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Abstract
A positive association between brain size and intelligence is firmly established, but whether region-specific anatomical 
differences contribute to general intelligence remains an open question. Results from voxel-based morphometry (VBM) - 
one of the most widely used morphometric methods - have remained inconclusive so far. Here, we applied cross-validated 
machine learning-based predictive modeling to test whether out-of-sample prediction of individual intelligence scores is 
possible on the basis of voxel-wise gray matter volume. Features were derived from structural magnetic resonance imaging 
data (N = 308) using (a) a purely data-driven method (principal component analysis) and (b) a domain knowledge-based 
approach (atlas parcellation). When using relative gray matter (corrected for total brain size), only the atlas-based approach 
provided significant prediction, while absolute gray matter (uncorrected) allowed for above-chance prediction with both 
approaches. Importantly, in all significant predictions, the absolute error was relatively high, i.e., greater than ten IQ points, 
and in the atlas-based models, the predicted IQ scores varied closely around the sample mean. This renders the practical 
value even of statistically significant prediction results questionable. Analyses based on the gray matter of functional brain 
networks yielded significant predictions for the fronto-parietal network and the cerebellum. However, the mean absolute 
errors were not reduced in contrast to the global models, suggesting that general intelligence may be related more to global 
than region-specific differences in gray matter volume. More generally, our study highlights the importance of predictive 
statistical analysis approaches for clarifying the neurobiological bases of intelligence and provides important suggestions 
for future research using predictive modeling.

Keywords  Intelligence · Gray matter volume · Voxel-based morphometry (VBM) · Machine learning · Prediction · Brain 
size

Introduction

Intelligence describes an individual’s ability to understand 
complex ideas, to adapt effectively to the environment, to 
learn from experience, and to engage in various forms of 
reasoning (Neisser et al. 1996). It is the best predictor of 
educational and occupational success (Neisser et al. 1996), 
relates closely to positive life outcomes like health and 

Kirsten Hilger and Nils R. Winter share first authorship.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0042​9-020-02113​-7) contains 
supplementary material, which is available to authorized users.

 *	 Kirsten Hilger 
	 kirsten.hilger@uni‑wuerzburg.de

1	 Department of Psychology, Goethe University Frankfurt, 
Frankfurt am Main, Germany

2	 Department of Psychology, Julius Maximilian University 
Würzburg, Würzburg, Germany

3	 IDeA Center for Individual Development and Adaptive 
Education, Frankfurt am Main, Germany

4	 Institute of Translational Psychiatry, University Hospital 
Münster, Münster, Germany

5	 Brain Imaging Center, Goethe University Frankfurt, 
Frankfurt am Main, Germany

6	 Present Address: Department of Psychology I, University 
Wuerzburg, Marcusstr. 9‑11, 97070 Würzburg, Germany

http://orcid.org/0000-0003-3940-5884
http://orcid.org/0000-0002-6241-1492
http://orcid.org/0000-0003-0827-1721
http://crossmark.crossref.org/dialog/?doi=10.1007/s00429-020-02113-7&domain=pdf
https://doi.org/10.1007/s00429-020-02113-7


2112	 Brain Structure and Function (2020) 225:2111–2129

1 3

longevity (Deary et al. 2004), and is often defined as the 
general cognitive ability of a person. Understanding the 
neurobiological basis of intelligence is an important aim of 
ongoing research in the cognitive neurosciences.

By far the best-established neuroanatomical predictor 
of general intelligence is total brain size, accounting for 
up to 5% of variance in individuals’ intelligence quotients 
(Nave et al. 2018; Pietschnig et al. 2015). It has also been 
hypothesized that different brain regions may contribute dif-
ferently to intelligence. For example, an influential model 
of the brain bases of intelligence, the parieto-frontal inte-
gration theory (P-FIT; Jung and Haier 2007) proposed that 
frontal and parietal cortices represent primary neural sys-
tems underlying inter-individual variation in general cog-
nitive ability. Voxel-based morphometric methods (VBM; 
see, e.g., Ashburner and Friston 2000) have been used to 
examine the relationship between regionally specific differ-
ences in gray matter volume and intelligence at high spatial 
resolution (i.e., up to 1 mm), and early VBM studies (e.g., 
Haier et al. 2004) indeed support proposal role of parietal 
and frontal cortices for general intelligence. A recent coordi-
nate-based quantitative meta-analysis of VBM studies from 
our research group, however, found only limited evidence 
for convergence of gray matter volume correlates of intel-
ligence in parietal or frontal cortex across different studies 
(i.e., only very small clusters, no effects in lateral parietal 
cortex, and only when using rather lenient statistical thresh-
olds; cf. Basten et al. 2015). The lack of consistent VBM 
findings may result from the widespread use of rather limited 
sample sizes (i.e., between 30 and 104 participants in studies 
included in the meta-analysis of Basten et al. 2015), and this 
situation is further complicated by the fact that not all VBM 
studies of regional gray matter correlates of intelligence dif-
ferences controlled for the effect of individual differences in 
total brain size (see, e.g., Lee et al. 2005, as an example of a 
VBM study based on uncorrected gray matter volume data). 
Because total brain size is positively correlated with intel-
ligence (Nave et al. 2018; Pietschnig et al. 2015), it is quite 
plausible to assume that also region-specific absolute gray 
matter volumes (approximating regional neuron numbers; 
Leuba and Kraftsik 1994) are associated with variations in 
intelligence. However, whether relative gray matter volumes, 
i.e., local deviations in gray matter volume beyond the global 
influence of total brain size, are correlated with intelligence 
is still an open question.

Additionally, all studies reviewed in our meta-analysis (as 
well as further studies not included in the meta-analysis due 
to, e.g., missing coordinates for effect localization) used an 
explanatory strategy in their statistical analysis approach. 
Such a strategy is prone to overfitting because statistical 
models are optimized to explain maximal amounts of vari-
ance within the respective samples but do not necessarily 
generalize to new out-of-sample data (see, e.g., Yarkoni and 

Westfall 2017, for an in-depth discussion). The introduction 
of predictive machine learning approaches to the field of 
neuroimaging (see, e.g., Lemm et al. 2011; Poldrack et al. 
2020) has made it possible to explicitly test whether and to 
what extent neural features can predict a behavioral outcome 
measure (such as IQ), i.e., explain variance also in independ-
ent data. These predictive approaches - that include some 
form of cross-validation (i.e., an internal replication) - pro-
vide a less biased estimate of the generalization error, which 
reflects the extent to which associations are only valid in one 
specific sample but cannot be generalized to the population 
(Hastie et al. 2009; Yarkoni and Westfall 2017). Using such 
a predictive analysis approach, it has, for example, recently 
been demonstrated that individual differences in intelli-
gence can be predicted from intrinsic (i.e., task independ-
ent) patterns of whole-brain functional connectivity based 
on resting-state fMRI, accounting for up to 25% of variation 
in behavioral measures of general cognitive ability (Dubois 
et al. 2018; Ferguson et al. 2017; Finn et al. 2015; Liu et al. 
2018).

Here, we use predictive modeling to investigate whether 
individual intelligence scores can be predicted from regional 
differences in gray matter volume. To this end, we fit a cross-
validated predictive model to voxel-based morphometric 
maps of gray matter volume using data from 308 adults 
whose Full-Scale Intelligence Quotient (FSIQ) was assessed 
with the Wechsler Abbreviated Scale of Intelligence (WASI; 
Wechsler 1999). On the one hand, this analysis was con-
ducted after correcting for individual variations in total brain 
size (i.e., on relative regional gray matter volume data) to 
assess region-specific neuroanatomical correlates of intel-
ligence beyond the known correlation between intelligence 
and total brain size. On the other hand, we also assessed 
whether intelligence can be predicted from regional gray 
matter volumes when not correcting for total brain size (i.e., 
from absolute gray matter volumes), to test the influence 
of total brain size on the prediction of intelligence from 
regional gray matter differences. As there exists no general 
consensus on how to best construct meaningful features from 
the very high-dimensional voxel-wise neuroimaging data, 
we implemented two different approaches of feature con-
struction and compared the respective results: We started 
with a well-established and purely data-driven method, i.e., 
principal component analyses (PCA, see e.g., Abreu et al. 
2019; Espinoza et al. 2019; Wasmuht et al. 2018). In addi-
tion, we implemented a more theoretically informed, domain 
knowledge-based approach, which combines voxel-specific 
gray matter values in regions of interest in accordance with a 
well-established functional brain atlas (Schaefer et al. 2018).

