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Abstract
Several novel imaging and non-destructive testing technologies are based on recon-
structing the spatially dependent coefficient in an elliptic partial differential equation
from measurements of its solution(s). In practical applications, the unknown coeffi-
cient is often assumed to be piecewise constant on a given pixel partition (correspond-
ing to the desired resolution), and only finitely many measurement can be made. This
leads to the problem of inverting a finite-dimensional non-linear forward operator
F : D(F) ⊆ R

n → R
m, where evaluating F requires one or several PDE solutions.

Numerical inversion methods require the implementation of this forward opera-
tor and its Jacobian. We show how to efficiently implement both using a standard
FEM package and prove convergence of the FEM approximations against their true-
solution counterparts. We present simple example codes for Comsol with the Matlab
Livelink package, and numerically demonstrate the challenges that arise from non-
uniqueness, non-linearity and instability issues. We also discuss monotonicity and
convexity properties of the forward operator that arise for symmetric measurement
settings.

This text assumes the reader to have a basic knowledge on Finite Element
Methods, including the variational formulation of elliptic PDEs, the Lax-Milgram-
theorem, and the Céa-Lemma. Section 3 also assumes that the reader is familiar with
the concept of Fréchet differentiability.

Keywords Finite element methods · Inverse problems · Finitely many
measurements · Piecewise-constant coefficient

1 Introduction

Many practical reconstruction problems in the field of medical imaging and non-
destructive testing lead to inverse coefficient problems in elliptic partial differential
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equations. This text is meant to be an introductory tutorial for implementing such
problems with Finite Element Methods (FEM).

We assume that the unknown coefficient is piecewise-constant on a given resolu-
tion, and that finitely many linear measurements of one of several solutions are taken,
where different solutions are generated by different linear excitation in the underly-
ing physics model. This leads to the finite-dimensional non-linear inverse problem of
determining

σ ∈ R
n from F(σ ) ∈R

m

with n ∈N unknowns and m ∈N measurements.
Iterative numerical solution methods for this inverse problem require evaluating

F and its derivatives at each iteration step, which means solving the underlying el-
liptic PDE. In this work, we will demonstrate how FEM-based implementations for
F and its Jacobian can be obtained very efficiently from standard FEM-solvers for
the considered elliptic PDE. Roughly speaking, the sensitivity of a measurement with
respect to changing the coefficient in one pixel can be simply calculated by multiply-
ing FEM-solutions corresponding to the measurement and excitation patterns with
so-called pixel stiffness matrices that are obtained from summing up all element stiff-
ness matrices of elements belonging to the pixel where the change occurs. Hence, the
FEM-based Jacobian can be obtained without any additional computational burden
with just a few lines of extra code. Alternatively, for an even simpler implementa-
tion, the pixel stiffness matrices can be easily obtained by subtracting global stiffness
matrices without requiring any knowledge about the triangulation details.

This text is meant as a simple-to-read explanation of this approach in a sufficiently
general but naturally arising setting. More precisely, we restrict ourselves to coercive
and symmetric variational formulations that linearly depend on the unknown coeffi-
cients, and to excitations and measurements that correspond to linear functionals. In
this setting, we demonstrate how to obtain the Jacobian of the FEM-based forward
map with the means of a standard FEM software package such as COMSOL. We also
discuss monotonicity and convexity properties arising in symmetric measurement sit-
uations that are the basis for recent research on rigorously justified reconstruction
methods.

The purpose of this text is of introductory nature, but we proceed in a mathe-
matically rigorous fashion to allow this text to also serve as a reference. We prove
differentiability of the true-solution forward operator and its FEM-based approxima-
tion, and show convergence of the FEM-approximated quantities to their true-solution
counterparts.

Section 2 gives two examples to motivate our general setting: stationary diffusion
and Elecrical Impedance Tomography. Section 3 introduces the forward operator us-
ing the exact PDE solution and derives its properties. The FEM-approximation of the
forward operator and its Jacobian is studied in Sect. 4. In Sect. 5 we show numerical
examples and demonstrate some of the major challenges that arise in solving inverse
coefficient problems. The COMSOL/MATLAB source codes for all examples are
given in the Appendix.
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Fig. 1 Pixel partition and circular subdomains used for excitations and measurements

2 Motivation and Examples

2.1 Stationary Diffusion

We consider the stationary diffusion equation

−∇ · (σ∇u) = g in � (1)

with homogeneous Dirichlet boundary condition u|∂� = 0 in a Lipschitz bounded
domain � ⊂ R

d , d ∈ N. For u ∈ H 1(�), σ ∈ L∞+ (�) and g ∈ L2(�) the equation is
equivalent to finding u ∈ H 1

0 (�) with

∫
�

σ∇u · ∇v dx =
∫

�

gv dx for all v ∈ H 1
0 (�), (2)

and unique solvability follows from the Lax-Milgram theorem.
We are interested in the inverse coefficient problem of determining the diffusivity

coefficient σ in (1) from measurements of the solution for one or several source
terms g, cf. [9] for an application in groundwater filtration. In practical applications
with finitely many measurements, it is natural to only aim for a certain pixel-based
resolution and therefore assume that σ is piecewise constant with respect to a partition
� = ⋃n

i=1 Pi , i.e.

σ(x) =
n∑

i=1

σiχPi
(x) for all x ∈ �,

where the pixels Pi ⊆ � are assumed to be measurable subsets. The left image in
Fig. 1 shows a simple example where the unit square � = (0,1)2 is divided into 3×3
pixels. In the following, with a slight abuse of notation, we write σ = (σ1, . . . , σn)

T ∈
R

n for the unknown diffusivity.
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Fig. 2 PDE solution for source terms on circular subdomains

The source term g in the diffusion model (1) can be identified with the linear
functional on the right hand side of the variational formulation (2)

l ∈ H−1(�), l(v) :=
∫

�

gv dx,

which corresponds to identifying L2(�) with a subset of H−1(�). Accordingly, we
consider excitations in the form of linear functionals. Also, to emphasize that the
solution depends on the diffusion coefficient and the excitation, we write ul

σ in the
following. The left image in Fig. 2 illustrates the concentration resulting from a con-
stant source term g = χD , i.e. l(v) = ∫

D
v dx, where D = D2 ∪ D4 ∪ D5 ∪ D7 is a

union of four circular subdomains as sketched in the right image of Fig. 1. The right
image in Fig. 2 shows the corresponding plot for D = D1 ∪ D3 ∪ D6 ∪ D8. Both
images show the solution of (1) with constant diffusion coefficient σ = 1.

Natural models for measuring the solution of (1) also yield to linear functionals.
Measuring the total concentration in one of the circular subdomains Dj corresponds
to measuring r(u) := ∫

Dj
udx. Hence, the inverse problem of determining finitely

many information about the diffusivity coefficient from finitely many measurements
of the concentration (possibly but not necessarily resulting from different excitations)
leads to the finite-dimensional inverse problem to

determine σ ∈R
n+ from F(σ ) ∈R

m,

where

F : R
n+ →R

m, F(σ ) := (rj (u
lj
σ ))mj=1,

and u
lj
σ ∈ H 1

0 (�) solves

n∑
i=1

σibi(u
lj
σ , v) = lj (v) for all v ∈ H 1

0 (�),
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with given lj , rj ∈ H−1(�), j = 1, . . . ,m, and

bi(u, v) :=
∫
Pi

∇u · ∇v dx, i = 1, . . . , n.

2.2 Electrical Impedance Tomography (EIT)

We give another example for an application that leads to an inverse elliptic coefficient
problem in a similar form as the diffusion example.

EIT aims to image the inner conductivity structure of a subject by current and
voltage measurements through electrodes attached to the imaging subject. Let � ⊆
R

d , d ∈ {2,3}, be a smoothly bounded domain denoting the imaging subject. The
electrodes Ek , k = 1, . . . ,K , are assumed to be open connected subsets of ∂� with
disjoint closures.

When currents with strength J = (J1, . . . , JK) ∈ R
K are driven through the K

electrodes (with
∑K

k=1 Jk = 0), the resulting electric potential u ∈ H 1(�) inside �,
and the potential U ∈R

K on the electrodes, solve

∇ · (σ∇u) = 0 in �,

σ∂νu = 0 on ∂� \
K⋃

k=1

Ek,

u + zσ∂νu = const. =: Uk on Ek, k = 1, . . . ,K,∫
Ek

σ ∂νu|Ek
ds = Jk on Ek, k = 1, . . . ,K,

where σ ∈ L∞+ (�) is the conductivity inside �, and z > 0 is the contact impedance
of the electrodes.

