, if trades are observationally indistinguishable in our data, they are likely also

hard to distinguish by other market participants, whose response ultimately, apart from

observable execution characteristics, determines execution costs. It appears unlikely that

unobserved trading motives would affect execution costs.

11In untabulated results, we examine the distribution of orders throughout the trading session and do
not find any large differences in when agency and proprietary trades begin.
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A second possible concern in our regression design could be that the relationship

between the observable trade characteristics and execution costs is non-linear and differs

by trade capacity and brokers’ use of colocation due to an imbalance in the covariates.

For example, larger orders are more difficult to execute and are generally associated with

higher execution costs. However, the exact relationship, whilst apparently concave (Keim

and Madhavan, 1996, 1998), is unknown. While the square root law is widely accepted

in the industry (see, for example, Torre, 1997), Almgren et al. (2005) and Zarinelli et al.

(2015) obtain evidence against it.

We address this concern by using inverse propensity score weighting (IPW) in our

regressions. This estimator combines weighting and regression adjustment and has the

doubly-robust property (Robins and Rotnitzky, 1995; Imbens and Wooldridge, 2009),

meaning that it is consistent even if one of the models for the propensity score or the

outcome regression is misspecified. While this approach has occasionally been used in

the finance and economics literature in the case of binary treatments (see e.g. Bird, 2018;

Van Biesebroeck et al., 2015), our context entails multiple treatments: the exchange

members’ colocation status, and the trading capacity (agency vs. proprietary).12,13

We thus follow the literature started by Imbens (2000), who extends the binary treat-

ment propensity score methodology to multiple treatments. In our case, there are two

binary treatment variables forming four treatment categories with no natural ordering:(
C̄, Ā

)
,
(
C, Ā

)
,
(
C̄, A

)
, (C,A), where C and C̄ denotes colocation and non-colocation

and A and Ā denotes agency and proprietary trades, respectively. In the first stage, we

estimate the propensity score for the four treatment categories using a multinomial logit

12Another commonly used doubly-robust approach employing propensity scores uses matching. While
matching is possible even in the multiple treatment case (Linden et al., 2016), finding good matches
becomes increasingly difficult in finite samples.

13We report results from unweighted panel regressions in the appendix. The results do not qualitatively
differ from those obtained using the doubly-robust estimator.
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model, where we include as independent variables the same vector of market, trade, and

execution characteristics described above. Similar to Uysal (2015), the inverse of the

predicted propensity score for each of the four respective treatment categories is then

used to weigh the observations in the second stage regression where we again control for

market, trade, and execution characteristics as well as stock-day, quarter-hour, and, in

some of our analyses, exchange member fixed effects. Since this is a two-step estimation

approach with no known analytical expression for the standard errors, we estimate these

using bootstrapping with 1,000 iterations.

5 Descriptive Statistics

5.1 Stock Characteristics

Table 1 shows the summary statistics for the 83 out of 86 stocks in our final sample which

have parent orders. We also report the summary statistics for each market capitalization

tercile. The stocks have an average market capitalization of e 8.75 billion, daily contin-

uous trading volume of e 29 million, and a quoted bid-ask spread of 20 bps. Trading

activity is highly fragmented across the four main venues with the primary listing ex-

change responsible for 62% of the market share and the three largest MTFs contributing

the remaining 38% for the average stock. However, there is substantial cross-sectional

variation across all these dimensions as evidenced by the difference in mean (and median)

values across the three size groups. Stocks of larger firms have higher trading volumes,

lower bid-ask spreads, and their trading activity is more fragmented. Finally, according

to Refinitiv data, the four lit venues in our data jointly comprise more than 95% of the

total lit trading.
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Insert Table 1 about here

5.2 Exchange Member Characteristics

We identify 11,724 parent orders executed by 139 exchange members in 83 stocks from 8

countries. Table 2 provides exchange-member level summary statistics separately for all

exchange members in our sample (Panel A) and for those who trade both in a proprietary

and agency capacity (Panel B).

Insert Table 2 about here

The average exchange member executes 84 parent orders in about 14 stocks from 3

countries totaling e 48.1 million during our sample period. There is substantial hetero-

geneity across exchange-members: some are active in only three (one) stocks (country),

whereas others are active in 54 (eight) stocks (countries). 36 exchange-members engage

in both agency and proprietary trading and 60 (43) members specialize in agency (propri-

etary) trading. However, the dual capacity members are much more active. The average

exchange member trading in a dual capacity trades more than 29 stocks from 5 countries

totaling e 138.3 million during our sample period. This translates to such exchange-

members accounting for more than 70% of all the parent orders both in terms of order

count and total trading volume.

35% of all exchange members and two-thirds of those acting in a dual capacity execute

some fraction of their institutional orders on the three MTFs. This may seem surpris-

ing considering the best execution obligations imposed on brokers by EU regulations,

in particular by the Markets in Financial Instruments Directive (MiFID).14 However,

14Contrary to the US, where the obligation to provide best execution rests largely with trading venues,
in the EU, brokers are obligated to provide best execution to their clients.
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broker-dealers enjoy substantial flexibility while ensuring compliance with these rules.

For example, MiFID allows them to define best execution in terms of price, costs, speed,

likelihood of execution and settlement, size, nature or any other consideration relevant

to order execution. At the same time, brokers can apply these factors differently to dif-

ferent clients, orders, instruments, and venues. It is also not mandatory that brokers are

connected to multiple trading venues.15

The mean and median number of primary markets in which the average exchange

member is colocated is 0.6 and 0, respectively, indicating that the majority of members

in our sample choose not to colocate. In fact, only 30% of the exchange members use any

colocation services. The vast majority of these members choose to colocate on one of the

primary listing exchanges as opposed to on the MTFs. Conditional on being colocated

anywhere, exchange-members are on average colocated on 2.2 venues. Exchange-members

trading in a dual capacity are more likely to colocate on the primary markets and the

MTFs. They are also colocated on more trading venues compared to exchange-members

trading exclusively in an agency or proprietary capacity. Specifically, 56% and 25% of all

exchange-members trading in dual capacity are colocated on the primary markets and

MTFs, respectively. Unconditionally, such members on average colocate on 1.3 primary

markets and, conditional on being colocated anywhere, they are colocated on 2.8 venues.

5.3 Parent Order Characteristics

Table 3 provides summary statistics at the parent order level separately for the complete

set of orders and for those executed in an agency and proprietary capacity. The table

also reports the mean differences between agency and proprietary orders, the associated

15See CESR (2007) for further details.
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t-statistics, and the standardized mean difference as a measure of the economic magnitude

of the differences.

Insert Table 3 about here

Panel A shows that, for approximately 53% of all parent orders, the executing broker is

colocated on the stock’s primary exchange or on the MTFs. The difference between these

figures for agency and proprietary orders (51% versus 55%), while statistically significant,

is economically small.

Panel B shows that there are roughly equal numbers of buy and sell orders. The

average trade size is 570 thousand Euro and Information, the average long-term price

impact of trades, amounts to −9 bps suggesting that, on average, a parent order is

uninformed. These numbers do not substantially differ between trades executed in the

different capacities as indicated by the insignificant differences.

Panel C describes the parent order execution characteristics. The execution lasts on

average about 5 exchange trading hours and, while the difference between agency and

proprietary trades is statistically significant, its magnitude is rather small. There is a

substantial difference between the two capacities in their choice to supply or consume

liquidity: 44% of an average agency trade consumes liquidity, whereas this percentage is

only 39% of proprietary trades. The difference concerning the choice of trading venue is

even larger: only 17% of the average agency order executes on the MTFs, whereas the

corresponding percentage for proprietary orders is 39%.

Panel D reports the execution costs of the average parent order, the effective half

spread paid (earned) by the aggressive (passive) executions that are part of an average

parent order, and finally the one-minute price impact associated with every passively

and aggressively executed trade. The execution cost, our main variable of interest, is
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−4.46 bps on average. The negative average may be due to the fact that the aver-

age parent order in our sample is uninformed as evidenced by the negative value of the

Information variable and traded passively as evidenced by the Aggressiveness vari-

able. For instance, Keim and Madhavan (1998) find that value (technical) traders who

trade passively (aggressively) end up with negative (positive) execution costs. Further-

more, based on the regression coefficients estimated later in this paper, the expected

execution cost for an agency order with zero information and an even split between

liquidity-consuming and -providing executions is positive. However, average execution

costs are significantly smaller for proprietary orders than for agency orders. The dif-

ference of more than 4 bps, while not large relative to the variation in execution cost

between individual trades, is economically large and statistically significant. The average

aggressive (passive) trade incurs (earns) a half-spread of 4.97 bps (3.62 bps). The aver-

age trade when executed aggressively incurs a lower cost for proprietary trades vis-à-vis

agency trades (4.75 bps vs 5.20 bps). At the same time, the average passively executed

proprietary trade earns a larger half spread than the average passively executed agency

trade (3.74 bps vs 3.49 bps). The better child order execution outcomes measured in

terms of effective spreads can be further extended to the average price impact as well.

The average price impact of an aggressively executed order is higher for agency trades

as compared to proprietary trades (3.75 bps vs 3.25 bps). The corresponding numbers

for passive executions are nearly identical (−4.68 bps vs −4.67 bps). The difference in

effective spread and price impact between agency and proprietary trades provides the

first evidence of the execution performance of underlying algorithms. In section 7, we

test whether differences in these (and other) variables hold using the empirical model

described in section 4.

