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Abstract: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease causing demen-
tia and poses significant health risks to middle-aged and elderly people. Brain magnetic resonance
imaging (MRI) is the most widely used diagnostic method for AD. However, it is challenging to
collect sufficient brain imaging data with high-quality annotations. Weakly supervised learning
(WSL) is a machine learning technique aimed at learning effective feature representation from limited
or low-quality annotations. In this paper, we propose a WSL-based deep learning (DL) framework
(ADGNET) consisting of a backbone network with an attention mechanism and a task network for
simultaneous image classification and image reconstruction to identify and classify AD using limited
annotations. The ADGNET achieves excellent performance based on six evaluation metrics (Kappa,
sensitivity, specificity, precision, accuracy, F1-score) on two brain MRI datasets (2D MRI and 3D MRI
data) using fine-tuning with only 20% of the labels from both datasets. The ADGNET has an F1-score
of 99.61% and sensitivity is 99.69%, outperforming two state-of-the-art models (ResNext WSL and
SimCLR). The proposed method represents a potential WSL-based computer-aided diagnosis method
for AD in clinical practice.

Keywords: Alzheimer’s disease; attention module; CNN; computer-aided diagnosis; magnetic
resonance imaging; multi-task learning; weakly supervised learning

1. Introduction

Alzheimer’s disease (AD) is a common chronic progressive neurodegenerative disease
of the elderly characterized by progressive dementia and brain degeneration. It significantly
affects cognitive functions, memory functions, the quality of life, and the emotions of
more than 50 million people worldwide [1]. According to a report by the World Health
Organization (WHO), AD has become the fifth leading cause of death, and the number of
AD patients will increase to 152 million by 2050, and by 2050 [2]. However, the etiology of
AD remains unclear, and there are no effective drugs or treatments to reverse dementia [3].
The preclinical stage of AD, called mild cognitive impairment (MCI), is a transitional state
between normal aging and AD [4]. According to a report of the American Academy of
Neurology [5], about 10% to 15% of patients with MCI may eventually suffer from AD,
whereas only 1% to 2% of patients experience normal aging. Unfortunately, due to a lack
of understanding of AD by patients and their family members, most patients suffer from
moderate and severe stages of AD at the time of diagnosis and have missed the optimal
intervention stage [6]. Therefore, it is of great significance to identify the risk and extent of
AD as early as possible. Typically, doctors have to conduct careful medical assessments of
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patients, such as neuropsychological examinations and neuroimaging, to identify the risk
and extent of developing dementia [7].

As a result of significant progress in neuroimaging technology, characteristic changes
can now be observed in the brains of patients with AD, including changes in the prodromal
and presymptomatic states, providing information for doctors to obtain a more accurate di-
agnosis [8]. Different forms of neuroimaging techniques have been used in clinical practice
to diagnose AD, including computed tomography (CT), positron emission tomography
(PET), and magnetic resonance imaging (MRI) [9]. CT is a structural imaging technique
that integrates X-ray projections from multiple angles and generates cross-sectional or
three-dimensional (3D) images [10]. It has the advantages of low cost and fast examination
speed. However, the resolution of the medial temporal lobe is relatively low, which may
lead to MCI being misdiagnosed as a normal aging symptom [11]. PET is another structural
imaging technique that provides useful information for the diagnosis of AD by detecting
the distribution of positron nuclide markers for metabolic information [12]. However, both
CT and PET examinations expose the patients to radiation, whereas MRI has the unique
advantage of not causing radiation damage [13]. MRI is a medical imaging technique
that uses electromagnetic signals obtained from the human body by magnetic resonance
to generate images of organs [14]. Moreover, it is highly sensitive to brain contraction
and can be used to construct 3D brain tissue images at high resolution [15]. Therefore,
it is promising to use MRI to understand and diagnose AD in clinical practice. With the
rapid development and wide application of artificial intelligence (AI) in the medical field,
computer-aided diagnosis (CAD) of AD using neuroimaging may be an auxiliary method
to assist physicians. Here, CAD can be regarded as an image understanding and classifica-
tion problem. Deep learning (DL), in particular convolutional neural networks (CNNs),
has proved to be an effective method of feature extraction from images and has provided
state-of-the-art (SOTA) solutions in different image understanding and recognition tasks.
Various DL-based methods for CAD have also been developed. Mansour et al. used
AlexNet [16] for diagnosing diabetic retinopathy and achieved an accuracy of 97.93% [17].
Yang et al. designed a patch-based DL framework to detect prostate cancer using MRI data
and achieved a specificity of 90.6% [18]. Zhu et al. proposed a landmark-based feature
representation method and employed a CNN model for the diagnosis of AD with an
accuracy of 91.57% [19]. These methods are supervised learning methods that require a
large sample size and high-quality manually annotated data for accurate feature represen-
tation [20]. However, it is time-consuming and costly to obtain medical images along with
high-quality annotations in practical applications. Therefore, the development of a weakly
supervised learning (WSL) method is of great significance to mine massive amounts of
medical image data at a low cost and with high accuracy. Mahajan et al. presented a WSL
method using ResNext [21] as the backbone network and trained the model using images
from the Instagram website for pretraining. The hashtags were used as labels, and the
pre-trained model was fine-tuned on the ImageNet dataset. The model achieved a top-1
accuracy of 85.4% on the ImageNet-1k benchmark [22]. In 2020, Hinton et al. presented the
simple framework SimCLR for contrastive learning of visual representations and trained
the SimCLR in a self-supervised learning manner. The SimCLR achieved a high accuracy
of 85.8%, using only 1% of the labels of the ImageNet [23].