Under the gauge condition U ∈ R
K	 := {V ∈ R

K : ∑K
k=1 Vk = 0}, one can show

(see [19]) that this so-called complete electrode model (CEM) for EIT is equivalent
to the variational formulation that (u,U) ∈ H 1(�) ×R

K	 solves

∫
�

σ∇u · ∇w dx +
K∑

k=1

∫
Ek

1

z
(u − Uk)(w − Wk)ds =

K∑
k=1

JkWk (3)

for all (w,W) ∈ H 1(�)×R
K	 , and unique solvability follows from the Lax-Milgram

theorem.
We assume that z > 0 is known, and that σ(x) = ∑n

i=1 σiχPi
(x) is piecewise

constant with respect to a pixel partition � = ⋃n
i=1 Pi , and write σ = (σ1, . . . , σn) ∈

R
n for the unknown conductivity values inside �.
The applied current patterns J = (J1, . . . , JK) ∈ R

K can be identified with the
functional

l ∈ H ′, l(w,W) :=
K∑

k=1

JkWk for all (w,W) ∈ H := H 1(�) ×R
K	 .
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Likewise, measuring the voltage between the k1-th and the k2-th electrode corre-
sponds to measuring the linear functional

r ∈ H ′, r(u,U) := Uk1 − Uk2,

of the solution (u,U) ∈ H generated by some current pattern.
Hence, the problem of determining the interior conductivity with a fixed finite

resolution from finitely many voltage-current measurements in EIT (with CEM) leads
to the finite-dimensional inverse problem to

determine σ ∈R
n+ from F(σ ) ∈R

m,

where F : R
n+ → R

m, F(σ ) := (rj (u
lj
σ ,U

lj
σ ))mj=1, and (u

lj
σ ,U

lj
σ ) ∈ H solves

b0((u
lj
σ ,U

lj
σ ), (w,W)) +

n∑
i=1

σi bi((u
lj
σ ,U

lj
σ ), (w,W)) = lj (w,W)

for all (w,W) ∈ H , with given lj , rj ∈ H ′, j = 1, . . . ,m, and

b0((u,U), (w,W)) :=
K∑

k=1

∫
Ek

1

z
(u − Uk)(w − Wk)ds,

bi((u,U), (w,W)) :=
∫
Pi

∇u · ∇w dx.

Clearly, one could also extend this formulation to cover the case of unknown contact
impedances.

3 The True-Solution Setting

The examples in Sect. 2 lead to inverse problems for a finite-dimensional non-linear
forward operator F : R

n+ → R
m, where evaluations of F require solving an infinite-

dimensional linear problem (the PDE). In this section, we will first derive some prop-
erties of F for the case that it is defined with the true infinite-dimensional PDE solu-
tion. The properties of the operator F ≈ F , that is defined with a FEM-approximation
of the PDE solution, will be studied in Sect. 4.

3.1 The True-Solution Forward Operator and Its Derivative

We will study problems that appear in the variational formulation of elliptic PDEs
with piecewise constant coefficients on a fixed pixel partition, as in the examples in
Sect. 2.
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The Variational Setting Let H be a Hilbert space. We consider the problem of finding
u ∈ H that solves

bσ (u, v) = l(v), (4)

where bσ : H × H → R is a bilinear form, and l ∈ H ′ = L(H,R). bσ is assumed to
linearly depend on n parameters σ = (σ1, . . . , σn) ∈R

n in the following way

bσ (u, v) = b0(u, v) +
n∑

i=1

σibi(u, v),

where b0, bi : H × H → R are bounded, symmetric and positive semidefinite bi-
linear forms. Writing 1 := (1, . . . ,1)T ∈ R

n, we also assume that b1 is bounded and
coercive with constants β,C > 0, i.e.,

C ‖v‖2 ≥ b1(v, v) = b0(v, v) +
n∑

i=1

bi(v, v) ≥ β ‖v‖2 ∀v ∈ H.

Clearly, this yields that for all σ ∈R
n+

C max{1, σ1, . . . , σn}‖v‖2 ≥ bσ (v, v) ≥ β min{1, σ1, . . . , σn}‖v‖2 ∀v ∈ H, (5)

so that bσ is symmetric, bounded and coercive. Here and in the following R
n+ denotes

the set of all σ ∈ R
n with σ > 0 and “>” and “≥” are understood elementwise on

R
n.

The True-Solution Forward Operator We now characterize the derivative of the solu-
tion of (4) with respect to σ .

Lemma 1 Let l ∈ H ′. The solution operator

S : R
n+ → H, S(σ ) := ul

σ , where ul
σ ∈ H solves (4),

is infinitely often Fréchet differentiable. Its first derivative

S′ : R
n+ → L(Rn,H)

fulfills that, for all σ ∈ R
n+ and τ ∈R

n, S′(σ )τ ∈ H is the unique solution of

bσ (S′(σ )τ,w) = −
n∑

i=1

τibi(u
l
σ ,w) ∀w ∈ H.

Also, for r ∈ H ′, σ ∈R
n+, and τ ∈R

n,

r(ul
σ ) = bσ (ul

σ , ur
σ ) and r

(
S ′(σ )τ

) = −
n∑

i=1

τibi(u
l
σ , ur

σ ).
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Proof For σ ∈ R
n+, the Riesz theorem yields that there exists a unique operator

B(σ ) ∈ L(H,H ′) associated to the bilinear form bσ (·, ·), i.e.

〈B(σ )u, v〉H ′×H = bσ (u, v) for all u,v ∈ H.

Clearly, B(σ ) is symmetric and, by the Lax-Milgram theorem, B(σ ) is invertible
with symmetric inverse B(σ )−1 ∈ L(H ′,H). Hence, (4) is uniquely solvable, and
the solution operator S is well-defined.

It is easily checked, that B(σ ) is Fréchet differentiable for every σ ∈R
n+, and that

its derivative B′(σ ) ∈ L(Rn,L(H,H ′)) is given by

B′(σ )τ =
n∑

i=1

τiBi for all σ ∈ R
n+, τ ∈ R

n,

where Bi ∈ L(H,H ′) is the unique operator fulfilling

(Biu, v)H ′×H = bi(u, v) for all u,v ∈ H.

Since B′(σ ) does not depend on σ , this also shows that B(σ ) is infinitely often
Fréchet differentiable with all second and higher derivatives being zero.

Using the derivative of operator inversion and the product and chain rule for the
Fréchet derivative, we thus obtain that S(σ ) is infinitely often Fréchet differentiable
with

S ′(σ )τ = −B(σ )−1(B′(σ )(τ ))B(σ )−1l = −
n∑

i=1

τiB(σ )−1Biu
l
σ .

Hence, v = S ′(σ )τ ∈ H solves

bσ (v,w) = −
n∑

i=1

〈τiBiu
l
σ ,w〉H ′×H = −

n∑
i=1

τibi(u
l
σ ,w) ∀w ∈ H.

Moreover, we obtain for all r ∈ H ′, by using the symmetry of B(σ ),

r(ul
σ ) = 〈B(σ )B(σ )−1r, ul

σ 〉H ′×H = bσ (ul
σ , ur

σ ),

and

r
(
S ′(σ )τ

) = 〈r,S ′(σ )τ 〉H ′×H = 〈B(σ )S ′(σ )τ,B(σ )−1r〉H ′×H

= −
n∑

i=1

τi〈Bi u
l
σ , ur

σ , 〉H ′×H = −
n∑

i=1

τibi(u
l
σ , ur

σ ),

which finished the proof. �

Corollary 1 Let l, r ∈ H ′. Then the mapping

Fl,r : R
n+ → R, Fl,r (σ ) := r(ul

σ )
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fulfills

Fl,r (σ ) = bσ (ul
σ , ur

σ ) for all σ ∈R
n+.

Moreover, Fl,r : R
n+ → R is infinitely often differentiable and its first derivatives

fulfill

∂

∂σi

Fl,r (σ ) = −bi(u
l
σ , ur

σ ).

Proof This follows from Lemma 1. �

3.2 Convexity and Monotonicity for Symmetric Measurements

A special mathematical structure appears for measurements Fl,r , when l and r are
taken from the same subset of H ′, and all combinations are used. In the stationary
diffusion example this corresponds to using the same subsets of � both for exci-
tations and concentration measurements, in EIT this corresponds to using the same
electrodes for voltage and current measurements.