24

Electronic copy available at: https://ssrn.com/abstract=4289346



Finally, Panel E reports the HFT interaction statistics. Agency orders trade about

30% of their volume against HFT firms, whereas the number for proprietary orders is

about 33%. This difference is significant and consistent with proprietary orders being

executed to a larger extent on MTFs, where HFTs are generally more active than on the

primary listing exchanges. The average parent order is approximately twice as likely to

interact with aggressive HFTs as compared to passive HFTs. However, agency orders

execute to a slightly lesser extent against aggressive as opposed to passive HFTs (65% vs

68%). These statistics are broadly consistent with the usage of aggressive orders in Panel

C. For instance, roughly two-thirds of the average parent order is executed passively and

roughly two-thirds of the average parent order’s HFT interactions are against aggressive

HFT. Similarly, the average agency order is more aggressively executed compared to the

average proprietary order and is also more likely to interact with passive HFT coun-

terparties. These statistics suggest that the algorithmic decision to supply or consume

liquidity does not substantially influence the extent to which the parent order interacts

with HFT firms.

To conclude, agency and proprietary executions are largely similar in terms of their

order characteristics, duration, and the use of exchanges’ colocation services. However,

they differ with respect to their choice of trading venue, level of aggressiveness, and

interactions with HFT firms. We overcome this imbalance via the doubly robust approach

of controlling for all these variables in our analyses in combination with inverse propensity

weighting.
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6 Parent Order Results

This section describes the determinants of execution costs of large orders. Our main focus

is on understanding how execution costs differ by the capacity in which the exchange

member trades an order and the use of colocation. Additionally, we consider the relation

between execution costs and interactions with HFTs.

6.1 Baseline Analysis

Execution costs are positively related to trade difficulty (Keim and Madhavan, 1997). For

example, orders that are large (relative to the daily volume of a stock) are more difficult

to execute. A market participant acquiring a large position may prefer to trade patiently

over a long period while relying on limit orders (to avoid crossing the bid-ask spread) and

minimizing executions on MTFs to avoid being back-run by HFTs. However, if a market

participant is impatient, possibly because it possesses short-term information, it may

have to trade aggressively using marketable orders while accessing all sources of liquidity.

We examine this tradeoff by regressing execution costs on the predictors described in

Subsection 3.2. Table 4 contains the baseline results.

Insert Table 4 about here

As expected, transaction costs increase with parent order size. Depending on the

regression specification, a 0.1 unit increase in log trade size is associated with between

0.26 and 0.33 bps higher execution costs. As trade sizes vary substantially and can be

very large in some cases, this effect is economically significant. The total trading volume

in the market, Market Trading, is negatively related to execution costs as higher trading

volume introduces more noise in the signal generated by the parent order executions. A
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0.1 unit increase in log total volume during the parent order’s lifetime is associated with

0.34 bps lower execution costs.

The execution costs for buys are around 2 bps higher than for sells, though the effect

is statistically insignificant.

Pre-trade volatility, measured as the standard deviation of ten-millisecond quote mid-

point returns over the ten minutes before the first child order execution, predicts a 17 bps

difference in parent order execution costs for every 1 bps change in volatility, however

the impact is statistically insignificant. Note that the mean and standard deviation of

volatility are both less than one-tenth of one basis point. The stock return over the ten

minutes before the trade has no explanatory power across all specifications.

The permanent information content of the trade is, as expected, positively associated

with the execution cost. A 10 bps increase in Information is associated with approxi-

mately 1.5 bps higher execution costs. The time it takes to complete a parent order is

negatively associated with transaction costs and the association is statistically signifi-

cant. Specifically, working a parent order for one additional hour is associated with a 1.7

bps lower execution cost. This is because, keeping parent order size constant, duration

is inversely related to the institution’s participation rate and, consequently, negatively

associated with transaction costs. However, this effect becomes somewhat smaller and

statistically weaker once we control for the stock’s total trading volume (Market Trading)

during the parent order’s life time, which together with the child order size determines

the participation rate. Trading impatiently by using aggressive (i.e., marketable) orders

is associated with higher transaction costs. A trade that is executed with a 10 percentage

points higher share of liquidity taking orders is associated with a 3.1 bps higher execution

cost.
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The number of child order executions is also significant in explaining parent order

transaction costs: a 0.1 unit increase in log child order executions is associated with a

0.41 bps increase in execution costs, though this effect decreases slightly once we control

for the fraction of a parent order traded on MTFs, where individual order executions

are generally smaller. Considering that the size of individual child order executions, and

therefore their number, is endogenously related to the liquidity available in the limit

order book, even in the presence of stock-day fixed effects, the direction of any causality

between the number of child orders and execution costs is unclear. The situation is

similar when interpreting the effect of the volume executed on MTFs because the choice of

venue partially depends on the liquidity available in the primary market. The coefficients

suggest that shifting 10% of the parent order away from the primary market and towards

the MTFs is associated with a 0.7 bps increase in execution costs.

6.2 Trading Capacity, Colocation, and Interaction with HFT

In Table 5, we consider the effects of exchange members’ execution capacity, whether

the exchange member executing the parent order is colocated on a venue where the

stock trades, and the fraction of a parent order that executes against liquidity provid-

ing and consuming HFTs. We report the results from panel regressions with stock-day

and quarter-hour fixed effects, and the variables included in column (4) of Table 4 as

untabulated controls. We center all interacted continuous variables at zero.

Insert Table 5 about here

We find that, after including all baseline control variables, orders executed in an

agency capacity are substantially more expensive than proprietary orders. The difference

in execution costs is economically meaningful at about 4.5 bps, or more than 50% of
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the quoted spread of a typical large cap stock in our sample. Column (2) shows that

additionally including a colocation dummy does not unconditionally explain any variation

in execution costs. In columns (3) and (4) we add an interaction term that identifies the

effects of colocation on the execution costs of agency versus proprietary orders. The main

effect of colocation, now representing the effect for proprietary orders, turns significant

and shows an execution cost reduction of around 6 bps, whereas colocation for agency

trades is associated with 7.2 bps higher execution costs compared to proprietary orders,

suggesting that agency orders do not benefit from exchange members’ subscription to

colocation facilities.

We next include trading volume against HFTs and find that an additional 10% of an

order traded against HFTs is associated with an increase in execution costs by 0.9 bps.

When splitting HFT into liquidity taking versus liquidity providing executions, we find

that they have opposite effects on transaction costs: trading an additional 10% of an

order against aggressive HFT is associated with around 3.7 bps higher execution costs,

whereas the effects of trading the same amount against passive HFT is around −3.0 bps.

We then include the fraction of trading volume against HFT on a venue where the ex-

change member is colocated and find that both the adverse effects of aggressive, and the

beneficial effects of passive, HFT are reduced when the exchange member is colocated.

The adverse effect of aggressive HFT is reduced by around 50% whereas the beneficial

effect of passive HFT is smaller by more than 80%. This indicates that execution costs

depend on the type of counterparty to a lesser extent for colocated market participants,

allowing them to obtain execution costs that are less sensitive to the nature of the coun-

terparty. The net impact of HFT on orders originating from colocated exchange members

nevertheless remains positive due to the higher magnitude of the effect of aggressive HFT
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on execution costs and due to parent orders in our sample being twice as likely to trade

against aggressive HFTs than passive HFTs.

Finally, we interact the fraction of trading against HFT on a venue where the exchange

member is colocated with the agency dummy to examine whether agency orders not only

generally fail to benefit from colocation but possibly also see a smaller effect of colocation

on the costs when facing HFTs. However, the coefficients suggest no significant effects

when trading against HFTs.

6.3 Within Exchange Member Variation in Execution Costs

Despite all the covariates and fixed effects we employed in the previous analyses, it might

be that unobservable differences across exchange members drive our results. This includes

differences in the type of colocation facilities, such as access speed and capacity, chosen

by individual members as well as other technological and connectivity differences. For

example, as of June 2022, Deutsche Börse allows exchange members to configure their

colocated infrastructure based on power requirements, type of market data, and other

connectivity options.16 Finally, differences in trading skills, specifically the quality and

choice of order splitting and routing algorithms, might also explain part of our results.

To address these concerns, we conduct an alternative analysis in Table 6 that, in addi-

tion to stock-day and quarter-hour fixed effects, includes exchange member-fixed effects.17

While the inclusion of the additional fixed effects eliminates the variation in colocation

on Turquoise, we retain the colocation variable that captures exchange members’ decision

to colocate on individual primary markets, which we denote ColoPM . This is because

16Further details on Deutsche Boerse’s colocation service are available at
https://www.xetra.com/xetra-en/technology/co-location-services.

