$0.19 \times 0.15 \times 0.08 \; \rm mm$ 

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Dicaesium magnesium bis(dihydrogen phosphate(V)) dihydrate

### Rachid Essehli,<sup>a</sup> Brahim El Bali,<sup>a</sup>\* Mohammed Lachkar<sup>b</sup> and Michael Bolte<sup>c</sup>

<sup>a</sup>Department of Chemistry, Faculty of Sciences, University Mohammed 1st, PO Box 717, 60 000 Oujda, Morocco, <sup>b</sup>LIMOM, Faculty of Sciences, University Sidi Mohamed Ben Abdellah, PO Box 1796 (Atlas), 30000 Fez, Morocco, and <sup>c</sup>Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: belbali@fso.ump.ma

Received 9 December 2008; accepted 12 December 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (P–O) = 0.006 Å; R factor = 0.048; wR factor = 0.125; data-to-parameter ratio = 12.3.

The title compound,  $Cs_2Mg(H_2P_2O_7)_2\cdot 2H_2O$ , is isostructural with the related known isoformular phosphates. The crystal framework consists of corner-sharing MgO<sub>6</sub> and H<sub>2</sub>P<sub>2</sub>O<sub>7</sub> polyhedra, leading to tunnels parallel to the *b*-axis direction in which Cs<sup>+</sup> ions are located. The H<sub>2</sub>P<sub>2</sub>O<sub>7</sub> unit shows a bent eclipsed conformation. The Mg<sup>2+</sup> ion lies on an inversion center. The water molecules form hydrogen bonds to O atoms of two different dihydrogenphosphate ions, which are further hydrogen bonded to symmetry-equivalent dihydrogenphosphate ions.

#### **Related literature**

For isostructural phosphates, see: Capitelli *et al.* (2004), (NH<sub>4</sub>)<sub>2</sub>Mn(H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>·2H<sub>2</sub>O; Essehli *et al.* (2005*a*), (NH<sub>4</sub>)<sub>2</sub>Zn-(H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>·2H<sub>2</sub>O; Essehli *et al.* (2005*b*), (NH<sub>4</sub>)<sub>2</sub>Ni(H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>·-2H<sub>2</sub>O; Essehli *et al.* (2005*c*), (NH<sub>4</sub>)<sub>2</sub>Co(H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>·2H<sub>2</sub>O; Tahiri *et al.* (2004), K<sub>2</sub>Ni(H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>·2H<sub>2</sub>O; Tahiri *et al.* (2003), K<sub>2</sub>Zn-(H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>·2H<sub>2</sub>O; Harcharras *et al.* (2003), K<sub>2</sub>Mg(H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>·-2H<sub>2</sub>O. For the biological activity of inorganic acidic diphosphates containing HP<sub>2</sub>O<sub>7</sub><sup>3-</sup> or H<sub>2</sub>P<sub>2</sub>O<sub>7</sub><sup>2-</sup> anions, see: Andreeva *et al.* (2001).

#### **Experimental**

| Crystal data                      |                                  |
|-----------------------------------|----------------------------------|
| $Cs_2Mg(H_2P_2O_7)_2 \cdot 2H_2O$ | $\alpha = 83.776 \ (16)^{\circ}$ |
| $M_r = 678.07$                    | $\beta = 68.558 (15)^{\circ}$    |
| Triclinic, P1                     | $\gamma = 87.850 \ (17)^{\circ}$ |
| a = 7.0935 (15)  Å                | V = 392.87 (14) Å <sup>3</sup>   |
| b = 7.4606 (15) Å                 | Z = 1                            |
| c = 8.0230 (15) Å                 | Mo $K\alpha$ radiation           |

| μ=  | 5.17 | mı  | $n^{-1}$ |
|-----|------|-----|----------|
| T = | 173  | (2) | Κ        |

#### Data collection

| Stoe IPDSII two-circle                 | 3316 measured reflections              |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 1420 independent reflections           |
| Absorption correction: multi-scan      | 1245 reflections with $I > 2\sigma(I)$ |
| (MULABS; Spek, 2003; Blessing,         | $R_{\rm int} = 0.082$                  |
| 1995)                                  |                                        |
| $T_{\min} = 0.440, \ T_{\max} = 0.683$ |                                        |
|                                        |                                        |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$   $wR(F^2) = 0.125$  S = 1.021420 reflections 115 parameters 3 restraints H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 2.00 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{min} = -2.73 \text{ e} \text{ Å}^{-3}$ 

### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$            | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------------|------------|-------------------------|--------------|---------------------------|
| $O1W-H1WA\cdotsO1^{i}$                 | 0.839 (10) | 2.01 (4)                | 2.804 (8)    | 158 (9)                   |
| $O1W - H1WB \cdot \cdot \cdot O6^{ii}$ | 0.839 (10) | 1.97 (3)                | 2.778 (9)    | 162 (9)                   |
| O3−H3···O6 <sup>ii</sup>               | 0.84       | 1.72                    | 2.551 (8)    | 172                       |
| $O7-H7\cdots O1^{iii}$                 | 0.84       | 1.71                    | 2.518 (8)    | 159                       |

Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y, z.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2088).

