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ZUSAMMENFASSUNG

Die erfolgreiche Navigation in einer komplexen Umgebung erfordert
eine zuverldssige Reprédsentation derselben, um aus den gegebenen
Informationen die richtigen Schliisse fiir das Verhalten ziehen zu
konnen. Allerdings ist es fiir Lebewesen aller Art auch wichtig sich
schnell an Verdnderungen der Umwelt anpassen und flexibel auf
diese reagieren zu konnen. Das Gehirn muss also in der Lage sein
Informationen stabil tiber lange Zeitrdume zu speichern und gle-
ichzeitig wichtige neue Informationen schnell zu integrieren.

Sensorische Reize werden im Gehirn als Aktivitdtsmuster spezifischer
Gruppen von Neuronen dargestellt. Uber deren langfristige Dynamik
ist wenig bekannt. Das vorherrschende Bild ist, dass das Gehirn
diese Aufgabe auf eine dhnliche Art und Weise erfiillt wie Computer:
wichtige Informationen werden fest eingespeichert und daran dndert
sich nur etwas durch das Lernen neuer Informationen. Da davon aus-
gegangen wird, dass Informationen im Gehirn in den synaptischen
Verbindungen zwischen Neuronen gespeichert werden, wéaren synap-
tische Verbindungen und damit auch die Aktivititsmuster der Neuro-
nen (ohne duflere Einfliisse) stabil, d.h. derselbe Stimulus wiirde stets
dieselbe Aktivitdt als Antwort hervorrufen. Aktuelle Studien haben in
den letzten Jahren gezeigt, dass dies nicht unbedingt der Fall zu sein
scheint. Es gibt immer mehr Evidenz daftir, dass sich die synaptis-
che Verschaltung biologischer neuronaler Netze konstant verdndert,
und das insbesondere auch ohne &dufiere Einfliisse. Diese Erkennt-
nisse sprechen dafiir, dass sich neuronale Netze im Gehirn in einem
intrinsisch dynamischen Zustand befinden. Zudem konnte gezeigt
werden, dass auch neuronale Aktivititsmuster in vielen cortikalen
(und nicht-cortikalen) Arealen nicht so stabil sind, wie angenommen
wurde, und der immer gleiche Stimulus, der zu einem Zeitpunkt
stabil immer dieselbe Gruppe von Neuronen aktiviert, {iber die Zeit
andere Aktivititsmuster hervorruft. Wahrend diese Anderungen in-
nerhalb einzelner Messreihen nicht dokumentiert sind, die Aktivitat
also tiber Minuten bis Stunden stabil zu sein scheint, kann es vorkom-
men, dass sich Aktivititsmuster von einem Tag zum anderen veran-
dern.

Hier stellen sich uns die folgenden Fragen: Wie stabil sind diese Ak-
tivititsmuster auf der Ebene von neuronalen Populationen — beste-
hend aus mehreren hundert Neuronen - tatsichlich, wenn es keine
dufleren Einfliisse gibt? Welchen Einfluss hat Lernen auf diese Dy-
namik? Und wie wirkt sich Verdnderung der synaptischen Verschal-
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tung eines Netzwerks generell auf die Aktivitdt des Netzwerks aus?
Wir untersuchen diese Fragen im Zusammenspiel der Analyse ex-
perimenteller Daten und dem theoretischen Modell eines neuronalen
Netzwerks.

Die verwendeten experimentellen Daten stammen aus chronischen 2-
Photon-Mikroskopie-Experimenten unserer Kollaboratoren aus Mainz,
aufgenommen im auditorischen Cortex (zustidndig fiir die Verarbeitung
von Tonen im Gehirn) wacher Mause. Hierbei wird zundchst mithilfe
eines Virus ein Protein in den Neuronen exprimiert, das bei Aktivitat
der Neuronen fluoresziert. Diese Fluoreszenz kann dann — angeregt
von einem LASER - durch ein Fenster im Schéddel der Maus aus-
gelesen werden, wahrend der Maus Tone vorgespielt werden. Der
auditorische Cortex eignet sich gleich aus mehreren Griinden fiir die
Untersuchung der Dynamiken von Aktivitdtsmustern. Zum Einen
erlaubt er eine sehr kontrollierte Prasentation der Stimuli, da diese
definitiv wahrgenommen werden, anders als z.B. visuelle Stimuli, bei
denen auch noch die Blickrichtung beachtet werden muss. Zum An-
deren ist das auditorische System in der Maus als Fluchttier stark
ausgepragt und der auditorische Cortex nimmt einen relativ grofsen
Teil des gesamten Neocortex ein.

Aufserdem konnte in fritheren Studien gezeigt werden, dass in einer
lokalen Population mehrere unterschiedliche Stimuli hdufig iden-
tische Aktivititsmuster hervorrufen. Das limitiert die Anzahl der
moglichen Aktivitditsmuster und reduziert die Komplexitat, da nicht
mehr komplexe hochdimensionale Muster betrachtet werden miissen,
sondern lediglich jedem Stimulus aus einer handvoll Moglichkeiten
ein Muster zugeordnet werden kann. Dass unterschiedliche Stimuli
identische Antworten hervorrufen, scheint ersteinmal kontraintuitiv.
Da diese Gruppierung der Stimuli aber in unterschiedlichen lokalen
Populationen in ein und demselben Tier stets unterschiedlich ist,
ergibt sich auf Ebene des kompletten auditorischen Cortex ein ein-
deutiges globales Aktivititsmuster fiir jeden Stimulus. Diese lokalen
Antwortmuster eignen sich zur quantitativen Analyse der Anderun-
gen, da wir einfach klassifizieren kénnen, ob ein Stimulus an einem
Tag ein Muster A oder ein Muster B oder gar keine lokale Antwort
hervorruft.

Unter Zuhilfenahme dieser nahezu diskreten lokalen Aktivititsmuster
sehen wir, dass sich diese im auditorischen Cortex von Mausen tiber
mehrere Tage hinweg — selbst unter stabilen dufleren Bedingungen —
kontinuierlich neu zusammensetzen. Uber einen Zeitraum von zwei
Tagen evozieren lediglich 50% der Stimuli noch dieselbe Antwort,
wihrend 20% eine andere Antwort hervorrufen, und 30% der Stimuli,
die eine Antwort hervorgerufen haben, diese verlieren. Dieser letzte
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Teil wird ausgeglichen durch eine ungefdhr ebenso grofie Anzahl von
Stimuli, die zunichst keine Antwort evoziert haben, dies aber nun
tun. Das bedeutet, dass tiber die Tage hinweg immer neue Neuronen
in die Verabreitung von Sinneseindriicken involviert werden. Das Sys-
tem befindet sich aber in einem dynamischen Gleichgewichtszustand.
Sowohl die Anzahl der aktiven Neuronen, als auch die Anzahl der
Stimuli, die eine Antwort hervorrufen, und auch die Moglichkeit der
Vorhersage des Stimulus aus den Aktivititsmustern bleiben konstant.
Wihrend sich also die einzelnen Komponenten des Systems verdn-
dern, bleiben diese Grofien erhalten.

Um zu untersuchen, welchen Einfluss Lernen auf diese intrinsische
Dynamik hat, untersuchen wir experimentelle Daten von Mdusen,
die klassischer Konditionierung unterzogen werden. Bei dieser géngi-
gen experimentellen Methode lernen die Tiere einen der Stimuli mit
einem elektrischen Schock zu verbinden. Der Lernprozess wird aus
dem Verhalten der Méause ersichtlich, wenn dieser Stimulus nach
der Konditionierung ohne Schock gespielt wird: Die Méuse erstarren.
Auf cortikaler Ebene sehen wir, dass nach der Konditionierung ver-
mehrt Stimuli eine Antwort evozieren, die zuvor keine evoziert haben.
Dieser Effekt betrifft insbesondere Stimuli, die von der Maus als dhn-
lich zum konditionierten Stimulus wahrgenommen werden. Aufier-
dem aktivieren diese Stimuli hdufiger dasselbe Aktivitdtsmuster, das
auch vom konditionierten Stimulus aktiviert wird. Die Zuordnung
zweier Stimuli auf ein einziges Aktivitatsmuster wird haufig als kog-
nitive Verkniipfung dieser Stimuli verstanden. Wir sehen also einen
Anstieg der Verkniipfungen nicht-konditionierter Stimuli mit dem
konditionierten Stimulus, und zwar abhéngig davon, wie sehr die
nicht-konditionierten Stimuli dem konditionierten Stimulus dhneln.
Diese Beobachtung der erhohten Verkniipfungen im Cortex ist aufSer-
dem prediktiv fiir eine Generalisierung im Verhalten der Mduse. So
zeigen die Tiere nicht nur fiir den konditionierten Stimulus ein Er-
starren, sondern auch fiir dhnliche Stimuli — nicht jedoch fiir Stimuli,
die dem konditionierten Stimulus nicht dhneln.

Zur detaillierteren Beschreibung dieser Dynamiken definieren wir
zehn grundlegende Operationen, die alle moglichen Ubergéinge von
Antworten auf Stimuli umfassen. Diese Uberginge beinhalten eine
Neuzuordnung von Stimuli auf andere Aktivititsmuster, sowie das
Entstehen neuer Aktivititsmuster oder das Verschwinden von Aktiv-
itatsmustern. Mithilfe dieser Operationen konnen wir die Dynamik
weiter aufschliissseln und finden, dass wahrend und nach der Kon-
ditionierung vermehrt Operationen gefunden werden, die Stimuli
miteinander verkniipfen, sowie weniger Operationen, die Verkniip-
fungen zwischen Stimuli aufbrechen. Das lésst sich interpretieren als
eine erhohte Bildung von Assoziationen und eine Stabilisierung bere-
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its existierender Assoziationen.

Zusammengefasst zeigt die Analyse experimenteller Daten, dass Ak-
tivitdtsmuster im auditorischen Cortex von Mdusen kontinuierlicher
Verdanderung unterliegen. Diese kontinuierliche Verdnderung wird
beeinflusst durch klassische Konditionierung hin zu einer Verkniip-
fung dhnlicher Stimuli und einer erhéhten Bildung von Assoziatio-
nen.

Um zu untersuchen, auf welche Art und Weise Veranderungen der
synaptischen Verbindungen zu Verdnderungen der Aktivitit eines
neuronalen Netzes fithren, implementieren wir ein Feuerratenmod-
ell aus excitatorischen und inhibitorischen Neuronen. Um moglichst
wenig Annahmen treffen zu miissen, sind sowohl die Verbindungs-
matrix als auch die Stimuli zuféllig. Wir variieren die Starke der rekur-
renten Verbindungen und die Stirke der Inhibition im Vergleich zur
Excitation. Neben einem unistabilen Input-dominierten Regime fiir
schwache rekurrente Verbindungen, in welchem jeder Stimulus eine
Antwort unabhéngig vom Netzwerk evoziert, und einem unistabilen
Netzwerk-dominierten Regime fiir starke rekurrente Verbindungen
und schwache Inhibition, in welchem jedes Netzwerk eine Antwort
unabhédngig vom Stimulus generiert, finden wir ein multistabiles
Regime fiir starke rekurrente Verbindungen und starke Inhibition.
In diesem Regime ist das Modell in der Lage Eigenschaften der Pop-
ulationsaktivitdt im auditorischen Cortex der Maus zu reproduzieren,
wie z.B. spdrliche Aktivitdt, eine breite Verteilung der Feuerraten und
auch die typische Zuordnung mehrerer Stimuli auf eines von weni-
gen moglichen Aktivititsmustern.

In diesem Modell einer lokalen Population im auditorischen Cortex
untersuchen wir den Effekt synaptischer Veranderung auf die Aktiv-
itdit des Netzwerks. Wir verdndern die synaptischen Verbindungen
zufallig mit einer multiplikativen Version eines Ornstein-Uhlenbeck-
Prozesses, der an experimentelle Daten angepasst wurde und so die
log-normale Verteilung der Synapsenstidrken in einem Gleichgewichts-
zustand belédsst. Dieser kontinuierliche Umbau der Synapsen fiihrt
zu Perioden mit stabilen Aktivititsmustern als Antwort auf Stimuli,
die immer wieder unterbrochen werden von abrupten Ubergingen
zu neuen Aktivititsmustern. Um diese abrupten {ibergidnge besser
zu verstehen, untersuchen wir die Fixpunkte des Systems. Da das
Modell im multistabilen Regime operiert, haben wir stets mehrere
stabile und instabile Fixpunkte. Fiir einen gegebenen Stimulus be-
wegt sich die Trajektorie der Netzwerkaktivitdt typischerweise ent-
lang mehrerer instabiler Fixpunkte, bis sie in einem stabilen Fixpunkt
konvergiert. Eine Veranderung des Netzwerks konnte auf zwei Arten
zu abrupten Ubergingen fithren. Zum Einen kénnten leichte Ver-
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schiebungen, also quantitative Verdnderungen, z.B. eines instabilen
Fixpunkts zu einer Umleitung der Trajektorie fiithren, die dann in
einem anderen stabilen Fixpunkt endet, der aber auch schon vorher
existiert hat. Zum anderen konnte sich die Fixpunktlandschaft qual-
itativ dndern, also Fixpunkte verschwinden oder entstehen, was zu
einer Umleitung der Trajektorie auf diese neuen Fixpunkte fiithren
konnte.

Wir verwenden eine numerische Methode um die Fixpunkte des Sys-
tems zu finden, indem wir das Quadrat der ersten Ableitung der En-
ergielandschaft minimieren. Dadurch wird jeder Fixpunkt, an dem
die Ableitung per Definition 0 ist, zu einem Minimum der Funk-
tion und gingige Optimierungsalgorithmen konnen verwendet wer-
den. Wir klassifizieren die Fixpunkte in stabile und instabile und
untersuchen Verdnderungen der Fixpunktlandschaft von einem Zeit-
punkt zum néchsten. Fixpunkte konnen identisch bleiben, sie kénnen
sich verschieben oder sie konnen verschwinden, bzw. neue konnen
entstehen. Wir finden, dass abrupte Ubergénge héufig zusammen-
fallen mit stabilen Fixpunkten, die in der Nahe bereits existierender
Fixpunkte entstehen oder verschwinden und mit instabilen Fixpunk-
ten die entstehen oder verschwinden — unabhéngig von der Distanz
dieser zu bereits existierenden Fixpunkten. Neu entstehende oder ver-
schwindende stabile Fixpunkte in der Ndhe bereits existierender Fix-
punkte fithren zu einer Umleitung der Trajektorie auf diese, wohinge-
gen neu entstehende oder verschwindende instabile Fixpunkte zu
einer Umleitung friiher in der Trajektorie fithren. Beides sind qualita-
tive Anderungen der Fixpunktlandschaft und beides fiihrt zu einem
abrupten Ubergang der Aktivititsmuster.

Zusammenfassend konnen wir in einem Feuerratenmodell Eigen-
schaften des auditorischen Cortex reproduzieren und beobachten,
dass kontinuierliche Verdnderung der synaptischen Verbindungen
zu Perioden stabiler Aktivitat fithrt — unterbrochen von abrupten
Ubergingen von einem Zeitpunkt zum néchsten, die einhergehen mit
qualitativen und nicht qunatitativen Verdnderungen der Fixpunkte
des Systems.

Insgesamt sehen wir, dass neuronale Aktivitditsmuster im auditorischen
Cortex weniger stabil sind als angenommen. Es ist nach wie vor un-
klar, wie aus diesen instabilen Reprédsentationen wahrgenommene
Stabilitdt entstehen kann. Homoostatische Mechanismen kénnten eine
Rolle spielen. Auch unklar ist, ob Stabilitdt {iberhaupt unbedingt
erstrebenswert ist, oder ob das Gehirn vielmehr von einer hoheren
Flexibilitat profitiert. Vorteile konnten sein die verbesserte Fahigkeit
zu verallgemeinern oder die Vermeidung von Overfitting. Demnach
wiére das Resultat der Evolution nicht ein Organ zustdndig fiir max-
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imal gute Erinnerung, sondern vielmehr ein Organ, das in der Lage
ist, sich optimal an immer neue Situationen anzupassen.

Lernen, insbesondere klassische Konditionierung, beeinflusst diese
Dynamik hin zu einer differentiellen Generalisierung, sodass Stim-
uli, die dem konditionierten Stimulus dhneln, d4hnliche cortikale Ak-
tivitdit und dhnliches Verhalten hervorrufen. Eine solche General-
isierung kann auch bei Konditionen wie z.B. post-traumatischer Be-
lastungsstorung beobachtet werden. Wir beschreiben einen moglichen
Mechanismus auf der Ebene lokaler neuronaler Populationsaktiv-
itdten.

Ein Feuerratenmodell ist in der Lage Aktivititsstatistiken des audi-
torischen Cortex zu reproduzieren in einem Regime, das dominiert
wird von starken rekurrenten Verbindungen und einer noch starkeren
Inhibition. Interessanterweise wird gemeinhin angenommen, dass
auch der auditorische Cortex im Vergleich zu anderen sensorischen
Arealen inhibitorisch geprdgt ist, was z.B. an der relativ schwachen
und sparlichen Aktivitat ersichtlich ist.

Zuféllige kontinuierliche Verdnderungen der synaptischen Verbindun-
gen im Modell fithren zu Phasen mit wenig Verdnderung der Aktiv-
ititsmuster und abrupten Ubergéngen dazwischen. Das Auftreten
dieser komplexen Dynamik in einem solch simplen System ladsst da-
rauf schliefSen, dass dhnliche Dynamiken wahrscheinlich auch im Cor-
tex zu finden sind. Vielleicht sind sie das zugrundeliegende Prinzip
einer Art von Lernen, bei der wir Lernstoff wiederholen und kaum
merklich vorankommen, bis es zu einem Moment der Erkenntnis
kommt und wir plotzlich etwas verstehen, was wir vorher nicht ver-
standen haben.
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ABSTRACT

Navigating a complex environment is assumed to require stable cor-
tical representations of environmental stimuli. Previous experimental
studies, however, show substantial ongoing remodeling at the level
of synaptic connections, even under behaviorally and environmen-
tally stable conditions. It remains unclear, how these changes affect
sensory representations on the level of neuronal populations during
basal conditions and how learning influences these dynamics.

Our approach is a joint effort between the analysis of experimen-
tal data and theory. We analyze chronic neuronal population activity
data — acquired by out collaborators in Mainz — to describe population
activity dynamics during basal dynamics and during learning (fear
conditioning). The data analysis is complemented by the analysis of
a circuit model investigating the link between a neural network’s ac-
tivity and changes in its underlying structure.

Using chronic two-photon imaging data recorded in awake mouse
auditory cortex, we reproduce previous findings that responses of
neuronal populations to short complex sounds typically cluster into a
near discrete set of possible responses. This means that different stim-
uli evoke basically the same response and are thus grouped together
into one of a small set of possible response modes. The near discrete set
of response modes can be utilized as a sensitive and robust means to
detect and track changes in population activity over time. Doing so
we find that sound representations are subject to a significant ongo-
ing remodeling across the timespan of days under basal conditions.
The mapping of sound stimuli onto response modes can undergo
changes, while at the same time some repsonse modes disappear or
new response modes emerge. Auditory cued fear conditioning intro-
duces a bias into these ongoing dynamics, resulting in a differential
generalization both on the level of neuronal populations and on the
behavioral level. This means that sounds that are perceived similar
to the conditioned stimulus (CS+) show an increased co-mapping to
the same response mode the CS+ is mapped to. This differential gen-
eralization is also observed in animal behavior, where sounds similar
to the CS+ result in the same freezing behavior as the CS+, whereas
dissimilar sounds do not.

Further insight into these dynamics is gained by identifying a set

of ten operations capturing all possible transitions the response to
a stimulus can undergo between imaging sessions. These operations
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capture the remapping of stimuli between persistent response modes
as well as disappearing or emerging response modes. Deploying this
framework, we can further dissect the effects of auditory cued fear
conditioning. We observe an increase in operations mapping stim-
uli onto the same response mode accompanied by a decrease in op-
erations separating stimuli that were previously evoking the same
response mode. This can be interpreted as an increase in the forma-
tion of associations, as well as a stabilization of existing associations.
Together with the differential generalization our observations could
provide a potential mechanism of stimulus generalization, which is
one of the most common phenomena associated with post-traumatic
stress disorder, on the level of neuronal populations.

To investigate how the aforementioned changes in neuronal popu-
lation activity are linked to changes in the underlying synaptic con-
nectivity, we devised a circuit model of excitatory and inhibitory neu-
rons. We studied this firing rate model to investigate the effect of
gradual changes in the network’s connectivity on its activity. Apart
from an input dominated uni-stable regime (one response per stimu-
lus independent of the network) and a network dominated uni-stable
regime (one response per network independent of the stimulus), we
also find a multi-stable regime for strong recurrent connectivity and
a high ratio of inhibition to excitation. In this regime the model re-
produces properties of neural population activity in mouse auditory
cortex, including sparse activity, a broad distribution of firing rates,
and clustering of stimuli into a near discrete set of response modes.
This clustering in the multi-stable regime means that, not only can
identical stimuli evoke different responses, depending on the net-
work’s initial condition, but different stimuli can also evoke the same
response.

Applying gradual drift to the network connectivity we find periods of
stable responses, interrupted by abrupt transitions altering the stim-
ulus response mapping. We study the mechanism underlying these
transitions by analyzing changes in the fixed points of this network
model, employing a method to numerically find all the fixed points
of the system. We find that such abrupt transitions typically cannot
be explained by the mere displacement of existing fixed points, but
involve qualitative changes in the fixed point structure in the vicinity
of the response trajectory. We conclude that gradual synaptic drift
can lead to abrupt transitions in stimulus responses and that qual-
itative changes in the network’s fixed point topology underlie such
transitions.

In summary we find that cortical networks display ongoing repre-
sentational drift under basal conditions that is biased towards a dif-
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ferential generalization during fear conditioning. A circuit model is
able to reproduce key characteristics of auditory cortex, including a
clustering of stimulus responses into a near discrete set of response
modes. Implementing synaptic drift into this model leads to periods
of stable responses interrupted by abrupt transitions towards new re-
sponses.

The observed instability of representations in auditory cortex is in
contrast to our perceived stability of the environment. It remains a
matter of debate where this stability arises or what this instability
might be useful for. Advantages could include an increased ability to
generalize or a prevention of overfitting.

Abrupt representational transitions were found in a firing rate model
subject to synaptic drift. The occurence of such complex dynamics
in relatively simple systems let us conclude that something similar
might also be found in cortical systems. We speculate that abrupt
transitions might underlying cognitive processes as sudden insights
or even creativity.
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INTRODUCTION

Sensory-evoked activity patterns at the level of sensory cortices are
believed to serve as neural correlate of a percept. In light of our daily
experience that the perception of the world around us is stable, i.e.
that the same sensory stimulus evokes the same percept from day
to day, sensory representations in the brain have been thought to
be stable, too. This is in stark contrast, however, with recent findings
showing that neuronal tuning to sensory stimuli is subject to ongoing
remodeling even under stable conditions. This remodeling of func-
tional properties of neurons has been reported in different cortical
and non-cortical areas of the mouse brain — areas as diverse as hip-
pocampus (Mankin et al.,, 2012, Ziv et al.,, 2013, Clopath et al., 2017,
Hainmueller and Bartos, 2018), barrel cortex (Margolis et al., 2012),
visual cortex (Deitch et al., 2021), motor cortex (Rokni et al., 2007,
Huber et al., 2012, Clopath et al., 2017), and posterior parietal cortex
(Driscoll et al., 2017, Rule et al., 2019). It remains unclear, however,
how these changes to the function of individual neurons affect func-
tional properties of sensory representations at the level of neuronal
populations and how such ongoing changes are associated to to those
expected to occur during learning. This gap in knowledge is due to
both the shortage of data and the difficulty to establish appropriate
frameworks to describe complex dynamics of neuronal populations.

The increasing body of evidence for changing neuronal representa-
tions, even in the absence of an apparent learning paradigm - also
called representational drift — is in line with recent findings about the
synaptic structure of the brain. Synapses have been shown to be plas-
tic during learning, in the absence of learning and even in the absence
of neuronal activity (Yasumatsu et al., 2008, Loewenstein et al., 2011,
Rubinski and Ziv, 2015, Dvorkin and Ziv, 2016, Villa et al., 2016).
Synapses appear to be in a constant state of flux. While learning in-
duced plasticity is known since Hebb (1949), recent studies highlight
seemingly random structural changes, often termed synaptic drift.

This drift — both on the level of synapses and on the level of neuronal
representations — raises the question, at what level this perceived sta-
bility does arise. Functional stability (in our case seemingly stable
perception) despite structural changes (synaptic and representational
drift) is nothing special and seen in many fields, be it ecological sci-
ences, where ecosystems (like the rain forest) are stable although sin-
gle components (e.g. individual animals) turn over at a high rate com-
pared to the entire system, social sciences, where a society continues
to function even though individuals performing certain functions (e.g
officials, politicians) fluctuate, or biology, where the proteins making
up an organism have half life times of minutes to hours, but organ-
isms maintain their function for years. This seems to be analogous to
the brain and many theoretical publications have focused on main-
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taining functional stability despite structural remodeling (e.g. Vogels
et al.,, 2011, Litwin-Kumar and Doiron, 2014, Mongillo et al., 2017,
Fauth and Rossum, 2019), mostly suggesting homeostatic plasticity
mechanisms to maintain stability.

Mouse auditory cortex is a well suited system for the study of longevity
of sensory representations. Previous work has shown that at the scale
of local neuronal populations sound stimuli lead to the non-linear
activation of groups of neurons (Bathellier et al., 2012, Atencio and
Schreiner, 2013, See et al., 2018). A specific local group of neurons
is typically activated by different sounds and thus different stimuli
evoke near identical response patterns. We called these stereotypical
response patterns, evoked by a subset of stimuli in a local popula-
tion of imaged neurons a response mode (Bathellier et al., 2012). The
combination of different stimuli that are mapped to a given response
mode locally varies across auditory cortex, resulting in distinct sound
representations at the scale of the entire auditory cortex through a
combinatorial pattern of multiple local response modes. This global
description of neuronal population activity based on local response
modes is sufficient to predict spontaneous categorization behavior in
mice trained to discriminate pairs of sound stimuli (Bathellier et al.,
2012). The discrete nature of response modes at the level of neuronal
populations provides a sensitive and robust readout for representa-
tional changes occurring over the time course of days and allows for
a systematic analysis of their dynamics.

We utilize these response modes to define a set of operations to sys-
tematically assess and deconstruct representational drift into its basic
constituents. With a discrete mapping of stimulus responses onto re-
sponse modes, we are able to identify and classify changes, like the
re-mapping of a stimulus from one response mode to another or dis-
appearing and emerging response modes. A complete set of unique
operations helps us to better describe ongoing representational drift
during basal conditions (i.e. without any explicit learning paradigm)
and during learning.

Cell assemblies were first postulated by Hebb (1949) as a group of
neurons responsible for a certain task (e.g. a movement in motor
cortex, a sensory impression in sensory cortex). Many interesting as-
pects of cell assemblies — like associative memory (Hopfield, 1982),
multistability (e.g. Stern et al., 2014), or stability towards synaptic
drift (e.g. Kossio et al., 2021) — have been investigated in theoretical
studies. In experimental work cell assemblies are harder to grasp,
however, due to their distributed nature. In auditory cortex the above
mentioned combinatorial code suggests cell assemblies that are dis-
tributed across the entire auditory cortex. As experimental data is
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limited to the simultaneous recording of several hundred cells in
a single field of view (FOV), we find it difficult to call these local
population response patterns cell assemblies and instead talk about
response modes. Response modes are thus only a part of cell assem-
blies and might not capture their functional relevance in its entirety,
they might, however, be of importance to putative readout neurons,
which would only ever receive input from a subset of all neurons in
auditory cortex.

To gain a mechanistic understanding of response modes we imple-
mented a firing rate model to model neuronal population responses
in auditory cortex. Firing rate models of neuronal networks were ini-
tially used to model the behavior of entire populations of neurons
(Wilson and Cowan, 1972, Wilson and Cowan, 1973). One excitatory
and one inhibitory population of neurons were assumed to consist of
largely random connections within, but precise connections between
and could thus be described by two coupled non-linear differential
equations of population activity. While initially proposed as popula-
tions of neurons the units of this model can also be interpreted as sin-
gle neurons — assuming exact timing of spikes is negligible. Regard-
less of the interpretation as populations or single neurons, already
these very simple models show very complex behavior like hystere-
sis (Wilson and Cowan, 1972), different dynamic regimes (Wilson and
Cowan, 1973), bifurcations (Borisyuk and Kirillov, 1992, Beer, 1995),
chaotic behavior (Pasemann, 2002), spontaneous symmetry breaking
(Fasoli et al., 2016).

In larger firing rate networks we typically find three dynamic regimes:

(a) a uni-stable regime, where the system has one attractor state, it
converges to,

(b) a multi-stable regime, where the system has multiple stable at-
tractor states, and

(c) a chaotic regime.

The system can typically switch between dynamic regimes by chang-
ing parameters such as synaptic gain (e.g. Wilson and Cowan, 1972),
recurrent connection strength (e.g. Ostojic, 2014), the ratio of inhi-
bition to excitation (e.g. Zhang and Saggar, 2020). These different
dynamic regimes and the complexity of observed behaviors make fir-
ing rate models well suited to find a regime able to reproduce key
characteristics of neuronal representations in mouse auditory cortex,
most importantly the observed clustering of stimulus responses into
response modes.

The firing rate model of auditory cortex is a tool to simultaneously
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investigate both synaptic and representational drift. Due to no avail-
able experimental method up to now the simultaneous recording of
a biological network’s synapses and its neuronal activity is impossi-
ble. It is, however, possible to study them in a model, as both can
be read out. Synaptic drift can be implemented in different ways,
ideally leaving the synapse size distribution in a steady state via a
random process fit to experimental recordings (e.g. Loewenstein et
al., 2011). At the same time the network’s responses to stimulation
can be recorded and analyzed. In the recent past a lot of studies have
focused on, how representational stability can be achieved despite
synaptic changes (e.g. Vogels et al., 2011), but not so much on the
link between synaptic and representational drift. Instead of leaving
representations stable, ongoing synaptic drift can lead to changes in
neuronal activity patterns.

The dynamics of representational drift in this firing rate model sub-
ject to synaptic drift can be quantified for static stimuli and linked
to changes in the underlying network connectivity via an analysis of
the energy landscape of the system. This energy landscape is shaped
by the connectivity matrix and determines the representational dy-
namics in a way, that the stimulus trajectory is guided through this
landscape into a well of attraction, where the activity converges to
a local minimum. The energy landscape can be described to a large
extent by knowledge of the system’s fixed points. Apart from mul-
tiple stable fixed points — local minima of the energy landscape —
dynamics are also shaped by unstable fixed points, i.e. local maxima
and (high-dimensional) saddle points between local minima. As the
network connectivity is drifting the energy landscape is also changed
and different phenomena could lead to response changes: stable fixed
points could slowly move leading to slowly drifting network repre-
sentations or unstable fixed points could move slowly, which could
have no effect on the response or cause an abrupt change, whenever
the local maximum between two local minima is shifted in a way that
leads to a rerouting of the activity trajectory from one of the minima
to the other. Of course qualitative changes, i.e. emerging or disappear-
ing fixed points could have a major effect on the network activity, too.

In this thesis we want to address several aspects of synaptic drift,
its link to representational drift, the nature and statistics of repre-
sentational drift, and the difference between representational drift
and learning induced changes of representations. This is done in two
parts: Part iii describes results of the analysis of experimental data
and Part iv consists of modeling studies.

We start with a brief recapitulation of some basic concepts useful for
the understanding of the subsequent analyses (Part ii) giving detailed
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background on the auditory system (Chapter 1), the experimental
recording of neuronal activity (Chapter 2), models of neuronal net-
works (Chapter 3) and the trade-off between flexibility and stability
in general (Chapter 4). In Chapter 5 we describe representational sta-
bility (or the lack thereof) in mouse auditory cortex making use of re-
sponse modes and find substantial representational drift under basal
conditions that is biased towards a differential increase of associations
during learning. To reveal the functional relevance of these dynamics
and deconstruct them into their essential parts we then devise a set
of ten elementary operations as a tool to further investigate represen-
tational drift and disentangle the increase of associations into both
the stabilization of existing associations and the formation of new as-
sociations in Chapter 6.

The experimental findings of those two chapters will be comple-
mented by model studies in the next two chapters. In Chapter 7 we
formulate a firing rate model to reproduce findings from mouse au-
ditory cortex and describe a regime with similar population statistics
for strong recurrent connections and strong inhibition. In this regime
stimulus responses are clustered randomly into response modes. In
order to analyze the effect of synaptic drift on network resposnes,
synaptic drift is added to this model in Chapter 8 leading to periods
of stable stimulus responses, which are sometimes interrupted by
abrupt transitions towards new activity patterns. These abrupt tran-
sitions coincide with qualitative changes in the topology of the fixed
points of the network. Finally, these results are discussed in Part v.
Supplementary figures can be found in the appendix (Chapter 9).






Part II

FUNDAMENTALS

In this part we provide fundamental background knowl-
edge on several topics we deem essential for this thesis.
We discuss the biological background (Chapter 1), specif-
ically the auditory pathway, the auditory cortex as well
as cell assemblies and synaptic and representational drift.
In Chapter 2 we discuss the experimental method of two-
photon imaging. We then introduce computational mod-
els (Chapter 3) used in theoretical neuroscience in general
and focus on firing rate models and the distinction be-
tween plasticity and drift in models, before we close this
part with some more general considerations on change
and stability (Chapter 4).






BIOLOGICAL BACKGROUND

Here, we briefly describe the auditory system, as all data analyzed
and modeled in this thesis has been recorded in auditory cortex. We
give a quick introduction to the auditory pathway (Section 1.1) and
the auditory cortex (Section 1.2), before we briefly talk about cell as-
semblies (Section 1.3) and finally discuss evidence for synaptic and
representational drift in the neocortex (Section 1.4).

1.1 AUDITORY PATHWAY

In general, input from our sensory organs (except olfaction) is pro-
cessed along its specific sensory tract into the thalamus, where ded-
icated thalamic subregions pre-process and relay information to the
respective primary sensory cortex (Sherman, 2007, Guillery and Sher-
man, 2011, Sherman, 2012, Metzger et al., 2013). For the auditory
modality this pathway begins at the tympanic membrane in the mid-
dle ear, where sound is transferred to the cochlea via the malleus,
incus, and stapes (Ades and Engstrom, 1974). In the cochlea the or-
gan of Corti transforms the mechanic sound wave into a nerve signal,
tonotopically endoding the sound into frequency bands (Robles and
Ruggero, 2001, Theunissen and Elie, 2014). The auditory pathway
is considered rather complex compared to other sensory modalities
and the auditory signal is relayed and processed multiple times, be-
fore it reaches auditory cortex. It remains a highly debated matter,
what parts of processing are performed at which station along the
processing pipeline, but many feats of auditory perception are pro-
cessed subcortically, like spatial origin or temporal characteristics of
sounds (Middlebrooks and Knudsen, 1984, Brainard and Knudsen,
1993, Frisina, 2001, Palmer and Kuwada, 2005, Singheiser et al., 2012,
Pannese et al., 2015). The signal passes through the cochlear nuclei
(one for each ear), before it is merged with signal from the other
ear in the trapezoid body. It is further processed in the superior oli-
vary complex, generally thought of as being responsible for stereo
hearing (Gray, 1997). From the superior olivary complex the signal
travels on through the inferior colliculus, before it reaches thalamus
in different parts of the medial geniculate nucleus (MGN): the ventral
MGN belongs to the so-called lemniscal pathway. It is tonotopically
organized and mainly projects to auditory cortex (Morel and Kaas,
1992, Guillery and Sherman, 2011, Metzger et al., 2013). The so-called
non-lemniscal pathway passes through the medial MGN, which also
receives input from other sensory modalities and is thus not tonotopi-
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cally organized. It projects to auditory cortex, too, but also to parts of
the limbic system, e.g. the amygdala (Ma and Suga, 2009).