17We do not report the baseline results with exchange-member fixed effects as these are qualitatively
similar to the results in Table 4.
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brokers are not colocated on all primary venues. The identification of the colocation ef-

fect now stems only from those exchange members that execute parent orders on primary

markets where they are colocated and others where they are not colocated. Similarly,

the identification of the differences between execution costs for agency and proprietary

orders now comes from exchange members executing orders in both capacities. Employ-

ing exchange-member fixed effects in combination with our control variables and IPW

effectively allows us to estimate the impact of colocation for agency versus proprietary

orders for similar orders originating at the same exchange-member.18

Insert Table 6 about here

Similar to the previous analyses, parent orders executed in an agency capacity incur

higher execution costs. Compared to the earlier results, the size of the coefficient increases

to 9.2 bps. This finding implies that, while agency executions across all member firms

incur higher execution costs, execution costs of those firms that specialize in agency

or proprietary executions differ less compared to the differences between agency and

proprietary orders originating from exchange members that trade in a dual capacity.

After including the colocation dummy and its interaction with the capacity dummy,

the results are again similar to those obtained without using exchange member-fixed

effects: proprietary trades benefit from the use of colocation, whereas this is not the

case for agency trades. Specifically, the effect of colocation on the execution costs of

proprietary orders is −6.3 bps. However, when these colocated brokers execute agency

orders, they have significantly higher execution costs with a coefficient of 7.8 bps. The

effect of the agency dummy variable is statistically significant at 5 bps, which suggests that

agency orders originating from dual-capacity exchange members have higher execution

18The reduction in effective sample size necessarily reduces the estimations’ statistical power.
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costs compared to proprietary orders executed by the same firm even when the broker is

not colocated.

The unconditional effects of parent orders interacting with HFT firms remain qualita-

tively unchanged. In aggregate, trading against HFTs is associated with higher execution

costs. The volume transacted against aggressive HFT orders is associated with higher

execution costs whereas the volume against passive HFT orders has the opposite effect.

Compared to the results without exchange-member fixed effects, the size and significance

of the coefficients for the interaction of colocation with aggressive and passive HFTs

retain their signs whereas the size and statistical significance changes somewhat. The

benefit enjoyed by a non-colocated broker from trading against passive HFTs is some-

what larger, whereas the interaction effect between colocation and passive HFT is larger

and now significant. The two effects cancel out suggesting that sophisticated traders do

not systematically experience large differences in execution costs based on the kind of

counterparties they trade with.

In conclusion, the main results do not appear to be sensitive to the chosen regression

specifications. Colocation helps proprietary traders reduce their transaction costs and

avoid losses to aggressive HFTs, but these benefits are limited to proprietary executions.

6.4 Analysis of Individual Member Fixed Effects

While our previous results document that, on average, the benefits of colocation in the

form of lower execution costs are limited to proprietary executions, they leave unanswered

the question whether this phenomenon is common or driven by a small number of outliers

among the brokers. To answer this question, we perform regressions similar to the above,

except that we include a larger set of dummy variables to study the cross-sectional dis-
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tribution of within-broker differences in execution costs between agency and proprietary

trades. In particular, in addition to the baseline control variables and stock-day and

quarter-hour fixed effects as in the regressions in Table 4, we include dummy variables

at the broker-capacity-colocation level. There are 18 brokers trading in both capacities

on venues where they are colocated. For each of these brokers, we compute the differ-

ence between the fixed effects of agency and proprietary trades, respectively, for trades

executed on a venue where the broker is colocated.

Insert Figure 1 about here

Figure 1 shows the estimates and error bars of this difference for the individual brokers.

Execution costs are higher for agency orders for 15 of the 18 brokers and for 5 of them

the difference is statistically significant at the 10% level. At the same time, none of

the 3 differences in the opposite direction are statistically significant. A non-parametric

Wilcoxon signed-rank tests provides strong evidence that agency orders do not obtain

the same benefit from colocation as do proprietary orders, with a p-value of 0.0021. In

summary, the higher execution costs of agency compared to proprietary trades executed

by the same colocated broker can be observed for most dual capacity brokers in our

sample. Overall, these results show that our main findings are not driven by a small

subset of these brokers but the result of likely similar choices made by brokers and their

institutional customers.

7 Child Order Submission and Execution Outcomes

The results reported in section 6 raise the question as to how agency trades, in particular

those executed via colocated brokers, obtain execution costs that are higher than com-
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parable trades executed by exchange members in a proprietary capacity. We here do not

aim to establish causal effects of any particular characteristics of the order submission

strategies on parent order execution costs. This would require reengineering the logic of

the order execution algorithms, a task that appears infeasible, considering the fact that

we observe data on a broker level and each broker likely employs multiple algorithms.19

Instead, we consider the algorithms’ ability to monitor the order books and the execu-

tion quality of the individual child orders and how these measures relate to the brokers’

colocation status and the capacity in which they execute orders.

7.1 Order Book Monitoring

Subscribing to exchanges’ colocation facilities should allow brokers to better monitor

the order book at high frequencies and employ order execution algorithms that quickly

respond to changing market conditions. For instance, it can allow brokers to rapidly

revise a passive child order after submission if the order becomes stale due to price

changes, thereby resulting in improved fill ratios and/or reduced price impact costs. In

this subsection, we provide evidence indicative of the improved monitoring ability by

analyzing order flow periodicity and order-to-trade ratios (OTR) for orders submitted in

both capacities and with or without the use of colocation technology.

Bacidore (2020) argues that “one tremendous avoidable source of latency stems from

algo provider’s decision to use ‘timer-based’ instead of ‘event-based’ processing.[. . . ] A

timer-based algorithm ‘wakes up’ periodically, e.g., every 500 milliseconds, samples the

state of the market, and then takes action before beginning another 500-millisecond slum-

ber[. . . ].” The relatively higher latency in the absence of colocation may be a reason for

19For a detailed analysis of the execution algorithms offered by a single broker, see Beason and Wahal
(2020).
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brokers to employ timer-based strategies. Figure 2 shows the the frequencies of orders

submitted during different seconds within a minute separately for the four combinations

of colocation/no colocation and agency/proprietary orders. The plots show deviations of

the logarithm of the number of order submissions from their mean. For all four groups,

the largest abnormal number of order submissions occurs in the first second of a minute,

and the effect is larger for agency compared to proprietary orders, and for non-colocated

compared to colocated orders. While we cannot rule out the possibility that (some of)

the excess order volume may be in response to other market participants’ high activity at

those times, the plot does suggest the existence of algorithms using clock-time schedul-

ing. There are also spikes at the other 10-second intervals within the minute for both

agency and proprietary colocated orders. These spikes are more pronounced for agency

orders, which is indicative of agency algorithms being less responsive to market events.

The lower periodicity observed for non-colocated orders is likely due to the presence of

high-touch trading in this category, which introduces noise in the observed periodicity.

In untabulated tests, we show that the observed differences at second 0 hold after em-

ploying stock-fixed effects or stock- and broker-fixed effects, whereas the coefficients for

those at seconds 10, 20, 30, 40, and 50, are of the expected sign though not statistically

significant.

Altogether, the figure and the statistical tests imply that there is more periodicity

in the order submission of agency versus proprietary colocated orders. The presence

of such predictable patterns in order submissions in calendar time, which has also been

observed in earlier studies (Brugler, 2015; Sağlam, 2020), might contribute to poor execu-

tion performance, as such patterns can be anticipated by HFTs engaging in back-running

behavior. For instance, Sağlam (2020) finds that the use of time- and volume-based
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execution algorithms leads to predictable patterns in order flow which are correlated

with higher execution costs. Conversely, a reduction in predictability is associated with

lower execution costs. While the above analysis reveals the presence of such predictable

patterns for parent orders executed with and without colocation in both capacities, the

disproportionately higher predictability of colocated agency orders may help explain the

higher execution costs for such orders.

Next, we analyze the differences in the OTR – defined as the ratio of the number

of order submissions to the number of child order executions – by capacity and use of

colocation. Specifically, we consider whether the OTR systematically differs by the type

of parent orders by regressing parent orders’ OTR on the same predictors as in the pre-

vious analyses. OTRs are generally used to track algorithmic and high-frequency trading

activity in electronic markets (see, for example, Hendershott et al., 2011). The results

in Table 7 show that there is no statistically significant difference between agency and

proprietary orders in the absence of colocation.20 The results without broker-fixed effects

in column (1) show that proprietary colocated orders feature a significantly higher OTR

than non-colocated ones, which is consistent with colocation enabling brokers to more

successfully manage their orders’ positions in the limit order book. However, this effect

is absent for colocated agency orders, with a coefficient that, albeit only weakly statisti-

cally significant, nearly offsets the positive coefficient for colocation. The within-broker

differences in OTR between colocated and non-colocated proprietary orders reported in

column (2) are positive, though smaller than in column (1) and statistically insignifi-

cant. This reduced effect is consistent with the idea that brokers that colocate anywhere

employ relatively sophisticated algorithms across trading venues regardless of their colo-

20The table is based on observations for 80 of the 83 sample stocks. Due to only intermittent access
to the data, we will update the table with results for the complete sample in the next revision.
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cation. This would allow them to actively manage their orders to some degree even where

they are not colocated. However, OTR is significantly lower for colocated agency orders,

which, somewhat surprisingly, results in colocated agency orders having a lower OTR

than non-colocated agency orders. However, the latter difference (untabulated) is not

statistically significant.

Altogether, this subsection provides evidence suggesting that the algorithms colocated

brokers use for their proprietary orders materially differ from those used for customer

execution. The latter feature higher periodicity and, in particular, a lower OTR, which

is indicative of a less active management strategy of child orders, and likely contributes

to higher parent order execution costs.