Given a set of m ∈N excitations/measurements {l1, . . . , lm} ⊂ H ′, we combine the
measurements into a matrix-valued map F : R

n+ → R
m×m

F(σ ) = (Fj,k(σ ))j,k=1,...,m ∈R
m×m, Fj,k(σ ) = Flj ,lk (σ ) = lk(u

lj
σ ).

As before, we write “≥” for the elementwise order on R
n. We also write Sm ⊆

R
m×m for the subset of symmetric m × m-matrices, and “�” for the Loewner order

on Sm, i.e. B � A denotes that B − A is positive semi-definite.

Lemma 2 F : R
n+ → R

m×m has the following properties:

(a) F is infinitely often differentiable.
(b) For all σ ∈ R

n+, F(σ ) ∈ Sm and F(σ ) � 0. F(σ ) is positive definite if
l1, . . . , lm ∈ H ′ are linearly independent.

(c) F is monotonically non-increasing, i.e.

F ′(σ )τ � 0 for all σ ∈ R
n+, 0 ≤ τ ∈R

n, (6)

and for all σ (1), σ (2) ∈ R
n+

σ (1) ≤ σ (2) implies F(σ (1)) � F(σ (2)). (7)

(d) F is convex, i.e., for all σ,σ (0) ∈ R
n+,

F(σ ) −F(σ (0)) � F ′(σ (0))(σ − σ (0)), (8)

and, for all t ∈ [0,1],
F((1 − t)σ (0) + tσ ) � (1 − t)F(σ (0)) + tF(σ ). (9)
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Proof Corollary 1 shows that each component of F is infinitely often differentiable
so that (a) is proven.

For the rest of the proof let σ ∈ R
n+, g ∈ R

m, and set l := ∑m
j=1 gj lj . By Corol-

lary 1,

lk(u
lj
σ ) = bσ (u

lj
σ , ulk

σ ) = bσ (ulk
σ , u

lj
σ ) = lj (u

lk
σ ),

so that F(σ ) is a symmetric matrix. Moreover,

gT F(σ )g =
m∑

j,k=1

gj lk(u
lj
σ )gk =

m∑
j,k=1

gjgkbσ (u
lj
σ , ulk

σ ) = bσ (ul
σ , ul

σ ) ≥ 0,

so that F(σ ) � 0. If g �= 0 and l1, . . . , lm ∈ H ′ are linearly independent then l �= 0,
which implies ul

σ �= 0 and thus gT F(σ )g > 0. Hence, (b) is proven.
To prove (c) and (d), we start by using again Corollary 1 and obtain

gT (F ′(σ )τ )g = −
n∑

i=1

τibi(u
l
σ , ul

σ ) for all τ ∈R
n.

Since the bilinear forms bi(·, ·) are positive semi-definite, this implies (6).
To prove (8), let σ (0) ∈ R

n+. For brevity we write ul
0 := ul

σ0
. Using

bσ (ul
σ , ul

0) = l(ul
0) = bσ0(u

l
0, u

l
0),

we obtain that

0 ≤ bσ (ul
σ − ul

0, u
l
σ − ul

0) = bσ (ul
σ , ul

σ ) − 2bσ (ul
σ , ul

0) + bσ (ul
0, u

l
0)

= bσ (ul
σ , ul

σ ) − 2bσ0(u
l
0, u

l
0) + bσ (ul

0, u
l
0)

= gT (F(σ ) −F(σ (0)))g + bσ (ul
0, u

l
0) − bσ0(u

l
0, u

l
0)

= gT (F(σ ) −F(σ (0))g +
n∑

i=1

(σi − σ
(0)
i )bi(u

l
0, u

l
0).

This shows that

gT (F(σ ) −F(σ (0)))g ≥ −
n∑

i=1

(σi − σ
(0)
i )bi(u

l
0, u

l
0) = gT F ′(σ (0))(σ − σ (0))g,

so that (8) holds. Together with (6) this also implies (7).
(9) follows from (8) by the following standard argument. Let σ,σ (0) ∈ R

n+, t ∈
[0,1], and set

σ (t) := tσ + (1 − t)σ (0) ∈R
n+.

Using (8) on F(σ ) −F(σ (t)) and F(σ (0)) −F(σ (t)), we then obtain that

(1 − t)F(σ (0)) + tF(σ ) −F(σ (t))
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= (1 − t)(F(σ (0)) −F(σ (t))) + t (F(σ ) −F(σ (t)))

� (1 − t)F ′(σ (t))(σ (0) − σ (t)) + tF ′(σ (t))(σ − σ (t))

= F ′(σ (t))((1 − t)σ (0) + tσ − σ (t)) = 0,

which proves (9). �

4 The FEM Setting

4.1 The FEM-Approximated Forward Operator and Its Derivative

The Finite Element Method The Finite Element Method numerically approximates
the solution of (4) by solving it in a finite-dimensional subspace V ⊂ H , e.g. the
subspace of continuous, piecewise linear functions on a fixed triangulation. Let
	1, . . . ,	N denote a basis of V , e.g. the so-called hat functions for linear finite
elements. Then the finite-dimensional variational problem

ũl
σ ∈ V solves bσ (ũl

σ , v) = l(v) for all v ∈ V (10)

is equivalent to

ũl
σ =

N∑
j=1

λj	j , where Bσ λ = yl, (11)

with λ = (λj )
N
j=1 ∈ R

N , and the so-called stiffness matrix and load vector

Bσ ∈ R
N×N, with (j, k)-th entry given by bσ (	j ,	k),

yl ∈ R
N, with j -th entry given by l(	j ).

It follows from the Lax-Milgram theorem that (10) is uniquely solvable and that Bσ is
a symmetric, positive definite (and thus invertible) matrix. Moreover, the Céa-Lemma
yields that the FEM approximation ũl

σ ∈ V is as good an approximation to the true
solution ul

σ ∈ H as elements of the finite-dimensional space V can be:

‖ul
σ − ũl

σ ‖ ≤ Cσ

βσ

inf
v∈V

‖ul
σ − v‖, (12)

where Cσ := C max{1, σ1, . . . , σn}, and βσ := β min{1, σ1, . . . , σn} are the continuity
and coercivity constants of bσ , cf. (5).

Pixel Stiffness Matrices Finite element software packages include triangulation algo-
rithms, assembling routines for the global stiffness matrix Bσ and the load vector yl ,
and efficient solvers for the linear system Bσ λ = yl . For our setting where

bσ (u, v) = b0(u, v) +
n∑

i=1

σibi(u, v),
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Fig. 3 A coarser and a finer FEM-mesh for the diffusion example, both complying with the pixel partition
and the measurement/excitation subdomains

we will also require the pixel stiffness matrices

Bi ∈R
N×N, with (j, k)-th entry given by bi(	j ,	k).

The assembling of Bσ is usually done by writing it as a weighted sum of ele-
ment stiffness matrices. In our setting, it is natural to assume that the pixel partition
complies with the FEM triangulation, i.e., that each pixel is a union of triangulation
elements. Figure 3 shows a coarser and a finer FEM mesh for the diffusion exam-
ple, both complying with the pixel partition and with the subdomains that are used
for measurements and excitations. Hence, during the assembly of the global stiffness
matrix Bσ , the pixel stiffness matrices can usually be obtained without any additional
computational cost by the simple intermediate step of first summing up the element
matrices for each pixel, and then summing up the pixel stiffness matrices to obtain
Bσ . Alternatively, the pixel stiffness matrix Bi can be conveniently obtained from
global stiffness matrices by the simple identities

Bi = B1+ei
− B1, and B0 = B1 −

n∑
i=1

Bi,

where B1+ei
and B1 denote the global stiffness matrix Bσ for σ = 1+ ei and σ = 1,

respectively, and ei ∈ R
n is the i-th unit vector. Note that this does not require any

knowledge of the triangulation details.