Beyond whole-brain prediction, it is also of interest to 
assess the predictive power of functionally defined brain net-
works for intelligence. This not only directly follows from 
neurocognitive models of intelligence like the parieto-frontal 
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integration theory (Jung and Haier 2007) but is also moti-
vated by more recent proposals highlighting the potential 
role that specific brain networks may play for general intel-
ligence (Barbey 2018). Functional neuroimaging work has 
firmly established a set of functionally defined cortical net-
works (reviewed, e.g., in Dosenbach et al. 2006; Sporns and 
Betzel 2016; Yeo et al. 2011), and individual differences in 
intelligence have been associated with the fronto-parietal 
network (e.g., Barbey 2018; Hearne et al. 2016; Santarnec-
chi et al. 2017), the dorsal attention network centered on the 
intraparietal sulcus and the frontal eye fields (e.g., Hilger 
et al. 2020; Santarnecchi et al. 2017), the cingulo-opercu-
lar salience network (Barbey 2018; Hilger et al. 2017a, b; 
Santarnecchi et al. 2017), and the default mode network of 
the brain (Barbey 2018; Basten et al. 2013; Hearne et al. 
2016; van den Heuvel et al. 2009). While recent correlative 
studies with large sample sizes indeed suggest associations 
with structural white matter connectivity (Genç et al. 2018) 
and with local gyrification (Gregory et al. 2016) in some of 
these systems, the role of network-specific individual differ-
ences in gray matter volume for intelligence has so far not 
been systematically explored. To fill this gap, we conducted 
all predictive analyses also independently for a set of well-
defined functional brain networks.

Methods

Data and code availability

We used data from the Enhanced Rockland sample acquired 
by the Nathan S. Kline Institute for Psychiatric Research 
(NKI; Nooner et al. 2012), which was made available online 
as part of the 1000 Functional Connectomes Project via the 
International Neuroimaging Data-Sharing Initiative (INDI; 
https​://fcon_1000.proje​cts.nitrc​.org/indi/enhan​ced/). The 
analysis code of our predictive modeling approach can be 
accessed online at https​://githu​b.com/NilsW​inter​/Predi​cting​
-Intel​ligen​ce-From-Brain​-Gray-Matte​r-Volum​e.

Participants

All procedures were approved by the NKI Institutional 
Review Board (#239708) and informed written consent 
according to the Declaration of Helsinki was obtained 
from all participants. A subsample of 309 participants was 
selected for whom complete neuroimaging and phenotypi-
cal data were available, including the Wechsler Abbreviated 
Scale of Intelligence (WASI; Wechsler 1999). One partici-
pant was excluded on the basis of the CAT12 quality check 
due to problems in gray matter segmentation (see below), 
leaving a final sample of 308 participants (age 18–60 years, 
M = 38.87, SD = 13.92; 198 females; handedness assessed 

by the Edinburgh Handedness Questionnaire, EHQ, Oldfield 
1971: 260 right, 22 left, 26 ambidextrous). The WASI Full-
Scale Intelligence Quotient (FSIQ) ranged from 67 to 135 
(M = 98.95, SD = 12.94).

Structural magnetic resonance imaging 
and preprocessing

High-resolution structural images were acquired on a 3 T 
whole-body MRI scanner (MAGNETOM Trio Tim, Sie-
mens, Erlangen, Germany) using a sagittal T1-weighted 
Magnetization Prepared-Rapid Gradient Echo (MP-RAGE) 
sequence with the following scanning parameters: 176 sagit-
tal slices; voxel size 1 × 1 × 1 mm; TR 1900 ms; TE 2.5 ms; 
FOV 250 × 250 mm; flip angle 9°; acquisition time 4.18 min.

We generated individual maps of regional gray matter 
volume with the CAT12 toolbox (Computational Anatomy 
Toolbox version 10.73; https​://www.neuro​.uni-jena.de/
cat/) for SPM12 (Statistic Parametric Mapping software, 
Welcome Department of Imaging Neuroscience, London, 
UK). T1-weighted images were segmented into gray matter, 
white matter, and cerebrospinal fluid. Dartel (Diffeomorphic 
Anatomical Registration Through Exponentiated Lie Alge-
bra; Ashburner 2007) was used for spatial normalization 
to the MNI152 (Montreal Neurological Institute) template 
and to determine the parameters of the nonlinear defor-
mations. These parameters were then used to correct the 
normalized gray matter probability maps for local volume 
changes induced by the normalization step and to generate 
m-modulated gray matter probability maps (corrected for 
non-linear and linear/affine components by multiplication 
with the Jacobian determinant; Good et al. 2001). Then, a 
quality check was performed to ensure sample homogeneity 
of gray matter tissue (see CAT12 manual; Gaser and Kurth 
2018). This led to the exclusion of one subject.

To examine regionally specific effects of gray matter 
volume independent of total brain size (i.e., relative gray 
matter volume), the m-modulated gray matter probability 
maps were corrected for total intracranial volume (TIV) by 
global rescaling (Fig. 1a). Rescaling is recommended when 
TIV significantly correlates with the variable of interest, i.e., 
the target of the prediction model, in this case, intelligence 
(Gaser and Kurth 2018). The existence of an association 
between TIV and intelligence is an established finding (see 
above; McDaniel 2005; Nave et al. 2018; Pietschnig et al. 
2015), and also present in the current dataset; we observed 
significant associations between FSIQ and TIV (r = 0.22, 
p < 0.001), between FSIQ and mean absolute gray matter 
volume (i.e., averaged across all voxels; r = 0.18, p = 0.002), 
and between mean absolute gray matter volume and TIV 
(r = 0.82, p < 0.001). We thus rescaled the gray matter value 
of each voxel by (1) dividing it by the subject’s individual 
TIV value and then (2) multiplying the result with the mean 

https://fcon_1000.projects.nitrc.org/indi/enhanced/
https://github.com/NilsWinter/Predicting-Intelligence-From-Brain-Gray-Matter-Volume
https://github.com/NilsWinter/Predicting-Intelligence-From-Brain-Gray-Matter-Volume
https://www.neuro.uni-jena.de/cat/
https://www.neuro.uni-jena.de/cat/
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Fig. 1   Schematic illustration of processing steps and analysis work-
flow. a Preprocessing of structural MRI data. T1-weighted MR 
images were segmented using the CAT12 SPM toolbox to generate 
individual gray matter volume maps, which were then corrected and 
rescaled for between-person variations in total intracranial volume 
(TIV, see “Methods” for further details). The TIV-rescaled gray mat-
ter volume maps (representing relative gray matter volume) and the 
raw gray matter volume maps (uncorrected for TIV, representing 
absolute gray matter volume) were used to establish a global (whole-
brain) prediction model. In addition, all maps were parcellated into 
the seven established functional brain networks (derived from Yeo 
et al. 2011). A subcortical network and the cerebellum were added in 
the PCA-based approach only. Together with the whole-brain model, 
this resulted in ten analyses for the TIV-rescaled (relative) and ten 
analyses for the non-rescaled (absolute) regional gray matter vol-
ume data for the PCA-based approach. In respect to the atlas-based 
approach, this resulted in eight analyses for relative and eight analy-
ses for absolute gray matter data. b In these analyses, the vectorized 
data were fed to our predictive model. In the PCA-based approach, 

the first step consisted of removing confounder variables (age, sex, 
handedness) from every voxel using linear regression. Then a full 
variance decomposition (PCA) was performed on the residualized 
data. The resulting principal components were then used as input 
for a linear SVR to predict the IQ score of individual subjects. In 
the atlas-based approach, the data were at first parcellated into 400 
parcels in accordance with the Schaefer atlas (Schaefer et al. 2018), 
then gray matter values were averaged within each parcel, and lastly, 
residualized in respect to the control variables. The resulting averaged 
gray matter volume values were fed into a linear SVR and predicted 
IQ scores were computed. Importantly, the hyperparameters of the 
SVR were optimized using a threefold cross-validation which was 
nested inside a tenfold cross-validation scheme to evaluate the final 
model performance with mean squared error as a primary model 
evaluation criterion (see also Supplementary Figure S1 for a more 
detailed visualization). TIV total intracranial volume, PCA principal 
component analysis, PC principal component, SVR support vector 
regression, IQ intelligence quotient, MSE mean squared error
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TIV value of the whole group. This resulted in one image 
of relative regional gray matter volume per subject, each of 
which consisted of 556,694 voxels, which served as input 
for the multivariate analyses. Note that after TIV rescaling, 
the correlation between FSIQ and relative mean gray matter 
volume was not significant anymore (r = 0.07, p = 0.229). 
With the aim of comparing the predictive performance 
between relative (i.e., TIV-rescaled) and absolute gray mat-
ter volumes, we conducted the same analysis also without 
rescaling.

Multivariate analyses

Predictive analyses were conducted using PHOTON, a 
python-based hyperparameter optimization and evalua-
tion framework for rapid prototyping in machine learning 
(Leenings et al. 2020). We implemented a machine learning 
pipeline comprising two different methods of feature con-
struction (PCA-based vs. atlas-based), confound regression, 
and a final multivariate estimator (involving hyperparameter 
optimization and a nested cross-validation scheme). Sche-
matic illustrations of the multivariate analysis workflow are 
presented in Fig. 1b and, for a more detailed illustration of 
the nested cross-validation scheme, in Supplementary Fig. 
S1.