7.2 Child Order Execution Quality

Having established some differences between colocated agency and proprietary orders

with respect to their child order submission behavior, in this subsection, we turn to their

execution quality. When executing a child order, an institutional investor would like to

accomplish two goals: first, low execution costs of individual child orders, and second,

to minimize the extent of adverse price changes that would make subsequent child order

executions more expensive. As a measure of how well an order performs with respect

to the first goal, we compute parent order level averages of the effective spreads for the

individual child executions that make up a given parent order. We disaggregate the

analysis into spread costs for aggressive versus passive order execution.

Panel A of Table 8 contains the results. Note that the number of observations in this

table is smaller than in the previous ones because a parent order is included only if it

contains at least one aggressive (passive) child order execution. Column (1) shows that
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colocation reduces the spread paid by liquidity consuming orders, and this effect does not

significantly differ between proprietary and agency orders. However, agency orders pay

wider spreads regardless of the use of colocation, suggesting that execution algorithms

used for agency trades may generally be inferior to those used for proprietary trades. This

cost disadvantage of 0.4 bps amounts to more than half of the benefit colocation provides.

However, it makes up only a small part of the execution cost disadvantage agency parent

orders suffer. When we consider within-broker variation in column (2), we do not find

statistically significant differences between trades in stocks listed on an exchange where

a broker is colocated and where it is not, and, though the coefficient estimate is of the

expected sign, it is of substantially smaller magnitude than in the analysis without broker

fixed effects. This finding is consistent with that in the previous subsection that brokers’

execution capabilities may to a significant extent translate across exchanges, and that

the use of colocation anywhere goes hand-in-hand with higher technological skills. The

interaction effect of colocation with agency orders is also statistically insignificant, though

the magnitude and sign suggest that any advantage of using colocation almost exactly

cancels out for agency orders. Agency orders pay wider spreads regardless of colocation.

Turning to effective spreads earned in passive order executions, the negative coefficient

on colocation in column (3) indicates that colocation is associated with wider spreads

earned by the liquidity provider. The effect size is smaller than for aggressive orders,

suggesting that speed and/or sophistication is more important for liquidity taking orders.

We do not observe any significant differences between proprietary and agency orders.

While the results obtained when we consider within-broker variation in column (4) are

not statistically significant, agency orders generally obtain inferior execution, which, in

this case, means they earn smaller spreads. This result suggests that dual capacity brokers
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manage agency limit orders worse than comparable proprietary limit orders, whereas this

finding is not observable in the results exploiting differences across brokers. Compared to

the analysis of aggressive orders, we observe that, in relative terms, colocation remains

an economically more important predictor of effective spreads. While the effect size is

somewhat smaller than in column (3), it does appear that speed, in addition to general

technological sophistication, helps brokers earn wider spreads through facilitating timely

responses to changing market conditions. The interaction effect of colocation and agency

is statistically insignificant, though the point estimate amounts to a reduced benefit of

employing colocation by more than half.

We now turn to the second goal institutional investors have with respect to minimiz-

ing their execution costs, i.e., avoiding price impact as a result of information leakage.

Whereas in classic microstructure models the price impact is a reflection of the infor-

mation content of a trade, investors splitting their trade among multiple child order

executions desire to minimize their price impact so as to obtain beneficial trade prices

in subsequent child trades. Thus, for aggressive orders, a low price impact points to a

good execution outcome. For passive orders, a price movement against the direction of

the order is usually interpreted as adverse selection and therefore undesirable. However,

assuming that a trade happened at a certain price, an institutional trader would prefer

experiencing a large price impact to obtain better prices for subsequent child orders. Yet,

a limit order trader who does not manage the order effectively may get an execution when

the order is stale, i.e., the price at which the child order trades may be disadvantageous

as it would have been possible to trade at a better price. In that situation, while the price

impact incurred may be large, the prices of subsequent child trades may not necessarily

improve because the price would have moved anyway. Thus, for passive trade executions,
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it is unclear whether a large price impact should be interpreted as beneficial or harmful.

We measure price impact as the quote midpoint change from immediately before to

either 1 or 60 seconds after a trade, signed by the direction of the institutional order.

Similar to the effective spreads, we report the results separately for aggressive and passive

orders.

Panels B and C of Table 8 show the results for price impacts at a one-second and

one-minute horizon, respectively. For aggressive orders, the results show that colocation

enables significantly smaller price impacts, with an effect size of about 0.7 bps within

one second, which grows to 1.0 bps within one minute. Non-colocated agency orders are

associated with statistically insignificant immediate and near-zero one-minute additional

price impacts. However, the benefit to using colocation vanishes for agency orders. While

the effect is slightly smaller and not statistically significant within one second, it grows

to almost 1 bp, offsetting the advantage implied by the coefficient for colocation. The

within-broker analysis yields similar results to those for effective spreads: the effects of

colocation and its interaction with agency are small, whereas agency orders in general,

regardless of colocation, result in price impacts that are higher by about 0.8 bps, within

one second, though the coefficient shrinks to about 0.4 bps and becomes statistically

insignificant for the one-minute horizon.

Columns (3) and (4) report the price impact results for passive orders. We note that

a negative coefficient suggests a larger price impact from the institution’s perspective or,

put differently, a larger price move against the institution’s trade direction. Column (3)

shows that passive agency orders incur a larger price impact, with an effect size that

rises to about 0.7 bps within a minute. As explained above, this could be an indication

of trade execution at stale prices, and thus reflect poor execution quality. Alternatively,
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it suggests lower information leakage, potentially enabling successive trades at better

prices. While we consider the former channel more likely, our estimations do not allow

us to discriminate between the two interpretations. Proprietary colocated orders enjoy a

price impact that is larger by about 0.8 bps after one second and 0.9 bps after one minute,

whereas the positive coefficients for the interaction effect of colocation and agency show

that the colocation effect nearly cancels out for agency orders. Based on the findings

of the previous subsection and for spreads, it is likely that the effect of colocation for

proprietary orders is reflective of the avoidance of information leakage. By contrast,

agency orders do not enjoy the same benefit from colocation, and appear to be more

exposed to stale executions, though the coefficient estimates alone do not firmly lead to

a unique interpretation.

The within-broker analysis in column (4) shows that here, significant differences be-

tween non-colocated proprietary and agency orders do not exist. Colocation by itself does

not statistically significantly predict price impact, though the effect size at a one-minute

horizon is about half that observed in column (3). However, for colocated agency orders,

the price impact is smaller, from the parent order’s perspective, by 0.8 bps after one

second and 0.5 bps after one minute. While the latter coefficient is not statistically sig-

nificant, it is still sizable, when considering that this effect size accumulates over multiple

child orders. To sum up, the effects of colocation are smaller within than across brokers,

consistent with the previous results in this subsection.

In conclusion, the results on effective spreads and price impact contribute to our

understanding of the results on parent order execution costs. Across brokers, in aggre-

gate we observe poorer execution quality for agency orders and, in particular, colocated

agency orders. Most of the results of the within-broker analyses are quantitatively and
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statistically weaker, but they tend to point toward poorer execution quality for agency

orders irrespective of colocation. The OTR results in the previous subsection, indicating

a less active management of child orders, complement the evidence described above and

help explain the incremental parent order execution costs not captured by measures of

immediate child order execution quality.

8 Conclusion

Speed dispersion across market participants is of importance because recent empirical

and theoretical research has shown that HFTs can make large institutional trades more

expensive, which, in turn, can lead to reduced price discovery and allocative efficiency of

capital in the economy. Subscribing to exchanges’ colocation facilities allows exchange

members to submit orders and access the exchanges’ market data feeds at low latencies.

Based on a pan-European highly granular dataset comprising the main equity markets,

we study how the execution costs of exchange members attempting to acquire or dispose

of a large position in a proprietary or agency capacity vary with their use of the exchanges’

colocation facilities.

Exchange members who colocate obtain lower execution costs for their proprietary

orders but not for the orders of their buy-side customers. These results hold not only

across brokers but also for the subset of brokers who execute large orders in a dual capa-

city. Furthermore, while institutional investors’ execution costs are, on average, sensitive

to trading against HFT firms, the magnitude of this effect is significantly smaller for

colocated exchange members trading in a proprietary capacity. Investigations into the

underlying trading patterns reveal that the above differences between customer and pro-

prietary orders executed via colocated brokers coincide with differences in the monitoring
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and the execution quality of individual child orders.