This entire chain of sound processing prior to auditory cortex is of-
ten modeled in a specific class of cochlea models. These cochlea mod-
els model anything from fluid coupling and micromechanics over
cochlear amplification to cochlear non-linearities and electrical cou-
pling of the cochlea to the auditory nerve (for an overview see Ni
et al., 2014 or Rudnicki et al., 2015). Interesting from our point of
view would be a model that takes any sound as an input and pre-
processes it in the way the auditory pathway does, leading to an
output similar to the signal the auditory cortex would get for this
specific stimulus. For any realistic (i.e. frequency modulated) sound
this would be a sort of a time-frequency representation of this sound,
similar to a spectrogram, where frequency is on the y-axis, time on
the x-axis and power at each time and frequency is color coded. As
frequency is time dependent, spectrograms (as well as any other time-
frequency representations) look qualitatively different depending on
the applied temporal resolution.

Two other commonly used time-frequency representations of sounds,
the cochleogram and the correlogram are described in Chaurasiya (2020).
While the cochleogram is computed similarly to a spectrogram with
subject specific filters for audible frequency and with varying band-
widths (the term cochleogram is sometimes also referring to this filter
instead of the filtered function, see e.g. Linss et al., 2007), the correl-
ogram is computed by splitting the signal into a time function and
a correlation function. Both have the same problem as spectrograms,
that the output depends heavily on the temporal resolution. And
while all of these models work nicely for pure tone stimuli, that are
mapped correctly onto the tonotopic map, they have a hard time
with frequency modulated complex stimuli, that elicit responses in
neurons, which are silent to all inherent frequencies of these stimuli
(Theunissen and Elie, 2014). Additionally, recent work showcases the
difficulties in reconstructing the stimulus from population activity in
ferret auditory cortex and even more so the population activity from a
spectrogram of the stimulus (Lubda, 2021). Nevertheless, this remains
an interesting area of research, especially regarding cochlear implants
and their performance in speech recognition (Pan, 2018, Russo et al.,
2019) or the perception of music (Gauer et al., 2019). So, while mod-
eling of the cochlea alone can be achieved, especially for cochlear
implants, the following pre-processing steps prior to auditory cortex
are not yet clear.

While these models capture pure tone frequency stimuli nicely and
map them onto a tonotopic map similar to auditory cortex, they fail
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to predict responses to complex stimuli. This is linked to the second
problem, which is the representation of complex sounds in general. It
is not straightforward to describe complex stimuli in time-frequency
representations. Due to these reasons we chose to follow a different
approach, assuming a very general, random input with some correla-
tions in our model in Chapter 7 and Chapter 8.

1.2 AUDITORY CORTEX

Auditory cortex is the part of neocortex tasked with the processing
of auditory stimuli. Processing of the auditory scene is performed by
its own dedicated region of the cortex as is the case for most other
sensory modalities (e.g. Mendez and Geehan, 1988, Kentridge et al.,
1999), before higher regions — located mostly in the frontal lobes —
deal with more complex tasks like abstraction, planning, problem
solving, and the coordination of motor and sensory functions (Wax-
man, 2017).

The main fraction of cortex is made up of neurons. In total there
are 14 to 16 billion neurons in human cortex (Saladin, 2011) and, as
this study is mostly concerned with mouse auditory cortex, around
14 million neurons in mouse cortex (Herculano-Houzel et al., 2013).
Each neuron forms connections to on average 1,000 to 10,000 other
neurons (Herculano-Houzel, 2009), however, the connectivity is still
sparse: a neuron has connections to no more than 10% of neurons
in its proximity and generally less to neurons further away (Gerstner
et al., 2014). Neurons can be distinguished into two main classes, de-
pending on their effect on other neurons, which is either excitatory
(i.e. facilitating the response of consecutive neurons) or inhibitory (i.e.
suppressing the response of consecutive neurons). In general, neu-
rons are either fully excitatory or fully inhibitory, which is known as
Dale’s law (Dale, 1934). The ratio of excitatory to inhibitory neurons
varies throughout cortex, but is roughly 80% excitatory and 20% in-
hibitory neurons (Hendry et al., 1987, Gentet et al., 2000, Sahara et
al., 2012, Keller et al., 2018). While excitatory neurons are mostly so-
called pyramidal or principal cells, inhibitory neurons (also called in-
terneurons) come in many different varieties (Cajal, 1911, Jones, 1975),
distinguishable by the neurotransmitters they express. Interneurons,
i.e. neurons expressing GABA (gamma-Aminobutyric acid), which
can be used to identify neurons as interneurons (opposed to pyrami-
dal cells which express glutamate as their principal neurotransmitter),
can be grouped into four main groups (Kawaguchi and Kubota, 1997,
Harris and Mrsic-Flogel, 2013): parvalbumin (PV) expressing cells, so-
matostatin expressing cells (SST), vasoactive intestinal peptide (VIP)
expressing cells, and neurogliaform cells (NG). Excitatory neurons
are mostly innervated by PV cells, but apart from that it is currently a
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matter of intensive research to identify each subtype’s functional role
in cortical circuits. Even though inhibitory interneurons are outnum-
bered by excitatory pyramidal cells, they play an important role to
keep to system in balance and avoid epileptic cortical activity (Dichter
and Ayala, 1987), but also to maintain function like stimulus selectiv-
ity (Sillito, 1975).

Despite this apparent difference in numbers, excitation seems to be
balanced by inhibition in cortical circuits, keeping the membrane po-
tential of indiviual neurons just below threshold for the firing of an
action potential, leading to the observed spiking statistics (Shadlen
and Newsome, 1994, Shadlen and Newsome, 1998). The difference in
numbers seems to be counterbalanced by synaptic strength and firing
rates of inhibitory neurons being substantially higher.

Neurons in neocortex are organized in six layers, anatomically and
physiologically distinguishable by cell densities and connectivity pat-
terns (Noback et al., 2005, Kandel, 2013). The first, i.e. outermost,
layer mostly consists of apical dendrites of neurons from lower lay-
ers. The second and third layer consist mostly of pyramidal neurons,
connected to other cortical neurons. Layer four and layer five are the
main input and output layers, respectively. Thus in sensory cortex,
layer four is typically more pronounced, receiving input from e.g.
sensory regions of thalamus. In motor cortex the output layer five is
more pronounced. Layer six again, mostly consists of incoming and
outgoing corticothalamic connections. In other words, input from tha-
lamus arrives at the cortical level in layer four, is then processed in
layers two/three, before the signal is transferred to different cortical
and non-cortical nodes via layer five. The recordings, we are going
to discuss in this thesis come from layers two and three of mouse
auditory cortex. They are thus thought to be recordings of recurrent
processing of auditory stimuli.

Compared to other cortical areas auditory cortex is characterized
by sparser neuronal activity (Hromédka et al., 2008, Hromadka and
Zador, 2009, Liang et al., 2019). This is generally believed to be due
to a higher influence of inhibition (Hromdadka et al., 2008, Zhao et al.,
2015, Liang et al., 2019, Studer and Barkat, 2022). Neurons in auditory
cortex are organized in a tonotopical way (Reale and Imig, 1980, Ro-
mani et al., 1982, Tsukano et al., 2017). This means neurons are sorted
along a one-dimensional axis by their preferred pure tone stimulus.
Other organizing principles are not known to date. It has, however,
been shown in recent years, that at the local circuit scale sounds lead
to a non-linear activation of neuronal assemblies, where a given as-
sembly is typically activated by a set of different stimuli (Bathellier et
al., 2012, Atencio and Schreiner, 2013, See et al., 2018). This leads to a
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very reduced set of responses as each population of neurons responds
to a multitude of stimuli with only a handful of possible activity pat-
terns. Sounds that are indistinguishable on this population scale can
be decoded on the global scale, as the local grouping of stimuli is
different in each imaged population of neurons. This local reduction
to a small set of responses makes auditory cortex well suited to study
different phenomena, as this small set is relatively easy to keep track
of.

In our model of auditory cortex we want to model very local popula-
tion activity and thus do not apply any tonotopical organization. We
vary the ratio of inhibition to excitation to reveal a dynamic regime
similar to auditory cortex.

1.3 CELL ASSEMBLIES

The term cell assembly is used to describe a group of neurons that is
repeatedly activated together. Cell assemblies are believed to be the
underlying neural substrate of cognititve and behavioral function. A
cell assembly can then be understood to be the single functional unit
behind an action, a percept, or a more abstract concept. Cell assem-
blies were first postulated by Hebb (1949) and they are thought to be
the result of synaptic connections between cells that are repeatedly co-
activated. Thus they can be understood as a group of neurons with
strong synaptic connections among each other and weaker synaptic
connections to neurons that do not belong to this cell assembly. Strong
synaptic connections between neurons in a specific cell assembly com-
pared to neurons that are not part of this specific cell assembly have a
number of interesting properties, which are also present in the brain,
as has been illustrated by theoretical studies: they play a role in mod-
eling associative memory (Hopfield, 1982), where a partial memory
state is enough to retrieve the full state. They can explain multistabil-
ity as can be observed on the level of perception (Beer, 1995, Stern
et al., 2014, Fasoli et al., 2016), a transition from winner-takes-all like
dynamics to multiple attractors (Miller, 2016, Chen and Miller, 2020),
or correction of synaptic drift (Acker et al., 2019, Kossio et al., 2021).

In biological neural circuits cell assemblies are notoriously hard to
study because of their extent in space. Due to limited techniques it
is near impossible to be certain that all cells of a specific assembly
are recorded. Nevertheless, the recent development of imaging tech-
niques has made it possible to record from several hundred cells
simultaneously and capture groups of simultaneously activated cells.
Thus, over the course of the last years evidence for the existence of
cell assemblies has been gathered in different areas of the brain (e.g.
Harris, 2005, Buzsaki, 2010, Yuste, 2015, Holtmaat and Caroni, 2016).
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They could also be linked to cognitive function, specifically to mem-
ory recall (Tonegawa et al., 2015).

Cell assemblies are relevant both for the data analysis part and for the
modeling part of this thesis as they are classically used to describe
collective behavior of neurons and we discuss our results compared
to them.

1.4 DRIFT

Drift is known from physical reaction diffusion systems as the lin-
ear term of a stochastic process. In a more general context it is often
employed synonymously for random change in a system. In neuro-
science the term drift is used to describe any truly random changes
(opposed to plasticity, which is following underlying rules). We dis-
cuss synaptic drift, i.e. random changes of synapses, in Section 1.4.1
and representational drift, i.e. random changes of neuronal (popula-
tion) activity in Section 1.4.2. For a more detailed discussion on drift
and plasticity in a modeling context see Section 3.2.

1.4.1 Synaptic drift

It is widely believed that all cortical function is stored in synaptic
connectivity. Synaptic connectivity, however, has been shown to un-
dergo constant remodeling in recent years. Synapses display changes
in strength, they emerge and disappear (Rumpel and Triesch, 2016).
For a long time, learning induced changes of synapses, as first pos-
tulated by Hebb (1949), have been studied (for a recent review, see
Humeau and Choquet, 2019). In recent years, changes in synaptic
connectivity have also been found to be present in the absence of any
explicit learning paradigm (Loewenstein et al., 2011, Loewenstein et
al., 2015) and even during a pharmacological blockade of neuronal
activity (Yasumatsu et al., 2008, Rubinski and Ziv, 2015, Dvorkin and
Ziv, 2016, Nagaoka et al., 2016). This synaptic drift seems to be a fun-
damental feature of neuronal networks going beyond Hebb’s famous
rule “fire together, wire together”. It has been found in both excitatory
(Yasumatsu et al., 2008, Loewenstein et al., 2011, Loewenstein et al.,
2015, Berry and Nedivi, 2017, Ziv and Brenner, 2018) and inhibitory
synapses (Rubinski and Ziv, 2015, Dvorkin and Ziv, 2016, Villa et al.,
2016).

The reasons for synaptic drift can only be speculated about. One
obvious reason might be lifetimes of synaptic proteins that typically
range from hours to days, although some are surprisingly long lived
(Cohen and Ziv, 2019). Other reasons might be the competition for
limited resources (Triesch et al., 2018) or a more explorative version
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of a Hebbian mechanisms, where neurons would have to sample mul-
tiple partners in order to figure out, which they fire together with.

Recent theoretical modeling approaches have focused on compen-
satory mechanisms for synaptic drift (Kappel et al., 2015, Kappel et
al., 2018, Mongillo et al.,, 2018, Humble et al., 2019, Susman et al.,
2019, Kossio et al., 2021). Various synaptic plasticity mechanisms can
compensate some amount of synaptic drift. Above a certain thresh-
old, however, this modeling work has shown that synaptic drift can
lead to drift on the level of cell assemblies.

We modeled synaptic drift using a multiplicative Ornstein-Uhlenbeck-
process fitted to experimental data by Loewenstein et al. (2011). This
process, which changes synapse sizes dependent on the current synapse
size, keeps the system in a steady state with a log-normal distribution
of synapse sizes.

1.4.2 Representational drift

Similarly to changes in the synaptic connectivity, changes in neuronal
population activity have long been researched in the context of learn-
ing, starting with Hebb (1949). Apart from learning, the neuronal
responses were thought to remain stable in order to maintain sta-
ble function. However, recently, long-term remodeling of population
activity has been reported in the mouse hippocampus and barrel, ol-
factory, visual, motor and posterior parietal cortex (Rokni et al., 2007,
Huber et al., 2012, Mankin et al., 2012, Margolis et al., 2012, Ziv et al,,
2013, Clopath et al., 2017, Driscoll et al., 2017, Hainmueller and Bar-
tos, 2018, Rule et al., 2019, Deitch et al., 2021, Schoonover et al., 2021).
All of these report changes in population patterns across days for the
same stimuli or tasks, even in the absence of an apparent learning
paradigm.

Of course this representational drift is challenging the idea that sta-
ble behavior, as can be observed on timescales from days to years, is
rooted in cortex. But how can this instability be overcome to finally
result in stable behavior? Compensatory mechanisms for this repre-
sentational drift have been proposed based on a constant re-learning
of changing representations in potential read-out neurons (e.g. Acker
et al., 2019, Kossio et al., 2021). While apparently somewhere along
the processing path some sort of stabilization has to happen, this
instability through representational drift might also have its advan-
tages. It could be used as a time stamping mechanism, so each in-
stance of a memory has a different representational instance. It could
prevent the brain from overfitting by randomly altering memories,
which has been shown useful in artificial neuronal networks. An-
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other idea would be that the main advantage of a big brain during
evolution is not its storage capacity, but rather its ability to quickly
adapt to changes in environment. This is achieved easier in a drift-
ing brain. As the precise nature and function of representational drift
are still unknown (Chambers and Rumpel, 2017), different cognitive
processes could be linked to it, like spontaneous associations (Wallas,
1926) or their forgetting (Richards and Frankland, 2017).



TWO-PHOTON IMAGING

One of conventional light — and for these matters also fluorescent
— microscopy’s main disadvantages is its inability to image through
tissue. While surfaces and structures beneath optically transparent
materials are visible, everything beyond an intransparent surface is
invisible. Photons are reflected by intransparent tissue, making the
object both visible and opaque. Inside opaque tissue the light inten-
sity decreases with 1/12 for a given depth r; the rest of the light is
scattered in all directions. This scattering is the reason, why it is hard
to image through tissue, even with high light intensity levels and flu-
orescence imaging: photons reach deeper levels inside the tissue and
are reflected back, but they are not distinguishable from the photons
refelected back by the tissue above.

Two-photon fluorescent microscopy is able to solve this issue to some
extent. Instead of one photon from the LASER being absorbed by an
electron in the tissue and shifting this electron from one energy state
to another, the energy of the photons is determined in a way, that the
electron needs the energy of exactly two photons to switch states. As
this excitation requires two photons hitting the same electron simul-
taneously, it can only occur at regions of very high light intensity, i.e.
the focus point of the LASER, and hardly ever outside of this focus
point. This leads to negligible scattering from surrounding tissue and
a good signal-to-noise ratio. Additionally, the single photon emitted
by the electron falling back to its ground state is of a different wave
length and thus easily distinguishable from the light emitted by the
LASER. A third advantage is that this excitation requires two lower
frequency photons instead of one with higher frequency and low en-
ergy light has a higher absorption length in tissue. For an in detail
description of two-photon imaging methods see Schmitt et al. (2013),
the quantum mechanics of two-photon imaging have been nicely sum-
marized by Shi et al. (2015).

Two-photon absorption was first predicted by Goppert-Mayer (1931)
and confirmed experimentally shortly after the development of LASERSs
(Kaiser and Garrett, 1961). The first two-photon LASER scanning flu-
orescence microscope was developed by Denk et al. (1990) and since
then it has become an important tool in many fields of biology (Konig,
2018), among others also the neurosciences (Svoboda and Yasuda,
2006).
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As tissue samples are rarely fluorescent by themselves, dyes are used
to highlight relevant structures. In the case of two-photon fluores-
cence microscopy these dyes are mostly fluorescent proteins. A lot of
research goes into the development of ever new fluorescent proteins
in different colors with different absorption and fluorescence spectra,
binding to different biomarkers (for a recent overview see Xu et al,,
2020). These proteins then bind to e.g. specific cell types or various
intracellular structures like synaptic scaffolding proteins. Especially
useful for neuroscience are fluorescent proteins in neurons (some-
times also specific neuron types, like PV-, SST-, or VIP-interneurons)
and proteins that are only fluorescent, when a neuron is active. Two
elegant ways exist in order to get cells to express these fluorescent
proteins. Cells can either be made to express specific proteins via vi-
ral transduction, where a virus causes the production of fluorescent
markers by specific cells or there are entire mouse lines genetically
engineered to express fluorescent proteins in their cells.

For the experimental data described and analyzed in Chapter 5 and
Chapter 6 mice were transduced with two fluorescent markers, one

structural marker identifying somata of neurons (H2B::mCherry, Nathanson

et al., 2009), and one functional marker as read-out of neuronal activ-
ity reacting to calcium influx into a neuron (GCaMP6, Chen et al.,
2013).

Apart from the aforementioned advantages compared to single pho-
ton imaging two-photon imaging allows for chronic imaging and
tracking of individual cells across several days — even silent cells
due to structural markers. Individual synapses and other subcellu-
lar structures can be investigated due to a spatial resolution in the
sub-micrometer regime. The trade-off is a temporal resolution which
is not on the level of single neuronal spikes, especially a slow decay
after the spike onset, mostly due to the fact that calcium dynamics
are measured and not membrane voltage. Another disadvantage is
the persisting limited imaging depth, which can be tackled by using
three (or more)-photon imaging, which requires even higher light
intensities. Both problems are currently tackled by the ongoing devel-
opment of new fluorescent markers.



MODELS IN NEUROSCIENCE

Neurons are typically modeled as integrators of inputs, becoming
active, when the accumulated input passes a threshold. The sim-
plest form of this idea might be (leaky) integrate and fire neurons
(Lapicque, 1907), which collect incoming action potentials, accumu-
lating charge, increasing their membrane potential until a threshold
is crossed and then themselves fire an action potential. Typically, a
slow leakage current is included, requiring accumulation of input
over a certain time. This captures the behaviour of biological neurons
quite well and does a great job in disentangling the comparably fast
dynamics involved in generating an action potential (as modeled by
e.g. Hodgkin and Huxley, 1952) from the rather slow dynamics of
the network. Depending on the input weights to these neurons they
are already able to perform simple logical tasks, inspiring further
abstractions to networks of neurons that only represent logical gates
(McCulloch and Pitts, 1943). Togehter with Hebbian inspired learning
rules (“fire together, wire together”, Hebb, 1949) these ideas led to the
perceptron (Rosenblatt, 1958), which is able to learn input weights to
produce a wanted outcome and perform logical operations.

Networks made of spiking neurons, especially leaky integrate and
fire neurons, are able to capture synchronization and chaos, syn-
chronous and asynchronous network states and some more features
of biological neuronal networks like contrast invariance or oscillations
(Hansel and Sompolinsky, 1992, Gerstner, 1995, Hansel and Sompolin-
sky, 1996, Hansel et al., 1998, Brunel and Vincent, 1999, Brunel, 2000,
Gerstner, 2000, Brunel et al., 2001 Hansel and Vreeswijk, 2002, Mat-
tia and Giudice, 2002). An in depth overview is given in Gerstner
and Kistler (2002). Adding plasticity rules for synaptic connections
between the neurons, networks are able to self organize to achieve
these tasks (Amit and Brunel, 1997, Turrigiano et al., 1998, Desai et
al., 1999, Zhang and Linden, 2003, Steil, 2007, Schrauwen et al., 2008,
Lazar et al., 2009, Watt and Desai, 2010, Zenke and Gerstner, 2017,
Zenke et al., 2017). They can furthermore become robust against noise
(Toutounji and Pipa, 2014), autonomously form and maintain cell
assemblies (Litwin-Kumar and Doiron, 2014), and reproduce experi-
mentally measured synapse distributions (Zheng et al., 2013, Miner
and Triesch, 2016). Apart from that, spiking neural networks are also
used in the field of artificial inteligence (for a review, see Ponulak and
Kasinski, 2011).
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Despite this huge success, however, networks of spiking neurons are
often cast aside for a further simplification to firing rate models. Spik-
ing neural networks are biologically motivated and they are able to
account for the various experimentally observed phenomena. Also,
features depending on the exact time of an action potential are lost in
rate models (e.g. synchronization and spike timing dependent plas-
ticity). Nevertheless, this further simplification to firing rate networks
comes with many advantages. Firing rate models are less computa-
tionally expensive, because they are ignoring the fast time scales of
single spikes. Thus the time scales of an individual unit and the entire
system move closer together. Apart from fewer free parameters in rate
models and the possibility to perform some calculations analytically,
one major difference between the two is, that firing rate networks can
easily be scaled down to few units (which can then be interpreted
as populations, Wilson and Cowan, 1972, Wilson and Cowan, 1973),
otherwise leading to unrealistic synchronization in spiking neural
networks. For a modern comparison of spiking neural networks and
firing rate networks, see e.g. Brette (2015). As we use a firing rate
model for our investigations, we want to give a more detailed intro-
duction to firing rate models in Section 3.1.

Most interesting dynamics can be found in models of neuronal net-
works independent of the exact implementation. Typically three dy-
namic regimes are described in literature:

(a) a uni-stable regime with one attractor state, the network activity
converges to,

(b) a multi-stable regime, where the system can display different
dynamics — e.g. multiple attractor states, bump attractors, line
attractos etc. — and

(c) a chaotic regime.

These regimes can be found in random networks and transitions be-
tween regimes can be found by changing parameters as synaptic gain
(e.g. Wilson and Cowan, 1972, Sompolinsky et al., 1988), strength of
stimulation (Wilson and Cowan, 1972, Rubin et al., 2015b), ratio of in-
hibition to excitation (e.g. Rost et al., 2018, Zhang and Saggar, 2020),
recurrent connection strength (e.g. Ostojic, 2014, Stern et al., 2014).

The different dynamic regimes (mostly within the above mentioned
multi-stable regime) which are comparable to cortical dynamics of-
ten arise in balanced systems, i.e. systems with both strong excitation
and strong inhibition. This means that network dynamics are gov-
erned by strong recurrent connections. For these systems, in a ground
state, single neurons receive strong excitatory and inhibitory inputs
that cancel out to first order, but when they receive only little fur-
ther activation they are easily pushed from below threshold to above
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threshold and start to fire action potentials. Balance between exci-
tation and inhibition emerges automatically in large networks with
strong synapses (Vreeswijk and Sompolinsky, 1996) and can account
for different regimes ranging from a single attractor state via multiple
attractor states to truly chaotic dynamics (Vreeswijk and Sompolinsky,
1996, Vreeswijk and Sompolinsky, 1997, Jahnke et al., 2009).

In this balanced state many features are typically attributed to dif-
ferent forms of inhibition, be it a stabilization via fast feedback inhi-
bition in the so-called stabilized supralinear network (Ahmadian et
al., 2013, Rubin et al., 2015b), symmetry breaking and multiple stable
solutions mitigated by recurrent inhibition in small networks (Fasoli
et al., 2016), winner-takes-all like dynamics (Miller, 2016, Chen and
Miller, 2020), sub- and supra-linear summation and balanced amplifi-
cation (Murphy and Miller, 2009, Ahmadian et al., 2013, Rubin et al.,
2015b) or stable dynamics around a single attractor accounting for
the difference in evoked and spontaneous activity (Hennequin et al.,
2018).

In the next section (Section 3.1) we give a more detailed description
of firing rate networks, in Section 3.2 we will then give some back-
ground on our implementation of synaptic drift and the difference
between synaptic plasticity and drift.

3.1 FIRING RATE MODELS

Firing rate models of neuronal networks can be derived from spiking
neural networks in a multitude of ways (e.g. Wilson and Cowan, 1972,
Ermentrout, 1994, Aviel and Gerstner, 2006, Ostojic and Brunel, 2011),
but in general they are given by one of two equations (Equation 3.1
and Equation 3.2), proven to be equivalent by Miller and Fumarola
(2012):

T%V = v+ I+WIE(v) (3.1)
and
0
T r = —r+f(Wr+1), (3.2)

where v and r are vectors of firing rates of individual neurons, W
is the recurrent connectivity matrix, f(x) is a nonlinearity acting on
the individual entries of x, T is the characteristic time constant of the
system, and T and I are inputs to the respective networks.
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We use the element wise version of Equation 3.2, given by Equa-
tion 3.3:

N
0
Tt =it f )Z] Wiyms +si(t) |, (3-3)

where 71y is the firing rate of neuron i, Wj; is the connection strength
from neuron j to neuron i, T is the time constant, f(x) a non-linearity,
and s;(t) is the time dependent input to neuron i.

Firing rate models have been used to study neuronal networks and
produce insight into the rich dynamics of neural processing. Already
small networks of two to three units display interesting phenomena
such as different dynamic regimes and hysteresis between those dif-
ferent dynamic regimes (Wilson and Cowan, 1972, Wilson and Cowan,
1973), input and connectivity dependent bifurcations (Borisyuk and
Kirillov, 1992, Beer, 1995), fixed points, periodic, quasi-periodic and
chaotic behavior (Wilson and Cowan, 1973, Pasemann, 2002), and
spontaneous symmetry breaking (Fasoli et al., 2016). Larger networks
are able to reproduce these rich dynamics (e.g. Cessac, 1995, Rajan et
al., 2010, Mastrogiuseppe and Ostojic, 2017) and gain even more in-
sight into cortical dynamics. Supra- and super-linear summation of
inputs has been recorded depending on the context in the so-called
stabilized supra linear network (Murphy and Miller, 2009, Ahma-
dian et al., 2013, Rubin et al., 2015b), both of which have also been
observed in experimental recordings. These networks are mostly gov-
erned by some form of balance between excitation and inhibition with
generally strong recurrent connections. Firing rate models are used
for many different tasks, e.g. pattern completion (Curto and Morri-
son, 2016) and underlie most artificial neuronal networks.

We use a generic firing rate network to understand a clustering of
stimuli into a small group of possible responses as observed in mouse
auditory cortex and apply synaptic drift to investigate the represen-
tational drift of the system.

3.2 PLASTICITY AND DRIFT

The two words plasticity and drift are used in various ways, sometimes
even synonymously, however, mostly they are employed to differen-
tiate between rule based changes (plasticity) and random changes
(drift) in a system. Here, we want to follow this convention.

The idea that synapses change through learning was first brought
forward by Hebb (1949). The general idea is that neurons that are
active together form a stronger connection between each other. This
can be further refined to spike timing dependent plasticity, where a
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synapse is strengthened, if it goes from neuron A to neuron B and
neuron A fires an action potential in a short time window, before
neuron B fires an action potential. The general concept makes sense
intuitively and it is widely believed that a mechanism like this is in
charge of forming synaptic connections. The exact biological imple-
mentation of such a mechanism, however, remains a matter of debate,
as this strengthening of synapses has to be counterbalanced by some
other mechanism to avoid diverging synapses. In models this is typi-
cally achieved via some sort of homeostatic normalization (e.g. Lazar
et al., 2009, Watt and Desai, 2010). This homeostatic normalization
can be enforced by a constraint on the sum of all synapse weights,
for example, which works perfectly in models, but is not biologi-
cally plausible, as it would require global knowledge of all synapse
sizes in each individual neuron. So, this idea of synaptic plasticity
makes sense intuitively and there is evidence for some sort of it in
experimental data, but it remains unclear, how exactly it might be
implemented in biological circuits.

Synaptic drift, on the other hand, is observed in a lot of biological sys-
tems (e.g. Loewenstein et al., 2011, Statman et al., 2014, Loewenstein
et al., 2015, Ziv and Brenner, 2018). Synapses appear and disappear
and those remaining show substantial fluctuations in their strengths,
all seemingly randomly. This drift is easy to model (e.g. Loewenstein
et al., 2011), keeping the system in a steady state, but contrary to
synaptic plasticity there is so far no straightforward interpretation of
its function or apparent reason for its presence. It might be employed
as a homeostatic mechanism for synaptic plasticity, play an impor-
tant role for the adaptability to ever new situations, or it might be
utilized to avoid overfitting and allow for generalization. For consid-
erations about its biological relevance, see Section 1.4.1 for synaptic
drift and Section 1.4.2 for representational drift. The general issue of
the trade-off between stability and flexibility for brain function will
be addressed in Chapter 4.

We model synaptic drift following a fit to experimental data by Loewen-
stein et al. (2011) as a stochastic process, more precisely a multiplica-
tive version of an Ornstein-Uhlenbeck process (Uhlenbeck and Orn-
stein, 1930). This changes individual synapse sizes randomly depen-
dent on their strength while maintaining the log-normal distribution
of synapse weights in a steady state.
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STABILITY AND FLEXIBILITY OF BRAIN
FUNCTION

Brains are able to maintain memories throughout a lifetime, while
they are also able to form new memories in an instant. We are, for
example, able to remember friends and family and at the same time
form a new memory of a person, we just met. This combination of
abilities without catastrophic forgetting, which would be caused by
just overwriting old memories with new ones, displays the need for
both stability and flexibility (Grossberg, 1980). As the brain has for a
long time been understood as the place of memory storage, similar
to a hard disk, there exists a vast body of literature focussing on the
stability of certain aspects of the brain (e.g. Bliss and Collingridge,
1993, McGaugh, 2000, Kandel, 2001, Poo et al., 2016). In recent years
this focus has slowly been shifting towards a discussion of unstable
aspects, too, and thus there is a growing body of evidence for insta-
bility in the brain (e.g. Frankland et al., 2013, Hardt et al., 2013, Berry
and Davis, 2014).

The idea here is that the aim of the brain is not the accumulation of
knowledge, but rather making the best decision in the presence based
on past experience (Dudai and Carruthers, 2005, Schacter et al., 2007,
Richards and Frankland, 2017). To do so, forgetting (i.e. transience
of memory) might be as important as remembering (i.e. persistence
of memory). This is evident from anecdotal stories and case stud-
ies of patients with super-human memory (e.g. Luria, 1968). Patients
are not able to perform well in everyday life despite (or because of)
having (near) perfect memory of everything they encounter. Remem-
bering in great detail every moment of their lifes is associated with an
inability to perform seemingly simple tasks. This is hypothesized to
be due to a lack of flexibility or a lack of generalizability by Richards
and Frankland (2017). The brain needs both stability and flexibility,
which means both memory and forgetting.

The problem remains: How can the brain be flexible and stable at
the same time? A lot of theoretical work is focussed on the question
how to maintain stability in the presence of synaptic or represen-
tational drift (Vogels et al., 2011, Litwin-Kumar and Doiron, 2014,
Mongillo et al.,, 2017, Acker et al., 2019, Kossio et al., 2021). This is
mostly achieved by homeostatic plasticity. Random drift, however,
might be useful, too, both from a psychological point of view to over-
come trauma (Richards and Frankland, 2017) and from a theoretical
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point of view to prevent overfitting (Aitken et al., 2021). The need
for stability and flexibility depends on the situation. It is very helpful
to remember the location of one’s favorite restaurant. This does not
change too often and is thus stored in memory in a stable manner. It
might also be useful to have a general idea of the currently trendy
area downtown, where all the cool bars are. The exact location of
each bar might not be so important, and thus generalization comes
in handy. Flexibility is needed, when the favorite restaurant moves
to a new location. The old location is best forgotten and a new one
quickly memorized.

Our brain has to be able to perform all these various tasks and be
very stable — sometimes for decades — on the one hand and on the
other hand be able to rapidly update and flexibly change its memo-
ries. How this is achieved in detail remains unclear.



Part III

ANALYSIS OF EXPERIMENTAL DATA FROM
MOUSE AUDITORY CORTEX

This part consists of two chapters. In Chapter 5 we dis-
cuss analyses performed on imaging data of populations
of neurons from mouse auditory cortex. We find that neu-
ronal representations of stimuli undergo constant remod-
eling and that learning biases this ongoing remodeling to-
wards a differential generalization. In Chapter 6 we define
a set of operations to deconstruct these cortical population
dynamics and find that learning is linked to an increased
formation of associations.






FORMATION OF ASSOCIATIONS BY
LEARNING-INDUCED BIASES IN THE ONGOING
DYNAMICS OF SENSORY REPRESENTATIONS.

This chapter is in large parts based on the publication

Aschauer®, D. F, Eppler*, ]J. B., Ewig, L., Chambers, A., Pokorny, C.,
Kaschube$, M., and Rumpel§, S. (2022). “Learning-induced biases in
the ongoing dynamics of sensory representations predict stimulus
generalization.”, Cell Reports.

* shared first authors, § shared last authors.

Author contributions: Conceptualization: MK, SR; Methodology: DFA,
JBE, CP; Software: ]BE; Formal Analysis: JBE, DFA, LE, AC; Investiga-
tion: DFA; Writing-Original Draft: SR, MK, DFA, JBE; Writing-Review
& Editing: LE, AC; Supervision: MK, SR; Funding Acquisition: SR

All experiments were performed by Dominik Aschauer. Data pre-

processing and formal analyses (except for Figure 5.6, Figure 5.7 and
Figure 5.8) were performed by Jens-Bastian Eppler.
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This chapter starts with an introduction to ongoing activity dynam-
ics in the brain in general and in mouse auditory cortex specifically
(Section 5.1). Next, we present our results (Section 5.2), namely that
we found ongoing changes of response modes during basal condi-
tions that were modified towards the formation of associations during
learning. This is followed by a brief discussion of these results (Sec-
tion 5.3). We close this chapter with the methods section (Section 5.4).