Feature construction

As outlined above, we implemented two different methods 
of feature construction, i.e., PCA vs. atlas-based. Both of 
these methods comprise two steps of feature transforma-
tion. First, although age, sex, and handedness were not 
significantly correlated with intelligence in our sample 
(age: r = 0.05, p = 0.42; sex: r = − 0.06, p = 0.30; hand-
edness: r = − 0.01, p = 0.80), we decided to control for 
these variables in both approaches to achieve compara-
bility with former VBM research reporting associations 
between intelligence and gray matter volumes (e.g., Colom 
et al. 2013; Haier et al. 2004) and with recent investi-
gations predicting intelligence from brain function (e.g., 
Dubois et al. 2018). Thus, we residualized the individual 
gray matter volume values with respect to these variables 
within our cross-validated machine learning pipeline using 
linear regression as implemented in Python’s statsmod-
els package. For the PCA-based approach, this was done 
before reducing the dimensionality of the data with PCA. 
PCA is a statistical procedure that transforms the data into 
a restricted number of orthogonal components capturing 
the most essential parts of variance in the original data. 
As the number of features in the data (i.e., one gray mat-
ter volume value per voxel) is in our case always larger 
than the number of subjects in the training set, the latter 

determined the maximum number of extracted principal 
components (i.e., 277 or 278). In the second approach, 
we used the Schaefer parcellation (Schaefer et al. 2018) 
and first reduced the dimensionality of our feature space 
by averaging gray matter volume values across voxels 
within the 400 parcels provided by this atlas. These aver-
aged gray matter volume values were then residualized 
with respect to the control variables specified above. The 
resulting features (principal components vs. averaged gray 
matter values) were then used as input to a Support Vector 
Regression (SVR) as implemented in Scikit Learn (https​
://sciki​t-learn​.org/stabl​e/modul​es/svm.html; Boser et al. 
1992; Drucker et al. 1997; Noble 2007). SVR is an exten-
sion of Support Vector Classification to continuous data 
and relies on a regularization process with an ε-insensitive 
(hinge-loss) cost function. For all analyses, individual 
FSIQ scores served as targets.

Hyperparameter optimization

The optimization of hyperparameters is of crucial impor-
tance when building a machine learning pipeline and 
numerous strategies have evolved to efficiently find the 
optimal solution (Bergstra and Bengio 2012; Snoek et al. 
2012). We used a Bayesian optimization strategy as imple-
mented in the Scikit Optimize library (https​://zenod​o.org/
recor​d/12070​17#.XTA0E​pMzZp​8; Head et  al. 2018) 
which is also available in PHOTON (Leenings et al. 2020). 
Within Scikit Optimize, a Gaussian Process Regression 
was used as the base estimator to identify the configu-
ration of SVR hyperparameters that minimizes the mean 
squared error (MSE) of the overall predictive model. We 
ran 50 evaluations of which, by default, ten were used as 
initialization points before approximating the hyperparam-
eter space with the base estimator. The SVR hyperparam-
eters we optimized were the regularization terms ε and C 
that define the trade-off between penalizing the model for 
points outside a tube of equivalence (zero-loss) around 
the hyperplane (the width of that tube is defined by ε) vs. 
penalizing the model for the distance of each point from 
the hyperplane (Smola and Schölkopf 2004). Regulariza-
tion rewards parsimonious models (which usually general-
ize better to unseen data) vs. more complex models that 
capture the training data well but often do not generalize 
to unseen data (overfitting). We set the possible range of 
the ε parameter from 0.01 to 3 (default value of Scikit 
Learn: 0.1, larger values depict a larger zero-loss ε-tube) 
and allowed the C parameter to vary between 1e−6 and 1 
(default value of Scikit Learn: 1, smaller values increase 
the regularization). For all other parameters of the SVR, 
the default settings of Scikit Learn were used.

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://zenodo.org/record/1207017#.XTA0EpMzZp8
https://zenodo.org/record/1207017#.XTA0EpMzZp8
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Cross‑validation

We used a strictly nested cross-validation scheme as 
implemented in PHOTON, with stratified folds to ensure a 
homogeneous distribution of intelligence scores across all 
folds. An outer loop (tenfold, Ntrain = 277 or 278, Ntest = 31 
or 30) was implemented to determine the model fit, while 
an inner loop was used to optimize - within each of the 
outer loop’s ten training folds - the hyperparameters of 
the pipeline (threefold, Ntrain = 184/185 and Ntest = 93/92 
for Ntrain = 277 in the outer loop, Ntrain = 185/186 and 
Ntest = 93/92 for Ntrain = 278 in the outer loop; see Fig. S1 
for schematic illustration). Importantly, this nested cross-
validation approach avoids any information leakage from 
data of the training set into data of the test set. In other 
words, optimizing the hyperparameters within a nested 
cross-validation scheme ensures that every transformation 
step of the hyperparameters is performed exclusively on 
the training sample and that only the final set of hyperpa-
rameters is subsequently applied to the test set. This pro-
cess allowed us to obtain an unbiased estimate of model 
performance (and the generalization error).

Specification of global vs. local prediction models

As outlined in Sect.  1, we implemented two different 
approaches to test whether intelligence can be predicted 
from patterns of gray matter volume. First, we tested whether 
the prediction of intelligence from gray matter volume was 
generally possible using data of all 556,694 voxels in the 
whole brain to construct the (PCA-based or atlas-based) 
model features. Second, we then also investigated whether 
the prediction of intelligence was driven by specific (i.e., 
functionally separable) brain networks (or brain modules; 
e.g., Sporns and Betzel 2016). To this end, we parcellated 
each normalized individual brain into distinct functional 
networks (Fig. 2, see also Fig. 1a). These networks were 
derived from the Yeo atlas describing seven networks of 
intrinsically coupled brain regions, for which a functional 
interpretation is available (Yeo et al. 2011; 7-network par-
cellation, liberal mask). For the PCA-based approach, we 
added the cerebellum and a subcortical network compris-
ing putamen, caudate nucleus, thalamus, hippocampus, and 
amygdala, because both subcortical and cerebellar brain 
regions have previously been suggested as being relevant 
for intelligence (e.g., Basten et al. 2015; Burgaleta et al. 
2014; Saxe et  al. 2018). Masks for the subcortical net-
work and the cerebellum were derived from the Automatic 

Fig. 2   Anatomical location of functional brain networks. The figure 
illustrates the anatomical location of the nine functional networks that 
were used for the local models. Seven networks were derived from 
the Yeo atlas (Yeo et al. 2011; 7-network parcellation, liberal mask). 
In the PCA-based approach, a mask for the cerebellum and a subcor-

tical module comprising putamen, caudate nucleus, thalamus, hip-
pocampus, and amygdala (both derived from the Automatic Anatomi-
cal Labeling atlas, AAL; Tzourio-Mazoyer et  al. 2002) were added. 
The x-, y- and z-coordinates represent coordinates of the Montreal 
Neurological Institute template brain (MNI152)
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Anatomical Labeling atlas (AAL, Tzourio-Mazoyer et al. 
2002) as implemented in the WFU PickAtlas (https​://fmri.
wfubm​c.edu/softw​are/picka​tlas; Maldjian et al. 2003). For 
the atlas-based approach, it was not possible to include the 
cerebellum and subcortical network, as the Schaefer 400 
parcels cover cortical regions only. Accordingly, also the 
global (whole-brain) atlas-based model did not encompass 
these regions. For these local, network-specific analyses, the 
analysis pipeline described above was applied separately to 
the data of each of these networks. This resulted in nine 
local predictive models for the PCA-based approach and 
in seven local models for the atlas-informed approach. As 
already specified above, we conducted the whole-brain and 
the network-specific analyses once for relative gray matter 
values, and once for absolute gray matter values (see also 
below), and by using both feature construction approaches, 
i.e., PCA vs. atlas-based.

Model evaluation

A tenfold cross-validation in the outer fold was used in both 
approaches to assess the model fit. The MSE served as the 

global index of model quality as this measure captures dif-
ferences in bias and precision. To evaluate the predictive 
models, MSE values were averaged across all folds. For 
interpretation purposes, we also calculated the mean abso-
lute error (MAE) and the root mean squared error (RMSE), 
both averaged across folds, which provide direct information 
about the expected average error in IQ points that we would 
make when predicting IQ scores of individual persons. For 
comparability with previous studies, we also computed the 
Pearson’s correlation coefficient (r) between predicted and 
observed FSIQ values (reported in Table 1). As each of the 
cross-validation folds predicted FSIQ scores for 31 (i.e., in 
eight folds) or 30 subjects (i.e., in two folds), the correla-
tion coefficients were computed separately for each fold and 
subsequently averaged across all folds (after Fisher’s z trans-
formation). The MSE was also used as the evaluation metric 
in the hyperparameter optimization (inner fold).