#### References

- Andreeva, O. I., Efimtseva, E. V., Padyukova, N. S., Kochetkov, S. N., Mikhailov, S. N., Dixon, H. B. F. & Karpeisky, M. Y. (2001). *Mol. Biol.* 35, 717–729.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Capitelli, F., Brouzi, K., Harcharras, M., Ennaciri, A., Moliterni, A. G. G. & Bertolasi, V. (2004). Z. Kristallogr. **219**, 93–98.
- Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005a). Acta Cryst. E61, i32-i34.
- Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005b). Acta Cryst. E**61**, i61–i63.
- Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005c). Acta Cryst. E61, i64–i66.
- Harcharras, M., Capitelli, F., Ennaciri, A., Brouzi, K., Moliterni, A. G. G., Mattei, G. & Bertolasi, V. (2003). J. Solid State Chem. 176, 27–32.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Tahiri, A. A., Messouri, I., Lachkar, M., Zavalij, P. Y., Glaum, R., El Bali, B. & Rachid, O. (2004). Acta Cryst. E60, i3–i5.
- Tahiri, A. A., Ouarsal, R., Lachkar, M., Zavalij, P. Y. & El Bali, B. (2003). Acta Cryst. E59, i50–i52.

Acta Cryst. (2009). E65, i3 [doi:10.1107/S1600536808042384]

#### Dicaesium magnesium bis(dihydrogen phosphate(V)) dihydrate

#### R. Essehli, B. El Bali, M. Lachkar and M. Bolte

#### Comment

Inorganic acidic diphosphates containing  $HP_2O_7$  or  $H_2P_2O_7$  hold important biochemical activities, such as inhibitors of human immunodeficiency enzymes as reported by Andreeva *et al.* (2001). In the framework of our systematic research on these phosphates, we report on the new compound  $Cs_2Mg(H_2P_2O_7)_2.2H_2O$ . Detailed studies on structure determinations of such phosphates are available in related crystallography literature.

The crystal packing of  $Cs_2Mg(H_2P_2O_7)_2.2H_2O$  is a 3D network made upon edges sharing [MgO<sub>6</sub>] octahedra and dihydrogendiphosphate [H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>]. These delimite tunnels along *b* direction, where Cs<sup>+</sup> ions are located. A projection onto ac-plan is depicted on Fig. 1.

 $Mg^{2+}$  cation sites are on inversion center. It is coordinated by four O atoms from two bidendate [H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>] groups and two remaining O atoms from water molecule (Fig. 2).

 $H_2P_2O_7$  shows bent eclipsed conformation. Distances and angles in [MgO<sub>6</sub>] and [H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>] are as usual as in related phosphates structures. The [MgO<sub>6</sub>] are isolated in the structure, with an Mg-Mg distance over 7 Å.

#### **Experimental**

Crystals of  $Cs_2Mn(H_2P_2O_7)_2.2H_2O$  were grown at room temperature by slow evaporation from water-ethanol (80/20) of aqueous solution containing a stoichiometric the mixture : MgCl<sub>2</sub>.6H<sub>2</sub>O (0.231mg, 1mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.24mg, 1mmol), and K<sub>4</sub>P<sub>2</sub>O<sub>7</sub> (0.5mg, 1mmol). The solution was stirred for two hours at leaved to stand at room temperature. Crystals suitable for X-ray analysis were formed after few days.

#### Refinement

All H atoms were located in a difference map. The water H atoms were refined with the O-H bonds restrained to 0.84 (1)Å and the H···H distances restrained to 1.4 (1)Å and with fixed individual displacement parameters  $[U(H) = 1.2 U_{eq}(O)]$ . The H atoms of the hydroxyl groups bonded to P were refined using a riding model with O-H = 0.84Å, U(H) = 1.2 U<sub>eq</sub>(O) and P-O-H = 109.5 °.

Figures



Fig. 1. Crystal structure of  $Cs_2Mn(H_2P_2O_7)_2.2H_2O$  viewed along *b* direction.