This paper proposes a WSL-based DL framework for the identification and classifi-
cation of AD. The proposed framework consists of two parts, i.e., the backbone network
with an attention mechanism and the task networks. This paper provides the following
contributions:

1. An attention module (AM) is proposed to improve the discriminative ability of the
backbone network with a low computational cost. The AM is an automatic weighting
module that adjusts the weights of the channels in the feature maps so that the
backbone network selectively focuses on the significant parts of the input.

2. The task networks perform two tasks (image classification and image reconstruction)
in parallel. The task networks utilize the feature vector generated by the backbone
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network and use fully-connected (FC) layers and a decoder for label prediction and
image reconstruction.

3. A multi-task learning (MTL) framework is proposed for conducting image recogni-
tion and reconstruction in parallel, with low computational requirements and good
performance (with the best F1-score of 99.61% and a sensitivity of 99.69%) using only
20% of the labels from the datasets for fine-tuning.

The rest of the paper consists of five parts. The related studies are described in
Section 2. The proposed method is explained in Section 3. Section 4 summarizes the results.
The discussion is presented in Section 5, and the conclusion is given in Section 6.

2. Related Works
2.1. Multi-Task Learning

Multi-task learning is a transfer learning method that extracts domain-specific in-
formation from related tasks for an improved representation of the input data [24]. The
concept of MTL was first proposed by Caruana et al. [25] and has been applied in many
fields. Various studies have been conducted to explore effective MTL methods. Misra et al.
built a novel sharing unit to learn representation from different tasks and reported excellent
results [26]. Lu et al. developed an adaptive feature sharing mechanism in MTL to identify
different attributes of people [27]. In the above studies, each task has a same priority. While
some studies focused on a single task, whereas others acted as auxiliary tasks. Auxiliary
tasks, which provide additional information, provide valid information from aspects of
the main task. Zhang et al. used head pose estimation and attribute prediction of faces
as auxiliary tasks and facial landmark detection as the main task; it was found that the
precision of this method was higher than that of other methods [28]. Our framework
belongs to this type of transfer learning method.

2.2. Weakly Supervised Learning

It is well-known that supervised learning-based models require a large amount of
well-labeled data to obtain accurate predictions. In contrast, unsupervised learning-based
models typically lack high precision, and the learning process is less effective than that
of supervised learning methods [29]. Weakly supervised learning is a machine learning
technique with the objective of learning effective feature representation from limited or
low-quality annotations [30]. Various WSL-based methods have been explored in different
fields. Hu et al. proposed a CNN-based WSL framework for the task of multimodal image
registration and achieved STOA performance [31]. Wang et al. developed a WSL-based
method for accurate automated segmentation of remote sensing data with a proposed
U-Nets framework and obtained superior segmentation performance [32]. ResNeXt WSL is
the most recent WSL method. It was used to pre-train images from the Instagram website,
followed by fine-tuning on the ImageMet dataset [22]. SimCLR, an unsupervised learning
method, was used in combination with WSL and achieved SOTA performance [23].

