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Abstract The scalar glueball G is the lightest particle of
the Yang–Mills sector of QCD, with a lattice predicted mass
of about mG � 1.7 GeV. It is natural to investigate glueball-
glueball scattering and the possible emergence of a bound
state, that we call glueballonium. We perform this study in
the context of a widely used dilaton potential, that depends
on a single dimensionful parameter �G . We consider a uni-
tarization prescription that allows us to predict the lowest
partial waves in the elastic window. These quantities can be
in principle calculated on the lattice, thus offering possibility
for testing the validity of the dilaton potential and an indepen-
dent determination of its parameter. Moreover, we also show
that a stable glueballonium exists if �G is small enough.
In particular, for �G compatible with the expectations from
the gluon condensate, the glueballonium has a mass of about
3.4 GeV.

1 Introduction

Glueballs, bound states of gluons, are firm predictions of
the Yang-Mills (YM) sector of Quantum Chromodynamics
(QCD). They were originally proposed within bag models
[1–3], and later confirmed by Lattice QCD calculations [4–
9]. Other nonperturbative approaches lead to similar conclu-
sions [10–21]. All these works agree that the lightest degree
of freedom of pure YM is a scalar glueball G with a mass
of about mG � 1.7 GeV. The scattering of two glueballs
is therefore a well defined process in pure YM, that can be
investigated both by models and on the lattice by using the
Lüscher method [22,23] (for a first exploratory lattice study
see [24–27]). Besides masses, the behavior of the phase shifts
delivers valuable information to understand the nonperturba-
tive nature of glueballs and their interactions.

a e-mail: trottienrico@gmail.com (corresponding author)

In this work, we study the scattering of two scalar glue-
balls in the framework of the well-known dilaton potential,
which (in its simplest form) involves a single dilaton/glueball
scalar field G [28–31]. This potential represents an effec-
tive description of a fundamental property of YM called the
trace anomaly, according to which the a low-energy scale
�YM � 250 MeV is dynamically generated due to gluonic
quantum fluctuations and to the gluonic condensate [32,33].
In QCD, this feature is ultimately connected to the masses of
hadrons, since each mass is proportional to�YM if light quark
masses are neglected. In the context of the dilaton potential,
there is an analogous dimensionful constant �G proportional
to Nc�YM, where Nc is the number of colors (3 in Nature).

In this paper, we address the following questions: (i) What
are the scattering amplitudes within the dilaton potential?
(i i) Is the attraction between two glueballs strong enough to
generate a bound state? Quite interestingly, for values of the
parameter in reasonably agreement with lattice expectations,
such a glueball-glueball state, that we call glueballonium,
might exist. If so, it is stable in YM, and could appear as on
the lattice as an excited scalar glueball with a mass of about
3 GeV.

Moreover, the interaction between two glueballs is also of
primary importance for full QCD. In the past, various states
were proposed as predominantly gluonic candidates, most
notably the f0(1500) and f0(1710) [34–43],1 yet all the dis-
cussed scenarios are meaningful under the assumption that
the scalar glueball is narrow enough. Quite remarkably, it
turns out the very decay of the scalar glueball into pions
(as well as into other mesons) depends in ultimate analysis
on the glueball-glueball interaction strength parametrized by
the parameter �G mentioned above. In particular, as already
pointed out in Ref. [45], the scalar glueball might be broader

1 Recently, Ref. [44] proposed the possibility that hints of the glueball
are equally spread in the scalar-isoscalar sector.
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than 1 GeV, thus making its experimental discovery very
hard, if not impossible. In this respect, the understanding of
glueball-glueball scattering in pure YM is relevant to answer
the question about the width of the light scalar glueball, which
is crucial for its possible discovery. The glueballonium itself,
if exists in pure YM, could also appear as a resonance at about
3 GeV, if the constituent glueballs are not too broad.

