
Investigations on Transport and
Storage of High Ion Beam

Intensities

Dissertation zur Erlangung des Doktorgrades der

Naturwissenschaften

vorgelegt beim Fachbereich Physik
der Johann Wolfgang Goethe-Universität

in Frankfurt am Main von

Ninad Shrikrishna Joshi

geboren in Mumbai, Indien

Frankfurt am Main, 2009

D30



Vom Fachbereich Physik der
Johann Wolfgang Goethe-Universität als Dissertationen angenommen

Dekan: Prof. Dr. D.-H. Rischke
Erster Gutachter: Prof. Dr. U. Ratzinger
Zweiter Gutachter: Prof. Dr. A. Schempp



Zusammenfassung

Gegenstand der vorliegenden Arbeit war die Untersuchung des Transports inten-
siver Ionenstrahlen in toroidalen Magnetfeldern und die Injektion von geladenen
Teilchenstrahlen in stelleratorähnliche Ringe.

Ein Speicherring mit einem toroidalen Magnetfeld wurde für die Akkumulation
von intensiven Ionenstrahlen vorgeschlagen. Die Konfiguration ist ähnlich, wie bei
den klassischen Stellaratoren, bei denen Toroidsegmente zu einem Torus angeord-
net werden, um geladene Teilchen einzuschließen. Die sich daraus ergebenden lon-
gitudinalen Magnetfelder ermöglichen aber auch die Fokussierung eines in solch
einer Apparatur eingeschlossenen Ionenstrahls. Die magnetischen Feldlinien in
diesem System sind nicht einfach geschlossen, sondern bilden magnetische Flächen.
Der Transport von Ionenstrahlen ist stark durch die transversalen Driften auf-
grund der gebogenen Feldlinien beeinflusst, den diese führen zu einer Änderung der
Strahlablage und können zu Verlusten an der Wand der Vakuumkammer führen.
Die Ursache für die genannte Drift ist die Zentrifugalkraft, das bedeutet, dass die
Drift in Abhängigkeit vom Kreuzprodukt R × B von der Richtung des magnetis-
chen Feldes bestimmt ist. Durch eine Verdrillung des magnetischen Torus zu einer
so genannten Figure − 8−Geometrie, wie sie in Abbildung 1 dargestellt ist, wird
eine Kompensation dieser Drift erreicht.

Durch diese Konfiguration ergibt sich auch eine Rotationstransformation der
Magnetfeldlinien in poloidaler Richtung, die für einen stabilen Einschluss eines
quasineutralen Plasmas essentiell ist. Deshalb wurde diese Konfiguration bei den
Stellaratoren der frühen 60iger Jahre untersucht. Der Unterschied zwischen einem
klassischen Stellerator und dem in dieser Arbeit vorgestellten Speicherringkonzept
liegt aber vor allem in der gespeicherten Energie. Während beim Einschluss eines
Plasmas Elektronenströme von einigen Kilo- bis Megaampere fließen, wird der
Ionenstrom beim Einschluss von Ionenstrahlen bei einer Größenordnung von eini-
gen Ampere liegen. Der vorgeschlagene Speicherring wird auf vielfältige Weise
Konzepte der Plasmaphysik mit denen der Beschleunigerphysik kombinieren und
dabei Beiträge auf dem Gebiet der nichtneutralen Plasmen und der so genan-
nten Moving - Plasmas leisten können. Um den Zusammenhang zwischen diesen
verschiedenen Disziplinen zu unterstreichen wurde die Terminologie aus beiden
Bereichen verwendet, um die Ergebnisse der numerischen Simulationen und die
experimentellen Befunde zu diskutieren.

Für die numerischen Simulationen des Strahltransports wurde ein Comput-
ermodell entwickelt, das die Teilchenbewegung in inhomogenen Magnetfeldern
berechnet. Dieser ”Particle in Cell” - Code (PIC) ermöglicht die Untersuchung
einer Multiteilchendynamik und eignet sich dazu, verschiedene Modellverteilungen,
z.B. KV - oder Gauß - Verteilungen, als Startverteilung zu generieren. Es ist aber
auch möglich, die aus Messungen gewonnenen Teilchenverteilungen in das Pro-
gramm einzulesen. Die Berechnung des Strahltransports kann auf verschiedenen
Arten von numerischen Gittern erfolgen, nämlich auf kartesischen, zylindrischen
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Figure 1: Darstellung des geplanten Hochstromspeicherrings mit toroidalen seg-
menten. Gelb: Injektion, Grün: Experimental bereich.

und toroidalen Gittern. Für die Berechnung der Raumladungskräfte wurde die
Poisson-Gleichung auf dem toroidalen Gitter diskretisiert und die für die Lösung
erforderliche Ladungsträgerdichte mit Hilfe der ”Cloud in Cell”-Methode zweiter
Ordnung an jedem Gitterpunkt bestimmt. Zunächst wurde untersucht, welche
Methode sich für die Lösung der Poisson-Gleichung hinsichtlich der Rechenzeit und
der Flexibilität gegenüber den zu variierenden Randbedingungen eignet. Im Falle
der Berechnungen auf dem kartesischen Gitter wurde die Fast-Fourier-Methode
verwendet, bei der die Randbedingen so gesetzt werden müssen, dass Spiegelladun-
gen an den Strahlrohrwänden berücksichtigt werden. Gerade bei umfangreichen
Simulationen in großen Volumina ist die FFT-Methode aber zu ineffizient. Die
Explizite-Matrix-Methode hingegen ist sehr flexibel und ermöglicht eine einfache
Definition fester Potentiale an gewünschten Punkten. Es erfolgt dann die iterative
Lösung einer Matrix, die ein System aus Ng unbekannten linearen Gleichungen
beschreibt. Ng steht hierbei für die Anzahl der Gitterpunkte, die zwischen 70.000
und einer Million liegen kann. Für diese Methode wurden verschiedene iterative
Verfahren untersucht und optimiert. Die externen magnetischen Felder, wie zum
Beispiel das Feld der Toroidsegmente, wurden mit Hilfe eines Biot-Savart-Solvers
bestimmt, mit dem es möglich ist die realen Feldverteilungen inklusive der in dieser
Arbeit nicht zu vernachlässigenden Randfelder zu berechnen. Ein Vergleich der
analytisch bestimmten Einzelteilchendynamik mit den numerischen Resultaten er-
gab eine Abweichung bei der Drift- und Gyrobewegung von ±0, 17%. Für die
Charakterisierung des Strahltransports entlang gekrümmter magnetischer Feldlin-
ien wurde der Strahlparameter vλ (verhältnis von transversalen zu longitudinalen
impuls bezugen auf die lage der magnetischer Feldlinie) eingeführt, der ein Indika-
tor für die Transmission des Strahles durch das magnetische System ist. Aus den
Ergebnissen der numerischen Simulationen hinsichtlich der Transmission lässt sich
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die Akzeptanz der Toroidsegmente bezüglich der Strahlparameter ableiten, ins-
besondere auch unter Berücksichtigung des durch die Raumladung verursachten
Eigenfeldes.

Neben den umfangreichen Arbeiten zur numerischen Simulation des Strahltrans-
portes wurden auch Experimente durchgeführt, um das entwickelte Computer-
model zu evaluieren und praktische Erfahrungen bei der Konstruktion und dem
Aufbau eines toroidalen Speicherringes zu sammeln. Das für die Experimente
verwendete Toroidsegment entspricht hinsichtlich seiner Geometrie etwa den Seg-
menten, die für den geplanten Speichering vorgesehen sind. Während es sich später
jedoch um supraleitende Magneten handeln wird, die eine Feldstärke von bis zu
5 T erzeugen können, kann das für die Experimente ausgelegte Toroidsegment bei
Raumtemperatur betrieben werden und erreicht eine magnetische Feldstärke von
0,6T auf der magnetischen Achse. Durch den Vergleich der experimentellen Be-
funde mit den Ergebnissen der numerischen Simulation kann eine Skalierung auf
die zu erwartenden Strahleigenschaften in dem zukünftigen Speicherring erfolgen.
Ein erster Schritt war hierbei, eine Ionenquelle auf ihre Eignung hin zu untersuchen
einen Ionenstrahl zu erzeugen, der sich durch eine sehr gute Strahlqualität ausze-
ichnet und dessen Intensität das Studium von Raumladungseffekten ermöglicht.
Für diese Untersuchungen wurde ein Experiment aufgebaut, mit dem es möglich
war, die Strahlemittanz, den Strahlstrom und die Strahlzusammensetzung zu bes-
timmen. Die verwendete Ionenquelle ist einfach im Aufbau und sehr zuverlässig
im Betrieb, insbesondere zeichnet sie sich durch eine sehr kleine Strahlemittanz
und einen stabilen Betrieb aus, so dass ein maximaler Protonenanteil von 48%
bei den Experimenten tolerierbar war. Die Strahlzusammensetzung lässt sich bei
dem verwendeten Quellentyp über die Plasmaparameter steuern, so dass sich auch
Strahlen, die zu 80 − 90% aus H+

2 oder H+
3 bestehen, extrahieren lassen. Die

Strahlenergie konnte zwischen 3−20 keV variiert werden. Bei allen Experimenten
wurde ein He+ - Strahl als Referenz benutzt, da dieser ausschließlich aus ein-
fach positiv geladenen Heliumionen zusammengesetzt ist. Es entstand im Rahmen
dieser Doktorarbeit eine Veröffentlichung zu einer für die Strahltherapie interes-
santen Quelle, welche mit hoher Effizienz H+

3 −Strahlen erzeugt.
Die Anpassung des aus der Ionenquelle extrahierten Ionenstrahles an die Toroid-

segmente erfolgte mit Hilfe eines Solenoiden. Deshalb wurden zunächst die Abbil-
dungseigenschaften bei einer Variation der Strahlsteifigkeit und der magnetischen
Feldstärke untersucht. Parallel zu den Experimenten wurden numerische Simula-
tionen durchgeführt und mit den Messergebnissen verglichen. Es konnte gezeigt
werden, dass die experimentellen und numerischen Resultate bis auf einen Fehler
von 1, 7% übereinstimmen. Dies war eine gute Vorraussetzung um die Phasen-
raumverteilung am Injektionspunkt hinsichtlich des Transports durch das Toroid-
segment zu optimieren und die gewonnenen Startverteilungen als Grundlage für
die weiteren numerischen Untersuchungen mit dem Computerprogramm TBT zu
verwenden.

Ein Schwerpunkt bei den Strahltransportexperimenten durch das Toroidseg-
ment stellte die Strahldiagnose dar, mit deren Hilfe die Abbildungs- und Trans-
porteigenschaften bestimmt werden sollten. Die Verwendung einer klassischen
Schlitz-Gitter-Emittanzmessanlage wurde zum einen durch die maximal detektier-
baren transversalen Impulse von 120 mrad limitiert und durch das vorhandene
Randfeld des Toroidsegmentes kam es zu einer prinzipiellen Schwierigkeit bei der
Interpretation der Messsignale. Trotzdem konnten für wenige spezielle Setups
verwertbare Messergebnisse gewonnen werden, die im direkten Vergleich mit den
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numerischen Ergebnissen und Resultaten aus einem optischen Diagnoseverfahren
dargestellt werden konnten. Bei der optischen Diagnose wurde ein P20 Phospho-
rszintilator benutzt, um die Strahlprofile am Ausgang des Toroidsegmentes zu de-
tektieren. Die maximale Konversionseffizienz liegt bei einer Lichtwellenlänge von
500 nm, trotzdem war der Einsatz einer Digitalkamera durch das starke magnetis-
che Randfeld nur bedingt möglich. Mit Hilfe einer magnetischen Abschirmung und
unter Verwendung einer bezüglich der Elektronik sehr einfach aufgebauten Kamera
war es möglich, optische Strahlprofile zu vermessen und die Lage des Ionenstrahles
bezüglich der geometrischen Achse des experimentellen Aufbaus zu bestimmen.
Aus den gewonnen Datensätzen konnten so die vertikalen und horizontalen Driften
des Strahles und der Strahlradius bestimmt werden. Diese Parameter sind direkt
vergleichbar mit denen des numerischen Modells. Allerdings ist eine Interpretation
bei der Verwendung des Protonenstrahles sehr schwierig, weil sich die einzelnen
Fraktionen bei der Detektion überlagern können. Aus diesem Grund wurde bei
den Transportexperimenten wieder der Heliumionenstrahl als Referenz verwendet.
Außerdem war es möglich, aus der verwendeten Ionenquelle einen reinen Elektro-
nenstrahl zu extrahieren. Wegen der um einen Faktor 1836 geringeren Masse war
eine Drift des Elektronenstrahles praktisch nicht nachweisbar, so dass sich aus der
Lage des Strahlschwerpunktes auf die Lage der magnetischen Achse des Systems
schließen ließ. Dieser Umstand führte dazu, dass die Achsen der Ionenstrahlen
bezüglich dieser magnetischen Achse verglichen und so die exakten vertikalen und
horizontalen Driften ermittelt werden konnten.

Entlang des Transportkanals durch das Toroidsegment wurden vom Ionenstrahl
Sekundärelektronen erzeugt, die auch mit dem Diagnosesystem untersucht werden
konnten. So konnten zum Beispiel die Produktionsorte der durch Strahlionenver-
luste generierten Sekundärelektronen lokalisiert werden. Durch den Einbau einer
Repeller-Elektrode war es möglich, den Elektronenstrom auf den Detektor durch
Anlegen eines negativen Potentials zu verhindern und durch das Anlegen eines
positiven Potentials sämtliche Elektronen aus dem Transportkanal abzusaugen.
Im Ergebnis führten diese Untersuchung zur Klassifikation von drei Arten von
Sekundärelektronen und deren Einfluss auf die Messungen und den Strahltrans-
port. Dies ermöglichte im Zusammenspiel mit der Screening-Elektrode der Io-
nenquelle auch eine Variation der Raumladung des Ionenstrahles, so dass der
Strahltransport durch das Toroidsegment als Funktion des Eigenfeldes des Strahles
untersucht werden konnte.

Durch die Vielzahl an Experimenten zum Strahltransport konnte das im Rah-
men der Arbeit entwickelte Computerprogramm (TBT) erfolgreich evaluiert wer-
den. Die Messergebnisse konnten durch das numerische Modell mit geringen Ab-
weichungen reproduziert werden, so dass sich das Programm dazu eignen sollte
die Strahldynamik in einem kompletten Ring zu beschreiben und die Auslegung
des Injektionssystems zu berechnen. Gerade die Injektion in einen troroidalen
Speicherring stellt wegen der geschlossenen magnetischen Flächen eine Heraus-
forderung dar.

Für die Injektion in den Speicherring gibt es zwei mögliche Szenarien, die mit
dem Programm TBT untersucht wurden. Der Ionenstrahl könnte wie in Abbildung
(2) links dargestellt in den geraden Bereichen mit Hilfe eines elektrischen Kickers
in das Ringvolumen injiziert werden. Es ist jedoch auch möglich die Injektion
zwischen den Toroidsegmenten zu installieren wie in Abbildung (2) rechts skizziert.

Da das Injektionssystem zu einem späteren Zeitpunkt mit der im Rahmen
dieser Arbeit aufgebauten Experimentieranordnung untersucht werden soll, wurde
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Figure 2: Schematische Darstellung des Injektionssystems für den geplanten
Hochstromspeicherring (links) und des untersuchten Injektionsexperiments mit
den zwei normalleitenden Toroidsegmenten (rechts).

die Injektion auf die vorhandene Spezifikation der Toroidsegmente angepasst. Der
bisherige Aufbau soll zunächst um ein Toroidsegment erweitert werden und ermöglicht
so den Einfluss des Kickers auf den im Ring zirkulierenden Strahl zu untersuchen.
Die Transportrechnungen mit TBT ergaben für das geplante Setup optimale Abmes-
sungen der Ablenkplatten, um bei möglichst großen Driften, die für die Injektion
benötigt werden geringe Störungen des Primärstrahles zu erreichen. Für die kom-
menden Experimente wird eine baugleiche Ionenquelle verwendet, die den Injek-
tionsstrahl erzeugen soll. Die Strahlanpassung erfolgt mit Hilfe eines Solenoiden,
während die Ankopplung der Strahltrajektorien an den Feldverlauf im Ringseg-
ment mit Hilfe von Hilfsspulen erfolgen soll, deren sorgfältige Auslegung mit TBT
erfolgte. Der Strahltransport durch die Toroidsegmente ist sehr sensitiv auf die
Randfelder der Hilfsspulen. Es konnte aber gezeigt werden, dass es Einstellungen
gibt, bei denen sich ein Ionenstrahl bei guter Transmission injizieren lässt, während
der im Ring zirkulierende Strahl kaum beeinflusst wird. Eine große Variation der
Einschlussparameter bei den Simulationen lieferte schließlich die Akzeptanz des
Injektionssystems sowie dessen Abbildungseigenschaften.

Als Fazit lässt sich konstatieren, dass im Rahmen der vorliegenden Arbeit der
Ionenstrahltransport durch ein Toroidsegment erstmalig bezüglich der horizon-
talen und vertikalen Driften untersucht wurde. Die Entwicklung eines numerischen
Modells und dessen Evaluierung mit Hilfe von Messergebnissen mündeten in ein
Computerprogramm (TBT), das für die Auslegung des geplanten Hochstromspe-
icherings und das benötigte Injektionssystem verwendet werden kann. Viele Fra-
gen, die bei den Untersuchengen aufgeworfen wurden, wie zum Beispiel die Rolle
der produzierten Sekundärelektronen beim toroidalen Strahltransport oder die
Strahldiagnose im Inneren des toroidalen Speicherrings, können erst in weiteren
Experimenten untersucht werden.
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Chapter 1

Introduction

This thesis, regarding beam transport investigations, is related to the larger re-
search fields, storage rings used in accelerator physics and non-neutral plas-
mas. The proposal of building a storage ring with longitudinal guiding magnetic
fields was made. Due to natural transversal focussing in magnetic fields it is possi-
ble to accumulate very intense charged particle beams, a subject of interest within
the physics community. A lot of interest has emerged in the field of moving plasmas
in toroidal like systems. Study of moving plasmas revolves around the confinement
theory, fusion reactions and efficient injection systems, neutral beam heating and
production of non-conventional plasmas like anti matter plasmas.

The concept of a storage ring with a longitudinal magnetic field for accumula-
tion of intense 150 keV proton beams was proposed in 2002 by U. Ratzinger [1] and
later presented and published in the European Partical Accelerator Conference in
2004 [2]. The figure-8 shape is the natural choice to compensate the vertical drift
arising from curved magnetic field lines. Additionally it provides the rotational
transform for magnetic fields. Figure-8 shaped stellarators were investigated for
plasma confinement in fusion research [3][4]. The magnetic confinement was based
on strong magnetic fields produced by toroidal coils around a vessel. The plasma
was induced by ionizing and heating the gas by energetic particles or by electric
fields. A quasi-neutral plasma would then have to be confined on closed magnetic
field lines. Parallel research on the Tokamak, a toroidal device, found increasing
popularity over stellarators which used high plasma current to produce the heli-
cal component of a magnetic field. Recently stellarators have again found more
interest and research with modular coils is gaining attention.

The main distinction to the storage ring scenario lies in the stored energy. The
storage ring accumulates single specie low energy ion beams up to a few Ampere
beam currents producing low magnetic self-fields. Due to the electron flow, the
plasma current is much higher in stellarators and tokamaks within the order of
kA to MA range. This leads to the unfolding of a rotational transform and results
in kink instabilities [5][6].

A similarity can be seen in terms of magnetic field configuration. A rotational
transform is provided by twisting a toroidal shaped ring into a figure-8. In such a
configuration the magnetic field lines do not enclose in a circle but form a surface
called magnetic flux surface. Figure 1.1 shows a simulated magnetic surface with
colour-coded magnetic field strength and a single particle trajectory with F × B
drift envisaged. The energetic (100 − 200 keV ) runaway electrons confined over
the time scale of few seconds in stellarators gives us a clue for the confinement of
single specie charged particle beams [7].
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Figure 1.1: An example of a magnetic surface of the segmented figure-8 structure
(top) and single particle trajectory (bottom).

In the recent years the subject of confinement of a single specie plasma, espe-
cially a pure electron plasma has aroused interest within the scientific community.
Literature by A. Boozer extensively investigates pure electron plasmas and con-
finement by magnetic surfaces [8][9][10]. The theory is being directly compared
with the Columbia Nonneutral Torus (CNT) experiments [11][12]. The additional
prospects of positron-electron plasma has also been discussed in [13].

The problem of confining the self consistent electron plasma in a toroidal field
was addressed as early as 1967 [14]. In SPAC-II an axisymmetric toroidal device,
relativistic electron beams were investigated [19]. Recently, trapped electron clouds
in toroidal magnetic fields were studied with respect to stability, equilibrium and
space-charge issues [15]-[18].

In the Prototype-Ring Trap (PROTO-RT) from Tokyo University, a central
conductor was used to provide confinement [20][21].

The dynamics of electron clouds in a partial torus was investigated at Lawrence
University[22]. Successful trapping was observed using electrodes with a horizontal
electric field (0.5 − 1.0 kV/m).

In accelerator physics a toroidal magnetic field configuration is mostly used in
electron coolers [23][24]. The Low Energy Particle Toroidal Accumulator (LEPTA)
project incorporates a small positron storage ring. Positrons are cooled by circu-
lating electron beams [25]. Another example is a proposed Muon to Electron
COnversion (MECO) project, where toroidal like sectors are used for secondary
specie separation, confinement and guidance to the detector.

The preliminary beam investigations with room temperature toroidal magnets
undertaken at IAP Frankfurt were necessary to study the dynamics of positive
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beams in toroidal like magnetic field configurations. The experiments with small
segments provide a basic understanding of the beam dynamics, diagnostics system,
and beam injection schemes. It provides a comparison between numerical simula-
tions and experimental results. The calculations and design, which demands for
precise simulations and possibility of practical realization for an injection system,
forms a core of the thesis.

In the first chapter, the drift theory in toroidal magnetic fields and simulation
techniques are discussed. A numerical code was necessary to investigate the drift
motions and space-charge effects. Multiple species can be simulated with the
code. It also includes the possibility to simulate a beam with measured phase-
space distribution. The theoretical calculations and matching conditions for beam
transport in a single toroidal segment are described in the following chapter.