2.3. Image Classification

The objective of image classification is to classify an image or instance into cate-
gories [33]. With the rapid development and verification of CNNs, various CNN-based
frameworks have been developed and used for image classification [34]. LeCun et al. first
develop the CNN framework (LeNet) for document recognition [35]. AlexNet, which is
an improvement of LeNet and surpassed traditional machine learning methods, won the
Imagenet competition in 2012 [16]. Since then, different types of CNN architectures have
been proposed, such as ResNet [36], ResNext [21], and InceptionNet [37]. In this study, we
adopted the structure of the residual block, which is used in ResNet [36].

2.4. Image Reconstruction

Image reconstruction, which is a critical problem in medical imaging, is a technique
for creating 2D or 3D images from sets of 1D projections [38]. The autoencoder is the
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most popular technique and has proved effective in image reconstruction of unlabeled
images [39]. In this study, we designed a sub-network to perform image reconstruction
using abundant features.

3. Materials and Methods
3.1. The Pipeline of the Proposed Framework

The proposed WSL-based DL framework, which is called ADGNET, is a CNN-based
single-input-multi-output (SIMO) architecture consisting of two components: an improved
backbone network with the attention mechanism and task nets that consists of two sub-
networks, i.e., the classification sub-network (CSN) and the reconstruction sub-network
(RSN). The backbone network has a residual network structure with the proposed AM
to obtain highly discriminative representations while suppressing unrelated regions in
the images. As shown in Figure 1, the backbone network consists of five convolution
stages (C1-Attention to C5-Attention), followed by the Resnet. Generally, feature maps
generated by the deeper stages contain more semantic information, and those generated
by the shallower stages contain more detailed information, such as edges and corners.
The backbone network extracts features step-by-step from the MRI input images and
generates a pooling map using global average pooling (GAP). The task nets use the pooling
map as input and flatten it as a feature vector Vf . The Vf is then sent to two different
task branches; one generates the prediction vector Vp using the FC layer, and the other
reconstructs the original images using the FC layers and a decoding module. As shown in
Figure 1, the Vp is sent to the argmax (Amax), which returns the index with the largest value
of the axes of the Vp and provides the classification results. Here C denotes the number of
categories.

Figure 1. The proposed framework. The framework consists of two parts, including a backbone network with an attention
mechanism that acts as a shared network for extracting salient features and task nets that contain two sub-networks. The
two sub-networks simultaneously conduct two sub-tasks, i.e., classification and reconstruction.

3.2. Backbone Network with the Proposed Attention Module

The backbone network is a multi-stage convolution network that follows the Resnet to
avoid the gradient vanishing problem. Different stages in the backbone network generate
feature maps with different resolutions. Notably, the backbone network is a convolution
network shared by the two sub-task nets, providing a parameter-efficient and time-efficient
method. In the reconstruction task, the backbone network can be regarded as part of an
encoder network that automatically learns the feature representation from the images
without annotation information. In the classification task, the backbone network can be
considered a feature extractor, which is optimized using the supervised learning principle.
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As described in Section 3.1, each stage of the backbone network generates the attention
feature maps after implementing the proposed AM. As shown in Figure 2, the input feature
maps Fs

i with a size of H ×W × C and a scale of s at layer i are the output of the ith stage
of Resnet. Given the Fs

i as input, the AM outputs the channel attention factors ( CAF) with
a size of 1× 1× C so that the network can automatically determine the importance of the
extracted features.This process can also be regarded as a feature filtering and selection
method that improves the discrimination ability of the network at low computational
cost. The CAF are then fused with the Fs

i using the element-wise multiplication operation
(EWMO), and the fused feature map Fs′

i is the output. The feature extraction process of the
backbone network can be expressed as follows:

CAF = AM(Fs
i )

Fs′
i = CAF⊗ Fs

i

(1)

where AM is the proposed attention module, and ⊗ is the EWMO.

Figure 2. The proposed attention module.