Furthermore, understanding the dilaton potential is impor-
tant on its own, since it is often part of QCD models that con-
tain quark-antiquark mesons [46–52] and affects – directly
and indirectly – the decay of ordinary mesons [34,53], as well
as the behavior of QCD at nonzero temperature and densities
[54–60]. The dilaton potential might also be relevant beyond
QCD [61–63].

The article is organized as follows: in Sect. 2 we recall the
main features of the dilaton potential, in Sect. 3 we present
the scattering amplitudes at tree-level, which we unitarize
in Sect. 4 introducing a suitable scheme and studying the
emergence of the glueballonium. In Sect. 5 we show that
heavy glueballs (both scalar and non-scalar) do not affect the
results presented in the previous sections. Finally, in Sect. 6
we present our conclusions.

2 From YM to the effective theory of glueballs

We briefly recall how the dilaton/glueball field G emerges
as a low-energy theory of the YM Lagrangian. The latter
depends on a single dimensionless coupling g0:

LYM = −1

4
Ga

μνG
a,μν

with Ga
μν = ∂μA

a
ν − ∂ν A

a
μ + g0 f

abc Ab
μA

c
ν , (1)

where Ga,μν is the gluon field-strength tensor, Aa
μ is the

gluon field with a = 1, . . . , N 2
c − 1, f abc are the SU (Nc)

structure constants.
Although the YM Lagrangian is classically invariant under

dilatation transformations, xμ → λ−1xμ and Aa
μ(x) →

λAa
μ(λx), this symmetry is broken by quantum fluctuations.

This is the famous trace anomaly, a basic property of non-
abelian gauge theories. Upon renormalization, the coupling
constant g0 becomes a function g(μ) of the energy scale μ.
As a consequence, the divergence of the dilatation current no
longer vanishes [32,33,64]:

∂μ J
μ
dil = Tμ

μ = β(g)

2g
Ga

μνG
a,μν �= 0 , (2)

where β(g) = ∂g/∂ ln μ and Tμν the symmetric energy-
momentum tensor of the YM Lagrangian. At one-loop
β(g) = −bg3 with b = 11Nc/(48π2), then:

g2(μ) = 1

2b ln(μ/�YM)
, (3)

where �YM is the YM scale, which realizes the so-called
dimensional transmutation. Notice that in massless QCD any
dimensionful quantity, such as the hadron masses, must be
proportional to �YM even though we are presently unable to
determine the proportionality constant analytically.

Moreover, the nonvanishing expectation value of the trace
anomaly reads:

〈
Tμ

μ

〉 = −11Nc

24

〈αs

π
Ga

μνG
a,μν

〉
= −11Nc

24
C4 , (4)

with C4 = 〈
αs
π
Ga

μνG
a,μν

〉
being the gluon condensate. For

the relevant Nc = 3 case,

(C4)Nc=3 ≈ (0.3–0.6 GeV)4 , (5)

where the numerical values are obtained in QCD sum rules
(lower range of the interval) [65,66] and lattice YM simu-
lations (higher range of the interval) [67]. Note, taking into
account that αs scales as N−1

c for fixed ‘t Hooft coupling,
and that the trace over the adjoint index scales as N 2

c in the
large-Nc limit, it follows that the quantity C ≡ C(Nc) scales
as N 1/4

c .
Because of confinement, gluons are not the asymptotic

states of the theory. As said, it is universally accepted that
the lightest excitation is a scalar glueball. It is then natural
to consider a single scalar field G that describes both the
scalar glueball and the trace anomaly at the hadron level. The
corresponding effective dilaton Lagrangian reads [28–31]:

Ldil = 1

2
(∂μG)2 − V (G), (6)

with

V (G) = 1

4

m2
G

�2
G

(
G4 ln

∣∣∣∣
G

�G

∣∣∣∣ − G4

4

)
. (7)