Because it has been shown that parametric statistical tests 
could lead to biased estimates of significance and false-
positive or false-negative results in cross-validated predic-
tion models (Combrisson and Jerbi 2015; Noirhomme et al. 
2014), statistical significance of above-chance predictive 

Table 1   Results of prediction 
models based on relative gray 
matter volume for the PCA-
based approach (first row) and 
for the atlas-informed feature 
construction method (second 
row)

Network size is depicted in number of voxels for the PCA-based approach and in number of parcels for the 
atlas-based feature construction method. Note, that in the PCA-based approach the number of features was 
independent of network size, i.e., features were always 277/278 principal components, whereas in the atlas-
based approach the number of features corresponds to the number of parcels, i.e., the network size. Results 
indicating statistical significance are marked with an asterisk (Bonferroni-corrected for multiple compari-
sons). MSE mean squared error, pperm p value of statistical significance computed by non-parametric per-
mutation test, range of MSE values resulting from different cross-validation folds, MAE mean absolute 
error in IQ points, RMSE root mean squared error in IQ points, r Pearson’s correlation coefficient between 
predicted and observed Full-Scale Intelligence Quotient (FSIQ) scores. All model fit indices were calcu-
lated for each cross-validation fold separately and averaged across folds afterwards

Network size MSE pperm Range MAE RMSE r

Global model 556,694
400

320
197

0.279
< 0.001*

156–987
158–232

13.98
11.35

17.13
14.05

0.11
0.11

Local models
 Visual network 52,753

61
182
213

0.010
0.260

120–264
175–241

10.92
11.69

13.40
14.57

− 0.18
0.06

 Somatomotor network 46,282
77

204
210

0.168
0.102

149–251
168–235

11.14
11.59

14.23
14.49

0.07
0.11

 Dorsal attention network 36,374
46

193
208

0.030
0.008

122–242
170–224

11.14
11.56

13.84
14.41

0.17
0.19

 Ventral attention network 32,345
47

202
212

0.162
0.199

141–265
174–240

11.15
11.66

14.17
14.56

0.06
− 0.02

 Limbic network 27,296
26

219
212

0.438
0.160

181–260
175–234

12.07
11.63

14.76
14.56

0.03
0.16

 Fronto-parietal network 45,921
52

191
205

0.035
< 0.001*

125–232
172–230

11.33
11.49

13.76
14.33

0.13
0.18

 Default-mode network 71,492
91

181
208

0.008
0.017

127–240
171–230

11.00
11.56

13.38
14.41

0.22
0.22

 Subcortical network 20,361
–

184
–

0.006
–

80–254
–

11.03
–

13.36
–

0.21
–

 Cerebellum 57,851
–

171
–

< 0.001*
–

146–195
–

10.42
–

13.07
–

0.27
–

https://fmri.wfubmc.edu/software/pickatlas
https://fmri.wfubmc.edu/software/pickatlas
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performance was assessed with a non-parametric permuta-
tion test for all models. More specifically, we took the 308 
targets (FSIQ scores) and permuted those values, which 
resulted in a random assignment of persons to FSIQ scores. 
Next, predictive performance (MSE) was assessed for these 
permuted targets. This step was repeated 1000 times. Finally, 
we summed the number of times for which model perfor-
mance based on the true targets was lower than the perfor-
mance for the permuted targets. p values for each model 
were derived by dividing this number by the number of per-
mutations, i.e., 1000. Statistical significance was indicated 
by p values < 0.05 for the global model, by p values < 0.0056 
for the nine local models of the PCA-based approach (nine 
comparisons, Bonferroni-corrected for multiple compari-
sons), and by p values < 0.0071 for the seven local models 
of the atlas-informed approach (seven comparisons, Bonfer-
roni-corrected for multiple comparisons).

Results

Predicting intelligence from whole‑brain relative 
gray matter volume

We first investigated whether intelligence can be predicted 
from multivariate patterns of relative regional gray matter 
volume with a global model taking into account gray mat-
ter volume values of all voxels in the entire brain. PCA was 
used to reduce the number of features separately within each 
cross-validation fold. This model could not predict intel-
ligence, i.e., predictive performance of the model was not 
significantly better than chance (MSE = 320, p = 0.279, see 
Table 1 and Fig. 3a; for results of the non-parametric permu-
tation test, see Fig. 3b; for fold-wise predictive performance, 
see Fig. 3c, d). Similar results were obtained when assessing 
model fit with MAE (13.98, see Table 1, Fig. S2A) or RMSE 
(17.13, see Table 1, Fig. S2C), and the Pearson’s correla-
tion coefficient between predicted and observed IQ scores 
was r = 0.11 (range of predicted scores: 39–136 IQ points). 
In contrast, the whole-brain model built on averaged gray 
matter values within the 400 parcels from the Schaefer atlas 
(Schaefer et al. 2018; atlas-based approach) achieved signifi-
cant prediction of intelligence (MSE = 197, p < 0.001, see 
Table 1; for scatterplot of predicted vs. observed IQ scores, 
see Fig. 4a; for results of the non-parametric permutation 
test, see Fig. 4b; for fold-wise predictive performance, see 
Fig. 4c, d). However, Fig. 4a shows that the predicted FSIQ 
values are distributed very narrowly around the sample 
mean (range of predicted scores: 87–99 IQ points), which 
calls into question the practical relevance of the predic-
tion result despite achieving statistical significance. This is 
further supported by the fact that the mean absolute error 
(MAE = 11.35, Table 1, Fig. S3A) and root mean squared 

error (RMSE = 14.05, Table 1, Fig. S3C) were only slightly 
improved compared to the PCA-based analysis approach, 
and a similar correlation coefficient was obtained (r = 0.11). 
The restricted range of predicted IQ scores also resulted in 
greatly reduced variance between prediction folds (Fig. 4c, 
d). 

Predicting intelligence from network‑specific 
relative gray matter volume

Next, we investigated whether intelligence can be pre-
dicted from multivariate patterns of relative gray matter 
volumes within functionally dissociable brain networks 
(depicted in Fig.  2). In the PCA-based approach, only 
one out of these nine local models significantly predicted 
intelligence, i.e., the cerebellum model (MSE = 171, Bon-
ferroni-corrected p < 0.0056, see Fig. 5a and Table 1 for 
predictive performance measures, and Fig. S4 for results 
of the non-parametric permutation tests; for fold-specific 
predictive performance, see Fig. 5b and S5). For the cer-
ebellum model, the correlation between predicted and 
observed scores was r = 0.27 (MAE = 10.42, see Table 1, 
Fig. S3B, RMSE = 13.07, see Table 1, Fig. S3D). Predic-
tive performance of five local models, i.e., of the visual 
network, the dorsal attention network, the fronto-parietal 
network, the default-mode network, and of the subcorti-
cal network, approached statistical significance but did not 
pass the threshold when correcting for multiple comparisons 
(Table 1). In the atlas-informed approach, only the fronto-
parietal network significantly predicted intelligence (Bon-
ferroni-corrected p < 0.0056, MSE = 205, MAE = 11.49, 
RMSE = 14.33, r = 0.18, see Fig. 6a and Table 1; for results 
of the non-parametric permutation tests, see Fig. S6; for 
fold-specific predictive performance, see Figs. 6b and S7). 
The prediction results based on the dorsal attention network 
and the default-mode network approached statistical sig-
nificance but did not pass the threshold when correcting for 
multiple comparisons (Table 1). Similar to the global model, 
we also observed that the variance between prediction folds 
of the local models was markedly reduced when features 
were built on the basis of a common brain atlas instead of 
using PCA (compare Figs. 3c, d, 4c, d). 