The experiments were carried out using a single segment with toroidal magnetic
field. Beam dynamics and transport of multi specie beams were studied. The
challenges in detection systems are discussed in the fourth chapter. It also describes
the space-charge effects to some extent. The comparison of experimental results
with simulations forms a basis to design an injection system.

The last chapter deals with the injection system. As ions can not be generated
and accelerated conventionally inside the vessel, they have to be injected into
the ring acceptance with its high magnetic fields. This results in a complicated
multiturn injection scheme, as the circulating particles have to be kept on stable
tracks. A new system for this purpose with special magnetic fields is designed and
analyzed in detail.

3



Chapter 2

Theory and simulation techniques

2.1 Particle motion in magnetic fields

2.1.1 Charged particle gyration

The equation of motion for charged particles in homogeneous magnetic fields is
given by

m
dv

dt
= q(E + v × B). (2.1)

Ignoring electric fields and taking magnetic field in longitudinal z-direction
only, we have

v̈x =
qB

m
v̇y = −(

qB

m
)2vx,

v̈y = −qB

m
v̇x = −(

qB

m
)2vy. (2.2)

This describes a simple harmonic oscillator at cyclotron frequency which is
defined as

ωc =
|q|B
m

. (2.3)

The solution is then written as

vx,y = v⊥exp(±iωct + iδx,y). (2.4)

The ± denoting sign of q. We may choose the phase δ so that

vx = v⊥eiωct = ẋ, (2.5)

where v⊥ is a positive constant denoting the speed in plane perpendicular to
B. This gives,

vy =
m

qB
v̇x = ±iv⊥eiωct = ẏ. (2.6)

Integrating, we have

x − x0 = −i
v⊥
ωc

eiωct,

y − y0 = ±v⊥
ωc

eiωct. (2.7)
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The gyro radius is defined as

rg ≡
v⊥
ωc

=
mv⊥
|q|B . (2.8)

Taking the real part

x − x0 = rgsin ωct,

y − y0 = ±rgcos ωct. (2.9)

This describes a circular orbit with a guiding centre (x0 , y0 ). The direction
of gyration is always such that the magnetic field generated by charged particles
is opposite to the external imposed field (Lenz rule). In addition to this motion,
there is velocity vz along Bz which is unaffected. Thus the trajectory of particles
is a helix.

2.1.2 R ×B Drift

In general, if a force F is acting on the moving particle, the corresponding drift
velocity is derived as [26],

v =
1

q

F × B

B2
. (2.10)

In particular, if magnetic lines are curved with a constant radius Rc and a con-
stant |B| is assumed, a particle experiences a drift perpendicular to the centrifugal
force. Particles experience a drift velocity given by

vR =
mv2

‖

qB2

Rc × B

R2
c

. (2.11)

This drift is called curvature drift (see Figure 2.1 ). The direction of velocity
depends on the charge. Thus positive ions and electrons will be drifted in opposite
directions if injected into a magnetic field with the same longitudinal velocity
direction. When a proton beam is injected in a curved magnetic field it will
experience a vertical drift. The shift in position is proportional to longitudinal
velocity. For a ring with toroidal magnetic field this is the major effect that has to
be compensated along each turn. Let vR be the drift velocity and ∆t be the time
required to complete one turn. Then we can write

vR =
mv2

‖

qBR
; ∆t =

2πR

v‖
. (2.12)

Then, the vertical shift in beam position in one round turn is given as

∆l = vR∆t = 2π
mv‖
qB

, (2.13)

which is independent of major radius R.
The proton beam of 10 keV energy experiences a 12 mm vertical shift from the

geometrical centre when injected in a 30◦ toroidal sector with major radius 1.3 m
at 0.6 T ; i.e. a drift of 144 mm for 360◦ arc angle. For 100 keV proton beam in
a 5 T magnetic field, the beam shift is 57 mm in a single turn (360◦ arc angle).
Relevant numbers for the experimental test setup are tabulated in chapter 3 and
4.
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Figure 2.1: Left: The generalized force and radius vector in top view. Right: The
direction vR of the R×B drift for positively charged particles. For electrons, force
is in the opposite direction.

Figure 2.2: Vertical shift against the path length along a torus with R0 = 1.0 m
at an energy of 6 keV . Initial 20 mm added for beam radius. The horizontal line
represents maximum acceptable drift with respect to the vessel aperture.

The graph in figure 2.2 shows the vertical shift of a beam with energy 6 keV
at two different toroidal magnetic field levels.

2.1.3 ∇B drift

The inner and outer radii differ for a torus, the coil density is different on either
side. This gives rise to a non uniform magnetic field along the radial direction (see
figure 2.3). The drift velocity associated with varying magnetic field is given by

v∇B = ±1

2
v⊥rg

B ×∇B

B2
, (2.14)

where ± indicates the charge of particle.
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Figure 2.3: Figure showing the difference between inner and outer radii of a torus.
This results in a radial magnetic field gradient ∇|B|.

In cylindrical coordinates ∇× B only has a z component, in vacuum we have

1

r

∂

∂r
(rBθ) = 0

=⇒ Bθ ∝
1

r
. (2.15)

This gives,

∇|B|
|B| = −Rc

R2
c

. (2.16)

Substituting in equation(2.14) the drift velocity is written as,

v∇B =
1

2

m

q
v2
⊥

Rc × B

R2
cB

2
. (2.17)

In case of an ion beam, the transverse velocity is usually lower than the lon-
gitudinal velocity. The vertical R× B drift velocity dominates over the ∇B drift
velocity. Moreover the phase space distribution of the beam can be chosen by a
focussing element so that the beam at injection is matched to the magnetic field
direction making the ∇B drift as low as possible.

2.1.4 E ×B drift

In the presence of an electric field E, say Ex, Lorentz force equation can be solved
to give the y-component of velocity as

vy = ±iv⊥eiωct − Ex

B
. (2.18)

Thus the drift velocity of the guiding center is in −y direction. The transverse
component of drift velocity can be deduced from equation (2.10) as

v⊥gc = E× B/B2 ≡ vE. (2.19)

We define this as vE, the electric field drift of the guiding centre. The magni-
tude of drift velocity is
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vE =
E(V/m)

B(tesla)

m

sec
. (2.20)

This drift velocity is independent of mass and charge of particle.

Ion Electron

+-
E

B

Y

X

E
r

B

Ion Beam

ExB

Figure 2.4: E×B drift for a single particle (left) and beam rotation caused by Er

from self field (right).

An effect due to the self field of the charged particle beam is the rotation of the
beam around its axis. The particles at the boundary of a beam with homogeneous
constant space charge density experience maximum electric field in radial direction.
Thus, together with the longitudinal magnetic field this leads to a rotation of the
particles around the beam axis (see figure 2.4 ).

2.1.5 Collective behavior of charged particles

Debye screening

When a positively charged particle with charge Ze is placed in the plasma, it
redistributes the ions and electrons surrounding in such a way that Coulomb elec-
trostatic potential φc ≈ Ze/4πε0r is attenuated at distance beyond Debye length.
This effect is known as Debye screening [27]. A Maxwell-Boltzmann distribution
function with

f(x,v) = n0 exp

(
− mv2

2kBT
+

eφ

2kBT

)
, (2.21)

and density

n(r) = n0 exp

(
eφ(r)

kBT

)
(2.22)

is assumed.
Here kB is Boltzmann constant. Then the potential must satisfy Poisson’s

equation, which is written in spherical symmetry as,

1

r2

d

dr
r2dφ

dr
=

2n0e
2

ε0kBT
φ, (2.23)

under the assumption eφ/kBT << 1. Taking the solution which vanishes at
r → ∞,
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φ =
A

r
exp(−r/λD), (2.24)

where

λD =

√
ε0kBT

2n0e2
, (2.25)

is known as the Debye length.

Brillouin limit

The maximum number density that can be transported through a magnetic field
is limited by the Brillouin limit [28] given by

nB =
ε0B

2

2m
, (2.26)

where ε0 is a permittivity of space and m is mass of the particles. This is
expressed in units of m−3. The Brillouin limit in turn imposes the current density
limit that can be transported through a magnetic configuration. The maximum
current density is then given as

j‖ = nBqv‖. (2.27)

Table (2.1) and (2.2) summarizes some of the beam transport properties in
different senario of low energies with low magnetic fields and higher energy with
higher magnetic fields.

Table 2.1: Beam Transport properties at low energies for 0.6 T in 30◦ sector with
R0 = 1.3 m

Energies W‖ 4 keV 10 keV 20 keV
Velocity (m/s) 8.8e05 1.38e06 1.95e06
Time of flight (s) 7.73e − 07 4.93e − 07 3.49e − 07
No. of Oscillations 7.1 4.5 3.2
Vertical drift (mm) 8.0 12.5 17.6
Maximum current density (mA/cm2) 13.5 21.4 30.0

Table 2.2: Beam Transport properties at high energy (150 keV ) for higher mag-
netic fields in 30◦ sector with R0 = 1.3 m

Magnetic field (B) 2.0 T 5.0 T
Velocity (m/s) 5.37e06
Time of flight (s) 1.27e − 07
No. of Oscillations 3.9 9.8
Vertical drift (mm) 14.6 5.8
Maximum current density (A/cm2) 0.92 5.74
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2.1.6 Figure-8 ring

The vertical drift for a single turn in a torus could be very high. This causes beam
loss on the wall. To overcome this problem a simple arrangement of figure-8 can
be used. As shown in figure 2.5 a ring is twisted to form an 8 shaped figure. In
either arm of this ring the R×B force is in opposite directions. The vertical drift
is thus compensated.

B

R

B

R
v

R

v
R

Figure 2.5: Figure-8 type ring showing the vertical drift compensation on either
side.

2.2 Simulation Techniques

The Particle in Cell method was used to simulate the beam transport in exter-
nal magnetic fields including the space charge effect. Figure 2.6 shows the block
diagram of this PIC scheme.

Initialization of Position
and Velocity ( , ) i = 0 ... Nr vi i p

Construction of Grid
Points (r ) j = 0 ... Nj g

Charge distribution at
Grid Points - CIC

Field calculation using
Poisson Equation and
Biot-Savart Law ( , )E Bj j

Interpolation of fields at
Particle Positions ( , )E Bi i

Integration of equation of
motion to get new positions

=> =>F v ri i i

Time Loop

Figure 2.6: Flow chart of a PIC scheme.

In a first step the simulation program generates particle positions and velocities
in 6-dimensional phase-space. Then it initializes the static mesh depending on
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the geometry in demand. The magnetic field is then calculated at grid points
using Biot-Savart law by defining real coil geometry. The space charge routine is
then evoked to calculate the charge densities at grid points, consequently which
calculates potential and electric fields at grid points. These fields are interpolated
at particle positions and then the particle positions are advanced in time using a
discretised Lorentz equation of motion [29].

Initialization of particle coordinates

The initial distribution is defined as homogenous distribution, Kapchinsky-Vladimirsky
(KV) or can be read from an external file, which provides an opportunity to simu-
late the transport with measured particle distributions. In the case of theoretical
studies homogeneous distribution was used and measured distributions were used
for comparison with experimental data.

Charge distribution

For efficient calculation of inter particle forces the Particle in Cell method was
used, also known as Cloud is cell (CIC) method. Cartesian, cylindrical, or toroidal
grids, as per requirement imposed by geometry were generated. The first order
weighted scheme was used to calculate the charge density at grid points. The
particle is identified in a particular cell and then the charge is attributed to grid
points according to relative volume in 3D space.

Dx

Dy

A B

CD

j j+1

k

k+1
c

b

d

a

Figure 2.7: PIC charge distribution in cartesian.

For example, as shown in figure 2.7 in 2-dimension, a particle is identified at
point B called Nearest Grid Point (NGP). The charge of this particle, which can
be macro particle with cluster of particles, is divided according to inverse area
weight. Charge density at every point is given by
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QA = Q0
area (a)

area(ABCD)
,

QB = Q0
area (b))

area(ABCD)
,

QC = Q0
area (c)

area(ABCD)
,

QD = Q0
area (d)

area(ABCD)
, (2.28)

where Q0 is the macro charge of a single particle. Thus the nearest grid point,
point B, is weighted maximum when compared to the point D.

Potential and Electric field at Grid points

Potential was calculated using the Poisson equation

∇2φ(r) =
−ρ(r)

ε0
. (2.29)

The periodicity in mesh structure gives a main advantage for the fast calcula-
tions of potential and electric field against particle-particle force calculation. For
a general one dimensional case, the equation (2.29) can be written in a discretised
dimensionless form as

φNg
− 2φ1 + φ2 = ρ1

φ1 − 2φ2 + φ3 = ρ2

...

φNg−2 − 2φNg−1 + φNg
= ρNg−1

φNg−1 − 2φNg
+ φ1 = ρNg

. (2.30)

Here φi’s represent potential at grid points (Ng) and ρi’s represent charge
densities. This system of equation is readily solved with Fast Fourier Transform
for simple periodic cartesian coordinates. Integrating with respect to mesh sizes
electric fields at mesh points are obtained

Fourier transform

For a periodic system, discrete fourier series for all grid quantities can be used.
Thus fourier transform ρ(k) of ρ(x) can be calculated, where k is the wave vector
in fourier transform kernel. The equation(2.29) can be rewritten in Fourier space
as

φ(k) =
ρ(k)

ε0k2
. (2.31)

By calculating φ(k) and then taking a reverse transform we get potential and
electric fields on grid points. Again a weighted scheme was used to calculate the
electric field at particle position.
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ρ(x) −→ ρ(k) −→ φ(k) −→ φ(x) −→ E(x) (2.32)

Detail of a code and boundary conditions are described in the appendix A.1.
Although this method is very effective in terms of speed, setting boundary con-
dition, external definition of fields and matching with geometry, is inconvenient.
Thus matrix method was used for efficient calculation in toroidal coordinates.

2.2.1 Circular Toroidal Coordinates

For the simulation of beam transport in toroidal magnetic field, the circular
toroidal coordinate system was used. This is shown in figure 2.8. To be con-
sistant with accelerator physics notations the transverse plane was defined to be
x − y plane at injection plane [31].

X

Y
Z

ez

r

q

z

e
q

e
r

R
0

X

Y

R0
a

symmetry
axis

Z

Figure 2.8: Concentric circular toroidal coordinates.

With respect to the cartesian plane the x-axis was taken as a symmetry axis of
tori and y − z plane as symmetry plane. If R0 is the major radius then any point
in the region of interest is given by three coordinates as

• r : minor radius of toroidal segment;

• θ : the poloidal angle measured in x − y plane from +ve x-axis;

• ζ : the toroidal angle.
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The relationship between cartesian and toroidal coordinates is given by,

x = r sin θ

y = (R0 + r cos θ) sin ζ

z = (R0 + r cos θ) cos ζ. (2.33)

Inverse relations are

r = {x2 + ((y2 + z2)1/2 − R0)
2}1/2

θ = tan−1{((y2 + z2)1/2 − R0)/x}
ζ = tan−1(z/y). (2.34)

This coordinate system is right handed and orthogonal. The scaling factors are
given as,

hr = 1

hθ = r

hζ = R0 + r cos θ. (2.35)

The volume element is

d3x = hr hθ hζ dr dθ dζ

= r (R0 + r cos θ) dr dθ dζ. (2.36)

Magnetic field in toroidal coordinates

If a is the inner radius of a torus and R0 is the major radius then aspect ratio is
defined as

A =
R0

a
> 1. (2.37)

The magnetic field in the standard toroidal coordinates is given as

B(r, θ) =
B0

q(r)

r

R0
eθ +

B0

1 + (r/R0)cos θ
eζ , (2.38)

where B0 is constant and q(r) is a dimensionless function of r. In tokamak
physics q(r) is known as winding number (or safety factor). Equation(2.38) defines
an axisymmetric magnetic field compatible with magnetic surfaces if the condition

η̄ =
a

R0
<< 1, (2.39)

is satisfied. The term η̄ is called inverse aspect ratio.

Charge distribution in toroidal coordinates

The charged distribution in toroidal coordinates can be calculated in the same way
as in the cartesian system. Figure 2.9 shows a 2-dimensional projection.

The macroparticle charge is divided into an 8 point polynomial except at the
centre where it is a 6 point polynomial. Weighting factor is given with respect to
the volume element.
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Figure 2.9: PIC charge distribution in toroidal coordinates in 2-dimensional pro-
jection.

Poisson equation in toroidal coordinates

The Poisson equation in circular toroidal coordinates is written as,

52φ =
∂2φ

∂r2
+

R0 + 2r cosθ

r (R0 + r cosθ)

∂φ

∂r
− sinθ

r (R0 + r cos θ)

∂φ

∂θ
+

1

r2

∂2φ

∂θ2

+
1

(R0 + r cosθ)2

∂2φ

∂ξ2
= − ρ

ε0
. (2.40)

Using the finite difference method this can be discretised,

φi+1,j,k − 2φi,j,k + φi−1,j,k

∆r2
+

R0 + 2ri,j,k cosθi,j,k

ri,j,k (R0 + ri,j,k cosθi,j,k)

φi+1,j,k − φi−1,j,k

2∆r
−

sinθi,j,k

ri,j,k (R0 + ri,j,k cosθi,j,k)

φi+1,j,k − φi−1,j,k

2∆θ
+

1

r2
i,j,k

φi,j+1,k − 2φi,j,k + φi,j−1,k

∆θ2

+
1

(R0 + ri,j,k cosθi,j,k)
2

φi,j,k+1 − 2φi,j,k + φi,j,k−1

∆ζ2
= −ρi,j,k

ε0

.

On rearranging the terms, we get
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φi,j,k+1

(
1

∆z2 (R0 + ri,j,k cosθi,j,k)
2

)
+ φi,j+1,k

(
1

r2
i,j,k∆θ2

− sinθi,j,k

2rj∆θ (R0 + ri,j,k cosθi,j,k)

)

+φi+1,j,k

(
1

∆r2
+

R0 + 2ri,j,kcosθi,j,k

2ri,j,k∆r (R0 + ri,j,k cosθi,j,k)

)

+φi,j,k

(
− 2

∆r2
− 2

2r2
i,j,k∆θ2

− 2

∆ζ2 (R0 + ri,j,k cosθi,j,k)
2

)

+φi−1,j,k

(
1

∆r2
− R0 + 2ri,j,kcosθi,j,k

2ri,j,k∆r (R0 + ri,j,k cosθi,j,k)

)

+φi,j−1,k

(
1

r2
i,j,k∆θ2

+
sinθi,j,k

2rj∆θ (R0 + ri,j,k cosθi,j,k)

)

+φi,j−1,k

(
1

∆ζ2 (R0 + ri,j,k cosθi,j,k)
2

)
= −ρi,j,k

ε0

. (2.41)

This numerical equation is used to solve potential in a toroidal coordinate
system where ρijk are the charge densities at mesh points and φi,j,k are potentials.
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2.2.2 Matrix solution with iterative method

Equation(2.41) represents a discretised Poisson equation, which is set of Ni ×
Nj × Nk = N linear equations and can be written in matrix form similar to
equation(2.30). This is written in the form

A · φ = − ρ

ε0

, (2.42)

Form of matrix A is schematically shown on the following page. This matrix
consist of a multitude of zero elements, known as sparse. The matrix representing
ρ is simply a single column matrix with Ni × Nj × Nk = N rows containing
values of charge density at grid point. The sparse matrix format allows us to
save computational memory. Since matrix A contains many zeros, only non zero
values required to be stored with a reference pointer. A minimum of two boundary
conditions is required to solve this system of equations. One is simply given by
the vessel. The mesh size in radial direction is defined till vessel of system and
declared to be at zero potential.

For r = 0, Gauss Law

At r = 0 we get an infinity problem, which was resolved using the Gauss’ law,

∫
E · dS =

Qenclosed

ε0
. (2.43)

This also gives the second boundary condition to solve the matrix equation.
By defining the particular grid point at fixed potential and correcting corre-

sponding equation in a matrix A, the external electric field can be defined from
e.g. parallel electric plates.
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An example of matrix A :
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Iterative methods

To solve the matrix equation iterative methods can be used. They are effective
when the number of equations N > 106, where N is the number of grid points.
The general algorithm may be written as

x(k) = Bx(k−1) + c. (2.44)

When B and c are constants in the iteration process it is called a stationary
method, else called Non-stationary method [32]

• Stationary methods

– Jacoby Method (JM)

– Gauss-Seidel Method (GS)

– Successive Over-Relaxation (SOR)

– Symmetric Successive Over-Relaxation (SSOR)

• Non-stationary methods

– Conjugate Gradient (CG)

– Conjugate Gradient Squared (CGS)

– BiConjugate Gradient (BiCG)

– BiConjugate Gradient Stabilized (BiCGSTAB)

– Chebyshev Iteration (CI)

BiConjugate Gradient Stabilized (BiCGSTAB)

The biconjugate gradient stabilized (BiCGSTAB) method can be used to solve non-
symmetric linear systems efficiently. This iterative method is based on finding local
minima through the conjugate gradient calculation of function of n variables. The
investigated systems in this work often exhibit irregular and various pre-defined
boundary conditions, hence BiCGSTAB was used to solve the Poisson equation.
Different codes were written for cylindrical and toroidal coordinates. Schematically
algorithm can be illustrated as follows.

For update of residual vectors r, r̃, with known matrices A,AT can be written

r(i) = r(i−1) − αiAp(i)

r̃(i) = r̃(i−1) − αiA
Tp(i), (2.45)

where pi is a sequence of n mutually conjugate directions. Then

p(i) = r(i−1) + βi−1p
(i−1)

p̃(i) = r̃(i−1) + βi−1p
(i−1), (2.46)

Thus

αi =
(r̃(i−1))T r(i−1)

(p̃(i))TAp(i)

βi =
(r̃(i))T r(i)

(r̃(i−1))T r(i−1)
(2.47)
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gives the orthogonality condition for

(r̃(i))T r(j) = (p̃(i))TAp(j) = 0 (2.48)

if i 6= j.

2.2.3 Equation of motion and symplectic integrator

To calculate the particle motion the Lorentz force equation was used,

m
dv

dt
= q(E + v × B), (2.49)

where E is electric field calculated from Poisson equation and B is the magnetic
field calculated using Biot-Savart law. FDTD scheme was used to discretize the
equation and to calculate the time evolution of particle motion.