Fig. 2. Mg coordination in  $Cs_2Mn(H_2P_2O_7)_2.2H_2O$ . Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -  $x_2$ ,  $y_2$ ,  $z_2$ .

#### Dicaesium magnesium bis(dihydrogen phosphate) dihydrate

| $Cs_2Mg(H_2P_2O_7)_2 \cdot 2H_2O$ | Z = 1                                           |
|-----------------------------------|-------------------------------------------------|
| $M_r = 678.07$                    | $F_{000} = 318$                                 |
| Triclinic, PT                     | $D_{\rm x} = 2.866 {\rm Mg m}^{-3}$             |
| Hall symbol: -P 1                 | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| <i>a</i> = 7.0935 (15) Å          | Cell parameters from 3316 reflections           |
| b = 7.4606 (15)  Å                | $\theta = 3.7 - 25.5^{\circ}$                   |
| c = 8.0230 (15)  Å                | $\mu = 5.17 \text{ mm}^{-1}$                    |
| $\alpha = 83.776 \ (16)^{\circ}$  | T = 173 (2) K                                   |
| $\beta = 68.558 \ (15)^{\circ}$   | Plate, colourless                               |
| $\gamma = 87.850 \ (17)^{\circ}$  | $0.19\times0.15\times0.08\ mm$                  |
| $V = 392.87 (14) \text{ Å}^3$     |                                                 |
|                                   |                                                 |

#### Data collection

| Stoe IPDSII two-circle<br>diffractometer                                  | 1420 independent reflections           |
|---------------------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                                  | 1245 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                                   | $R_{\rm int} = 0.082$                  |
| T = 173(2)  K                                                             | $\theta_{\text{max}} = 25.3^{\circ}$   |
| ω scans                                                                   | $\theta_{\min} = 3.7^{\circ}$          |
| Absorption correction: multi-scan<br>(MULABS; Spek, 2003; Blessing, 1995) | $h = -8 \rightarrow 8$                 |
| $T_{\min} = 0.440, \ T_{\max} = 0.683$                                    | $k = -8 \rightarrow 8$                 |

| 3316 measured reflections                  | $l = -9 \rightarrow 9$                                                                                                                            |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                 |                                                                                                                                                   |
| Refinement on $F^2$                        | Secondary atom site location: difference Fourier map                                                                                              |
| Least-squares matrix: full                 | Hydrogen site location: inferred from neighbouring sites                                                                                          |
| $R[F^2 > 2\sigma(F^2)] = 0.048$            | H atoms treated by a mixture of independent and constrained refinement                                                                            |
| $wR(F^2) = 0.125$                          | $w = 1/[\sigma^2(F_o^2) + (0.084P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                          |
| <i>S</i> = 1.02                            | $(\Delta/\sigma)_{max} < 0.001$                                                                                                                   |
| 1420 reflections                           | $\Delta \rho_{max} = 2.00 \text{ e } \text{\AA}^{-3}$                                                                                             |
| 115 parameters                             | $\Delta \rho_{\rm min} = -2.73 \text{ e } \text{\AA}^{-3}$                                                                                        |
| 3 restraints                               | Extinction correction: SHELXL97 (Sheldrick, 2008),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Primary stom site location: structure inva | riant direct                                                                                                                                      |

Primary atom site location: structure-invariant direct Extinction coefficient: 0.011 (3)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x           | У           | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|-------------|-------------|---------------------------|
| Cs1  | 0.09044 (7) | 0.70386 (7) | 0.27841 (6) | 0.0186 (3)                |
| Mg1  | 0.5000      | 0.5000      | 0.5000      | 0.0137 (8)                |
| O1W  | 0.4211 (9)  | 0.2941 (8)  | 0.7146 (7)  | 0.0195 (14)               |
| H1WA | 0.413 (14)  | 0.319 (13)  | 0.817 (6)   | 0.023*                    |
| H1WB | 0.355 (13)  | 0.201 (8)   | 0.719 (12)  | 0.023*                    |
| P1   | 0.3736 (3)  | 0.2528 (3)  | 0.2388 (3)  | 0.0129 (5)                |
| P2   | 0.7759 (3)  | 0.1985 (3)  | 0.2518 (3)  | 0.0130 (5)                |
| 01   | 0.3041 (8)  | 0.3164 (9)  | 0.0855 (8)  | 0.0190 (13)               |
| 02   | 0.3344 (8)  | 0.3767 (8)  | 0.3829 (7)  | 0.0151 (12)               |
| O3   | 0.2791 (9)  | 0.0628 (8)  | 0.3238 (8)  | 0.0181 (13)               |
| H3   | 0.2828      | 0.0417      | 0.4276      | 0.022*                    |
| O4   | 0.6144 (8)  | 0.2214 (8)  | 0.1485 (7)  | 0.0162 (12)               |
| O5   | 0.7572 (8)  | 0.3505 (8)  | 0.3636 (7)  | 0.0155 (12)               |
| O6   | 0.7434 (9)  | 0.0105 (8)  | 0.3514 (8)  | 0.0216 (14)               |