5.1 INTRODUCTION

We want to study representational dynamics in mouse auditory cor-
tex under basal conditions (i.e. representational drift) and during
learning. We make use of response modes found in mouse auditory
cortex by earlier work (Bathellier et al., 2012). Response modes are
observable in local populations of neurons in mouse auditory cortex.
Multiple stimuli evoke the near same response and these responses
can thus be clustered to form a so-called response mode.

We used chronic two-photon calcium imaging in the mouse auditory
cortex over several days to monitor sound-evoked activity patterns
forming sensory representations. We find that even in behaviorally
habituated mice, auditory representations display significant plastic-
ity involving the remapping of stimuli to response modes, the cre-
ation of new response modes and their elimination. We analyzed
these ongoing changes, exploiting the discrete nature of response
modes, finding near stationary dynamics on the level of both single
cells and population dynamics. Applying the same analysis to data
from mice undergoing auditory cued fear conditioning, we observed
specific biases in the dynamics of response modes that explain an
increase in efficacy of sound encoding during learning and reveal an
increased rate of the formation of new associations among sensory
stimuli.

5.2 RESULTS

5.2.1 Chronic large-scale calcium imaging of neurons in the mouse audi-
tory cortex

In order to assess the long-term dynamics of auditory representations,
we transduced cells in the mouse auditory cortex with a co-injection
of two rAAV8-vectors to drive stable expression of two fluorescent
proteins under the control of the Synapsin promoter: The genetically
encoded calcium indicator GCaMP6ém (Chen et al., 2013), to chroni-
cally record neural activity, and the fusion protein H2B::mCherry, as
a structural marker to distinctively label the nuclei of transduced neu-
rons (Figure 5.1, Figure 5.2, Nathanson et al., 2009).
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Figure 5.1: Two-photon imaging of neuronal activity in mouse auditory cor-
tex. (a) Experimental timeline. (b) Confocal image of coronal sec-
tion of a mosue brain sacrificed 46 days after stereotactic injection
of two rAAVs leading to the expression of GCaMPém (green)
and H2B:mCherry (red) in auditory cortex. Counterstain DAPI
(blue). Scale bar 1 mm. (c) In vivo image of a local population
of neurons in layer 2/3 of auditory cortex showing expression
of GCaMP6ém (green) and H2B:mCherry (red). Scale bar 1um.
White circles and digits represent the neurons in Figure 5.2.
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Figure 5.2: Simultaneously recorded activity traces of ten example neurons

from Figure 5.1c. (green: AF/Fy, blue: stimulus presentation, ar-
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Figure 5.3: Spectrograms of the complex and pure tone stimuli used for in
vivo two-photon experiments.
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We used intrinsic signal imaging in response to a set of pure-tone
stimuli of varying frequency in order to guide subsequent two-photon
imaging. For calcium imaging experiments in awake, head-fixed, pas-
sively listening mice, we used a stimulus set of brief (50 ms - 70 ms)
sounds containing 19 sinusoidal pure-tones and 15 complex sounds
characterized by temporally modulated power in multiple frequency
bands delivered free-field using a calibrated speaker at 74 dB SPL

(Figure 5.3).

Mice were habituated to head-fixation and pre-exposed to the set
of sound stimuli for at least five days to ensure that adaption to novel
sensory responses has largely completed (Kato et al., 2015) and that
data acquisition occurred under behaviorally and environmentally
familiar and constant conditions. The red nuclear marker enabled
high-fidelity re-identification and registration of individual local pop-
ulations that were re-imaged for four time points at a two-day interval
(Figure 5.4a to Figure 5.4d). We imaged neuronal activity in response
to the 34 sound stimuli (20 — 30 repetitions each, presented in a ran-
dom order) in a total number of 21,506 neurons in 97 different fields
of view (100 — 300 neurons per FOV) in cortical layer 2/3 of 12 mice
(Figure 5.2; Figure 5.4e to Figure 5.4g). When assessing trial-averaged
calcium responses to pure-tones and complex sounds over this pe-
riod, we observed that many neurons that were responsive within a
FOV showed essentially stable responses to the sound stimuli over
the course of several days. Others, however, showed substantial re-
tuning involving the gain or the loss of responses with substantial
signal amplitudes (Figure 5.5).

5.2.2  Dynamic long-term remodeling of sound responses in individual neu-
rons and populations of neurons

In light of the re-tuning of sound responsiveness in a substantial frac-
tion of neurons, we next asked how these changes would affect the
ability of the auditory cortex to form a stable representation of the
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Figure 5.4: An automated image processing pipeline for high-fidelity track-
ing of neurons. (a) H2B::mCherry signal of an example FOV on
all four imaging days. The distinct labeling in the red channel
allows high-fidelity tracking of individual neurons using a sig-
nal that is independent of neuronal activity (scale bar, 50 pm). (b)
Same example FOV as in (a). Cells passing quality control criteria
based on signal intensity, signal/noise ratio and nearest neigh-
bor distance in the red channel on all time points are marked in
red. Excluded cells are marked in blue. (c) Data preprocessing
pipeline. All steps regarding cell identification and tracking are
based on the red channel. Only in the last step the green chan-
nel was used to read out neuronal activity. (d) Quantification
of cells with different tracking methods. Blue: Cells were man-
ually identified on each day individually; Red: Manually iden-
tified cells that could be reliably identified on all four imaging
days; Green: Cells manually identified on day 1 and automati-
cally tracked on the subsequent days. The automated procedure
was applied for the full dataset of this study. (e) Total number
of cells in dataset during basal conditions passing the different
image pre-processing steps. Step 1: All manually identified cells
on day 1; Step 2: All cells from step 1 with good signal quality on
all time points after automated image alignment; Step 3: All cells
from step 2 with sufficient distance from nearest neighbor; Step
4: All cells from step 3 from FOVs with at least 100 cells; Step
5: All cells from step 4 from FOVs with reliable sound-evoked
population responses. (f) Number of imaged FOVs per animal
in dataset capturing dynamics during basal conditions. (g) His-
togram of the number of cells in each FOV in dataset of dynamics
during basal conditions.
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Figure 5.5: Responses to auditory stimuli in single neurons monitored over
multiple days (green: mean AF/Fy; gray: single trial AF/Fy; blue
line: stimulus presentation; insets show image of cell on different
days; image scale bar 5 pm; trace scale bar 15, 250% AF/Fy).

auditory world. When pooling the data obtained from all mice and
FOVs, we identified on any given day a comparable number of neu-
rons showing significant responses for any of the 34 stimuli used in
this study (Figure 5.6, Figure 5.7, controls: Figure 5.8). Moreover, the
distribution of preferred stimuli remained stable, as can be seen by
comparing the curves of maximal response across days (black ‘trace’
from top left to bottom right in each panel). However, when con-
sidering only those neurons that displayed significant sound-evoked
responses on the first imaging day, and following them across days,
we observed a progressive blurring of the response profile with time,
reflecting the fact that some neurons changed their preferred stimu-
lus or became unresponsive. This process was largely mirrored when
considering only those cells with sound-evoked responses on the
last imaging day, highlighting neurons that gained responsiveness
to sounds during the course of the experiment. We quantified the
degree of instability of responses across days by computing the av-
eraged, normalized response amplitude for the preferred stimulus
(i.e. average along the dark trace in each panel). When computed
for the stimulus that was driving the neurons” maximal response on
that given day, this quantity is 1 and stable, by definition. However,
if this analysis is performed on each day for the preferred stimulus
from the first day, we found a substantial and continuous loss of aver-
age response amplitudes. Again, a symmetric observation was made
when normalizing to the preferred stimulus amplitude of the last day.
These observations suggest that the ability of the auditory cortex to
form representations of sounds is maintained in a dynamic equilib-
rium at a global level.

Next, we asked how these changes, observed on the level of indi-
vidual cells, become manifest on the level of population activity. We
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(c) Neurons from day 7.

Balanced drifts in tuning at the single-cell level. (a) Normalized
response profiles of neurons with a significant response to at
least one stimulus on day 1 sorted by stimulus with highest re-
sponse amplitude. Sorting from day 1 is applied to the subse-
quent days. N is total number of significantly sound responsive
cells on each day. For illustrative purposes, only every thirtieth
cell is shown (PT: pure tones, CS: complex sounds). (b) Same as
(a), for cells with a significant response on a given day. Sorting
is done for each day individually. (c) Same as (a), for cells with
a significant response on day 7. Sorting from day 7 is applied to
the previous days.
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Figure 5.7: Average (mean+ SEM) normalized activity to the stimulus with
highest response amplitude on day 1 (Figure 5.6a) plotted across
days. Estimation of best stimulus is robust against sub-sampling
of trials (black; Figure 5.8). (b) Same as (a), for cells with a sig-
nificant response on a given day. (c) Same as (a), for cells with a
significant response on day 7.
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Figure 5.8: Robust categorization of significant sound responsiveness in sin-
gle cells. Normalized sound response profiles of individual cells
responsive on day 1 (left), day 3 (middle) as shown in Figure 5.6a.
The panel on the right shows an analogous plot for day 1, how-
ever, considering a subsample of the trials. The high degree of
similarity between the left and right panels indicates a robust es-
timation of the best stimulus and the considerate drifts with time
cannot be simply explained by noise. N is total number of signifi-
cantly sound responsive cells on day 1. For illustrative purposes,
only every thirtieth cell is shown.
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observed that population responses were often stable across several
days. However, consistent with our single cell analysis above, some-
times the set of neurons responding to a given stimulus changed from
one imaging day to the next (Figure 5.9a, Figure 5.9b, further exam-
ples Sup. Fig. 9.1). To assess whether these changes affect the ability
of neural populations to stably distinguish between auditory stim-
uli, we trained a linear classifier to discriminate single-trial activity
patterns elicited by different sound stimuli in a given FOV (see Sec-
tion 5.4.22). When training and testing with activity patterns recorded
on the same day, we observed similar performances across different
imaging days (Figure 5.9c). However, the impact of the changes in
the population response on stimulus discrimination became particu-
larly evident when training the classifier on sound responses from
the first day and testing the performance with activity patterns from
the following imaging days. The decoding performance decreased
monotonically with an increasing interval between training and test-
ing. Again, we made a symmetrical observation when training the
classifier on the data from the last imaging day and testing with
sound responses from previous imaging days. Consistent observa-
tions were made using an alternative, multi-class decoding approach
(Figure 5.10a). Note that the representations of sounds at the level of
local populations of neurons varied across the FOVs imaged within
a mouse, such that a robust representation emerged at a global scale
(Figure 5.10b). Thus, extending the analysis to the level of neuronal
populations, we found that the ability to decode sounds from the au-
ditory cortex was largely robust against the ongoing remodeling of
sound-evoked response patterns.

Stimulus Decoding
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(a) Example response A. (b) Example response B. (c) Decoding

Figure 5.9: Population responses to auditory stimuli are dynamic under
basal conditions. (a)-(b) Single trial population response vectors
acquired from a given FOV. Examples shown are for two stimuli
and two different FOVs over the time course of seven days. For il-
lustrative purposes, only the fifty most active cells are shown and
trials are sorted by descending mean activity (PT: pure tones, CS:
complex sounds). (c) Linear discriminability calculated by logis-
tic regression averaged across all possible sound pairs and FOVs
(mean £+ SEM) plotted across days. The classifier was trained
with data from either first (green), last (red), or given (purple)
imaging day. Dashed line indicates chance level.
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Figure 5.10: Further decoding analyses. (a) Linear discriminability per field
of view (34-fold classifier, SVM, corresponding to the 34 stimuli
used) plotted across days, averaged over FOVs (mean + SEM).
The classifier was trained with data from either first (green),
last (red), or given (purple) imaging day. Dashed line indicates
chance level. This result is comparable to that obtained with
a pairwise decoding approach shown in Figure 5.9c. (b) Max-
pooling of decoding performance across FOVs within individ-
ual animals significantly increases the decoding performance.
This indicates that a high-fidelity sound representation can be
obtained at the global level. Red line indicates median, and the
bottom and top edges of the box indicate the 25th and 75th per-
centiles, respectively, whiskers represent range (* p = 0.0111).
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5.2.3 A discrete set of response modes forms a population-level representa-
tion of the auditory world
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Figure 5.11: Population responses are clustered. Similarity matrix computed
as average pairwise correlation of single-trial population re-
sponse vectors sorted by hierarchical clustering for an exam-
ple FOV. Diagonal entries show the average correlation across
pairs of trials elicited by the same stimulus; off-diagonal entries
show the average correlation across pairs of trials from different
stimuli. Stimulus identity is shown above. Inlays for four exam-
ple stimuli: spectrograms of stimuli and single trial population
response vectors. In response vectors, for illustrative purposes,
only fifty most active cells are shown, and trials are sorted by
descending mean activity (PT: pure tones, CS: complex sounds).

Having observed a considerable degree of ongoing remodeling, not
only of tuning properties in individual neurons, but also of neural
representations on the population level, we next sought to capture the
essence of these changes more efficiently. To this end, we exploited
the fact that on a microcircuit scale sound-evoked activity patterns
fall into a near-discrete set of response modes (Figure 5.11, Bathellier
et al., 2012, See et al., 2018).

This phenomenon is illustrated for an example FOV in Figure 5.12a,
where we probed the population response with a set of pure-tones
with gradually changing frequency. Instead of a gradual change of
the response pattern with frequency, we observed an abrupt, highly
non-linear transition from one response pattern to another at 4 kHz
and a rapid change towards no significant response at frequencies
above 11.3kHz. In most FOVs we observed a similar tendency of
groups of stimuli to show stereotypic responses, while the composi-
tion of groups tended to vary across FOVs and often comprised a mix
of both pure tones and complex sounds.

To assess objectively the response modes from the population activity
vectors in a given FOV on a given day we extended the methods of
Bathellier et al., 2012. In short, we used Pearson correlation (Galton,
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Figure 5.12: Abrupt transitions in population responses elicited by gradu-
ally changing stimuli delineate discrete response modes. (a) Ex-
ample population activity from a FOV showing non-linear re-
sponse mode transition to interpolation of pure-tone frequen-
cies from 2 kHz to 15.9 kHz. Top: Stimulus identity; Bottom: Sin-
gle trial population response vectors. For illustrative purposes,
only fifty most active cells are shown and trials are sorted by
descending mean activity. (b) Similarity matrix (Pearson cor-
relation) from the example FOV shown in (a). Top: Stimulus
identity; Right: Response mode identity, 0-mode: no significant
population response.

1886, Pearson, 1895) as a measure of similarity between response vec-
tors, which emphasizes the contribution of cells with large AF/Fy and
is less affected by the many cells whose signal change is indistinguish-
able from noise. We constructed a similarity matrix by calculating
pairwise correlations of single-trial response vectors (Figure 5.12b).
The entries along the diagonal were calculated as the average cor-
relation of all pairwise combinations of response vectors elicited by
the same sound, thus reflecting the reliability of the response pat-
tern elicited by a given sound. Correlation was low for sounds that
did not evoke any activity in the particular FOV. Off-diagonal entries
were calculated as the average correlation of all pairwise combina-
tions of single-trial response vectors elicited by a pair of two different
sounds. Then, the similarity matrix was sorted using hierarchical clus-
tering, thereby grouping the sound stimuli by the similarity of their
respective response patterns. We used Hubert’s I statistics (Hubert
and Baker, 1977) to estimate the number of clusters and to assess
significance (see Section 5.4.20). Each cluster of response patterns, of-
ten elicited by different sets of sound stimuli, was defined a response
mode (Figure 5.11, Figure 5.13). Stimuli that did not elicit a reliable
response pattern in a given FOV were not considered for clustering
and instead grouped together into the 0-mode.

The composition of the subsets of sound stimuli mapped to a shared
response mode varied across FOVs and often comprised a mix of
both pure tones and complex sounds. In a given FOV we typically
observed between 3 and ¢ different response modes, on average asso-
ciated with 2.40 £0.21 (mean + SEM) sound stimuli and comprising
up to 10 significantly active neurons (for histograms see Figure 5.14,
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Figure 5.13: Statistical identification of response modes using clustered sim-

ilarity matrices of response vectors. (a), (b) Examples for com-
plete (data pooled from all imaging days) clustered similarity
matrices (left), magnifications of the part of the matrix repre-
senting reliable responses (center) and validated clusters (i.e. re-
sponse modes) based on Hubert’s I statistics (right; Hubert and
Baker, 1977). Stimuli not evoking a reliable response on a given
day were mapped to the 0-mode. Note that when pooling the
data across days, each mode is now defined for all imaging days
and may contain responses to the same stimulus from different
days. This scheme allowed us not only to track how individual
stimuli transition between different modes, but also to detect
modes that become void of stimuli (referred to as disappearing
modes) and modes that transition from void to containing stim-
uli (referred to as appearing modes). Middle three panels show
clustered similarity matrices constructed from surrogate data
generated by shuffling prior to the correlation analysis (shuf-
fling from left to right: stimulus labels of population response
vectors; neuron identity on individual trials; stimulus labels of
individual neurons). Bottom three panels show Hubert’s I" as-
suming different number of modes for data (red lines, x denotes
maximum I') and the three methods of shuffling the data (black
lines, grey area indicates minimum and maximum, x denotes
maximum ).
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Figure 5.14: Quantitative description of response modes. (a) Histogram of
significantly active neurons per mode (n = 1,954 modes, n =
25,919 neurons). (b) Histogram of stimuli per mode in a given
FOV (n = 3,950 modes). (c) Histogram of number of modes per
FOV (n = 388 FOVs).
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Figure 5.15: Histogram of average pairwise correlations of trials inside a re-
sponse mode and outside a response mode. (a) and (b) show
absolute counts, and (c) shows normalized counts for compari-

son.
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Figure 5.15). Conveniently, response modes provide a massively re-
duced and simplified description of sound-evoked activity patterns
and we will make use of this in the following sections. At first sight,
this type of representation may seem to hamper the capacity of the
cortex to discriminate among different stimuli. Note, however, that
the mapping of the various sounds to particular response modes var-
ied across different FOVs, supporting a combinatorial code at a more
global scale (Figure 5.10b).

In summary, our analysis of the data based on individual imaging
days corroborates previous reports suggesting a functional layout of
the superficial layers of mouse auditory cortex with scattered and
partially overlapping cell assemblies that are driven in a non-linear
manner by different groups of sound stimuli (Bathellier et al., 2012,
See et al., 2018).

5.2.4 Ongoing recombination of sensory representations during basal con-
ditions

Having observed that the structure of auditory representations in a
FOV can be well approximated by a small set of response modes, we
exploited this highly reduced, non-linear description to capture main
aspects of the ongoing representational changes during basal condi-
tions. Following the response modes in the FOV from Figure 5.11

Day 1 Day 3 Day 5 Day 7
- ;.I - L1} El LA l'I :I:II L1 - L I:l ;I:I LA .I!
M W N || =
e — —r v —
b - . ] . - PT
g - —r b E
£
“HECS
IIE e m - mw LA n _BE S IIEE_ 1) B me
I'®
i | :
g5 -y w - L
© [
= t-
Sl ko
~ T T - e T - my TN - TEN T - e §
N _BREEE BERR I
E L RN __.-.l% _'l L) -1
3 o -

Figure 5.16: Recombination of response modes over the course of days. Top:
Single day similarity matrices of sound evoked responses from
an example FOV sorted by hierarchical clustering. Sorting from
day 1 is applied to the subsequent days (PT: pure tones, CS:
complex sounds). Middle: Same as above but sorted on each
day individually. Bottom: Same as above but sorting from day
7 is applied to the previous days.

across time, we found evidence for stimuli to transition between
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modes, sometimes leading to the disappearance of an existing or
the occurrence of a new mode. The latter is illustrated in Figure 5.16
(middle row) by the similarity matrices of stimulus responses, sorted
separately on each imaging day using hierarchical clustering (see Sec-
tion 5.4.20): Here, three modes that were present during the first two
imaging days transitioned to only two modes on the last two imaging
days, differing in size and stimulus composition. This change in stim-
ulus composition is better seen when applying an identical sorting to
all matrices from different days (using either the sorting of the first
day (top row) or of the last day (bottom row). While a considerable
fraction of stimuli remained stable, some stimuli dropped out of their
response mode, as, for instance, indicated by the ‘white gaps’ in the
large response mode on day 3, 5, and 7 in the top row and by the ‘red
lines” on day 1, 3, and 5 in the bottom row. For more examples see
Sup. Fig. 9.2.
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Figure 5.17: Response mode changes across the imaging time period. (a) Life
time plot of the mapping of stimuli to a specific response mode.
The mapping was assessed for each stimulus (34) for the re-
sponse modes identified in each FOV (97) resulting in a max-
imal number of 3,298 mappings. A thin horizontal black line
indicates a significant response on a given day, data from 12
mice. (b) Life time plot of the total number of response modes
that were identified in a given FOV. A thin horizontal black
line indicates presence of a response mode on a given day, data
pooled over all 97 FOVs and 12 mice.

To systematically analyze these ongoing changes in the response
mode structure, we computed the full set of relevant response modes
in a FOV by clustering simultaneously all responses from all imag-
ing days (see Section 5.4.20 for details). Note that each mode is now
defined for all imaging days and may contain responses to the same
stimulus from different days. This scheme allowed us not only to
track how individual stimuli transition between different modes, but
also to detect modes that become void of stimuli (referred to as dis-
appearing modes) and modes that transition from void to containing
stimuli (referred to as appearing modes). We then aggregated this
information over all imaged populations. Figure 5.17a shows for each
of the 34 stimuli probed in each of the 97 FOVs whether a stimulation
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elicited a response (black), or no response (white) (34 x 97 = 3,298
stimulations in total). We found that almost half of the stimulations
elicited a response over the course of a week, but only a third of them
on any single day. Individual stimulations gained (transitions white
to black), lost (black to white) and sometimes regained responses.
Likewise, whereas the number of response modes stayed roughly the
same across days, a considerable fraction of modes disappeared from
one imaging day to the next, while others appeared (Figure 5.17b),
and some previously present modes reappeared. Of all stimuli be-
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Figure 5.18: Flow chart of response mode dynamics. Left: Development of
population responses present on day i (defined as Mode A) two
days into the future (Mode A, Mode B, or 0-mode). Right: De-
velopment of population responses present on day i (defined

as Mode A) from two days ago (Mode A, Mode B or 0-mode).
Numbers are counts and fractions averaged across transitions.
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ing mapped to specific response mode on a given day, only half
remained in that mode on the following imaging day, whereas al-
most 20% moved to a different response mode and more than 30%
to the 0-mode, i.e. did no longer elicit a population response (Fig-
ure 5.18). This dynamics was largely balanced, as almost 30% of
stimuli mapped to a response mode on a given day, did not elicit
a population response on the previous imaging day. In summary, we
found changes in the mapping of sounds to response modes, as well
as changes in the response modes themselves, while the average num-
ber of stimuli being mapped to a response mode and the total number
of response modes remained fairly stable across imaging days.

5.2.5 The impact of learning on the dynamics of sensory representations

We next wondered to what extent behaviorally relevant experiences
that trigger the formation of a memory to a sound would impact the
long-term dynamics of sensory representations in mouse auditory
cortex (Aschauer and Rumpel, 2018). To this end, we acquired a sec-
ond dataset (10 mice; 74 FOVs; 16,882 neurons) with four imaging
time points at a two-day interval using the same set of sound stim-
uli as before (Figure 5.19a). On the day between imaging sessions
two and three, mice underwent an auditory cued fear conditioning
paradigm, in which they learned to associate the presentation of a
sound with the subsequent application of a mild foot shock. A com-
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plex sound from the stimulus set was chosen as conditioned stimulus
(CS+). It has previously been shown that auditory cued fear condition-
ing and variants thereof induce specific changes in gene expression
(Peter et al., 2012, Cho et al., 2017), affect the dynamics of synaptic
connections (Maczulska et al., 2013, Yang et al., 2016, Lai et al., 2018)
and induce changes in the tuning of neurons in mouse auditory cor-
tex (Quirk et al., 1997, Weinberger, 2004, Gillet et al., 2017, Dalmay
et al.,, 2019).

To test for the successful formation of a memory at the behavioral
level, we exposed mice again to the sound cue used for conditioning
in a neutral context after the last imaging session and scored freez-
ing behavior as a readout of fear-related memory recall. As expected,
we observed low freezing levels during silence and significantly in-
creased freezing during presentation of the conditioned sound. Fur-
thermore, we also observed high freezing levels during the presenta-
tion of a second sound stimulus that was not presented during the
conditioning session (non-CS+), indicating a high level of generaliza-
tion (Figure 5.19b; n = 10 mice; * p < 0.0001 for silence and CS+, *
p < 0.0001 for silence and non-CS+). This high level of generalization
is typically observed following classical fear conditioning unless spe-
cific differential conditioning paradigms are utilized (Letzkus et al.,
2011).

Memory Test
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auditory cued fear conditioning memory 0 )
(acfc) test silence CS+ non
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(a) ACFC timeline. (b) Memory test.

Figure 5.19: Auditory cued fear conditioning paradigm. (a) Experimental
timeline for cohort of mice undergoing auditory cued fear con-
ditioning (ACFC). Dataset comprises 16,882 cells from 10 mice.
(b) Increase in freezing behavior for conditioned CS+ and high
level of generalization to another non-conditioned sound in a
memory test four days after fear conditioning. Gray lines de-
pict behavior of individual animals and black line is mean +
SEM of all animals.

We compared the fraction of sound-responsive cells in both datasets
and found only a transient increase in the first imaging session af-
ter conditioning (Figure 5.20a; control: n = 97 FOVs; ACFC: n = 74
FOVs; * p < 0.0001). In addition, we observed, that the average num-
ber of stimuli that evoked a population response in a given FOV, i.e.
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were mapped to a response mode, was significantly increased fol-
lowing conditioning compared to control. This suggests that sounds
gain a longer-lasting, broader representation across the auditory cor-
tex (Figure 5.20b; * p = 0.0095, day 7 * p < 0.0001). Parallel to this,
we observed that the efficacy to decode sounds from population re-
sponse vectors recorded within individual FOVs was increased fol-
lowing conditioning in comparison to the control group (Figure 5.20c;
*p < 0.05). In accordance with previous studies, we observed a slight
decrease in these measures during baseline periods for both groups,
presumably due to continuing habituation (Kato et al., 2015). Interest-
ingly, this effect was reversed for the conditioned cohort, showing a
significant increase in decoding performance at time points after the
conditioning session.
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(a) Responsive cells. (b) Stimulus responses. (c) Decoding performance.

Figure 5.20: Auditory cued fear conditioning increases decoding perfor-
mance. (a) Normalized fraction of sound responsive cells over
the imaging days averaged over FOVs (mean + SEM). (b) Aver-
age number of stimuli eliciting a population response in a given
FOV (mean £ SEM). (c) Decoding performance (pairwise logis-
tic regression, training and test data from same day) in baseline
and ACFC dataset.

To better understand this improvement of decoding performance
upon fear conditioning, we next studied the induced changes in neu-
ral activity in terms of the response mode dynamics introduced above.
To gain intuition, we first studied a simple model, in which we consid-
ered the case that stimuli are encoded in a local neuronal population
by distributing these stimuli evenly among a given number of modes
(see Section 5.4.24 for details). In this model, both the total number of
stimuli and number of response modes available determine how effi-
ciently pairs of sounds can be decoded on average (Figure 5.21a). In
the parameter regime consistent with our experiments, i.e. a consider-
ably large 0-mode and about 5 response modes with 2 — 3 stimuli per
mode, the average decoding performance can improve not only by
increasing the number of response modes, but also by increasing the
number of stimuli per response mode. Note that the latter is a direct
consequence of the fact that the 0-mode is relatively large; a stimulus,
once it has left the 0-mode, can be distinguished from all stimuli in
the 0-mode. In our data, we indeed observed a similar relationship
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between decoding performance and number of response modes and
stimuli per mode (Figure 5.21b).
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(a) Model. (b) Experiment.

Figure 5.21: Model of decoding performance based on response modes. (a)
Model of decoding performance based on response modes sug-
gests better performance with increased number of modes Ny,
as well as increased average number of stimuli per response
mode L, . White region of the matrix reflects the condition
N X Lin < Ngim (total number of stimuli Ng,, = 34). (b) Ex-
perimentally observed decoding performance from data of indi-
vidual FOVs plotted as function of number of response modes
and mean number of stimuli per response mode.

Therefore, we next asked whether the increase in decoding perfor-
mance that we observed upon fear conditioning (Figure 5.20c) was
due to an increase in the average number of response modes, or an
increase in the average number of stimuli per mode, or both. Intrigu-
ingly, whereas the average number of modes per FOV was indistin-
guishable between the baseline and fear condition cohorts during all
imaging days (Figure 5.22a; control: n = 97 FOVs; ACFC: n = 74),
the average number of stimuli per response mode was significantly
larger following conditioning (Figure 5.22b; day 5: * p = 0.0021; day
7: * p < 0.0001). Consistently, feeding the observed increase in stim-
ulus number per response mode back into our model, it was able to
account for the experimentally observed increase in sound decoding
(Figure 5.22¢).

Both datasets in our study were dominated by a substantial degree
of representational changes (Figure 5.23). However, the analysis of
the response mode dynamics revealed that learning induces a bias
in the ongoing recombination of sensory representations compared
to basal conditions. Specifically, changes that increase the number of
stimuli being mapped to a response mode occurred more frequently,
thereby mediating an improvement in sound decoding at the level of
individual FOVs.
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Figure 5.22: Improved decoding after auditory cued fear conditioning is me-
diated by an increase in the number of stimuli mapped to a
response mode. (a) Mean number of response modes averaged
over FOVs (mean+ SEM). (b) Mean number of stimuli per re-
sponse mode averaged over FOVs (mean + SEM). (c) Predicted
increase in decoding performance based on the model from Fig-
ure 5.21a when considering changes in number of modes and
average number of stimuli per mode as observed in (a) and (b).
Baseline: n = 97 FOVs, ACFC: n = 74 FOVs, Bootstrap test: *
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Figure 5.23: Further quantification of response mode dynamics. (a), (b) Re-
productions of Figure 5.17a and Figure 5.17b, illustrating the dy-
namics in the data set acquired under basal conditions, shown
here for comparison. (c), (d) Same as (a) and (b) for dataset from
cohort of mice undergoing fear conditioning between day 3 and
day 5. Note that the dynamics observed under basal conditions
are also dominant in the fear conditioning dataset. The specific
learning-induced changes weave into this ongoing dynamics.
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5.2.6 Fear conditioning drives the formation of associations between sen-
sory representations and stabilizes them

Notably, increasing the number
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Under basal conditions, we ob-
served that stimuli disappeared from a given response mode, by a
rate that was almost balanced by new stimuli being added to it (Fig-
ure 5.18). Intriguingly, we found that during learning both of these
rates were shifted: the rate of stimuli being added to a mode per day
increased, relative to the baseline dynamics (Figure 5.25a; control:
n = 97 FOVs; ACFC: n = 74 FOVs; transition 3 — 5: * p < 0.0001;
transition 5 — 7: * p < 0.0007T) while the rate of stimuli disappearing
(and entering the 0-mode) decreased (Figure 5.25b; transition 3 — 5:
*p < 0.0007; transition 5 — 7: * p < 0.0001). Note that both processes
effectively increased the average number of stimuli that are mapped
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Figure 5.25: Increased mapping of individual stimuli to a shared response
mode as a mechanism to form an association. (a) Normalized
fraction of stimuli gaining a response mode representation av-
eraged over FOVs (mean £ SEM). (b) Same as (a) for stimuli
losing a response mode representation.

to a response mode. The former suggests an increase in the forma-
tion of new associations among stimuli, while the latter suggests the
stabilization of existing associations. Thus, by the same mechanism,
increasing the number of stimuli mapped to a response mode, fear
conditioning can improve decoding performance and foster the for-
mation of new associations as well as stabilizing existing ones.

5.2.7 ACFC increases population responses for stimuli with representa-
tional similarity to the conditioned sound

Next, we sought to investigate stimulus specific effects. We wondered
to what extend the response increase observed in Figure 5.20b is spe-
cific to stimuli similar to the conditioned stimulus (CS+). Similarity
between stimuli is easy to determine for pure tone stimuli, as they
can be ordered along one dimension and through tonotopy in the
auditory they are also perceived in that way. But what about complex
sounds? We used representational similarity in the auditory cortex
as a measure of stimulus similarity and followed an approach to
take the correlation between stimulus evoked activity patterns as a
proxy of perceived pairwise similarity (Kriegeskorte et al., 2008). To
this aim we averaged the pairwise correlation of response vectors for
all sound stimuli recorded on the first imaging day across all FOVs
from both datasets (Figure 5.26a). As expected resonses to pure tone
stimuli were similar along the diagonal indicating that close-by fre-
quencies evoked similar responses, but this method also revealed the
perceived similarity between any two complex stimuli and between
complex stimuli and pure tones.

We used the representational similarity in order to sort stimuli by
their similarity to the CS+ and counted the number of FOVs, where
the respective stimuli evoked a response on day one, i.e. prior to fear
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Figure 5.26: Representational similarity to CS+ is predictive of increase in re-
sponsiveness. (a) Correlation matrix of sound response vectors
for all stimuli averaged across all FOVs from both datasets on
day 1. Arrows mark columns representing the stimulus used
for fear conditioning (CS+) and the non-conditioned stimulus
presented during the memory test session (non-CS+ (a)). (b)
Difference between basal and fear conditioning groups in the
fraction of FOVs in which a population response to a given stim-
ulus was observed. Gray dots mark values for baseline (day 1)
and black dots after conditioning (day 7). Stimuli are sorted
on the x-axis by descending similarity to the stimulus used
for fear conditioning. The correlation color bar represents the
correlation of population response vectors to the CS+ (see CS+
column) in (a). Arrows mark the stimulus used for fear condi-
tioning (CS+) and the non-conditioned stimulus (non-CS+ (a))
presented during the memory test session. * Spearman’s rank
correlation, p = 0.66, p < 0.0001.

conditioning, and on day seven, i.e. after fear conditioning. Prior to
conditioning we found no significant difference between the ACFC
and control datasets (Figure 5.26b, Spearman’s p = 0.32, p = 0.07). In
contrast, after conditioning, we found that stimuli were more likely
to elicit a response in the conditionied group, the more similar they
were to the CS+ (Figure 5.26b, Spearman’s p = 0.66, p < 0.0001).
Notably, responses to the CS+ itself seemed to be barely affected by
conditioning.