Influence of brain size on the prediction 
of intelligence

To assess the effect of total brain size on whole-brain vs. 
network-specific predictions, all analyses were repeated 
using voxel-wise absolute gray matter volumes, i.e., with-
out correcting for individual differences in total intracranial 
volume (TIV). This resulted in statistically significant pre-
dictive performance for the global model based on PCA-
derived features (MSE = 183, p < 0.001, MAE = 10.77, 
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RMSE = 13.50, r = 0.24; range of predicted scores: 77–117 
IQ points; Table 2, Fig. S8; for results of the non-parametric 
permutation test, see Fig. S9; for fold-wise predictive perfor-
mance, see Figs. S10, S11A; for MAE and RMSE see Fig. 
S12A, C). The atlas-based whole-brain model of absolute 
gray matter also resulted in statistically significant predic-
tive performance (MSE = 196, p < 0.001, MAE = 11.35, 
RMSE = 14.00, r = 0.30; range of predicted scores: 82–104 
IQ points; Table 2, Fig. S13; for results of the non-para-
metric permutation test, see Fig. S14; for fold-wise pre-
dictive performance, see Figs. S15, S16A; for MAE and 
RMSE, see Fig. S17A, C). For both prediction approaches 
(i.e., PCA based and atlas based), predictive performance 

appeared improved in terms of the correlation between pre-
dicted and observed FSIQ values (r = 0.11 vs. r = 0.24 and 
r = 0.30, respectively), but not in the MSE (320 and 197 vs. 
183 and 196), our primary criterion for evaluating model 
performance. Consistently, non-parametric permutation tests 
(two tailed) revealed that there were no significant improve-
ments in predictive performance (MSE) for the global mod-
els based on absolute gray matter volume as compared to 
the global models based on relative gray matter volume 
(p = 0.356, Fig. S18 for PCA-derived features; p = 0.750, 
Fig. S19 for atlas-informed features). Also, MAEs remained 
above ten IQ points.

Fig. 3   Predictive performance of the global model based on rela-
tive (i.e., TIV-rescaled) gray matter volume and the PCA-based 
feature construction approach. a Observed (x-axis) vs. predicted 
(y-axis) Full-Scale Intelligence Quotient (FSIQ) scores for all 308 
participants. The gray area around the regression line represents the 
95%-confidence interval (determined by bootstrapping) of predic-
tion accuracy. Note that to allow the same scaling of y-axes as in the 
local models (Fig. 5), one data point was removed only for illustra-
tion. b Results of the non-parametric permutation test. The histogram 
shows the predictive performance given surrogate-null data, i.e., the 
distribution of the test statistic (mean squared error, MSE) based on 
permuted data (N = 1000 permutations; blue line: KDE smoothing) in 
relation to the predictive performance (MSE) based on the observed 
(non-permuted) data (red vertical line). If the MSE of the observed 
data had occurred in the extreme tails of the surrogate/permuted data, 
the prediction result from the machine learning pipeline would have 
been highly unlikely to be generated by chance, and thus consid-
ered significant. The p value resulted from summing up the times in 

which model performance based on the true targets was lower than 
model performance based on the permuted targets and dividing this 
number by the number of permutations. Thus, p values correspond 
to the percentile position of the observed MSE in the distribution of 
surrogate-null values. c Boxplot illustrating the variability of predic-
tive performance (MSE) across folds. The boxes represent the inter-
quartile range, horizontal lines represent the median, and the whisk-
ers extend to points that lie within 1.5 times the interquartile ranges. 
The dotted line illustrates the performance of a ‘dummy model’ pre-
dicting the group-mean IQ of the training sample for every subject 
of the test sample. Note that for illustration only one data point was 
deleted (at MSE = 1000) to enable the same scaling of the y-axis for 
all boxplots in the paper. d Fold-wise illustration of the correlation 
between observed versus predicted FSIQ scores for all 308 partici-
pants. Predictions of each cross-validation fold and the correspond-
ing approximated linear regression slopes are highlighted in different 
colors. FSIQ Full-Scale Intelligence Quotient, r Pearson’s correlation 
coefficient between predicted and observed FSIQ score
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None of the nine local models based on absolute gray 
matter volumes significantly predicted intelligence using the 
PCA-based predictive approach (all p values larger than the 
Bonferroni-corrected threshold of p = 0.0056). Trend-level 
significance (i.e., p < 0.05 without correcting for multiple 
comparisons) was observed for the fronto-parietal network 
and the ventral attention network (Table 2, Fig. S20; for 
fold-wise predictive performance, see Figs. S10, S11B; for 
MAE and RMSE, see Fig. S12B, D; for results of the non-
parametric permutation test, see Fig. S9). In contrast, when 
using averaged gray matter values from the Schaefer parcels 
as features (atlas-based approach), all local models based on 
absolute gray matter resulted in statistically significant pre-
dictions (all p values smaller than the Bonferroni-corrected 

threshold of p = 0.0071, Table 2, Fig. S21; for fold-wise 
predictive performance, see Figs. S15, S16; for MAE and 
RMSE, see Fig. S17B, D; for results of the non-parametric 
permutation test, see Fig. S14). None of the differences in 
predictive performance between local models based on abso-
lute gray matter volumes and local models based on relative 
gray matter volumes reached statistical significance (PCA-
based approach: all p values > 0.0056, Fig. S18; atlas-based 
approach: all p values > 0.0071, Fig. S19).

Additional control analyses

Given that in all cases of significant predictions (see above) 
the MAE remained rather high (around ten or 11 IQ points), 

Fig. 4   Predictive performance of the global model based on rela-
tive (i.e., TIV-rescaled) gray matter volume and the atlas-based fea-
ture construction approach. a Observed (x-axis) versus predicted 
(y-axis) Full-Scale Intelligence Quotient (FSIQ) scores for all 308 
participants. The gray area around the regression line represents the 
95% confidence interval (determined by bootstrapping) of prediction 
accuracy. Note that to allow the same scaling of y-axes as in the local 
models (Fig. 6), one data point was removed only for illustration. b 
Results of the non-parametric permutation test. The histogram shows 
the predictive performance given surrogate-null data, i.e., the distri-
bution of the test statistic (mean squared error, MSE) based on per-
muted data (N = 1,000 permutations; blue line: KDE smoothing) in 
relation to the predictive performance (MSE) based on the observed 
(non-permuted) data (red vertical line). If the MSE of the observed 
data had occurred in the extreme tails of the surrogate/permuted data, 
the prediction result from the machine learning pipeline would have 
been highly unlikely to be generated by chance, and thus considered 

significant. The p value resulted from summing up the times in which 
model performance based on the true targets was lower than model 
performance based on the permuted targets and dividing this number 
by the number of permutations. Thus, p values correspond to the per-
centile position of the observed MSE in the distribution of surrogate-
null values. c Boxplot illustrating the variability of predictive per-
formance (MSE) across folds. The boxes represent the interquartile 
range, horizontal lines represent the median, and the whiskers extend 
to points that lie within 1.5 times the interquartile ranges. The dot-
ted line illustrates the performance of a ‘dummy model’ predicting 
the group-mean IQ of the training sample for every subject of the test 
sample. d Fold-wise illustration of the correlation between observed 
versus predicted FSIQ scores for all 308 participants. Predictions of 
each cross-validation fold and the corresponding approximated linear 
regression slopes are highlighted in different colors. FSIQ Full-Scale 
Intelligence Quotient, r Pearson’s correlation coefficient between pre-
dicted and observed FSIQ score
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and given that predicted values were clustered in many cases 
around the sample mean IQ (see Figs. 3, 4, 5, 6), we aimed 
to assess our model performance against a model that sim-
ply uses the group-mean IQ of the training set as predictor 
for all participants. Such a ‘dummy’ model reached highly 
comparable model performance (illustrated as additional line 
in Figs. 3c and 4c for global models and in Figs. 5b and 6b 
for local models based on relative gray matter volume and in 
Figs. S11 and S12 for models based on absolute gray matter 
volume), with a MAE of 10.48 IQ points (MSE = 166.93; 
RMSE = 12.90).

Finally, to exclude the possibility that our atlas-based 
results were influenced by the specific choice of a brain 
atlas, we conducted three additional control analyses: we 
first repeated both whole-brain analyses (based on relative 
and on absolute gray matter volumes) with the Schaefer 100 
parcellation (Schaefer et al. 2018) to test whether the mere 
number of features may have had an impact on the prediction 
results. Second, we used the Shen 264 atlas (Shen et al. 2013) 
to test the robustness of our effects against another function-
ally defined parcellation scheme that was built with a different 

method and based on a different sample than the Schaefer par-
cellations. Lastly, we conducted the same analyses with the 
AAL atlas to check whether anatomically derived parcella-
tions would lead to different results in contrast to function-
ally defined atlases. For relative gray matter volume, likewise 
to the Schaefer 400 atlas (MSE = 197; p < 0.001; see above), 
also the Schaefer 100 (MSE = 206; p < 0.001) and the Shen 
264 atlas (MSE = 205; p < 0.001) resulted in significant pre-
dictions. Only the AAL atlas-based prediction did not reach 
statistical significance (MSE = 211; p = 0.121). For absolute 
gray matter volume, as for the Schaefer 400 atlas (Schaefer 
400: MSE = 196; p < 0.001; see above), all atlases yielded sig-
nificant predictions (Schaefer 100: MSE = 203, p < 0.001; Shen 
264: MSE = 192, p < 0.001; AAL: MSE = 200, p < 0.001). The 
results of these control analyses are illustrated in Supplemen-
tary Figures S22–S24, and indicate that atlas-based results are 
robust against the specific choice of an atlas.