| O7<br>H7                             | 0.9737 (9)<br>1.0655 | 0.2074 (9)<br>0.2565 | 0.082<br>0.104   | 26 (8)<br>26           | 0.0201 (14)<br>0.024*  |              |
|--------------------------------------|----------------------|----------------------|------------------|------------------------|------------------------|--------------|
| Atomic displac                       | ement parameters     | $s(A^2)$             |                  |                        |                        |              |
|                                      | U <sup>11</sup>      | U <sup>22</sup>      | LI <sup>33</sup> | $U^{12}$               | <i>U</i> <sup>13</sup> | $U^{23}$     |
| Cs1                                  | 0.0193 (4)           | 0.0231 (4)           | 0.0164 (4)       | 0.0023(2)              | -0.0101(2)             | -0.0027(2)   |
| Mg1                                  | 0.0124 (18)          | 0.018 (2)            | 0.0124 (18)      | 0.0022 (15)            | -0.0069(15)            | -0.0011 (15) |
| OIW                                  | 0.030 (4)            | 0.022 (3)            | 0.010 (3)        | -0.003 (3)             | -0.012 (3)             | -0.002 (2)   |
| P1                                   | 0.0121 (10)          | 0.0171 (11)          | 0.0121 (10)      | 0.0017 (8)             | -0.0073 (8)            | -0.0031 (8)  |
| P2                                   | 0.0131 (10)          | 0.0190 (11)          | 0.0104 (9)       | 0.0015 (8)             | -0.0080 (8)            | -0.0035 (8)  |
| 01                                   | 0.016 (3)            | 0.029 (3)            | 0.017 (3)        | -0.001 (2)             | -0.012 (2)             | -0.002 (3)   |
| 02                                   | 0.013 (3)            | 0.021 (3)            | 0.017 (3)        | 0.000 (2)              | -0.012 (2)             | -0.006 (2)   |
| O3                                   | 0.022 (3)            | 0.017 (3)            | 0.021 (3)        | -0.005 (2)             | -0.012 (3)             | -0.005 (2)   |
| O4                                   | 0.013 (3)            | 0.027 (3)            | 0.014 (3)        | 0.003 (2)              | -0.011 (2)             | -0.005 (2)   |
| O5                                   | 0.014 (3)            | 0.025 (3)            | 0.012 (3)        | 0.002 (2)              | -0.008 (2)             | -0.009 (2)   |
| O6                                   | 0.027 (3)            | 0.022 (3)            | 0.017 (3)        | -0.002 (3)             | -0.010 (3)             | -0.001 (2)   |
| 07                                   | 0.012 (3)            | 0.037 (4)            | 0.014 (3)        | -0.001 (3)             | -0.006 (2)             | -0.008 (3)   |
| Geometric par                        | ameters (Å, °)       |                      |                  |                        |                        |              |
| Cs1—O7 <sup>i</sup>                  |                      | 3.092 (6)            | O1W              | —Cs1 <sup>iv</sup>     | 3.6                    | 08 (6)       |
| Cs1—O3 <sup>ii</sup>                 |                      | 3.151 (6)            | O1W              | —H1WA                  | 0.8                    | 39 (10)      |
| Cs1—O2                               |                      | 3.155 (6)            | O1W              | —H1WB                  | 0.8                    | 39 (10)      |
| Cs1—O6 <sup>iii</sup>                |                      | 3.233 (7)            | P1               | 02                     | 1.4                    | 98 (6)       |
| Cs1—O2 <sup>iv</sup>                 |                      | 3.259 (6)            | P1—              | 01                     | 1.5                    | 10 (6)       |
| Cs1—O4 <sup>i</sup>                  |                      | 3.295 (5)            | P1               | 03                     | 1.5                    | 66 (6)       |
| Cs1—O5 <sup>v</sup>                  |                      | 3.401 (5)            | P1—              | 04                     | 1.6                    | 12 (6)       |
| Cs1—O5 <sup>vi</sup>                 |                      | 3.450 (6)            | P1               | Cs1 <sup>iv</sup>      | 4.1                    | 00 (2)       |
| Cs1—O1                               |                      | 3.461 (6)            | P2—              | 05                     | 1.4                    | 93 (6)       |
| Cs1—O1W <sup>v</sup>                 |                      | 3.486 (6)            | P2—              | 06                     | 1.5                    | 18 (6)       |
| Cs1—O1W <sup>iv</sup>                |                      | 3.608 (6)            | P2—              | 07                     | 1.5                    | 53 (6)       |
| Cs1—P1                               |                      | 3.836 (2)            | P2—              | 04                     | 1.6                    | 37 (5)       |
| Mg1—O2                               |                      | 2.046 (5)            | P2—              | Cs1 <sup>i</sup>       | 3.9                    | 95 (2)       |
| Mg1—O2 <sup>v</sup>                  |                      | 2.046 (5)            | 02—              | -Cs1 <sup>1V</sup>     | 3.2                    | 59 (6)       |
| Mg1—O5 <sup>v</sup>                  |                      | 2.103 (6)            | 03—              | -Cs1 <sup>vm</sup>     | 3.1                    | 51 (6)       |
| Mg1—05                               |                      | 2.103 (6)            | 03—              | -H3                    | 0.8                    | 400          |
| Mg1—O1W <sup>v</sup>                 |                      | 2.103 (5)            | 04—              | -Cs1 <sup>1</sup>      | 3.2                    | 95 (5)       |
| Mg1—O1W                              |                      | 2.103 (5)            | 05—              | -Cs1 <sup>v</sup>      | 3.4                    | 01 (5)       |
| Mg1—Cs1 <sup>v</sup>                 |                      | 4.0953 (9)           | 05—              | -Cs1 <sup>VII</sup>    | 3.4                    | 50 (6)       |
| Mg1—Cs1 <sup>vii</sup>               |                      | 4.1789 (11)          | 06—              | -Cs1 <sup>1X</sup>     | 3.2                    | 33 (6)       |
| Mg1—Cs1 <sup>1V</sup>                |                      | 4.1790 (11)          | 07—              | -Cs1 <sup>1</sup>      | 3.0                    | 92 (6)       |
| O1W—Cs1 <sup>v</sup>                 |                      | 3.486 (6)            | 07—              | -H7                    | 0.8                    | 400          |
| 07 <sup>i</sup> —Cs1—O3 <sup>i</sup> | i                    | 103.03 (16)          | 05—              | -Mg1—Cs1 <sup>v</sup>  | 56.                    | 01 (15)      |
| 07 <sup>i</sup> —Cs1—O2              |                      | 127.15 (16)          | O1W              | v—Mg1—Cs1 <sup>v</sup> | 121                    | .65 (16)     |