The dilaton potential contains two parameters: the dimen-
sionful one �G and the dimensionless ratio mG/�G . Once
mG is fixed, it depends only on �G . The minimum of the
dilaton potential is realized for G = �G . After the shift
G → �G + G, it is easy to identify mG as the glueball
mass. The numerical value of mG ≈ 1.7 GeV can be found
in Lattice QCD [5,6], as well as in diverse phenomenological
studies [34–40,42,68]. The invariance under dilatation trans-
formation is explicitly broken by the logarithmic term of the
potential. The divergence of the corresponding current reads:

∂μ J
μ
dil = T μ

imp, μ = 4V − G∂GV

= −1

4

m2
G

�2
G

G4 → −1

4
m2

G�2
G , (8)
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where Timp is the improved energy-momentum tensor [69].
Interestingly, by reversing the line of arguments, the equa-

tion in Eq. (8) can be used to justify the form of the dila-
ton potential. Namely, by imposing that a certain scalar
theory with a generic potential V (G) fulfills the equation
∂μ J

μ
dil = G∂GV − 4V ∝ G4 (thus reproducing the scale

anomaly of Eq. (2)) one gets:

∂GV − 4

G
V = αG3 , (9)

where α is a dimensionless constant. The general solution is

V (G) = αG4
[

ln
G

�G
− 1

4

]
, (10)

with �G a (dimensionful) integration constant. The factor
1/4 is introduced, so that the minimum is for G = �G .
Finally, when introducing the mass m2

G as the curvature at

the minimum, one gets α = 1
4
m2

G
�2

G
, that matches Eq. (7).

The large-Nc behavior of the parameters is obtained by
imposing that the quartic coupling α is of order N−2

c and that
the glueball mass is N 0

c [70,71]: one thus gets �G ∝ Nc.
The requirement that the dilaton field saturates the trace

of the dilatation current means to equate Eq. (4) with Eq. (8)
(valid for any Nc):

�G
!=

√
11Nc

6

C2

mG
. (11)

Upon using mG ≈ 1.7 GeV as well as, for Nc = 3, the value
CNc=3 = 0.55 GeV, one obtains (�G)Nc=3 ≈ 0.5 GeV. At
the hadron level, �G should be the only dimensionful param-
eter if quark masses are neglected, as realized in [34,50,51].
Notice that the scalings �G ∝ Nc and mG ∝ N 0

c are consis-

tent with the scaling C ∝ N 1/4
c calculated above.

In full QCD, the scalar glueball is no longer stable
since it decays into light mesons such as pions and kaons.
Moreover, mixing with scalar-isoscalar mesons takes place.
These features have accompanied the study of glueballs
in full QCD as well as their experimental determination
[10,11,43,44,72,73]. As discussed in [45], the value of �G

entering into the dilaton potential affects directly the decay
width of the scalar glueball into mesons. In particular, a value
of �G ≈ 0.4 GeV would imply that the glueball has a width
of ∼ 1 GeV, too broad to be measured [19].

In Appendix A we present a toy model that elucidates
how the constant �G enters into the decays of the glueball.
In particular, it is visible that the decay of the field G into two
pions scales as �−2

G , thus the smaller �G , the larger the decay
width. According to Ref. [34], in which a realistic version
of the toy model phenomenology of Eq. A1 is developed

and a proper treatment of mixing is worked out, a narrow
glueball is realized if �G � 1 GeV. Yet, as discussed in
Ref. [74], the effect of mixing with the lightest f0(500)/σ

can be relevant, reducing �G to about 0.5–1 GeV to have
a satisfactory phenomenology of the scalar mesons below
2 GeV .

Summarizing, the present information from phenomenol-
ogy does not give an unambiguous estimate for �G . In this
respect, an independent determination of �G , such as the one
that we shall describe in the following, can be very useful in
order to estimate the width of the scalar glueball and, along
with it, the possibility of its experimental discovery.

3 Tree-level scattering

We expand the potential of Eq. (7) in powers of G:

V (G) = − 1

16
�4

G + 1

2
m2

GG
2 + 1

3!

(

5
m2

G

�G

)

G3

+ 1

4!

(

11
m2

G

�2
G

)

G4

+ 1

5!