5.2.8 Fear conditioning drives stimulus specific formation of associations
between sensory representations, predictive of behavioral generaliza-
tion

Generalization is believed to be linked to the association of the condi-
tioned stimulus (CS+) and non-conditioned stimuli (non-CS+) during
conditioning (Pavlov and Anrep, 1927, Dunsmoor and Paz, 2015). On
the microcircuit the activation of a subgroup of neurons by different
stimuli has been interpreted as such an association between those
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stimuli (Grewe et al., 2017). Having established a differential effect of
fear conditioning on population activity evoked by stimuli other than
the CS+ depending on the representational similarity of the respec-
tive stimulus to the CS+, we next wanted to leverage our response
mode framework to investigate this some more. In our framework
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Figure 5.27: Examples from two FOVs showing the responses of the con-
ditioned stimulus (CS+) and a non-conditioned stimulus (non-
CS+). Prior to fear conditioning the non-CS+ did not elicit a sig-
nificant response (0-mode), whereas after fear conditioning its
response became similar to that of the CS+ (mode A). Top: stim-
ulus identity; middle: mode identity; bottom: single trial pop-
ulation response vectors. For illustrative purposes, the 50 most
active cells are shown in random order and trials are sorted by
descending mean activity (PT, pure tones; CS, complex sounds).
For further examples, see Sup. Fig. 9.3.

two stimuli evoking the same response mode can be interpreted as
an association. As already shown above, an increasing number of
stimuli evoking a response (Figure 5.20b), combined with no increase
in the number of response modes (Figure 5.22a), and thus an increase
of the number of stimuli being mapped to each mode (Figure 5.22b),
clearly display an increase in the formation of associations. However,
as we observed increased activity of stimuli similar to the CS+, we
next investigated the co-mapping of stimuli, more precisely we as-
sessed if increased co-mapping of stimuli following fear conditioning
is specific to non-CS+ sound stimuli similar to the CS+. Exmples are
shown in Figure 5.27 (for further examples see Sup. Fig. 9.3). In the
basal control group we found that stimuli that were more similar to
each other also tended to evoke the same response mode more often.
This was no surprise, as both measures of population activity are
related to each other. Indeed, the correlation was used to define the
clustering into response modes. However, when comparing the two
datasets, we found that the likelihood of co-mapping to the CS+ was
more pronounced for non-CS+ with a higher representational simi-
larity to the CS+ in the cohort of mice that underwent conditioning
(Spearman rank correlation p = 0.73, p < 0.0001, Figure 5.28a). So,
fear conditioning led to an increase of associations between the CS+
and those non-CS+ sounds that already showed a high level of repre-
sentational similarity prior to the conditioning.
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Figure 5.28: Co-mapping with the CS+ is predictive of behavioral general-
ization. (a) Top: for each stimulus, sorted on the x-axis by de-
scending similarity to CS+, the plot shows the fraction of FOVs
this stimulus is co-mapped to the response mode of the CS+ on
day 7 in experimental groups with (ACFC, red) and without
(basal, blue) fear conditioning. The correlation color bar repre-
sents average correlation of population response vectors to the
CS+ (see Figure 5.26a). Arrows mark non-conditioned stimuli
presented during the memory test session in (b) (non-CS+ (a, b,
¢)). Bottom: differences between fractions for ACFC and basal. *
Spearman’s rank correlation, p = 0.73, p < 0.0001. Note a strong
increase in co-mapping after fear conditioning specifically for
stimuli with larger representational similarity to the CS+ prior
to conditioning. (b) Top: experimental time line of behavioral
experiment. During conditioning the same complex sound was
paired with the unconditioned stimulus. During the generaliza-
tion test, mice were exposed to three non-conditioned sound
stimuli. Bottom: increase in freezing behavior in a test session
for three non-conditioned stimuli (two with high-response cor-
relation to the CS+ (non-CS+ (a, b)) and one with low response
correlation to the CS+ (non-CS+ (c)). Freezing to non-CS+ (c) is
not different to time periods without the presentation of a stim-
ulus (blank). Gray lines depict behavior of individual animals
and the black line is the mean + SEM of all animals. * One-way
ANOVA with correction for multiple comparisons, first 30 s ver-
sus non-CS+ (a, b, ¢) and blank: p < 0.05, non-CS+ (a, b) versus
non-CS+ (c¢) and blank: p < 0.0001.
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Can these associations on the level of cortical populations be linked
to generalization on the behavioral level? To test this, we performed
another fear conditioning experiment, during which mice were con-
ditioned to the same complex sound stimulus as above, before we
used three different non-CS+ to probe for a differential stimulus gen-
eralization 4 days later. In addition to the sound used in our previous
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Figure 5.29: Freezing during the conditioning session and in naive animals.
(a) Freezing behavior of the experimental animals from the
memory test in Figure 5.28b during the conditioning session
with five consecutive pairings of the CS+ and the US (mild elec-
tric shock; * one-way ANOVA with correction for multiple com-
parisons, first 30 s vs. CS+ period 1: p < 0.05, first 30 s vs. CS+
periods 2 to 4: p < 0.0001). (b) Freezing behavior in a control
experiment with naive mice which were exposed to all stimuli
used in the behavior experiments without having previously ex-
perienced a CS-US pairing. Freezing levels are low for all stim-
uli and not different to periods of silence at the beginning of
the session (first 30s) and at interspersed time points though-
out the session (blank; n.s.: one-way ANOVA with correction
for multiple comparisons).

experiment (non-CS+ (a)), we chose two more sounds from our 34
stimuli, one with a high similarity to the CS+ and a high increase of
co-mapping (non-CS+ (b)), and one with little similarity to the CS+
and no change in co-mapping (non-CS+ (c)) (Figure 5.28a). None of
the stimuli induced freezing in naive mice (Figure 5.29). After condi-
tioning we found significantly increased freezing levels for both the
non-CS+ (a) and the non-CS+ (b), but not for the non-CS+ (c) (Fig-
ure 5.28b, * p < 0.0001 for first 30 s and all other groups, * p < 0.0001
for non-CS+ (a, b) and non-CS+ (c) and blank). Together, this indicates
that representational similarity is predictive of the level of ACFC in-
duced co-mapping of non-CS+ stimuli onto the same response as the
CS+. And this co-mapping in turn is correlated with the degree of
behavioral generalization to non-conditioned stimuli.
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5.3 DISCUSSION

We studied the long-term dynamics of auditory representations in
the cortex. Chronic monitoring of sound-evoked population activity
over the course of several days revealed that sensory representations
undergo substantial recombination even under environmentally and
behaviorally stable conditions. In order to capture structure in the
parallel recordings of hundreds to thousands of neurons, changes in
population activity are often described using a single, albeit rather ab-
stract metric, such as decoding power. Here, we developed a descrip-
tion of population activity at an intermediate and biologically more
interpretable level, specifically at the level of cell assemblies whose
non-linear activation forms sensory representations. The identifica-
tion of response modes based on the non-linear activation of distinct
cell assemblies provided a highly reduced and efficient description of
the network dynamics. Response modes represent the association of
a set of sensory stimuli with the prototypical activation of a specific
cell assembly and thus reflect non-linear properties of auditory per-
ception (Liberman et al., 1967). Breaking down the ongoing changes
of sensory representations into response modes and changes between
response modes we were able to capture the major remodeling, albeit
stationary dynamics of population response changes.

What are the driving forces underlying the recombination of sensory
representations during basal conditions? As the pattern of connec-
tivity is considered a major determinant for the patterns of activity
that can arise in neuronal networks, it appears plausible that ongoing
remodeling of synaptic connections could underlie the plasticity we
observed in our experiments. Indeed, such basal dynamics in connec-
tivity are observed in the mouse auditory cortex during behaviorally
stable conditions without need for adaptation (Loewenstein et al.,
2011, Loewenstein et al., 2015). Interestingly, such spontaneous dy-
namics in synaptic connections even persist during pharmacological
blockade of neuronal activity (Yasumatsu et al., 2008, Rubinski and
Ziv, 2015, Dvorkin and Ziv, 2016, Nagaoka et al., 2016), and thus ap-
pear to represent a fundamental feature of neuronal circuits. More
recently, theoretical modeling has been used to investigate how on-
going synaptic plasticity, as it is observed during basal conditions,
affects the long-term stability of activity patterns in a network (Kap-
pel et al.,, 2015, Kappel et al., 2018, Mongillo et al., 2018, Humble et al.,
2019, Susman et al., 2019).

Increases in local population coding efficacy induced by behavioral
training were observed in several sensory cortical systems (Huber et
al., 2012, Poort et al., 2015). We observed a similar increase in coding
efficacy in our dataset (Figure 5.20c) that could be explained by a
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selective increase in the number of stimuli per response mode (Fig-
ure 5.22b). However, global coding efficacy is typically sufficiently
high to explain sensory discrimination even before training, hinting
that this increase could reflect also other representationally relevant
processes induced by learning. Our analysis indicates that auditory
fear conditioning also specifically biases the dynamics of sensory rep-
resentations leading to an increased mapping of different stimuli onto
a shared cell assembly. This increased formation of associations be-
tween sensory representations is consistent with the observed high
level of behavioral generalization.

Auditory cued fear conditioning led to a differential co-mapping of
stimuli onto the same local response as the conditioned stimulus
(CS+) dependent on their a priori representational similarity to the
CS+. This co-mapping was correlated to a behavioral generalization.
While the balance of discrimination and generalization of stimuli is
essential for a successful navigation in a complex and changing en-
vironment, a surplus of generalization has been linked to diseases
such as post-traumatic stress disorder (Besnard and Sahay, 2016). In
contrast to earlier work, where mostly simple stimuli (like pure tones)
were used, which can be modified in a one-dimensional way, we used
complex stimuli and the degree of their representational similarity as
a proxy for perceived similarity. This allowed us to infer the learning-
induced changes of sound evoked activity patterns. This is in line
with previous findings in which the representational similarity at the
level of the auditory cortex was used as a neurometric measure to
predict behavioral categorization of stimuli in a discrimination task
(Bathellier et al., 2012). The generalization from CS+ to non-CS+ stim-
uli is believed to be based on perceptual features of the stimuli, but
it is to date unclear, what is the involved circuit mechanism (Dun-
smoor and Paz, 2015, Boddez et al., 2021). We observed an increased
co-mapping of non-conditioned stimuli to the same local groups of
neurons that are evoked by the CS+, consistent with the role auditory
cortex plays in stimulus generalization (Thompson, 1962, Armony
et al., 1997, Aizenberg and Geffen, 2013). Increased co-activation of
shared neuronal subgroups by different stimuli has been reported
at the level of the amygdala (Grewe et al., 2017) as well es in hip-
pocampal ensembles (Cai et al., 2016). Together with our findings
this suggests a close link between behavioral generalization and rep-
resentational associations.

Interestingly, the recombination of representations, i.e. their associ-
ation as well as their dissociation, ensues to a substantial degree also
during basal conditions and it remains a matter of research to inves-
tigate their functional relevance (Chambers and Rumpel, 2017). We
speculate that this ongoing dynamics of cell assemblies could sup-
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port cognitive processes that occur without explicit mental engage-
ment, like the spontaneous creation of associations (Wallas, 1926) or
their forgetting (Richards and Frankland, 2017).

5.4 METHODS
5.4.1 Molecular cloning

For the generation of a recombinant AAV (rAAV) genome encod-
ing for GCaMP6m under the human Synapsinl promoter (phSyn), a
plasmid containing the inverted terminal repeats (ITRs) of AAV, ph-
Syn (Addgene plasmid 26973), Woodchuck Hepatitis Prottranscrip-
tional Regulatory Element (WPRE), and a human Growth Hormone
polyadenylation site (hGH-pA site) was digested using BamHI and
Acclll and the gene coding for GCaMP6ém was PCR amplified from
a commercially available plasmid (Addgene plasmid 40754) and in-
serted. Finally, the plasmid was digested with Acclll and HindIII
to excise the original transgene and 3’overhangs were blunted and
5’overhangs were filled in using Klenow fragment.

For the generation of a recombinant AAV genome encoding for H2B-
mCherry fusion protein under the phSyn, a gene coding for mCherry
was PCR amplified and inserted into a plasmid containing a gene for
H2B directly after its coding sequence using Clal and Spel to produce
a fusion gene. The H2B-mCherry fusion gene was PCR amplified and
inserted into a plasmid containing ITRs, phSyn, WPRE, and hGH-
pA using Kpnl and HindlIIl. Finally, the WPRE was removed using
HindIIl and Xhol, and 3’overhangs were blunted and 5'overhangs
were filled in using Klenow fragment.

5.4.2 rAAV production

All rAAV vectors described were produced in HEK293 cells by using
a helper virus free, two-plasmid based production method (Grimm et
al., 2003) based on a commercially available AAV helper free system
(Agilent Technologies, CA, USA; catalog# 240071). Briefly, HEK293
cells were transfected by using the calcium phosphate method. 72h
post transfection, cells were harvested and collected by centrifugation
(2500 x g, 20 min at 4 °C). Cell pellets were resuspended in resuspen-
sion buffer and lysed by three consecutive freeze/thaw cycles. For re-
moval of genomic DNA, cell lysates were incubated with benzonase
(50uml—") for one hour at 37 °C. Subsequently, rAAV particles were
precipitated with CaCl2 (25 mmol) followed by PEG precipitation
(8% PEG-8000, 500 mmol NaCl). After resuspension of PEG precip-
itates in 50 mmol HEPES, 150 mmol NaCl, 25 mmol EDTA, pH 7.4
overnight at 4°C, rAAV particles were further purified by CsCl den-
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sity gradient centrifugation. Fractions from CsCl density gradients
were analyzed by measuring the refractory index. Samples within a
refractory index ranging from 1.3774 to 1.3696 were pooled and di-
alyzed against PBS for removal of CsCl by using dialysis cassettes
with a molecular weight cutoff of 20kDa (Thermo Scientific, MA,
USA; catalog# 87738). Finally, rAAV preparations were concentrated
by using ultrafiltration units with a molecular weight cutoff of 50 kDa
(Millipore, MA, USA; catalog# UFCgo05024). After addition of glyc-
erol to a final concentration of 10%, rAAV preparations were ster-
ile filtered with Millex-GV filter units (Millipore, MA, USA; catalog#
SLGVo013SL), frozen in liquid nitrogen, and subsequently stored in
aliquots at —80 °C. Genomic titers of purified rAAV stocks were deter-
mined by isolation of viral DNA (Viral Xpress DNA/RNA Extraction
Reagent, Millipore, MA, USA; catalog# 3095) and subsequent qPCR
analysis using primers specific for phSyn.

5.4.3 Animal use

Experimental subjects were were male CB57BL /6] mice of eight-twelve
weeks of age from Jackson laboratory (strain #000664). Before sur-
gical procedures, mice were kept in groups of five, and housed in
530cm? cages on a 12h light/dark cycle with unlimited access to
dry food and water. Experiments were carried out during the light
period. All animal experiments were performed in accordance with
the Austrian laboratory animal law guidelines for animal research
and had been approved by the Viennese Magistratsabteilung 58 (Ap-
proval M58/00236/2010/6).

5.4.4 Stereotactic injection

All surgical equipment was sterilized with 70% v/v ethanol before
use. Animals were deeply anesthetized with a mixture of ketamine
and medetomidine (KM; 2.5mg ketamine-HCl and 0.02mg

medetomidine-HCl/25 g mouse weight) injected intraperitoneally, and
positioned in a stereotaxic frame (Kopf Instruments, Tujunga, CA,
USA; Stereotaxic System Kopf 1900). The eyes were protected from
dehydration and intensive light exposure using sterile eye gel (Alcon
Pharma, Novartis, CHE; Thilo-Tears Gel) and a piece of aluminum
foil. Lidocaine was applied as local anesthetic subcutaneously be-
fore exposure of the skull. The scalp was washed with a 70% v/v
ethanol in water solution and a cut along the midline revealed the
skull. A small hole was drilled into the skull above the auditory cor-
tex using a stereotaxic motorized drill (Kopf Instruments, Tujunga,
CA, USA; Model 1911 Stereotaxic Drilling Unit) leaving the dura
mater intact. Injections were performed perpendicular to the surface
of the skull. Virus solution consisted of a mixture of two different
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recombinant AAV viruses (rAAV2/8 ITR-phSyn-GCaMP6m-WPRE-
hGHpolyA-ITR; titer: 1.75 x 10'! viral genomes(VG)/ml; rAAV2/8
ITR-phSyn-H2BmCherry-hGHpolyA-ITR; titer: 2 x 103 VG/ml) in
PBS. The virus mixture was loaded into a thin glass pipette and
1501l were injected at a flow rate of 20nlmin~' (World Precision
Instruments, Sarasota, FL, USA; Nanoliter 2000 Injector) in five loca-
tions along the anterior-posterior axis, resulting in a total injection
volume of 750 nl. Stereotactic coordinates were: 4.4,—2,5/ — 2.75/ —
3/—3.25/—3.5,2.5 (in mm, caudal, lateral, and ventral in reference
to Bregma). Glass pipettes (World Precision Instruments, Sarasota,
FL, USA; Glass Capillaries for Nanoliter 2000; Order# 4878) had been
pulled with a long taper and the tip was cut to a diameter of 20 to
40 pm. After the injection, the pipette was left in place for three min-
utes, before being slowly withdrawn and moved to the next coor-
dinate. After completion of the injection protocol, the skin wound
was sealed using tissue adhesive (3M Animal Care Products, St. Paul,
MN, USA; 3M Vetbond Tissue Adhesive), and anesthesia was neu-
tralized with 0.02ml atipamezole. Mice were monitored daily and
intraperitoneal injections of carprofen (0.2ml of 0.5mgml~" stock)
were applied on the first days after surgery.

5.4.5 Cranial window implantation

Two weeks after stereotactic injections, animals were anesthetized us-
ing isoflurane (Abbott Animal Health, IL, USA; IsoFlo). All surgical
equipment and glass cover slip were sterilized with 70% v/v ethanol
before use. Anesthesia was initialized in a glass desiccator filled with
an isoflurane/air mixture. Anesthetized animals were mounted on a
stereotaxic frame (Kopf Instruments, Tujunga, CA, USA; Stereotaxic
System Kopf 1900) and the head was positioned using ear, teeth, and
a custom-made v-shaped head holder. Anesthesia was maintained
by delivery of a 1.5 to 2.4% isoflurane/air mixture with a vaporizer
(High Precision Instruments, MT,; Univentor 400 Anaesthesia Unit)
at a flow rate of around 200 mlmin~' to the snout. 0.02ml dex-
amethasone (4mgml~') was administered intramuscularly to the
quadriceps, as well as 0.02ml ml carprofen (0.5mgml~") intraperi-
toneally. The eyes were protected from dehydration and intensive
light exposure using sterile eye gel (Alcon Pharma, Novartis, CHE;
Thilo-Tears Gel) and a piece of aluminum foil. A local anesthetic (li-
docaine/epinephrine (Gebro Pharma, Austria)) was applied subcuta-
neously before exposure of the skull. The scalp was washed with a
70% v /v ethanol in water solution and a flap of skin covering tempo-
ral, both parietal regions and part of the occipital bone was removed.
The musculus temporalis was injected with lidocaine/epinephrine
(Gebro Pharma, Austria) as an additional anesthetic and to minimize
bleeding. Subsequently, the muscle was partly removed with a sur-



5.4 METHODS

gical scalpel and forceps to expose the right temporal bone. Using
a fine motorized drill, the bones of the skull were smoothened, and
part of the zygomatic process was removed. The surface was cleaned
using cortex buffer and a two percent v/v hydrogen peroxide in wa-
ter solution, and covered with a thin layer of one component-instant
glue (Carl Roth, Germany; Roti coll). A thin layer of dental cement
(Lang Dental, IL, USA; Ortho-Jet) was applied onto the skull, sparing
the area of the temporal bone above the auditory cortex. A rectan-
gular groove of about 2mm by 3 mm was carefully drilled into the
skull above the auditory cortex, and the bone was carefully lifted
using scalpel and forceps. The exposed area was carefully cleaned
and kept moist using sterile sponge (Pfizer, NY, USA; Gelfoam) and
cortex buffer. The craniotomy was covered with a small circular cover
glass (Electron Microscopy Sciences, PA, USA; five mm diameter, cata-
logue# 72195 —05), and sealed with 1.2% low-melting agarose (Sigma
Aldrich, MO, USA; Agarose Type IIIA). The cover glass was finally
set in place with one component-instant glue and dental cement. In
order to position the animal under the microscope with the objective
facing the window plane perpendicularly, a custom-made titanium
head post was mounted on the implant above the window and em-
bedded with dental cement. After dental cement had dried, animals
were placed back in a pre-warmed cage. After the surgical procedure,
animals recovered for at least one week before further handling.

5.4.6  Habituation to awake chronic two-photon imaging

Following mesoscopic imaging, animals were habituated to handling
at the two-photon microscope. Therefore, animals were mildly water
deprived and fixated under the objective in a custom-made acrylic
glass tube, using a custom-made head post implant. The mouse head
was laterally tilted such that the surface of the auditory cortex aligns
approximately with the horizontal plane. During habituation, head
fixation lasted for a minimum of 30 min each day, and animals were
given access to a five percent m/v sucrose in water solution. This
was repeated for at least five days until animals accommodated to the
head fixation apparatus, showed reduced signs of stress and less body
movements (typically consisting of few second long running bouts).
The full sound stimulus set later used for recording of sound-evoked
activity, was repeatedly presented resulting in animal subjects having
experienced all sensory stimulations before any data acquisition.

5.4.7 Sound presentation

All sounds were delivered free field at 192 kHz sampling rate in a
soundproof booth by a custom-made system consisting of a linear
amplifier and a ribbon loudspeaker (Audiocomm, Austria) placed in
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25 cm distance to the mouse head. The transfer function between the
loudspeaker and the location of the mouse ear was measured using a
probe microphone (Briiel&Kjeer, Bremen, Germany; 4939-L-002) and
compensated numerically by filtering the sound files with the inverse
transfer function to obtain a flat frequency response at the mouse ear
(between 0.5 kHz and 64 kHz + 4 dB). Sound control and equalization
was performed by a custom Matlab program running on a standard
personal computer equipped with a Lynx 22 sound card (Lynx Studio
Technology, CA, USA). The stimulus set consisted of 34 sound stimuli
(19 pure-tone pips (50 ms; 2to 45 kHz separated by a quarter octave)
and 15 complex sounds (70 ms)) separated by one-second-intervals
and played at 80 dB sound pressure level. The complex sounds in
the stimulus set were characterized by broad frequency content and
temporal modulations, generated from arbitrary samples of music
pieces or animal calls replayed at fourfold speed. All stimulus on-
and offsets were smoothened with a ten-ms-long half-period cosine
function.

5.4.8 Two-photon imaging

The two-photon microscope (Prairie Technologies, WI, USA; Ultima
IV) was comprised of a 20 x-objective (Olympus, Tokyo, Japan; XLUM-
Plan Fl, NA = 0.95) and a pulsed laser (Coherent, CA, USA; Chameleon
Ultra). Both fluorophores (GCaMP6m and mCherry) were co-excited
at 920nm wavelength, and separated by emission using a fluores-
cence filter cube (filter one: BP 480 —550 nm; filter two: LP 590 nm;
dichromatic mirror: DM 570 nm; Olympus, Tokyo, Japan; U-MSWG2).
Full frame imaging was performed using a field of view of 367 pm x
367 pm (pixel size: 256 x 128) and images were acquired at five Hertz
frame rate (sampling period: 196.86 ms). In the last habituation ses-
sion, several field of views (FOVs) at different xy-positions in layer
2/3 (about 150 =300 um depth from cortical surface) were screened
for the presence of reliable sound responses. FOVs where neuronal
populations displayed reliable sound responses were repeatedly im-
aged at a two-day interval, using the stimulus set described above.
Each stimulus was presented for at least 20 repetitions per FOV in
pseudo-randomized order. Next, the focal plane was moved 50 pm in
the z-axis and data was acquired for a second FOV with the same
xy-coordinates. Between imaging periods, animals were given access
to few drops of a five percent w/v sucrose in water solution.

5.4.9 Auditory cued fear conditioning

The behavioral setup was controlled by a personal computer with
WINDOWS XP Professional, Version 2002, SP2 (Microsoft, Redmond,
WA, USA) operating system running custom Matlab R2oo7a software
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(MathWorks, Natick, MA, USA). All behavioral experiments were
performed in an isolation cubicle (H10-24, Coulbourn Instruments,
Whitehall, PA, USA) which was equipped with white LEDs as house
light, a microphone and a CCD KB-R3138 camera with infrared LEDs
(LG Electronics Austria, Vienna, Austria) which was connected to a
Cronos frame grabber (Matrox, Dorval, Quebec, Canada). The condi-
tioning chamber (25cm x 25¢cm x 42 cm, model H10-11M-TC, mod-
ified, Coulbourn Instruments) was combined either with a stainless-
steel shock floor or a grid floor. A custom-made cartridge (round or
quadrangular) formed the walls of the chamber in order to create
different local environmental contexts. Foot shocks were delivered
via an external shocker (Precision Animal shocker, Coulbourn Instru-
ments). Sounds were played from a L-22 soundcard with a maximal
sampling frequency of 192 kHz (Lynx Studio Technology, Costa Mesa,
CA, USA) and delivered via an amplifier (Model SLA-1, Applied
Research and Technology, TEAC Europe GmbH, TASCAM Division,
Wiesbaden, Germany), a modified equalizer (Model #351, Applied
Research and Technology, TEAC Europe GmbH, TASCAM Division,
Wiesbaden, Germany) and a custom-made speaker for free field de-
livery of sounds. The sound stimuli used were from the stimulus set
used for two-photon calcium imaging of sound representations in au-
ditory cortex (see below). 70 ms stimuli were repeated 15 times with
a one-second-interval, resulting in a total duration of 15s. On- and
offsets of stimuli were smoothed with a 10 ms long half-period co-
sine function. Sound levels for all stimuli used were normalized to a
mean power of 78 dB sound pressure level (SPL). Peak sound levels
ranged from 83 to 89 dB SPL.

5.4.10 Conditioning session

In the conditioning environment, lights were turned on (20 — 30 1x),
and the roundish cartridges were used as walls of the chamber. A
mild residual ethanol odor was present from previous cleaning of
the chamber. Mice were placed in the chamber directly before the
start of each session. After at least 1 min, baseline (60— 90s) five
sound-shock pairings (0.75mA, one second, immediately following
the sound) were given with a randomized inter-stimulus-interval
ranging from 50 to 75 s (paired).

5.4.11 Memory test session

Four days after auditory fear conditioning (i.e. one day after the two-
photon imaging paradigm was completed), mice were tested for freez-
ing responses. In order to create a different environmental context,
the quadrangular cartridges were used as chamber walls, lights were
turned off, and the home cage embedding was placed underneath
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the metal grid to provide a familiar odor to the animals. After at
least 1 min of baseline (60 — 90s), the conditioned stimulus and one
unconditioned sound stimulus were presented in five randomized
presentation blocks with an inter-stimulus-interval of two seconds.

5.4.12  Quantitative analysis of freezing behavior

During conditioning and memory testing, movies were recorded at
a frame rate of 2.8 frames per second. Movies were analyzed offline
based on a similar approach as described previously (Kopec et al.,
2007), which provides a rapid and unbiased analysis of animal be-
havior. In short, the number of ‘significant motion pixels” (SMPs), i.e.
pixels which varied by more than 20 gray values, was calculated for
all pairs of consecutive frames using a custom Matlab R2007a script
(MathWorks). For each movie, the size of the mouse was estimated
by the median SMP value of the 25% highest SMPs calculated from
pairs of frames at least two minutes apart, thus capturing the mouse
likely at different positions in the chamber. The threshold for freezing
was defined as fewer SMPs than corresponding to 0.3% of the mouse
size, which separates SMP values during freezing and movement pe-
riods. Baseline freezing was assessed during 60 — 90 s baseline period
of each protocol run.

5.4.13 Confocal imaging

Mice were deeply anaesthetized and perfused with a PBS/Heparin
solution and subsequently with a 4% PFA solution following stan-
dard procedures. Brain sections of 70 pm thickness were cut on a
vibratome (Leica Biosystems, Germany; VT-1000). Next, they were
incubated for 30min in a 5mgL~! 4/, 6-diamidino-2-phenylindole
(DAPI) solution, and mounted on cover slips. Confocal images were
acquired on a LSM780 microscope (Carl Zeiss, Germany) using a 40x
immersion objective (Objective Plan-Apochromat 40x /1.4 Oil DIC
Ma2y, Carl Zeiss, Germany).

5.4.14 Image processing of chronic two-photon data

In order to track cells across days, the optimal affine transformation
was identified to register regions of interest (ROI), encompassing
the soma of individual neurons, onto each frame of the time series
recorded from the same FOV across several days. ROIs were selected
independently by two human experts and can be described by a set
of several hundred points marking the centers of the mostly spherical
neuronal somata. This set of points was transformed for each frame
by an affine transformation consisting of rotation, scaling and shift-
ing. The objective function value for the optimization of this trans-
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formation is the pixel-wise overlap between a band-pass filtered and
binarized image of each frame and a mask generated from the trans-
formed ROIs by drawing a circle with a three-pixel (4.30 um) radius
around the center of each ROI This six-dimensional optimization
problem (rotation angle, scale in X, scale in y, off-diagonal of scaling
matrix, shift in X, shift in y) was solved numerically using Matlab’s
implementation of the Nelder-Mead-Simplex algorithm (fminsearch).
This was done in two iterations, first for the entire frame, then for
four equally sized horizontal segments to correct for full frame move-
ments during the two-photon microscope scanning. In a third iter-
ation individual ROIs were moved to the maximum in a two-pixel
(2.87 ym) surrounding of a low-pass filtered image to allow for slight
local distortions.

5.4.15 ROl inclusion criteria

Four quality criteria were defined in order to only include cells in
the analysis that had a reliably present signal in the H2B::mCherry
channel marking the neuronal somata. This was done on a frame-by-
frame basis, so that at each given time point a cell was either reliably
present or excluded.

Nearest Neighbor Distance (NND): Strongly overlapping cells in a given
frame, i.e. cells with a center-to-center distance below three pixels
(4.30 um), were defined as unreliable in that respective frame. Thus,
the chance to wrongly label individual cells was minimized.

Normalized Soma Signal Intensity (NSSI): For each cell at each time
point, the difference between the mean signal intensity in the soma
(two-pixel radius; 2.87 um) and the mode of the intensity of the sur-
rounding (ten-pixel radius; 14.34 ym) was computed and normalized
by the 95-percentile of this difference. Cells with an intensity close to
the background, an NSSI below the value of 0.2 were excluded.

Objective Function Value (OFV): The optimization described above re-
sulted in the alignment and an objective function value, which de-
scribes the pixel wise overlap of the frame and the template. In order
to rule out movement artifacts, individual frames in which the OFV
was less than three standard deviations below the mode of the OFV
for a given FOV were rejected.

Soma Signal to Noise ratio (SSN): The difference of the mean intensity
of the soma (two-pixel radius; 2.87 um) and the mode of the intensity
of the surrounding (ten-pixel radius; 14.34 pym) was defined as signal.
The standard deviation of a jittered version of the signal (same radii,
but pseudo-random location of the “soma” in the ten-pixel radius)
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was defined as noise. In order to be included in the analysis, cells
had to have a SSN value above one.

All quality criteria were tested and cells were excluded on a frame-
by-frame basis. Excluded time points were treated as missing entries
in the data. Cells that were not reliably detected on at least ten trials
for each stimulus on a given day were completely excluded from the
analysis.

5.4.16  Calculation of AF/Fo and deconvolution

The baseline Fy used to compute AF/Fy was defined as a moving
rank order filter, the 30th percentile of the 200 surrounding frames
(100 before and 100 after). This AF/Fy was then deconvolved using
the algorithm by Vogelstein et al., 2010.

5.4.17  Stimulus-evoked sound responsiveness of single cells

To classify single cells as sound responsive or not, all trials from a
given stimulus were compared in a rank-sum test against twenty ran-
domly picked patterns of spontaneous activity (from periods without
sound presentation). A cell was classified as significantly responsive,
if the p-value was below 0.01 after a Benjamini-Hochberg correction
for multiple comparisons against number of days (4), number of stim-
uli (34), and number of cells (21,506) for at least one stimulus (Ben-
jamini and Hochberg, 1995).

5.4.18 Sound response profiles of single cells

For each significantly sound responsive cell, sound response vec-
tors to pure-tone frequencies and complex sound stimuli were max-
normalized to the stimulus with highest response amplitude on the
given day. The selection of cells for each day and sorting of cells on
the y-axis was performed either on significantly sound responsive
cells and their tuning from day one (Figure 5.6a), the given day (Fig-
ure 5.6b), or from day seven (Figure 5.6¢c). For the analysis to control
for a sampling bias, the sorting was performed with only the first half
of trials and the sound response vectors were plotted with the second
half of trials (5.8).

5.4.19 FOV inclusion criteria

We included FOVs in our analysis that satisfied the following three
criteria: (A) FOVs needed to contain at least 100 ROIs (i.e. neurons)
which fulfilled the quality criteria described above, (B) FOVs needed
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more than ten significantly sound responsive neurons on each day
and (C) neurons in the FOVs needed to respond to at least four stim-
uli on at least one day.

5.4.20 Definition of response modes

Response modes were defined for a given FOV. For each trial i, the
population response of n simultaneously recorded neurons was char-
acterized by an n-dimensional vector v. Each entry of v was the mean
deconvolved activity recorded in a time bin of 400 ms after stimulus
onset. The response similarity between two stimuli p and q was then
determined by

M, M,

_Z Z o (Vp,i,Va,i) (5.1)

with trial numbers M,,, M, and Pearson’s correlation coefficient
p (v1,v2) (Galton, 1886, Pearson, 1895). Note that stimuli p and q may
refer to stimulus pairs presented at the same day or at two different
days, in which case the same stimulus presented at different days is
formally treated as two different stimuli. Response reliability for a
given stimulus, at a given day was assessed by S(p, p) (the mean cor-
relation over all pairs of trials, excluding pairs with i = j, i.e. same tri-
als). The response to a stimulus, for which S(p,p) > 0.4, was deemed
reliable. Response modes were then estimated by hierarchical cluster-
ing of response similarity S(p, q), restricted to (day-specific) stimuli
p with reliable response, with 1T — S(p, q) as metric and unweighted
average linkage clustering as linkage criterion. All responses of stim-
uli with non-reliable response (S(p,p) < 0.4) were assigned to the
“null-mode” (0-mode). Choosing this threshold we found that most
prominent clusters were well captured, as we verified by visual in-
spection of all FOVs. Importantly, our overall results are qualitatively
similar when the threshold for response reliability was set to 0.3 or 0.5
(data not shown). The hierarchical clustering algorithm provided by
Matlab (functions linkage and dendrogram) was used to sort stimu-
lus responses. To estimate the number of relevant clusters objectively,
the resulting cluster tree was cut at every possible cluster number and
a Hubert’s I' (Hubert and Baker, 1977) was calculated as

2 O (@]
I = 00-1 Z Z (Sij —C) Ty (5-2)

i=T1j=i+1

S(P, q) =

where O is the size of similarity matrix S, c is a threshold, and T is a
binary matrix of equal size with entries

1,if 1 and j are clustered together,
Tyj = & (5.3)

0, otherwise.
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The threshold was set to ¢ = 0.4, as for response reliability, ensur-
ing that only ‘reliably” correlated sound responses are considered to
participate in the same cluster. Again, the overall results were qualita-
tively similar when using a slightly different threshold, e.g. 0.3 or 0.5
(data not shown). The response modes in a given FOV were then de-
fined as the clusters obtained for the maximal value. This clustering
was highly significant (p < 0.001) for all neuronal populations in a
FOV compared to three surrogate data sets generated by (a) shuffling
the stimulus identity across trials, (b) shuffling the stimulus identity
for each cell individually and (c) shuffling the cell identity for each
trial (5.13).