The FEM-Approximated Forward Operator Given l, r ∈ H ′, we approximate the true
measurement Fl,r (σ ) = r(ul

σ ) by

Fl,r (σ ) := r(ũl
σ ),

where ũl
σ ∈ V is the FEM-approximation to the true solution ul

σ ∈ H , i.e., the solu-
tion of (10).
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Algorithm 1 FEM-approximation of Fl,r (σ ) and ∂
∂σi

Fl,r (σ ), i = 1, . . . , n

given l, r ∈ H ′, σ ∈R
n+

· use FEM package to calculate load vectors yl and yr

· use FEM package to calculate stiffness matrices B1, and B1+ei
for all i = 1, . . . , n

· set Bi := B1+ei
− B1 for i = 1, . . . , n, and Bσ := B1 + ∑n

i=1(σi − 1)Bi

· solve Bσ λl = yl and Bσ λr = yr for λl and λr

return Fl,r (σ ) := (λl)T yr and ∂
∂σi

Fl,r (σ ) := −(λl)T Biλ
r , i = 1, . . . , n

Lemma 3 Let l, r ∈ H ′. Then

Fl,r (σ ) = bσ (ũl
σ , ũr

σ ) for all σ ∈R
n+.

Moreover, Fl,r : R
n+ → R is infinitely often differentiable and its first derivatives

fulfill

∂

∂σi

Fl,r (σ ) = −bi(ũ
l
σ , ũr

σ ), i = 1, . . . , n.

Proof This follows by applying Corollary 1 to the Hilbert space V . �

From Lemma 3, we obtain a simple FEM-based implementation of the forward
operator and its derivative.

Corollary 2 With

ũl
σ =

N∑
j=1

λl
j	j , λl = (λl

j )
N
j=1 ∈R

N,

ũr
σ =

N∑
j=1

λr
j	j , λr = (λr

j )
N
j=1 ∈R

N,

we have that

Fl,r (σ ) = (λl)T Bσ λr = (λl)T yr , and
∂

∂σi

Fl,r (σ ) = −(λl)T Biλ
r .

Proof This follows from Lemma 3. �

We summarize the consequences of Corollary 2 in Algorithm 1. Using a FEM
package that is capable of solving the considered PDE, and that allows access
to the stiffness matrix and the load vector, one can simply implement the FEM-
approximated forward operator and all its first derivatives by a few lines of extra
code. This calculation merely requires solving two linear systems with the stiffness
matrix (which is equivalent to two PDE solutions).
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Convergence of the FEM-Approximated Forward Operator The following lemma
shows that the FEM-approximated operator and its first derivatives agree with their
true-solution counterparts as good as the FEM solution agrees with the true solu-
tion. Hence, by the Céa-Lemma (12), Fl,r (σ ) and ∂

∂σi
Fl,r (σ ) will be as good an

approximation to Fl,r (σ ) and ∂
∂σi

Fl,r (σ ) as the true solutions can be approximated
by elements of the finite-dimensional space V .

Lemma 4 For all l, r ∈ H ′ and σ ∈R
n+, we have that:

Fl,r (σ ) − Fl,r (σ ) = bσ (ul
σ − ũl

σ , ur
σ − ũr

σ ), (13)

∂

∂σi

Fl,r (σ ) − ∂

∂σi

Fl,r (σ ) = bi(ũ
l
σ , ũr

σ − ur
σ ) + bi(ũ

l
σ − ul

σ , ur
σ ). (14)

Hence, by the Céa-Lemma (12),

0 ≤ Fl,r (σ ) − Fl,r (σ ) ≤ Cσ ‖ul
σ − ũl

σ ‖ ‖ur
σ − ũr

σ ‖

≤ C3
σ

β2
σ

inf
v∈V

‖ul
σ − v‖ inf

v∈V
‖ur

σ − v‖,

and ∣∣∣∣ ∂

∂σi

Fl,r (σ ) − ∂

∂σi

Fl,r (σ )

∣∣∣∣
≤ Ci ‖ũl

σ ‖ ‖ũr
σ − ur

σ ‖ + Ci ‖ur
σ ‖ ‖ũl

σ − ul
σ ‖

≤ CiCσ

βσ

(
‖ũl

σ ‖ inf
v∈V

‖ur
σ − v‖ + ‖ur

σ ‖ inf
v∈V

‖ul
σ − v‖

)
,

where Ci > 0 is the continuity constant of bi(·, ·).
Proof Using

bσ (ũl
σ , ũr

σ ) = l(ũr
σ ) = bσ (ul

σ , ũr
σ ), and bσ (ũl

σ , ũr
σ ) = r(ũl

σ ) = bσ (ũl
σ , ur

σ ),

we obtain (13) from

Fl,r (σ ) − Fl,r (σ ) = bσ (ul
σ , ur

σ ) − bσ (ũl
σ , ũr

σ ) = bσ (ul
σ , ur

σ − ũr
σ )

= bσ (ul
σ , ur

σ − ũr
σ ) − bσ (ũl

σ , ur
σ − ũr

σ )

= bσ (ul
σ − ũl

σ , ur
σ − ũr

σ ).

Also,

∂

∂σi

Fl,r (σ ) − ∂

∂σi

Fl,r (σ ) = bi(ũ
l
σ , ũr

σ ) − bi(u
l
σ , ur

σ )

= bi(ũ
l
σ , ũr

σ − ur
σ ) + bi(ũ

l
σ − ul

σ , ur
σ ),

which shows (14). �
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4.2 Convexity and Monotonicity for Symmetric Measurements

As in Sect. 3.2 we now consider the symmetric measurement case, where l and r are
taken from the same subset of H ′ (and all combinations are used). Given a set of
m ∈ N excitations/measurements {l1, . . . , lm} ⊂ H ′, we combine the measurements
into a matrix-valued map F : R

n+ →R
m×m

F(σ) = (Fj,k(σ ))j,k=1,...,m ∈ R
m×m, Fj,k(σ ) = Flj ,lk (σ ) = lk(u

lj
σ ).

The entries of F(σ) and its first derivatives ∂
∂σi

F (σ ), i = 1, . . . , n can be cal-
culated as in Algorithm 1. Let us stress that this approach is particularly efficient
in this symmetric case as it requires only m linear system solutions with the stiff-
ness matrix (i.e., the equivalent of m PDE solutions) for calculating all m2 entries of
F(σ) ∈ R

m×m and all nm2 entries of the n matrices ∂
∂σi

F (σ ) ∈ R
m×m.

As in Sect. 3.2, the FEM-approximated forward operator is monotonically non-
increasing and convex in the sense of the elementwise order “≥” on R

n, and the
Loewner order “�” on the set of symmetric m × m-matrices.

Lemma 5 F : R
n+ →R

m×m has the following properties:

(a) F is infinitely often differentiable.
(b) For all σ ∈R

n+, F(σ) ∈ Sm and F(σ) � 0. F(σ) is positive definite if l1, . . . , lm ∈
H ′ are linearly independent.

(c) F is monotonically non-increasing, i.e.

F ′(σ )τ � 0 for all σ ∈R
n+, 0 ≤ τ ∈R

n, (15)

and for all σ (1), σ (2) ∈ R
n+

σ (1) ≤ σ (2) implies F(σ (1)) � F(σ (2)). (16)

(d) F is convex, i.e.

F(σ) − F(σ (0)) � F ′(σ (0))(σ − σ (0)) for all σ,σ (0) ∈R
n+, (17)

and, for all t ∈ [0,1],
F((1 − t)σ (0) + tσ ) � (1 − t)F (σ (0)) + tF (σ ). (18)

(e) F(σ ) � F(σ).

Proof (a)–(d) follow from applying Lemma 2 on the Hilbert space V . (e) was proven
in Lemma 4. �

5 Numerical Examples and Inverse Problem Challenges

In this section, we will show some numerical results for the stationary diffusion ex-
ample from Sect. 2.1 and demonstrate some major challenges that arise in solving
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Fig. 4 Single measurement in the top right pixel for a source term in the lower left pixel as a function of
changing the diffusivity in each of the 3 × 3 pixels

the inverse coefficient problem of recovering σ̂ ∈ R
n from F(σ̂ ) ∈ R

m, or from a
noisy version Y δ ≈ F(σ̂ ). The source codes for the following examples (and also for
generating Fig. 1 and 2) are given in the appendix for the reader’s reference.

5.1 Non-uniqueness

Even for m ≥ n, and a noise-free measurement Ŷ = F(σ̂ ) ∈ R
m, it is not clear

whether the measurements uniquely determine the unknown σ̂ ∈ R
n. To demonstrate

this on a simple one-dimensional example, let us consider the stationary diffusion
example with 3 × 3 pixels and circular excitation/measurement subdomains in each
boundary pixel as in Fig. 1. We apply a source term in D1 in the lower left pixel,
and measure the resulting total concentration in D8 in the top right pixel, so that
l = χ1 ∈ H−1(�) and r = χ8 ∈ H−1(�), where we write χj := χDj

for the ease of
notation. We choose σ = 1 in all pixels except Pi , and on Pi we vary the diffusivity
in steps of 0.01 up to 3. Figure 4 shows Fl,r (σ ) for all i = 1, . . . ,9, in the same or-
der as the pixels, e.g., the lower left image shows Fl,r (σ ) for σ = (σ1,1, . . . ,1) for
varying σ1.