For long term simulations symplectic integrators are required to conserve phase
space behaviour. For (p, q) canonical variables we can write middle step symplectic
algorithm as

qj = qj−1 + ∇pH(
pj + pj−1

2
,
qj + qj−1

2
)dt, (2.50)

pj = pj−1 −∇qH(
pj + pj−1

2
,
qj + qj−1

2
)dt, (2.51)

where H(p, q) is the Hamiltonian of the system [33].
For simulations the non relativistic Lorentz force equation(2.1) , was discretised

in three point scheme Figure 2.10 shows an example in a single dimension.

Figure 2.10: Three point scheme for discrete time evolution.

To avoid the singularity at r = 0, positions in toroidal coordinates were trans-
formed into cartesian coordinates. Taking x0 and x1 as known positions, E and
B, the electric and magnetic fields at position x1, and taking x2 the position to be
calculated, the discrete equation of motion in three dimensions can be written as,

m
x2 − 2x1 + x0

∆t2
= qEx + q

(
y2 − y0

2∆t
Bz −

z2 − z0

2∆t
By

)
,

m
y2 − 2y1 + y0

∆t2
= qEy + q

(
z2 − z0

2∆t
Bx −

x2 − x0

2∆t
Bz

)
,

m
z2 − 2z1 + z0

∆t2
= qEz + q

(
x2 − x0

2∆t
By −

y2 − y0

2∆t
Bx

)
. (2.52)
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Rearranging the terms we get ,

( m

∆t2

)
x2 +

(−qBz

2∆t

)
y2 +

(
qBy

2∆t

)
z2 =

( m

∆t2

)
(2x1 − x0) + qEx + q

(−y0Bz

2∆t
+

z0By

2∆t

)
,

(
qBz

2∆t

)
x2 +

( m

∆t2

)
y2 +

(−qBx

2∆t

)
z2 =

( m

∆t2

)
(2y1 − y0) + qEy + q

(−z0Bx

2∆t
+

x0Bz

2∆t

)
,

(−qBy

2∆t

)
x2 +

(
qBx

2∆t

)
y2 +

( m

∆t2

)
z2 =

( m

∆t2

)
(2z1 − z0) + qEz + q

(−x0By

2∆t
+

y0Bx

2∆t

)
.

(2.53)

thus

x2 +

(−qBz∆t

2m

)
y2 +

(
qBy∆t

2m

)
z2 = (2x1 − x0) +

qEx∆t2

m
− q

(
y0Bz − z0By

2m

)
∆t,

(
qBz∆t

2m

)
x2 + y2 +

(−qBx∆t

2m

)
z2 = (2y1 − y0) +

qEy∆t2

m
− q

(
z0Bx − x0Bz

2m

)
∆t,

(−qBy∆t

2m

)
x2 +

(−qBy∆t

2m

)
y2 + z2 = (2z1 − z0) +

qEz∆t2

m
− q

(
x0By − y0Bx

2m

)
∆t.

(2.54)

With x2, y2, z2 the three unknowns and three equations represent a linear matrix
equation system,




a11 a12 a13

a21 a22 a23

a31 a32 a33






x2

y2

z2


 =




b1

b2

b3


 . (2.55)

Thus writing determinants in the form

D1 =

∣∣∣∣∣∣

b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣
, D2 =

∣∣∣∣∣∣

a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣
, D3 =

∣∣∣∣∣∣

a11 a12 b1

a21 a22 b2

a31 a32 b3

∣∣∣∣∣∣
. (2.56)

with ,

D0 =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
6= 0, (2.57)

the solution is given by Cramer’s rule,

x2 =
D1

D0

, (2.58)

y2 =
D2

D0

, (2.59)

z2 =
D3

D0

. (2.60)

2.2.4 Efficiency of simulation code

The efficiency of any simulation code depends on the number of parameters used
such as, programming style, hardware, compiler, errors and tolerance acceptability.
Figure 2.11 shows the behavior of relative error in electric field calculation. The
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electric field was calculated for homogeneously distributed particle beam using
Gauss’ Law and compared with their numerical value. The error number of grid
points is an important parameter as the space-charge forces have to be resolved.
When grid points are too low, higher particle number will be weighted at same
value leading to so called mesh effect or numerical heating. On the other hand, a
higher number of grid points cause excessive computational time.

(a) (b)

Figure 2.11: (a) Error due to number of grid points at constant particle number
Np = 10000 (b) Error due to number of particles at constant gridpoints = 50 ×
50 × 50.

(a)

Figure 2.12: Time for a single time step calculation as function of particle number.

It is often inconvenient to define a large number of particles which may cause
long time on Desktop computer. Therefore, the number of particles should be
matched with requirements. So we define less number of particles assigning a
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macro charge to each particle, but a certain minimum number of macro particles
must be defined in order to maintain a reasonable particle to grid point ratio. As
can be seen in figure 2.11(b) for homogenous distribution, when number of particles
are very low the error in electric field is high. It reaches minima at a certain level
and stays constant after a certain value as homogeneity is reached. Figure 2.12
shows the time required for a single step. Thus defining around 60, 000 particles is
reasonable for given grid points. For above used settings 3D space charge routine
takes approximately 6 seconds every time step.
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Chapter 3

Transport in a single toroidal
segment

Simulations were performed to investigate the beam transport properties in toroidal
magnetic fields. The code incorporates the multi particles multi specie simulations
with real field (magnetic or electric) configuration. A desired type of the field
source, in this case current carrying coils, was simulated to take into account the
fringe fields. Direct comparisons were made between analytical, simulated and
measured properties of the beam. Simulations, spanning a large range of theoret-
ically possible parameters, used to probe the beam transport in a single toroidal
segment.

3.1 The geometry and input parameters for sim-

ulations

The external magnetic field values at grid points were calculated using the Biot-
Savart law. A toroidal mesh was defined with a central axis of arc radius 1.3 m,
and a minor radius 0.1 m (see figure 3.1). The numerical mesh was chosen to be
a 35◦ toroidal arc, so that fringe fields from toroidal segments can be taken into
consideration. The arc angle of 5◦ (in fringe field region) corresponds to a distance
of 135 mm on the axis. The output plane was set at the last coil position.

The homogeneous phase-space distribution was generated to investigate beam
properties. The chosen distribution allows us to generate maps for beam matching
condition in a single segment. For the theoretical investigation proton beam was
chosen due to its low vertical drift. An energy range 4 keV − 20 keV with the
magnetic field strengths 0.4− 0.6 T was simulated. Beam energy of 10 keV and a
magnetic field of 0.6 T was taken as standard setting which gives moderate drift
and intensity for experiments. For positive charged particles, the R × B drift is
vertical, i.e. perpendicular to the ring plane.

Figure 3.2 shows an example of magnetic field distribution used at mesh points.
The field gradient in the radial direction of 0.42 T/m was simulated at the centre
for 480 A current that corresponds to magnetic field of 0.6 T maximum on the
axis.

24



R=1300 mm

30°

Input plane
135 mm

f 200mm

Output p
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B
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y

z

Figure 3.1: Scheme for simulation (left) and input phase-space distribution for
mapping technique (right).

(a) (b)

Figure 3.2: 3-dimensional toroidal field distribution over the mesh (left) and graph
of magnetic field strength in radial direction at middle plane of the segment (right).

3.2 Analysis parameter velocity ratio (vλ) and

a mapping technique

In accelerator physics phase-space (also called trace-space) distribution is gener-
ally used to analyze beam properties. On the y-axis, angle tan−1(p⊥/p‖) is plotted
against position on x-axis. Where p‖ is taken parallel to the longitudinal geomet-
rical axis for every particle. This is shown schematically in Figure 3.3. To describe
the intrinsic dependence of canonical momentum on magnetic fields additional
variable is needed to describe properties of the beam.

The parameter velocity ratio was defined as
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Figure 3.3: Trace space (phase-space) for linear system. In this case phase space
at output plane is not containing information of canonical momentum in magnetic
fields.

Figure 3.4: Figure explaining to vλ factor. Both components of velocities, v‖ and
v⊥, are defined with respect to magnetic field lines at the position of particle.
Hence the ”guidance” property is integrated in 3-dimensional map.

velocity ratio = vλ =

(
v⊥
v‖

)

B

, (3.1)

where v‖ is defined as a velocity component parallel to the magnetic field at a
particular position and magnetic field strength distribution as shown in figure 3.4.

This parameter was especially defined to show the beam guidance along field
lines and is important with respect to the variation in magnetic field strength
|B|. We are interested in beam like particle distribution. Therefore the condition
vλ < 0.1 was adapted with respect to the injection experiments. Particle inside the
interval [0, 0.1] will be depicted as a ”good beam”. Mapping technique was used to
find the emittance required for maximum transmission or injection efficiency.

The homogeneous distribution in x−x′ of a beam is mapped and particles sat-
isfying vλ < 0.1 at the output plane gives information regarding optimal injection
for a given system. The map of vλ in x−y plain depicts the ”good beam” condition
as shown in Figure 3.5.

To investigate beam properties in terms of vλ, histograms were produced. The
number of particles against velocity ratio was plotted. The peak velocity ratio and
Full Width at Half Maximum (FWHM) was defined with respect to the histogram
as shown in Figure 3.6. Then the beam distribution is optimal when the vλ at
peak and the FWHM both have a minimum value.

The injection efficiency or transmission function T (vλ) was defined with
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Figure 3.5: The graph depicting ”good beam” case. The figure on the right shows
the ellipse definition for ”good beam”.

N
u
m

b
er

 o
f 

p
ar

ti
cl

es

0.0 0.1

Peak

FWHM

Velocity ratio
at Peak

Velocity ratio (v )
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Figure 3.6: Explanation to histogram of vλ. The best case occurs when a maximum
number of particles show vλ values below a given limit, and with an acceptable
spread in vλ.

respect to vλ as,

T (vλ) =
No. of particles at output plane with vλ < 0.1

Total No. of particles injected
. (3.2)

The velocity factor (vf ) which can also be called good core factor was defined
as

vf =
1

vλ(Hmax) × FWHM of histogram(H)
. (3.3)
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FWHM can be translated to give the transversal beam temperature. Beam
emittance in terms of ellipse area is defined as

εx = xmax(x
′
max). (3.4)

This definition was not used as output beam property since x and y momenta
are coupled in magnetic fields. But this property was used to find the matched
case at the input plane.

3.3 Analytical calculation for the proton beam

Tables (3.1 & 3.2) show the analytical calculation for single particle dynamics
(proton) in a toroidal magnetic field. Vertical drift is calculated for the arc length
of 0.815 m. Important numbers can be calculated by using following formulae.

Longitudinal velocity v‖ =

√
2qV

m

Gyration Period T =
2πm

qB

Time of F light TOF ∆t = s/v‖

Drift velocity vR =
mv2

‖

qBR
; drift ∆l = vR × ∆t =

smv‖
qBR

no. of osci n = ∆t/T =
sqB

2πmv‖

(3.5)

The velocity v‖ can be calculated from extraction potential V , which determines
the time of flight (TOF ) for given a given distance ’s’ (e.g. 0.815 m). Number
of oscillations can be calculated as dividing TOF by gyration periods (T ). The
number of oscillations corresponds to the gyration along B field lines. Beam size
can be calculated by taking the sinusoidal function of the oscillation number.

Table 3.1: Proton motion along the 30◦ toroid at 10keV beam energy

Magnetic field (T ) Drift (mm) No. of osci.

0.400 22.58 3.60
0.425 21.25 3.83
0.450 20.00 4.05
0.475 19.01 4.28
0.500 18.06 4.50
0.525 17.20 4.73
0.550 16.42 4.95
0.575 15.71 5.18
0.600 15.05 5.40

From Table (3.1) one can see that the maximum magnetic field is required
for minimum vertical drift. Table (3.2) shows that minimum drift occurs at low
energy end. For maximum magnetic field, the vertical shift is 9.51 mm at 4 keV .
For higher energies drift is higher. In 10 keV case, the drift is good enough to
resolve it from the beam size.
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Table 3.2: Proton motion along the 30◦ toroid at constant magnetic field of 0.6 T

Energy (keV ) 4.0 5.0 6.0 7.0 8.0 9.0
Drift (mm) 9.51 10.64 11.65 12.59 13.46 14.28
No.of osci. 8.54 7.64 6.98 6.46 6.04 5.70

Energy (keV ) 10.0 11.0 12.0 13.0 14.0 15.0
Drift (mm) 15.05 15.79 16.49 17.16 17.81 18.43
No. of osci. 5.40 5.15 4.93 4.74 4.57 4.41

Energy (keV ) 16.0 17.0 18.0 19.0 20.0
Drift (mm) 19.03 19.62 20.19 20.75 21.29
No.of osci. 4.27 4.14 4.03 3.92 3.82

3.4 Single particle simulation

To investigate single particle dynamics, consider a single particle (proton) injected
into the toroidal magnetic field, on the toroidal axis. Figure 3.7(a) shows the
behavior of vλ and the gyro radius as a function of energy.

(a) (b)

Figure 3.7: Left: Velocity ratio vλ as a function of energy at the toroid output
plane (red curve)(see figure 3.1) with vertical position (blue) at output plane.
Oscillations in curve are mainly due to gyration. Right: Vertical drift of proton
beam plotted with Larmor radius as errorbars against beam velocity.

One can see in figure 3.7(a) that the peaks and valleys in the graph coincide
with energy for which the number of oscillation tends towards integral value. Only
at 18 keV , the peak is shifted by 2 keV . When a singly charged particle is injected
into a toroidal magnetic field it gyrates around a field line with a guiding centre
drifting vertically. Due to the curved nature of the magnetic field in toroidal
segment, there will be always some transversal impulse at the output plane, that
results in non-zero vλ parameter. To determine the absolute drift the vertical drift
was plotted with gyro radius as error bars. For given arc length s, the vertical
(R × B) drift of the particle is given by,

∆l =
ms

qBR
v‖. (3.6)
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∇B drift vanishes due to low v⊥ velocity. Thus for a proton the ratio ∆l/
√

E
is a constant equal to 1.504 × 10−4 m(eV )−1/2.

The plot of the vertical deflection of proton with gyro radius as error bar
against the root of energy is shown in the figure 3.7(b) . The slope of the graph
is 1.53 × 10−4 ± 0.15 × 10−4 m(eV )−1/2, which is in a good agreement with the
analytical calculation.

3.5 Simulations of proton beam with multi par-

ticles

3.5.1 Beam properties with energy variation

To investigate the multi particle behavior of a system, a parallel beam of proton
with 30 mm radius and ±5 mrad angular width was injected into the single seg-
ment. In this case 10 keV with 2 mA beam current was chosen. At the output
plane, drift and beam size were calculated with respect to vλ.

Figure shows an example of beam envelop of proton beam at 10 keV trans-
ported through toroidal magnetic field (0.6 T ). Four focal points can be observed
along the toroidal beam path.

Figure 3.9(a) shows a dependence of vertical drift position on energy. As seen
from figure 3.9(b) the beam size varies in the range of ∼ 2− 4 cm. Graph depicts
beam focus at 8 keV and 14 keV . At the same position the drift curve falls down
with the value equal to this variation. Thus a drift curve can be seen as a smooth
function of energy.

Transmission function was calculated with respect to the vλ (see figure 3.9(c)).
Due to the higher impulse at higher energy the number of trapped particles is lower,
and transmission function is higher. Magnetic field was 0.6 T set. Maximum beam
size with minimum losses are of interest when dynamics for multiturn injection is
investigated.

The plot of peak value of vλ for a beam is shown in figure 3.10(a). Due to fringe
fields a large momentum spread was observed at lower energies. Figure 3.10(b)
shows higher FWHM values at the lower energy end. The fluctuations characterize
the phase of the beam. vf is the inverse function of peak value and FWHM. To
find the optimum case the velocity factor vf was plotted shown in figure 3.10(c).
As seen from the graph, the matched case occurs at 14 keV . A focused proton
beam was simulated in this case.

One explains this phenomena by comparing the analytical value. At 14 keV
a beam waist is calculated with respect to near half integer oscillation number.
When the number of oscillations is a half or full integer minima and maxima of
beam size are seen. In the case of higher energies the effect of fringing fields will
be lower hence improving the vf factor.

3.5.2 Beam properties at various input distributions

From figure 3.9(c) one infers that at operating energy of 10 keV the maximum
injection efficiency (transmission) is as low as 64%. But it was found that the
beam distribution or input phase, at the input plane can be chosen to improve
value of transmission function. With the help of a focussing element one chooses
the input phase-space distribution. To find the optimum case the input ellipse was
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(a)

(b) (c)

Figure 3.8: (a) An example of 3-dimensional particle beam (proton beam at
10 keV ) transported through toroidal magnetic field of 0.6 T . Four focal points
are seen along the beam path. (b) Density profile mapped on x−z plane. Vertical
drift of beam is indicated. (c) Density profile mapped on y − z plane shows 30◦

arc along the beam path.

rotated in x−x′ plane. Ellipse angle 0◦ and 180◦ represents a parallel input beam
and 90◦ represents a focused input beam. A 10 keV beam with 2 mA current was
simulated in a magnetic field of 0.6 T .

As seen from figure 3.11, matched case occurs when a focused beam is injected
into toroidal field giving 100% transmission. The acceptance of the system at
standard settings was estimated to 400π mm mrad

With respect to the magnetic field, acceptance is variable but the ellipse an-
gle is almost constant within range of 100 to 120◦. A homogeneous beam in
4-dimensional space was injected into a toroidal magnetic field. When the out-
put vλ was plotted as a function of input parameters x − x′ one produces graphs
as shown in figure 3.12. One can see that, the maximum transmission, the blue
region, occurs when a beam with an ellipse angle around 115◦ is injected.

It can also be noticed from figure 3.12 that at some of the magnetic field levels
an off axis injection is required for maximum transmission. This shift is in the
range of 10 mm. In the graphs the x− axis is the vertical axis. The R × B force
causes a drift in vertical direction. Thus the additional vertical momentum gain (a
kick) from curved magnetic field lines is required to minimize the drift effect. This
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(a) (b) (c)

Figure 3.9: (a)Vertical position of the proton beam as a function of beam en-
ergy, (b) beam size in centimetre shows a dominance of a gyration motion, (c)
transmission variation as function of energy, at output plane.

(a) (b) (c)

Figure 3.10: (a) Max. abundant vλ, (b) FWHM variation and (c) vf as function
of energy for focused proton beam input.

explains the necessity of off axis injection at input plane for matching condition.

3.5.3 Beam properties with variable magnetic field

The beam can be guided well at higher magnetic fields. For simulations parallel
beam with energy 10 keV was injected for which the maximum transmission value
is 63%. The drift curve shows an inverse dependence on a magnetic field. The
vertical drift decreases with increasing magnetic fields, as seen in Figure 3.13(a).
Transmission function increases with higher field levels (see figure 3.13(b)).

Figure(3.14) shows output particle distribution mapped according to vλ. Here
the defined x− axis corresponds to the vertical axis of curvature. As seen the
beam drifts in horizontal y− axis as well. These simulations were performed at a
constant ellipse injection angle was kept constant at 0◦.
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(a) (b) (c)

Figure 3.11: Transmission and vf as function of ellipse angle.

(a) B = 0.6T, ε = 300π −
mm−mrad, x − offset =
2 mm, angle = 116◦

(b) B = 0.55T, ε = 319π −
mm−mrad, x − offset =
10 mm, angle = 115◦

(c) B = 0.5T, ε = 521π −
mm−mrad, x − offset =
5 mm, angle = 104◦

(d) B = 0.4T, ε = 734π −
mm−mrad, x − offset =
6 mm, angle = 108◦

Figure 3.12: The map of vλ against input trace space. The x− axis is vertical
axis. The blue region gives the acceptance for particular magnetic field, the beam
energy is 10 keV .
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(a) (b)

Figure 3.13: Vertical drift (in mm) and transmission function (in %) as a function
of toroidal magentic field.

(a) B=0.6T (b) B=0.55T (c) B=0.5T

(d) B=0.45T (e) B=0.4T

Figure 3.14: Map of vλ against output x− y space. The blue region shows ”good
beam” at different magnetic fields with constant beam energy 10 keV . Ellipse
injection angle was kept constant at 0◦.

3.5.4 Effect of self fields

The Brillouin limit sets the theoretical limit on the maximum charge that can
be transported into a magnetic field. To investigate the effects of self fields and
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study the effects of Brillouin limit, a parallel proton beam with 10 keV energy was
injected into the magnetic field of 0.6 T .

(a) (b) (c)

Figure 3.15: Simulated drift of beam (in mm), beam size (in cm) at output and
transmission function (in %) variation as function of beam current at constant
energy 10 keV and magnetic field 0.6 T .

Figure 3.15(a) shows that, the vertical drift decreases as a function of increasing
current. Decreasing nature is observed till the current reaches the Brillouin limit
which was 80 mA in this case. This behavior has been experimentally observed
[34]. A small influence of space-charge on the vertical drift was also observed in
single segment transport experiments. Figure 3.15(b) shows the beam size as a
function of the current. Lower than Brillouin limit particles are well guided by
magnetic field. At higher self fields the electrostatic energy forces the particle to
leave trajectory. Figure 3.15(c) shows that, transmission always decreases with
additional self fields.

(a) (b)

Figure 3.16: Simulated drift (in mm) and beam size (in cm) as function of magnetic
field for different currents.

Figure 3.16 compares the behavior of vertical drift and beam size for three
different cases 2 mA, 60 mA and 80 mA. At higher magnetic fields the drift does

35



not vary significantly, to dominate the change in beam size. The beam size as well
changes in the same range.

(a) (b)

(c) (d)

Figure 3.17: Velocity factor as function of beam current at three different scales
of beam current. (a) full scale, (b) (0, 10 mA) range, (c) (10, 80 mA) range, (d)
(80, 160 mA) range. Parallel proton beam was injected in toroidal field of 0.6 T .

Figure 3.17(a) shows the plot of velocity factor vf as a function of the beam
current. The plot shows three distinct regions. Figure 3.17(b) shows that, at low
currents, the vf follow non functional behavior which corresponds to analytical
beam size function. In the middle range figure 3.17(c), vf is linear function of
current. Above the Brillouin flow electrostatic energy overcomes magnetic energy
and vf rapidly falls down as seen in figure 3.17(c). In this case the magnetic field
was defined at the maximum value of 0.6 T .

Our experimental parameters lie at lower limit ends. The figure 3.16 shows that
the system exhibit different nature for lower and higher current region, although
the drift is shown to have same effect. In the case of 2mA beam current, the
Brilloiun limit lies at 0.015 T . At this field level the drift is too high to detect the
beam.