5.4.21 Mode-associated responsiveness of single cells

Similar to stimulus evoked sound responsiveness, we estimated whether
a given cell is significantly responsive in a given mode. For each cell,
we determined the rank-sum between activities from all trials asso-
ciated with the mode to the same amount of spontaneous activity
patterns drawn randomly from periods without sound presentation.
A cell was significantly responsive in a given mode, if the p-value was
below o0.01 after a Benjamini-Hochberg correction against number of
days (4), number of modes (varying), and number of cells (21, 506)
(Benjamini and Hochberg, 1995).

5.4.22  Sound decoding based on full response vectors

A linear classifier (Matlab function lassoglm with L1 regularization)
was trained to discriminate between responses to two different stim-
uli. For the analyses where training and testing were done on the
same day, cross-validation was performed by leaving out one trial.
Where training and testing were done on different days, training was
done with all trials of a given day and the performance of the classi-
fier was tested on each trial of a different day. The pairwise decoding
performance was then defined as the percentage of correctly classi-
fied trials, and FOV decoding performance was defined as the mean
pairwise decoding performance over all pairs of stimuli.

5.4.23 Sound decoding based on a 34-fold classifier

A support vector machine was trained to discriminate between all 34
stimuli using MATLAB's built in cecoc function. When training and
testing was done on the same day, cross-validation was performed by
leaving out one trial. When done on different days, the classifier was
trained using all vectors of one day and tested with all vectors of the
other day. The decoding performance was defined as the percentage
of correctly classified trials.
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5.4.24 Dependence of decoding on number of modes and stimuli per mode

We used a minimalistic model to study the dependence of sound
discriminability on the number of modes and number of stimuli per
mode in a FOV. For simplicity, we assume all trials of a given stimulus
evoke responses in the same mode (which can be the 0-mode). This
model suggests that in a regime with a 0-mode as large as observed
in our experimental data, an increase in both number of modes and
stimuli per mode improves decoding performance.

In the model, we assume two stimuli that are mapped to the same
mode are indistinguishable, but can be distinguished from stimuli
mapped to a different mode (including the 0-mode). The contribu-
tion of a mode to the overall decoding performance in a FOV is pro-
portional to its size and to a mode specific decoding factor, given by
the average discriminability associated with a stimulus in this mode.
This factor is large if only few stimuli are mapped to this mode, as
these are distinguishable from all other stimuli. Reversely, this factor
is small for modes with many stimuli, since these can only be distin-
guished from few other stimuli.

We cast these considerations into mathematical form to reveal how
the average discriminability depends on number of modes and stim-
uli per mode. The decoding performance of a full FOV Pgoy is given

by

N
] m

Prov = {1 (NoPo +y PiI—i> (5.4)
Stim

i=1

with the total number of stimuli Ngiy,, the number of stimuli evok-
ing no response Ny, the decoding factor Py specific to the 0-mode,
the number of different response modes N, the decoding factor P;
specific to response mode and L;, the number of stimuli mapped to
response mode i. The mode specific decoding factor P; was deter-
mined by the size of the mode L; the stimulus is mapped to and the
probabilities of its correct classification when compared to different
stimuli within (Psame) and outside (Pg;s) the mode:

(Li — 1)Psame + (Nstim — Li) Paite
) (5.5)
NStlm —1

Py =

For simplicity, we considered the case of equally distributing the num-
ber of stimuli per mode. This results in an upper bound on the decod-
ing performance, as can be seen by inserting P; into the expression of
Prov above. A numerical analysis revealed that this provided a rea-
sonable approximation within the experimentally observed regime of
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number of modes and stimuli per mode. Thus, the expression for the
decoding performance simplifies to:

PFOV = (NOPO + NmI—um) (5-6)

Stim

with the mean number of stimuli per mode Ly, the number of modes
N . For the mode specific decoding factors, we obtain

(Lm - ])Psame + (NStim - LTn)Pdiff

Pm = NStim 1 (57)
and
PO — (NStim - LmNmN_S .] )Psa;ne + I—mNTnPdiff‘ (58)
tim —

Assuming chance decoding within a given mode (Psame = 0.5) and
perfect decoding between modes (Pgi¢r = 1) and a total of 34 stimuli
yields Figure 5.21a. In general, the decoding performance increases
with number of modes, while the optimal number of stimuli per
mode for a given number of modes is obtained for a uniform distri-
bution of stimuli per mode including the 0-mode, which also follows
from Chebyshev’s sum inequality (Hardy et al., 1988).

5.4.25 Statistics

All statistical analyses were performed using MATLAB (Mathworks,
Natick, MA, USA).

5.4.25.1 Freezing behavior

To compare the freezing behavior during the different time windows
in the memory test session, a Kruskal-Wallis test (Kruskal and Wallis,
1952) was performed followed by a correction for multiple compar-
isons.

5.4.25.2  Decoding comparison

To compare decoding performance of a linear classifier trained with
response vectors, or with maximum pooling from the best FOV of
one mouse, a Kruskal-Wallis test (Kruskal and Wallis, 1952) was per-
formed followed by a correction for multiple comparisons to reject
the null-hypothesis that the decoding performances of all FOVs come
from the same distribution.

5.4.25.3 Comparison of population dynamics of mice undergoing ACFC to
baseline cohort

Bootstrapping was performed to test whether two mean values could
origin from the same distribution. To do so, 10,000 surrogate data
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sets were sampled with replacement from the original data sets. For
each of the two respective values the means of the surrogate data sets
were computed and compared. Next, the p-value was calculated as
the probability that both the surrogate from the distribution of the
smaller original mean was larger than the original mean, and vice
versa. The p-values were corrected for multiple comparisons with a
Bonferroni correction (Bonferroni, 1936). Stars denote significance lev-
els: * p < 0.05.
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A BASIS SET OF ELEMENTARY OPERATIONS
CAPTURES RECOMBINATION OF NEOCORTICAL
CELL ASSEMBLIES DURING BASAL CONDITIONS
AND LEARNING.

In this chapter we will utilize the response mode picture, we devel-
oped in Chapter 5, to define a set of elementary operations and thus
describe neuronal population dynamics in mouse auditory cortex.
The chapter starts with an introduction to the concept of cell assem-
blies in Section 6.1, before we show some results quantifying the drift
of cell assemblies in our data (Section 6.2.1). This drift can be captured
by a set of elementary operations, which we introduce in Section 6.2.2.
Then we use these newly defined operations to characterize drift un-
der basal conditions (Section 6.2.3) and during auditory cued fear
conditioning (ACFC, Section 6.2.4). Our results are discussed in Sec-
tion 6.3, before we give a more detailed description of our methods
(Section 6.4).

We use the same dataset that was previously used in Chapter 5, and
build our analyses on the analyses performed there. Consequently,
we will focus on new concepts and analyses in this chapter.

6.1 INTRODUCTION

In Chapter 5 we found that in mouse auditory cortex stimulus re-
sponses typically fall into a small set of possible response modes
(Figure 5.11) and we looked at the changes these modes undergo
under basal conditions and during learning. We found pronounced
ongoing dynamics under basal conditions that were biased towards a
differential generalization during fear conditioning. Now, we want to
go further and deconstruct the representational dynamics into their
most basic underlying operations to gain insight into their functional
relevance. In contrast to our operational definition of response modes
in the previous chapter, i.e. a local subgroup of neurons responding
to multiple stimuli in a field of view (FOV), cell assemblies are de-
fined on a functional level as a group of cells underlying a cognitive
or behavioral function (Hebb, 1949). Adding a functional component
to the observed response modes will lead to insight into functional
properties and thus provide a link to the understanding of cell assem-
blies and their dynamics.

Cell assemblies (or rather the strong connections between neurons
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in a cell assembly) have been shown to have a number of interesting
properties in theoretical studies, such as associative memory (Hop-
field, 1982), multistability (Beer, 1995, Stern et al., 2014, Fasoli et al.,
2016), a transition from winner-takes-all like dynamics to to multi-
ple attractors (Miller, 2016, Chen and Miller, 2020), or correction of
synaptic drift (Acker et al.,, 2019, Kossio et al., 2021). Their study
in biological neural circuits remained a challenge due to their dis-
tributed nature until the recent development of techniques that allow
the simultaneous recording of neuronal activity of several hundreds
of neurons, resulting in a growing body of experimental evidence for
cell assemblies in a number of different cortical systems (Harris, 2005,
Buzsaki, 2010, Yuste, 2015, Holtmaat and Caroni, 2016). They have
also been linked to functional properties, e.g. memory recall (Tone-
gawa et al., 2015).

Here, we further analyze the data described in Chapter 5 through
the more functional lens of cell assemblies and their dynamics. As re-
sponse modes undergo constant remodeling, it comes as no surprise
that also cell assemblies are subject to ongoing remodeling, even un-
der basal conditions, i.e. after behavioral habituation and without
any apparent learning paradigm. We decompose these dynamics by
means of a basis set of ten elementary operations, which provide
a framework for the analysis of cell assembly remodeling during
learning. We observed that the remodeling cannot be explained by
a mere remapping of stimulus responses on an existing set of re-
sponse modes, but coincides with a remodeling of response modes
themselves. Furthermore, we found learning induced biases in the
frequency of some operations leading to an increase of associations
of sensory representations, via both the formation of new associations
and the stabilization of old ones.

6.2 RESULTS
6.2.1 Transitions between response modes

The clustering of stimulus responses in local populations of neurons
in mouse auditory cortex into these response modes can be used to
track population responses over time. With this formalism being es-
tablished, each stimulus response fell into a certain response mode
(or evoked no response) at any imaging time point. This is visualized
in Figure 6.1a by assigning a different color to each response mode
and then tracking the response mode of each stimulus across all imag-
ing days. Stimuli that did not evoke a response were grouped into the
so-called 0 —mode, colored white. While the response to some stim-
uli remained stable, other stimuli lost or gained a representation, and
still others evoked a different response on consecutive days in this
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Figure 6.1: Response modes change across time. (a) Response mode identity
for each stimulus at each imaging time point in an example FOV.
While the response mode identity for some stimuli remains sta-
ble throughout the imaging period, other stimuli gain or lose a
response or change from one response mode to another. (b) Ex-
ample for a stable population response on first three imaging
days but a different response on day 7. Stimulus 22 from (a). (c)
Example for a stable population response throughout the imag-
ing period. Stimulus 8 from (a). (d) Example for a stimulus losing
its response on the last imaging day. Stimulus 21 from (a). Note
that this response mode is not lost on imaging day 7 (as can be
seen in (c)), but rather this specific stimulus is not mapped to it
any more.
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FOV. Some examples of population response vectors from Figure 6.1a
are shown in Figure 6.1b to Figure 6.1d. Some stimuli reliably evoked
the same population response throughout the imaging period (CCCC,
Figure 6.1¢). Other stimuli gained or lost a response in a given FOV
over time. Figure 6.1d shows a stimulus being mapped to the same re-
sponse mode as the stimulus in Figure 6.1c on the first three imaging
time points, but not any more on the last imaging day (CCCO0). And
then, the response to some stimuli changed with time. An example is
shown in Figure 6.1b, where a stimulus evoked one response mode
through three imaging time points and a different response mode on
the last time point (AAAB).
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Figure 6.2: tSNE plots are used to visualize response modes in 2D. (a)
tSNE plot of stimulus responses in example population from
Figure 6.1. Each dot represents a trial of a stimulus on a day.
All trials of all stimuli from all four imaging days are plotted in
one plot, colored by response mode identity. Inlay: 0-mode. (b)
Same as (a), but colored by stimulus identity. (c) Same as (a), but
colored by imaging day.
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To illustrate response mode dynamics on a single trial basis we ap-
plied a dimensionality reduction technique called t-distributed stochas-
tic neighbor embedding (tSNE, Maaten and Hinton, 2008). tSNE takes
pairwise distances between high- and low-dimensional data points to
compute their respective probability distributions. It then minimizes
the distance between the two distributions using gradient descent (for
details see Section 6.4). The result of this dimensionality reduction for
response vectors to all stimuli on all days in the same example pop-
ulation as in Figure 6.1 can be seen in Figure 6.2. Here, every point
depicts a single trial population response vector on a single day (in
total 34 stimuli x 20 trials x 4 days ~ 2,720 points; few trials were
removed due to movement artifacts, see Section 5.4). Stimuli that
evoked no reliable response, i.e. fall into the 0-mode, are plotted as
an inlay in the top right corner.

Coloring by response mode (Figure 6.2a) reveals that dimensional-
ity reduction via tSNE is well suited to illustrate the response mode
structure in the data. Apart from a small amount of exceptions, which
are also visible in single trial response vectors in Figure 6.1, clusters
of points are colored in the same color. This apparent agreement
between color and the shape of the point clouds allows us to utilize
tSNE for the purpose of visualization of respones modes. Coloring by
stimulus (Figure 6.2b) reveals the mapping of stimuli onto response
modes. Response modes consist of responses to various stimuli, vi-
sualized by different colors within each cluster of points. Pure tone
stimuli of similar frequencies are often mapped onto the same re-
sponse, but typically modes are evoked by both pure tones and com-
plex sounds. Coloring by imaging day (Figure 6.2c) allows us to as-
sess the temporal structure of response modes. While most response
modes in this FOV are present at all four imaging time points (indi-
cated by four colors inside point clusters) others are only present on
some days (clusters missing one or multiple colors).

In order to track individual stimuli across time, we computed the
dimesnionality reduction on all time points, but plotted only the sub-
sets of points recorded on individual days (Figure 6.3a). These daily
tSNE plots colored by response mode reveal changes across days.
In this example most modes stayed stable across time, but some ap-
peared newly or disappeared. The same plots colored by stimulus
identity (Figure 6.3b) theoretically enable us to track the responses
to single stimuli across time. They are, however too crowded, so in
order to see what is happening, we had to focus on individual stim-
uli instead. In Figure 6.4 we colored all trials of the one stimulus we
want to track in magenta and all other stimuli in gray. When follow-
ing the same stimuli from Figure 6.1 across time in a tSNE plot we
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Figure 6.3: Single day tSNE plots. (a) Similar as Figure 6.2, tSNE was used
to reduce the dimension of stimulus responses to 2, however the
trials were split into days. Colored by response mode identity,
Inlay: 0-mode. (b) Same as (a), but colored by stimulus identity.

can again see that some stimuli move from evoking one response to
evoking another response (in this case modes AAAB, Figure 6.4a),
while other stimuli stay in the same response mode across all imag-
ing days (mode CCCC, Figure 6.4b) or stay in the same response
mode for some time, before not evoking a response anymore (CCCO,
Figure 6.4c). We observed similar dynamics in all imaged FOVs with
a varying degree of stability (see Chapter 5). Two principal forms
of plasticity occurred: First, changes in the tuning of cell assemblies,
i.e. the mapping of sounds onto cell assemblies could be different
from day to day. Second, changes in the structure of cell assemblies,
involving the de-novo formation of a cell assembly, loss of a cell as-
sembly or substantial remodeling of a cell assembly by gaining or
losing member neurons.

6.2.2 A set of operations to describe response mode dynamics

We wanted to systematically describe the dynamics of sound repre-
sentations and response modes. To do so we defined a set of ele-
mentary operations that capture at the same time stimulus response
changes and the response modes involved with this stimulus. We can
approach this set of operations from two sides by starting with re-
sponse modes and then looking at the involved stimulus responses
or we can start with a stimulus response and then turn to the in-
volved response modes. Both ways result in the same basis set of
elementary operations. Here, for simplicity reasons, we only explain
the approach starting with a stimulus response.
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Figure 6.4: Single stimulus tSNE plots for example stimuli from Figure 6.1.
tSNE was computed for all data, but plotted split by day. Inlay:
0-mode. (a) Stimulus response is stable for three imaging time
points and changes to a different response mode on day 7. (b)
Stimulus response is stable throughout the imaging period. (c)

Stimulus response is stable at first until it disappears on the last
day.
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In Figure 6.5 we start with the stimulus response. We describe this
schematic from left to right, from individual stimuli on the left hand
side, via the response mode dynamics, ending on the definition of
ten unique operations on the right hand side. We asked for each in-
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Figure 6.5: Schematic defining all possible operations of a stimulus response.
Starting from the transitions on the left, describing the response
change of a single stimulus, we find 10 distinct operations by
asking, what is happening to the response modes, affected by
this stimulus. E.g. when a stimulus evokes a response A at time
i and no response at time i+ 1, is the response mode A lost
(eliminatio) or are other stimuli still evoking this response mode
A (disiunctio)?

dividual stimulus: Does it evoke a response at time point i? Does it
evoke a response at time point i+ 1? And — if it evokes a response at
both time points — does it fall into the same response mode or does it
evoke different response modes? This already gives us five exclusive
categories of transitions to start with: no response at both time points
(0 — 0), the same response mode at both time points (A — A), no
response at time point i and a response at time pointi+1 (0 — A), a
response at time point i and no response at time pointi+1 (A — 0),
or different response modes at both time points (A — B).

As we were not only interested in whether a stimulus evokes a re-
sponse or not, but also in the response mode dynamics of the in-
volved response modes, we next asked, what is happening with the
involved response modes: Are they only present at one of the two
time points, i.e. newly emerging or disappearing? Or are they present
at both time points regardless of the stimulus not evoking this re-
sponse mode at the other time point? This is irrelavant for the trivial
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transitions 0 — 0 and A — A, but it gives two options each to the
0 — A and A — 0 cases, as each of them involves one response mode,
and four options to the A — B case, as it involves two response
modes and each of them can be only present at one time point or at

both.

This analysis allows us to classify any possible transition as one of
the operations, described in Figure 6.5 and in a bit more detail below.
We used latin names for the set of operations to distinguish the ter-
minology from a mere description of the various forms of plasticity.

Constantia” is the operation, when a stimulus evokes no re-
sponse at both time points.

Constantia describes the case, when a stimulus evokes the same
response mode at both time points.

Creatio we use for the operation, when a stimulus evokes no
response at time i and a newly emerging response mode (that
has not been present at the previous time point for any of the
presented stimuli) at time 1+ 1.

Eliminatio is the inverse operation of creatio, where both the stim-
ulus does not elicit a response any more at time i+ 1 and the
response mode disappears, too (i.e. is not elicited anymore by
any of the presented stimuli).

Adiunctio describes a stimulus that does not evoke a response
at time i and evokes a response mode at time i+ 1, that already
existed previously.

Disiunctio is the inverse to adiunctio, where a response mode is
present at both time points, but a given stimulus does only elicit
it at time 1 and not at time i+ 1.

Fusio is the operation, where a stimulus evokes different re-
sponse modes at both time points and the response mode it
evokes at time 1 does not exist any more at time i+ 1, but the
response mode it evokes at time i+ 1 is present at both time
points. So, in other words, the stimulus joins a pre-existing re-
sponse mode.

Fissio is the inverse of fusio: a stimulus evokes different response
modes at both time points and the response mode it evokes at
time i is present at both time points, but the response mode it
elicits at time i+ 1 is new. Or, in other words, the stimulus splits
away from an existing response mode to form a new one.

Motio describes, when a stimulus evokes different response
modes on both time points and the response mode at time i
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disappears and the response mode at time i+ 1 is not present
previously.

o Commutatio is the operation, when a stimulus switches between
response modes and both response modes are present at both
time points.

To make sure, the operations are not merely caused by fluctuations
around some correlation threshold, we provide some supplementary
statistics in Chapter 9: In Sup. Fig. 9.4 we plotted histograms of the
mean correlation of the response to a stimulus (undergoing a certain
operation) at time i (i.e. prior to the operation) and of the response to
the same stimulus at time i+ 1 (i.e. after the operation). For all oper-
ations (except constantia) this correlation is expected to be low and it
indeed is. If the transitions were only caused by fluctuations around
a threshold, this correlation would be close to this threshold. Addi-
tionally, we measured and plotted the histograms of the within mode
correlations, in other words the correlation of a stimulus response to
the responses of all the other stimuli evoking the same mode (Sup.
Fig. 9.5). Those correlations are independent of operation and only
depend on, whether a stimulus evokes a response at a given time
point or not. And we show the distributions of the mode sizes prior
to and after each operation (Sup. Fig. 9.6). Here, differences are visi-
ble for operations changing the response mode size.

This approach, in principle, reflects the changes of information on
sensory representations a putative readout neuron in a higher cortical
area would receive via the projections originating from a sub-region
of the auditory cortex. While it is highly unlikely that any readout
neuron receives as input the exact neurons imaged in a given FOV,
it is reasonable to assume that any subgroup of neurons in auditory
cortex is not activated by all stimuli and shows overlapping response
patters. Thus, the operations defined above for imaging FOVs are
relevant from the point of view of readout neurons, too. Note that
disappearing and emerging response modes are dependent on the
set of used stimuli: We do not know, if different stimuli would still
elicit a certain response mode. However, the same is true in general
for readout neurons. It is impossible to play every existing stimulus
in finite time, so some repsonse modes are bound to not be activated
for a certain time span and thus “disappear”.

6.2.3 Ongoing recombination of cell assemblies

These ten operations can now be used to address several questions.
As the operations constitute a complete set of all operations that theo-
retically exist, we first wondered, if all of them existed in our dataset.
To that aim, we counted them and indeed, we found examples for
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Figure 6.6: Example for every response mode operation as defined in Fig-
ure 6.5. (a) Legend. (b) to (k) Examples for each response mode
operation, including schematic and tSNE plots before and after
the operation.



A BASIS SET OF ELEMENTARY OPERATIONS

all of them. Examples can be seen in Figure 6.6. There we show a
schematic and an example tSNE representation for each of the ten
operations described in the previous section. The frequencies of each
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Figure 6.7: Response mode operation frequencies. Fraction of stimulus rep-
resentations (mean + SEM) undergoing each of the operations.
Note that each of the 10 theoretically possible operations was
found in our dataset.

of the operations in our dataset are given in Figure 6.7. While the
majority of stimuli did not evoke a response on consecutive imaging
time points (constantia’) and the majority of the remaining stimuli
could be classified as constantia, we found a remarkable amount of
remapping of stimulus responses between response modes and of
disappearing/emerging response modes.

0—-0

A A
Resp. mode change

57.4% 17.0%

21.4%

Figure 6.8: Venn diagram of stable and unstable response mode operations.
While the majority of stimuli did not evoke any response (57.4%)
or the same response on two consecutive imaging time points
(17.0%), a large part of stimuli changed their response (25.6%).
Of those changing their response most (21.4% of total) coincided
with a newly appearing/disappearing response mode.

We wondered, if these changes were mostly a remapping of stim-
uli onto stable response modes or if the response modes themselves
did undergo a remodeling. If mostly stimulus responses would be
remapped between existing response modes, we would not find oper-
ations involving the gain or loss of a response mode. So, we grouped
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together all transitions that do not involve a gain or loss of a response
mode (adiunctio, disiunctio, commutatio) and thus leave the response
modes intact and compared them to all transitions that involve both
a change in the stimulus response and a gain/loss of a response mode
(creatio, eliminatio, fusio, fissio, motio). The result is plotted as a Venn di-
agram (Venn, 1880) alongside circles for constantia’ and constantia for
comparison. We found that from imaging time point to imaging time
point (two days apart) 57.4% of stimuli did not evoke any response,
17.0% of all stimuli evoked the same response at both imaging days,
21.4% involved both a stimulus evoking a different response mode
and a change of response modes and only 4.2% involved a stimu-
lus change, while the involved response modes stayed the same. So,
response modes are highly dynamic and most operations invovling
the change of a stimulus response also involve a a remodeling of
response modes. This might also explain the small amount of commu-
tatio present in the data. As operations leaving the involved modes
intact seem to be relatively rare, the operation leaving two modes
intact, while the stimulus is remapped from one to the other, is even
rarer. Note that in our picture of response mode transitions there are
no operations that leave the stimulus response configuration intact
while changing the response modes.

This set of response mode operations can capture ongoing dynam-
ics under basal dynamics, showing the level of instability of cortical
representations in mouse auditory cortex. In the next section we want
to investigate the effects of fear conditioning on these dynamics mak-
ing use of our set of response mode operations.

6.2.4 The impact of learning on cell assembly dynamics

In Chapter 5 we described the effect auditory cued fear condition-
ing has on the response modes typically found in auditory cortex,
namely, that fear conditioning increased the amount of stimuli evok-
ing a response (compared to the basal dataset Figure 5.20b), and that
this was not due to an increase of the number of modes (Figure 5.22a),
but rather to an increase of stimuli per mode (Figure 5.22b).

To validate the accuracy of our response mode operations, we wanted
to know, if these finding were also reflected in the response mode op-
erations. So, we combined operations changing the mode number
(Figure 6.9) and operations changing the mode size (Figure 6.10). We
could even further disentangle the response mode dynamics by split-
ting the operations into operations decreasing or increasing mode
number or mode size respectively (for a full picture of single opera-
tion counts in both datasets see Figure 6.11 (for a stacked bar plot) or
Sup. Fig. 9.7 (for line plots of individual operations)). We found no
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Figure 6.9: Operations changing the number of response modes. Increasing
the number of response modes: creatio, fissio; decreasing the num-
ber of response modes: eliminatio, fusio. Significances: * p < 0.5,
**p < 0.01, ** p < 0.001, via bootstrapping.

significant difference between the basal and the ACFC dataset in the
normalized ratio of operations increasing the mode number (creatio,
fissio) and only a transient increase in the basal dataset as compared
to an ongoing decline in the ACFC dataset for operations decreasing
the mode number (eliminatio, fusio) (Figure 6.9). All other response
mode operations are not explicitly associated with a change in the
number of response modes. This finding is in line with our findings
from Chapter 5.

Op. incr. size . r. siz
p. Op. decr. size basal
* 1.5 - -

1.5 ACFC
o o
= =
© ©
= 1 S Incr.: cre.>mean,
3 3 eli.<mean, adi., fus.
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c c

0.5 0.5 Decr.: cre.<mean,

153 3535 557 153 325 5.7 eli.>mean, dis., fis.

transition transition

Figure 6.10: Operations changing the mode size (i.e. number of stimuli
mapped to a response mode). Increasing mode size: creatio of
mode with above mean mode size, eliminatio of mode with be-
low mean mode size, adiunctio, fusio; decreasing mode size: cre-
atio of mode with below mean mode size, eliminatio of mode
with above mean mode size, disiunctio, fissio. Significances: *
p < 0.5, *p <0.01,** p < 0.001, via bootstrapping.

In contrast we found a significant difference in operations affecting
the response mode size (Figure 6.10): While there was also only a
transient increase (albeit significant) in operations increasing mode
size (creatio of modes of larger size than the previous mean, elimina-
tio of modes of smaller size than the previous mean, adiunctio, fusio)
in the ACFC dataset, fear conditioning seemed to have a longer last-
ing effect on operations decreasing mode size (creatio of modes of
smaller size than the previous mean, eliminatio of modes of larger
size than the previous mean, disiunctio, fissio). Those dropped in the
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ACEFC dataset, which would in turn lead to the increase in mode size,
described in Chapter 5. So, this increase in mode size could mostly
be attributed to a decrease of the amount of operations that decrease
the response mode size.

Op. rates (basal) Op. rates (ACFC)

[ constantia’
[l constantia

[ constantia’
Il constantia

Il creatio Il creatio
Il climinatio [l climinatio
Il adiunctio [l adiunctio
Il disiunctio Il disiunctio
[ fusio [ fusio
Il fissio Il fissio
[ motio I motio
Il commutatio Il commutatio
1-3 35 557 1-3 3-5 557
transition transition
(a) Basal dataset. (b) ACFC dataset.

Figure 6.11: Fraction of each operation across time in (a) basal and (b) ACFC
dataset.

We showed that our response mode operations were able to reliably
reproduce (and even deepen our understanding of) findings made by
more conventional methods, such as counting the number of modes
or calculating the average number of stimuli mapped to a mode (i.e.
mode size). We can, however, go further and answer some more ques-
tions about response mode dynamics. We could ask, for example, if

Op. new mode Op. lost mode basal

ACFC
New: cre., fis., mot.
Lost: eli., fus., mot.

1-3 355 5-7 1-3 355 557
transition transition

15
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Figure 6.12: Operations changing response mode picture (i.e. operations in-
cluding appearing or disappearing response patterns). Appear-
ing response mode: creatio, fissio, motio; disappearing response
mode: eliminatio, fusio, motio. Significances: * p < 0.5, ** p < 0.01,
***p < 0.001, via bootstrapping.

learning has more of an effect on response mode dynamics or if it
is rather mostly affecting the stimulus responses and their mapping
onto the modes. So, we first had a look at all operations that change
the response mode picture, i.e. that include new or lost modes (Fig-
ure 6.12). We found no significant difference between the basal and
the ACFC dataset for both operations including the formation of a
new mode (creatio, fissio, motio) and operations during which a mode
is lost (eliminatio, fusio, motio). Note that motio is included in both,
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as it consists of a stimulus response switching from one response to
another, where the first response ceases to exist as well as the sec-
ond mode did not exist before. So, we looked at stimuli changing

. 5Op. new stim. resp. . Op. lost stim. resp. basal
- -

: ’ ACFC
o o
=1 =1

£ £ New: cre., adi
-1 .1 : - .
£ I<{:{ £

S s

c c Lost: eli., dis.

0.5 0.5
1-+3 3-5 527 1-3 3-5 5-7
transition transition

Figure 6.13: Operations changing stimulus responsiveness (i.e. from respon-
sive to unresponsive or vice versa). Stimuli gaining response:
creatio, adiunctio; stimuli losing response: eliminatio, disunctio.
Significances: * p < 0.5, * p < 0.01, ** p < 0.001, via boot-

strapping.

their responsiveness, i.e. stimuli gaining or losing a response in FOV.
We again compared the two datasets to each other (Figure 6.13) and
while operations that involve a stimulus gaining a response (creatio,
adiunctio) showed a — however, non-significant — decrease in the basal
dataset that did not seem to be present in the ACFC dataset, opera-
tions involving the loss of a stimulus response (eliminatio, disiunctio)
showed a significant decrease in the ACFC dataset compared to the
basal one.
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+ - -
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Figure 6.14: Operations changing stimulus associations (i.e. newly mapping
stimuli to the same response mode or not mapping stimuli to
the same response mode any more). Increasing associations: cre-
atio of mode with more than one stimulus, adiunctio, fusio, motio
to a mode with more than one stimulus, commutatio; decreasing
associations: eliminatio of mode with more than one stimulus, di-
siunctio, fissio, motio from a mode with more than one stimulus,
commutatio. Significances: * p < 0.5, ** p < 0.01, ** p < 0.001,
via bootstrapping.

As the mapping of two different stimuli onto the same response
mode could be - and has been (Besnard and Sahay, 2016, Cai et al.,
2016, Grewe et al., 2017) - understood as an association of the two
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stimuli, and fear conditioning has been linked to generalization, we
wondered, if fear conditioning had an effect on the associations of
stimuli. We thought of associations on the cortical population level
as two stimuli evoking the same response mode. Operations form-
ing (breaking) associations were thus operations, where the stimulus
evoked the same response as another stimulus at time i+ 1 (i) and the
stimulus response changed. We found a transient difference between
the two datasets in operations decreasing associations (eliminatio of a
mode with more than one entry, disiunctio, fissio, motio from a mode
with more than one entry, commutatio) and a longer lasting difference
in operations increasing associations (creatio of a mode with more
than one entry, adiunctio, fusio, motio to a mode with more than one
entry, commutatio). So, ACFC led to an increased formation of associ-
ations between responses to different stimuli.

6.3 DISCUSSION

We studied the dynamics of cell assemblies forming auditory repre-
sentations in the cortex across several days. We identified a set of
ten elementary operations to capture all possible transitions between
cell assemblies for a given stimulus. These operational definitions are
well suited to describe the data obtained in our experiments within a
FOV of a particular size and using a fixed set of sensory stimuli. Re-
garding the entire auditory cortex and assuming responsive neurons
for each sound in each mouse, all operations involving the 0-mode
would become obsolete, so our set of operations would be reduced
to five operations (constantia, fusio, fissio, motio, commutatio). As a po-
tential readout neuron would only receive input from a subset of all
neurons in auditory cortex, however, the complete set of ten opera-
tions seems necessary to capture all possible changes of feed forward
inputs.

The driving forces underlying the drift of cell assemblies during basal
conditions could most probably be found in the ongoing remodeling
of the underlying synaptic connectivity. Such basal dynamcis in con-
nectivity have been observed under behaviorally stable conditions
and even during pharmacological blockade of neuronal activity (Ya-
sumatsu et al., 2008,Loewenstein et al., 2011, Rubinski and Ziv, 2015,
Dvorkin and Ziv, 2016, Nagaoka et al., 2016). Consistently, modelling
work has shown that synaptic drift can lead to drift on the level of
cell assemblies (Kappel et al., 2015, Kappel et al., 2018, Mongillo et al.,
2018, Kossio et al., 2021).

When considering several cell assemblies, each representing a set of
elements that send excitatory or inhibitory feed-forward projections
to a higher-order readout cell (or cell assembly), computations could
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. Response modes Readout
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Response

Stimuli mapped to
response mode

Response
mode B

Figure 6.15: Response modes could be utilized to perform set operations
in a readout layer, like A \ B via excitatory input from A and
inhibitory input from B or A N B via excitatory input from both
A and B.

be performed that are reminiscent of set-theory operations. For exam-
ple, considering two cell assemblies each representing overlapping
sets A and B of sensory elements, it could be possible to compute
those elements in A that are unique to A and not overlapping with
B (i.e. set difference: A \ B) by integrating excitatory input from cell
assembly A and inhibitory input from cell assembly B. Cell assembly
dynamics could then be seen as newly generating or combining these
set-theory rules.

Our analysis of cell assembly operations indicates that auditory fear
conditioning biases the frequency of operations that lead to an in-
crease in the mapping of different stimuli onto a given cell assembly,
possibly reflecting the formation of associations between sensory rep-
resentations. This recombination of representations, i.e. their associa-
tion as well as their dissociation, occurs to a substantial degree also
during basal conditions and its functional relevance remains a matter
of debate (Chambers and Rumpel, 2017). The ongoing recombination
of cell assemblies could for example support cognitive processes that
occur without explicit mental engagement, like the spontaneous cre-
ation of associations (Wallas, 1926) or their forgetting (Richards and
Frankland, 2017). Our basis set of cell assembly operations provides
a framework for these future studies.

6.4 METHODS

As this chapter builds upon the methods and results obtained in
Chapter 5, we only describe further analyses, here. Please, have a look
at Section 5.4 for further details on the datasets or response modes.
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6.4.1 t-distributed Stochastic Neighbor Embedding (tSNE)

We used t-distributed Stochastic Neighbor Embedding (tSNE, Maaten
and Hinton, 2008) to visualize in two dimensions the distribution of
all single-trial response vectors recorded in a given FOV. tSNE utilizes
pairwise distances between high-dimensional and low-dimensional
data points to compute the probability distributions for both. The
resulting low-dimensional data points are obtained by minimizing
the Kullback-Leibler divergence Dk (Kullback and Leibler, 1951) be-
tween both distributions using gradient descent from random initial
conditions:

Dk (PIQ) = Zpij log Pij
]

D (61)
qij

for pairwise distances pi; in high dimensions and pairwise distances
qij in low dimensions, which are defined as follows.