The AM is an automatic weighting module that learns the channel weights of the input
feature maps. As shown in Figure 2, the input Fs

i is first downsampled using the global
max-pooling operation to retain important information while reducing the computational
cost. The downsampled feature maps are then flattened into a one-dimensional vector. The
flattened vector is then sent to a convolution layer with a 1× 1 kernel to extract features
from the vector and adjust its dimension. The extracted features are sent to the batch
norm (BN) layer and activated using the ReLU function to speed up the training and
convergence speed of the module and increase its nonlinear representation ability. After
these operations, an FC layer (Linear) with ReLU as the activation function is adopted to
output the CAF with a size of 1× 1× C. The final output is generated using the sigmoid
function to convert the values of the CAF to a range of 0 to 1; these values can be considered
the importance scores of the channels in the Fs

i .
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3.3. Task Sub-Networks

As shown in Figure 1, the task sub-networks consist of the CSN and the RSN. The
input to the two parts is the flattened vector (Vf ). The two tasks are performed in parallel.
The CSN is a simple FC layer called FCp that generates a vector with a size of 1× C. The
vector is then sent to the sigmoid function to generate the prediction vector (Vp) with a
range of 0 to 1 that is used as a probability of prediction of the specified classes. The process
of the CSN can be formulated as follows:

Vp = σ(FC(Vf )) (2)

where FC is the FC layer FCp; σ is the sigmoid function. The RSN consists of two compo-
nents, i.e., the encoder and the decoder. The encoder is constructed using the backbone
network and two FC layers called FCe1 and FCe2. The backbone network extracts and
abstracts the features step-by-step, and the two FC layers encode the features into a vector
(Ve). The decoder component is a multi-layer transposed convolution network. The details
of the decoder component are shown in Figure 3. The input of the decoder component
is the Ve after the reshape operation, which converts the Ve to a two-dimensional feature
map. The decoder is a modular network consisting of two parts with multiple transposed
convolution layers. Each transposed convolution layer in the decoder has multiple trans-
posed convolution kernels with a size of 3× 3, a stride of 2, and a padding of 1. As shown
in Figure 3, there are M× transposed convolution layers and ReLU layers in the first part,
which decode the input feature maps and up-sample the input. The second part of the
encoder contains a convolution layer and a Tanh layer. The convolution layer is used for
dimension normalization to convert the feature maps to the same size as the input MRI
image. The Tanh layer is used to output the predicted MRI image since it has a wide range
of predicted values, improving the prediction accuracy. The RSN process can be formulated
as follows:

Ve = FCe2(FCe1(Vf ))

Imr = tanh(Dec(Ve))
(3)

where FCe1 and FCe2 are the FC layers; tanh is the tanh function. Dec is the proposed
decoder part and Imr is the reconstructed image.

Figure 3. Details of the proposed decoder component. The decoder consists of two parts, including a
transposed convolution layer with a ReLU activation function and a convolution with a convolution
layer and a Tanh layer.

3.4. Loss Function

The proposed ADGNET can be trained in an end-to-end manner. The loss function of
the framework is composed of two parts and is defined as follows:

L = λ1Lcls + λ2Lrec (4)

where Lcls and Lrec are the classification loss and the image reconstruction loss, respectively.
λ1 and the λ2 are the weighting factors which balance the two losses.
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As we described in the introduction, it is difficult to distinguish dementia in the early
and middle stages from normal aging because of the small differences in brain imaging.
Thus, we adopted the focus idea, as introduced in previous works [40,41], to ensure that the
framework focuses primarily on difficult and misclassified samples. We proposed a new
loss function based on the cross-entropy loss. The modified classification loss is defined
as follows:

Lcls = −
1
N
((1− i)γi log(1− i

′
) + iγi log(i

′
)) (5)

where N is the number of samples participating in a single optimization. γi represents the
class-wise weight reduction factors, which adjust the importance of different samples for
an improved representation. i is the ground truth probability of a target belonging to a
given class, and i

′
is the prediction probability of the target belonging to the given class.

The new loss function is a modification based on the cross-entropy (CE) loss. As shown
in Figure 1, the final probability of a sample be a specified category is generated using the
sigmoid function which range from 0 to 1. Therefore, the equation 5 demonstrated the loss
for each specified category following the formulation of the CE loss, and the class-wise
weight reduction factors γi can be considered as a numerical vector. In our manuscript, the
values of γi were all set as 2 as default.