36



3.6 Comparison with analytical values

Figure 3.18 compares simulated values with the analytically calculated ones. For
simulations a parallel beam with 2 mA current was chosen. Figure 3.18(a) shows
the drift as a function of the magnetic field. The analytically calculated values are
almost 2 mm higher than the simulated. The beam size is much larger than this
difference. The deviation from analytical values can be reasoned as the effect of
non-homogeneous fields.

(a) (b)

Figure 3.18: (a) Drift as a function of the magnetic field. Black line is the analytical
curve whereas red points are simulated, (b) vertical position as function of energy
for two different input phase-space. Red points are for the focused beam, whereas
blue points are for the parallel beam. Magnetic field was 0.6 T .

Figure 3.18(b) shows the effect of input distribution. The vertical drift was
plotted as a function of energy. The parallel beam experiences more drift than the
focused beam.

For these simulations, a homogeneous distribution of particles was used. This
analysis provides a theoretical basis for injection simulations. For precise calcula-
tions of the injection system experimentally measured distributions were required.
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Chapter 4

Experiments

4.1 Characterization of Ion Source

The hot filament ion source was built to obtain an ion beam for beam transport
experiments. The choice of volume type ion source was made due to stable opera-
tion, good emittance and to the existing experience of IAP [35]. A characterization
of the source performance was required in terms of beam emittance, current and
ion species. In the case of multi species, e.g. from hydrogen gas, the proton frac-
tion that can be extracted depends on plasma properties. According to former
measurements, with this type of ion source a maximum proton fraction of 40%
can be expected [37].

Insulator

Copper

Water

Brass
Gas Inlet

Solenoid

Filament

Plasma electrode

Screening electrode

Ground electrode

Bz

Plasma chamber

50 mm

Figure 4.1: Cross sectional view of the ion source.

As shown in Figure 4.1 the source consists of a plasma chamber with heating
filament and triode extraction system (see photograph A.11 in appendix). The
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cathode is heated to emit electrons which are accelerated to the plasma chamber
wall. Electrons are forced into cycloidal paths by an external solenoidal field,
increasing their path lengths to the wall, thereby, increasing the probability of an
ionizing collision with neutrals. The magnetic field produced by the solenoid was
measured by a Hall Probe. As seen from Figure 4.2 about 40% of the maximum
field level is present at extraction system. It was possible to produce 0 − 23 mT
magnetic field at centre of plasma chamber by varying the coil current in range
0−6 A. The heating filament as well produces a comparable magnetic field around
9 mT which is heated by current of 50− 60 A. This magnetic force does not have
significant effect on ion beam, but does change plasma properties significantly.

Figure 4.2: Magnetic Field from coils on plasma chamber.

A triode extraction system was used. The plasma electrode is held at positive
potential, the screening electrode is held at negative potential at about 10% value
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of the plasma electrode voltage and followed the ground electrode. Figure 4.3
shows a block diagram of circuit and source. The space charge dominated beam
current is given by the Child Langmuir Law,

J =
1

9π

√
2e

m

V 3/2

d2
. (4.1)

Where J is the current density, V is accelerating potential and d is the accel-
eration gap length. In the used source, d was 5 mm. Figure 4.4 shows the

Figure 4.3: Circuit diagram and experimental test bench.

Figure 4.4: Top view of experimental test bench.

experimental setup used for characterization of ion source (see photograph A.12 in
appendix). The source was mounted on differential pumping chamber with three
turbo molecular pumps. Faraday cup was installed in the same tank for beam cur-
rent measurements. Emittance scanner of grid slit type was mounted and further
downstream of it a momentum analyzer (dipole magnet) was installed.
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Emittance Scanner and Beam parameters

To measure the phase-space distribution of ion beam an emittance scanner of
slit grid type was used. The slit and grid are moved vertically by step motor to
intercept the beam. The slit is moved in steps to record the signal on grid. Thus
giving the distribution of particles in x − x′. The beam transport is characterized

Figure 4.5: Slit and grid arrangement for emittance measurements (left). Twiss
parameters and relationship with beam size and angle (right).

by transport parameters α̂, β̂ and γ̂. Also called the twiss parameters [38]. From
these parameters the beam size and divergence angle can be determined. Their
relations are schematically shown in figure 4.5.

The quality of the extracted beam is given by its emittance. The emittance is
defined in terms of the area occupied by particles in phase-space.

εx =

∫ ∫
dx dx′. (4.2)

More precisely, the rms emittance is used to study the behavior of an ion distri-
bution. In x − x′, it is defined as,

ε̃x =
(
x̄2x̄′2 − x̄x′2

)1/2

, (4.3)

or equivalently,

ε̃x = x̃
ṽx,th

v0
. (4.4)

The factor ṽx,th defines the transversal distribution to be random, thermal, or
kinetic.

The another important variable brightness is defined as [36],

B =
2I

π2εxεy.
(4.5)
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4.1.1 He+ beam

From He gas ion beam with the fourth lowest mass can be extracted. The helium
beam consists of singly charged ion beam for used source type. So the ion source
properties can be easily investigated.

He + e− −→ He+ + 2e− (4.6)

Figure 4.6 shows an example of a 1.2 mA He+ beam extracted at 9.2 keV .
9.0 mTorr gas filling pressure was used as standard settings.

(a) (b)

(c) (d)

Figure 4.6: (a) Graph showing the single specie of mass 4 amu (a shift in mass
scale is due to calibration of mass 1 amu at 10 keV ), (b) Energy Spectra with
energy spread ±100 eV , (c) the phase-space distribution measured using emittance
scanner εrms = 3.94 × 10−2mm − mrad, and (d) beam profile along transverse
direction.

The terminal that was used can supply voltages up to 20 kV . The beam current
measured by Faraday cup (I−fc) is plotted against energy. As seen in figure 4.7(a)
at more than 9 keV beam energy the beam current stays constant even when the

42



extraction current is increased. The excess of current is lost in the extraction gap.
Figure 4.7(b) shows maximum transmission at 7 keV .

(a) (b)

Figure 4.7: (a) Current-Energy curve for He+ beam, and (b) transmission curve
showing matched case at 7 keV .

The source operation parameters define the plasma or especially the plasma
meniscus. As shown in figure 4.8 the matched concave meniscus gives maxi-
mum extraction current. The current was measured as function of filling pressure,

Figure 4.8: Effect of plasma meniscus on beam current. The concave shape in
shown figure gives more current than convex.

solenoidal field, arc voltage and arc current shown in figure 4.9. The gas filling
pressure does not show any significant effect on the beam current in Faraday cup.
The variation of the solenoidal field shows maxima at particular settings. As the
arc voltage is increased the beam current increases and reaches a maximum at
80 V . This also represents the fact that electron impact on He have maximum
cross section at 80 eV . The arc current is related to plasma density. Thus the
beam current is increased at increasing plasma density.

The matched beam is reached when a maximum current is extracted with
maximum brightness and minimum emittance. This optimal setting was used for
experiments (see figure 4.10).
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(a) (b)

(c) (d)

Figure 4.9: (a) Beam current as a function of arc current (Iarc), (b) beam current
as a function of filling pressure (P ) (c) beam current as a function of arc voltage
(Varc), and (d) beam current as a function of magnetic field maximum magnetic
field on axis.

Figure 4.10: Variation of emittance and brightness as function of magnetic field
showing the optimized case at 15.0 mT .
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4.1.2 Proton beam

From Hydrogen gas proton beam with a lowest mass can be extracted along with
H+

2 and H+
3 fractions. The proton beam is extracted by ionization of hydrogen

gas. The key reactions involved are,

H2 + e ⇒ H+
2 + 2e ,

H+
2 + e ⇒ H+ + H + e ,

H + e ⇒ H+ + 2e ,

H+
2 + H2 ⇒ H+

3 + H ,

H+
3 + e ⇒ H+ + H2 + e . (4.7)

It is believed that the last two processes are important for an efficient produc-
tion of protons [37]. Figure 4.11 shows an example of mixed proton beam at the
energy of 9.2 keV with beam current 2.2 mA. It shows a relatively high amount
of H+

2 and H+
3 fractions at normal plasma parameter setting.

(a) (b) (c)

Figure 4.11: (a) Graph showing the three fractions of mass m = 1, 2 and 3 amu,
(b) the phase-space distribution measured using emittance scanner εrms = 8.45 ×
10−2 mm − mrad, and (c) beam profile along radial direction.

It was figured out that the proton fraction depends upon plasma parame-
ters. Thus the whole parameter space of arc current (Iarc) and magnetic field was
scanned at four different values of arc potential (Varc) and three different values
of filling pressure (P ) to find maximum proton fraction. To get the clear contrast
in the plots let the relative occurrence (rocc) of particular specie (e.g. for H+) be
defined as

rocc H+ =
ηH+

ηH+

2
+ ηH+

3

, (4.8)

where η is percent fraction of the specie. Similar way, the relative occurrence
for H+

2 and H+
3 was defined. Figure 4.12 shows the relative occurrence of H+,

H+
2 and H+

3 as function of arc current (Iarc) and solenoidal current (Isol) at filling
pressure of 1.2×10−2 mbar and 80 V arc potential. At particular value of magnetic
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(a) (b) (c)

Figure 4.12: Graph of relative occurrence of (a) H+, (b) H+
2 , and (c) H+

3 .

(a) (b) (c)

Figure 4.13: Graph of mass spectra of H+, H+
2 , and H+

3 at the position of island
with respect to figure 4.12. Beam energy was held constant at 9.2 keV .

field and plasma density the relative occurrence of particular specie is very high.
Thus the graph shows island kind structure.

Figure 4.13 shows the mass spectra at the optimum values of relative occur-
rence. It was seen at each of the separate optimum settings i.e. at position of
island, ∼ 58% of proton fraction with 3.04 mA current, ∼ 91% of H+

2 fraction
with 2.84 mA current and ∼ 95% of H+

3 fraction with 3.05 mA current was ex-
tracted at beam energy of 9.2 keV .

When these graphs were plotted for different filling pressure (see figure 4.14)
or arc potentials (see figure 4.15) the peaks were observed to shift and intensity
decreasing while retaining the island structure.

The maximum of 58% proton fraction with 3.08 mA at 10 keV energy can be
successfully extracted from ion source at optimum settings. These were used for
the further experiments.
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(a) P = 9.0 mTor (b) P = 24.0 mTor (c) P = 48.0 mTor

Figure 4.14: Graph of relative occurrence of proton fraction for different gas filling
pressure at constant arc potential 80 V .

(a) Varc = 80 V (b) Varc = 100 V (c) Varc = 120 V

Figure 4.15: Graph of relative occurrence of proton fraction for different arc po-
tentials at constant gas filling pressure 1.2 × 10−2 mbar.
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4.2 Solenoidal Transport

An additional focussing element is required for transport of charged particle beam
that can provide the required phase-space distribution. Solenoid was proposed on
the merit of simple operation, cylindrical symmetry and availability. Figure 4.16
shows the setup used to measure the phase-space distribution (see photograph
A.13 in appendix). The ion source was mounted on vacuum chamber which was
connected to the solenoid. Downstream of solenoid the emittance scanner was
installed. Table (4.1) lists some of the important physical properties of focussing
solenoid used in experiments.
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Figure 4.16: Schematic setup for solenoidal transport.

Table 4.1: Physical properties of Solenoid

No. of winding 280
Maximum Magnetic on axis field 0.72 T
Maximum Voltage and Current 32.5 V, 360 A
Length 250 mm
Diameter of aperture 106 mm
Magnetic Shielding present

The focussing strength of a solenoid is given by [36],

k = (
q2B2

8mW
)1/2, (4.9)

where B is magnetic field, W is the energy of beam and q is charge of the
particle. The focal length is directly proportional to the magnetic field strength,
and inversely proportional to the squareroot of mass.
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4.2.1 Simulations with measured data

For simulation code a Bz component of magnetic field was measured as function
of transversal and longitudinal space (r − z). The 3d magnetic field distribution
then can be completed using Maxwell’s equations, namely

∇ ·B = 0. (4.10)

For beam transport calculation the measured distribution was used. The one
dimensional particle distribution was transformed in two dimensional phase-space
distribution and back calculated at the point of ion source (see figure 4.17).

Figure 4.17: The phase-space distribution measured was transformed back till the
aperture at extraction of source. And this back calculated distribution was used
for forward transport through the solenoid.

The space-charge compensation degree was determined by matching the beam
radius with aperture at source extraction.

In the case of proton beam three fractions are present. The space-charge forces
for single specie were simulated by using concept of perveance. The perveance of
the beam is given as,

K =
1

4πε0

√
mi

2q

I

V 3/2
. (4.11)

The space charge forces of beam is said to be equal when perveance of every
species is equal. At optimal setting, single specie of H+ beam was calibrated
to 6.67 mA, H+

2 beam was calibrated to 4.40 mA, H+
3 beam was calibrated to

3.85 mA at 9.2 keV energy.

4.2.2 He+ beam transport through solenoid

When He+ beam was transported though solenoid, two distinct distributions are
detected; a neutral beam distribution uninfluenced by magnetic field and deflected
singly charged He+ beam. Figure 4.18(a) and 4.18(b) shows the distribution
simulated and measured respectively, at solenoid current I = 150 A for beam
energy 8 keV . Offset is observed due to misalignment of solenoid with respect to
beam axis.

Figure 4.18(c) shows two distributions overlapped. The error is around 23%
in emittance measured and simulated. An additional error due to neutral beam
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(a) εrms = 5.12× 10−2 mm − mrad (b) εrms = 3.49× 10−2 mm − mrad

(c) ∆εrel = 0.23 (d) B = 0.3 T

Figure 4.18: (a) Simulated and (b) measured phase-space for I = 150 A corre-
sponding to magnetic field of 0.3 T at energy of 8 keV beam energy. Off axis
18 mrad shift in output phase can be noticed. The neutral beam fraction was not
simulated. (c) Overlapped distribution green is simulated and red the measured.
(d) Corresponding beam envelope.

fraction is not taken into consideration for simulations purpose. Figure 4.18(d)
shows an example of beam envelope for 8 keV energy.

At constant magnetic field beam size and divergence angles measured are plot-
ted as function of energy in figure 4.19. The beam size is known to have parabolic
dependence on k if measured before focus point [44]. Due to the limitations of ex-
periments the beam size seems constant after certain energy in figure 4.19 on left.
Thus in the figure 4.19 the parabolic nature is not clearly seen due to experimental
limitations. The measured beam size for energy range 6 − 12 keV is compared
with simulations in figure 4.20.

It was observed that the beam current had influence on the phase-space dis-
tribution. The beam current was varied using the arc current of filament in ion
source shown in figure 4.21(a). Figure 4.21(b) shows size of the beam plotted as
function of beam current. The difference in spot size in extremum case is around
15%.
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Figure 4.19: Beam radius and divergence dependence on energy and the plot at
low energy.

(a) (b)

Figure 4.20: Figure (a) shows the linear behavior of inverse beam radius as func-
tion of energy and (b) compares the measured beam radius with the simulations.
Magnetic field was held constant at 0.3 T .

4.2.3 Proton beam transport

The solenoidal magnetic field acts like filter when multi specie beam is transported,
example H2, N2. As shown in previous section the maximum of 45% proton
fraction was measured to be delivered by ion source. Figure 4.22 shows example of
simulated and measured beam transported through solenoid at energy 6keV with
0.14 T magnetic field

The beam transport was further simulated to get phase-space distribution
which was used as input parameter for transport through single toroidal segment.
The figure 4.23 shows the scheme used to simulate the beam phase-space. The
outplane was chosen at distance 80 mm away from solenoid keeping the distance
of solenoid to source same, a comparison with measurements is not possible.

Figure 4.24 which shows minima occurring at different positions of magnetic
field. Higher the mass stronger the magnetic field required to focus particular
fraction. Beam energy of 12 keV was used for the simulation.

When total beam size plotted it shows minima at around 0.28 T with minimum
spot size of 27 mm. Figure 4.25 shows the phase-space distribution of total beam
when the beam size is minimum. This distribution appears at 0.28 T . This
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(a) (b)

Figure 4.21: (a) Beam current in Faraday cup and beam size downstream of
solenoid as function of arc current and (b) increased beam size as a function of
beam current. Beam energy 9.2 keV and magnetic field of 0.3 T was used.

(a) (b)

Figure 4.22: (a) Overlapped phase-space distribution simulated (red) and experi-
mentally measured (green), (b) beam envelopes for different species. Red is H+,
green is H+

2 and blue is H+
3 fraction.

phase space distribution was taken as input for beam transport experiments and
simulations in a single toroidal segment.

4.2.4 Effect of magnetic field from toridal segment

The toroidal segment that was used in the experiments, has no magnetic shielding
material. Thus lines of force are coupled with that of solenoid. The shielding ma-
terial of solenoid found to have effect on the field in between two components, the
solenoid and the toroidal segment. The simulation performed using Microwave
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Figure 4.23: Simulation scheme for transport through solenoid for input parame-
ters for further experiments.

Figure 4.24: Beam size as a function of magnetic field for three different fractions
(on left). The beam size as function of magnetic field for all fractions together.
Beam energy 12 keV was used.

Studio shows a definite amount of magnetic field level is superimposed on the
solenoidal field. Figure 4.26(a) shows one of the example of magnetic field simu-
lated with toroidal field and solenoidal field both having set at maximum values of
0.6 T on axis. Around 0.14 T magnetic field is present at the penetration region.

Figure 4.26(b) shows a small effect of toroidal magnetic field on the proton
beam. The beam size was seen to be decreasing with respect to higher magnetic
field. 12 keV beam was simulated in this case. The solenoidal field was held
constant at 0.3 T . The addition effect of this field was seen in beam transport
experiments. The experiments regarding this were carried out in detail.
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Figure 4.25: Phase-space distributions 80 cm downstream of solenoid showing the
minima for the mixed beam. This distribution was calibrated for all energies and
used further for simulation and measurements as a input distribution. Red is H+,
green is H+

2 and blue is H+
3 fraction. The proton fraction is chopped off with

respect to the scanner acceptance.

(a) (b)

Figure 4.26: (a) Magnetic field distribution in between the region of solenoid and
toroidal segment. It shows small effect of magnetic material of solenoid, creating
valley. (b) Beam size downstream of solenoid as a function of toroidal magnetic
field. The solenoidal field (0.3 T ) and beam energy 12 keV was constant. Only
proton fraction was simulated.
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4.3 Transport through a toroidal segment

Figure 4.27 shows the experimental setup used for beam transport studies in single
segment with a toroidal magnetic field. The setup is an extension of solenoidal
transport experiments. A toroidal segment was installed at the end of the solenoid.
The emittance scanner was installed downstream of the toroidal segment for beam
diagnostics (see photograph A.13 in appendix). Table (4.2) lists the important
physical properties of a single segment (BRUKER Toroid Nr. 705001).
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Figure 4.27: Experimental setup for investigation of beam transport in a single
toroidal segment.

Table 4.2: Physical properties of Toroidal Segment

No. of winding 33 × 24
Maximum Magnetic field on axis 0.6 T
Maximum Voltage and Current 140 V, 480 A
Major Radius R0 1300 mm
Arc angle 30◦

Arc length 680 mm
Diameter of aperture 200 mm
Magnetic Shielding absent
Cooling water 70 l/min
Weight 1050 kg

4.3.1 Input Parameter Space

The input phase space distribution was chosen in such a way that the composite
beam size (including all fractions) for proton beam is minimum. The phase-space
distribution for 12 keV energy was shown in the previous section. The solenoidal
field was calibrated to give the same distribution for all input energies. The energy
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Figure 4.28: The schematic diagram and formulae for analytical calculation.

range was varied from 4 keV to 12 keV in 1 keV steps with magnetic field 0.4 T
to 0.6 T in a 0.025 T step size.

Table(4.3) list the velocities for different fractions in a beam and table (4.4) lists
the time period in longitudinal direction. The longitudinal arc length is 0.886 m.
The drifts on millimetre scale calculated for this path length are tabulated in
table(4.5). The number of oscillations are calculated by dividing the time of flight
by gyro period, are listed in table (4.6). The fractional number in turn gives the
phase of the beam at the output plane. A is the mass number of ions.

Table 4.3: Longitudinal velocities at different energies.

Energy Velocity (m/s)
A = 1 A = 2 A = 3

4 keV 8.78e + 05 6.21e + 05 5.07e + 05
5 keV 9.82e + 05 6.94e + 05 5.67e + 05
6 keV 1.08e + 06 7.60e + 05 6.21e + 05
7 keV 1.16e + 06 8.21e + 05 6.71e + 05
8 keV 1.24e + 06 8.78e + 05 7.17e + 05
9 keV 1.32e + 06 9.31e + 05 7.60e + 05
10 keV 1.39e + 06 9.82e + 05 8.02e + 05
11 keV 1.46e + 06 1.03e + 06 8.41e + 05
12 keV 1.52e + 06 1.08e + 06 8.78e + 05

Figure 4.29 shows analytically calculated beam size as a function of energy and
toroidal magnetic field. The beam size for each specie is calculated by considering
oscillatory behaviour in beam diameter. The vertical drift is added separately for
respective specie. The spot size is then calculated for the composite beam. The
focal points are shown by the blue coloured region. At energy 8 keV two focal
points exist in the given parameter space of a magnetic field.
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Table 4.4: Gyro-period for different species at different magnetic fields.

B(T ) Gyro Period (s)
A = 1 A = 2 A = 3

0.400 1.63e − 07 3.26e − 07 4.89e − 07
0.425 1.53e − 07 3.07e − 07 4.60e − 07
0.450 1.45e − 07 2.90e − 07 4.35e − 07
0.475 1.37e − 07 2.74e − 07 4.12e − 07
0.500 1.30e − 07 2.61e − 07 3.91e − 07
0.525 1.24e − 07 2.48e − 07 3.73e − 07
0.550 1.19e − 07 2.37e − 07 3.56e − 07
0.575 1.13e − 07 2.27e − 07 3.40e − 07
0.600 1.09e − 07 2.17e − 07 3.26e − 07

Figure 4.29: Analytical calculation for the beam diameter (colour-coded in metre)
plotted as a function of energy and magnetic field. Blue points represent a beam
waist.
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Table 4.5: Vertical drift at different energies for different magnetic fields, all numbers in mm.