Pij = (Pj)i +Puj)/2N, (6.2)
exp(—d(x;, x;)%/202)
= v Pin=0, 6.
Pl = S expl—d(xi, xi)?/207) Y (©3)
(1 +1ly; —yill®) !
. i , Qi =0, (6.4)

T Yl llyk—ydP)

Here, x; and y; are high- and low-dimensional data points, respec-
tively. For low-dimensional data points the Euclidean distance is used
as a distance measure, for high-dimensional data points any measure
d can be defined as a distance. We defined it as the correlation dis-
tance T — p, where p is Pearson’s correlation coefficient (Galton, 1886,
Pearson, 1895):

o(a,b) = Zn(an_d)(bn_g) . 6.5)

\/Zn(an - d)z\/zn(bn - b)z

This optimization aims to preserve small distances in low-dimensional
space. Errors in large distances are not penalized as strongly. So, the
fine structure is preserved, whereas large distances are not. In our
case, this would translate to: clusters are preserved, whereas the inter
cluster distances and the distribution of clusters in two-dimensional
space cannot be trusted.

We used correlation distance (1-p) as high-dimensional distance mea-
sure, instead of Euclidean distance used in the original work. We
jointly mapped all single-trial response vectors to all stimuli, includ-
ing responses across all days, and plot either all trials from a given
day or trials from all days.
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Part IV

A FIRING RATE MODEL OF POPULATION
ACTIVITY IN MOUSE AUDITORY CORTEX

In the following part we investigate the neuronal popula-
tion dynamics found in mouse auditory cortex (Part iii)
using a firing rate model. The model is described in detail
in Chapter 7. We find a regime with similar population
activity patterns as in mouse auditory cortex for strong
recurrent connections and strong inhibition. In Chapter 8
we apply synaptic drift to the network connectivity and
find periods of stable response patterns interrupted by
abrupt changes towards new response patterns. This sug-
gests that, in the parameter regime similar to auditory cor-
tex response changes are broadly distributed.






A FIRING RATE MODEL OF CLUSTERING IN
MOUSE AUDITORY CORTEX

First, we give a short introduction to firing rate models that we used
to reproduce clustering in mouse auditory cortex (Section 7.1), before
discussing our model setup (Section 7.2). Next, we perform a param-
eter scan to understand the different dynamic regimes of our model
(Section 7.3.1) and we have a closer look at the synaptic structure be-
neath this clustering (Section 7.3.2). We condclude this chapter with
a brief discussion of the results (Section 7.4).

7.1 INTRODUCTION

In Part iii we analyzed experimental data from and showed evidence
for response modes in mouse auditory cortex and their dynamics un-
der basal conditions and during learning (Chapter 5). We extended
the description of said dynamics towards a more functional under-
standing in Chapter 6. Here, we want to understand the link between
the synaptic structure of a network and its activity. This is crucial to
link synaptic drift to representational drift. Before we investigate this
link in Chapter 8, however, we first need a model, capable of repro-
ducing single time point dynamics of mouse auditory cortex.

We showed that in mouse auditory cortex responses to stimuli typ-
ically cluster into a near discrete set of responses. That means that
different stimuli evoke the same population response as can be seen
in Figure 5.11. Something similar has also been reported by Bathellier
et al. (2012), See et al. (2018). These clusters typically consist of a sub-
group of imaged neurons that are activated by multiple stimuli. This
clustering might seem counterintuitive at first, however, the stimuli
that are clustered together differ from FOV to FOV, in a way that
allows for a unique global response, when taking together multiple
FOVs throughout the auditory cortex.

Here, we want to address the question, what gives rise to this clus-
tering. Which network connectivity statistics lead to a clustering of
stimuli into a small set of possible response modes? We use a fir-
ing rate model of excitatory and inhibitory neurons with randomly
drawn connections between each other. We vary different model pa-
rameters and find a regime similar to experimental data from mouse
auditory cortex (for details see Chapter 5).

97



98

A MODEL OF CLUSTERING IN MOUSE AUDITORY CORTEX

Already very small firing rate models consisting of two or three units
display complex behavior such as simple and multiple hysteresis
phenomena and unit cycle activity (Wilson and Cowan, 1972), dif-
ferent regimes of oscillations, fixed points, and transient responses
(Wilson and Cowan, 1973), input and connectivity dependent bifur-
cations (Borisyuk and Kirillov, 1992, Beer, 1995), regimes of periodic,
quasi-periodic and chaotic behavior (Pasemann, 2002), spontaneous
symmetry breaking (Fasoli et al., 2016), or dependencies of dynamic
distances on structural distances (Krauss et al., 2019b).

Attractors (i.e. states, the network converges to) in such networks can
be learned (Hopfield, 1982) or arise in random networks for certain
parameter settings. Apart from an attractor regime, where the sys-
tem has multiple stable states, the literature often describes two more
regimes, a uni-stable regime with only one attractor and a chaotic
regime, depending on parameters such as synaptic gain (Wilson and
Cowan, 1972, Sompolinsky et al., 1988, Zhang and Saggar, 2020), re-
current connection strength (Ostojic, 2014, Stern et al., 2014, Krauss
et al., 2019a), strength of inhibition compared to excitation (Ostojic,
2014, Rost et al., 2018, Zhang and Saggar, 2020), randomness vs. struc-
ture (Kadmon and Sompolinsky, 2015, Mastrogiuseppe and Ostojic,
2018, Krauss et al., 2019a), stimulus strength (Wilson and Cowan,
1972, Rubin et al., 2015b), self excitation (Stern et al., 2014). While
most of the computations in the brain resemble dynamics in the at-
tractor regime, even chaotic networks can have many traits of cortical
networks (Barak et al., 2013).

In this chapter we present evidence for two distinctive uni-stable
regimes, an input driven regime, where each input evokes a unique
response and a recurrence dominated regime, where all inputs evoke
the same response. Moreover, we want to focus on another aspect of
the multi-stable regime, namely that not only single stimuli evoke one
out of a set of responses, depending on the initial condition, but also
multiple stimuli can evoke the same response and thus form seem-
ingly random response clusters, where different groups of stimuli
evoke one out of a small set of possible responses. This seems similar
to data recorded from mouse auditory cortex and can be found in a
balanced regime (with strong excitation and inhibition). It seems to be
mitigated by strong inhibition between competing groups of neurons.

We used a simple firing rate model as described in detail in Sec-
tion 7.2. The found random clustering in a model regime governed by
strong recurrent connections and strong inhibition presented in Sec-
tion 7.3.1. These clusters could be characterized by weak inhibitory
connections between neurons within a certain cluster and strong in-
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hibitory connections between neurons from different clusters (Sec-
tion 7.3.2).

7.2 MODEL SETUP

7.2.1  Construction of connectivity matrices

We used a firing rate model to reproduce the apparently random clus-
tering of different stimuli onto response modes, as has been observed
in mouse auditory cortex (Chapter 5). The model of a population
consisting of N neurons can be described by a system of N coupled
differential equations (Equation 7.1). The firing rate r; of each neuron
i1is governed by:

N
0
T +f Z Wiyms +si(t) |, (7.1)
j=1
with the weight matrix of connections from neurons j to i, Wj;, time
dependent input into each neuron 1, s;(t), the time constant 7, and the
nonlinearity f(x). For simplicity, the nonlinearity function was chosen
to be a rectification (Equation 7.2):

x, ifx>0
f(x) = Ixl4 = (7.2)
0 otherwise.

Without loss of generality we set T = 1. As we wanted to study a
very general case, both the connectivity matrix W and the stimuli s
were randomly generated. The fully connected connectivity matrix
was drawn from two log-normal distributions, described by Equa-
tion 7.3.

i ok
wi =exp | In +Zy/In (1 + ) , (7.3)
A/ p.i + Uﬁ Hﬁ

where wy is a random synapse weight drawn from a log-normal dis-
tribution with mean p, and standard deviation oy for k = {E, I} — ex-
citatory or inhibitory — and Z is a standarad normally distributed ran-
dom variable. We used two distributions — one for excitatory and one
for inhibitory synapses — because cortical neurons have typically ei-
ther only excitatory or only inhibitory outgoing synaptic connections
(often referred to as Dale’s principle, Dale, 1934). Log-normal distribu-
tions were used, because synaptic weights between cortical neurons
have been experimentally measured to be distributed in a log-normal
like manner (excitatory: e.g. Loewenstein et al., 2011, Buzsaki and
Mizuseki, 2014, inhibitory: e.g. Minerbi et al., 2009, Rubinski and Ziv,
2015). As roughly 20% of neurons in cortex are inhibitory and 80% are
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excitatory (Sahara et al., 2012), we drew the first 20% of columns of W
from a negative log-normal distribution (i.e. each weight was multi-
plied by —1) and the other 80% of columns from a positive log-normal
distribution. The means py of both distributions were set according
to the position in parameter space, as will be discussed in detail in
Section 7.3.1. The mean of the excitatory distribution pg was the con-
nection strength u divided by the number of neurons in the network
N:

HE = % (7-4)
The mean of the inhibitory distribution pu; was the mean of the exci-
tatory distribution multiplied by the ratio I/E (Ry,g) and the factor 4,
to account for the 4 times more excitatory cells in the network:

Ng

"
H = WIRI/EN = 4Ry /g 1E, (7.5)

where N¢ is the number of excitatory neurons and Ny is the number
of inhibitory neurons. The standard deviations oy of the distribu-
tions were set relative to their means according to experimental mea-
surements: og = 0.025ug (Loewenstein et al., 2011) and o7 = 0.Tuy
(Minerbi et al., 2009, Statman et al., 2014, Rubinski and Ziv, 2015), and
divided by v/N. The division of both means py and variances o by
the network size N normalizes the eigenvalue spectrum and makes it
independent of the network size. Both connection strength p and ratio
of inhibition to excitation Ry,g are thus independent of the network
size. Note that it is not necessary to distinguish between excitatory
and inhibitory neurons to achieve the results presented here, nor is it
necessary for synapses to be drawn from log-normal distributions, as
has been shown in earlier work for networks drawn from Gaussian
distributions or binary networks drawn randomly from {0, 1} (Eppler,
2015). We used log-normal distributions for two reasons: synaptic
weights are distributed in a log-normal like way in cortical networks
and more importantly, when applying synaptic drift (in Chapter 8)
that has been fit to experimental recordings the log-normal distribu-
tion is its stationary distribution.

An example connectivity matrix can be seen in Figure 7.1a and the
corresponding distributions from which inhibitory and excitatory
connections are randomly drawn are displayed in Figure 7.1b. As
stated in the figure, the network strength of this example is 100
and the ratio of inhibition to excitation is 8. As stated above, this
means that the mean of the excitatory synapse distribution is given
as ug = 100/N = 1 and the mean of the inhibitory synapse distribu-
tion as u; = —1- pg -4 -8 = —32. The widths are set accordingly to
be og = 0.025pug = 0.025 and o7 = 0.1u; = 3.2. An extensive descrip-
tion of the interpretation and effect of these parameters, as well as a
parameter space scan can be found in Section 7.3.1.
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(a) Example connectivity matrix. (b) Histograms.

Figure 7.1: Connectivity matrices are drawn randomly from log normal dis-
tributions. (a) Example connectivity matrix for a random im-
plementation of a network with recurrent connection strength
of p = 100, and corrected ratio of mean inhibitory synapse
strength to mean excitatory synapse strength of Ry,g = 8. (b)
Histograms of inhibitory (top) and excitatory (bottom) synapse
strengths accumulated over 100 implementations of the network
(Inh.: uy = =32, o1 = 3.2; Exc.: ug =1, og = 0.025).

7.2.2  Construction of input

Input to the network was assumed to be random with some correla-
tions in time and across neurons to not make any too strong assump-
tions about the input a group of neurons in any cortical area is ex-
pected to receive. We did not model tonotopy, as we wanted to model
a subpopulation of auditory cortex too small for an apparent tono-
topic gradient. To this end, stimuli were generated by first sampling
randomly from a uniform distribution in the interval (0, 1), resulting
in white noise matrices g(x;,t;) of dimension N x T, where T is the
stimulation time in units of At, in our case 100 x 500. These matrices
were convolved with Gaussians of random widths in both dimensions
and then divided by N to keep the net input into the system constant
with regard to the network size. The stimulus s(x;, ti) into neuron x;
at time t; is defined by the convolution of a uniform random matrix
g(xi, ti) with a two dimensional Gaussian kernel (Equation 7.6):

(xi—xj)% (412

] —
S(Xi/ti) = E z g(xj,tj)ZT[O-XO—te 20% 20% s (76)
X5 tj

where oy and oy are the width if the Gaussian in neuron space and
time respectively, which were drawn randomly from o, € (0,3) and
oy € (0,1/2At). These inputs were then divided by the number of
neurons N to keep the mean input to the network stable against
changes in network size. Four example stimuli of length 5t and with

101



102

A MODEL OF CLUSTERING IN MOUSE

c T e — <
i e e & ez —
3 75 i’fzs——. —— 3 75 J— ]
C o0 e == i ., Tl <100
S 25— § 25 |
5 50 5 50 =
o 75 — o 75 1
<100 == <100
5 = V ——— ! 3 é 25 — ! ~
5 50 ——— ———— | B 5 50 — S
@ 75 —— ) e 75 — =

100 = 05 5 100 05 =
—— — CE c ~ g
S 25 : S 25 — E=
g 50 — — g g 50 ;
2.5 0o © g.» 0

3

time (1)

(a) Example stimuli.

AUDITORY CORTEX

1 2
time (1)

(b) Example responses.

o]

Figure 7.2: Stimuli & responses of an example network. (a) 4 example stim-
uli. (b) Network responses to the stimuli in (a) show sparse tran-
sient activations of subgroups of neurons. For an overview of all
used stimuli and responses see Sup. Fig. 9.8 and Sup. Fig. 9.9.

temporal resolution At = 0.01T can be seen in Figure 7.2a and an
overview over all 40 stimuli that were used throughout this and the
next chapter can be seen in Sup. Fig. 9.8. We used a relatively short
stimulation length of 57 in order to simulate the short sounds used
in experimental data (see Chapter 5). The At had to be chosen suf-
ficiently small for numerical solution of system of differential equa-
tions as detailed in the next section (Section 7.2.3)

7.2.3 Clustered network responses

The system was solved numerically using the Forward-Euler method
(e.g. Atkinson, 1989), again, for a time span of 5t and with a temporal
resolution At = 0.017, resulting in responses displayed in Figure 7.2b
for the four stimuli shown in Figure 7.2a (or Sup. Fig. 9.9 for an
overview of responses to all 40 stimuli respectively). In the network’s
initial state the activity of each neuron was set to 0. In the inhibition
dominated regime this was not so important, as the strong inhibition
would set almost any other activity to 0 at the second step anyway
(for most initial conditions).

These time dependent responses were then used to calculate response
vectors — as seen in Figure 7.3a — by taking the mean of the neuronal
activities during the last T = 100At of stimuluation. This averaging
was done both to simulate the effects of Calcium imaging, which im-
plicitly averages neuronal activity on the time scale of tens of milisec-
onds, because the timescale of both Calcium dynamics and the dy-
namics of the Calcium indicator (GCaMP6ém, Chen et al., 2013) are
orders of magnitude slower than single action potentials (tc, ~ 15
compared to tap ~ 1ms). This also facilitated further computations,
which were done on 1 x 100 dimensional vectors instead of 500 x 100
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dimensional matrices. So, it resulted in one response vector per stim-
ulus. We then computed Pearson’s correlation coefficient p (Galton,
1886, Pearson, 1895) between any two response vectors:

_ 2 i(ui—u)(vi—V)
VEiw -0y vi—v)?
resulting in a correlation matrix the size of the number of stimuli we

used (in our examples 40 x 40). Here, u and v are response vectors,
U and Vv are their respective

p(w,v) (7.7)
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ber of found clusters and
the stimuli whose responses
were clustered together var-
ied from network to network.

To summarize, we devised a simple model capable of reproducing
clustering of random inputs into what appears to be is well approx-
imated by a discrete set of possible responses. This is reminiscent
of what has been observed in experimental recordings from popula-
tions of neurons in mouse auditory cortex (Chapter 5). In order to
understand this model better we next describe its different dynamic
regimes.
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7.2.4 Normalizing the network’s eigenvalue spectrum with respect to the
network size

We normalized the connectivity matrix W with respsect to the net-
work size to control its eigenvalue spectrum. This normalization is
based on Girko’s circular law, which states that in the limit of large
N all eigenvalues of a random matrix of size N drawn from a normal
distribution are located within a cycle of radius v/N in the complex
plane (Girko, 1984, Girko, 1990). This is of great importance for neu-
ral networks as the network behavior depends on some aspects of the
eigenvalue spectrum of the underlying connectivity matrix. As the
eigenvalue with the largest real part typically has a strong contribu-
tion the network dynamics (linear networks diverge, if it is > 1), the
typical approach is to divide the standard deviation of network con-
nections by v/N. Later this has been shown for basically all uni-modal
random distributions (e.g. Gotze and Tikhomirov, 2007, Tao and Vu,
2010) and even for matrices observing Dale’s law (Rajan and Abbott,
2006), which is especially helpful in our case.

Eigenvalue Spectrum Zoom In
T L b O
> 100 >
< o® ©
= 0 [e) O QO OC®O o € £
> oY 00 2
£ °8 £
= .100 =
. . o)
-600 -400 -200 0

real real

Figure 7.4: Eigenvalue spectrum of example network displayed in Figure 7.1.
The dominant features of the network are determined by the min-
imal real eigenvalue and the radius of the distribution around
the origin (i.e. the maximal real eigenvalue).

So, we divided the mean pyx and the variance Uﬁ of the distribu-
tions that were used to generate W (Equation 7.3) by the number of
neurons N. This made sure that the eigenvalue spectrum is indepen-
dent of the network size (see Rajan and Abbott, 2006, Wei, 2012). The
eigenvalue spectrum for the example network from Figure 7.1 is dis-
played in Figure 7.4. The stability of the minimal and the maximal
real eigenvalue, i.e. the in our case almost always negative mean of
the matrix and the radius of the spectrum around the origin, with
regard to changes in the network size is shown in Figure 7.5. This
was done so the recurrent connections into each neuron are approx-
imately independent of the network size. The recurrent connections
into each neuron on average sum up to the fraction of excitatory or
inhibitory neurons in the network multiplied by the parameters n
and Rp,g, which we varied in Section 7.3.1. Note that in our case,
the system was working away from the linear regime and thus even
eigenvalues with large positive real part were not enough to make
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Figure 7.5: Scalability of the eigenvalue spectrum of the connectivity matrix
with network size. (a) Mean minimal real eigenvalue (errorbars
denote SEM) vs. network size. Fit (performed on networks of
size N > 100) is a straight line with slope m ~ 0. (b) Mean maxi-
mal real eigenvalue (errorbars denote SEM) vs. network size. Fit
(performed on networks of size N > 100) is a straight line with
slope m =~ 0. Connection strength and ratio I/E were set to 100
and 8 respectively. The choice of these parameters determines
the layout of the eigenvalue spectrum independent of the net-
work size. Small networks displayed statistical fluctuations due
to small random samples and finite size effects and were thus
excluded from the fit.

the network activity diverge.
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Figure 7.6: Minimal (a) and maximal (b) real eigenvalue averaged over 100
implementations of the network show proportionality to both
connection strength and ratio of inhibition to excitation.

With this normalization in place we varied the mean recurrent con-
nection strength u and the fraction of inhibition to excitation Ry .
This results in changes in the eigenvalue spectrum of the connectivity
matrix and thus also changes the network dynamics. The smallest
and the largest real eigenvalue as a function of p and Ry, can be seen
in Figure 7.6. Eigenvalues with real part larger than one are typically
associated with diverging network behavior in linear networks. Our
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network operates far away from the linear regime for strong inhibi-
tion. Also, for small networks this diverging behavior can be balanced
by inhibition and finite size effects (Harish and Hansel, 2015).

Similarly, the stimulus input was divided by the network size N, to
keep the average input to the network independent of the network
size. Thus the mean network activity was independent of the network
size.

7.3 RESULTS

7.3.1 A scan of parameter space reveals a clustering regime for strong in-
hibition and strong recurrent connections

To characterize the observed clustering of different stimuli onto a
shared response mode, we wanted to understand in what parameter
regime this clustering can be found. We kept the network size fixed
at N = 100 and set the number of stimuli to 40 as before. We system-
atically varied the mean connection strength p and the ratio between
inhibition and excitation R;/¢ (as defined in Section 7.2.1. We first

Mean Activity (a.u.)
< le-5 1 le+5 > le+10

[ T

0.1

1

10

100

1000

conn. strength

10000

100000

le+06

/4 172 1 2 4 8 16 32
ratio I/E

Figure 7.7: Parameter space scan for mean network activity reveals the ef-
fect of connection strength and ratio I/E on network activity. A
regime of diverging network activity was found for high recur-
rent connectivity and low ratio of inhibition to excitation (colored

gray).

plotted the mean network activity over all neurons, networks and
stimuli (Figure 7.7). We found a general dependency of this mean
activity on both the ratio between inhibition and excitation Ry ¢ and
the mean recurrent connection strength p. The stronger p was the
higher the network activity was and the stronger the inhibition was
the weaker the network activity. This lead to a regime with divergent
network activity (colored gray in Figure 7.7 and subsequent figures)
for high recuerrent connectivity and weak inhibition.
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We found different regimes of activity patterns in the network. These
are shwon in Figure 7.8 and Figure 7.9 for our example connectiv-
ity from Section 7.2. In Figure 7.8 the response vectors of the net-
work are displayed as a function of the mean recurrent connection
strength p and the ratio of inhibition to excitation Ry ¢ sorted by hi-
erarchical clustering (compare Figure 7.3a). For better visibility the
colormap is adjusted individually for each pair of parameters. The
change in mean network activity across parameter space is displayed
in Figure 7.7. In Figure 7.9 one can see the corresponding correlation
matrices (compare Figure 7.3b), also sorted by hierarchical clustering.
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Figure 7.8: Response vectors (sorted via hierarchical clustering) for a sys-
tematic scan of mean recurrent connection strength and ratio of
inhibition to excitation. Varying these parameters reveals differ-
ent regimes of parameter space. Note: The lower left is empty
due to divergence of network responses.

The lower left (i.e. strong recurrent connections and little inhibition)
is left empty, because in this regime the network activity diverged. In
the non-diverging part of parameter space we found four regimes. In
the top left, for low connectivity strength and low relative inhibition,
the network activity is dominated by the input, the correlations be-
tween responses to different stimuli are close to 0, as expected in an
input dominated regime with all random inputs. As we increased the
connection strength or the ratio of inhibition to excitation, we found
a second trivial regime. Here, the network response to all the differ-
ent stimuli is basically the same, the correlation between responses
to any two stimuli is close to 1. Another regime can be seen in the
lower right, i.e. for strong connections and for very high inhibition.
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Figure 7.9: Correlation matrices of response vectors in Figure 7.8 (sorted via
hierarchical clustering) for a systematic scan of mean recurrent
connection strength and ratio of inhibition to excitation. Varying
these parameters reveals different regimes of parameter space.
Note: The lower left is empty due to divergence of network re-
sponses.

Here the responses seemed to be input dominated again, as each in-
put evoked its specific network response. This can be understood by
dampening: the network receives input at the very first time step of
the stimulation. This is independent of the recurrent connections, as
they only start to contribute, once the network becomes active. In
this regime inhibition is so strong, it just inhibits all activity (i.e. the
input into every neuron is 0 after the half-wave rectification), and
thus the activity decays exponentially. The resulting correlations are
a result of the not yet completely dampened activity of the very first
time point of stimulation. And we found a fourth regime between
the single response regime and the dampening regime. In this fourth
regime, responses to random stimuli typically fall into one of a small
- near discrete — set of possible responses. We called this regime the
clustering regime, because these stereotypical responses are captured
by a set of response clusters.

In order to get a better understanding of these regimes we turned
to multiple statistical measures (to be defined below) while varying
both the connectivity strength and the ratio of inhibition to excita-
tion (Figure 7.10): (a) the mean activity across stimuli, neurons and
network implementations (as we already did in Figure 7.7), (b) the
Gini-coefficient (Gini, 1936) of the response activity distribution, (c)
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the mean correlation of responses to different stimuli in the same re-
alization of the network, (d) the mean correlation of responses to the
same stimulus across different implementations of the network, (e)
the cluster number and (f) the dimensionality (computed as in Ab-
bott et al., 2011). Together these six measures help us to understand
the five different dynamic regimes.

(a)

(b)

(©)

(d)

The mean activity (Figure 7.10a) is the mean activity across stim-
uli, neurons and random implementations of the network for
each combination of the parameters connectivity strength and
ratio of inhibition to excitation. As expected the mean activ-
ity diverged in networks with strong connectivity and little in-
hibition. The region of divergence beyond machine precision
(1.79 x 10398) is colored gray.

The Gini coeffecient (Gini, 1936, Figure 7.10b) is a measure for the
inequality of a distribution. It is probably best known from eco-
nomics as a measurure for the inequality of the distribution of
wealth in a society. It is defined as half of the relative mean ab-
solute difference between all pairs of values from a distribution
(Equation 7.8):

N N
L2 i 2 i —x

G 2N2p ’

(7.8)

with N values x; and their mean p = ; S N, xq. It can range
from O to 1; a Gini coefficient of 0 indicates a perfectly equal
distribution, whereas a Gini coefficient of 1 expresses maximal
inequality.

We used this coefficient as an indicator of inequality in the dis-
tribution of neuronal responses, as the distribution of experi-
mentally observed neural activity is typically log-normal like
(e.g. Buzsaki and Mizuseki, 2014) with a high Gini coefficient,
meaning most neurons are inactive most of the times, but some
are very active at some times.

The mean correlation of response vectors to different stimuli
within a single implementation of the network (Figure 7.10c) is a
measure of response structure. It was computed as the Pearson
correlation coefficient (Galton, 1886, Pearson, 1895) between all
responses of a single implementation of the network and then
averaged across stimuli. It is 0 if there is no correlation at all
between the stimulus responses and it is 1 if all stimuli evoke
the exact same response.

The mean correlation of response vectors to the same stimulus
across implementations of the network (Figure 7.10d) describes
the influence the afferent input has as compared to the recurrent
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Figure 7.10: Parameter space scan for multiple measures reveals qualita-

tively different regimes of our network model. Note: The gray
area indicates divergence of network responses. Experimental
distributions (where applicable) can be found in Figure 7.11.
Experimentally observed values are best apporached for a con-
nection strength between p = {10,100, 1000} and a ratio of in-
hibition to excitation between Ry g = 4,8,16,32. (a) Mean neu-
ronal activity. (b) Mean Gini coefficient of activity distribution
across 100 random implementations of the network. Experi-
ment: 0.908 + 0.004 (mean + SEM). (c) Mean correlation across
response vectors to different stimuli within a network. Experi-
ment: 0.277 + 0.006 (mean + SEM). (d) Mean correlation of re-
sponse vectors to the same stimulus across networks. (e) Mean
cluster number. Experiment: 5.0 + 0.2 (mean + SEM). (f) Mean
dimensionality. Experiment: 3.16 £ 0.06 (mean + SEM).
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connectivities. If the input dominates and the recurrent connec-
tions do not matter, the response of different networks to the
same stimulus is the same no matter the recurrent connections
and thus the correlation of response vectors from different net-
works to the same stimulus is close to 1. If recurrent connections
dominate, the responses of random implementations of the net-
work to the same stimulus are different and thus the correlation
of response vectors from different networks to the same stimu-
lus is close to 0.

(e) The cluster number (Figure 7.10e) is computed by application of
Hubert’s I' statistics (Hubert and Baker, 1977) to infer clustering
power. We sorted the data by hierarchical clustering and, in or-
der to find the suitable number of clusters, cut the cluster tree
at every possible level and computed a I" value as the distance
between the perfect clusters described by this clustering and the
actual correlation matrix, sorted by this clustering. The cluster
number was then chosen to be the number with maximum T
value, which we defined as:

2 @) @)
= 50=T > ) (Sy—a)Ty, (7.9)

i=1j=i+1

where S is the original correlation matrix of size O, c is a thresh-
old and T is a binary matrix of size O with entries

1, if i and j are clustered together,
Ty = ) & (7.10)
0 otherwise.

The threshold was set to ¢ = 0.4. This I' value becomes maximal
for the clustering that describes the data best. This method was
applied to experimental data, too (Section 5.4.20).

(f) The dimensionality (Figure 7.10f) is defined via the eigenvalues
A; of the covariance matrix of the response vectors (Abbott et al.,
2011) as:

g (Zw?
(A7)
It is a measure of the number of eigenvalues that are larger

than the rest of the eigenvalues, so the number of dominant
orthogonal dimensions.

(7.11)

As discussed in the following, based on these measures the different
regimes can be understood as (1) a linear regime in the top left of the
parameter space plot for low recurrent strength and little inhibition,
(2) a single-point-attractor regime for stronger recurrent connections
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Figure 7.11: Histograms of experimentally measured values for comparison
to model data. Data taken from Chapter 5. (a) Gini coefficient.
(b) Mean correlation between stimulus responses within a FOV
(of all stimuli evoking a response). (c) Cluster number. (d) Di-
mensionality.

and/or stronger inhibition, (3) a clustering regime for even stronger re-
current connections and stronger inhibition, (4) a diverging regime for
very strong recurrent connections and little inhibition (bottom left)
and (5) a dampening regime for very strong recurrent connections and
a lot of inhibition (bottom right).

The linear regime (1) is input dominated. Each stimulus evoked a
different response (Figure 7.8 and Figure 7.9). Dimensionality (Fig-
ure 7.10f) and cluster number (Figure 7.10e) were high. However,
there was a high similarity between responses of different implemen-
tations of the network to the same stimulus (Figure 7.10c). So, the
recurrent connections played a minor roll, the input dominated. We
called this regime linear as each stimulus was mapped to its own
unique response.

In the point attractor regime (2) the recurrent connections dominated
the activity patterns. Irrespective of the input (and even though the in-
put is changing), each implementation of the network had its specific
response pattern it converged to. Mean correlation between reponses
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within a network was 1 (Figure 7.10d), so were cluster number (Fig-
ure 7.10e) and dimensionality (Figure 7.10e).

Classically, these two regimes are often not distinguished from each
other and simply referred to as uni-stable, as in both cases each stim-
ulus evokes a single clearly defined response. Rather than present-
ing multiple stimuli and defining both a stimulus dominated regime
(1) and a network dominated regime (2), the distinction is tradition-
ally only made between a uni-stable regime, a bi-stable (or a multi-
stable) regime, where a single stimulus can ellicit two (or more) re-
sponses, depending on the initial condition of the netwok, and a
chaotic regime (e.g. Wilson and Cowan, 1972, Sompolinsky et al.,
1988, Fasoli et al., 2016, Zhang and Saggar, 2020).

When we furhter increased both connection strength and ratio I/E,
we found a clustering regime (3). This is reminiscent of a classical
multi-stable regime (Sompolinsky et al., 1988, Zhang and Saggar, 2020).
However, apart from one stimulus being able to evoke multiple re-
sponses, multiple stimuli could also evoke the same response. So,
stimuli were mapped seemingly randomly to one of the response
modes. There were typically 2 — 3 response modes (best to be seen
in Figure 7.9). Taking together all the measures described above, this
regime is both the most relevant regime as it is the one closest to ex-
periment. While activity was at an intermediate level (Figure 7.10a),
in this regime activity was also skewed such that most neurons were
inactive, while some were highly active as captured by a Gini coeffi-
cient close to 1 (Figure 7.10b). Correlations between responses of the
same network to different stimuli were at an intermediate level (Fig-
ure 7.10c), meaning there was more than one possible response (in
which case corr. p = 1), but not a unique response to each stimulus
(corr. p = 0). Correlations between networks were found to be 0 (Fig-
ure 7.10d), meaning that the observed clustering occurred to group
stimuli together randomly. Additionally, the mean cluster number
(Figure 7.10e) as well as the mean dimensionality (Figure 7.10f) were
at an intermediate level. They both were between 1 in the single-point-
attractor regime, where only one response is possible per network and
the linear regime, where each stimulus evokes its specific response.

The diverging regime (4) is characterized by very strong recurrent con-
nections and not enough inhibition present to possibly counter bal-
ance the strong excitation. The network activity is diverging.

In the dampening regime (5) the inhibition grows so strong that it su-
presses every activity exponentially. As we cut off the network activ-
ity after 51, however, the network activity did not reach 0, yet, and
the activity was basically a dampened version of the input. Thus, we
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found, similar to the linear regime that the mean correlation of re-
sponses of the same network to different stimuli (Figure 7.10c) was
close to 0, whereas the correlation of responses of different networks
to the same stimulus (Figure 7.10d) was close to 1.

A regime matching to experimental data best could be found within
the clustering regime. Distributions of experimental measurements
(where applicable) are shown in Figure 7.11. In the experimental
data (taken from all FOVs and all imaging days of the basal dataset
from Chapter 5) the Gini coefficient was found to be 0.908 £ 0.004
(Figure 7.11a, mean + SEM), the correlation across response vec-
tors within a FOV was 0.277 &+ 0.006 (Figure 7.11b), the mean clus-
ter number was 5.0 + 0.2 (Figure 7.11c), and the dimensionality was
3.16 £ 0.06 (Figure 7.11d). The absolute value of activity was of no
interest as the model network activity scales with the input and the
correlation of response vectors to the same stimulus across FOVs
could not be computed in the experiment, as the FOVs consisted of
different neurons and did not receive the exact same stimulation. The
similarity between experiment and model appeared without any fine
tuning whatsoever and for all of the above measures in in the same
region and only in this region of parameter space. We just varied
the mean connectivity and the ratio of inhibition to excitation and
found a region corresponding to experimental data for strong recur-
rent connections and strong inhibition. This means that the observed
experimental clustering of stimulus responses into response modes
can be explained by random connectivity in a strongly recurrent net-
work with relatively strong inhibitory connections.

Mean Cluster Number Mean Cluster Number

3 IHH{ 25 Y 3

2.5 1 20 i

15 i .
10

{ H déta m ) x ¥ data

s } fit: b*x 5 / fit: b-+x*m
b=1.16 Az b=111

m=0.13 L~ m = 0.01

1 2 3 0
10 10 10 0 500 1000 1500 2000

stimulus number network size

(a) Cl. Num. vs. Stim. Num. (b) Cl. Num. vs. Network Size

cluster number
N
—_—
——]
——t
cluster number

Figure 7.12: Model scalability. (a) The growth of cluster number with the
number of stimuli can be fit by a power law with exponent 0.13.
Note: Axes are loglog scale. (b) For a fixed number of stimuli
(Nstim = 40) the growth of cluster number with the network size
can be fit by a line of slope 0.01. Cluster number is computed
via Hubert’s I statistics (Hubert and Baker, 1977) and averaged
over 100 random implementations of the network.
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The clustering in the clustering regime was found independent of net-
work size and stimulus number. However, when we increased the
stimulus number, we found a power law dependency on the cluster
number (Figure 7.12a, ngp = 1.16x"sim). So, if the stimulus number
is increased, there tends to be a stimulus evoking a new response
mode. When we increased the network size, we found a linear depen-
dency between the cluster number and the network size (Figure 7.12b,
ngp = 1.11 +0.01N), at least for network sizes of up to N = 2000 neu-
rons. For a finite number of stimuli this has to be bounded, however.
We also found an increase of cluster number with network size in au-
ditory cortex, where on a global scale each stimulus evoked a unique
response through combinations of clustered responses in single FOVs
(Figure 5.10b).