We used the mean square error function as the reconstruction loss; it is defined as
follows:

Lrec = −
1
N

N

∑
i=1

(Yi − Ŷi)
2 (6)

where N is the number of samples participating in a single optimization. Yi is the ground
truth value of the input sample, and Ŷi is the prediction value of the reconstructed sample.

4. Results
4.1. Multi-Modal Brain Imaging Dataset

In this study, the proposed ADGNET was evaluated on two different brain imaging
datasets for a comprehensive assessment. The two brain imaging datasets are the Kaggle
Alzheimer’s classification dataset (KACD) [42] and the Recognition of Alzheimer’s Disease
dataset (ROAD) [43]. The example data of the two datasets are shown in Figure 4. Each
dataset was divided into two parts: a train-val part and a test part using the train-test-
split function (TTSF) from the scikit-learn library. The details of the split are shown in
Table 1. The KACD dataset contains 6400 2D MRI images from 6400 cases, and each case
is assigned into one of four categories: Non-Demented, Very Mild Demented, Mildly
Demented, and Moderately Demented. The ROAD contains 532 3D MRI images from
532 cases, and each case is assigned into one of three categories: Non-Demented, Mildly
Demented, and Alzheimer’s disease. As shown in Table 1, the data set was separated into
two parts, including a training-val set (TVS) for training and selection of model weights
and an independent test set (TS) to evaluate the performance of the models. The TVS of
the KACD contains 5121 2D MRI images, and the TS of the KACD contains 1279 2D MRI
images. The TVS of the ROAD contains 300 3D MRI images, and the TS of the ROAD
contains 232 3D MRI images.

Table 1. Distribution of the Kaggle Alzheimer’s classification dataset (KACD) and Recognition of
Alzheimer’s Disease dataset (ROAD).

KACD Train-Val Test Total ROAD Train-Val Test Total

NoneDemented 2560 640 3200 NoneDemented 68 52 120
Very Mild Demented 1792 448 2240 Very Mild Demented - - -

Mild Demented 717 179 896 Mild Demented 151 116 267
Moderate Demented 52 12 64 Alzheimer’s disease 81 64 145

Total 5121 1279 6400 Total 300 232 532
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Figure 4. Examples of multi-modal data; (a) magnetic resonance imaging (MRI) images (2D) from
the KACD dataset, (b) MRI images (3D) from the ROAD dataset.

4.2. Evaluation Metrics

The Kappa score (Kappa), sensitivity (Sen), specificity (Spe), precision (Pr), accuracy
(Acc) and F1-score metrics were used to evaluate the performance of the proposed ADGNET
comprehensively. The equations of the six metrics are as follows:

pe = ((TN + FN)× (TN + FP) + (TP + FP)× (TP + FN))/(N × N) (7)

p0 = (TP + TN)/N (8)

Given the definitions of pe and p0, the Kappa score is defined as follows:

Kappa = (p0− pe)/(1− pe) (9)

The sensitivity is defined as:

Sen = TP/(TP + FN) (10)

The specificity is defined as:

Spe = TN/(TN + FP) (11)

The precision is defined as:

Pr = (TP)/(TP + FP) (12)

The accuracy is defined as:

ACC = (TP + TN)/(TP + TN + FP + FN) (13)

The F1-score is defined as:

F1− Score = 2× Pr× Sen/(Pr + Sen) (14)

where TP represents the true positive, TN represents the true negative, FP represents the
false positive, and FN represents the false negative. Six evaluation metrics (Kappa, Sen,
Spe, Pr, Acc and F1-score) were employed to evaluate the performance of the proposed
ADGNET and other SOTA WSL-based methods. The Kappa is a statistical indicator of the
stability of the model prediction. The Sen is related to the positive prediction rate and is a
significant indicator in medical diagnosis. The Spe indicates the correctness of the model’s
prediction and also has great significance in medical diagnosis. The Pr refers to the ability
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of the model to provide a positive prediction. The Acc is an indicator of the correctness of
the model’s prediction. The F1-score is the harmonic mean of the Pr and Sen.