| O3 <sup>ii</sup> —Cs1—O2                | 108.02 (15) | O1W—Mg1—Cs1 <sup>v</sup>                  | 58.35 (16)   |
|-----------------------------------------|-------------|-------------------------------------------|--------------|
| O7 <sup>i</sup> —Cs1—O6 <sup>iii</sup>  | 74.51 (15)  | O2—Mg1—Cs1                                | 48.97 (16)   |
| O3 <sup>ii</sup> —Cs1—O6 <sup>iii</sup> | 72.09 (16)  | O2 <sup>v</sup> —Mg1—Cs1                  | 131.03 (16)  |
| O2—Cs1—O6 <sup>iii</sup>                | 155.89 (14) | O5 <sup>v</sup> —Mg1—Cs1                  | 56.01 (15)   |
| O7 <sup>i</sup> —Cs1—O2 <sup>iv</sup>   | 112.39 (14) | O5—Mg1—Cs1                                | 123.99 (15)  |
| O3 <sup>ii</sup> —Cs1—O2 <sup>iv</sup>  | 108.69 (15) | O1W <sup>v</sup> —Mg1—Cs1                 | 58.35 (16)   |
| O2—Cs1—O2 <sup>iv</sup>                 | 96.77 (14)  | O1W—Mg1—Cs1                               | 121.65 (16)  |
| O6 <sup>iii</sup> —Cs1—O2 <sup>iv</sup> | 61.80 (15)  | Cs1 <sup>v</sup> —Mg1—Cs1                 | 180.000 (7)  |
| $O7^{i}$ —Cs1—O4 <sup>i</sup>           | 44.14 (14)  | O2—Mg1—Cs1 <sup>vii</sup>                 | 130.16 (15)  |
| O3 <sup>ii</sup> —Cs1—O4 <sup>i</sup>   | 84.93 (15)  | O2 <sup>v</sup> —Mg1—Cs1 <sup>vii</sup>   | 49.84 (16)   |
| O2—Cs1—O4 <sup>i</sup>                  | 97.36 (14)  | O5 <sup>v</sup> —Mg1—Cs1 <sup>vii</sup>   | 124.62 (16)  |
| O6 <sup>iii</sup> —Cs1—O4 <sup>i</sup>  | 106.59 (14) | O5—Mg1—Cs1 <sup>vii</sup>                 | 55.38 (16)   |
| O2 <sup>iv</sup> —Cs1—O4 <sup>i</sup>   | 156.16 (13) | O1W <sup>v</sup> —Mg1—Cs1 <sup>vii</sup>  | 59.70 (16)   |
| $O7^{i}$ —Cs1—O5 <sup>v</sup>           | 169.36 (14) | O1W—Mg1—Cs1 <sup>vii</sup>                | 120.30 (16)  |
| O3 <sup>ii</sup> —Cs1—O5 <sup>v</sup>   | 68.88 (15)  | Cs1 <sup>v</sup> —Mg1—Cs1 <sup>vii</sup>  | 61.976 (19)  |
| O2—Cs1—O5 <sup>v</sup>                  | 52.76 (15)  | Cs1—Mg1—Cs1 <sup>vii</sup>                | 118.02 (2)   |
| O6 <sup>iii</sup> —Cs1—O5 <sup>v</sup>  | 108.24 (14) | O2—Mg1—Cs1 <sup>iv</sup>                  | 49.84 (16)   |
| O2 <sup>iv</sup> —Cs1—O5 <sup>v</sup>   | 77.41 (13)  | O2 <sup>v</sup> —Mg1—Cs1 <sup>iv</sup>    | 130.16 (16)  |
| O4 <sup>i</sup> —Cs1—O5 <sup>v</sup>    | 126.34 (13) | O5 <sup>v</sup> —Mg1—Cs1 <sup>iv</sup>    | 55.38 (16)   |
| O7 <sup>i</sup> —Cs1—O5 <sup>vi</sup>   | 86.75 (14)  | O5—Mg1—Cs1 <sup>iv</sup>                  | 124.62 (16)  |