Energy=5keV
B (T ) A = 1 A = 2 A = 3
0.400 15 21 26
0.425 14 20 25
0.450 13 19 23
0.475 13 18 22
0.500 12 17 21
0.525 11 16 20
0.550 11 15 19
0.575 10 15 18
0.600 10 14 17

Energy=5 keV
B (T ) A = 1 A = 2 A = 3
0.400 17 24 30
0.425 16 23 28
0.450 15 21 26
0.475 14 20 25
0.500 13 19 24
0.525 13 18 22
0.550 12 17 21
0.575 12 17 20
0.600 11 16 20

Energy=6 keV
B (T ) A = 1 A = 2 A = 3
0.400 19 26 32
0.425 17 25 30
0.450 16 23 29
0.475 16 22 27
0.500 15 21 26
0.525 14 20 25
0.550 13 19 23
0.575 13 18 22
0.600 12 17 21

Energy=7 keV
B (T ) A = 1 A = 2 A = 3
0.400 20 29 35
0.425 19 27 33
0.450 18 25 31
0.475 17 24 29
0.500 16 23 28
0.525 15 22 27
0.550 14 21 25
0.575 14 21 24
0.600 13 19 23

Energy=8 keV
B (T ) A = 1 A = 2 A = 3
0.400 21 31 38
0.425 20 29 35
0.450 19 27 33
0.475 18 26 32
0.500 17 24 30
0.525 16 23 28
0.550 15 22 27
0.575 15 21 26
0.600 14 20 25

Energy=9 keV
B (T ) A = 1 A = 2 A = 3
0.400 23 32 40
0.425 21 30 37
0.450 20 29 35
0.475 19 27 33
0.500 18 26 32
0.525 17 25 30
0.550 16 23 29
0.575 16 22 28
0.600 15 21 26

Energy=10 keV
B (T ) A = 1 A = 2 A = 3
0.400 24 34 42
0.425 23 32 40
0.450 21 30 37
0.475 20 29 35
0.500 19 27 34
0.525 18 26 32
0.550 17 25 30
0.575 17 24 29
0.600 16 23 28

Energy=11 keV
B (T ) A = 1 A = 2 A = 3
0.400 25 36 44
0.425 24 34 41
0.450 22 32 39
0.475 21 30 37
0.500 20 29 35
0.525 19 27 33
0.550 18 26 32
0.575 17 25 31
0.600 17 24 29

Energy=12 keV
B (T ) A = 1 A = 2 A = 3
0.400 26 38 46
0.425 25 35 43
0.450 23 33 41
0.475 22 32 39
0.500 21 30 37
0.525 20 28 35
0.550 19 27 33
0.575 18 26 32
0.600 17 25 31
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Table 4.6: Number of oscillations (phase) at different energies for different magnetic fields.

Energy=5 keV
B (T ) A = 1 A = 2 A = 3
0.400 6.19 4.38 3.57
0.425 6.58 4.65 3.80
0.450 6.97 4.93 4.02
0.475 7.35 5.20 4.24
0.500 7.74 5.47 4.47
0.525 8.13 5.75 4.69
0.550 8.51 6.02 4.91
0.575 8.90 6.29 5.14
0.600 9.29 6.57 5.36

Energy=5 keV
B (T ) A = 1 A = 2 A = 3
0.400 5.54 3.92 3.20
0.425 5.88 4.16 3.40
0.450 6.23 4.41 3.60
0.475 6.58 4.65 3.80
0.500 6.92 4.89 4.00
0.525 7.27 5.14 4.20
0.550 7.61 5.38 4.40
0.575 7.96 5.63 4.60
0.600 8.31 5.87 4.80

Energy=6 keV
B (T ) A = 1 A = 2 A = 3
0.400 5.06 3.57 2.92
0.425 5.37 3.80 3.10
0.450 5.69 4.02 3.28
0.475 6.00 4.24 3.47
0.500 6.32 4.47 3.65
0.525 6.63 4.69 3.83
0.550 6.95 4.91 4.01
0.575 7.27 5.14 4.20
0.600 7.58 5.36 4.38

Energy=7 keV
B (T ) A = 1 A = 2 A = 3
0.400 4.68 3.31 2.70
0.425 4.97 3.52 2.87
0.450 5.27 3.72 3.04
0.475 5.56 3.93 3.21
0.500 5.85 4.14 3.38
0.525 6.14 4.34 3.55
0.550 6.44 4.55 3.72
0.575 6.73 4.76 3.88
0.600 7.02 4.96 4.05

Energy=8 keV
B (T ) A = 1 A = 2 A = 3
0.400 4.38 3.10 2.53
0.425 4.65 3.29 2.69
0.450 4.93 3.48 2.84
0.475 5.20 3.68 3.00
0.500 5.47 3.87 3.16
0.525 5.75 4.06 3.32
0.550 6.02 4.26 3.48
0.575 6.29 4.45 3.63
0.600 6.57 4.64 3.79

Energy=9 keV
B (T ) A = 1 A = 2 A = 3
0.400 4.13 2.92 2.38
0.425 4.39 3.10 2.53
0.450 4.64 3.28 2.68
0.475 4.90 3.47 2.83
0.500 5.16 3.65 2.98
0.525 5.42 3.83 3.13
0.550 5.68 4.01 3.28
0.575 5.93 4.20 3.43
0.600 6.19 4.38 3.57

Energy=10 keV
B (T ) A = 1 A = 2 A = 3
0.400 3.92 2.77 2.26
0.425 4.16 2.94 2.40
0.450 4.41 3.11 2.54
0.475 4.65 3.29 2.68
0.500 4.89 3.46 2.83
0.525 5.14 3.63 2.97
0.550 5.38 3.81 3.11
0.575 5.63 3.98 3.25
0.600 5.87 4.15 3.39

Energy=11 keV
B (T ) A = 1 A = 2 A = 3
0.400 3.73 2.64 2.16
0.425 3.97 2.80 2.29
0.450 4.20 2.97 2.42
0.475 4.43 3.13 2.56
0.500 4.67 3.30 2.69
0.525 4.90 3.46 2.83
0.550 5.13 3.63 2.96
0.575 5.37 3.79 3.10
0.600 5.60 3.96 3.23

Energy=12 keV
B (T ) A = 1 A = 2 A = 3
0.400 3.57 2.53 2.06
0.425 3.80 2.69 2.19
0.450 4.02 2.84 2.32
0.475 4.24 3.00 2.45
0.500 4.47 3.16 2.58
0.525 4.69 3.32 2.71
0.550 4.91 3.48 2.84
0.575 5.14 3.63 2.97
0.600 5.36 3.79 3.10

59



4.3.2 Acceptance of an emittance scanner

Due to geometry of the used emittance scanner, limitations were imposed on the
measurement of phase-space distribution along toroidal path. The curved mag-
netic field lines outside the magnetic segment hamper the ability of the emittance
scanner. Figure 4.30 shows the simulated field lines. Particles which follow the
field lines trace a curved path. The distance between the slit and grid was 246 mm.
A straight line formula θ = tan−1(δx/D) then can not be used for angle estimation
of the traced particles.

Figure 4.30: (a) Fringe field measured and compared at 10A field (b) scaled mag-
netic field line which demonstrates the field lines between slit and grid of emittance
scanner.

The emittance scanner consists of a slit-grid arrangement that can move ver-
tically, measuring the phase-space distribution in x − x′ plane. Figure 4.31 shows
a photograph of the emittance scanner. The slit can move vertically ±520 mm
cutting the beam path. The slit is 0.1 mm with 60 mm width. A particle which
possesses more than 5.7◦ angle in the y−direction can not be detected.

Figure 4.31: Grid-slit arrangement of an emittance scanner. The slit and grid
moves vertically downward and cut the path of beam. The dimensions of the
assembly are shown in figure.
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Three species of ions were expected to be present in the input beam namely
H+, H+

2 and H+
3 . The H+

2 fraction was expected to be negligible for the chosen
setting of ion source. The drift and phase output of the beam due to toroidal
magnetic field is different for different masses. The drift increases with mass and
the output angle changes with respect to gyro-frequency. Moreover, the solenoidal
field produces the different phase-space distribution for different species. This
causes one of the beam specie to hit the wall at some settings. When beam is hit
on the wall, produces secondary electrons giving rise to high noise. High noise to
signal ratio influences the measurement of beam phase-space.

4.3.3 Measurement with emittance scanner

Due to the stated limitations, the readings from the emittance scanner cannot be
directly compared with the simulated results.

(A) (B)

(C) (D)
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+

H
+

H3

+

H2

+
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fringe fields
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Figure 4.32: Comparison between simulations and emittance scanner data. (a)
input phase space distribution red H+, green H+

2 , and blue H+
3 fraction, (b)

simulated output phase-space distribution showing halo particles, (c) measured
phase-space distribution, (d) phase-distribution simulated by applying the emit-
tance scanner limitations and encoded with velocity ratio vλ. In this example input
parameters for the ion source were set to give negligible H+

2 fraction, hence was
not detected at output.

Figure 4.32(a) shows the input and output distribution simulated and compared
with measurements, at an energy of 12 keV with magnetic field of 0.6 T . The
input distribution represents a focal point of composite proton beam at a distance
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(a) (b)

Figure 4.33: Beam size as a function of the magnetic field at energy 10 keV (on
left) and as a function of energy at a magnetic field 0.425 T (on right). The arc
length was about 1.2 m.

of 80 mm from the solenoid. The arc distance from this input plane (135 mm
in front of the face of toroidal segment) to the position of the slit, phase shift
is 0.65π. This gives maximum probability of detection of particles, with a given
slit-grid scanner. Figure 4.32(b) shows the phase-space of a beam, that consists
of halo particles and a core at the centre. When particles possessing an angle
more than 5.7◦ in y−direction are filtered out, we get an output graph as shown
in Figure 4.32(d). The vλ value is colour coded. This is then directly compared
with Figure 4.32(c). One can see that the measured beam size is similar to the
size predicted by simulation.

Figure 4.33(a) shows the plot of beam size measured as a function of magnetic
fields. The energy of the beam in this case was 10 keV . Although the absolute
values are far from simulated curve, they show similar functional behavior. As
shown in figure 4.33(b) only in three cases a clear signal was observed. Hence
direct comparison is not possible. Since the noise level is not the same in all
cases, all data files cannot be analyzed on the same level or compared directly
with simulations. Due to this reason only three points are shown in the graph in
one series.

4.3.4 Optical diagnostics assembly

Phosphor screen can be used for detection of charged particle beams. It works on
the principle of phosphorescence, a type of photoluminescence effect. A phosphor
screen composed of (Zn, Cd)S : Ag known as P20 was used on the merit of
wavelength range of emitted light. It emits light with a range of 470 nm−670 nm
and with a peak emission at 550 nm, a yellow-green colour. This is within a visible
range and efficient for detection with normal digital camera chips. P20 screen is
also easy to produce on large scale, with low production cost.

Due to the presence of fringing fields (0.27 T at the screen position) CCD
camera can not be used. The magnetic field puts serious limitations on efficiency
of a CCD chip. And due to its large size shielding is difficult as it results in
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Figure 4.34: An optical assembly: photograph showing a camera and its mounted
position within an iron shielded case. Lower picture shows phosphor screen mount-
ing along with a repeller electrode. The screen is located at an arc length of 0.886 m
from input plane.

stronger forces. A simple digital camera was used for image detection due to
its small size and cost effectivity. A small case made up of iron was designed
for magnetic shielding for camera chip. Due to the small size of camera smaller
shield is sufficient which do not disturb the field lines at the screen position. In
front of the phosphor screen repeller electrode was installed to repel any secondary
electrons produced (see figure 4.34).

The image produced by webcamera was in jpeg format having dimensions of
320 × 240 pixels with resolution of 96dpi. The image can be online recorded
and videos can be made. A subroutine was written to analyze the image, which
gives pixel intensity at every pixel position. Thus the beam position and size can
be determined. Image calibration is discussed in the appendix A.5. The camera
has chip with 8− bit storage memory. The maximum bit range is 0− 256. Thus it
was observed that for more than 8 W beam power, the chip goes into saturation
mode.

The phosphor screen itself places another limitation. The screen can be exposed
to a maximum of 1.0 W/cm2 power. At the focused point the beam can have a
diameter of 10 mm i.e. area of 7.85 × 10−3 m2. Thus maximum allowed power at
focus can be 7.85 mW , which is too low to be detected by the web camera. Hence
moderate energy of 6 − 10 keV at current 1.6 mA gives best measurement range
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for comparison with simulations.
Figure 4.35 shows examples of the image captured for differrent settings. The

phosphor screen is insensitive to the mass of the particles which is it hit by. Thus
it emits light by collision of positive particles in a beam or by electrons. The source
of electron production may be

• ion beam collision with rest gas molecules (Welectron < 50 eV )

• ion beam collision with wall vessel or flanges or a repeller electrode itself
(Welectron < 50 eV )

• ion beam collision with phosphor screen itself (Welectron < 50 eV )

• electrons produced in source (Welectron < eVsc)

In the first three cases the electrons may have energy in the range 10− 50 eV . In
the last case the electrons are produced in extraction assembly. These may have
energy around the screening potential. In standard settings this potential is 10%
that of extraction energy, i.e. 400 − 1200 eV .

One should also consider, the effect of image sticking. Static charge may de-
velop on screen as phosphor is a bad conductor. This generates a ghost image that
can influence the consequent image. However due to high magnetic field this effect
is negligible.

Figure 4.35 shows typical behavior of images from a phosphor screen at an arc
length 0.886 m. Figure 4.35(a) shows a well defined beam at low energy (4 keV ).
Due to low efficiency the halo produced by trapped proton is not detected by the
digital camera. Figure 4.35(b) shows the typical picture when secondary electrons
produced at a flange within the beam path are detected on the screen. A small spot
at the centre is produced by electrons which are reflected back into the toroidal
segment by screening electrode. This also helps to find a magnetic centre of the
system. Figure 4.35(c) shows an example of the beam hitting the repeller electrode
producing electrons which are accelerated to the phosphor screen, due to negative
potential on the repeller electrode.

A camera (WCAM 300A) type was used due to its effectivity in a magnetic
field. But the efficiency of converting light into digital signal is very low. At a
lower power beam, the light emitted by the phosphor screen was too low to be
detected by the camera. A ring pattern developed on the phosphor screen due
to halo beam at low energy, visible to naked eyes or (other the better resolution
camera), were undetectable for the camera. On the other hand when intensity of
the beam is too high the data acquisition chip of the camera goes into saturation
mode. Thus when picture in figure 4.35(d) is analyzed it shows intensity plateau
at the beam centre. Figure 4.35(e) shows an example of an ideal image that can
be analyzed well. It shows three beam fractions with different vertical drifts.

4.3.5 Measurements with phosphor screen

Figure 4.37(a) shows the behavior of the vertical drift as a function of energy.
The drift is expected to grow with higher energy. Also, the drift is lower as the
magnetic field is increased.

The effect of a magnetic field is plotted in Figure 4.38(a). The vertical drift
decreases as the magnetic field is increased. It was observed that when the beam
is transported through a single segment it experiences a shift in the horizontal
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(a)

Figure 4.37: Results from beam measurements from Phosphor screen. Absolute
vertical drift as a function of energy for two different magnetic fields.

(a) (b)

Figure 4.38: Dependance of vertical drift and horizontal drift on magnetic field.

direction. This drift is observed due to the conservation of the magnetic moment.
The horizontal drift is seen to increase with increasing energy as shown in Figure
4.38(b). Oscillatory behaviour can be directly compared with simulation (see
figure 3.9(a)). Due to the coupling of horizontal and vertical planes, in fringing
field region particles receive horizontal kick proportional to the vertical position.
This results in the same functional behaviour of the measured horizontal drift as
that of simulated vertical drift inside the toroidal segment.

In Figure 4.39(a) the intensity is plotted as a function of energy and the mag-
netic field. At higher energy it shows an intense beam without much influence of
the magnetic field. Figure 4.39(b) shows the intensity is normalized with respect
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(a) (b)

Figure 4.39: (a) Intensity on the Phosphor screen (colour-coded) as function of
energy and magnetic field. (b) Averaged power density of the spot. These graphs
can be compared with figure 4.29.

to beam size and power of the beam. Thus at an energy of 8 keV and magnetic
field of 0.425 T we get the smallest spot size representing a focal point over the
total arc length. This can be directly compared with the analytical value. The
second focal point is located at 0.575 T for the same energy. This focal point is
for the mixed beam.

(a) (b)

Figure 4.40: (a) Vertical drift (colour-coded) as a function of energy and toroidal
magnetic field. (b) Horizontal drift (colour-coded) as a function of energy and
toroidal magnetic field.

Figure 4.40 shows the plots of drift measured as a function of energy and
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magnetic field. Figure 4.40(a) and Figure 4.40(b) show behavior of vertical and
horizontal drift as a function of energy and magnetic field. The vertical drift is
divided into four regions. Higher drift at higher energy and low magnetic field and
lower drift at low energy and higher magnetic field. The horizontal drift due to
vertical drift and fringing fields at the toroid exit is seen as a function of energy
alone without much influence of the magnetic field.

4.3.6 Self field effect

Secondary electrons are produced due to the collision of beam with the vessel in
the beam path. To repel these electrons a ring electrode was installed before the
phosphor screen which can hold up to 1.2 kV potential. For the measurements
above shown this electrode was held at a potential same as that of the screening
electrode, thus forming a trap for electrons. This neutralizes the beam potential.

The space charge extent can be varied by changing the potential on the repeller
electrode. Figure 4.41(a) shows vertical drift behavior with space-charge (Vrepel =
0 kV ) and without space-charge (Vrepel = Vscreening). Vertical drift is lower when
the beam is transported with self fields.

(a) (b)

Figure 4.41: (a)Measured vertical drift (in arbitrary unit - Pixels) as function of
magnetic field for with space charge (red) and without space charge (black). (b)
Graph showing the difference (in arbitrary unit - Pixels) in both cases as a function
of magnetic field.

The lower drift due to the higher space charge is credited to the E × B drift.
This has been also seen in in case of He+ beam. The oscillatory behaviour is due
to the phase shift.

The effect of repeller potential was also observed on the beam size. When
negative potential is applied to the electrode, the electrons are repelled. Figure
4.42(a) shows behavior of beam size for two case with space charge and without.
Figure 4.42(b) shows their ratios as a function of magnetic field.

Figure 4.42 shows the beam size as a function of magnetic field in the case of
repeller potential applied and set to zero. When potential is not present the gyro
motion seems to be the dominating compared to another case.
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(a) (b)

Figure 4.42: (a)Measured beam size (in arbitrary unit - Pixels) as function of
magnetic field for with space charge (red) and without space charge (black). (b)
Graph showing the ratio as a function of magnetic field.

4.3.7 Comparing the simulations with measurements

Figure 4.43: Figure showing simulated phase-space and measurements with emit-
tance scanner and optical assembly.

Figure 4.43 shows an example of 12 keV beam in 0.4 T magnetic field detected
with the emittance scanner and with the phosphor screen. The readings from the
emittance scanner can only be compared with simulation when the phase-space
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Figure 4.44: The vertical x−profile for intensity normalized to the peak of beam
position. Red is the simulated curve, green is from the emittance scanner and blue
is a measurement from an optical image. The geometric centre lies at x = 45 mm

is cut with respect to the acceptance of the scanner. The image of the optical
assembly can be directly compared with the x − y plane. Figure 4.44 shows a
comparison between the intensity profiles. The intensity is integrated in vertical
x−direction. It can be seen Figure 4.44 that the drift beam position is the same for
the both measurement devices and simulation. But the noise level of the emittance
scanner varies vastly. The intensity profile is normalized.

Figure 4.45: Figure showing measurements with phosphor screen and simulated
distribution in x − y plane. A typical image consist of a core with three fractions
and a halo from H+ particles.

Figure 4.45 shows the image from a phosphor screen that can be used for direct
comparison. The intensity profile in both directions can be used for analysis. The
vertical x-profile was used to find the drifted beam position and the horizontal
y-profile was used for determination of the beam size. Calibration and scaling is
shown in appendix. Figure 4.46 shows an example of intensity profile in horizontal
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direction used to find a beam size. The profile was normalized and FWHM was
taken as beam diameter.

Figure 4.46: The horizontal beam profile comparison. Green is the measured one
and red is the simulated curve. The geometric centre lies at x = 45 mm

(a) (b)

Figure 4.47: (a) Figure showing comparison between simulated and measured
vertical drift and (b) beam size comparison as a function of the magnetic field.

Figure 4.47(a) shows the comparison of vertical beam drift as a function of a
magnetic field. The difference between measured and simulated is negligible. In
figure 4.47(b) the beam size is plotted as a function of the magnetic field. At
0.45 T the beam waist is located. In both cases beam energy was 12 keV . Small
positive difference is observed in spot size. The simulated spot size is bigger than
the measured. This can be attributed to effect of electrons produced near wall.
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4.3.8 He+ beam

Since He+ beams consist of a singly charged particle beam properties can be stud-
ied in details. The drift for He+ beam is four times higher compared than a proton
beam. So only low energy He+ beams can be investigated with strongest possible
(0.6 T ) toroidal field. In the third chapter effect of phase-space distribution is dis-
cussed which shows for particular beam divergence the transmission is the highest.
To investigate this property a solenoidal field was varied for fixed toroidal field at
beam energy of 8 keV .

(a) (b) (c)

Figure 4.48: (a) Intensity as a function of solenoidal field, (b) variation of beam size
as a function of solenoidal field, and (c) the vertical drift variation with solenoidal
field strength.

Figure 4.48 shows the behavior of output intensity and beam size as a function
of solenoidal field. At 0.32 T , the beam size is the maximum with minimum
intensity. At this magnetic field the phase-space distribution is the ellipse rotated
with slope around 120◦ which was predicted theoretically. Figure 4.48(c) shows a
behavior of vertical drift as a function of solenoidal field. The graph shows some
unexpected jump. The variation is within ±4 mm range was observed in drift
with variation in solenoidal field.

Figure 4.49 shows the effect of repeller potential on the intensity and drift of
the ion beam. The graph of intensity shows a sudden drop for positive potential.
When negative potential is applied it forms longitudinal trap for electrons. When
positive potential is applied to repeller electrode electrons are absorbed and ion
beam is decelerated. This seems to reduce intensity. Another effect due to electrons
can be observed in terms of horizontal drift. Due to higher mass the vertical drift
of He+ particles hit the flange producing electrons. These electrons along with
repeller potential induce E × B near the wall. Figure 4.49(b) shows horizontal
drift as function of repeller potential Horizontal drift increases with increasing
potential.