We conjecture that the lack of benefit from colocation for customer orders is due to

customers making inferior choices when selecting the most appropriate algorithm for a

particular order or due to brokers using different algorithms for their proprietary and

customer orders. While regulations do not require benchmarking the execution costs of

orders originating from buy-side customers to the brokers’ own executions, this compar-

ison could be considered a natural approach to evaluating best execution.
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Figure 1: Difference between Agency and Proprietary Trades of Colocated Exchange Mem-
bers

This graph shows the distribution of within-exchange member differences in execution costs in bps between agency and
proprietary trades that a given exchange member executes on a trading venue where they are colocated. The estimates are
based on regressions that include exchange member-capacity-colocation fixed effects in addition to baseline control variables
and stock-day and intraday fixed effects. Standard errors are clustered by exchange member and stock and estimated using
bootstrapping with 1,000 iterations. The ranges indicate 90% confidence intervals.
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Figure 2: Periodicity in Order Submissions

This graph shows the distribution of child order submissions within a minute at the exchange member-stock-capacity level.
The number of submissions is given in deviations of the logarithm of the number of order submissions at a given second
from their overall mean. The horizontal axis indicates the second within a minute. The data is split according to whether
an exchange member is colocated at an exchange where a given stock can be traded.
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Table 1: Stock Summary Statistics

This table shows summary statistics on the 83 sample stocks. The stocks are sorted into terciles based on their average
market capitalization during the sample period. Market Cap. is the average market capitalization in 1bn Euro. Trading
Value is the average daily lit trading value across all exchanges in 1mn Euro. SharePM and ShareMTF are the market shares
of the stock’s primary market and of the three MTFs combined, respectively, in percent. Spread is the average relative
bid-ask spread at the primary market in percent.

Size
Market Cap. Trading Value SharePM ShareMTF Spread
Mean P50 Mean P50 Mean P50 Mean P50 Mean P50

Small 0.83 0.81 2.25 1.57 77.5 78.9 22.5 21.1 0.30 0.20
Medium 3.33 3.04 11.86 7.39 69.8 71.7 30.2 28.3 0.20 0.14

Large 22.57 9.72 74.53 36.44 60.6 57.4 39.4 42.6 0.09 0.08

Total 8.75 2.94 29.00 7.29 62.3 72.4 37.7 27.6 0.20 0.13

49

Electronic copy available at: https://ssrn.com/abstract=4289346



Table 2: Exchange Member Level Summary Statistics

This table shows exchange member level summary statistics. Active Stocks is the number of different stocks that the
exchange member is actively trading. Active Countries is the number of different countries where those stocks are listed.
Total Volume is the total trading value of parent orders in 1mn Euro. # Orders is the number of parent orders. Active on
MTF is a binary variable set to one if the exchange member trades on any MTF, scaled by 100. Agency is the number of
agency trades relative to all trades of an exchange member, in percent. Colo, Colo PM, and Colo TQ are binary variables
set to one if the exchange member is colocated on any venue, any primary market, or Turquoise, respectively, scaled by
100. Colo # PMs is the number of different primary markets at which the exchange member is colocated. Colo #|Colo is the
number of different venues at which the exchange member is colocated conditional on being colocated at any venue.

Mean P5 P50 P95

Panel A: All Exchange Members (N = 139)

Active Stocks 14.2 3.0 7.0 54.0

Active Countries 3.2 1.0 2.0 8.0

Total Volume 48.1 2.8 10.7 288.8

# Orders 84.3 11.0 29.0 497.0

Active on MTF 35.3 0.0 0.0 100.0

Agency 56.5 0.0 68.6 100.0

Colo 29.5 0.0 0.0 100.0

Colo PM 28.8 0.0 0.0 100.0

Colo TQ 8.6 0.0 0.0 100.0

Colo # PMs 0.6 0.0 0.0 4.0

Colo #|Colo 2.2 1.0 1.0 6.0

Panel B: Members Trading in Both Capacities (N = 36)

Active Stocks 29.4 6.0 23.5 68.0

Active Countries 5.3 1.0 6.0 8.0

Total Volume 138.3 9.5 78.1 489.8

# Orders 229.5 26.0 134.5 755.0

Active on MTF 66.7 0.0 100.0 100.0

Agency 51.5 20.3 49.8 86.0

Colo 55.6 0.0 100.0 100.0

Colo PM 55.6 0.0 100.0 100.0

Colo TQ 25.0 0.0 0.0 100.0

Colo # PMs 1.3 0.0 1.0 4.0

Colo #|Colo 2.8 1.0 2.5 5.5
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Table 3: Parent Order Level Summary Statistics

This table shows parent order level summary statistics. Colo is a binary variables set to one if the exchange member is colocated on the stock’s primary market or the MTFs, scaled by 100.
Buy is a binary variable for buy trades, scaled by 100. Order Size is the size of the parent order in 1k Euro. Information is the signed return from the quote midpoint before the first to
the closing price one day after the last child order execution in bps. Duration is the trading-hours adjusted time the parent order is worked in the market. Aggressiveness is the volume of
executions of marketable orders relative to the size of the parent order, in percent. MTF is the percentage of trade volume executed on an MTF. Execution Costs are the execution costs in
bps. Effective Half Spread and Price Impact are the average effective half-spread and 1 minute price impact of all aggressive (liquidity-taking) and passive (liquidity providing) child order
executions for a given parent order in bps. Volume HFT is the fraction of trade volume with an HFT counterparty in percent. Volume aggr. HFT is the fraction of trading volume where
the counterparty is a liquidity-taking HFT in percent. The last columns show the results of t-tests for differences between agency and proprietary orders. ∆

σ
is the difference standardized

by the standard deviation of the overall sample.

All Orders Agency Orders Proprietary Orders Difference

Mean P5 P50 P95 Mean P5 P50 P95 Mean P5 P50 P95 ∆ t-stat ∆
σ

Panel A: Colocation and Capacity

Colo 52.95 0.00 100.00 100.00 51.35 0.00 100.00 100.00 54.47 0.00 100.00 100.00 3.12 (3.38)∗∗∗ 0.06

Agency 48.65 0.00 0.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00

Panel B: Trade Characteristics

Buy 50.03 0.00 100.00 100.00 49.98 0.00 0.00 100.00 50.07 0.00 100.00 100.00 0.08 (0.09) 0.00

Trade Size 570.7 109.0 265.3 1,992.6 560.3 109.5 265.4 2,016.5 580.5 108.5 264.9 1,976.7 20.14 (1.15) 0.02

Information -9.41 -330.08 -7.32 312.08 -6.71 -333.87 -3.41 311.50 -11.97 -322.22 -10.67 312.20 -5.27 (-1.38) -0.03

Panel C: Execution Characteristics

Duration 4.95 2.13 4.30 8.68 5.09 2.15 4.45 9.05 4.82 2.13 4.15 8.49 -0.27 (-5.47)∗∗∗ -0.10

Aggressiveness 41.70 0.00 37.58 97.78 44.05 1.23 40.00 99.86 39.46 0.00 35.10 94.89 -4.59 (-8.28)∗∗∗ -0.15

Child Order Executions 72.87 4.00 35.00 273.00 65.72 3.00 30.00 258.00 79.65 4.00 40.00 286.50 13.92 (6.92)∗∗∗ 0.13

MTF 28.39 0.00 3.63 100.00 17.20 0.00 0.00 100.00 38.99 0.00 28.40 100.00 21.79 (33.71)∗∗∗ 0.59

Panel D: Execution Costs

Execution Costs -4.46 -112.78 -2.60 102.69 -2.22 -110.35 -0.47 108.74 -6.59 -115.96 -4.56 94.91 -4.38 (-3.51)∗∗∗ -0.06

Effective Half Spreadaggr. 4.97 0.63 3.30 14.46 5.20 0.69 3.39 14.77 4.75 0.60 3.16 14.09 -0.45 (-3.18)∗∗∗ -0.06

Effective Half Spreadpass. -3.62 -10.50 -2.48 0.74 -3.49 -9.72 -2.45 1.06 -3.74 -11.15 -2.50 0.49 -0.25 (-1.83) -0.04

Price Impact1min
aggr. 3.49 -4.52 1.97 15.78 3.75 -4.39 2.08 16.44 3.25 -4.65 1.89 15.07 -0.51 (-2.88)∗∗∗ -0.06

Price Impact1min
pass. -4.67 -15.99 -3.30 3.52 -4.68 -16.35 -3.22 3.95 -4.67 -15.16 -3.35 2.94 0.01 (0.05) 0.00

Panel E: HFT Interactions

Volume HFT 31.41 2.18 30.21 64.96 29.50 1.38 27.73 62.49 33.22 3.52 32.24 66.35 3.72 (10.58)∗∗∗ 0.19

Volume aggr. HFT 20.83 0.00 17.87 53.65 19.07 0.00 15.60 51.73 22.49 0.00 20.10 55.11 3.42 (10.61)∗∗∗ 0.19

N = 11,724 N = 5,704 N = 6,020
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Table 4: Baseline Execution Cost Analysis

This table shows parent order level regressions with stock-day fixed effects in addition to quarter-hour intraday fixed effects
for the beginning of the order’s execution. The dependent variable is the execution cost in basis points. Order Size is
the parent order size in Euro. Market Trading is the log total trading volume of all other trades during the execution
of the parent order. Buy is a binary variable equal to one for buy orders. Volatility t-10min is the standard deviation of
10ms quote midpoint returns and Return t-10min is the trade direction signed quote midpoint return in the 10min interval
before the first execution of a child order, in bps, respectively. Since the previous two variables are based on less than
10min of observations for early trades, a binary variable for trades starting before 9:10h is included in all models but not
reported. Information is the permanent price impact as measured by the trade direction signed return from the quote
midpoint immediately before the parent order to the closing quote midpoint one day after the last child order execution,
in bps. Duration is the time difference between the first and last execution of a child order, adjusted for exchange trading
hours. Aggressiveness is the volume of executions of marketable orders relative to the size of the parent order, in percent.
Child Order Executions is the number of individual child order executions. MTF is the total volume executed on MTFs
relative to the size of the parent order, in percent. The observations are weighted by the inverse probability of being in
their observed category of colocation and agency, where the probabilities are estimated in a first stage using a multinomial
logit model with the same independent variables while the standard errors are estimated using bootstrapping with 1,000
iterations. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***, **, *
denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3)

log Order Size 2.597∗∗∗ 2.663∗∗∗ 3.330∗∗∗

( 2.63) ( 2.71) ( 3.21)

log Market Trading −3.370∗ −3.441∗

(−1.67) (−1.71)