Investigating the eigenvalue spectra or specifically the minimal and
maximal real eigenvalues in parameter space, we found a depen-
dency of both connection strength and the ratio between inhibition
and excitation. The minimal real eigenvalue was either determined by
inhibition, if inhibition was stronger than excitation or by the width of
the distribution, if excitation and inhibition were of similar strength
(Figure 7.6a). The maximal real eigenvalue was (as a proxy for the
radius around the origin of the complex plane) determined by the
larger of both inhibition or excitation, so it was mirrored at a ratio of
1 and it was growing with the connection strength (Figure 7.6b). In
the relevant (i.e. the clustering) regime the eigenvalue spectrum has
one large negative eigenvalue and the radius of the circular distribu-
tion of eigenvalues around the origin is well beyond 1. So, the system
works far away from the linear regime (where activity would diverge).
The large negative eigenvalue is determined by the overall strength of
inhibition, the large positive eigenvalue accounts for strong network
activations. Together this leads to highly non-linear dynamics via the
static non-linearity and high activity, especially of inhibitory neurons.

To sum up, we found four intuitive regimes, a linear regime, a single
attractor regime (both uni-stable), a diverging regime, and a dampening
regime — plus a clustering regime (which is reminiscent of the multi-
stable regime in the literature) — by varying the strength of recurrent
connections and the ratio of inhibition to excitation. The clustering
regime that is consistent with experimental data from mouse audi-
tory cortex (Chapter 5), was found for relatively strong recurrent
connections and strong inhibition.
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7.3.2  Clusters are formed by weaker than average inhibitory synapses be-
tween participating neurons

This section describes joint work with Lusie Schulte as part of her
B.Sc. project (Schulte, 2017).

We next wondered what is the underlying neuronal structure of the
clusters of stimulus responses. With this aim we looked at the neu-
rons that were active when one of these response modes was evoked
in networks in the clustering regime described in (Section 7.3.1). We
set the mean connectivity to 100 and the ratio of inhibition to ex-
citation to be 8. One obvious hypothesis would be that the activity
patterns associated with these clusters mostly consist of excitatory
neurons that are interconnected and thus form a positive feedback
loop. So, we counted the neurons that were active during popula-
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Figure 7.13: Activity patterns underlying stimulus response clusters are
characterized by slightly more excitatory cells. (a) Distribution
of inhibitory and excitatory cells in clustered response patterns
as compared to the entire dataset. (b) Fraction of cells partici-
pating in at least one clustered response pattern. From left to
right: fraction of all cells, excitatory cells, inhibitory cells.

tion responses. Neurons were considered active, when their average
activity to all stimuli within a cluster was larger than the average ac-
tivity of all neurons to these stimuli. And indeed we found a slight
excess of excitatory neurons associated with response modes as com-
pared to the overall distribution of neurons (Figure 7.13a). While the
overall fraction of excitatory cells was set to be 80% (and thus the
fraction of inhibitory cells was 20%), these fractions were shifted to
83.23 £ 2.74% of excitatory and only 16.77 4 0.53% of inhibitory cells
within responses to clustered stimuli.

This slight imbalance could also be seen, when we looked at the frac-
tion of cells that participated in the activity pattern for at least one
cluster (Figure 7.13b). 13.66 4 0.38% of all cells were active, 14.21
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0.47% of excitatory cells, and 11.45 £ 0.36% of inhibitory cells.

To gain more insight, we also looked at the distribution of synapses
between neurons activated by stimuli within clusters and compared
them to synapses between neurons that were not active together. Fig-
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Figure 7.14: Activity patterns of stimulus response clusters are characterized
by weak inhibitory connections between participating neurons.
(a) Distribution of excitatory synaptic connection strengths
is the same for neurons within and between clustered activ-
ity patterns. (b) Distribution of inhibitory synaptic connection
strengths reveals a difference between synapses between neu-
rons within a clustered activity pattern and synapses between
neurons outside clustered activity patterns.

ure 7.14 shows the distributions of excitatory (Figure 7.14a) and in-
hibitory synapses (Figure 7.14b) both within and between (i.e. out-
side) clustered activity patterns. The distribution of excitatory synapses
is basically the same within and between those patterns. For in-
hibitory synapses there is a difference between these distributions:
Inhibitory synapses between neurons inside a clustered response pat-
tern were typically weaker than inhibitory synapses outside of clus-
tered response patterns.

In conclusion, while we did find a slight excess of excitatory neu-
rons inside population responses to clustered stimuli compared to
the overall distribution, the clustered activity patterns could be de-
scribed best by a lack of strong inhibitory connections within. Intu-
itively this makes sense as well, as a strong inhibitory synapse from
one neuron to another would inhibit the second neuron and thus
remove it from the pattern. So, a clustering regime, reminiscent of a
multi-stable regime, as has been described in literature, can arise in
random networks via strong inhibitory connections. Those lead to
exclusive activation of response patterns depending to some extent
on the stimulation, different from the uni-modal network dominated
regime, where any activation will lead to only one response, as the dif-
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ferentiation via structured inhibition is impossible due to only weak
inhibitory synapses.

7.4 DISCUSSION

We found that a random firing rate model was able to capture key
features of stimulus response dynamics in mouse auditory cortex.
Those key features include sparse neuronal activity, best described
by a skewed distribution towards high rates, and a clustering of stim-
ulus responses into response modes. In conclusion this makes the
presented firing rate model a liable model of neuronal population
responses in mouse auditory cortex, especially as it works on few
assumptions and a working regime is found already in random (i.e.
non-structured) connectivity matrices.

A clustering of stimulus responses was found in a regime of param-
eter space with strong excitatory and even stronger inhibitory recur-
rent connections. This clustering means that different stimuli evoked
the same population response. The cell assemblies behind the clus-
ters (i.e. the network units activated by the stimuli) were character-
ized by weak inhibitory synapses among them and strong inhibitory
synapses between.

The observed attractor-like dynamics are reminiscent of so-called
winner-takes-all networks (e.g. Wilson and Cowan, 1973). Such net-
works typically consist of multiple units (or groups of units) and the
activation of one unit (or one group of units) inhibits all other activity.
In these networks the structure is usually engineered to work like this.
We find that strong inhibitory synapses between neurons underlying
one response mode and other neurons not activated by this response
mode are able to produce similar dynamics in random networks.

This clustering of different stimuli onto a response mode seems to
be characteristic of certain regions in the cortex, like the auditory
cortex (Bathellier et al., 2012, Atencio and Schreiner, 2013, See et al.,
2018), while it has not been reported in other regions such as e.g.
visual cortex. Our model suggests that these different cortical areas
might work in different regimes and that clustering is associated with
strong inhibition. Interestingly, auditory cortex is thought to be more
inhibition dominated than other areas, e.g. visual cortex (Liang et al.,
2019). A similar and potentially related effect (although termed dif-
ferently) has also been reported by Chen and Miller, 2020, who found
that in small chaotic networks the number of states decreased by in-
creasing both recurrent connections and inhibition.

Apart from the clustering regime we were able to identify four more
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regimes. While two of them were rather trivial (diverging responses
for too strong excitation and exponentially decaying responses for too
strong inhibition), we found two uni-stable regimes. We were able to
make the distinction into an input dominated regime, where each
input evoked a unique response (regardless even of the network con-
figuration), and a network dominated regime, where each stimulus
evoked the same response (only depending on the network configura-
tion). This distinction is not always made in previous work, probably
because networks are typically probed with a single stimulus, espe-
cially for parameter scans, to save time.

Similar studies that performed parameter scans of different parame-
ters, typically found three regimes: a uni-stable regime, a bi- or multi-
stable regime, and a chaotic regime (Sompolinsky et al., 1988, Stern
etal., 2014, Kadmon and Sompolinsky, 2015, Zhang and Saggar, 2020).
As written above, we identified two distinct uni-stable regimes. A bi-
or multi-stable regime produced clustering into response modes in
our model. We did not find chaotic behavior, probably due to two
reasons: (1) Our non-linearity was not bounded, allowing activity to
diverge for strong recurrent connections and no strong inhibition. (2)
Inhibition (together with finite size effects) is able to prevent chaotic
behavior, even for connectivity matrices with large positive real eigen-
values (Ostojic, 2014, Harish and Hansel, 2015, Fasoli et al., 2016).
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ABRUPT TRANSITIONS OF RESPONSE PATTERNS
EMERGING FROM GRADUAL CHANGES OF
NETWORK CONNECTIVITY

In this chapter we discuss the occurence of abrupt transitions of re-
sponse patterns that follow gradual changes of network connectivity.
Section 8.1 gives an introduction to considerations on the effect of
changes in the network’s structure on the network response. Then,
we will explain the model setup (Section 8.2), before we detail our
findings in Section 8.3, namely, that abrupt transitions of network re-
sponse patterns are linked to qualitative changes in the fixed points
picture of the network. We end this chapter with a discussion (Sec-
tion 8.4).

8.1 INTRODUCTION

In the previous chapter (Chapter 7) we devised a model capable of
reproducing single time point dynamics of neuronal population re-
sponses in mouse auditory cortex (as described in Chapter 5), most
notably a clustering of responses to stimuli into a near discrete set of
response modes. This clustering into response modes was found in
random networks with strong recurrent connections and a high ratio
of inhibition to excitation. In Chapter 5 we also saw considerable re-
modeling of said response modes even under basal conditions. In this
chapter we want to understand, how synaptic drift can lead to such
remodeling of representations. How stable are network responses to-
wards synaptic drift? And is there a way to link representational drift
to the underlying synaptic drift?

Recent studies in various regions of mouse neocortex found that
both neuronal population activity and the underlying synaptic con-
nectivity change over time. Synapses change in strength, they emerge
and disappear (Rumpel and Triesch, 2016). While learning induced
changes of synaptic connections have been studied extensively in the
past (brought to attention by Hebb, 1949, for an overview of recent
work, see Humeau and Choquet, 2019), the focus has partly shifted
in recent years towards synaptic changes in the absence of an ex-
plicit learning paradigm. This so-called synaptic drift, i.e. seemingly
random changes in synapse strength, including disappearing and
emerging synapses, was found in both excitatory (Yasumatsu et al.,
2008, Loewenstein et al., 2011, Loewenstein et al., 2015, Berry and
Nedivi, 2017, Ziv and Brenner, 2018) and inhibitory synapses (Ru-
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binski and Ziv, 2015, Dvorkin and Ziv, 2016, Villa et al., 2016). But
not only the connectivity of neural networks changes, also neuronal
population activity patterns change across time as shown by us (see
Chapter 5 and Chapter 6) and others (e.g. Clopath et al., 2017, Rule
et al., 2019).

A lot of work has been focused on the question, how stability on
the level of cortical representations can be maintained in the pres-
ence of synaptic drift (Vogels et al., 2011, Litwin-Kumar and Doiron,
2014, Mongillo et al., 2017, Mongillo et al., 2018, Fauth and Rossum,
2019, Montangie et al., 2020). In these studies, this is mostly achieved
by homeostatic plasticity rules and/or by leaving relevant parts of
the network stable. Homeostatic plasticity rules can also be applied
to the readout units of networks with changing activity patterns, at
least for not too fast representational drift (Acker et al., 2019, Kossio
et al., 2021).

Here, however, we do not want to explain stability, but want to in-
stead study the influence of changes in network connectivity on net-
work activity. As both synaptic connectivity and neuronal population
activity have been shown to be not as stable as previously assumed
in various regions of mouse auditory cortex — even under basal con-
ditions — we investigate the link between these two. This drift seems
to be ever present, so it probably plays a role for different processes
and has to be accounted for, before external influences — like learning
— can be addressed. To our knowledge this has not been investigated
before.

We used the firing rate model as described in Chapter 7 in the regime,
we found, similar to experimental recordings of mouse auditory cor-
tex (Chapter 5) and apply synaptic drift as fit to experimental data
by Loewenstein et al. (2011). We observed that gradual synaptic drift
leads to periods of stable responses to stimulation, that are inter-
rupted by abrupt transitions towards new network response patterns.
We studied the underlying mechanism of these changes by analyzing
the fixed point topology of the network model, extending a method
from Sussillo and Barak (2013). We found that abrupt transitions can-
not be explained by a displacement of existing fixed points, but typi-
cally coincide with qualitative changes in the fixed point structure.

8.2 MODEL SETUP

For the analyses in this chapter we used the circuit model introduced
and discussed in detail in Chapter 7.



8.2 MODEL SETUP

8.2.1  Modeling drift of excitatory synapses

Synaptic drift of excitatory synapses was modelled as described by
Loewenstein et al. (2011). Here, we want to briefly summarize their
model of synaptic drift. In experiments, dendritic spine size is taken
as a proxy for postsynaptic efficacy of excitatory synapses. We use
all-to-all connectivity matrices in our model and thus neglected the
removal and (re-)appearance of synapses.

As the steady state distribution of dendritic spine sizes is log-normal
distributed, the spine size dynamics were modelled by a multiplica-
tive random process. The starting point are two independent Ornstein-
Uhlenbeck processes (Equation 8.1, Uhlenbeck and Ornstein, 1930).
Each of the two processes (i = 1,2) can be described by:

Xy = —Xi + &, (8.1)

where 1; determines the time scale of the process, X; are the dynamic
variables and &; is a white noise term with mean (&;) = o0 and covari-
ance (£;(t)&;(t)) = 2710781;6(t —t'). 07 are the stationary variances
of the respective processes. Now, the logarithm of the spine size S
was fit to the sum of two such dynamic variables (Equation 8.2):

log(S) =X1 + X2+, (8.2)

where the constant p is the mean of the logarithm of all synapse
sizes. Thus, the system converges to a steady state, where synapse
sizes are log-normal distributed, and we can solve for the probability
of a synapse size Oy at time t dependent on its size O, at time t — 1
(Equation 8.3):

exp <1ogot—(rs1ogot.1+(1—r5)u)2>

202
_ OtOtq

P(O{Oy) = = (8.3)

N Ot 2
anotom

with B _ o exp(—t/'ﬁciz—oz exp(—t/T2)
Otq

cr%)t_1 = 07 + 03 is the variance of the synapse size distribution. oy

and o, were experimentally determined by Loewenstein et al. (2011)

to be 07 = 0.0683 and o0, = 0.0292. As we handed the variance

of synapse sizes G%)H as input to our model (see Section 7.2), we

computed o7 and o, as G%, model = O'ét_l 0'%/(0‘% + 0'%) and 0'%, model =

cr%)t_1 03 /(0% + 03) respectively. This process converges to a log-normal
distribution or - if we already start from a log-normal distribution
with the correct mean exp(u) and variance Gét_l — keeps this distribu-
tion of synapse sizes in a steady state. Note that the original model fit-
ted in Loewenstein et al. (2011) included a term to account for experi-

mental noise, which we omitted in the model. The time constants for

4 O-Ofotq = Got_l(] - Bz)/ Where
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the drift of excitatory synapses were obtained in the original publica-
tion and the best fit to experimental data was found to be 11 = 2.87d
and 12 = 212 d. The mean logarithm of synapse sizes u (and thus also
the variance) was set in the model according to the regime in parame-
ter space (as described in detail in Chapter 7). The mean connectivity
strength was chosen to be u = 100 and the ratio Ry ¢ = 8.

8.2.2 Implementation of synaptic drift

To efficiently sample from the distribution of possible synapse sizes
in Equation 8.3, we followed the standard procedure and projected it
onto a distribution, we can sample from numerically, e.g. the uniform
distribution. This was done for every synaptic weight at every time
step. Mathematically this projection onto a uniform distribution is

described by
X
u= L P(04/0¢.)dOy, (8.4)

where u is a random number drawn from a uniform distribution and
x is a random number drawn from P(O¢O¢.,). We inverted this equa-
tion and solved it for x to get the corresponding synapse size. To
achieve this we simplify Equation 8.3 by substituting a = ZG%MOH,

b = (B log(O¢) + (1 — B)u), leading to:

1 —b2 log?
P(x|Ow1) = \/TTanp ( . ) szq exp (()gix> , (8.5)

which can be further simplified by substituting g = %b —land h =

L ex _—bZtO'
VvTa p a :

log?
P(x|O¢1) = hx9 exp (- Oi X) . (8.6)
The cumulative sum of this expression up to a value x is then:
X 2
u= J hy9 exp (_logy) dy (8.7)
0 a
[ b —logx
Now, this can be inverted and reads:
X = exp b Vaerf (1 — Zu)] (8.9)
—exp |(Blog(Ows) + (1 —B)log(w)) — V200, 0, erf ' (1—2u)].
(8.10)

With this expression, we were able to sample u from a uniform distri-
bution and efficiently compute the corresponding value drawn from
P(O¢/O1).
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8.2.3 Modeling drift of inhibitory synapses

As there are — up to now — no direct experimental measurements of
the drift of inhibitory synapses, we assumed that inhibitory synapses
changed in the same way excitatory synapses do, but not neces-
sarily on the same time scale as excitatory synapses. So, we var-
ied the inhibitory time scale (i.e. T1 and T;) by factors of T1/1¢ =
{1,10,100,1000}. Figure 8.1a shows the correlation of connectivity
weights at any time point to the intitial connectivity weigths, aver-
aged over 100 random initializations of the network, starting from
steady state. The larger the time scale 17 is, the slower is the decay in
this correlation.
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0.9 0.9 \
0.8 0.8
0.7 0.7
< c
S 0.6 S 0.6
s s
205 205
S s
Y04 Y04
0.3 0.3
o2 b[—7%=1 oo l[—r/%=1
10 10
0.1 p|—100 0.1 p|——100
1000 1000
0 0
2 4 6 8 2 4 6 8
time (days) time (days)
(a) Conn. corr. all. (b) Conn. corr. exh./inh. only

Figure 8.1: Correlation of network connectivity to connectivity at t = 0 (start-
ing from steady state). (a) Correlation of connectivity weights to
connectivity weights at t = 0 for the entire connectivity matrix
(for different ratios t1/t¢ = {1;10;100;1,000}). Mean over 100
implementations of the network. Shaded area is SEM. (b) Corre-
lation of connectivity weigths to connectivity weights at t = 0
for connectivity matrices draawn from one log-normal distribu-
tion (only excitatory or only inhibitory; for different ratios t/7g).
Mean over 100 implementations of the network. Shaded area is
SEM.

Overall, this plot shows that the correlation of connectivity weights is
decaying rather slowly and as inhibitory weights are larger, increas-
ing the time scale of drift of inhibitory synapses adds further to the
slowness of this decay. To check whether this slow decay was due
to the conservation of the overall structure of the network — i.e. in-
hibitory synapses could never become excitatory synapses and vice
versa — we constructed networks of only excitatory (or inhibitory)
synapses drawn from the same distributions as the original networks.
We applied drift and found that the correlation to the initial con-
nectivity weights decayed faster, but not by much (Figure 8.1b). The
correlation decay was independent of mean and standard deviation
of the distribution (as is expected for Pearson’s correlation coefficent)
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and thus, only one line is shown for each time scale.

So, while the synaptic drift has quite a dramatic effect on individ-
ual synapses, as described in Loewenstein et al. (2011), the overall
synaptic connectivity changes on a rather slow time scale. Note that
in Figure 8.1 the standard deviation is small, too, in both cases. This
indicates that individual implementations of the network all change
with approximately the same rate.

8.3 RESULTS

8.3.1 Drift of inhibitory synapses is predicted to be an order of magnitude
slower than drift of excitatory synapses

In order to investigate response changes due to the synaptic drift de-
scribed above, we computed the responses to the same 40 stimuli as
described in Section 7.2.2 using the connectivity matrix (Section 7.2.1)
with p = 100 and R; /g = 8 at each time step (starting from steady
state with synaptic drift as described in Section 8.2). The response vec-
tors were then correlated to the response vector for the same stimulus
at the initial time point. The mean correlations to the first (and last
time point) over 40 stimuli and 100 implementations of the network
are shown in Figure 8.2. The correlation decay of response vectors is

Correlation betw. tand t, Correlation betw. tand t_

correlation
correlation

2

6 8

4 4
time (days) time (days)

(a) Resp. corr. tg (b) Resp. corr. tiqst

Figure 8.2: Correlation of network response to response at t = 0. (a) Cor-
relation of response to response at t = 0 (for different ratios
T1/Te ={1;10;100;1,000}). Mean over the same 100 implementa-
tions of the network as in Figure 8.1 and 40 stimuli. Shaded area
is SEM over networks. (b) Correlation of response to response at
t = tuq (for different ratios T1/Tg). Mean over 100 implemen-
tations of the network and 40 stimuli. Shaded area is SEM over
networks. An inhibitory synaptic turnover 10 times slower than
excitatory turnover reflects experimental data best.

faster than the correlation decay of network connectivity. This means
that relatively small changes to the network connectivity have a more
pronounced effect on the network activity.
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To infer the biologically plausible rate of drift for inhibitory synapses,
we compared the correlation decay of network responses for differ-
ent rates in the model to experimental data (taken from Chapter 5,
i.e. Aschauer et al., 2022). For better comparison we computed the
median response vectors for each stimulus on each day (to account
for experimental noise), correlated them to the median response vec-
tor at the first day (day 0) or at the last day (day 6) of imaging, and
plotted the mean over imaging fields of view and stimuli. We found
that in order to achieve a similar level of change as in the experi-
ment, inhibitory synapses had to be at least a factor 10 times more
stable than excitatory synapses. This might be due to the fact that
the model works in an inhibition dominated regime. This decay in
correlation was mirrored, when we computed the correlation to the
last time point instead of the first (Figure 8.2b). Note that the shape
of the model decay and the shape of the correlation decay in the ex-
periment did not match exactly, hinting at dynamics not included in
the random drift of the model. While the decay from the intial time
point to the next matched, the experimental data seems to be more
stable on consecutive time points.

8.3.2  Abrupt transitions of response patterns are caused by ongoing synap-
tic drift

We next wondered, if the observed monotonous decay of mean re-
sponse correlation — averaged over 40 stimuli and 100 implementa-
tions of the network (Figure 8.2) — would also be present in stimulus
responses of individual networks. Stimulus responses of individual
networks, however, showed a qualitatively different behavior. While
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Figure 8.3: Synaptic turnover leads to phases of stable response to stimuli in-
terrupted by abrupt changes. (a), (b) Responses to example stim-
uli of networks changing according to Equation 8.3.

the connectivity was changing slowly and steadily, also on the level of
individual networks, most of the time responses to stimuli appeared
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to be affected only little by these changes, except for some time points,
where abrupt transitions occurred. Example stimulus responses for
four stimuli in two example networks can be seen in Figure 8.3. Peri-
ods of stable responses were interspersed by abrupt transitions, when
neurons activated by a given stimulus changed from one time step to
another (e.g. network 1, stimulus 3, around day 8 or network 1, stimu-
lus 23, around day 6). Sometimes there was also an abrupt transition
from no response to a response or vice versa (e.g. network 2, stimulus
1 or stimulus 3).

Corr.
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correlation
correlation
o
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2 4 6 s time () 2 6 8 time (d)

(a) Example corr. to tg. (b) Example corr. to tyg.

Figure 8.4: Response correlations show stable periods and abrupt transi-
tions. (a) Correlation of responses at time t to to (Examples 1
and 2 from Figure 8.3 shown along with two more examples
shown in Sup. Fig. 9.10). (b) Correlation of responses at time t to
t1ast (Examples T and 2 from Figure 8.3 and two more examples
shown in Sup. Fig. 9.10).

We visualized these transitions by computing for each stimulus the
correlation of the response at any time point to the response at the
first or last time point (Figure 8.4a and Figure 8.4b). We computed
this correlation to a unique time point (and not between consecutive
time points), because we wanted to have a fixed reference point. This
computation was done to both the first and the last time point to
check for temporal symmetry.

At any given time point, we either see little to no change in the corre-
lation or abrupt transitions. Transitions occurred both away from the
initial response, but sometimes also toward a (partial) recovery of an
earlier response that had been transiently lost at an intermediate time
point. Periods of little to no change are visualized by a red area (or
horizontal line) meaning the response has an unchanging correlation
to the response at the initial or last time point. Slow, gradual changes
would be signified by a gradual change in color across an extended
time, however, those are not present. White areas indicate near O cor-
relation to the initial or last time point. For near 0 periods we cannot
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say much about the changes in the system, because the responses
could change. As long as they do not become more or less similar
to the initial or last response this would be difficult to notice based
on this figure alone. This is shown in Figure 8.4 for four example
implementations of the network, the two examples from Figure 8.3
and two more examples, shown in Sup. Fig. 9.10. Note that periods
of stability can be of very different extent in time. Sometimes these
periods last almost across the entire simulation length (e.g. the red
region in example 1), whereas some of these periods only last for a
very brief timespan (e.g. the white region in example 4).
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Figure 8.5: Correlation changes are broadly distributed in the model. (a), (b)
Histogram of changes in correlation to day 1 on normal (a) and
semi log scale axes (b). (c), (d) Histogram of changes in correla-
tion to day 7 on normal (c) and semi log scale axes (d). For better
comparability to experimental data, responses were taken from
four days at two day intervals (days 1, 3, 5, 7).

To quantify the dynamics of the changes in these correlations we
computed the difference in correlation (to the state at t = 0) between
consecutive time points. The time points were chosen at a two day
interval for comparison to the experimental data and the changes
were converted to be of unit 1h~!. Figure 8.5 shows the distribution
of these changes in correlation to the first time point in normal scale
(Figure 8.5a) and semi-log scale (Figure 8.5b) and the changes in cor-
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relation to the last time point in normal scale (Figure 8.5¢) and semi-
log scale (Figure 8.5d). We found a broad distribution of correlation
changes both away from the initial response and towards the initial
response. This means that responses typically changed very little be-
tween time points, but sometimes big changes occured, interestingly,
both negative and positive. Negative changes in the correlation to the
initial response mean that the response became less similar to the
initial response, i.e. following the global trend; positive changes im-
ply a (partial) recovery of the initial response. Interestingly, we also
observed a considerable amount of changes in the opposite direction,
i.e. response changes reversing the global trend towards a response
more similar to the initial response. This distribution of correlation
changes was largely mirrored in time, when regarding the correlation
of a response at a given time point to the response at the last time
point (i.e. Figure 8.5a looks like a mirrored version of Figure 8.5¢),
indicating a temporal symmetry as expected of a random stationary
process.
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Figure 8.6: Correlation changes are broadly distributed in the experiment
(data taken from Chapter 5). (a), (b) Histogram of changes in
correlation to day 1 on normal (a) and semi log scale axes (b). (c),
(d) Histogram of changes in correlation to day 7 on normal (c)
and semi log scale axes (d).

Remarkably, the corresponding distributions in experimental data of
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the very system we based our model on (same as in Chapter 5, As-
chauer et al., 2022) were broadly distributed, too. This would not be
expected for a system with slow representational drift without abrupt
transitions, where this distribution would be narrower. To ease com-
parison, we calculated the difference in correlation of the median
response over trials on a given day to the median response on the
first and last imaging day. This is comparable to the model analysis,
as imaging days were two days apart. Furthermore the model is de-
terministic, so we only have one response per stimulus. The median
response was used for experimental data to have a robust estimate of
the response and one stereotypical response per stimulus and imag-
ing time point. The resulting distributions are shown in Figure 8.6. As
in the model, this change in correlation was peaked around 0 with
tails in both directions. While change was mostly close to 0, there
were also time points with substantial response changes. Again, the
distributions were biased towards changes away from the initial re-
sponse (towards the last response), but also in the experiment, we
could see evidence for (partial) recovery of previous response states.
Moreover, the correlation changes in experimental data seem to be ex-
ponentially distributed. This exponential distribution is not captured
by the model, but might hint at some underlying mechansism not
captured by random synaptic drift, merely fit to experimentally mea-
sured synaptic drift.

In summary, we found that steady changes of synaptic connections
in our firing rate model lead to periods of relatively stable stimulus
responses, interrupted by more abrupt transitions toward different
response patterns. These changes were broadly distributed and some-
times led to a recovery of a previously lost response, all in accordance
with experimental data.

8.3.3 The fixed point topology of a neural network

Next, we asked whether these abrupt changes of responses can be
linked to changes in the network structure. The network structure — in
our case the connectivity matrix — together with the input can be un-
derstood to shape the high-dimensional energy landscape governing
the network dynamics (e.g. Hopfield, 1982, Sompolinsky et al., 1988).
The network activity would then always find its way to a local mini-
mum of this energy landscape (see Figure 8.7 for a one-dimensional
example). A two dimensional example could be thought of as an ac-
tual landscape with mountains and valleys and the energy would
be the potential energy, which causes everything that is not fixed to
move to a local minimum. As a high-dimensional energy landscape
is hard to imagine and thus changes in this high-dimensional land-
scape are hard to comprehend, we investigated the fixed points of

131



132

ABRUPT TRANSITIONS IN THE MODEL
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Figure 8.7: Schematic of a one-dimensional energy landscape. A (one-
dimensional) function can be understood as an energy landscape.
Like e.g. water in an actual landscape, anything would be drawn
to a local (or the global) minimum of the function.

the system. We want to utilize the fixed points of the system in order
to investigate how change in the network is different during abrupt
response transitions from change in the network during periods of
near stable response. Are response transitions really abrupt? Or are
they continuous on a faster time scale and we merely lack the tempo-
ral resolution? Abrupt transitions would be linked to bifurcations, i.e.
qualitative changes in the fixed point topology; fixed points appear or
disappear. Quantitative fixed point changes, i.e. moving fixed points,
could still be able to produce abrupt response transitions, but there
would be no transition between network states.

For a given (static) stimulus input and initial condition the high di-
mensional network activity typically evolves along some trajectory
that approaches a sequence of unstable fixed points before it con-
verges to one of the stable fixed points. We illustrate this in a 2D
energy landscape, i.e. the energy is a function of 2 dimensions f(x, y).
The requirement for a fixed point (xo,yo) is then, that the derivative
at this point in both dimensions is aa—xf(xo,yo) = %f(xo,yo) = 0.
This is of course the case for all (local) extrema, i.e. for minima (stable
fixed point) and maxima (unstable fixed point) of the function. How-
ever, there is another possibility for an unstable fixed point, a saddle
point. Here, e.g. the derivative of f at (xo,yo) is 0 aswell, but f(xo,yo)
has a maximum in x and a minimum in y (or vice versa). The function
could of course also be rotated and then the minimum and maximum
would occur along mixed dimensions.

In higher dimensions saddle points typically occur more often than in
2D (relative to the total number of fixed points), mostly because any
given fixed point would need to be a minimum in every dimension to
be a stable fixed point. A maximum in only one of these dimensions
would make it a saddle point by definition. The increase of the num-
ber of saddle points with dimension has been shown theoretically for
random matrices drawn from a Gaussian distribution by Bray and



8.3 RESULTS

Dean (2007) and heuristically for more realistic neural networks by
Dauphin et al. (2014). Saddle points can be attractive in any dimen-
sion but one and thus activity trajectories are heavily influenced by
(and quite often pass through the basin of attraction of) saddle points.

To determine whether a fixed point is stable or unstable the system
can be linearized around this fixed point. To do so the entire expres-
sion in Equation 7.1 — including stimulus and non-linearity — has to
be linearized. This can be done by computing the Taylor expansion
(Taylor, 1715) of the system around a fixed point. Ignoring any higher
order terms leaves us with the first derivative of the right hand side
of Equation 7.1 with respect to each neuron’s rate %ri. This matrix
J — called the Jacobian matrix — can then be used to investigate the
stability of a fixed point via Equation 8.11:

JV;L = 7\1V1, (8.11)

where v; is the eigenvector and A; the corresponding eigenvalue. The
eigenvalues of the linearized system around the fixed point deter-
mine its stability. If all of these eigenvalues are negative the system
will always converge in this fixed point when it is disturbed in any
direction and thus the fixed point is a stable fixed point. If any of
these eigenvalues has a positive real part, a small perturbance in the
associated direction will lead to divergence and thus the fixed point
is an unstable fixed point. A non-zero imaginary part of an eigenvalue
leads to oscillatory behavior, whereas eigenvalues without an imagi-
nary part lead to divergence or convergence without oscillations. To
determine whether a fixed point is a local maximum, minimum or
saddle point we can count the number of divergent dimensions: if all
eigenvalues are positive, the fixed point is a maximum,; if all eigenval-
ues are negative the fixed point is a minimum; if some eigenvalues
are positive and others are negative, the fixed point is a saddle point
with as many divergent dimensions as it has positive eigenvalues.
The computation of the Jacobian and of its eigenvalues can be done
numerically.

A complex system can have no fixed points, a single fixed point,
or multiple fixed points. Typically random high dimensional systems
have multiple fixed points. This means that a single stimulus can
evoke different responses, i.e. the network activity can converge to
different stable fixed points, depending on the initial condition of the
system. To find them all a network has to be run several times with
different initial conditions. However, this only results in stable fixed
points, as unstable fixed points are only found, if the system is initial-
ized at the exact location of an unstable fixed point, which is highly
unlikely. We approached this employing a method from Sussillo and
Barak (2013), described in detail in Section 8.3.4.
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Figure 8.8: Schematic of possible changes to a one-dimensional energy land-
scape. Abrupt transitions could be caused by minor changes in
the fixed point topology, e.g. a rerouting of the activity trajec-
tory due to a translation of an unstable fixed point (top right) or
by qualitative changes of the fixed point topology, e.g. the emer-
gence of a new stable fixed point (bottom right).

We want to use the fixed points of our network model to gain an
understanding of its energy landscape and how it is altered by synap-
tic drift. When we have the fixed points of the network (for a given
stimulus) at two consecutive time points, we can investigate changes
in the fixed point structure of the system, comparing cases, when
there is minor change in the network activity, with those showing an
abrupt transition. Different changes in the fixed point structure of a
network might affect the activity outcome to a different extent. Are
abrupt transitions of network responses caused by shifts, i.e. quan-
titative changes of the network? Already small changes might lead
to a rerouting of the activity trajectory. Or are these abrupt transi-
tions caused by qualitative changes in the fixed point topology , e.g.
newly emerging or disappearing fixed points? Both of these possible
outcomes are illustrated in Figure 8.8).

8.3.4 Finding fixed points numerically

To find all the fixed points of a given network, we employed a method
adapted from Sussillo and Barak (2013). A fixed point in a firing rate
network is defined as a point, where the activity does not change any
more and thus the right hand side of Equation 7.1 is O for all neurons
(Equation 8.12):

N
T ! :
Taitl =-—-1i+f j_E]WijTj—f—Si =0 Vvie [1,N]. (8.12)
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Here (as above), 7y is the firing rate of neuron i, Wj; is the connection
between neurons i and j, s; is the stimulus input into neuron 1i, T is
the characteristic time constant and f the nonlinearity. Note that the
stimulus can not be time dependent any more, as the system would
never converge for an ever changing stimulus.