Intuitively speaking, one can see that rising the diffusivity in the middle pixel
increases the measurement since particles can easier diffuse through the middle pixel
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on their way from the lower left to the top right. Rising the diffusivity in the corner
pixels decreases the measurement since particles can easier diffuse to the boundary
that is set to zero by the homogeneous Dirichlet condition. In the middle top, left,
bottom, and right pixel, rising the diffusivity first increases the measurement since
particles can easier find their way from the lower left to the top right. But at some
point, this effect is reverted since it also drives particles to the boundary.

This demonstrates that changing a coefficient can have an increasing or decreas-
ing effect on the measurements, and the effect does not have to be monotonic for
all parameter values. It also indicates that an exact one-dimensional measurement
Ŷ = Fl,r (σ̂ ) might uniquely determine one parameter in σ̂ in some cases (here: the
diffusivity in the middle and corner pixels), but non-uniqueness might occur in other
cases (here: in the top, left, bottom, and right pixel).

Let us also stress the following point. A single non-symmetric measurement
Fl,r (σ ) with l �= r might depend non-monotonically on σ as demonstrated in Fig. 4.
But, by Lemma 5, for all l, r ∈ H ′, the symmetric measurements Fl,l(σ ), Fr,r (σ ),
and also the matrix-valued measurement(

Fl,l(σ ) Fl,r (σ )

Fr,l(σ ) Fr,r (σ )

)
∈ R

2×2

are monotonically non-increasing and convex functions of σ . Note that the mono-
tonicity and convexity properties of the matrix-valued measurement hold with respect
to the Loewner order even though the individual non-diagonal matrix elements might
not have these properties.

5.2 Non-linearity and Local Minima

The inverse problem of recovering σ̂ ∈R
n from F(σ̂ ) ∈ R

m could be considered as a
non-linear root finding problem and (for n = m) approached with Newton’s method
which is only known to converge locally. However, in practice one usually takes
redundant measurements (i.e., m > n), and, due to measurement or modelling errors,
one cannot expect exact data fit. Hence, a common approach to reconstruct σ̂ ∈ R

n

from Y δ ≈ F(σ̂ ) ∈ R
m is to minimize a residuum functional, e.g.,

R(σ) := ‖F(σ) − Y δ‖2 → min!

or a sum of a residuum functional together with a regularization term.
For our simple 3 × 3-pixel example, the left image in Fig. 5 shows a contour

plot of R(σ) (in a normalized logarithmic scale) for a two-dimensional measurement
function F(σ) := (

Fχ1,χ7(σ ) Fχ1,χ8(σ )
)T ∈R

2, exact data Y δ = F(σ̂ ),

σ̂ = (
1 1 1 0.5 1 0.5 1 1 1

)T and

σ = (
1 1 1 σ4 1 σ6 1 1 1

)T
.

σ4 and σ6 are varied in steps of 0.002 up to 0.6. Again, for this choice of unknowns
and measurements, we numerically observe non-uniqueness. The results indicate that
there is a second point σ̃ �= σ̂ with F(σ̃ ) = F(σ̂ ).
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Fig. 5 Residuum functional R(σ) as a function of two parameters (left image), and as a function of one
parameter (right image)

The right image in Fig. 5 shows a plot of R(σ) (in a normalized non-logarithmic
scale) for varying σ4 while keeping σ6 := σ4, i.e. the diagonal of the left image in
Fig. 5. It indicates that in this case, one parameter in σ̂ can be uniquely reconstructed
from the two-dimensional measurement F(σ̂ ). But it also shows that the residuum
functional R(σ) possesses a local minimum in a wrong point. Since the curse of
dimensionality makes it practically infeasible to numerically find the global mini-
mizer of a non-linear functional in more than a few unknowns, this demonstrates that
optimization-based approaches also suffer from only local convergence.

5.3 Stability, Error Estimates and Ill-Posedness

Even if F(σ̂ ) uniquely determines σ̂ , and if this non-linear problem can be solved
without running into a local minimum, the problem might be ill-posed in the sense
that σ does not depend stably on F(σ). In that case, small errors in the measurements
might lead to large errors in the reconstruction. The error amplification is often quan-
tified by searching for a Lipschitz stability constant L > 0 with

‖σ1 − σ2‖ ≤ L‖F(σ1) − F(σ2)‖ for all σ1, σ2 ∈R
n.

It should be stressed though, that such a stability estimate does not immediately yield
an error estimate for noisy measurements Y δ ≈ F(σ̂ ), since Y δ might not lie in the
range of F .

To estimate the (relative) error amplification, we calculate the condition number
of F ′(1) for our 3 × 3 example, where F : R

9 → R
64 now depends on all 9 pixel

values, and the components of F are given by Fl,r with l and r running through all
8×8-combinations of χ1, . . . , χ8, i.e., we use all combinations of circular subdomain
for applying source terms and for measuring the solution. Note that, Lemma 5 implies
that roughly half of the measurements are redundant by symmetry, and that unlike in
Sects. 3.2 and 4.2, we simply write the measurements as a long vector in order to
have F ′(1) ∈R

9,64 as a matrix.
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Fig. 6 Condition number of F ′(1) as a function of the total number of pixels (right image) for pixel
partitions ranging from 2 × 2 to 15 × 15 as sketched in left image

We repeat the calculation of the condition number of F ′(1) for analogous settings
with nx ×nx -pixels, and (4nx −4)× (4nx −4) measurements on circular subdomains
in the boundary pixels, cf. the left image in Fig. 6 for the geometry of the 15 × 15-
pixel case. The right image in Fig. 6 shows the condition number as a function of the
total number of pixels n2

x for nx ∈ {2,3, . . . ,15}.
Our results indicate that the instability of the considered inverse problem grows

roughly exponentially with the number of unknowns which is in par with theoretical
results on the similar elliptic inverse coefficient problem of EIT [17].

5.4 Further Reading

There is vast literature on theoretical and numerical inverse coefficient problems,
their practical applications, and the regularization of ill-posed problems. Let us sin-
gle out just a very few results as starting points for further reading that are closely
connected to the challenges addressed in this section, and the author’s own research.
Arguably the most prominent inverse elliptic coefficient problem is the so-called
Calderón problem [7, 8] with applications in EIT, cf. [1, 5] for surveys on EIT and
the related field of diffuse optical tomography. For theoretical uniqueness proofs in
the infinite-dimensional setting of (intuitively speaking) infinitely many pixels and
measurements we refer to [10, 15, 20]. A survey on solving parameter identification
problems for PDEs with a focus on sparsity regularization can be found in [13]. The
interplay between instability, regularization and FEM discretization is studied in [14].
A result on convexification approaches to obtain globally convergent reconstruction
algorithms can be found in [16]. Learning-based approaches for inverse coefficient
problems and parametrized PDEs are studied in [4, 6, 18].

Results on uniqueness and Lipschitz stability for finitely many unknowns from
infinitely or finitely many measurements have been obtained in, e.g., [2, 3, 11]. Let
us stress that, for most problems, it is still an open question, how many (and which)
measurements are required to uniquely determine an unknown PDE coefficient with a
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given resolution, how to explicitly quantify the error amplification, and how to obtain
globally convergent reconstruction algorithms. For a relatively simple, but fully non-
linear inverse problem of determining a Robin coefficient in an elliptic PDE, these
question were recently answered in [12] by exploiting the convexity and monotonicity
structure of symmetric measurements from Sects. 3.2 and 4.2.

Appendix: Source Code for COMSOL with MATLAB LiveLink

Listing 1–3 contain auxiliary functions to build and manipulate the FEM model. Fig-
ure 1–6 are created by Listing 4–9.