Buy 1.870 1.936 1.985
( 1.29) ( 1.34) ( 1.37)

Volatility t-10min 17.310 17.035 17.081
( 1.35) ( 1.33) ( 1.33)

Return t-10min 0.005 0.006 0.006
( 0.17) ( 0.19) ( 0.18)

Information 0.146∗∗∗ 0.145∗∗∗ 0.145∗∗∗

(27.65) (27.57) (27.59)

Duration −1.675∗∗∗ −1.033∗ −0.975∗

(−4.72) (−1.88) (−1.78)

Aggressiveness 0.305∗∗∗ 0.305∗∗∗ 0.310∗∗∗

(12.32) (12.36) (12.45)

log Child Order Executions 4.114∗∗∗ 4.142∗∗∗ 3.280∗∗∗

( 5.73) ( 5.77) ( 4.06)

MTF 0.065∗∗∗

( 2.97)

Stock-Day FE X X X
Intraday FE X X X
Inv. Prob. Weighting X X X
Exchange Member FE − − −

N = 11,717
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Table 5: Exchange Member Colocation and HFT

This table shows parent order level regressions with stock-day and intraday fixed effects. The dependent variable is the
execution cost in basis points. Agency is a binary variable equal to one for agency and zero for proprietary orders. Colo
is a binary variable equal to one if the exchange member is colocated on the primary market or on the MTF. HFT is the
fraction of the parent order executed against an HFT counterparty in percent. HFT Aggr. and HFT Pass. is the fraction of
the parent order executed against an HFT counterparty where the HFT takes or provides liquidity, respectively, in percent.
ColoHFT Aggr. and ColoHFT Pass. is the fraction of the parent order executed against a liquidity taking or providing HFT,
respectively, on a venue where the exchange member is colocated, in percent. The HFT variables are centered at zero.
The remaining variables are defined as in Table 4 and all included in all models. The observations are weighted by the
inverse probability of being in their observed category of colocation and agency, where the probabilities are estimated in
a first stage using a multinomial logit model with the same independent variables as in Table 4 while the standard errors
are estimated using bootstrapping with 1,000 iterations. Standard errors are clustered by exchange member and stock.
t-statistics are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 4.465∗∗∗ 4.365∗∗∗ 0.555 0.682 1.029 3.654
( 2.87) ( 2.80) ( 0.26) ( 0.32) ( 0.49) ( 0.96)

Colo −2.301 −5.978∗∗∗ −5.960∗∗∗ −5.659∗∗∗ −5.857∗∗∗

(−1.45) (−2.71) (−2.71) (−2.58) (−2.62)

Colo×Agency 7.223∗∗ 7.165∗∗ 6.289∗∗ 6.024∗∗

( 2.48) ( 2.47) ( 2.16) ( 2.02)

HFT 0.088∗∗

( 1.97)

HFT Aggr. 0.365∗∗∗ 0.451∗∗∗

( 6.65) ( 5.77)

HFT Pass. −0.304∗∗∗ −0.382∗∗∗

(−4.15) (−3.87)

ColoHFT Aggr. −0.211∗∗

(−2.01)

ColoHFT Pass. 0.334∗∗∗

( 2.85)

Agency×HFT Aggr. −0.090
(−0.88)

Agency×HFT Pass. −0.056
(−0.48)

Agency×ColoHFT Aggr. 0.254
( 1.64)

Agency×ColoHFT Pass. −0.189
(−1.07)

All Baseline Controls X X X X X X
Stock-Day FE X X X X X X
Intraday FE X X X X X X
Inv. Prob. Weighting X X X X X X
Exchange Member FE − − − − − −

N = 11,717
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Table 6: Exchange Member Colocation and HFT with Exchange Member FE

This table shows parent order level regressions with stock-day, intraday, and additionally exchange member fixed effects.
The dependent variable in all models is the execution cost in basis points. The independent variables are defined as in
Table 4 and Table 5. As being colocated on the MTF does not vary within exchange members, only colocation at the
stock’s primary market is considered. Consequently, trading against HFTs has been split by trading venue type. The
HFT variables are centered at zero. The observations are weighted by the inverse probability of being in their observed
category of colocation and agency, where the probabilities are estimated in a first stage using a multinomial logit model
with the same independent variables as in Table 4 while the standard errors are estimated using bootstrapping with 1,000
iterations. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***, **, *
denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 9.217∗∗∗ 9.215∗∗∗ 4.991∗ 5.111∗ 5.180∗ 4.529
( 4.06) ( 4.06) ( 1.70) ( 1.74) ( 1.77) ( 1.52)

Colo PM −2.937 −6.258∗ −6.126∗ −6.182∗ −6.879∗

(−0.90) (−1.74) (−1.70) (−1.71) (−1.91)

Colo PM×Agency 7.834∗∗ 7.763∗∗ 7.704∗∗ 7.659∗∗

( 2.22) ( 2.20) ( 2.18) ( 2.11)

HFT 0.091∗∗

( 2.10)

HFT Aggr. 0.351∗∗∗ 0.352∗∗∗

( 6.34) ( 4.75)

HFT Pass. −0.297∗∗∗ −0.353∗∗∗

(−4.28) (−3.99)

ColoHFT Aggr.
PM −0.110

(−0.91)

ColoHFT Pass.
PM 0.407∗∗∗

( 2.62)

Agency×HFT Aggr.
PM 0.038

( 0.36)

Agency×HFT Pass.
PM 0.009

( 0.07)

Agency×HFT Aggr.
MTF 0.115

( 0.93)

Agency×HFT Pass.
MTF −0.031

(−0.21)

Agency×ColoHFT Aggr.
PM 0.021

( 0.13)

Agency×ColoHFT Pass.
PM −0.361∗

(−1.73)

All Baseline Controls X X X X X X
Stock-Day FE X X X X X X
Intraday FE X X X X X X
Inv. Prob. Weighting X X X X X X
Exchange Member FE X X X X X X

N = 11,717
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Table 7: Order to Trade Ratios

This table shows parent order level regressions with stock-day fixed effects in addition to quarter-hour intraday fixed effects
for the beginning of the order’s execution. Column (2) additionally includes exchange member fixed effects. The dependent
variable is the number of child order submissions relative to the number of child order executions. The independent variables
are defined as in Table 4 and Table 5. The observations are weighted by the inverse probability of being in their observed
category of colocation and agency, where the probabilities are estimated in a first stage using a multinomial logit model
with the same independent variables as in Table 4 while the standard errors are estimated using bootstrapping with 1,000
iterations. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***, **, *
denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2)

Agency −1.425 −0.424
(−0.42) (−0.16)

Colo 10.722∗∗ 3.883
( 2.12) ( 0.99)

Colo×Agency −9.679∗ −10.481∗∗∗

(−1.80) (−2.60)

All Baseline Controls X X
Stock-Day FE X X
Intraday FE X X
Inv. Prob. Weighting X X
Exchange Member FE − X

N = 10,411
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Table 8: Child-order Execution Quality

This table shows parent order level regressions with stock-day fixed effects in addition to quarter-hour intraday fixed effects
for the beginning of the order’s execution. Columns (2) and (4) additionally include exchange member fixed effects. Each
panel shows a separate set of regression results where the dependent variables are the effective half spread and the price
impact after 1 second and 1 minute, respectively. All dependent variables are parent order level averages of the respective
measures across all aggressive (liquidity-taking) or passive (liquidity-providing) child order executions of a given parent
order. All three measures are expressed in basis points where positive (negative) values indicate a cost (profit) for the
institution. The independent variables are defined as in Table 4 and Table 5. The observations are weighted by the inverse
probability of being in their observed category of colocation and agency, where the probabilities are estimated in a first stage
using a multinomial logit model with the same independent variables as in Table 4 while the standard errors are estimated
using bootstrapping with 1,000 iterations. Standard errors are clustered by exchange member and stock. t-statistics are
given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4)

Aggr. Aggr. Pass. Pass.