Figure 4.50 shows the effect of self-fields. For beam energy of 8 keV beam
current was varied using arc current. Magnetic field was set at maximum 0.6 T .
From figure 4.50(a) intensity curve shows a minima at 0.6 mA. Also at this
position, as seen in the figure 4.50(b), the beam size is maximum. Although both
graphs show one to one relationship in the behavior, one can see, symmetry breaks
at the end points for curve of beam size. This behavior is typically contributed to
the E × B effect. When the drift is higher part of the beam is lost on the wall,
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(a) (b)

Figure 4.49: (a) Intensity and (b) beam size as a function of repeller potential for
beam energy 8 keV .

(a) (b)

Figure 4.50: Vertical drift and beam size as a function of beam current.

producing secondary electrons. Actual size of the beam is larger in those cases.
When beam current higher, more secondary electrons are produced, which leads
to the higher E×B drift near beam boundary. The overall effect is then increase
of beam size. Thus at higher beam currents the drop of beam size is lowered.

4.3.9 Electron beam

Electron beam with an energy of 3 keV was extracted. Figure 4.51 on the left
shows a small spot representing a small beam spot. For electron beam at this
energy vertical drift is 0.31 mm. Thus it provides practically a position of magnetic
centre.
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Figure 4.51: Figure on left shows spot of electron beam at 3 keV , and on right
shows He+ beam. A drift of 2.8 mm is shown with respect to this electron spot.
Axis are shown with respect to camera tilt.

The picture on the right shows the He+ beam at 6 keV energy with vertical
drift 2.8 mm with a good comparison to the analytical value of 3.2 mm. Secondary
electrons are also produced by beam collision with the phosphor screen (see figure
4.52). These electrons are repelled back from screening electrode of ion source.
The screening electrode is normally hold at 10% value of extraction potential.
The time of flight can be estimated in the range of 4 × 10−7 − 8 × 10−7 s. Thus
when beam energy is low and drift is significant (beam not overlapping centre), one
observes a spot produced by secondary electrons. The effect of these electrons is
very low on the analyzed results. On arbitrary scale the maximum pixel intensity
of electron beam in picture above is 93, whereas that from ion beam is in the
range of 23000. Thus intensity from these electrons is less than 1% level that of
ion beam.

Secondary electrons

Repeller
electrode

Screening
electrode

Phosphor
Screen

Figure 4.52: Path of secondary electrons produced on Phosphor screen.
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Chapter 5

Injection System

The proposed storage ring with a toroidal magnetic field is to be operated with
positive ion beams. These intensive ion beams should be transported into the
strong magnetic field from the outside region. Issues to be dealt are reflection
of injecting particles from field lines, confinement capability for higher currents
and ring acceptance. Further problems like field ripple of the toroidal structure
and the effect of the fields at the injection area on the circulating beam are to be
addressed.

In conventional accelerator systems different injection schemes are used with
fast kicker systems. A stripping mechanism is used with gas, foil or Laser stripping
for H− beam injection e.g. in SNS or ESS projects [45][46]. The kicker systems
are used, to position beamlets in the desired phase-space. It may consist of bump
magnets, septum magnets and/or electric fields. Multiturn systems are used to fill
the phase-space of the circular machine by painting concepts with a low emittance
beam from an injector linac [47][48][49][50].

Simple injection experiments with toroidal magnetic fields were investigated
earlier. An inductive charging method for electrons was used in the late 1970s
involving filaments[51]. A time varying magnetic field (1.5 kG) along with electric
fields from space-charge produces an E × B drift. This results in a drift along a
radial direction towards the centre. A density of electrons up to 4× 109 cm−3 was
achieved.

Experiments with a relativistic electron beam were carried out by Gilad at
the Cornel University in magnetic fields of 1 − 4 kG [52]. A 500 keV intense
electron beam produced by a Marx generator inside the ring was measured to have
an injection efficiency of 60%. The main problem of heating filaments near the
border of the vessel, is that the particles reach back to the injection point leading
to losses. Similar effects were observed in the CNT machine, which produces
an electron plasma in a stellarator configuration [53]. A retractable emitter was
proposed to solve this problem.

Publications on an injection system for the PROTO-RT emphasize the pos-
sibility of injection of charged particles generated outside the trap region. The
PROTO-RT consists of a toroidal vessel with a central conductor generating a
poloidal magnetic field component. An electron beam with an energy of 2 keV is
injected near the X-point - cross point of separatrix where the poloidal magnetic
field Bp = 0T [54].

In the present scenario, magnetic field configurations were studied which rep-
resent a 60◦−sector of the storage ring. The same space-charge routines and sim-
ulation techniques were used as those for the beam transport studies in a single
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toroidal segment. In the first step, an injection scheme with simplified fields was
investigated. A special coil configuration was later designed for experiments with
room temperature toroidal segments. A multiturn-like scheme was simulated to
investigate the two beam interaction in a longitudinal magnetic field.

5.1 Simplified field model

A magnetic field using a single layer toroidal coil was defined at the beginning to
save numerical efforts in design studies. This model was especially used to study
beam reflections from field lines and the redistribution of mechanical momenta
(pitch) in the fringing fields in detail. Due to a single layer, the coupling of fields
in comparison with the real structure was underestimated. The toroidal segments
were separated by a distance of 500 mm at the beginning. Near the face of the
output plane which is also the input plane for the second toroidal segment, an
auxiliary magnetic field was defined. This auxiliary magnetic field produces a
small region at the input into the second toroid with curved field lines (see figure
5.1). Proton beams up to 20 keV were simulated along the auxiliary field and the
transmission to the end of the second toroid was calculated.

Figure 5.1: Cross sectional view of the injection scheme with simulated magnetic
field lines. Proton beams were injected along the auxiliary field.

The beam energy and the toroidal magnetic field influence very much the in-
jection efficiency. Figure 5.2(a) shows that for confined proton beams (less than
15 keV energy) the particle losses have a maximum around 0.5 T toroidal field.
Whereas for the 20 keV case the loss rate increases linearly even at high magnetic
field. This can be explained by the fact that for higher energy the time of flight in
the injection section is low. Hence beam does not undergo one complete gyration
and is not confined.

Figure 5.2(b) shows the auxiliary field effect for different toroidal field settings.
For this case a 10 keV proton beam was injected. The graph shows generally the
same behaviour in different toroidal field configurations. At a magnetic field of
0.15 T transmission is the maximum for all toroidal fields.

A useful parameter g was defined as a combination of transmission function
T (vλ) and output pitch angle arctan(vλ) at the output plane (see figure 5.4 ),
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(a) Baux = 0.2 T (b) Wbeam = 10 keV

Figure 5.2: (a) Particle loss of the injected beam as a function of toroidal magnetic
fields. (b) Particle loss as a function of auxiliary magnetic field.

Figure 5.3: Operational parameter space for three different beam energies. The
’g’ values are colour coded.
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g =
T (vλ)

arctan(vλ)
. (5.1)

Figure 5.3 shows the operational parameter space for three different beam
energies. g is plotted as a function of toroidal magnetic field (Btor) and auxiliary
magnetic field (Baux).

It shows two possible operational regions (red colour) in case of the 10 keV
beam energy. A first one is located at Baux = 0.15 T , Btor = 0.4 T and a second
at Btor = 0.6 T . For 20 keV energy much higher auxiliary field is required for
confinement, as seen in the graph.
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5.2 Magnetic field design for injection experi-

ments

From simplified model investigations, it was understood that for every configura-
tion, there exists a solution for which the maximum transmission function can be
gained for given beam parameters. In the consideration of experiments with two
toroidal segments, a realistic magnetic field distribution was taken into account
including fringing fields. All operational parameters were calculated with respect
to the proton beam at an energy of 10 keV .

Dsegments

Toroid-1Toroid-2

Output plane
Input plane (ring)

13
5

m
m

B
B

Input plane
(injection)

200 mm

Baux

Auxiliary coil y

z

Toroid-1

B

Origin

Figure 5.4: Top view of the injection system with real toroidal segments.

Figure 5.4 shows the general layout under investigation. Two beams were
simulated; one representing an injected beam and another corresponds to the cir-
culating ring beam. A large geometry and parameter space was investigated to
obtain maximum injection efficiency for both beams. At the output plane, the vλ

value for particles is calculated which gives the guiding quality for an injected and
a ring beam.

5.2.1 Optimization for the circulating beam

The geometry of the experimental setup was optimized with respect to the circu-
lating beam. When this beam is transported from the first segment to the second
one a magnetic field drop happens. This gives rise to a periodic magnetic ripple
along the ring.

The vλ for the ring beam was simulated over various distances (Dsegments)
between two segments (see figure 5.4). Figure 5.5(a) shows vλ at three different
magnetic fields.

As the distance between two segments is increased the beam gains transversal
momentum which leads to the higher velocity ratio at the output plane. Three
curves show vλ for different magnetic fields. The 10 keV beam energy at the
maximum magnetic field 0.6 T and a distance about 300 − 340 mm between two
segments gives an acceptable pitch range vλ < 0.1. At these settings the magnetic
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(a) (b)

Figure 5.5: (a) Graph of vλ at the output plane as a function of distance between
two segments at the beam energy of 10 keV . 480 A corresponds to 0.6 T magnetic
field on axis. (b) Fall of magnetic field strength at the origin as a function of
Dsegments.

field strength decreases to about 28% ∼ 30% of the maximum value (see figure
5.5(b)) which is a reasonable coupling of segment fields.

Remark: The angle between the two toroidal segments can also be varied.
It provides more space for the injection coil, to be accommodated between two
segments. The maximum angle (at Dsegments = 300 mm) that can be chosen is
11.5 degree as toroidal segments have to be arranged on the circular path. With
respect to the velocity ratio (vλ) of the ring beam this angle is limited to 6.0 degree
as analysed by simulations. In the wake of technical realization this angle may be
troublesome and is not investigated further.

5.2.2 Optimization for injection coil

A suitable magnetic field is required for a beam that can be injected under 90◦

into the toroid. As shown in the Figure 5.6 the auxiliary magnetic field will push
the ring flux and introduce new field lines on which the injection beam can be
inflected into the second toroidal segment. A small region (green) is generated
inside the auxiliary coil which follows a curved region between the coil and second
segment. Injection beam will follow this green path. Maximum transmission can
be achieved when the coil configuration is optimized, as described in the following.

Geometry of the auxiliary coil

It includes the length of the coil as well as inner and outer radii, which define the
magnetic field distribution. The outer radius is ultimately limited by the distance
between two segments to 300 mm. A smaller inner radius allows a higher number
of coil turns. This also reduces the current required for a particular magnetic
field strength. On the other hand the usable phase-space for particle injection is
reduced rapidly due to the field superposition with the toroidal field. The optimum
parameters are listed in the table (5.1). The maximum on axis field was 0.29 T in
the auxiliary coil, so that it does not shift the ring beam into an unstable regime.
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Figure 5.6: Region of interest for injection beam and ring beam.

Table 5.1: Parameters for injection coil

Quantity Circular coil
No. of turns 40
layers 5
Inner diameter (mm) 240
Outer diameter (mm) 300
wire thickness (mm) 6.0
length (mm) 240

Coil positioning

The origin (0, 0, 0) was defined in the middle of two segments. The position of the
auxiliary coil can be varied in x − y plane. The z−axis position has no versatility
due to the compact structure.

The y−directional positioning changes the strength of magnetic field in the
curved region and determines the effect on the ring beam. The x−positioning
defines the curvature of magnetic field near injection area and influences the drift of
the injected beam. For the positive magnetic field, the curvature drift is downward
along the x−axis. Therefore a vertical of the coil is required for drift compensation.

Position of an injected beam

It was observed that the injected beam requires a proper transversal kick in the
fringing field of the auxiliary coil. This kick from fields gives a required gyration
phase and longitudinal momentum to the beam. For every setting there exists one
solution for an injection trajectory along which vλ tends to become 0. But the
system acceptance largely depends upon the field configuration.

To compare effects of different factors on the beam transport, vλ at the output
plane was plotted as a function of the input x− z positions in colour coded maps.
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Figure 5.7: Parameter space for optimization of auxiliary field. (a) A lateral
view of the injection system showing coils and its positioning in x − z plain. For
simulations the toroidal field was taken right to left with auxiliary field lines coming
up vertically. (b) A top view of the scheme depicting a coil length, and positioning
in y − z plane. (c) The position of the injection beam. For every setting a new
optimum position should be calculated using mapping technique.

The input plane was chosen y = 0.2 m away from the front plane of the auxiliary
coil (see figure 5.4), with an injection angle perpendicular to the toroidal axis.
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Figure 5.8 shows a comparison for two coil designs with different inner radii.
The blue region depicts the ”good beam” region. As the inner radius decreases, the
”injection channel” reduces in size. One can also observe that the relative position
of the ”injection point”, shifts upward. Hence for every setting, a different ”field
kick” is required for minimum vλ values.

(a) r = 120 mm (b) r = 100 mm

Figure 5.8: Colour coded velocity ratio mapped on the x − z input plane for
two different inner coil radii. The toroidal field was set at maximum 0.6 T . The
auxiliary coil field level was kept constant at 0.29 T , l = 240 mm, ∆xcoil = 140 mm.

(a) l = 240 mm (b) l = 180 mm

Figure 5.9: Colour coded velocity ratio mapped on the x − z input plane for two
different coil lengths. The toroidal field was set at maximum 0.6 T . The auxiliary
coil field level was kept constant at 0.29 T . r = 120 mm, ∆xcoil = 140 mm.

Figure 5.9 demonstrates the effect of coil length, which is coupled with the un-
dergoing gyro phase. The phase shift and momentum transfer from (y−component
to z−component) is achieved by off axis injection at the input plane. The beam
undergoes about half a gyro rotation in proposed system. Hence a longer coil
leads to the extra phase difference and can be gained by injecting the beam more
from the periphery. This in turn reduces the space acceptance of the system at
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l = 240 mm. Figure 5.9(b) shows the dark area is pushed towards the upper left
corner.

(a) B = 0.38 T (b) B = 0.30 T

(c) B = 0.27 T

Figure 5.10: Colour coded velocity ratio plotted as a function of position for
different magnetic fields. The toroidal field was set at maximum 0.6 T . Aux-
iliary coil was defined inner radius 0.1 m, length 240 mm and at the position
(x, y, z)=(0.14, 0.12, 0.0)m

Figure 5.10 compares the effect of the magnetic field level of auxiliary coil on
the beam transport. The drift in injection channel depends on both the curvature
of radius and the magnitude of magnetic field due to the |(R × B)| drift. As the
field strength changes both the curvature drift and the required field kick change.
One observes a shift in injection position and reduction in ”good beam” area with
respect to the decrease in magnetic field.

Figure 5.11 shows the penetration depth (Pd) of the injected beam into the
”ring acceptance” which depends on the magnetic field strength. It is defined
as the distance from aperture circumference to the position where the beam hits
the entrance plane of the second toroid. With higher auxiliary magnetic field the
beam can be pushed deeper into the ring field region. On the other side, it also
pushes the magnetic flux of the ring leading to a disturbance in the circulating
beam finally. Thus, for a moderate depth 15 mm, 0.29 T auxiliary magnetic field
is required.

To get graph (5.11(b)), the beam position was varied in every setting to get
a minimum vλ value. The injection direction was chosen perpendicular to the
toroidal axis.
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Figure 5.11: Penetration depth of the beam into the toroid aperture at different
auxiliary field levels with Btor = 0.6 T .

5.2.3 Phase-space acceptance

A thick parallel beam at 10 keV energy with no divergence was injected to find the
acceptance area (x-y) with respect to the vλ parameter. Figure 5.12(a) shows a
plot of vλ at the output plane (see figure 5.4) plotted as function of particle position
at the input plane. One sees, that a parallel beam with a diameter 10 mm can be
injected into the second segment with the ”good beam” condition satisfied. Both
segments were set at maximum magnetic field 0.6 T .

To find the phase-space acceptance, additionally injection angles were inves-
tigated. The vλ value was then plotted against input phase-space distribution.
Figure 5.12(b) shows an ideal acceptance ellipse (x − x′) plane.

5.2.4 Self field effect

Self fields induce a rotation around the axis in longitudinal magnetic field. Ad-
ditionally, the whole beam gyrates around gyro radius when injected off axis. A
complex beam behaviour is caused by the overlap of both effects.

Figure 5.13 shows the dependence of vλ and of the transmission (T (vλ)) as a
function of the injected beam current. The injection position and auxiliary coil
settings as optimized for zero current were kept constant.

5.2.5 Effect of energy variation

The injection system under investigation was optimized for the beam energy of
10 keV . As mentioned above an off axis injection is required. The ”field kick”
depends upon the canonical momentum of the beam. Therefore it is necessary to
investigate injection properties with respect to energy variation.

Figure 5.14 shows a variation in vλ with respect to the desired injection energy.
Since time of flight is smaller for higher energies, the increase in vλ at the high
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(a) (b)

Figure 5.12: Acceptance of the injected beam for the given system. (a) vλ plotted
on the x − z plane, (b) vλ plotted on the x − x′. The blue region is good beam
region. Both plots are on different scale.

(a) (b)

Figure 5.13: (a) vλ plotted as a function of the beam current, and (b) transmission
plotted as a function of the beam current.

energy end is slower compared to the low energy end. In both cases the system is
mismatched, which results in higher vλ-values.

The ion source to be used for experiments introduced a longitudinal energy
spread of 120 eV . When compared to simulation, it becomes clear, that this
source of energy spread does not much affect the vλ behaviour.

5.2.6 Misalignment errors

In high magnetic fields, attraction and repulsion forces may disturb the mechanical
stability of the system. The auxiliary coil would then experience torsional force
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Figure 5.14: Effect on vλ with changes in the beam energy. With the condition
vλ < 0.1, acceptable energy range of 9.3 keV − 10.8 keV can be estimated, which
is quite large against typical beam parameters.

causing errors in alignment leading to possible beam deterioration. A quality factor
vf was simulated taking into consideration such errors (see equation (3.3)).

(a) (b)

Figure 5.15: Velocity factor vf plotted for horizontal and vertical shift in the
auxiliary coil position.

The graph in Figure 5.15(a) shows vf as a function of x−shift of the auxiliary
coil and Figure 5.15(b) shows its dependence from y−shift, respectively. One
observes that y−shift is more harmful. The vf decreases to half of its maximum
value over the range of one centimetre.
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5.3 Kicker system for injection

In the context of the complete ring, the magnetic field lines form a magnetic
surface. Any extra field flux from auxiliary coils will not constitute the closed ring
field flux. The particles which are guided through the auxiliary coils tend to be
lost on the wall. Hence a kicker system is required to force the injected particles
from auxiliary field lines to the ring field lines as shown schematically in Figure
5.16(a).
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Figure 5.16: (a) A kicker system for injection to move the beam towards the ring
axis, and (b) demonstration of E × B force with drift motion in y−direction.

This can be achieved by forming crossed electromagnetic fields in a small region
of the injected beam path. Figure 5.16(b) shows when beam passes through crossed
fields, it is drifted vertically downwards. In a half gyro period beam accelerates
and decelerates on helical path.
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5.3.1 E ×B drift

Equations (2.18-2.20) define the drift velocity in the presence of external electric
field. This drift velocity is independent of particle mass and charge.

Integrating the equation of motion for a charged particle in crossed electric-
magnetic fields, for x − y components we get, with B = Bz

x =
1

ω
(vx0 −

Ey

B
)sin ωt − 1

ω
(vyo +

Ex

B
)cos ωt +

Eyt

B
+ C3, (5.2)

y =
1

ω
(vx0 −

Ey

B
)cos ωt +

1

ω
(vyo +

Ex

B
)sin ωt − Ext

B
+ C4, (5.3)

where C3 and C4 are constants. Putting initial conditions x(t = 0) = x0 and
y(t = 0) = y0 we get,

x = x0 +
1

ω
(vxo −

Ey

B
)sin ωt +

1

ω
(vyo +

Ex

B
)(1 − cos ωt) +

Eyt

B
, (5.4)

y = y0 −
1

ω
(vxo −

Ey

B
)(1 − cos ωt) +

1

ω
(vyo +

Ex

B
)sin ωt − Ext

B
. (5.5)

Without space charge, Ey = 0 and the component Ex is only from external
applied electric field. Then we get for a single particle with vx0 = vy0 = 0

vx =
Ex

B
sin ωt, (5.6)

vy =
Ex

B
cos ωt − Ex

B
. (5.7)

therefore the positions are given by,

x = x0 +
1

ω

Ex

B
(1 − cos ωt), (5.8)

y = y0 +
1

ω

Ex

B
sin ωt − Ex

B
t. (5.9)

Choosing a correct length of the plate which is directly related to the phase
ωt we can control the output velocities with an external electric field for the given
magnetic field, e.g. if l is the length of plates and ωt = (2n − 1)π then t = l/vz

gives,

l =
(2n − 1)πvzm

qB
. (5.10)

The periodic dependancy of radial velocity on the plate length is shown in the
Figure 5.17.

For example, a proton beam is subjected to a homogeneous longitudinal mag-
netic field Bz = 1.0 T and a crossed electric field Ex = 10 kV/cm, as shown in the
figure 5.17on the left. A beam with an energy of 20 keV was transported along dif-
ferent plate-lengths. A plot of the output beam angle against plate-lengths shows
a sinusoidal behavior (figure 5.17 right) as stated by equation (5.10).
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Figure 5.17: Left: At the output the beam gets a kick and rotates around Bz at
an angle ∆θ. Right: Dependance of output pitch angle (∆θ) of the beam on the
plate length, which can also be expressed by a corresponding vλ.

5.3.2 Beam simulations in a kicker system

The properties of the kicker system were investigated with respect to the geometry,
fields and beam parameters. Figure 5.18 shows the simplified scheme employed to
study the kicker system. A cylindrical mesh was designed for a first investigation.
A magnetic field was calculated by defining solenoidal coils, 0.5 m long, that
produce a maximum on axis field of 0.6 T . Electric plates were designed with a
starting point 10 cm inside of the coils. The input and output planes were defined
well away to incorporate the fringing fields.

When the positive ion beam is injected, it will be accelerated transversally
(x−direction) to one of the electric plates. Hence there will be a non zero transver-
sal velocity. Due to the longitudinal magnetic field the whole beam starts to gyrate
and drift in vertical y−direction. The gyro radius of the beam depends on the
plate voltage. The number of gyro oscillations, the beam performs in the crossed
electro-magnetic fields depends up on the energy of particles and the magnetic
field. Increasing electric field levels may destroy the beam, as it drifts too near to
the plates. An additional drift also is due to the fringe fields.
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Plate length

Coils
y
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Figure 5.18: Scheme used to study the beam transport in kicker section.