Listing 1 Build_model.m
f u n c t i o n model = Bui ld_Model ( nx )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% B u i l d s t h e model f o r t h e s t a t i o n a r y d i f f u s i o n example w i t h
% nx \ t i m e s nx p i x e l s and e x c i t a t i o n s / measurements on c i r c u l a r
% subdomains l o c a t e d i n t h e boundary p i x e l s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i m p o r t com . comsol . model .∗
i m p o r t com . comsol . model . u t i l .∗

% Clear p r e v i o u s l y used models and c r e a t e new one :
Mode lUt i l . c l e a r ; model = Mode lUt i l . c r e a t e ( ’ Model ’ ) ;

n=nx∗nx ; model . param . s e t ( ’ n ’ , n ) ; % t o t a l number o f p i x e l s
m=4∗nx −4; model . param . s e t ( ’m’ ,m) ; % t o t a l number o f d i s c s

% C r e a t e t h e o u t e r domain Omega as u n i t s q u a r e :
cp=model . component . c r e a t e ( ’ cp ’ ) ;
s e t t i n g =cp . geom . c r e a t e ( ’ s e t t i n g ’ , 2 ) ;
Omega= s e t t i n g . c r e a t e ( ’Omega ’ , ’ Square ’ ) ; Omega . s e t ( ’ s i z e ’ , 1 ) ;
Omega . s e t ( ’ s e l r e s u l t ’ , t r u e ) ; Omega . s e t ( ’ s e l r e s u l t s h o w ’ , ’ bnd ’ ) ;

% C r e a t e p i x e l s , c i r c u l a r subdomains i n boundary p i x e l s ,
% and v a r i a b l e s t o c o n t r o l d i f f u s i v i t y and s o u r e t e r m s
P _ s i z e =1/ nx ; D _ r a d i u s =0.15∗ P _ s i z e ;
a l lDnames= c e l l ( 1 ,m) ; iP =0; iD =0;
f o r j =1 : nx

y =( j −1)∗ P _ s i z e ;
f o r k =1: nx

x =( k−1)∗ P _ s i z e ;
iP = iP +1; Pname =[ ’P ’ , num2str ( iP ) ] ;
sigmaname =[ ’ s igma ’ , num2str ( iP ) ] ;
P i = s e t t i n g . c r e a t e ( Pname , ’ Square ’ ) ;
P i . s e t ( ’ pos ’ , [ x , y ] ) ; P i . s e t ( ’ s i z e ’ , P _ s i z e ) ;
P i . s e t ( ’ s e l r e s u l t ’ , t r u e ) ;
s i g m a i =cp . v a r i a b l e . c r e a t e ( sigmaname ) ;
s i g m a i . s e l e c t i o n . named ( [ ’ s e t t i n g _ ’ , Pname , ’_dom ’ ] ) ;
s i g m a i . s e t ( ’ s igma ’ , 1 ) ;

i f ( j ==1) | | ( j ==nx ) | | ( k ==1) | | ( k==nx )
iD=iD +1; Dname=[ ’D’ , num2str ( iD ) ] ;
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a l lDnames { iD}=Dname ; lname =[ ’ l ’ , num2str ( iD ) ] ;
Di= s e t t i n g . c r e a t e ( Dname , ’ C i r c l e ’ ) ;
Di . s e t ( ’ pos ’ , [ x +0.5∗ P_s i ze , y +0.5∗ P _ s i z e ] ) ;
Di . s e t ( ’ r ’ , D _ r a d i u s ) ; Di . s e t ( ’ s e l r e s u l t ’ , t r u e ) ;
l i =cp . v a r i a b l e . c r e a t e ( lname ) ;
l i . s e l e c t i o n . named ( [ ’ s e t t i n g _ ’ , Dname , ’_dom ’ ] ) ;
l i . s e t ( ’ g ’ , 1 ) ;

end
end

end

% Complement o f un ion o f c i r c u l a r subdomains i n Omega :
notD= s e t t i n g . c r e a t e ( ’ notD ’ , ’ D i f f e r e n c e ’ ) ;
notD . s e l e c t i o n ( ’ i n p u t ’ ) . s e t ( { ’Omega ’ } ) ;
notD . s e l e c t i o n ( ’ i n p u t 2 ’ ) . s e t ( a l lDnames ) ;
notD . s e t ( ’ s e l r e s u l t ’ , t r u e ) ;
notD . s e t ( ’ keep ’ , t r u e ) ;
l 0 =cp . v a r i a b l e . c r e a t e ( ’ l 0 ’ ) ;
l 0 . s e l e c t i o n . named ( ’ s e t t i n g _ n o t D _ d o m ’ ) ; l 0 . s e t ( ’ g ’ , 0 ) ;
s e t t i n g . run ;

% E n t e r PDE and c r e a t e FEM−mesh :
PDE=model . p h y s i c s . c r e a t e ( ’ phys ’ , ’ Coef f i c i en tFormPDE ’ , ’ s e t t i n g ’ ) ;
PDE . f e a t u r e ( ’ c f e q 1 ’ ) . s e t ( ’ c ’ , ’ s igma ’ ) ;
PDE . f e a t u r e ( ’ c f e q 1 ’ ) . s e t ( ’ f ’ , ’ g ’ ) ;
PDE . f e a t u r e ( ’ c f e q 1 ’ ) . s e t ( ’ da ’ , { ’ 0 ’ } ) ;
bc=PDE . c r e a t e ( ’ b o u n d a r y _ c o n d i t i o n ’ , ’ D i r i c h l e t B o u n d a r y ’ , 1 ) ;
bc . s e l e c t i o n . named ( ’ se t t i ng_Omega_bnd ’ ) ;
FEM_mesh=cp . mesh . c r e a t e ( ’FEM_mesh ’ ) ;
FEM_mesh . run ;

% Prepare s o l v e r and s o l u t i o n p l o t :
s t u d y _ o b j e c t =model . s t u d y . c r e a t e ( ’ s t u d y _ o b j e c t ’ ) ;
s t u d y _ o b j e c t . f e a t u r e . c r e a t e ( ’ s t a t ’ , ’ S t a t i o n a r y ’ ) ;
s t u d y _ o b j e c t . run ;
p l o t _ o b j e c t =model . r e s u l t . c r e a t e ( ’ p l o t _ o b j e c t ’ , ’ PlotGroup2D ’ ) ;
p l o t _ o b j e c t . s e t ( ’ d a t a ’ , ’ d s e t 1 ’ ) ;
s u r f _ o b j e c t = p l o t _ o b j e c t . c r e a t e ( ’ s u r f _ o b j e c t ’ , ’ S u r f a c e ’ ) ;
s u r f _ o b j e c t . s e t ( ’ exp r ’ , ’ u ’ ) ;
p l o t _ o b j e c t . run ;
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Listing 2 Set_Variables.m
f u n c t i o n S e t _ V a r i a b l e s ( model , sigma , l )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% s e t s t h e model v a r i a b l e s t o g i v e n v e c t o r s s igma and l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n=str2num ( model . param . g e t ( ’ n ’ ) ) ;
m=str2num ( model . param . g e t ( ’m’ ) ) ;

f o r i =1 : n
s i g m a i =[ ’ s igma ’ , num2str ( i ) ] ;
model . component ( ’ cp ’ ) . v a r i a b l e ( s i g m a i ) . s e t ( ’ s igma ’ , s igma ( i ) ) ;

end

f o r i =1 :m
l i =[ ’ l ’ , num2str ( i ) ] ;
model . component ( ’ cp ’ ) . v a r i a b l e ( l i ) . s e t ( ’ g ’ , l ( i ) ) ;

end

Listing 3 Build_Stiffness_and_Load.m
f u n c t i o n [ B_a l l_1 , B , y ]= B u i l d _ S t i f f n e s s _ a n d _ L o a d ( model )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% C a l c u l a t e s s t i f f n e s s m a t r i x B _ a l l _ 1 % ( w i t h sigma=1 e v e r y w h e r e ) ,
% B{ i } : p i x e l s t i f f n e s s m a t r i x o f i−t h p i x e l , and
% y : m a t r i x w i t h co lumnwise load v e c t o r y _ j
% f o r e x c i t a t i o n on j−t h c i r c l e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n= s t r 2 d o u b l e ( model . param . g e t ( ’ n ’ ) ) ;
m= s t r 2 d o u b l e ( model . param . g e t ( ’m’ ) ) ;

l = z e r o s ( 1 ,m) ; s igma= ones ( 1 , n ) ; S e t _ V a r i a b l e s ( model , sigma , l ) ;
FEM_st ruc t =mphmatr ix ( model , ’ s o l 1 ’ , ’ o u t ’ , ’Kc ’ ) ;
B _ a l l _ 1 = FEM_st ruc t . Kc ;