Panel A: Effective Half Spread

Agency 0.421∗∗∗ 0.385∗ −0.009 0.261
( 3.09) ( 1.92) (−0.07) ( 1.49)

Colo −0.739∗∗∗ −0.147 −0.487∗∗∗ −0.302
(−5.62) (−0.62) (−3.82) (−1.40)

Colo×Agency 0.045 0.176 0.084 0.170
( 0.26) ( 0.72) ( 0.50) ( 0.87)

Panel B: Price Impact at 1 Second

Agency 0.335∗ 0.768∗∗∗ −0.331∗ 0.010
( 1.67) ( 2.80) (−1.93) ( 0.05)

Colo −0.694∗∗∗ 0.290 −0.753∗∗∗ −0.035
(−3.80) ( 0.88) (−5.09) (−0.15)

Colo×Agency 0.351 −0.096 0.616∗∗∗ 0.788∗∗∗

( 1.45) (−0.30) ( 3.05) ( 3.28)

Panel C: Price Impact at 1 Minute

Agency −0.091 0.390 −0.741∗∗∗ 0.117
(−0.31) ( 1.00) (−2.91) ( 0.38)

Colo −1.009∗∗∗ 0.084 −0.853∗∗∗ −0.385
(−3.35) ( 0.18) (−3.79) (−1.05)

Colo×Agency 0.930∗∗ 0.096 0.873∗∗∗ 0.517
( 2.34) ( 0.19) ( 2.70) ( 1.38)

All Baseline Controls X X X X
Stock-Day FE X X X X
Intraday FE X X X X
Inv. Prob. Weighting X X X X
Exchange Member FE − X − X

N = 10,926 N = 10,969
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Internet Appendix

In this internet appendix, we provide evidence that our key results remain robust to two

adjustments in our model. First, we estimate the panel regression without employing

IPW. Table A1 reports the baseline results. The coefficients for log order size, Informa-

tion, parent order duration, aggressiveness, log child order executions, and MTF trading

are consistent in magnitude and statistical significance with the main specification em-

ploying IPW. Additionally, the market trading variable that is weakly significant in the

main specification becomes insignificant in the estimation without IPW. Finally, the trade

direction variable and historical volatility become weakly significant in the specification

without IPW. Table A2 reports the relationship between execution costs on the one hand

and trading capacity, colocation, and HFT interactions on the other hand. Again, the

results remain very similar to the estimations with IPW. After controlling for the baseline

variables, agency orders have a higher execution cost than proprietary orders, colocated

proprietary orders have lower execution costs than colocated agency orders, and aggres-

sive (passive) HFT activity is positively (negatively) associated with order execution

costs. The sign, magnitude, and statistical significance of the coefficients is also similar

between the two specifications.

Table A3 contains the results after including exchange-member fixed effects. While

the overall conclusions remain unchanged we do observe some differences compared to the

IPW results. Specifically, the execution costs of agency orders while higher are weakly

significant after controlling for colocation and HFT. At the same time, the coefficient of

the colocation dummy and its interaction with the agency dummy in specifications (3)

to (6) is larger in absolute terms and statistically significant. Finally, the relationship

between execution costs and total HFT as well as its decomposition into aggressive and
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passive strategies remain largely unchanged. Finally, Figure A1 shows that the broker-

level difference in fixed effects between agency and proprietary orders is similar to the

output with IPW. Overall, the above findings indicate that our key results are robust to

the weighting scheme employed in the estimation process.

Next, we estimate all the main results by computing execution costs after including

exchange fees and subtracting any rebates. For exchanges offering fee schedules depen-

dent on the members’ total trading volume, we assume the fee/rebate corresponding to

the highest volume threshold. As some of the competing MTFs operate a maker-taker

fee structure, offering rebates to liquidity providers, the sum of fees incurred can be zero

or even negative in some cases. We report the coefficients from the estimation with and

without IPW. The results are reported in Table A4, Table A5, and Table A6. While we

do observe small differences in the statistical significance of some coefficients, the over-

all conclusions concerning the relationship between execution costs and trader capacity,

colocation, and HFT remain robust to including fees/rebates.
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Figure A1: Difference between Agency and Proprietary Trades of Colocated Exchange
Members without IPW

This graph shows the distribution of within-exchange member differences in execution costs in bps between agency and
proprietary trades that a given exchange member executes on a trading venue where they are colocated. The estimates
are based on regressions that include exchange member-capacity-colocation fixed effects in addition to baseline control
variables and stock-day and intraday fixed effects. Standard errors are clustered by exchange member and stock. The
ranges indicate 90% confidence intervals.
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Table A1: Baseline Execution Cost Analysis without IPW

This table shows parent order level regressions with stock-day fixed effects in addition to quarter-hour intraday fixed effects
for the beginning of the order’s execution. The dependent variable is the execution cost in basis points. Order Size is the
parent order size in Euro. Market Trading is the log total trading volume of all other trades during the execution of the
parent order. Buy is a binary variable equal to one for buy orders. Volatility t-10min is the standard deviation of 10ms quote
midpoint returns and Return t-10min is the trade direction signed quote midpoint return in the 10min interval before the first
execution of a child order, in bps, respectively. Since the previous two variables are based on less than 10min of observations
for early trades, a binary variable for trades starting before 9:10h is included in all models but not reported. Information is
the permanent price impact as measured by the trade direction signed return from the quote midpoint immediately before
the parent order to the closing quote midpoint one day after the last child order execution, in bps. Duration is the time
difference between the first and last execution of a child order, adjusted for exchange trading hours. Aggressiveness is the
volume of executions of marketable orders relative to the size of the parent order, in percent. Child Order Executions is the
number of individual child order executions. MTF is the total volume executed on MTFs relative to the size of the parent
order, in percent. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***,
**, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3)

log Order Size 2.646∗∗∗ 2.671∗∗∗ 3.379∗∗∗

( 2.90) ( 2.92) ( 3.56)

log Market Trading −1.226 −1.280
(−0.61) (−0.64)

Buy 2.133∗ 2.140∗ 2.173∗

( 1.68) ( 1.69) ( 1.71)

Volatility t-10min 19.553∗ 19.645∗ 19.733∗

( 1.77) ( 1.78) ( 1.78)

Return t-10min 0.000 0.000 0.000
( 0.00) ( 0.00) (−0.01)

Information 0.142∗∗∗ 0.142∗∗∗ 0.142∗∗∗

(31.40) (31.39) (31.37)

Duration −1.304∗∗∗ −1.065∗∗ −1.001∗

(−4.18) (−2.03) (−1.91)

Aggressiveness 0.305∗∗∗ 0.305∗∗∗ 0.309∗∗∗

(14.11) (14.10) (14.28)

log Child Order Executions 4.238∗∗∗ 4.243∗∗∗ 3.396∗∗∗

( 6.25) ( 6.26) ( 4.58)

MTF 0.060∗∗∗

( 3.12)

Stock-Day FE X X X
Intraday FE X X X
Inv. Prob. Weighting − − −
Exchange Member FE − − −

N = 11,717
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Table A2: Exchange Member Colocation and HFT without IPW

This table shows parent order level regressions with stock-day and intraday fixed effects. The dependent variable is the
execution cost in basis points. Agency is a binary variable equal to one for agency and zero for proprietary orders. Colo
is a binary variable equal to one if the exchange member is colocated on the primary market or on the MTF. HFT is the
fraction of the parent order executed against an HFT counterparty in percent. HFT Aggr. and HFT Pass. is the fraction of
the parent order executed against an HFT counterparty where the HFT takes or provides liquidity, respectively, in percent.
ColoHFT Aggr. and ColoHFT Pass. is the fraction of the parent order executed against a liquidity taking or providing HFT,
respectively, on a venue where the exchange member is colocated, in percent. The HFT variables are centered at zero.
The remaining variables are defined as in Table 4 and all included in all models. Standard errors are clustered by
exchange member and stock. t-statistics are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level,
respectively.

(1) (2) (3) (4) (5) (6)

Agency 4.593∗∗∗ 4.477∗∗∗ −0.304 −0.234 0.377 3.765
( 3.07) ( 2.98) (−0.15) (−0.11) ( 0.18) ( 1.08)

Colo −1.840 −6.212∗∗∗ −6.195∗∗∗ −5.819∗∗∗ −5.309∗∗∗

(−1.29) (−3.11) (−3.11) (−2.94) (−2.70)

Colo×Agency 8.840∗∗∗ 8.826∗∗∗ 7.793∗∗∗ 7.085∗∗

( 3.21) ( 3.21) ( 2.83) ( 2.55)

HFT 0.081∗∗

( 2.09)

HFT Aggr. 0.347∗∗∗ 0.468∗∗∗

( 7.02) ( 6.54)

HFT Pass. −0.296∗∗∗ −0.334∗∗∗

(−4.70) (−3.72)

ColoHFT Aggr. −0.258∗∗∗

(−2.72)

ColoHFT Pass. 0.280∗∗∗

( 2.63)

Agency×HFT Aggr. −0.122
(−1.33)

Agency×HFT Pass. −0.044
(−0.41)

Agency×ColoHFT Aggr. 0.244∗

( 1.68)

Agency×ColoHFT Pass. −0.224
(−1.36)

All Baseline Controls X X X X X X
Stock-Day FE X X X X X X
Intraday FE X X X X X X
Inv. Prob. Weighting − − − − − −
Exchange Member FE − − − − − −

N = 11,717
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Table A3: Exchange Member Colocation and HFT with Exchange Member FE without
IPW

This table shows parent order level regressions with stock-day, intraday, and additionally exchange member fixed effects.
The dependent variable in all models is the execution cost in basis points. The independent variables are defined as in
Table 4 and Table 5. As being colocated on the MTF does not vary within exchange members, only colocation at the
stock’s primary market is considered. Consequently, trading against HFTs has been split by trading venue type. The HFT
variables are centered at zero. Standard errors are clustered by exchange member and stock. t-statistics are given in
parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 8.668∗∗∗ 8.543∗∗∗ 3.607 3.756 3.843 3.489
( 4.12) ( 4.06) ( 1.37) ( 1.43) ( 1.46) ( 1.30)