| O3 <sup>ii</sup> —Cs1—O5 <sup>vi</sup>  | 160.22 (15) | O1W <sup>v</sup> —Mg1—Cs1 <sup>iv</sup>   | 120.30 (16)  |
| O2—Cs1—O5 <sup>vi</sup>                 | 78.07 (14)  | O1W—Mg1—Cs1 <sup>iv</sup>                 | 59.70 (16)   |
| O6 <sup>iii</sup> —Cs1—O5 <sup>vi</sup> | 94.58 (15)  | Cs1 <sup>v</sup> —Mg1—Cs1 <sup>iv</sup>   | 118.024 (19) |
| O2 <sup>iv</sup> —Cs1—O5 <sup>vi</sup>  | 51.54 (14)  | Cs1—Mg1—Cs1 <sup>iv</sup>                 | 61.98 (2)    |
| O4 <sup>i</sup> —Cs1—O5 <sup>vi</sup>   | 113.40 (13) | Cs1 <sup>vii</sup> —Mg1—Cs1 <sup>iv</sup> | 180.0        |
| 05 <sup>v</sup> —Cs1—O5 <sup>vi</sup>   | 103.09 (12) | Mg1—O1W—Cs1 <sup>v</sup>                  | 90.75 (19)   |
| 07 <sup>i</sup> —Cs1—O1                 | 82.39 (15)  | Mg1—O1W—Cs1 <sup>iv</sup>                 | 90.08 (18)   |
| O3 <sup>ii</sup> —Cs1—O1                | 132.65 (15) | Cs1 <sup>v</sup> —O1W—Cs1 <sup>iv</sup>   | 178.20 (18)  |
| 02—Cs1—O1                               | 45.25 (13)  | Mg1—O1W—H1WA                              | 119 (7)      |
| O6 <sup>iii</sup> —Cs1—O1               | 150.16 (14) | Cs1 <sup>v</sup> —O1W—H1WA                | 72 (7)       |
| O2 <sup>iv</sup> —Cs1—O1                | 112.32 (15) | Cs1 <sup>iv</sup> —O1W—H1WA               | 106 (7)      |
| $O4^{i}$ —Cs1—O1                        | 66.40 (15)  | Mg1—O1W—H1WB                              | 124 (6)      |
| O5 <sup>v</sup> —Cs1—O1                 | 97.95 (14)  | Cs1 <sup>v</sup> —O1W—H1WB                | 125 (7)      |
| O5 <sup>vi</sup> —Cs1—O1                | 65.07 (13)  | Cs1 <sup>iv</sup> —O1W—H1WB               | 55 (7)       |
| $O7^{i}$ —Cs1—O1W <sup>v</sup>          | 119.58 (14) | H1WA—O1W—H1WB                             | 113 (8)      |
| $O3^{ii}$ —Cs1—O1W <sup>v</sup>         | 59.65 (15)  | O2—P1—O1                                  | 116.7 (4)    |
| O2—Cs1—O1W <sup>v</sup>                 | 51.99 (14)  | O2—P1—O3                                  | 110.1 (3)    |
| $O6^{iii}$ —Cs1—O1W <sup>v</sup>        | 131.44 (15) | O1—P1—O3                                  | 108.9 (3)    |
| $O2^{iv}$ —Cs1—O1W <sup>v</sup>         | 128.02 (13) | O2—P1—O4                                  | 108.7 (3)    |
| $O4^{i}$ —Cs1—O1 $W^{v}$                | 75.64 (13)  | O1—P1—O4                                  | 106.0 (3)    |
| $O5^{v}$ —Cs1—O1W <sup>v</sup>          | 50.71 (13)  | O3—P1—O4                                  | 106.0 (3)    |