B= c e l l ( 1 , n ) ;
y= z e r o s ( s i z e ( B_a l l_1 , 1 ) ,m) ;
f o r j =1 : n

sigma= ones ( 1 , n ) ; s igma ( j ) = 2 ;
i f j <=m

l = z e r o s ( 1 ,m) ; l ( j ) = 1 ;
S e t _ V a r i a b l e s ( model , sigma , l ) ;
FEM_st ruc t =mphmatr ix ( model , ’ s o l 1 ’ , ’ o u t ’ , { ’Kc ’ , ’ Lc ’ } ) ;
y ( : , j )= FEM_st ruc t . Lc ;

e l s e
S e t _ V a r i a b l e s ( model , sigma , l ) ;
FEM_st ruc t =mphmatr ix ( model , ’ s o l 1 ’ , ’ o u t ’ , { ’Kc ’ } ) ;

end
B{ j }= FEM_st ruc t . Kc−B _ a l l _ 1 ;

end



Introduction to FEM for Inverse Coefficient Problems in Elliptic PDEs 205

Listing 4 Plot_Figure_Setting.m
f u n c t i o n P l o t _ F i g u r e _ S e t t i n g

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% C r e a t e s t h e two images i n f i g u r e 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model = Bui ld_Model ( 3 ) ;
m= s t r 2 d o u b l e ( model . param . g e t ( ’m’ ) ) ;
n= s t r 2 d o u b l e ( model . param . g e t ( ’ n ’ ) ) ;

f = f i g u r e ;
m p h v i e w s e l e c t i o n ( model , ’ s e t t i n g _ n o t D _ d o m ’ , . . .

’ e d g e c o l o r s e l e c t e d ’ , [ 0 , 0 , 0 ] , ’ f a c e c o l o r s e l e c t e d ’ , ’w’ , . . .
’ f a c e c o l o r ’ , ’ g r a y ’ ) ;

t i t l e ( ’ ’ ) ;
f o r j =1 :m

Dname=[ ’D’ , num2str ( j ) ] ; D l a b e l =[ ’$D_ ’ , num2str ( j ) , ’ $ ’ ] ;
D c e n t e r =str2num ( . . .

model . geom ( ’ s e t t i n g ’ ) . f e a t u r e ( Dname ) . g e t S t r i n g ( ’ pos ’ ) ) ;
t e x t ( D c e n t e r ( 1 ) , D c e n t e r ( 2 ) , Dlabe l , ’ H o r i z o n t a l A l i g n m e n t ’ , . . .

’ c e n t e r ’ , ’ F o n t S i z e ’ , 1 4 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
% a l s o remove Dj f o r t h e n e x t p l o t :
model . geom ( ’ s e t t i n g ’ ) . f e a t u r e . remove ( Dname ) ;

end
s e t ( gca , ’ XTick ’ , [ 0 , 0 . 5 , 1 ] , ’ YTick ’ , [ 0 , 0 . 5 , 1 ] , ’ F o n t S i z e ’ , 1 4 ) ;
a x i s ( [ − 0 . 0 5 , 1 . 0 5 , − 0 . 0 5 , 1 . 0 5 ] )
e x p o r t g r a p h i c s ( f , ’ f i g _ p i x e l _ p a r t i t i o n _ w i t h _ c i r c s . eps ’ , . . .

’ Conten tType ’ , ’ v e c t o r ’ ) ;

% remove complement o f c i r c l e s t o o n l y p l o t p i x e l p a r t i o n
model . geom ( ’ s e t t i n g ’ ) . f e a t u r e . remove ( ’ notD ’ ) ;

% P l o t t h e p i x e l p a r t i t i o n :
f = f i g u r e ; mphgeom ( model ) ; t i t l e ( ’ ’ ) ;
f o r i =1 : n

Pname =[ ’P ’ , num2str ( i ) ] ;
P l a b e l =[ ’ $ \ m a t h c a l P_ ’ , num2str ( i ) , ’ $ ’ ] ;
Ppos=str2num ( . . .

model . geom ( ’ s e t t i n g ’ ) . f e a t u r e ( Pname ) . g e t S t r i n g ( ’ pos ’ ) ) ;
P s i z e =str2num ( . . .

model . geom ( ’ s e t t i n g ’ ) . f e a t u r e ( Pname ) . g e t S t r i n g ( ’ s i z e ’ ) ) ;
t e x t ( Ppos ( 1 ) + P s i z e / 2 , Ppos ( 2 ) + P s i z e / 2 , P l a b e l , . . .

’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ , ’ F o n t S i z e ’ , 1 4 , . . .
’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

end
s e t ( gca , ’ XTick ’ , [ 0 , 0 . 5 , 1 ] , ’ YTick ’ , [ 0 , 0 . 5 , 1 ] , ’ F o n t S i z e ’ , 1 4 ) ;
a x i s ( [ − 0 . 0 5 , 1 . 0 5 , − 0 . 0 5 , 1 . 0 5 ] )
e x p o r t g r a p h i c s ( f , ’ f i g _ p i x e l _ p a r t i t i o n . pdf ’ , ’ Conten tType ’ , ’ v e c t o r ’ ) ;
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Listing 5 Plot_Figure_Excitations.m
f u n c t i o n P l o t _ F i g u r e _ E x c i t a t i o n s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% C r e a t e s t h e two images i n f i g u r e 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model = Bui ld_Model ( 3 ) ;
s igma = [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ;
l = [ 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 ] ;
S e t _ V a r i a b l e s ( model , sigma , l ) ;
model . s t u d y ( ’ s t u d y _ o b j e c t ’ ) . run ;
model . r e s u l t ( ’ p l o t _ o b j e c t ’ ) . run ;
f = f i g u r e ; mphplot ( model ) ; t i t l e ( ’ ’ ) ; x l a b e l ( ’ ’ ) ; y l a b e l ( ’ ’ ) ;
s e t ( gca , ’ XTick ’ , [ 0 , 0 . 5 , 1 ] , ’ YTick ’ , [ 0 , 0 . 5 , 1 ] , ’ F o n t S i z e ’ , 1 4 ) ;
a x i s ( [ − 0 . 0 5 , 1 . 0 5 , − 0 . 0 5 , 1 . 0 5 ] )
e x p o r t g r a p h i c s ( f , ’ f i g _ e x c i t a t i o n s 1 . pdf ’ , ’ Conten tType ’ , ’ v e c t o r ’ ) ;

l = [ 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 ] ;
S e t _ V a r i a b l e s ( model , sigma , l ) ;
model . s t u d y ( ’ s t u d y _ o b j e c t ’ ) . run ;
model . r e s u l t ( ’ p l o t _ o b j e c t ’ ) . run ;
f = f i g u r e ; mphplot ( model ) ; t i t l e ( ’ ’ ) ; x l a b e l ( ’ ’ ) ; y l a b e l ( ’ ’ ) ;
s e t ( gca , ’ XTick ’ , [ 0 , 0 . 5 , 1 ] , ’ YTick ’ , [ 0 , 0 . 5 , 1 ] , ’ F o n t S i z e ’ , 1 4 ) ;
a x i s ( [ − 0 . 0 5 , 1 . 0 5 , − 0 . 0 5 , 1 . 0 5 ] )
e x p o r t g r a p h i c s ( f , ’ f i g _ e x c i t a t i o n s 2 . pdf ’ , ’ Conten tType ’ , ’ v e c t o r ’ ) ;

Listing 6 Plot_Figure_CompliantMesh.m
f u n c t i o n P l o t _ F i g u r e _ C o m p l i a n t M e s h

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% C r e a t e s t h e two images i n f i g u r e 3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model = Bui ld_Model ( 3 ) ;

% Coarser mesh :
model . component ( ’ cp ’ ) . mesh ( ’FEM_mesh ’ ) . f e a t u r e . . .

( ’ s i z e ’ ) . s e t ( ’ h a u t o ’ , 8 ) ;
model . component ( ’ cp ’ ) . mesh ( ’FEM_mesh ’ ) . run ;
f = f i g u r e ; mphmesh ( model ) ; t i t l e ( ’ ’ ) ; x l a b e l ( ’ ’ ) ; y l a b e l ( ’ ’ ) ;
s e t ( gca , ’ XTick ’ , [ 0 , 0 . 5 , 1 ] , ’ YTick ’ , [ 0 , 0 . 5 , 1 ] , ’ F o n t S i z e ’ , 1 4 ) ;
a x i s ( [ − 0 . 0 5 , 1 . 0 5 , − 0 . 0 5 , 1 . 0 5 ] )
e x p o r t g r a p h i c s ( f , ’ f i g _ c o m p l i a n t _ m e s h . pdf ’ , ’ Conten tType ’ , ’ v e c t o r ’ ) ;

% F i n e r mesh :
model . component ( ’ cp ’ ) . mesh ( ’FEM_mesh ’ ) . f e a t u r e . . .