Colo PM −4.806 −8.305∗∗∗ −8.150∗∗ −8.259∗∗∗ −8.417∗∗∗

(−1.63) (−2.60) (−2.55) (−2.59) (−2.64)

Colo PM×Agency 8.865∗∗∗ 8.764∗∗∗ 8.674∗∗∗ 8.515∗∗

( 2.66) ( 2.63) ( 2.60) ( 2.48)

HFT 0.095∗∗

( 2.44)

HFT Aggr. 0.343∗∗∗ 0.362∗∗∗

( 6.93) ( 5.28)

HFT Pass. −0.274∗∗∗ −0.274∗∗∗

(−4.39) (−3.20)

ColoHFT Aggr.
PM −0.123

(−1.14)

ColoHFT Pass.
PM 0.219

( 1.55)

Agency×HFT Aggr.
PM −0.026

(−0.28)

Agency×HFT Pass.
PM −0.025

(−0.22)

Agency×HFT Aggr.
MTF 0.088

( 0.75)

Agency×HFT Pass.
MTF −0.047

(−0.33)

Agency×ColoHFT Aggr.
PM 0.133

( 0.82)

Agency×ColoHFT Pass.
PM −0.231

(−1.15)

All Baseline Controls X X X X X X
Stock-Day FE X X X X X X
Intraday FE X X X X X X
Inv. Prob. Weighting − − − − − −
Exchange Member FE X X X X X X

N = 11,717
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Table A4: Baseline Execution Cost Analysis after Exchange Fees

This table shows parent order level regressions with stock-day fixed effects in addition to quarter-hour intraday fixed effects
for the beginning of the order’s execution. The dependent variable is the execution cost after adding exchange fees and
subtracting rebates in basis points. Order Size is the parent order size in Euro. Market Trading is the log total trading
volume of all other trades during the execution of the parent order. Buy is a binary variable equal to one for buy orders.
Volatility t-10min is the standard deviation of 10ms quote midpoint returns and Return t-10min is the trade direction signed
quote midpoint return in the 10min interval before the first execution of a child order, in bps, respectively. Since the
previous two variables are based on less than 10min of observations for early trades, a binary variable for trades starting
before 9:10h is included in all models but not reported. Information is the permanent price impact as measured by the
trade direction signed return from the quote midpoint immediately before the parent order to the closing quote midpoint
one day after the last child order execution, in bps. Duration is the time difference between the first and last execution of a
child order, adjusted for exchange trading hours. Aggressiveness is the volume of executions of marketable orders relative
to the size of the parent order, in percent. Child Order Executions is the number of individual child order executions.
MTF is the total volume executed on MTFs relative to the size of the parent order, in percent. The observations are
weighted by the inverse probability of being in their observed category of colocation and agency, where the probabilities are
estimated in a first stage using a multinomial logit model with the same independent variables while the standard errors
are estimated using bootstrapping with 1,000 iterations. Standard errors are clustered by exchange member and stock.
t-statistics are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3)

log Order Size 2.281∗∗ 2.378∗∗ 2.975∗∗∗

( 2.25) ( 2.36) ( 2.79)

log Market Trading −4.906∗∗ −4.970∗∗

(−2.27) (−2.30)

Buy 1.925 2.021 2.064
( 1.30) ( 1.37) ( 1.40)

Volatility t-10min 15.370 14.968 15.010
( 1.10) ( 1.07) ( 1.07)

Return t-10min 0.002 0.003 0.002
( 0.04) ( 0.07) ( 0.07)

Information 0.154∗∗∗ 0.154∗∗∗ 0.154∗∗∗

(25.15) (25.13) (25.13)

Duration −1.857∗∗∗ −0.922 −0.870
(−4.92) (−1.58) (−1.49)

Aggressiveness 0.303∗∗∗ 0.304∗∗∗ 0.309∗∗∗

(11.94) (12.00) (12.06)

log Child Order Executions 4.261∗∗∗ 4.302∗∗∗ 3.530∗∗∗

( 5.77) ( 5.83) ( 4.23)

MTF 0.059∗∗∗

( 2.59)

Stock-Day FE X X X
Intraday FE X X X
Inv. Prob. Weighting X X X
Exchange Member FE − − −

N = 11,724
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Table A5: Exchange Member Colocation and HFT after Exchange Fees

This table shows parent order level regressions with stock-day and intraday fixed effects. The dependent variable is the
execution cost after adding exchange fees and subtracting rebates in basis points. Agency is a binary variable equal to one
for agency and zero for proprietary orders. Colo is a binary variable equal to one if the exchange member is colocated on
the primary market or on the MTF. HFT is the fraction of the parent order executed against an HFT counterparty in
percent. HFT Aggr. and HFT Pass. is the fraction of the parent order executed against an HFT counterparty where the HFT
takes or provides liquidity, respectively, in percent. ColoHFT Aggr. and ColoHFT Pass. is the fraction of the parent order
executed against a liquidity taking or providing HFT, respectively, on a venue where the exchange member is colocated,
in percent. The HFT variables are centered at zero. The remaining variables are defined as in Table 4 and all included in
all models. The observations are weighted by the inverse probability of being in their observed category of colocation and
agency, where the probabilities are estimated in a first stage using a multinomial logit model with the same independent
variables as in Table 4 while the standard errors are estimated using bootstrapping with 1,000 iterations. Standard errors
are clustered by exchange member and stock. t-statistics are given in parentheses. ***, **, * denotes significance at the
1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 4.600∗∗∗ 4.496∗∗∗ 0.578 0.692 1.044 4.081
( 2.88) ( 2.81) ( 0.27) ( 0.32) ( 0.48) ( 1.02)

Colo −2.420 −6.200∗∗∗ −6.184∗∗∗ −5.879∗∗ −6.124∗∗∗

(−1.48) (−2.70) (−2.69) (−2.57) (−2.61)

Colo×Agency 7.426∗∗ 7.375∗∗ 6.485∗∗ 6.209∗∗

( 2.45) ( 2.44) ( 2.14) ( 1.99)

HFT 0.079∗

( 1.73)

HFT Aggr. 0.360∗∗∗ 0.448∗∗∗

( 6.47) ( 5.65)

HFT Pass. −0.319∗∗∗ −0.400∗∗∗

(−4.25) (−3.95)

ColoHFT Aggr. −0.202∗

(−1.87)

ColoHFT Pass. 0.351∗∗∗

( 2.88)

Agency×HFT Aggr. −0.104
(−0.99)

Agency×HFT Pass. −0.067
(−0.55)

Agency×ColoHFT Aggr. 0.260
( 1.64)

Agency×ColoHFT Pass. −0.189
(−1.04)

All Baseline Controls X X X X X X
Stock-Day FE X X X X X X
Intraday FE X X X X X X
Inv. Prob. Weighting X X X X X X
Exchange Member FE − − − − − −

N = 11,724
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Table A6: Exchange Member Colocation and HFT with Exchange Member FE after Ex-
change Fees

This table shows parent order level regressions with stock-day, intraday, and additionally exchange member fixed effects.
The dependent variable is the execution cost after adding exchange fees and subtracting rebates in basis points. The
independent variables are defined as in Table 4 and Table 5. As being colocated on the MTF does not vary within
exchange members, only colocation at the stock’s primary market is considered. Consequently, trading against HFTs has
been split by trading venue type. The HFT variables are centered at zero. The observations are weighted by the inverse
probability of being in their observed category of colocation and agency, where the probabilities are estimated in a first stage
using a multinomial logit model with the same independent variables as in Table 4 while the standard errors are estimated
using bootstrapping with 1,000 iterations. Standard errors are clustered by exchange member and stock. t-statistics are
given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 9.234∗∗∗ 9.232∗∗∗ 4.378 4.486 4.555 3.988
( 3.99) ( 3.98) ( 1.45) ( 1.48) ( 1.51) ( 1.30)

Colo PM −3.296 −7.112∗ −6.993∗ −7.051∗ −7.689∗∗

(−0.99) (−1.91) (−1.88) (−1.89) (−2.06)

Colo PM×Agency 9.002∗∗ 8.938∗∗ 8.878∗∗ 8.742∗∗

( 2.45) ( 2.43) ( 2.41) ( 2.31)

HFT 0.082∗

( 1.84)

HFT Aggr. 0.348∗∗∗ 0.356∗∗∗

( 6.18) ( 4.72)

HFT Pass. −0.316∗∗∗ −0.366∗∗∗

(−4.42) (−4.00)

ColoHFT Aggr.
PM −0.108

(−0.87)

ColoHFT Pass.
PM 0.416∗∗∗

( 2.60)

Agency×HFT Aggr.
PM 0.011

( 0.10)

Agency×HFT Pass.
PM −0.021

(−0.16)

Agency×HFT Aggr.
MTF 0.100

( 0.79)

Agency×HFT Pass.
MTF −0.033

(−0.22)

Agency×ColoHFT Aggr.
PM 0.052

( 0.30)

Agency×ColoHFT Pass.
PM −0.350

(−1.63)

All Baseline Controls X X X X X X
Stock-Day FE X X X X X X
Intraday FE X X X X X X
Inv. Prob. Weighting X X X X X X
Exchange Member FE X X X X X X

N = 11,724
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