| $O5^{vi}$ —Cs1—O1W <sup>v</sup>          | 130.02 (14) | O2—P1—Cs1                               | 52.5 (2)   |
|------------------------------------------|-------------|-----------------------------------------|------------|
| $O1$ — $Cs1$ — $O1W^{v}$                 | 76.60 (14)  | O1—P1—Cs1                               | 64.3 (3)   |
| O7 <sup>i</sup> —Cs1—O1W <sup>iv</sup>   | 61.98 (13)  | O3—P1—Cs1                               | 126.4 (2)  |
| O3 <sup>ii</sup> —Cs1—O1W <sup>iv</sup>  | 119.49 (15) | O4—P1—Cs1                               | 127.4 (2)  |
| O2—Cs1—O1W <sup>iv</sup>                 | 128.11 (13) | O2—P1—Cs1 <sup>iv</sup>                 | 46.6 (2)   |
| O6 <sup>iii</sup> —Cs1—O1W <sup>iv</sup> | 47.53 (15)  | O1—P1—Cs1 <sup>iv</sup>                 | 110.0 (2)  |
| O2 <sup>iv</sup> —Cs1—O1W <sup>iv</sup>  | 50.41 (12)  | O3—P1—Cs1 <sup>iv</sup>                 | 69.8 (2)   |
| O4 <sup>i</sup> —Cs1—O1W <sup>iv</sup>   | 105.98 (12) | O4—P1—Cs1 <sup>iv</sup>                 | 143.1 (2)  |
| O5 <sup>v</sup> —Cs1—O1W <sup>iv</sup>   | 127.65 (13) | Cs1—P1—Cs1 <sup>iv</sup>                | 64.84 (4)  |
| O5 <sup>vi</sup> —Cs1—O1W <sup>iv</sup>  | 50.22 (14)  | O5—P2—O6                                | 116.1 (3)  |
| O1—Cs1—O1W <sup>iv</sup>                 | 104.72 (14) | O5—P2—O7                                | 112.9 (3)  |
| O1W <sup>v</sup> —Cs1—O1W <sup>iv</sup>  | 178.20 (18) | O6—P2—O7                                | 110.9 (4)  |
| O7 <sup>i</sup> —Cs1—P1                  | 105.41 (12) | O5—P2—O4                                | 110.8 (3)  |
| O3 <sup>ii</sup> —Cs1—P1                 | 122.63 (12) | O6—P2—O4                                | 106.4 (3)  |
| O2—Cs1—P1                                | 22.12 (11)  | O7—P2—O4                                | 98.0 (3)   |
| O6 <sup>iii</sup> —Cs1—P1                | 164.02 (12) | $O5$ — $P2$ — $Cs1^i$                   | 120.3 (2)  |
| O2 <sup>iv</sup> —Cs1—P1                 | 104.76 (11) | O6—P2—Cs1 <sup>i</sup>                  | 123.5 (3)  |
| O4 <sup>i</sup> —Cs1—P1                  | 82.42 (11)  | O4—P2—Cs1 <sup>i</sup>                  | 53.5 (2)   |
| O5 <sup>v</sup> —Cs1—P1                  | 74.87 (11)  | P1—O1—Cs1                               | 92.5 (3)   |
| O5 <sup>vi</sup> —Cs1—P1                 | 69.55 (10)  | P1—O2—Mg1                               | 137.3 (4)  |
| O1—Cs1—P1                                | 23.15 (9)   | P1—O2—Cs1                               | 105.4 (3)  |
| O1W <sup>v</sup> —Cs1—P1                 | 63.00 (11)  | Mg1—O2—Cs1                              | 101.8 (2)  |
| O1W <sup>iv</sup> —Cs1—P1                | 117.80 (10) | P1—O2—Cs1 <sup>iv</sup>                 | 113.8 (3)  |
| $O2$ —Mg1— $O2^{v}$                      | 179.999 (1) | Mg1—O2—Cs1 <sup>iv</sup>                | 101.5 (2)  |