( ’ s i z e ’ ) . s e t ( ’ h a u t o ’ , 3 ) ;
model . component ( ’ cp ’ ) . mesh ( ’FEM_mesh ’ ) . run ;
f = f i g u r e ; mphmesh ( model ) ; t i t l e ( ’ ’ ) ; x l a b e l ( ’ ’ ) ; y l a b e l ( ’ ’ ) ;
s e t ( gca , ’ XTick ’ , [ 0 , 0 . 5 , 1 ] , ’ YTick ’ , [ 0 , 0 . 5 , 1 ] , ’ F o n t S i z e ’ , 1 4 ) ;
a x i s ( [ − 0 . 0 5 , 1 . 0 5 , − 0 . 0 5 , 1 . 0 5 ] )
e x p o r t g r a p h i c s ( f , ’ f i g _ c o m p l i a n t _ m e s h _ f i n e . pdf ’ , . . .

’ Conten tType ’ , ’ v e c t o r ’ ) ;
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Listing 7 Plot_Figure_Non_uniqueness.m
f u n c t i o n P l o t _ F i g u r e _ N o n _ u n i q u e n e s s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% C r e a t e s t h e n i n e images i n f i g u r e 4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model = Bui ld_Model ( 3 ) ;
[ B_a l l_1 , B , y ]= B u i l d _ S t i f f n e s s _ a n d _ L o a d ( model ) ;
y _ l =y ( : , 1 ) ; y_r =y ( : , end ) ;

s igma= l i n s p a c e ( 0 . 0 1 , 3 , 3 0 0 ) ;
F= z e r o s ( 9 , l e n g t h ( s igma ) ) ;

p a r f o r j =1 : l e n g t h ( s igma )
f o r i =1:9

B_sigma= B _ a l l _ 1 +( sigma ( j ) −1)∗B{ i } ;
l ambda_ l =B_sigma \ y _ l ;
F ( i , j )= y_r ’∗ l ambda_ l ;

end
end

f o r j =1:9
f igname =[ ’ f i g _ n o n _ u n i q u e n e s s ’ , num2str ( j ) , ’ . pdf ’ ] ;
f = f i g u r e ; p l o t ( sigma , F ( j , : ) , ’ LineWidth ’ , 2 ) ;
s e t ( gca , ’ F o n t S i z e ’ , 1 6 ) ;
e x p o r t g r a p h i c s ( f , f igname , ’ Conten tType ’ , ’ v e c t o r ’ ) ;

end
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Listing 8 Plot_Figure_Residuals.m
f u n c t i o n P l o t _ F i g u r e _ R e s i d u a l s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% C r e a t e s t h e two images i n f i g u r e 5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model = Bui ld_Model ( 3 ) ;
[ B_a l l_1 , B , y ]= B u i l d _ S t i f f n e s s _ a n d _ L o a d ( model ) ;
y _ l =y ( : , 1 ) ; y_r1 =y ( : , end ) ; y_r2 =y ( : , end −1); B_4=B{ 4 } ; B_6=B{ 6 } ;

B_s igmahat = B_al l_1 −0.5∗B_4−0.5∗B_6 ;
l a m b d a h a t _ l = B_sigmahat \ y _ l ;
Fha t_1 =y_r1 ’∗ l a m b d a h a t _ l ;
Fha t_2 =y_r2 ’∗ l a m b d a h a t _ l ;

n =300;
s igma4_range = l i n s p a c e ( 0 , 0 . 6 , n + 1 ) ;
s igma4_range = s igma4_range ( 2 : end ) ;
s igma6_range = l i n s p a c e ( 0 , 0 . 6 , n + 1 ) ;
s igma6_range = s igma6_range ( 2 : end ) ;

[ S4range , S6range ]= meshgrid ( s igma4_range , s igma6_range ) ;
F_1= z e r o s ( n , n ) ; F_2=F_1 ;
p a r f o r j =1 : n

f o r k =1: n
sigma4= S4range ( j , k ) ; s igma6= S6range ( j , k ) ;
B_sigma= B _ a l l _ 1 +( sigma4 −1)∗B_4 +( sigma6 −1)∗B_6 ;
l ambda_ l =B_sigma \ y _ l ;
F_1 ( j , k )= y_r1 ’∗ l ambda_ l ;
F_2 ( j , k )= y_r2 ’∗ l ambda_ l ;

end
end

R=( F_1−Fha t_1 ) . ^ 2 + ( F_2−Fha t_2 ) . ^ 2 ; R=R / max ( max (R ) ) ;
f = f i g u r e ; c o n t o u r f ( S4range , S6range , l og10 (R ) , [ − 5 : 0 . 5 : 0 ] ) ;
a x i s s q u a r e ;
s e t ( gca , ’ XTick ’ , 0 : 0 . 1 : 0 . 6 , ’ YTick ’ , 0 : 0 . 1 : 0 . 6 , ’ F o n t S i z e ’ , 1 4 ) ;
c _ h a n d l e = c o l o r b a r ;
s e t ( c_hand le , ’ T i c k L a b e l s ’ , { ’ $10^{−5}$ ’ , ’ $10^{−4}$ ’ , ’ $10^{−3}$ ’ , . . .

’ $10^{−2}$ ’ , ’ $10^{−1}$ ’ , ’ $1$ ’ } , . . .
’ T i c k L a b e l I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ F o n t S i z e ’ , 1 4 ) ;

e x p o r t g r a p h i c s ( f , ’ f i g _ r e s i d u a l s _ 2 D . pdf ’ , ’ Conten tType ’ , ’ v e c t o r ’ ) ;

f = f i g u r e ;
p l o t ( diag ( S4range ) , diag (R ) / max ( diag (R ) ) , ’ LineWidth ’ , 2 ) ;
s e t ( gca , ’ F o n t S i z e ’ , 1 4 ) ; a x i s s q u a r e ;
e x p o r t g r a p h i c s ( f , ’ f i g _ r e s i d u a l s _ 1 D . pdf ’ , ’ Conten tType ’ , ’ v e c t o r ’ ) ;
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Listing 9 Plot_Figure_Stability.m
f u n c t i o n P l o t _ F i g u r e _ S t a b i l i t y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% C r e a t e s t h e two images i n f i g u r e 6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nx = 2 : 1 5 ;
condnumbers= z e r o s ( s i z e ( nx ) ) ;
f o r j =1 : l e n g t h ( nx )

model = Bui ld_Model ( nx ( j ) ) ;
[ B_a l l_1 , B , y ]= B u i l d _ S t i f f n e s s _ a n d _ L o a d ( model ) ;
lambda= B _ a l l _ 1 \ y ;

n= s t r 2 d o u b l e ( model . param . g e t ( ’ n ’ ) ) ;
m= s t r 2 d o u b l e ( model . param . g e t ( ’m’ ) ) ;
dF= z e r o s (m∗m, n ) ;
f o r i =1 : n

d_iF=−lambda ’∗B{ i }∗ lambda ;
dF ( : , i )= d_iF ( : ) ;

end

condnumbers ( j )= cond ( dF ) ;
end

f = f i g u r e ;
semi logy ( nx . ^ 2 , condnumbers , ’ .− ’ , ’ LineWidth ’ , 2 , ’ Marke rS ize ’ , 2 0 ) ;
a x i s s q u a r e ; s e t ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
e x p o r t g r a p h i c s ( f , ’ f i g _ s t a b i l i t y . pdf ’ , ’ Conten tType ’ , ’ v e c t o r ’ ) ;

% a l s o p l o t s e t t i n g w i t h f i n e s t p i x e l p a r t i t i o n
f = f i g u r e ; mphgeom ( model ) ; t i t l e ( ’ ’ ) ;
s e t ( gca , ’ XTick ’ , [ 0 , 0 . 5 , 1 ] , ’ YTick ’ , [ 0 , 0 . 5 , 1 ] , ’ F o n t S i z e ’ , 1 4 ) ;
a x i s ( [ − 0 . 0 5 , 1 . 0 5 , − 0 . 0 5 , 1 . 0 5 ] )
e x p o r t g r a p h i c s ( f , ’ f i g _ s e t t i n g _ s t a b i l i t y . pdf ’ , . . .

’ Conten tType ’ , ’ v e c t o r ’ ) ;
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