Fig. 5   Predictive performance of nine local models based on relative 
(i.e., TIV-rescaled) gray matter volume and the PCA-based feature 
construction approach. The nine local models represent the func-
tionally defined brain networks depicted in Fig.  2 (see also “Meth-
ods” for further details). a Observed (x-axis) versus predicted (y-axis) 
FSIQ scores for all 308 participants, separately for each functional 
network. The gray areas around the regression lines represent the 
95%-confidence intervals (determined by bootstrapping) of prediction 

accuracies. b Boxplots illustrating the variability of predictive perfor-
mance (mean squared error, MSE) across cross-validation folds. The 
boxes represent the interquartile range, horizontal lines represent the 
median, and the whiskers extend to points that lie within 1.5 times the 
interquartile ranges. The dotted line illustrates the performance of a 
‘dummy model’ predicting the group-mean IQ of the training sample 
for every subject of the test sample
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Discussion

We used two different cross-validated predictive modeling 
approaches to test whether individual intelligence scores 
can be predicted from regional brain gray matter volume 
- beyond the known relationship between intelligence and 
total brain size (Nave et al. 2018; Pietschnig et al. 2015). 
Predictive performance of a whole-brain model based on rel-
ative gray matter volume was not significantly above chance 
when using a PCA-based feature construction approach, but 
reached statistical significance when features were derived 
from an established functional brain atlas parcellation. Nev-
ertheless, independent of the analysis approach, predictive 
performance was low in terms of the correlation between 
predicted and observed IQ scores (r = 0.11 in both cases), 
and the absolute difference between predicted and observed 
scores varied between 11 and 14 IQ points. The same analy-
ses with absolute gray matter volumes, i.e., without correct-
ing for total brain size, yielded significant prediction in both 
cases and provided higher correlations between observed 
and predicted IQ scores (r = 0.24 and r = 0.30). However, the 

MAEs remained nearly unchanged (around 11 IQ points). 
Brain network-specific analyses of relative gray matter vol-
umes resulted in significant predictive performance only 
for the cerebellum in the PCA-based approach and only for 
the fronto-parietal network with the atlas-based method. 
Network-specific prediction from absolute gray matter was 
not above chance in the PCA-based approach, but provided 
significant predictions for all networks with the atlas-based 
method. However, independent of statistical significance, the 
MAE remained between 11 and 14 IQ points in all network-
specific analyses. Critically, and in all cases, the predictive 
performance in terms of absolute error did not differ in any 
substantial way from a ‘dummy’ predictive model based on 
the sample mean - an observation that calls into question the 
practical value also of those results that reached statistical 
significance.

To summarize these results, we observed (a) variable 
results for whole-brain predictive models in terms of sta-
tistical significance, with relative gray matter allowing 
for significant prediction only with the atlas-based feature 
construction method, while absolute gray matter provided 

Fig. 6   Predictive performance of nine local models based on relative 
(i.e., TIV-rescaled) gray matter volume and the atlas-based feature 
construction approach. The nine local models represent the function-
ally defined brain networks depicted in Fig.  2 (see also "Methods" 
for further details). a Observed (x-axis) versus predicted (y-axis) 
FSIQ scores for all 308 participants, separately for each functional 
network. The gray areas around the regression lines represent the 
95%-confidence intervals (determined by bootstrapping) of prediction 

accuracies. b Boxplots illustrating the variability of predictive perfor-
mance (mean squared error, MSE) across cross-validation folds. The 
boxes represent the interquartile range, horizontal lines represent the 
median, and the whiskers extend to points that lie within 1.5 times the 
interquartile ranges. The dotted line illustrates the performance of a 
‘dummy model’ predicting the group-mean IQ of the training sample 
for every subject of the test sample
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significant predictions with both approaches. We found 
(b) heterogeneous results with respect to network-specific 
prediction performance, providing no support for models 
of gray matter volume and intelligence that focus on only 
specific regions of the brain. Finally, our results (c) indi-
cate a high absolute error of prediction, which suggests lim-
ited practical value of machine learning models predicting 
general intelligence from patterns of regional gray matter 
volume. In the following, we will discuss the role of region-
specific adaptations of gray matter volume for general intel-
ligence, the separable contributions of relative vs. absolute 
gray matter volume, conclusions that can be drawn from the 
network-specific analyses, as well as limitations of the pre-
sent investigation. Finally, we discuss suggestions and rec-
ommendations for future investigations applying predictive 
modeling approaches to the study of phenotypic variations.

Predicting intelligence from region‑specific 
variations in relative gray matter volume

Recent evidence suggests that individual intelligence scores 
can be predicted from functional (resting-state) connectivity 

(Dubois et al. 2018; Ferguson et al. 2017; Finn et al. 2015; 
Liu et al. 2018). An earlier study also provided initial evi-
dence for the feasibility of predicting intelligence from brain 
structure, in that case, based on a combination of various 
morphometric features (Yang et al. 2013). In the current 
study, we tested explicitly the predictive performance of one 
of the most commonly studied structural correlates of intel-
ligence, regional gray matter volume, but found only limited 
evidence for above-chance prediction of individual intelli-
gence scores when controlling for individual differences in 
total brain size. This finding is consistent with the results of 
a very recent machine learning competition which aimed 
at predicting intelligence in a large cohort of 8669 healthy 
children from brain structure operationalized by several MRI 
brain morphological metrics including absolute and relative 
gray matter volume (ABCD Neurocognitive Prediction Chal-
lenge). The final model of that competition did not succeed 
in significantly predicting intelligence and resulted in only a 
low correlation of r = 0.03 between predicted and observed 
IQ scores (Mihalik et al. 2019). This study differs from 
the present work not only regarding the age range of the 
sample, the broader set of features used for prediction, but 

Table 2   Results of prediction 
models based on absolute gray 
matter volume for the PCA-
based approach (first row) and 
for the atlas-informed feature 
construction method (second 
row)

Network size is depicted in number of voxels for the PCA-based approach and in number of parcels for the 
atlas-based feature construction method. Note that in the PCA-based approach the number of features was 
independent from network size, i.e., features were always 277/278 principal components, whereas in the 
atlas-based approach the number of features corresponds to the number of parcels, i.e., the network size. 
Results indicating statistical significance are marked with an asterisk (Bonferroni-corrected for multiple 
comparisons). MSE mean squared error, pperm p value of statistical significance computed by non-para-
metric permutation test, range of MSE values resulting from different cross-validation folds, MAE mean 
absolute error in IQ-points, RMSE root mean squared error in IQ-points, r Pearson’s correlation coefficients 
between predicted and observed Full-Scale Intelligence Quotient (FSIQ) score. All model fit indices were 
calculated for each cross-validation fold separately and averaged across folds afterwards

Network size MSE pperm Range MAE RMSE r

Global model 556,694
400

183
196

< 0.001*
< 0.001*

136–223
158–218

10.77
11.35

13.50
14.00

0.24
0.30

Local models
 Visual network 52,753

61
202
203

.061
< 0.001*

160–250
164–224

11.74
11.45

14.18
14.22

0.19
0.21

 Somatomotor network 46,282
77

245
203

0.836
< 0.001*

150–331
167–225

12.46
11.45

15.52
14.22

0.10
0.19

 Dorsal attention network 36,374
46

226
203

0.446
< 0.001*

165–327
163–234

12.43
11.43

15.00
14.22

0.13
0.28

 Ventral attention network 32,345
47

206
199

0.018
< 0.001*

142–286
162–220

11.72
11.36

14.25
14.10

0.22
0.22

 Limbic network 27,296
26

236
205

0.490
< 0.001*

182–277
174–226

12.49
11.46

15.33
14.30

0.08
0.29

 Fronto-parietal network 45,921
52

196
206

0.007
0.002*

153–291
158–233

11.28
11.52

13.96
14.31

0.20
0.27

 Default-mode network 71,492
91

210
199

0.068
< 0.001*

171–266
163–228

11.92
11.36

14.48
14.09

0.21
0.29

 Subcortical network 20,361
–

225
–

0.267
–

151–268
–

12.14
–

14.95
–

0.16
–

 Cerebellum 57,851
–

210
–

0.054
–

149–298
–

11.86
–

14.38
–

0.15
–
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also with respect to the to-be-predicted target variable. The 
intelligence scores provided by the ABCD challenge were 
estimated from performance in cognitive tasks of the NIH 
Toolbox Neurocognitive battery (Akshoomoff et al. 2013) 
but, critically, the resulting scores were residualized with 
respect to several variables known to be strongly correlated 
with intelligence, such as highest parental education (e.g., 
von Stumm and Plomin 2015). Given these differences, it is 
not clear how directly the two studies can be compared. Nev-
ertheless, they converge in the sense that both studies fail in 
precisely predicting general intelligence from morphometric 
patterns of brain anatomy.