A p−beam was chosen for simulations exclusively. Figure 5.19 shows the effect
of the plate length on the beam. A 10 keV beam was injected into a 0.6 T magnetic
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field with a plate voltage of 1000 V . Figure 5.19(a) shows linear increase in the
vertical beam drift of beam as a function of the plate length.

Figure 5.19: Effect of a plate length variation on the output angle (in degree),
drift and emittances (E = 12.5 kV/m).

The relative change in emittance (4ε) is defined as 4ε = (εout − εin)/εin,
where εin and εout are the emittances at input and output planes, respectively.
The smallest growth is observed at the plate length between 14− 16 mm in figure
(5.19(b)).

In the next step the influence of energy variation was studied. Electric plates
were held at constant potential 1000V with a length of 15 cm. The distance
between both plates was kept constant at (80 mm). The beam energy varied
around 10 keV . One can see in figure 5.20(a) that the vertical drift decreases as
the time of flight decreases. The output angle of the beam initially decreases and
then stays constant.

Figure 5.20: Effect of energy variation on the vertical drift and on the emittances.
Potential 1000V , plate width of 80 mm and length of 150 mm were held constant.

Since vE×B is directly proportional to the electric field, the vertical drift is
a linear function of plate voltage as seen from figure 5.21(a). The term E/B in
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Figure 5.21: Effect of potential on the drift and output phase of the beam. Plate
length of 150 mm and plate distance 80 mm were kept constant.

equations (5.4) and (5.5) implies increasing voltage also increases the gyro radius.
A higher electric field accelerates particles more towards the electric plates in the
transverse direction. This destroys beam quality rapidly, increasing the beam
emittance as shown in figure 5.21(b). Hence a moderate field has to be applied so
that the injected beam can move smoothly.

Figure 5.22: Effect of beam current on the vertical drift and the phase at output.
A 10 keV proton beam was injected with plate length l = 150 mm and potential
V = 1000 V .

Figure 5.22 shows the effect of the beam current. While the drift ∆y is nearly
independent from Ib, the output pitch angle is shifted and an emittance growth
in both transverse phase space planes happens, if the conditions originally were
optimized for Ib = 0 A (see figure 5.22).

5.3.3 Effect of fringing fields on the injected beam

It is important to show the effect of the injection system (external forces) on the
injected beam during many turns, especially with the consideration of electric
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fringe fields. As an approximation the injected beam is considered coming back to
the injection area without a rotational transform.
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Figure 5.23: Effect of kicker plates on the ring beam. Approximately beam is
shifted through 45 mm distance in vertical direction. In this case plate length was
l = 150 mm and the height was 40 mm defined with potential V = 1000 volt.

Figure 5.23(a) shows a drifted position of the injected beam. At the input plane
the beam was defined at y = 70 mm distance from main beam axis. After first 4
turns the beam passes through fringe fields of the electric plates. Since at these
positions, the gyro radius does not match with the plate length the output angle
of the beam changes. The beam drifts in transverse direction towards the plates
in consecutive turns. This leads to the steep increase in emittance in turn 4 − 7
mainly. Eventually the beam escapes the fringe fields and ∆ε tends to stabilize.

5.4 Two beam simulation

Figure 5.24 shows the possible configuration that can be used for experiments.
Two toroidal segments are positioned on the circumference at a distance of 300 mm
between each other. Two beams, one representing the injected beam and the other
being the ring beam, were simulated. The input plane for the injected beam was
chosen 200 mm outside of the auxiliary coil and that for the ring beam at 135 mm
in front of the first toroid.

The configuration was designed for protons with 10 keV energy, for both beams.
Electric plates with l = 150 mm were defined at the entrance of the second toroid
with a plate voltage of 1.6 kV . The toroidal magnetic field was defined at 0.6 T ,
and the auxiliary field at 0.29 T .

The matched condition for the ring beam was found as follows. A shifted
injection position is required for optimized transmission of the ring beam. Two
beams were transported through the system simultaneously with space charge
forces. Figure 5.25(a) shows a phase-space distribution at the output plane. One
sees two distinct blue spots indicating the good beam region. The ring beam, on
average is more displaced due to vertical R × B drift in the both segments. A
small distortion can be seen inter beam region due to self fields.

The velocity factor vf which is the quality factor for the whole beam in terms
of vλ is plotted as a function of the longitudinal arc distance in figure 5.25(b).
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Figure 5.25: (a) Output x − y distribution for two beams with colour coded vλ.
(b)Velocity factor vf (arbitrary units) plotted as a function of longitudinal arc
position. Both beams have the same energy of Wbeam = 10 keV .

The maximum vf that can be achieved is 720 on arbitrary scale which corresponds
to the maximum transmission. At the end of the first segment vf = 700 for ring
beam. The effect of external fields can be seen on ring beam decreasing the velocity
factor. The velocity factor generally increases as transported in second segment.
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Chapter 6

Conclusions

In the framework of this thesis the intense low energy ion beam transport was
investigated. Especially, the beam transport in toroidal magnetic field configura-
tions was discussed, as it may allow the accumulation of high intensive beams in
the future. One of the specific tasks will be to design an injection system that can
be used for the proposed low energy accumulator ring.

A simulation code (TBT) was written to describe the particle motion in curved
segments. Particle in Cell techniques were utilized to simulate a multi particle
dynamics. This code allows the user to generate different particle distributions as
input parameter. A possibility of reading an external data file was made available
so that a measured distribution can be used to compare simulation results with
measured ones. A second order cloud in cell method was used to calculate charge
density and in turn to solve Poissons equation. The circular toroidal coordinate
system was used.

The drift motion and gyrating motion was proved to be consistent with ana-
lytical values. The single particle dynamics without space-charge simulations was
proved within ±0.17% error range. A parameter vλ was introduced in chapter 3 to
describe the guidance of a charged particle along the curved magnetic lines. Three
dimensional maps were plotted to describe the beam like nature of the particle
distributions under consideration. Further simulations were performed to study
the self field effects on beam transport.

The experiments with single toroidal segments find niche in the work. The
experiments were performed to compare the simulation results and gain practical
experience. The toroidal segment has similar dimensions (major axis R = 1.3 m,
minor axis r = 0.1 m, arc angle 30◦) as envisaged for a full scale ring design. The
main difference lies in the magnetic field strength. The available segments can be
operated at room temperature producing 0.6 T on axis maximum magnetic field,
while for the storage ring design this value is in the range of 5 T .

The preparatory experiments consisted in the characterization of the ion source
in a first step. Along with the momentum spectrometer and emittance scanner
the beam properties were studied. Low mass ion beams He+ and mixed p, H+

2 ,
H+

3 beams were analyzed. The proton beam consisting of a 48% H+ fraction was
extracted regularly and used for further experiments. A moderate beam energy of
10 keV was chosen as operational energy for which 3.08 mA proton beam current
was measured.

In the second stage, beams were transported through a solenoid and the phase
space distribution was measured as a function of the magnetic field for different
beam energies. The phase-space as distributions measured in a first stage were
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simulated backward and then again forward transported through the solenoid.
The simulated results were then compared with the measured distribution and
were within a 17% error range. The LINTRA transport program was used [57].
The phase-space distribution was further simulated for transport experiments in
a toroidal magnetic field.

The experiments with a single toroidal segment give basic results necessary
to compare the results between transport code and measurements. The optical
diagnostic provides measurements which can be well compared with the simulated
results. A digital camera with a magnetic shield was used to record images in jpeg

file format. A subroutine was written to analyze a image file to give the intensity
distribution of a given image file. The integrated profile in vertical and horizontal
direction was used to calculate the vertical drift and the beam size. The simulated
values were in good agreement with the measured ones.

The injection system needs most care. The transport program that was used
to simulate the beam in the toroid was also used to design the injection system.
The injection system with its special field configurations was designed to perform
experiments with room temperature segments. The main point to tackle was to
smoothly bring the charged particles generated outside the trap into the acceptance
of the ring. The designed system consists of two sources, one representing a ring
beam and the other one the injection beam. While simulations showed a clear way,
how to inject the particle beam via a well positioned solenoid and in combination
with a transverse electric field element causing an E × B drift into the main ring
acceptance, it was not yet possible to demonstrate this step experimentally with
two beams in parallel. After construction of these injection elements it will be very
important to measure the robustness of such a system with respect to the beam
stability- especially of the injection channel.
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Appendix A

A.1 Poisson Solver with FFT

Starting from the charge densities assigned to grid points, we want to obtain the
potential and electric fields on grid points, from the Maxwell’s equations. The
differential equations to be solved are,

E = −5 Φ, (A.1)

or
5 · E =

ρ

ε0

, (A.2)

which are combined to get

52Φ = − ρ

ε0
. (A.3)

One approach here is to solve finite difference equations using grid

Ej =
φj−1 − φj+1

2 4 x
, (A.4)

φj−1 − 2φj + φj+1

(∆x)2
= −ρj

ε0
. (A.5)

Here one dimensional cartesian system is considered. This can be written in
matrix form as

Aφ = −(∆x)2

ε0
ρ. (A.6)

We use ρj’s known from xj’s, to obtain unknown φj’s and then Ej’s, for j
running from 0 to L/∆x where L is the length of the system of NG points. By
applying boundary conditions at x = 0,L we have as many equations as unknowns;
hence the problem is solvable. An approach for periodic system is to use a discrete
fourier series for all grid quantities. This provides a spatial spectral information
on ρ, φ, and E which allows smoothing over spectrum of field quantities. It is
assumed that, in the problem, ρ(x) and φ(x) have Fourier transforms, ρ(k) and
φ(k), where k is the wave vector in Fourier transform kernel, exp(−ik · x). This
allows us to obtain φ(k) from ρ(k) in the Poisson’s differential equation directly
as, in one dimension, 52 is replaced by −k2; that is,

φ(k) =
ρ(k)

ε0k2
. (A.7)
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We then take the inverse Fourier transform of φ(k)in order to obtain φ(x) and
then E(x). The overall sequence is given in the figure below. The solution using
a finite Fourier series starts from charge densities at the grid points, with values
ρ(Xj), j = 0, 1, 2, ...., NG−1 for a total of NG grid points. Letting the grid function
G(Xj) be periodic, G(Xj) = G(Xj + L), then the finite discrete Fourier transform
is

G(k) = ∆x
∑

G(Xj)e
−ikXj

with j running from 0 to NG−1. The inverse transform is

G(Xj) =
1

L

∑
G(k)eikXj , (A.8)

sum running over −NG/2 to NG/2−1 giving NG a distinct value of G(Xj). Thus
with this application we can obtain the potential φ(x) and electric fields E(x) at
grid points.

Programming with FFTW

For the purpose of simulation FFTW 3.0 library is freely available on the network.
This library can be used to calculate real or odd, 1,2 or 3d transforms as per re-
quirements. The following routine shows an example which has been used in the
code for space charge calculation in cartesian coordinates.

#include <fftw3.h>
{
fftw plan p;
double in[n],out[n];
p=fftw plan r2r 1d(n,&in[0],&out[0],FFTW RODFT00,FFTW ESTIMATE);
fftw execute(p);
fftw destroy plan(p);
}

This is an example of an 1D real Fourier transform. The variable ’in[n]’ can
be set as ρ(Xj) and we get an output ρ(k) in the form of array ’out[n]’. The
window has to be very carefully chosen to define boundary conditions. The real
and odd function-Fourier transforms is useful for this purpose. The possibility of
open boundary conditions is also available.
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A.2 Magnetic field measurements and simula-

tion

Figure A.1 shows a schematic structure of toroidal segments. Due to the curved
nature, the magnetic field along the central axis i.e. along the beam path inside
was not possible to measure with a Hall probe. To compare simulations with
measurements only fringing field outside the vessel was measured with the Hall
probe movable along a straight line.

Figure A.1: Top view of the toroidal segment (on left) and lateral view on the
right showing major and minor radius.

Figure A.2 shows one example of comparison between simulated and measured
magnetic field. Only Bz component was measured along straight lines perpendic-
ular to the end surface of segment, as shown in figure A.2(a). Figure A.2(b) shows
a comparison for central line. A small deviation might have been caused due to
an error in the angle. Hence the measured curve shows a larger deviation at the
far ends. The least count error was 0.1 mT . The magnetic field simulation was
estimated to be 90.4% confidence level. For these experiments low current (10 A)
was used.

Figure A.3 shows a 3-dimensional plot of a magnetic field as a function of
radial and a longitudinal distance. One can see, when observed carefully, the
inner side has higher magnetic field than the outer. This is typical signature of
curved magnetic field.

Effect of shielding material

A solenoid was used for focussing a beam into toroidal segment (figure 4.27).
The solenoid is shielded by ferromagnetic material like iron. The presence of
ferromagnetic material affects the field distribution along beam line. The shielding
material attracts the magnetic field lines, in accordance with the flux conservation
principal. This leads to denser flux in proximity of beam line and reduction along
the beam axis.

Figure A.4(a) shows the transverse component measured on the free side and
material side. The material side shows lower magnetic field indicating increased

99



(a) (b)

Figure A.2: Figure showing the longitudinal axis and a comparison between sim-
ulated and measured magnetic fields.

toroidal field component outside the vacuum vessel. The difference was plotted
with 95% confidence limit as seen in figure A.4(b). Using CST it was simulated at
maximum current of 480 A, the maximum of 0.468 T magnetic field is present on
axis instead of 0.48 T .
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Figure A.3: Measured magnetic field (in Gauss) coded as a function of longitudinal
and radial distance at current 10 A.

(a) (b)

Figure A.4: Figure showing the longitudinal axis and comparison between simu-
lated and measured magnetic field.
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A.3 Magnetic shielding of Turbo molecular pump

The ion source was mounted on a vacuum chamber which was installed with a turbo
molecular pump (Pfeiffer TMU 520) at the bottom. A solenoid was mounted for
focussing the beam and a toroidal magnetic segment was installed downstream.
The toroidal segment was naked i.e. without magnetic shielding showing extended
fringing fields. On the other hand, the solenoid is shielded with material. The
functioning of the turbo pump is influenced by fringe fields. According to the user
manual the maximum magnetic field of 5 mT is allowed at the position of the
turbo pump. In the presence of magnetic field, the eddy currents are induced in
the rotor, which can be observed as increased power spent on rotating the pump.
This leads to the heat generation or in the worst case damage.

In the presence of a toroidal segment only, a magnetic field of 14 mT was
simulated. Due to the presence of solenoid the magnetic field distribution changes
at the turbo pump position. Figure A.5 shows a simulation for a magnetic field
near the turbo pump region. Magnetic field due to toroidal segment was defined
at maximum of 0.6 T .

(a) absolute magnetic field (b) field vectors of magnetic field

(c) vertical component of magnetic
field

Figure A.5: Magnetic field configuration simulated at turbo pump position.

To shield the turbo pump from this magnetic field, a cylinder made of iron was
simulated using CST. It was found that the iron cylinder with a base provides an
effective shield than an open end cylinder. These two cases are compared in figure
A.6.

For cylindrical shielding, the following formula can be applied to find the thick-
ness of wall,
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(a) without base (b) with base

Figure A.6: Comparison of cylindrical shield without a base and with a base.
Figure on the left shows symmetrical colour coded distribution in green-blue range
near the centre of cylinder. Figure on the right shows more blue region, a region
of lower magnetic field inside the cylinder.

d = D
Ba

Bs
, (A.9)

where d = wall thickness, D = cylinder diameter, Ba = field to be shielded,
Bs = saturation field . For 300 mm diameter, a thickness of 3 mm is required
for steel (German word ”baustahl” St 37) with a saturation field of 1.6 T .

For technical realization a rectagular box was designed. Figure A.7 shows the
rectangular shield from iron. The magnetic field was expected to drop down to
less than 1 mT at the pump position.

The shielding box had a thickness of 5 mm and a small hole in the bottom for
a vacuum pipe, which has no noticeable effect on the shielding capacity.

Figure A.8 compares the driver current in the turbo pump due to the toroidal
magnetic field. As seen from figure, the increase in driver current in pump is
noticeably lower after shielding.
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(a) absolute magnetic field (b) field vectors of magnetic field

(c) vertical component of magnetic
field

Figure A.7: Magnetic field configuration simulated at turbo pump position with
iron shield rectangular box.

Figure A.8: Increased current in pump driver compared with shielding and without
shielding box. 100 A current corresponds to 0.12 T magnetic field on axis of
toroidal segment.
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A.4 Image calibration for optical measurements

For image detection from phosphor screen a digital camera was installed at a
distance of 27 cm from the screen. To calculate the length scale, a picture depicting
parallel lines at 5 mm distance was photographed with camera (figure A.9(a)). The
plot shown in figure A.10(a), can be then produced by taking integral intensity in
horizontal direction. One can then calculate the average distance between spikes
which corresponds to 5 mm. In the shown example 1 pixel corresponds to 0.3 mm.
In the same way the vertical profiled can be taken to get average value.

Figure A.9: Photographs from the camera used for image calibration (a) for x− y
pixel calibration, every line is 5 mm apart in shown picture (b) to determine the
centre and (c) to determine the tilt of the camera.

To determine the geometrical centre a thread with weight at one of the end
was hung. And the second at horizontal position. At this intersection a black spot
was photographed (figure A.9(b)). When the intensity profile is plotted, the dip
in a profile plot is observed as seen in figure A.10(b). This gives the position of
shifted origin.

(a) (b) (c)

Figure A.10: (a) Integrated intensity plotted as a function of y−axis to find how
many pixel corresponds to a mm , (b) integrated intensity plotted as a function of
x−axis to determine centre of system,(y-axis was also plotted which is not shown
here), and (c) integrated intensity plotted as a function of y−axis to find angle tilt
of camera.

The tilt of the camera can be calculated by photographing horizontal lines with
different angles (figure A.9(c)). The graph in figure A.10(c) shows sharp valley for
red curve which corresponds 5◦ angle.

Using this information, the exact position and size of the ion beam was calcu-
lated.
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A.5 Photographs

Figure A.11: Ion Source mounted on vacuum chamber.

Figure A.12: Experimental setup used for characterization of ion source.
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Figure A.13: Experimental setup used for transport through solenoid.

Figure A.14: Experimental setup used for transport through single toroidal seg-
ment.
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co-workers for support in production of the experimental component and their
guidance in technical designing.

I would like to thanks Mrs. Harji for her help in administration fields.
Finally I would like to thank all the people who are directly or indirectly

involved in the project work.

113



List of Figures

1 Darstellung des geplanten Hochstromspeicherrings mit toroidalen
segmenten. Gelb: Injektion, Grün: Experimental bereich. . . . . . . ii

2 Schematische Darstellung des Injektionssystems für den geplanten
Hochstromspeicherring (links) und des untersuchten Injektionsex-
periments mit den zwei normalleitenden Toroidsegmenten (rechts). . v

1.1 An example of a magnetic surface of the segmented figure-8 struc-
ture (top) and single particle trajectory (bottom). . . . . . . . . . . 2

2.1 Left: The generalized force and radius vector in top view. Right:
The direction vR of the R×B drift for positively charged particles.
For electrons, force is in the opposite direction. . . . . . . . . . . . 6

2.2 Vertical shift against the path length along a torus with R0 = 1.0 m
at an energy of 6 keV . Initial 20 mm added for beam radius. The
horizontal line represents maximum acceptable drift with respect to
the vessel aperture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Figure showing the difference between inner and outer radii of a
torus. This results in a radial magnetic field gradient ∇|B|. . . . . . 7

2.4 E×B drift for a single particle (left) and beam rotation caused by
Er from self field (right). . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Figure-8 type ring showing the vertical drift compensation on either
side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Flow chart of a PIC scheme. . . . . . . . . . . . . . . . . . . . . . . 10
2.7 PIC charge distribution in cartesian. . . . . . . . . . . . . . . . . . 11
2.8 Concentric circular toroidal coordinates. . . . . . . . . . . . . . . . 13
2.9 PIC charge distribution in toroidal coordinates in 2-dimensional

projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Three point scheme for discrete time evolution. . . . . . . . . . . . 20
2.11 (a) Error due to number of grid points at constant particle num-

ber Np = 10000 (b) Error due to number of particles at constant
gridpoints = 50 × 50 × 50. . . . . . . . . . . . . . . . . . . . . . . . 22

2.12 Time for a single time step calculation as function of particle number. 22

3.1 Scheme for simulation (left) and input phase-space distribution for
mapping technique (right). . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 3-dimensional toroidal field distribution over the mesh (left) and
graph of magnetic field strength in radial direction at middle plane
of the segment (right). . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Trace space (phase-space) for linear system. In this case phase
space at output plane is not containing information of canonical
momentum in magnetic fields. . . . . . . . . . . . . . . . . . . . . . 26

114



3.4 Figure explaining to vλ factor. Both components of velocities, v‖
and v⊥, are defined with respect to magnetic field lines at the po-
sition of particle. Hence the ”guidance” property is integrated in
3-dimensional map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 The graph depicting ”good beam” case. The figure on the right
shows the ellipse definition for ”good beam”. . . . . . . . . . . . . . 27

3.6 Explanation to histogram of vλ. The best case occurs when a max-
imum number of particles show vλ values below a given limit, and
with an acceptable spread in vλ. . . . . . . . . . . . . . . . . . . . 27

3.7 Left: Velocity ratio vλ as a function of energy at the toroid output
plane (red curve)(see figure 3.1) with vertical position (blue) at
output plane. Oscillations in curve are mainly due to gyration.
Right: Vertical drift of proton beam plotted with Larmor radius as
errorbars against beam velocity. . . . . . . . . . . . . . . . . . . . . 29

3.8 (a) An example of 3-dimensional particle beam (proton beam at
10 keV ) transported through toroidal magnetic field of 0.6 T . Four
focal points are seen along the beam path. (b) Density profile
mapped on x − z plane. Vertical drift of beam is indicated. (c)
Density profile mapped on y − z plane shows 30◦ arc along the
beam path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 (a)Vertical position of the proton beam as a function of beam energy,
(b) beam size in centimetre shows a dominance of a gyration motion,
(c) transmission variation as function of energy, at output plane. . . 32

3.10 (a) Max. abundant vλ, (b) FWHM variation and (c) vf as function
of energy for focused proton beam input. . . . . . . . . . . . . . . . 32