(

6
m2

G

�3
G

)

G5 + 1

6!

(

−6
m2

G

�4
G

)

G6 + ... (12)

Kinematics and conventions are summerized in Appendix B.
The tree-level GG → GG scattering amplitude can be easily
obtained from the G3 and G4 contributions as:

A(s, t, u) = −11
m2

G

�2
G

−
(

5
m2

G

�G

)2
1

s − m2
G

−
(

5
m2

G

�G

)2
1

t − m2
G

−
(

5
m2

G

�G

)2
1

u − m2
G

.

(13)

Due to the behaviors mG ∝ N 0
c and �G ∝ Nc, it follows

that the amplitude A(s, t, u) scales as N−2
c as expected.

Next, we turn to the three lowest non-vanishing partial
waves. Their plot are shown in Fig. 1.

3.1 S-wave

The S-wave takes the explicit form:

A0(s) = −11
m2

G

�2
G

− 25
m4

G

�2
G

1

s − m2
G

+50
m4

G

�2
G

Q0

(
1 + m2

G
2k2

)

2k2
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= −11
m2

G

�2
G

− 25
m4

G

�2
G

1

s − m2
G

+50
m4

G

�2
G

log

(
1 + s−4m2

G
m2

G

)

s − 4m2
G

, (14)

where Q
(z′) is the second-kind Legendre function. Close to
threshold, A0(s) can be approximated by:

A0(s) � 92m2
G

3�2
G

− 800

9�2
G

k2 + . . . (15)

Two general features of A0(s) are noteworthy: (i) there
is a pole for s = m2

G that corresponds to the propagation of
a single glueball in the s-channel; (i i) the amplitude is also
singular at s = 3m2

G , which is caused by the left-hand cut
generated by the projection onto the S-wave of the t- and the
u-channel single pole [75,76].

The scattering length can be calculated as:

atree
0 = 1

32πmG

92m2
G

3�2
G

= 23mG

24π�2
G

. (16)

Note that, since �G ∝ Nc, atree
0 ∝ N−2

c , in agreement with
the expectations for the glueball-glueball scattering ampli-
tude [77].

It is interesting to notice that there is a certain value sc for
which the tree-level S-wave amplitude vanishes and then the
phase-shift is a multiple of π . At this particular energy there
is no interaction between the two scattering glueballs, and
consequently the interaction is soft in this neighborhood. At
tree level the value of sc is independent of �G :

sc � 12.59m2
G . (17)

The vanishing of the scattering amplitude is valid as long
as we can neglect heavier glueballs, see next section. Nev-
ertheless, the existence of a zero in the amplitude offers an
important check of the validity of our approach: the unita-
rization procedure of Sect. 4 does not change the value of
sc and the behavior of the amplitude in its neighborhood.
Namely, when the amplitude is small, it agrees with its uni-
tarized counterpart in Eq. (24).

3.2 D-wave

For 
 = 2 we obtain

A2(s) = 50
m4

G

�2
G

Q2

(
1 + m2

G
2k2

)

2k2

= 50m4
G

(s − 4m2
G)3�2

G

[−3
(
8m4

G − 6m2
Gs + s2)

+ [
s2 − 2m4

G − 2m2
Gs

)
log

(

1 + s − 4m2
G

m2
G

)]

. (18)

Close to threshold, it reads:

A2(s) � 5(s − 4m2
G)2

3m2
G�2

G

+ · · · = 80k4

3m2
G�2

G

+ · · · , (19)

leading to a scattering length

atree
2 = 5

6πm3
G�2

G

, (20)

to compare with the generic formula in Appendix C.