4.3. Experimental Results

The performance of the proposed ADGNET was evaluated using multimodal datasets
(2D MRI images and 3D MRI images) to assess the generalization ability and transferability
of the model with six metrics (Kappa, Sen, Spe, Pr, Acc and F1-score). Two sets of experiments
were conducted (experiments A and B) to evaluate the performance of the proposed
ADGNET. A bootstrapping method was used to calculate the empirical distributions of the
boxplots. All experiments were conducted on the KACD dataset and ROAD dataset. An
ablation study was also conducted to better demonstrate the effectiveness of the proposed
framework. As shown in Tables 2 and 3, the ADGNET (proposed) means the proposed
framework as demonstrated in Figure 1; the ADGNET (no RSN) means the Subnet2:RSN as
shown in Figure 1 was excluded while the rest of the proposed framework are retained and
trained with the same amount of annotations; the ADGNET (no AM) means the Attention
Mechanism as shown in Figure 2 was excluded while the rest of the proposed framework
are retained and trained with the same amount of annotations. The training and inference
processes were performed on four Nvidia GTX 2080Ti GPUs and Intel Xeon E5-2600 v4
3.60 GHz CPU using the Pytorch framework.

Table 2. Performance indices of the proposed ADGNET framework of the experiment A and the average performance of
the two state-of-the-art (SOTA) models on the KACD dataset.

KACD Dataset

ADGNET (Proposed) ADGNET (No RSN) ADGNET (No AM) ResNeXt WSL SimCLR

Kappa (95%CI) 0.9922 0.9781 0.9812 0.9672 0.9734
(0.9844, 0.9984) (0.9656, 0.9890) (0.9703, 0.9906) (0.9514, 0.9797) (0.9609, 0.9844)

Sen (95% CI) 0.9969 0.9906 0.9922 0.9891 0.9875
(0.9921, 1.0000) (0.9824, 0.9970) (0.9845, 0.9984) (0.9804, 0.9955) (0.9785, 0.9953)

Spe (95% CI) 0.9953 0.9875 0.9890 0.9781 0.9859
(0.9890, 1.0000) (0.9783, 0.9953) (0.9799, 0.9955) (0.9663, 0.9888) (0.9769, 0.9937)

Pr (95% CI) 0.9953 0.9875 0.9891 0.9784 0.9860
(0.9894, 1.0000) (0.9780, 0.9953) (0.9798, 0.9956) (0.9670, 0.9889) (0.9805, 0.9922)

Acc (95% CI) 0.9961 0.9891 0.9906 0.9836 0.9860
(0.9922, 0.9992) (0.9828, 0.9945) (0.9851, 0.9953) (0.9757, 0.9898) (0.9805, 0.9922)

F1-score (95% CI) 0.9961 0.9891 0.9906 0.9837 0.9867
(0.9922, 0.9992) (0.9828, 0.9945) (0.9849, 0.9956) (0.9756, 0.9901) (0.9806, 0.9922)

Table 3. Performance indices of the proposed ADGNET framework of the experiment B and the average performance of the
two SOTA models on the ROAD dataset.

ROAD Dataset

ADGNET (Proposed) ADGNET (No RSN) ADGNET (No AM) ResNeXt WSL SimCLR

Kappa (95% CI) 0.9736 0.9210 0.9473 0.8687 0.8770
(0.9387, 1.0000) (0.8696, 0.9654) (0.9032, 0.9825) (0.7986, 0.9300) (0.8143, 0.9308)

Sen (95% CI) 0.9800 0.9600 0.9700 0.9400 0.9300
(0.9500, 1.0000) (0.9175, 0.9906) (0.9310, 1.0000) (0.8889, 0.9804) (0.8764, 0.9770)

Spe (95% CI) 0.9924 0.9621 0.9773 0.9318 0.9470
(0.9754, 1.0000) (0.9274, 0.9924) (0.9503, 1.0000) (0.8824, 0.9699) (0.9091, 0.9835)

Pr (95% CI) 0.9899 0.9505 0.9700 0.9126 0.9300
(0.9674, 1.0000) (0.9053, 0.9897) (0.9347, 1.0000) (0.8509, 0.9619) (0.8775, 0.9780)

Acc (95% CI) 0.9871 0.9612 0.9741 0.9353 0.9300
(0.9698, 1.0000) (0.9353, 0.9828) (0.9526, 0.9914) (0.9009, 0.9655) (0.9095, 0.9655)