3.11 Transmission and vf as function of ellipse angle. . . . . . . . . . . . 33
3.12 The map of vλ against input trace space. The x− axis is vertical

axis. The blue region gives the acceptance for particular magnetic
field, the beam energy is 10 keV . . . . . . . . . . . . . . . . . . . . 33

3.13 Vertical drift (in mm) and transmission function (in %) as a function
of toroidal magentic field. . . . . . . . . . . . . . . . . . . . . . . . 34

3.14 Map of vλ against output x − y space. The blue region shows
”good beam” at different magnetic fields with constant beam energy
10 keV . Ellipse injection angle was kept constant at 0◦. . . . . . . . 34

3.15 Simulated drift of beam (in mm), beam size (in cm) at output and
transmission function (in %) variation as function of beam current
at constant energy 10 keV and magnetic field 0.6 T . . . . . . . . . . 35

3.16 Simulated drift (in mm) and beam size (in cm) as function of mag-
netic field for different currents. . . . . . . . . . . . . . . . . . . . . 35

3.17 Velocity factor as function of beam current at three different scales
of beam current. (a) full scale, (b) (0, 10 mA) range, (c) (10, 80 mA)
range, (d) (80, 160 mA) range. Parallel proton beam was injected
in toroidal field of 0.6 T . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.18 (a) Drift as a function of the magnetic field. Black line is the analyt-
ical curve whereas red points are simulated, (b) vertical position as
function of energy for two different input phase-space. Red points
are for the focused beam, whereas blue points are for the parallel
beam. Magnetic field was 0.6 T . . . . . . . . . . . . . . . . . . . . . 37

4.1 Cross sectional view of the ion source. . . . . . . . . . . . . . . . . . 38

115



4.2 Magnetic Field from coils on plasma chamber. . . . . . . . . . . . . 39
4.3 Circuit diagram and experimental test bench. . . . . . . . . . . . . 40
4.4 Top view of experimental test bench. . . . . . . . . . . . . . . . . . 40
4.5 Slit and grid arrangement for emittance measurements (left). Twiss

parameters and relationship with beam size and angle (right). . . . 41
4.6 (a) Graph showing the single specie of mass 4 amu (a shift in mass

scale is due to calibration of mass 1 amu at 10 keV ), (b) Energy
Spectra with energy spread ±100 eV , (c) the phase-space distribu-
tion measured using emittance scanner εrms = 3.94 × 10−2mm −
mrad, and (d) beam profile along transverse direction. . . . . . . . 42

4.7 (a) Current-Energy curve for He+ beam, and (b) transmission curve
showing matched case at 7 keV . . . . . . . . . . . . . . . . . . . . . 43

4.8 Effect of plasma meniscus on beam current. The concave shape in
shown figure gives more current than convex. . . . . . . . . . . . . 43

4.9 (a) Beam current as a function of arc current (Iarc), (b) beam cur-
rent as a function of filling pressure (P ) (c) beam current as a func-
tion of arc voltage (Varc), and (d) beam current as a function of
magnetic field maximum magnetic field on axis. . . . . . . . . . . . 44

4.10 Variation of emittance and brightness as function of magnetic field
showing the optimized case at 15.0 mT . . . . . . . . . . . . . . . . . 44

4.11 (a) Graph showing the three fractions of mass m = 1, 2 and 3 amu,
(b) the phase-space distribution measured using emittance scanner
εrms = 8.45 × 10−2 mm − mrad, and (c) beam profile along radial
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.12 Graph of relative occurrence of (a) H+, (b) H+
2 , and (c) H+

3 . . . . . 46
4.13 Graph of mass spectra of H+, H+

2 , and H+
3 at the position of island

with respect to figure 4.12. Beam energy was held constant at 9.2 keV . 46
4.14 Graph of relative occurrence of proton fraction for different gas fill-

ing pressure at constant arc potential 80 V . . . . . . . . . . . . . . 47
4.15 Graph of relative occurrence of proton fraction for different arc po-

tentials at constant gas filling pressure 1.2 × 10−2 mbar. . . . . . . 47
4.16 Schematic setup for solenoidal transport. . . . . . . . . . . . . . . . 48
4.17 The phase-space distribution measured was transformed back till

the aperture at extraction of source. And this back calculated dis-
tribution was used for forward transport through the solenoid. . . . 49

4.18 (a) Simulated and (b) measured phase-space for I = 150 A corre-
sponding to magnetic field of 0.3 T at energy of 8 keV beam energy.
Off axis 18 mrad shift in output phase can be noticed. The neutral
beam fraction was not simulated. (c) Overlapped distribution green
is simulated and red the measured. (d) Corresponding beam envelope. 50

4.19 Beam radius and divergence dependence on energy and the plot at
low energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.20 Figure (a) shows the linear behavior of inverse beam radius as func-
tion of energy and (b) compares the measured beam radius with the
simulations. Magnetic field was held constant at 0.3 T . . . . . . . . 51

4.21 (a) Beam current in Faraday cup and beam size downstream of
solenoid as function of arc current and (b) increased beam size as a
function of beam current. Beam energy 9.2 keV and magnetic field
of 0.3 T was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

116



4.22 (a) Overlapped phase-space distribution simulated (red) and experi-
mentally measured (green), (b) beam envelopes for different species.
Red is H+, green is H+

2 and blue is H+
3 fraction. . . . . . . . . . . . 52

4.23 Simulation scheme for transport through solenoid for input param-
eters for further experiments. . . . . . . . . . . . . . . . . . . . . . 53

4.24 Beam size as a function of magnetic field for three different fractions
(on left). The beam size as function of magnetic field for all fractions
together. Beam energy 12 keV was used. . . . . . . . . . . . . . . . 53

4.25 Phase-space distributions 80 cm downstream of solenoid showing
the minima for the mixed beam. This distribution was calibrated
for all energies and used further for simulation and measurements
as a input distribution. Red is H+, green is H+

2 and blue is H+
3

fraction. The proton fraction is chopped off with respect to the
scanner acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.26 (a) Magnetic field distribution in between the region of solenoid
and toroidal segment. It shows small effect of magnetic material of
solenoid, creating valley. (b) Beam size downstream of solenoid as
a function of toroidal magnetic field. The solenoidal field (0.3 T )
and beam energy 12 keV was constant. Only proton fraction was
simulated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.27 Experimental setup for investigation of beam transport in a single
toroidal segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.28 The schematic diagram and formulae for analytical calculation. . . . 56
4.29 Analytical calculation for the beam diameter (colour-coded in me-

tre) plotted as a function of energy and magnetic field. Blue points
represent a beam waist. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.30 (a) Fringe field measured and compared at 10A field (b) scaled mag-
netic field line which demonstrates the field lines between slit and
grid of emittance scanner. . . . . . . . . . . . . . . . . . . . . . . . 60

4.31 Grid-slit arrangement of an emittance scanner. The slit and grid
moves vertically downward and cut the path of beam. The dimen-
sions of the assembly are shown in figure. . . . . . . . . . . . . . . . 60

4.32 Comparison between simulations and emittance scanner data. (a)
input phase space distribution red H+, green H+

2 , and blue H+
3

fraction, (b) simulated output phase-space distribution showing halo
particles, (c) measured phase-space distribution, (d) phase-distribution
simulated by applying the emittance scanner limitations and en-
coded with velocity ratio vλ. In this example input parameters for
the ion source were set to give negligible H+

2 fraction, hence was
not detected at output. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.33 Beam size as a function of the magnetic field at energy 10 keV (on
left) and as a function of energy at a magnetic field 0.425 T (on
right). The arc length was about 1.2 m. . . . . . . . . . . . . . . . 62

4.34 An optical assembly: photograph showing a camera and its mounted
position within an iron shielded case. Lower picture shows phosphor
screen mounting along with a repeller electrode. The screen is lo-
cated at an arc length of 0.886 m from input plane. . . . . . . . . 63

4.35 Properties of image produced by optical assembly. . . . . . . . . . . 65
4.36 Experimental setup for measurements with optical assembly. The

arc length was about 0.886 m. . . . . . . . . . . . . . . . . . . . . . 65

117



4.37 Results from beam measurements from Phosphor screen. Absolute
vertical drift as a function of energy for two different magnetic fields. 66

4.38 Dependance of vertical drift and horizontal drift on magnetic field. . 66
4.39 (a) Intensity on the Phosphor screen (colour-coded) as function of

energy and magnetic field. (b) Averaged power density of the spot.
These graphs can be compared with figure 4.29. . . . . . . . . . . . 67

4.40 (a) Vertical drift (colour-coded) as a function of energy and toroidal
magnetic field. (b) Horizontal drift (colour-coded) as a function of
energy and toroidal magnetic field. . . . . . . . . . . . . . . . . . . 67

4.41 (a)Measured vertical drift (in arbitrary unit - Pixels) as function of
magnetic field for with space charge (red) and without space charge
(black). (b) Graph showing the difference (in arbitrary unit - Pixels)
in both cases as a function of magnetic field. . . . . . . . . . . . . 68

4.42 (a)Measured beam size (in arbitrary unit - Pixels) as function of
magnetic field for with space charge (red) and without space charge
(black). (b) Graph showing the ratio as a function of magnetic field. 69

4.43 Figure showing simulated phase-space and measurements with emit-
tance scanner and optical assembly. . . . . . . . . . . . . . . . . . . 69

4.44 The vertical x−profile for intensity normalized to the peak of beam
position. Red is the simulated curve, green is from the emittance
scanner and blue is a measurement from an optical image. The
geometric centre lies at x = 45 mm . . . . . . . . . . . . . . . . . . 70

4.45 Figure showing measurements with phosphor screen and simulated
distribution in x − y plane. A typical image consist of a core with
three fractions and a halo from H+ particles. . . . . . . . . . . . . . 70

4.46 The horizontal beam profile comparison. Green is the measured
one and red is the simulated curve. The geometric centre lies at
x = 45 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.47 (a) Figure showing comparison between simulated and measured
vertical drift and (b) beam size comparison as a function of the
magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.48 (a) Intensity as a function of solenoidal field, (b) variation of beam
size as a function of solenoidal field, and (c) the vertical drift vari-
ation with solenoidal field strength. . . . . . . . . . . . . . . . . . . 72

4.49 (a) Intensity and (b) beam size as a function of repeller potential
for beam energy 8 keV . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.50 Vertical drift and beam size as a function of beam current. . . . . . 73
4.51 Figure on left shows spot of electron beam at 3 keV , and on right

shows He+ beam. A drift of 2.8 mm is shown with respect to this
electron spot. Axis are shown with respect to camera tilt. . . . . . . 74

4.52 Path of secondary electrons produced on Phosphor screen. . . . . . 74

5.1 Cross sectional view of the injection scheme with simulated mag-
netic field lines. Proton beams were injected along the auxiliary
field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 (a) Particle loss of the injected beam as a function of toroidal mag-
netic fields. (b) Particle loss as a function of auxiliary magnetic
field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Operational parameter space for three different beam energies. The
’g’ values are colour coded. . . . . . . . . . . . . . . . . . . . . . . . 77

118



5.4 Top view of the injection system with real toroidal segments. . . . . 79
5.5 (a) Graph of vλ at the output plane as a function of distance between

two segments at the beam energy of 10 keV . 480 A corresponds to
0.6 T magnetic field on axis. (b) Fall of magnetic field strength at
the origin as a function of Dsegments. . . . . . . . . . . . . . . . . . . 80

5.6 Region of interest for injection beam and ring beam. . . . . . . . . 81
5.7 Parameter space for optimization of auxiliary field. (a) A lateral

view of the injection system showing coils and its positioning in
x − z plain. For simulations the toroidal field was taken right to
left with auxiliary field lines coming up vertically. (b) A top view of
the scheme depicting a coil length, and positioning in y − z plane.
(c) The position of the injection beam. For every setting a new
optimum position should be calculated using mapping technique. . . 82

5.8 Colour coded velocity ratio mapped on the x−z input plane for two
different inner coil radii. The toroidal field was set at maximum
0.6 T . The auxiliary coil field level was kept constant at 0.29 T ,
l = 240 mm, ∆xcoil = 140 mm. . . . . . . . . . . . . . . . . . . . . 83

5.9 Colour coded velocity ratio mapped on the x − z input plane for
two different coil lengths. The toroidal field was set at maximum
0.6 T . The auxiliary coil field level was kept constant at 0.29 T .
r = 120 mm, ∆xcoil = 140 mm. . . . . . . . . . . . . . . . . . . . . 83

5.10 Colour coded velocity ratio plotted as a function of position for
different magnetic fields. The toroidal field was set at maximum
0.6 T . Auxiliary coil was defined inner radius 0.1 m, length 240 mm
and at the position (x, y, z)=(0.14, 0.12, 0.0)m . . . . . . . . . . . . 84

5.11 Penetration depth of the beam into the toroid aperture at different
auxiliary field levels with Btor = 0.6 T . . . . . . . . . . . . . . . . . 85

5.12 Acceptance of the injected beam for the given system. (a) vλ plotted
on the x − z plane, (b) vλ plotted on the x− x′. The blue region is
good beam region. Both plots are on different scale. . . . . . . . . . 86

5.13 (a) vλ plotted as a function of the beam current, and (b) transmis-
sion plotted as a function of the beam current. . . . . . . . . . . . . 86

5.14 Effect on vλ with changes in the beam energy. With the condition
vλ < 0.1, acceptable energy range of 9.3 keV − 10.8 keV can be
estimated, which is quite large against typical beam parameters. . . 87

5.15 Velocity factor vf plotted for horizontal and vertical shift in the
auxiliary coil position. . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.16 (a) A kicker system for injection to move the beam towards the ring
axis, and (b) demonstration of E × B force with drift motion in
y−direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.17 Left: At the output the beam gets a kick and rotates around Bz

at an angle ∆θ. Right: Dependance of output pitch angle (∆θ)
of the beam on the plate length, which can also be expressed by a
corresponding vλ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.18 Scheme used to study the beam transport in kicker section. . . . . . 90
5.19 Effect of a plate length variation on the output angle (in degree),

drift and emittances (E = 12.5 kV/m). . . . . . . . . . . . . . . . . 91
5.20 Effect of energy variation on the vertical drift and on the emittances.

Potential 1000V , plate width of 80 mm and length of 150 mm were
held constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

119



5.21 Effect of potential on the drift and output phase of the beam. Plate
length of 150 mm and plate distance 80 mm were kept constant. . . 92

5.22 Effect of beam current on the vertical drift and the phase at output.
A 10 keV proton beam was injected with plate length l = 150 mm
and potential V = 1000 V . . . . . . . . . . . . . . . . . . . . . . . . 92

5.23 Effect of kicker plates on the ring beam. Approximately beam is
shifted through 45 mm distance in vertical direction. In this case
plate length was l = 150 mm and the height was 40 mm defined
with potential V = 1000 volt. . . . . . . . . . . . . . . . . . . . . . 93

5.24 The simulation scheme for a transport along two segments. The
simulated beam paths are shown in the figure. The x−axis is per-
pendicular to the plane of paper with direction coming out. . . . . . 94

5.25 (a) Output x − y distribution for two beams with colour coded
vλ. (b)Velocity factor vf (arbitrary units) plotted as a function
of longitudinal arc position. Both beams have the same energy of
Wbeam = 10 keV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.1 Top view of the toroidal segment (on left) and lateral view on the
right showing major and minor radius. . . . . . . . . . . . . . . . . 99

A.2 Figure showing the longitudinal axis and a comparison between sim-
ulated and measured magnetic fields. . . . . . . . . . . . . . . . . . 100

A.3 Measured magnetic field (in Gauss) coded as a function of longitu-
dinal and radial distance at current 10 A. . . . . . . . . . . . . . . . 101

A.4 Figure showing the longitudinal axis and comparison between sim-
ulated and measured magnetic field. . . . . . . . . . . . . . . . . . . 101

A.5 Magnetic field configuration simulated at turbo pump position. . . . 102
A.6 Comparison of cylindrical shield without a base and with a base.

Figure on the left shows symmetrical colour coded distribution in
green-blue range near the centre of cylinder. Figure on the right
shows more blue region, a region of lower magnetic field inside the
cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.7 Magnetic field configuration simulated at turbo pump position with
iron shield rectangular box. . . . . . . . . . . . . . . . . . . . . . . 104

A.8 Increased current in pump driver compared with shielding and with-
out shielding box. 100 A current corresponds to 0.12 T magnetic
field on axis of toroidal segment. . . . . . . . . . . . . . . . . . . . . 104

A.9 Photographs from the camera used for image calibration (a) for x−y
pixel calibration, every line is 5 mm apart in shown picture (b) to
determine the centre and (c) to determine the tilt of the camera. . . 105

A.10 (a) Integrated intensity plotted as a function of y−axis to find how
many pixel corresponds to a mm , (b) integrated intensity plotted
as a function of x−axis to determine centre of system,(y-axis was
also plotted which is not shown here), and (c) integrated intensity
plotted as a function of y−axis to find angle tilt of camera. . . . . . 105

A.11 Ion Source mounted on vacuum chamber. . . . . . . . . . . . . . . . 106
A.12 Experimental setup used for characterization of ion source. . . . . . 106
A.13 Experimental setup used for transport through solenoid. . . . . . . 107
A.14 Experimental setup used for transport through single toroidal seg-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

120



List of Tables

2.1 Beam Transport properties at low energies for 0.6 T in 30◦ sector
with R0 = 1.3 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Beam Transport properties at high energy (150 keV ) for higher
magnetic fields in 30◦ sector with R0 = 1.3 m . . . . . . . . . . . . 9

3.1 Proton motion along the 30◦ toroid at 10keV beam energy . . . . . 28
3.2 Proton motion along the 30◦ toroid at constant magnetic field of 0.6 T 29

4.1 Physical properties of Solenoid . . . . . . . . . . . . . . . . . . . . . 48
4.2 Physical properties of Toroidal Segment . . . . . . . . . . . . . . . . 55
4.3 Longitudinal velocities at different energies. . . . . . . . . . . . . . 56
4.4 Gyro-period for different species at different magnetic fields. . . . . 57
4.5 Vertical drift at different energies for different magnetic fields, all

numbers in mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 Number of oscillations (phase) at different energies for different

magnetic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Parameters for injection coil . . . . . . . . . . . . . . . . . . . . . . 81

121



Ninad Shrikrishna Joshi
Nationality : Indian
Date of birth : 04 September 1980
Contact Information (Current):
Institut für Angewandte Physik
J. W. Goethe Universität
Max-von-Laue Str. 1,
Frankfurt am Main.
Email: ninad4980@rediffmail.com

joshi@iap.uni-frankfurt.de

Academics:

1986-96 Primary Schooling (10 years)

Sanmitra Mandal Vidyamandir

1996-98 1996-98 Junior College (2 years)

Sathaye College, State of Maharashtra

1998-2001 Bachelor of Science (Major Physics)

Sathaye College, University Mumbai

2001-03 Indian Institute of Technology (Bom-
bay)

Frequency Resolved Optical Gating

Adviser: Prof. B. P. Singh

Topic: Laser physics, Optics

2004-06 Graduiertenkolleg (GRAKO) Physik und
Technik von Beschleunigern

Adviser: Prof. Dr. U. Ratzinger

Since 2007 Research fellow

IAP, J. W. Goethe University

Adviser: Prof. Dr. U. Ratzinger

Topic: Charged Particle Beam dynam-
ics, Accelerator Physics,Plasma Physics

Additional projects

Summer Project 2002 on Non-linear dynamics

Adviser: Prof. Gangal ( University Pune)

Diploma in computer hardware 2000

1 year part time course (Jetking Computer Hardware and Networking
Institute)

122



Teaching Assistance:

Assistance in Practical Course during 2005-07

Awards

State Scholarship 1991-96

Medal in mathematics external state exam

Certifications in external state examinations in Mathematics, English,
Sanskrit during 4 years schooling

Computer Programming:

C, C++, FORTRAN (1 semester course) OS: Linux, Windows

Publications
[1] Beam Simulation in Toroidal Magnetic Fields Ninad Joshi, GrakoNews 1/04,

p. 20.

[2] High Current Beam upto 150 keV at Frankfurt, A. Ushakov, M. Droba, N.
Joshi, U. Ratzinger, GSI Scientific Report 2004, ACCS-OPD-12, p. 320.

[3] Status of Accumulator Ring Simulation, M. Droba, O. Meusel, N. Joshi, U.
Ratzinger, GSI Plasma annual report 2004, AC-04, p. 20.

[4] Beam Simulation in Toroidal Magnetic Field, N. Joshi, M. Droba, U. Ratzinger,
GSI Plasma annual report 2004, AC-05, p. 21.

[5] Injection Scheme for Magnetostatic Ion Storage ring, Ninad Joshi, GrakoNews
05/06, p. 23.

[6] Planned Installations and Experiments at Frankfurt High Current Injector, M.
Droba, L. Chau, N. Joshi, O. Meusel, U. Ratzinger, M. Heil, GSI Scientific
Report 2005, ACC-R+D-07, p. 137.

[7] Design Studies on Novel Stellarator Type High Current Storage Ring, M.
Droba, N. Joshi, et. al., Conference Proc EPAC 2006, p. 297-299.

[8] Design Studies on High Current Storage Ring, CSC report 2006.

[9] Status of Magnetostatic Ring Studies, M. Droba, N. Joshi, O. Meusel,
U.Ratzinger, High Energy Density with Intense Ion and Laser Beams annual
report 2006, AC-02, p. 38.

[10] Beam Transport in Toroidal Magnetic field, N. Joshi, M. Droba, O. Meusel,
U. Ratzinger, High Energy Density with Intense Ion and Laser Beams annual
report 2006, AC-03, p. 39.

[11] Status of experiments with transport in toroidal magnetic field, GSI, High
Energy Density Matter report 2007.

[12] Beam transport in toroidal magnetic field, N. Joshi, M. Droba, et. al., Con-
ference Proc EPAC 2008.

[13] Beam transport experiments in toroidal magnetic field, N. Joshi, et. al., High
Energy Density Matter report 2008.

123



[14] One nanosecond bunch compressor for intense proton beams, L. P. Chau, N.
Joshi, et. al., Conference Proc EPAC 2008, p. 3578-3580.

[15] Characterization of volume type ion source for p, H+
2 , H+

3 beams, N. Joshi, et.
al., Nuclear Instruments and Methods in Physics, accepted in press, published
online DOI : 10.1016/j.nima.2009.05.008.

[16] Chopper for Intense Proton Beams at Repetition Rates up to 250 kHz, C.
Wiesner, N. Joshi, et. al., Conference Proc PAC 2009.

124