The results of the present study also allow for conclu-
sions concerning the heterogeneity of previous structural 
VBM findings (as also indicated, for example, by the rela-
tively weak meta-analytic effects observed in Basten et al. 
2015). Specifically, our present data suggest that some of 
the previous VBM results (in studies with smaller sample 
sizes than in the current study) may have been driven pri-
marily by sample-specific variance and may thus not gen-
eralize to independent and previously unseen data. Using a 
predictive rather than an explanatory statistical approach, 
and by exploring two different feature construction methods, 
we found no evidence in support of a strong relationship 
between relative regional gray matter volume and general 
intelligence. Further, our analyses revealed that even for 
those three models for which prediction performance was 
significantly above chance (i.e., the cerebellum model in the 
PCA-based approach; the whole-brain model and the fronto-
parietal model in the atlas-based approach), the average 
absolute error we would make when predicting intelligence 
scores of individual persons would be too high for actual 
applications (i.e., between ten and 14 IQ points).

The practical relevance of an error of around ten to 14 
IQ points can be illustrated by considering the impact that a 
difference of that magnitude may have on critical decisions 
with long-term consequences, e.g., with respect to whether 
or not someone is eligible for receiving specific support (like 
for children with very low or very high cognitive abilities). 
In this regard, it is also interesting to note that the aver-
age effect of 1 year of secondary schooling in adolescence 
on later IQ has been estimated at between three (Falch and 
Sandgren Massih 2011) and five (Brinch and Galloway 
2012) IQ points. A difference of ten IQ points, thus, may 
amount to the effect of 2 to 3 years of schooling on IQ, and 
a prediction error in that range can, therefore, have severe 
consequences in actual selection or placement decisions.

The visualization of our PCA-based results shows that 
prediction performance varies across the range of possible 
IQ scores, with higher prediction accuracies close to the 
mean and larger errors in the extreme tails of the distribu-
tion. This is visible from the confidence interval of predic-
tion accuracy, which is highlighted as a gray area around the 

regression lines in Fig. 3a, and results primarily from the 
fact that intelligence is approximately normally distributed 
in our sample implying that there are more data points avail-
able around the mean IQ of 100. The model can thus be ‘bet-
ter’ trained and generate more accurate predictions within 
that range - the more instances (of intelligence–gray matter 
associations) are available within a certain range, the more 
opportunities the algorithm has to learn these associations 
and to capture also fine-grained deviations. In contrast, the 
visualization of atlas-based results (Fig. 4a) indicates a very 
restricted range of predicted IQ scores (87–99 IQ points) 
with heavy clustering in a narrow range close to the sample 
mean. This may result from the fact that the mean repre-
sents the maximum-likelihood estimation, which can drive 
the prediction algorithm and lead to predicted values close 
to the mean when there is no other relevant pattern found 
in the data. As in the atlas-based approach, the fold-specific 
variance is naturally reduced due to common features for all 
subjects (400 atlas parcels). This pattern becomes especially 
visible in this method and highlights the limited presence of 
relevant information in the data after applying the parcel-
lation. The latter point receives further support from our 
observation of comparable predictive performance when 
strictly using the group-mean IQ as predicted score for all 
participants (see “Additional control analyses”: ‘dummy 
model’). Thus, the difference in the statistical significance 
of prediction results obtained for the atlas-based prediction 
models in contrast to the PCA-based models on relative 
gray matter volumes may primarily result from an over-
representation of IQ values around the sample mean (due to 
normally distributed IQ scores) that, due to the algorithm’s 
tendency to use the sample mean as best predictor when 
no other relevant information is available, lead to reduced 
variance between folds and thus an increased likelihood of 
statistical significance.

However, it is important to note that this does not mean 
that the significance of results is artificial, but that PCA- and 
atlas-based approach are differentially dependent on fold-
specific variability. It may thus be more a theoretical deci-
sion whether one prefers an approach that relies purely on 
the given input data (PCA) or an approach that is informed 
by domain-specific knowledge. For instance, in cases where 
no prior assumptions about the underlying data structure 
exist or where the (arbitrary) choice of a specific brain atlas 
should be prevented, a purely data-driven approach would 
represent the preferred method. However, a purely data-
driven approach can also increase the generalization error 
and induce fold-specific variance (since the model is fitted 
to the training set and might overfit). This can especially 
be the case when samples are small (< 1000) in relation to 
the high-dimensional input data, as it is mostly the case in 
human neuroimaging studies. In contrast, a domain knowl-
edge-based approach introduces a priori assumptions (that 
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may or may not be correct) and will therefore less likely 
overfit to the training data. This can reduce fold-specific 
variance and minimize the generalization error, but respec-
tive prediction models can only generalize to data of the 
same structure, i.e., MRI data that are preprocessed in the 
same way and parcellated with the same atlas. This trade-off 
between generalizability and accuracy has to be considered 
thoroughly when selecting the feature construction method.

Additionally, the pattern of our results suggests that test 
statistics like the MAE, which can be interpreted in terms 
of absolute IQ points, are of obvious informative value. To 
the best of our knowledge, such measures have not been 
considered as criteria for model evaluation in previous stud-
ies that reported successful prediction of intelligence from 
task-induced activation (Sripada et al. 2018) or intrinsic con-
nectivity (Dubois et al. 2018; Ferguson et al. 2017; Finn 
et al. 2015; Liu et al. 2018), which impedes the direct com-
parability of our results to these former studies. However, a 
similar restriction of the variance of predicted intelligence 
around the mean, as observed in our study, is also present, 
for example, in the significant prediction results of Finn et al. 
(2015; see their Fig. 5a, c) and Dubois et al. (2018; see their 
Fig. 3a). Error measures like the MSE or the MAE yield 
important additional insights into the practical relevance 
of prediction-based neuroimaging studies, and we would, 
therefore, advocate their use in future studies.

Relative vs. absolute gray matter volume and their 
relevance for general intelligence

In contrast to the mixed results obtained in respect to the 
whole-brain patterns of relative gray matter volume, whole-
brain patterns of absolute gray matter volume provided sta-
tistically significant predictions of intelligence irrespective 
of the specific feature construction method - albeit again 
with a rather high MAE of (around 11 IQ points) and with 
a highly restricted ranged of predicted values in the atlas-
based models. This may suggest that regional differences 
in gray matter volume do contribute some but not much 
information beyond total brain size. Importantly, however, 
the differences in predictive performance between models 
based on relative vs. absolute gray matter volume were not 
statistically significant - neither for the global models nor 
for any of the local models and neither in the PCA-based 
nor in the atlas-based approach, rendering such conclu-
sions preliminary. Nevertheless, our result underscores the 
importance of differentiating thoroughly between relative 
and absolute gray matter and to compare respective effects, 
particularly given that the variable of interest (IQ) is sig-
nificantly related to brain size (McDaniel et al. 2005; Nave 
et al. 2018; Pietschnig et al. 2015). It is not absolutely clear 
what neurobiological characteristics are primarily reflected 
in gray matter probability maps as derived from VBM: More 

cell bodies, neutrophil, glia cells, synapses, and capillar-
ies all seem to be related to higher gray matter values, but 
also more cortex folding and thicker gray matter can con-
tribute to high gray matter indices (Mechelli et al. 2005). 
Most often, however, gray matter values are interpreted 
as reflecting the total amount of neuronal packing within 
a certain region, i.e., an approximation of neuron number 
(Gaser and Kurth 2018). Variations in total brain size are 
thus likely to reflect individual differences in total neuron 
numbers (e.g., Leuba et al. 1994; Pakkenberg and Gundersen 
1997) and positive associations with intelligence are typi-
cally interpreted as indicating more computational process-
ing power due to larger neural capacities (e.g., in Genç et al. 
2018). The results of our analyses of absolute gray matter 
volumes are well in line with this proposal and extend it 
in suggesting that this positive association, i.e., between 
higher intelligence and more computational power due to 
more neurons, may exist in all functional brain networks. 
In contrast, relative gray matter volume reflects local devia-
tions in neuron number that goes beyond the neuron number 
that one would expect for a given region on the basis of an 
individual’s brain size. The low predictive performance of 
relative gray matter models observed in our study suggests 
only a minor influence of these deviations (beyond brain 
size) on individual differences in intelligence. Overall, our 
results are more in support of theories proposing intelligence 
as a result of a global processing advantage, rather than theo-
ries of intelligence focusing on region-specific gray matter 
characteristics.