| $O2$ —Mg1— $O5^{v}$                      | 89.5 (2)    | Cs1—O2—Cs1 <sup>iv</sup>                | 83.23 (14) |
| $O2^{v}$ —Mg1— $O5^{v}$                  | 90.5 (2)    | P1—O3—Cs1 <sup>viii</sup>               | 148.3 (3)  |
| O2—Mg1—O5                                | 90.5 (2)    | Р1—О3—Н3                                | 109.5      |
| O2 <sup>v</sup> —Mg1—O5                  | 89.5 (2)    | Cs1 <sup>viii</sup> —O3—H3              | 102.2      |
| O5 <sup>v</sup> —Mg1—O5                  | 179.999 (1) | P1—O4—P2                                | 126.8 (4)  |
| $O2$ —Mg1—O1 $W^{v}$                     | 89.7 (2)    | P1—O4—Cs1 <sup>i</sup>                  | 128.3 (3)  |
| $O2^{v}$ —Mg1—O1W <sup>v</sup>           | 90.3 (2)    | P2                                      | 103.0 (2)  |
| $O5^{v}$ —Mg1—O1W <sup>v</sup>           | 89.1 (2)    | P2—O5—Mg1                               | 129.5 (3)  |
| O5—Mg1—O1W <sup>v</sup>                  | 90.9 (2)    | P2—O5—Cs1 <sup>v</sup>                  | 120.1 (3)  |
| O2—Mg1—O1W                               | 90.3 (2)    | Mg1—O5—Cs1 <sup>v</sup>                 | 93.14 (17) |
| O2 <sup>v</sup> —Mg1—O1W                 | 89.7 (2)    | P2—O5—Cs1 <sup>vii</sup>                | 127.4 (3)  |
| O5 <sup>v</sup> —Mg1—O1W                 | 90.9 (2)    | Mg1—O5—Cs1 <sup>vii</sup>               | 94.5 (2)   |
| O5—Mg1—O1W                               | 89.1 (2)    | Cs1 <sup>v</sup> —O5—Cs1 <sup>vii</sup> | 76.91 (12) |
| O1W <sup>v</sup> —Mg1—O1W                | 180.0 (3)   | P2—O6—Cs1 <sup>ix</sup>                 | 123.7 (3)  |
| O2—Mg1—Cs1 <sup>v</sup>                  | 131.03 (16) | P2—O7—Cs1 <sup>i</sup>                  | 114.5 (3)  |
| O2 <sup>v</sup> —Mg1—Cs1 <sup>v</sup>    | 48.97 (16)  | Р2—07—Н7                                | 109.5      |
| O5 <sup>v</sup> —Mg1—Cs1 <sup>v</sup>    | 123.99 (15) | Cs1 <sup>i</sup> —O7—H7                 | 122.0      |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*, *y*+1, *z*; (iii) *x*-1, *y*+1, *z*; (iv) -*x*, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*-1, *y*, *z*; (vii) *x*+1, *y*, *z*; (viii) *x*, *y*-1, *z*; (ix) *x*+1, *y*-1, *z*.

#### Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-----------------------------|-------------|--------------|--------------|------------|
| O1W—H1WA···O1 <sup>x</sup>  | 0.839 (10)  | 2.01 (4)     | 2.804 (8)    | 158 (9)    |
| O1W—H1WB···O6 <sup>xi</sup> | 0.839 (10)  | 1.97 (3)     | 2.778 (9)    | 162 (9)    |
| O3—H3…O6 <sup>xi</sup>      | 0.84        | 1.72         | 2.551 (8)    | 172        |
| O7—H7…O1 <sup>vii</sup>     | 0.84        | 1.71         | 2.518 (8)    | 159        |

Symmetry codes: (x) *x*, *y*, *z*+1; (xi) –*x*+1, –*y*, –*z*+1; (vii) *x*+1, *y*, *z*.

Fig. 1





Fig. 2