The trick used by Sussillo and Barak (2013) to find the roots of this
expression was to construct another expression where all the roots of
Equation 8.12 would become minima. This was done by taking the
sum of the squares of the left hand side of Equation 8.12 over all neu-
rons and dividing it by 2 for normalization, leaving the optimization
problem (Equation 8.13):

2

argmin | 0.5 Z —T1i+f Z Wi + s¢ , (8.13)
r i j

that could consecutively be solved numerically. This way, we are able
to find all the fixed points of the system and not only stable fixed
points, as both stable and unstable fixed points are minima of this
new expression.

In order to make sure the fixed point finder finds all fixed points in
a reasonable amount of time, we adjusted our network model (com-
pared to Chapter 7):

¢ The number of neurons was decreased from N = 100 to N = 10.
This left the network complex enough for all the interesting dy-
namics to appear, but drastically reduced the amount of run
time. Running the fixed point finder for a single network with
N = 100, a single stimulus, and a single time point took about
30min, i.e. > 8000 d of computation for 100 networks , 40 stim-
uli and 100 time points (exact timing depended on the number
of steps prior to convergence of the optimizer for each initial
condition). Reducing the network size to N = 10, we were able
to run it for 100 implementations of the network, 40 stimuli,
and 100 time steps in several hours (again the exact timing de-
pended on the number of steps prior to convergence for each
initial condition).

¢ For the optimization to converge in a minimum of Equation 8.13,
the stimuli had to be independent of time, so we used random
static stimuli as input. Otherwise, the randomness would lead
to non-zero changes of the network’s firing rates.

* As non-linearity we used

f(x) =In(1+¢€%), (8.14)
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which is a smoothed version of the half wave rectification used
above, because the rectification together with the strong inhibi-
tion leads to large regions of activity space, where the strong
inhibition sets all activity to 0 and the fixed point finder cannot
further converge.

* To then be in a regime, where the exact shape of the non-
linearity does not matter to the network activity, we also in-
creased the stimulus strength, so the network activity was never
close to 0, where the smoothed rectification differs from the stan-
dard rectification. Thus, the network activity is not affected by
the change to this new non-linearity, but the fixed point finder
is able to find fixed points.

Apart from these changes, we kept everything as before, so synaptic
changes were implemented as described in detail above (Section 8.3.
In order to find all fixed points, i.e. all minima of Equation 8.13, we
had to make sure to run the optimizer with enough random initial
conditions. We found that for networks of ten neurons the number of
identified fixed points started to converge at 1,000 initial conditions,
so we ran the fixed point finder with 10,000 initial conditions.

To check, whether the resulting fixed points were stable or unsta-
ble, we computed the eigenvalues of the Jacobian matrix. When all of
them are positive the fixed point is at a local maximum, when all of
them are negative it is at a local minimum and if some are positive
and others are negative the found fixed point is a saddle point. Min-
ima are stable fixed points, maxima and saddle points are unstable
fixed points.

8.3.5 Abrupt transitions coincide with qualitative changes of the fixed
point topology

Next, we wanted to use the fixed point finder to investigate the fixed
point dynamics during abrupt transitions and compare them to fixed
point dynamics during small response changes. To this end, we imple-
mented synaptic drift in 100 random implemetations of the network
for 100 time steps at a time interval of two hours. Thus, we covered
slightly more then a week. Note that the size of the time steps had
little influence on the presenence of abrupt transitions. The proba-
bility for abrupt transitions to occur during a given time interval
remained constant for small enough time steps (avoiding undersam-
pling). Smaller time steps did not lead to more continuous transitions,
but rather to a lower probability for abrupt transitions per time step
(data not shown).

At each time step we took the connectivity matrix as our network
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and computed the network responses to stimuli (for details see Chap-
ter 7). To measure the abruptness of a response change we correlated
the response of the network to a stimulus at time t — 1 to its response
to the same stimulus at time t using Pearson’s correlation coefficient.
This correlation of network responses at consecutive time points is
a direct measure of absolute change between those time points, un-
like the previously used difference in correlation to the first (last)
time point. Here, we were not interested in a fixed reference, but we
wanted to investigate the connection between the amount of response
change and changes of the fixed point topology.

histogram corr. (t-1)

100 3 L

pdf

102} 1

-1 0 1
corr. (t-1)

Figure 8.9: Histogram of correlations between response vectors on consecu-
tive time points (2 h apart) shows a broad distribution.

The distribution of these correlations can be seen in Figure 8.9. It
is clearly peaked in the highest bin (i.e. close to 1), so for most time
steps the network responses change little. Nevertheless, the histogram
has a shoulder at small correlations; it is almost bimodal, although
the logarithmic y-axis might bias this impression. This is in line with
findings from Section 8.3.2, where periods of stability towards synap-
tic drift were found to be interspersed by abrupt transitions.

Using the fixed point finder described in Section 8.3.4, we were able
to detect both stable and unstable fixed points for each stimulus at
each time point in every implementation of the network. We found
2.8 £5.8 (mean =+ standard deviation (SD)) fixed points per stimulus
and network at a given time point. Of those, 1.8 £ 3.6 were stable fixed
points and 1.0 4 3.1 were unstable. These numbers were independent
of stimulus, implementation of the network and time — as could be
expected from a stationary system. However, they were highly vari-
able, as shown by the large standard deviations. Minimum counts
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were 0 fixed points and maximum counts were 128 (total), 77 (stable)
and 94 (unstable). 95% confidence intervals were from 0 to 13 (total),
9 (stable), 6 (unstable).

Next, we wondered, what was happening to the fixed points dur-
ing response changes. If a fixed point was identified at the same
location on consecutive time points, we called it a non-moving fixed
point. For all other fixed points we ideally want to distinguish be-
tween the two possible outcomes sketched in Figure 8.8. Are fixed
points drifting? Or are bifurcations leading to emerging/disappear-
ing fixed points? We identified multiple fixed points per time point,
however, and they can appear or disappear through various bifurca-
tions (some of which simultaneously effecting multiple fixed points
in different locations). So, we are not able to make a clear distinction
between drifting fixed points and bifurcations. We instead chose to
distinguish between fixed points emerging/disappearing near other
fixed points and fixed points emerging/disappearing far from other
fixed points. In this way, drifting fixed points were always classified
as near other fixed points and we could be sure that emerging/dis-
appearing fixed points far from others were caused by a bifurcation.
Fixed points emerging/disappearing near others, however, could aso
be caused by bifurcations and were not distingusihable from drifting
fixed points.

FIXED POINT
TRANSITION

HISTOGRAM RATIO BAR PLOT

stable — stable
unstable — stable
stable — unstable
unstable — unstable

Figure 8.11 Figure 8.12 Figure 8.15

new stable (near)
new stable (far)
lost stable (near)
lost stable (far)

Sup. Fig. 9.11  Figure 8.13 Figure 8.16

new unstable (near)
new unstable (far)
lost unstable (near)
lost unstable (far)

Sup. Fig. 9.12 Figure 8.14 Figure 8.17

Table 8.1: A table of fixed point changes listing all possible changes and
where to find the different plots. near means in the vicinity of an-
other fixed point, far means not in the vicinity of another fixed
point. The four subplots of the respective figures are always or-
dered from top left to bottom right.
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So, we counted non-moving fixed points, as well as appearing and
disappearing fixed points. The non-moving fixed points were clas-
sified into four groups, depending on their stability (stable — stable,
unstable — unstable, stable — unstable, unstable — stable). Newly emerg-
ing and disappearing fixed points were stable or unstable and further
grouped into fixed points appearing or disappearing near (< 1/10
SD of nearest neighbor distances across all time points, networks, and
stimuli) or far from (> 1/10 SD of nearest neighbor distances) another
fixed point. An overview of these transitions and where to find the
corresponding plots, which we discuss in detail in the following, is
given in Table 8.1. With these twelve categories we were able to better
understand the network dynamics during abrupt response changes.
We first want to compare the histogram of correlations from all time
steps (Figure 8.9) to the histograms of correlations from time steps
including each of these twelve fixed point changes. Then we make a
distinction into weak and strong changes of network responses and
find out which fixed point changes are more often associated to them.

time t time t+1
. |
x\ x X ’i
% x X
X x
Initial mapping via Remapping onto Remapping through
unstable FP () onto emerging stable disappearing
stable FP (x). FP (x). unstable FP (7).

Figure 8.10: Schematic fixed point changes. Left: At time t a stimulus re-
sponse is mapped via multiple unstable fixed points onto a sta-
ble fixed point. Right: If an abrupt response transitions occurs
between times t and t + 1, this typically coincides with either a
remapping to an emerging (or away from a disappearing) sta-
ble fixed point in the vicinity of an already existing fixed point
(middle) or with a rerouting due to an appearing (or disappear-
ing) unstable fixed point (right).

If the abrupt transitions of responses were mediated by quantitative
changes of fixed points, we would expect no heightened association
of bifurcations with these respective time points. Emerging/disap-
pearing fixed points far from other fixed points would either not
be present at all or they would be equally distributed among all
time points. However, if abrupt transitions were linked to qualitative
changes of fixed points (i.e. bifurcations), we would find an excess
overlap of time points with low correlation and time points with
bifurcations. Indeed, we do find that low correlation time points coin-
cide with certain qualitative fixed point changes, e.g. the two shown
in Figure 8.10, namely the emergence of a stable fixed point in the
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vicinity of another fixed point or the disappearing of an unstable
fixed point far from other fixed points. While the first could also be
linked to quantitative changes, the latter cannot. Thus, we can link
some strong response changes to abrupt transitions mitigated by bi-
furcations.

stable unstable
— stable — stable
10° 10°
S S
2 102 2 192
10* 104
-1 0 1 -1 0 1
corr. (t-1) corr. (t-1)
stable unstable
— unstable — unstable
10° 10°
5 S
2107 21072
104 104
-1 0 1 -1 0 1
corr. (t-1) corr. (t-1)

Figure 8.11: Histograms of correlations between response vectors on consec-
utive time points for all time points that include non-moving
fixed points (cyan). Non-moving fixed points can either not
change and remain stable or unstable or change from stable to
unstable or vice versa. For comparison the entire distribution
(Figure 8.9) is plotted (black). Partial disappearance of lines is
caused by 0 counts and logarithmic y-axes.

We started by plotting, along with the histogram of all response
change correlations, the histograms of only those time points associ-
ated with the corresponding change in the fixed points structure. As
an example, we show the non-moving fixed points in Figure 8.11 (for
stable and unstable fixed points, see Sup. Fig. 9.11 and Sup. Fig. 9.12).
The black line is the complete data histogram (Figure 8.9) and the
colored line is the histogram of all time points during which the spec-
ified change in the fixed points structure occurred. In Figure 8.11 a
stable fixed point stayed at the same position (top left), a fixed point
stayed at the same position, but changed from being unstable to being
stable (top right), a fixed point changed from being stable to unstable
(bottom left) and an unstable fixed point stayed at the same position.

As these histograms span orders of magnitudes on the y-axis, it is
difficult to assess, what fraction of the total (black) is associated with
any of the changes in the fixed points picture (colored). Therefore,
we computed for each bin the fraction of the total response changes
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Figure 8.12: Fraction of time points with non-moving fixed points as a func-
tion of the correlation between response vectors on consecu-
tive time points (solid line). Fraction independent of correlation
(dashed line). The amount of non-moving stable fixed points
seems to be correlated to the response correlation; other non-
mocing fixed points show no such dependency.

in the correlation bin that was associated with the specific change.
Non-moving stable fixed points (Figure 8.12 top left) appear to be
correlated to the correlation of response vectors at consecutive time
points. The more stable fixed points remain stable, the less change was
found between responses (except for the lowest bin, but there were
only two entries and one of them was associated with a non-moving
stable fixed point). No such trend was observed for the other non-
moving fixed points (Figure 8.12 top right, bottom left and bottom
right).

We followed the same procedure (computing the ratio of histograms)
for newly appearing or disappearing stable fixed points (Figure 8.13).
We found that both appearing and disappearing stable fixed points
in the vicinity of other fixed points were associated with response
changes. Except for the top bin (almost no response change), a re-
sponse change was associated with both a new and a lost stable fixed
point almost 70% of the time. This was not the case, however, for ap-
pearing or disappearing stable fixed points far from other fixed points.
Intuitively, this can be understood as a stable fixed point in the vicin-
ity of the fixed point the stimulus response converged to deflecting
the stimulus response trajectory onto itself (Figure 8.10 center). Simi-
larly, a disappearing stable fixed point close to another one, might just
lead to a remapping to this other fixed point. A stable fixed point far
away has little to no effect on this trajectory. The magnitude of this
response change (Figure 8.13 top left and bottom left) is broadly dis-
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Figure 8.13: Fraction of time points with changes in stable fixed points as a
function of the correlation between response vectors on consecu-
tive time points (solid line). Fraction independent of correlation
(dashed line). Emerging an d disappearing stable fixed points
in the vicinity of other fixed points are associated with lower
correlations.

tributed, ranging from close to 0 to almost 1. This might be due to the
fact, that these new or lost stable fixed points can be close or farther
away from the stable fixed point, the network activity converged in. In
summary, stable fixed points emerging or disappearing in the vicinity
of other fixed points coincided with strong changes in the network
response. This was not the case for emerging or disappearing stable
fixed points far from other fixed points.

But not only movement of stable fixed points affected the network re-
sponse, also changing unstable fixed points are associated with large
response changes (Figure 8.14). The figure shows trends of an associ-
ation with low correlations for appearing and disappearing unstable
fixed points in the vicinity of already existing fixed points. However,
contrary to stable fixed points this association was found also for
new unstable fixed points far away from any fixed points. These three
cases (unstable fixed points emerging and disappearing in the vicin-
ity of other fixed points and unstable fixed points emerging far from
other fixed points, Figure 8.14 top left, bottom left and top right) were
more often associated to larger changes in the network response than
to smaller changes. And even the fourth case (disappearing unstable
fixed points, Figure 8.14 bottom right) shows the same dependency,
albeit on a lower level. To sum up changing unstable fixed points
conincided with strong response changes, when the emerged or dis-
appeared in the vicinity of other fixed points, but also when they
appeared far from other fixed points (compare Figure 8.10 right). The
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Figure 8.14: Fraction of time points with changes in unstable fixed points as a
function of the correlation between response vectors on consecu-
tive time points (solid line). Fraction independent of correlation
(dashed line). Changes in unstable fixed points are lost or new
unstable fixed points close to or far away from already existing
fixed points.

association between disappearing unstable fixed points far from other
fixed points and response changes was weaker.

Another way to investigate the dependencies of response changes
on the twelve categories of fixed point changes, however, with less
noise caused by small bin sizes, was computed by grouping network
response changes into two groups, one with little change, i.e. a high
correlation of stimulus responses at consecutive time points (p > 0.5)
and one with large change, i.e. a low correlation of stimulus responses
at consecutive time points (p < 0.5). The threshold of 0.5 was chosen
as the distribution had a plateau at this point and thus changing it to
some extent did not affect the outcome, especially, as the distribution
drops off rapidly when moving away from p ~ 1 towards slightly
lower values (Figure 8.9).

For Figure 8.15 we computed the fraction of time points each of the
non-moving fixed points changes appeared (top left: stable — stable,
top right: stable — unstable, bottom left: unstable — stable, bottom right:
unstable — unstable). This is displayed for all time points regardless of
response correlation between consecutive time points as a black bar
and for high correlations and low correlations as a filled or empty col-
ored bar, respectively. All four panels show no significantly different
fraction in either direction for both high and low correlations. Re-
sponse changes are thus not correlated with non-moving fixed points.
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Figure 8.15: Fixed points changes associated to high (> 0.5) and low (< 0.5)
correlations between consecutive time points for non-moving
fixed points. On the y-axis is the mean number of the specific
fixed point change per time step for each group. There was
no significant difference between the high correlation group
and the low correlation group for any of the non-moving fixed

points.
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Figure 8.16: Fixed points changes associated to high (> 0.5) and low (< 0.5)
correlations between consecutive time points for changes in sta-
ble fixed points. On the y-axis is the mean number of the specific
fixed point change per time step for each group. Here, for all
fixed point changes the low correlation group shows a signifi-
cant increase compared to all time steps.
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Figure 8.16 shows the corresponding plots for emerging and disap-
pearing stable fixed points near to or far from other fixed points (top
left: new stable fixed points close to another fixed point, top right: new
stable fixed points far from another fixed point, bottom left: lost stable
fixed point close to another fixed point, bottom right: lost stable fixed
point far from another fixed point). All four panels show a similar
picture, namely a significant increase of the number of each specific
fixed point change for time points with low response correlation com-
pared to all time points, and no such increase for time points with
high response correlation. For each of those fixed point changes the
increase was roughly by a factor of 2.
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Figure 8.17: Fixed points changes associated to high (> 0.5) and low (< 0.5)
correlations between consecutive time points for changes in un-
stable fixed points. On the y-axis is the mean number of the
specific fixed point change per time step for each group. Here,
for all fixed point changes the low correlation group shows a
significant increase compared to all time steps.

Similarly, we investigated time points involving changes of unstable
fixed points in Figure 8.17 (top left: new unstable fixed points close
to another fixed point, top right: new unstable fixed points far from
another fixed point, bottom left: lost unstable fixed point close to an-
other fixed point, bottom right: lost unstable fixed point far from an-
other fixed point). Here, comparable to stable fixed point changes, we
again found for all four cases a significant increase of the number of
fixed point changes for time points with low response correlation and
no such increase for time points with high response correlation. For
unstable fixed point changes this increase was roughly by a factor of 3.

With this analysis the effect of non-moving fixed points seemed to
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be negligible (Figure 8.15). For all changes involving changes to the
stable (Figure 8.16) and unstable (Figure 8.17) fixed points, however,
this analysis revealed an increase of the respective change for low
correlations and thus larger changes of the network responses, by
a factor of roughly 2 for stable fixed points and even by a factor of
roughly 3 for unstable fixed points.

So, in brief, we found that the more pronounced response transitions
we observed in network responses typically coincided with either
a remapping including an emerging or a disappearing stable fixed
point in the vicinity of another fixed point, or a rerouting through
an appearing (or disappearing) unstable fixed point (as illustrated by
Figure 8.10). Abrupt network response transitions were not predomi-
nantly caused by minor changes of single fixed points, but rather by
qualitative changes of the fixed point topology.

8.4 DISCUSSION

We found that ongoing synaptic change in our firing rate model led to
periods of stable stimulus responses that were interupted by abrupt
transitions toward different responses. These abrupt transitions were
associated with qualitative changes in the fixed point topology of the
network model.

Abrupt transitions are difficult to detect in experimental data, be-
cause of two reasons: (1) There is typically a lot of time between
experimental sessions, which are typically rather short. So, the prob-
ability to record an abrupt transition is small. (2) There is noise in
experimental recordings, which means that even if you record an
abrupt tranition during the comparatively small time span of experi-
mental observation it might be hardly distinguishable from recording
noise. This can be exemplified by our data from Chapter 5. On the
one hand, it is recorded at two day intervals and we recorded clear
changes between sessions. Did they occur abruptly? Or was it rather
a continuous representational drift over two days leading to clearly
distinct activity patterns? As some of the patterns were stable across
the entire time of the recording, however, we can make the point that
the transitions occur on a fast time scale compared to these appar-
ently present periods of stability. On the other hand, it is hard to
point at transitions during recording sessions: We defined a response
reliability using multiple trials of a stimulus presentation. But what
does it mean, when a stimulus evokes a clear response in almost all
trials, but no (or a different) response during the last three trials? Is
this an abrupt transition? Or is this noise in the biological system? Or
experimental noise? Maybe the animal moved and the imaging plane
was slightly tilted, leading to individual cells — and their potential



8.4 DISCUSSION

activity — being lost. To pinpoint the exact moment of such an abrupt
transition is extremely difficult and to our knowledge, the ideal ex-
periment has not been designed, yet. Especially, keeping in mind the
broad distribution of transitions that would need long lasting experi-
ments with a high temporal resolution.

Although abrupt transitions are notoriously difficult to measure, there
have still been reports of some in different systems as hippocampus
(Rubin et al., 2015a, Sheintuch et al., 2020), parietal cortex (Driscoll
et al., 2017), auditory cortex (Kobak et al., 2019), entorhinal cortex
(Low et al., 2021) and visual cortex (Deitch et al., 2021). All of those
report changes that are fast compared to periods of stability.

We speculate that we might even know such transitions from our
daily experience. There seem to be two rather obvious types of learn-
ing, we all know: It can be a tedious process of becoming better at a
task, which is rather slow and continuous, but there also is this other
type, when a learning process (maybe as tedious and long) leads to
a sudden insight. This could be linked to an abrupt transition in neu-
ronal activity, especially as the underlying mechanism, we describe
in our model, is generic enough to be present in any changing ran-
dom network with strong recurrent connections and strong inhibtion.

As the evidence for representational unstability is growing, the ques-
tion remains, how we form seemingly stable perceptions, lasting for
days, months, or even years, when the underlying substrate is not
stable. There might be different mechanisms, such as representational
redundancy, stability only at higher processing levels, or a continu-
ous retuning of the readout, discussed in detail in e.g. Chambers and
Rumpel, 2017 and Susman et al., 2019. A continuous retuning has re-
cently been shown to work in a model using a Hebbian like plasticity
rule on the connections to the readout neurons (Kossio et al., 2021).
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In this thesis we asked how sensory representations of stimuli in
mouse auditory cortex change across time, both under basal con-
ditions and during learning. We further wanted to know how the
observed representational drift is linked to synaptic drift in the un-
derlying network structure. We addressed these questions by analyz-
ing both empirical data and a computational model. Experimental
data was recorded via two-photon imaging from local neuronal pop-
ulations in mouse auditory cortex. Computational studies were per-
formed using a circuit model of such a local population. We found
that population responses in mouse auditory cortex are clustered into
a small set of response modes. These response modes change across
time even in the absence of learning and this so-called representa-
tional drift is biased towards the formation of associations during
learning (Chapter 5). We then defined a set of elementary opera-
tions to deconstruct and describe response mode transitions under
basal conditions and during auditory cued fear conditioning (ACFC),
where a sound was associated with an aversive stimulus. The ele-
mentary operations helped to further disentangle the dynamics and
show that the formation of associations during learning was due to
both more operations increasing the formation of new associations
and less operations breaking up existing associations (Chapter 6).
Next, we devised a model to investigate the neural population dy-
namics in auditory cortex. Apart from previously described regimes
of random network models (e.g. Wilson and Cowan, 1972, Sompolin-
sky et al., 1988, Zhang and Saggar, 2020) we were able to identify a
regime, where stimuli are clustered into response modes similar to
experimental findings, for strong recurrent connections and strong
inhibition (Chapter 7). This model was then used to show that on-
going synaptic drift (in the relevant regime) leads to periods with
stable stimulus responses, interupted by abrupt transitions toward
new responses (Chapter 8). These abrupt transitions coincide with
qualitative changes in the fixed point topology of the network.

In the empirical part we were able to reproduce earlier findings cor-
roborating that different stimuli evoke the same response in a group
of neurons in auditory cortex (Bathellier et al., 2012, Atencio and
Schreiner, 2013, See et al., 2018). This seems counter-intuitive at first,
because based on this group of neurons we are not able to discrimi-
nate between the stimuli that evoke the same response. The fact, how-
ever, that different stimuli are grouped together in different fields of
view in the same animal (i.e. different parts of primary auditory cor-
tex) leads to a unique cortex-wide response per stimulus and thus
discriminability between different stimuli (see 5.10b). It is neverthe-
less valid to consider response modes recorded from a subpopulation
of neurons in sensory cortex, as a potential readout neuron higher up
in cortical hierarchy would not receive input from the entire auditory
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cortex, either, but rather from a subgroup of all cortical neurons.

Recently, neuronal representations have been shown to be subject
to change in many different cortical (and non-cortical) areas, e.g. in
mouse hippocampus, barrel, olfactory, visual, motor and posterior
perietal cortex (Rokni et al., 2007, Huber et al., 2012, Mankin et al.,
2012, Margolis et al., 2012, Ziv et al., 2013, Clopath et al., 2017, Driscoll
et al., 2017, Hainmueller and Bartos, 2018, Rule et al., 2019, Deitch et
al., 2021, Schoonover et al., 2021). Here, we showed that this repre-
sentational drift is also present under behaviorally stable conditions,
i.e. without any explicit learning paradigm. On the one hand this
might not be too surprising, as the same has been shown for the un-
derlying substrate: synapses appear and disappear on the time scale
of days, and those remaining change their sizes (Loewenstein et al.,
2011, Loewenstein et al., 2015, Villa et al., 2016, Berry and Nedivi,
2017). While often attributed to learning (e.g. Hebb, 1949) this synap-
tic drift is not only present in the absence of an explicit learning
paradigm, but even, when neuronal activity has been silenced (Ya-
sumatsu et al., 2008, Rubinski and Ziv, 2015, Dvorkin and Ziv, 2016,
Nagaoka et al., 2016). On the other hand this representational drift is
far from trivial, as the question remains, at what level the perceived
robustness is achieved.

We showed that auditory cued fear conditioning led to a bias in the
ongoing recombination of response modes. While leaving the over-
all response mode statistics largely intact, it led to an increased co-
mapping of stimuli onto the same mode, i.e. after fear conditioning
more stimuli elicited the same response mode. Two stimuli evoking
the same response has been understood as an association (Grewe et
al., 2017), so we find that learning leads to more associations, possi-
bly in line with a generalization, as also witnessed in post-traumatic
stress disorder (Besnard and Sahay, 2016). There, traumatized patients
often generalize between the traumatic stimulus (e.g. explosions) and
other similar, but harmless stimuli (e.g. the banging of a door). The
observed increased co-mapping of stimuli similar to the conditioned
stimulus onto the same response mode with th econditioned stimulus
might be a potential mechanism.

We defined a set of ten elementary operations (constantia, constantia’,
creatio, eliminatio, adiunctio, disiunctio, fusio, fissio, commutatio, motio)
and were able to deconstruct response mode dynamics even further.
These operations allow for a more detailed analysis and revealed
that associations among stimuli representations are due to both an
increase in operations forming associations and a decrease in opera-
tions breaking associations. Thus, ACFC has both a stabilizing effect
on existing operations and leads to the formation of new associations.
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As we can safely assume that any stimulus (inside the hearing range)
has a representation in auditory cortex, some of our response mode
operations — those involving the 0-mode - are obsolete on the level of
the entire auditory cortex, and the number of operations is reduced to
five relevant ones (constantia, fusio, fissio, commutatio, motio). It would
be interesting to know, if on the global level those five can all be ob-
served. However, on a local scale all ten operations have to be taken
into account, as some stimuli don’t evoke a local population response
in a given field of view. The same is probably true for putative read-
out neurons. They can hardly receive input from all neurons at once,
so for some stimuli they are deemed to receive no input. Thus, the
entire set of ten operations is worth considering, when describing
cortical population dynamics.

A firing rate model was able to reproduce key characteristics of pop-
ulation activity in mouse auditory cortex, including the clustering of
stimulus responses into response modes. Varying the overall recur-
rent connection strength and the ratio of inhibition to excitation, we
found five dynamic regimes of the model: The network produced
two uni-stable regimes. One was input dominated, i.e. every stimu-
lus evoked its own response, largely independent of the recurrent
connections. The other was network dominated, so every stimulus
evoked the same response, but different for each network. Classically,
these regimes are often considered the same, as the previous work
was rarely focused on responses to multiple stimuli. Apart from two
more rather trivial regimes, a dampening and a diverging regime,
we found clustering of stimuli into response modes in a multi-stable
regime. In this regime, a stimulus is able to produce multiple re-
sponses, depending on the initial condition, and this behavior is well
described in the literature — as are all the other regimes, at least from
the point of view of a single stimulus (e.g. Wilson and Cowan, 1972,
Sompolinsky et al., 1988, Zhang and Saggar, 2020). In our case, how-
ever, we found this multi-stable regime in a random network for
strong recurrent connections and strong inhibition. Additionally, in
this multi-stable regime stimulus responses are clustered.

Applying synaptic drift (modeled on Loewenstein et al., 2011) we find
periods of stable network responses interrupted by abrupt transitions
to new responses. This finding is in line with experimental data, as
far as the two can be compared despite the lower temporal resolution
of the experimental data. These coincide with qualitative changes in
the fixed point topology and are not just a rerouting through minor
displacement of fixed points. The qualitative changes associated with
these transitions are typically a rerouting via the emergence (or dis-
appearing) of an unstable fixed point somewhere along the activity
trajectory or the rerouting onto an emerging (or away from a disap-
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pearing) stable fixed point that lies close to the former final state.

Taking all these findings together, we can conclude that the brain
is not stable. Synaptic drift leads to representational drift, yet some-
how, perceptions seem to be stable. The big question remaining is,
how is this perceptional stability achieved? Or, is our percept of sta-
bility really true stability? Our memories change all the time, so can
we be sure about this? This will require future investigation.

In a not so distant future there are a lot of interesting directions: Can
we find the different regimes described by the model in real experi-
mental data? One relevant parameter — the strength of the inhibition
— could be adjusted pharmacologically. A decrease should drive the
system into a regime without clustering, more similar to maybe vi-
sual cortex. Or vice versa, would we find clustering, if we increase
the inhibition in visual cortex?

Another interesting question, more on the modeling side would be, if
we find different types of drift in different regimes of the model. Can
we find a regime without abrupt transitions? We could then describe
the two modes of operations, we typically observe in our day to day
lives: incremental changes in contrast to abrupt insights. If we find a
mechansim to switch between those, already in simple network mod-
els, there is a high likelihood, these are also present in any drifting
network. A step in a similar direction would be to observe a learning
network during its epochs of learning. Could we identify different
regimes in machine learning, too? Do machines learn incrementally
or abruptly? Or both? There have been studies investigating the fixed
points of networks that are fully trained on simple tasks (Sussillo and
Barak, 2013), but what happens prior to the network reaching this
static state?

A bit more on the experimental side, it would be interesting to per-
form fixed point analysis on functional or effective networks recon-
structed from actual experimental recordings. It would give a deeper
understanding of, whether the transitions that can be observed in
recordings are really as abrupt as predicted by the model or if the
transitions are qualitatively different. Of course, the temporal resolu-
tion in experimental data can never be as fine as in a model, however,
we find stable response modes on the time scale of days (both in the
experiment and in the model), so we might be able to observe and
track changes in the fixed point topology. Along the same lines, it
might be interesting to see what is happening during different cogni-
tive processes. Starting from simple tweaks to the task (i.e. what do
we see, when the mice do not undergo fear conditioning, but rather
learn to perform a discrimination?) to more complex behavior like
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maternal care for pups or even abstract ideas as forgetting or insight.
The set of elementary operations we defined could be useful to dis-
crimiate what is happening there.

This leaves the questions: Why is there drift in the cortex? Is synaptic
drift good for anything? And the same for representational drift? This
is a relatively new question. It has often been thought to be a short-
coming of the brain and one of the main questions has been, how
to counteract this drift (Chambers and Rumpel, 2017, Susman et al.,
2019). There are many ideas, how stability can be achieved from dy-
namic components (e.g. Kossio et al., 2021). However, recently ideas
have been brought to attention regarding the benefits of such a dy-
namic system. What if the brain has not evolved as a memory storage
capacity but rather as a tool for fast adaptation? Maybe forgetting is
as important for a good performance as is learning. This has been
pushed from a psychological point of view, as well as from a machine
learning point of view. Psychologically it makes a lot of sense to forget
traumata, for example. Also, it typically does not help to remember
every detail, as we are quite often in similar situations, but hardly
ever in the exact same situation twice and we still need to know what
to do (Richards and Frankland, 2017). Arguments from the machine
learning side go In the same direction: random drift can be used as
a tool to prevent overfitting. In neural networks there are different
tools for such tasks, but a surprisingly good one is dropout, where a
percentage of connections is removed randomly at each step, which
prevents overfitting and thus increases the performance. A similar
mechanism is potentially helpful in the brain, too. And drift leads to
similar results as dropout (Aitken et al., 2021).
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Sup. Fig. 9.1: Further examples of single trial population response vectors
for two example stimuli over time. For illustrative purposes,
only fifty most active cells are shown, and trials are sorted

by descending mean activity (PT: pure tones, CS: complex
sounds)..
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Sup. Fig. 9.2: Dynamics of response modes across days. (a) Left: Unsorted

Similarity matrix for all sound-evoked responses from all four
imaging days recorded from the example FOV shown in Fig-
ure 5.11 (PT: pure tones, CS: complex sounds). Right: Same as
left, but sorted by hierarchical clustering of stimulus responses
with high self-reliability and grouped by day (PT: pure tones,
CS: complex sounds). (b)-(d), Single day similarity matrices
of sound evoked responses sorted by hierarchical clustering
for three additional example FOVs. Top: Sorting from day 1 is
applied to the subsequent days. Middle: Sorting on each day
individually. Bottom: Sorting from day 7 is applied to the pre-
vious days (PT: pure tones, CS: complex sounds).
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Sup. Fig. 9.3: Further examples of co-mapping. Top row: Further examples

of single trial population response vectors from two FOVs
showing the responses of the conditioned stimulus (CS+) and
the non-conditioned stimulus (non-CS+). Prior to fear condi-
tioning the non-CS+ did not elicit a significant response (0-
mode), whereas after fear conditioning its response became
similar to that of the CS+ (mode A). Top: Stimulus identity;
Middle: Mode identity; Bottom: Single trial population re-
sponse vectors. For illustrative purposes, only fifty most active
cells are shown in random order, and trials are sorted by de-
scending mean activity (PT: pure tones, CS: complex sounds,
compare to Figure 5.27). Bottom row: Similar to top row, but
showing the gain of a response mode representation for two
other stimuli which were not presented during conditioning
and gain a neuronal association to the response mode of an-
other stimulus after fear conditioning..
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Sup. Fig. 9.4: Mean response correlation between all trials of a stimulus
prior to a response mode operation and all trials of the same

stimulus after the operation. This correlation is lowest for stim-
uli not evoking any response at all (constantia’) and highest for
stimuli evoking the same response (constantia). All other oper-

ations fall in between.
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Sup. Fig. 9.5: Mean within response mode correlations before and after op-
erations. Within mode correlations are roughly the same for
all operations, depending solely on whether the stimulus is
evoking the 0-mode or any other response mode.
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Sup. Fig. 9.9: Responses of example network displayed in Figure 7.1 to all
stimuli shown in Sup. Fig. 9.8.
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Sup. Fig. 9.10: Further examples of synaptic turnover. (a), (b) Responses to
example stimuli of networks changing according to Equa-

tion 8.3 for example networks from Figure 8.4.
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Sup. Fig. 9.11: Histograms of correlations between response vectors on con-
secutive time points for all time points where stable fixed
points are changed (blue). For comparison the entire distri-
bution (Figure 8.9) is plotted (black). These changes in stable
fixed points are lost or new stable fixed points close to or far
away from already existing fixed points. Partial disappear-
ance of lines is caused by 0 counts and logarithmic y-axes.
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