F1-score (95% CI) 0.9849 0.9552 0.9700 0.9261 0.9300
(0.9655, 1.0000) (0.9246, 0.9817) (0.9436, 0.9903) (0.8832, 0.9608) (0.8912, 0.9630)
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4.3.1. Experiment A: Performance on the KACD Dataset (Comparison between the
Proposed ADGNET, ResNeXt WSL and SimCLR)

In this experiment, we used the 2D MRI images from the KACD dataset to evaluate
the models’ performances. The overall results of the six metrics for the proposed ADGNET,
the ResNeXt WSL, and the SimCLR are listed in Table 2. The optimum performance was
obtained by ADGNET, with an F1-score of 99.61%, followed by SimCLR (98.67%) and
ResNeXt WSL (98.37%). The Acc was highest for ADGNET (99.61%), followed by SimCLR
(98.60%) and ResNeXt WSL (98.36%). The Pr, Spe, Sen and Kappa of ADGNET were 99.53%,
99.53%, 99.69% and 99.22%, respectively. The values of the indices were higher than those
of ResNeXt WSL (97.84%, 97.81%, 98.91% and 96.72%) and SimCLR (98.60%, 98.59%, 98.75%
and 97.34%). The corresponding boxplots of the six evaluation metrics (Kappa, Sen, Spe, Pr,
Acc and F1-score) of the models’ performance on the KACD dataset are shown in Figure 5.

Figure 5. Boxplots of the six evaluation metrics of the models in experiment A. (a) kappa score. (b) sensitivity. (c) specificity.
(d) precision. (e) accuracy. (f) F1-score.

4.3.2. Experiment B: Performance on the ROAD Dataset (Comparison between the
Proposed ADGNET, ResNeXt WSL and SimCLR)

In this experiment, we used the 3D MRI images from the ROAD dataset to evaluate the
models’ performance. The overall result of the six metrics for the proposed ADGNET, the
ResNeXt WSL, and the SimCLR are listed in Table 3. The best performance was obtained
by the proposed ADGNET, with an F1-score of 98.49%, followed by SimCLR (93.00%) and
ResNeXt WSL (92.61%). The Acc was highest for ADGNET (98.71%), followed by ResNeXt
WSL (93.53%) and SimCLR (93.00%). The Pr, Spe, Sen and Kappa of ADGNET were 98.99%,
99.24%, 98.00% and 97.36%, respectively. The values of the indices were higher than those
of ResNeXt WSL (91.26%, 93.18%, 94.00% and 86.87%) and SimCLR (93.00%, 94.70%, 93.00%
and 87.70%). The corresponding boxplots of the six evaluation metrics (Kappa, Sen, Spe, Pr,
Acc and F1-score) of the models’ performance on the ROAD dataset are shown in Figure 6.
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Figure 6. Boxplots of the six evaluation metrics of the models in experiment B. (a) kappa score. (b) sensitivity. (c) specificity.
(d) precision. (e) accuracy. (f) F1-score.

4.3.3. Training Details

The TVS of each dataset was split into 5 parts using a stratified sampling method.
The model was trained using 20% of the labels. A 5-fold cross-validation was adopted to
evaluate the performance of the trained model. The samples in the TS of each dataset were
used to verify the performance of the proposed ADGNET.