Differences in predictive performance 
between functional brain networks

Our results of the network-specific (local) analyses of rela-
tive gray matter volume demonstrate that even when restrict-
ing the number of features by separately modeling distinct 
functional brain networks, only two sub-systems could pre-
dict intelligence significantly above chance, i.e., the cerebel-
lum in the PCA-based approach and the fronto-parietal net-
work in the atlas-based method. The observation that frontal 
and parietal brain regions are more closely related to indi-
vidual differences in intelligence than other regions is well in 
line with previous observations and neurocognitive theories 
of intelligence (e.g., P-FIT model, Basten et al. 2015; Jung 
and Haier 2007; Multiple-Demand System, Duncan 2010), 
while the cerebellum has typically not been considered as 
relevant for individual differences in intelligence. Contrast-
ing these network-specific differences in the predictability 
of intelligence from relative gray matter volume, the local 
models based on absolute gray matter did not differ between 
each other in respect to their significance: While none of the 
network models approached significance in the PCA-based 
approach, all models provided above-chance predictions 
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with the atlas-based method. Critically, however, in all local 
models, the MAE was comparably high (i.e., between ten 
and 12 IQ points). As already discussed for the global mod-
els, this observation limits the impact of network-specific 
differences in gray matter volume for the understanding and 
prediction of general intelligence.

The currently available evidence from prediction-based 
studies, thus, seems to suggest that brain function (i.e., rest-
ing-state functional connectivity or task-induced brain acti-
vation) may be more important than brain structure in deter-
mining individual differences in general cognitive ability - at 
least when operationalizing brain structure exclusively as 
regional gray matter volume differences. Highest prediction 
accuracies have so far been reported with respect to intrinsic 
functional connectivity, i.e., correlated neural activation pat-
terns measured in the absence of any task demand (Dubois 
et al. 2018; Ferguson et al. 2017; Finn et al. 2015; but note 
also Greene et al. 2018 for task-based prediction models). 
As the organization of intrinsic brain networks is assumed to 
be closely related to the underlying anatomical connectivity 
backbone, i.e., the strongest structural connections between 
different brain regions (Greicius et al. 2009), we speculate 
that measures of structural connectivity (as assessed, e.g., 
with diffusion tensor imaging) may allow for a more accurate 
prediction of general intelligence than volumetric indices of 
regional gray matter volume (for correlative support of this 
assumption, see, e.g., Genç et al. 2018). On the other hand, 
intelligence has also been linked to other regionally specific 
morphometric properties of the brain such as cortical surface 
area (e.g., Schnack et al. 2014), gyrification (e.g., Gregory 
et al. 2016), or cortical thickness (e.g., Karama et al. 2011). 
Future predictive work, in our view, should thus aim at more 
strongly integrating the different functional and neuroana-
tomical characteristics of the brain, to better understand their 
respective roles for general cognitive abilities.

Limitations

The machine learning pipeline of the present study used a 
support vector regression with a linear kernel. This limited 
our analyses to the detection of linear relationships between 
intelligence and brain structure. Although this approach is 
one of the most widely used in the field of neuroimaging (for 
review, see Lemm et al. 2011; Pereira et al. 2009), the possi-
ble existence of non-linear associations cannot be excluded. 
However, our selection of this approach was driven a) by 
computational feasibility (the reported analyses took an 
equivalent of ~ 36,000 h of computation time with 2 CPU 
kernels and 5 GB RAM; non-linear analyses would take 
substantially longer) and b) by our aim of reaching highest 
comparability with previous correlative analyses on brain 
structure and intelligence (from explanatory studies, see 
above).

Second, our results revealed considerable variance in 
predictive performance across the ten folds of the cross-
validation procedure, despite our efforts to homogenize the 
distributions of the target variable (IQ) between folds. This 
was particularly severe in the PCA-based approach, but also 
obvious in models that relied on the atlas-informed feature 
construction method. A systematic investigation of the het-
erogeneity in prediction performance across folds could 
be achieved, e.g., by repeating all analyses 100 times and 
then examining differences between resulting distributions 
of prediction accuracies. This is, however, at present not 
computationally feasible. To the best of our knowledge, the 
variability of results across folds has not been addressed 
in detail by previous machine learning-based neuroimag-
ing investigations and our study is one of the first to illus-
trate fold-specific predictive performances at all. In our 
opinion, this observation deserves closer consideration in 
future research and we, therefore, recommend reporting (in 
addition to overall predictive performance) always also fold-
specific measures of predictive performance.

Finally, for predictive modeling approaches like the one 
used in the present study, the use of many data points is 
essential to train the prediction models sufficiently and to 
gain stable prediction weights. Of note, it has been observed 
that prediction accuracies increase as sample size decreases 
(Varoquaux 2017), suggesting the presence of unrealistically 
exaggerated (and thus invalid) prediction accuracies in stud-
ies using small samples. Although our sample size can be 
considered large relative to other prediction studies from 
recent years (for comparison of prediction-based neuroimag-
ing studies, see, e.g., Arbabshirani et al. 2017; Poldrack et al. 
2020), it nevertheless appears small given the dimensional-
ity of the original feature space (i.e., the number of voxels 
in the brain). We thus propose that future work should strive 
to further increase sample sizes, for example by combining 
data from different sources (as is done in genetics; e.g., Sav-
age et al. 2018).

Methodological implications and recommendations 
for future studies

In light of the results presented in this work, we would like 
to summarize methodological insights that may be valuable 
to consider in future predictive studies, within the field of 
intelligence research but also more generally in individual 
differences-focused predictive modeling investigations. 
First, whenever cross-validation is used to assess the per-
formance and generalizability of the predictive model, 
some measure or visualization of the variance across folds 
should be reported. Second, predictive variance within folds 
should be visualized using scatter plots so that the range of 
the predicted scores becomes transparent. This is especially 
important for detecting cases in which predicted and true 
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scores correlate highly despite a restricted range of predicted 
values, indicating poor practical utility of those predictions. 
Third, pertaining to the same point, measures of the abso-
lute difference between predicted and true values such as 
RMSE or MAE should be used in addition to the correlation 
between predicted and observed scores or explained vari-
ance. These metrics quantify the error in units of the original 
scale and are therefore of high value for interpretation. Cor-
relations, on the other hand, are insensitive to the scaling of 
the original measures, which can lead to high correlations 
between predicted and observed scores despite considerable 
differences in their absolute values (see also Poldrack et al. 
2020, for an in-depth discussion). Fourth, a comparison of 
model performance indices with those obtained by a non-
informative, ‘baseline’ solution (such as predicting the mean 
of the training set for all subjects of the test set) can help 
in interpreting resulting performance measures. Fifth, our 
results indicate that purely data-driven methods of feature 
construction (such as PCA) can lead to different results than 
methods using features informed by domain-specific knowl-
edge (such as using a functionally defined brain atlas). Simi-
lar variations in results have been observed for the applica-
tion of different algorithms and other data transformations 
(Wolpert and Macready 1997). We therefore recommend to 
explore the influence that variations in analysis pipelines, 
such as different feature construction methods, may have on 
the results, and to report respective observations in detail to 
achieve a more realistic understanding about the robustness 
and generalizability of respective findings. In subsequent 
stages of a research program, such parameters should be 
defined prior to the data analysis or optimized in a purely 
data-driven way (within a further inner cross-validation 
loop), to reduce researcher degrees of freedom and to move 
from exploratory to more confirmatory research.

Concluding remarks

The current study used a machine learning-based predictive 
modeling approach to test whether individual intelligence 
scores can be predicted from spatially highly resolved (i.e., 
voxel wise) patterns of regional gray matter volume. When 
analyzing relative gray matter volumes, i.e., independent of 
total brain size, predictive performance for the whole-brain 
model was generally low and reached statistical significance 
only with a domain knowledge-based feature construction 
approach (using a common brain atlas) but not with a purely 
data-driven method (PCA). In contrast, absolute gray matter 
volume (uncorrected for brain size) allowed for significant 
predictions of individual intelligence scores with both fea-
ture construction approaches. Importantly, the absolute error 
was relatively high (greater than ten IQ points) and the range 
of predicted IQ scores was markedly restricted around the 

sample mean, limiting the practical value of these findings. 
Brain network-specific analyses of gray matter volume high-
light the role of the fronto-parietal network and the cerebel-
lum, but could not reduce the MAE in comparison to the 
global models. Overall, our results suggest (a) that absolute 
gray matter volume is a significant predictor of individual 
differences in intelligence and that this generalizes across 
functional brain networks, (b) that regional differences that 
go beyond the influence of brain size (relative gray matter 
volume) contribute some but not much additional informa-
tion to this prediction, and (c) that the empirical evidence 
in favor of region or network-specific gray matter models of 
intelligence is limited. This supports the proposal that intel-
ligence may be related to global more than region-specific 
variations in gray matter volume. The difference between our 
result and earlier reports of significant correlative associa-
tions between intelligence and gray matter volume under-
scores the importance of predictive as opposed to explana-
tory approaches in the cognitive neurosciences. To be able 
to unequivocally establish brain–behavior associations, 
individual difference-oriented neuroimaging studies should 
strive for true out-of-sample prediction in independent data.
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