5. Discussion

We developed a CAD method for the identification and classification of AD in multi-
modal brain imaging data (2D MRI and 3D MRI) using WSL-based DL techniques. Excellent
performance was obtained by the proposed ADGNET based on six evaluation metrics, and
the method proved superior to two SOTA WSL-based methods. The proposed ADGNET is a
modular framework consisting of a backbone and the task subnets. We used a residual block
in the design of the backbone network to retain the features while preventing degradation
of the framework. We incorporated an AM into the backbone network to ensure the high
discriminatory ability of the backbone network with a low computational cost. Unlike the
conventional methods like Resnext WSL which assign the same weight to each channel, the
proposed AM learned the channel weights of the input feature maps from the supervised
information and the images for an improved feature representation of the samples. This
helps the framework to focus more on the most discriminative part from the feature space.
The feature vector obtained from the pooling map of the backbone network was flattened
and sent to the two sub-networks. The CSN extracted the feature information directly from
the vector and was optimized using the supervised information. The RSN encoded the
vector to a new feature space using two FC layers and used a decoder to reconstruct the
input images. The two FC layers and the backbone network comprised the encoder that
was used for feature coding. The proposed decoder network consisted of the transposed
convolution layer and the convolution layer. The objective of the transposed convolution
layer was to learn the feature information for image reconstruction, and the convolution
layer was used to adjust the number of channels and generate the final output. Unlike
previous WSL-based methods (e.g., ResNeXt WSL and SimCLR), which have to be pre-
trained on a large independent dataset and fine-tuned on the target dataset, the proposed
ADGNET is trained in an end-to-end manner. The training process of the ADGNET is
controlled by adjusting the weighting parameters. When λ1 is zero, the network only learns
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the features from the images. When λ2 is zero, the network only learns the features from
the annotations. In this way, the large-scale unlabeled data can be fully utilized to help the
proposed framework obtain more stable and representative features. Excellent performance
was achieved by ADGNET based on the six statistical metrics for the multi-modal brain
imaging datasets (KACD (2D MRI) and ROAD (3D MRI)). In order to intuitively analyze the
experimental results, the heatmaps of the proposed ADGNET and the two SOTA models
were demonstrated in Figure 7. As can be seen from Figure 7, the proposed ADGNET is
able to capture key features while retaining more features by means of the AM and the
RSN. While the ResNeXt WSL and SimCLR only use very limited features for prediction
and their prediction scores are relatively low. Notably, the ADGNET’s prediction score
is quite higher than ResNeXt WSL and SimCLR, which indicated that the ADGNET’s
prediction is more reliable. The ADGNET has a promising potential as an auxiliary tool to
assist in the diagnosis of AD due to its high performance, good stability, and cross-modal
flexibility. Besides, medical diagnosis in a real situation is much more complex than in
experimental environments, and sufficient and high-quality annotations are difficult to
obtain. Therefore, the development of our proposed WSL-based DL methods is crucial for
diagnosing conditions such as AD. However, the proposed ADGNET may also encounter
some problems when the distribution of the data has extremely category imbalance. It is
also important to develop effective generative frameworks to generate a large amount of
effective data for compensation with WSL-based methods.

Figure 7. Visualization of heatmaps. We compare the visualization heatmaps of the ADGNET
(proposed, no reconstruction sub-network (RSN) and no attention module (AM)), the ResNeXt WSL
(weakly supervised learning), and the SimCLR. The heatmap visualization is calculated for the last
convolutional outputs and P denotes the prediction score of each network for the ground-truth
category.

6. Conclusions

This study presented a unique WSL-based DL framework for the identification and
classification of AD using multi-modal brain imaging data (2D MRI and 3D MRI). The
proposed ADGNET provided excellent performances on six metrics (Kappa, Sen, Spe, Pr,
Acc and F1-score), outperforming the two SOTA WSL-based models on two public datasets
(KACD (2D MRI) and ROAD (3D MRI)) using limited annotation (only 20% of the labels).
Most notably, the Kappa of the ADGNET was 0.9922 on the KACD dataset and 0.9736
on the ROAD dataset. These values were 2.50% and 1.88% higher than those of the two
SOTA methods on the KACD dataset and 10.49% and 9.66% higher on the ROAD dataset,
respectively.

The excellent performance achieved by ADGNET indicates that the proposed AM and
the framework are suitable for the task and that the model is superior to the two SOTA
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WSL-based methods. The proposed AM module enabled the ADGNET to automatically
assign different weights for different channels in the feature maps for a better capture
of discriminative features. It is well-known that obtaining a large sample size and high-
quality annotations of medical images is time-consuming and expensive. The introduction
of sub-network for image reconstruction task help the ADGNET acquire effective features
mining from large scale unlabeled data. Therefore, the development of WSL-based DL
methods might represent a potential research direction to achieve accurate mining of
massive medical data. In the future, the potential of this framework will be explored
in-depth for other challenging tasks, including the detection of brain tumors and other
major diseases.
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CNN Convolution Neural Network
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AM Attention Module
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EWMO Element-Wise Multiplication Operation
BN Batch Norm
KACD Kaggle Alzheimer’s Classification Dataset
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TTSF Train-Test-Split Function
TVS Training-Val Set
TS Testing Set
Sen Sensitivity
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