3.3 G-wave

For 
 = 4 we obtain:

A4(s) = 50
m4

G

�2
G

Q4

(
1 + m2

G
2k2

)

2k2 = −25m4
G

3(s − 4m2
G)5�2

G

×
[

− 5
(
46m4

G − 2m2
Gs − 5s2) (

s − 2m2
G

) (
s − 4m2

G

)

+ 6
(
74m8

G − 124m6
Gs + 54m4

Gs
2 − 4m2

Gs
3 − s4)

× log

(
1 + s − 4m2

G

m2
G

)]

. (21)

For s close to threshold, the quantity A4(s) is approximated
by:

A4(s) � 5(s − 4m2
G)4

63m6
G�2

G

+ · · · = 5 · 44k8

63m6
G�2

G

+ · · · , (22)

leading to the scattering length:

atree
4 = 40

63πm7
G�2

G

. (23)

4 Unitarization

It is well known that fixed-order calculations do not provide a
reasonable approximation to the amplitude at finite distance
from threshold. In particular, they cannot produce (bound
state) poles, unless they are hardcoded in the lagrangian. To
this end, one must unitarize the partial wave amplitudes. Such
a procedure is non unique, and several schemes have been
proposed, in particular for chiral lagrangians [78–84]. Here
we adopt a scheme also known as “on-shell approximation”
[85,86]:

AU

 (s) =

[
A−1


 (s) − �(s)
]−1 = A
(s)

1 − A
(s)�(s)
, (24)
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Fig. 1 The tree-level amplitudes S-, D-, and G-wave for two values of �G (0.4 GeV (pink, solid) to 0.8 GeV (blue, dash), respectively). We
remember that the amplitudes are purely real at this order

Fig. 2 Upper part: tree-level scattering diagrams. Lower part: sche-
matic representation of the unitarization

where �(s) is a glueball-glueball self-energy loop function,
whose imaginary part is fixed by:

Im �(s) = θ
(
s − 4m2

G

) 1

2

1

16π

√

1 − 4m2
G

s

= θ
(
s − 4m2

G

) 1

2

k

8π
√
s

, (25)

i.e. to the relativistic 2-body phase space of two identical
particles. Clearly, when A
(s) is sufficiently small, AU


 (s) �
A
(s). The diagrammatic representation of the resummation
is presented in Fig. 2.

Since the analytic properties of �(s) are known, one can
use dispersion relations to reconstruct the real part from its
imaginary part, up to a polynomial. Here, we fix the latter by
subtracting �(s) twice, such that (i) we preserve the single-
glueball pole at s = m2

G (in other words, the tree-level mass
is preserved also at the unitarized level), and (i i) we require

that the unitarized amplitude coincides with the tree-level one
in the neighborhood of the left-hand branch point. Although
this prescription is ad-hoc, it attempts at preserving the cross-
channel poles upon resummation of the partial waves. Both
features can be obtained by requiring:

�(s = m2
G) = 0 and �(s = 3m2

G) = 0 . (26)

Then, close to m2
G and to 3m2

G it also holds that AU

 (s) �

A
(s). The needed form of the loop function is given by:

�(s) = (s − m2
G)(s − 3m2

G)

π

×
∫ ∞

4m2
G

Im �(s′)
(s′ − s − iε)(s′ − m2

G)(s′ − 3m2
G)

ds′ .

(27)

The loop function is plotted in Fig. 3: the imaginary part is
expressed in Eq. (25), while the real part is evaluated from the
previous equation; the principal value prescription is under-
stood for s > 4m2

G . For our purposes, the S-wave amplitude
is the most important one. The two subtractions preserve the
direct-channel single-glueball pole, as well as the behavior of
the amplitude in the vicinity of the logarithmic branch point
due to the single-glueball exchange in the t- and u-channels.
Note, while the convergence of the loop function �(s) is
guaranteed by a single subtraction, some unphysical features
(such as ghost poles) would emerge, see the comments at the
end of this Section.
Next, we turn to the unitarized scattering length. At threshold,
�(4m2

G) = (64π
√

3)−1 � 0.028715, which modifies the
scattering length as:

aU
0 = 1

32πmG
AU

0 (s) = 1

32πmG

1
3�2

G
92m2

G
− �(4m2

G)

. (28)

The scattering length diverges when
3�2

G
92m2

G
= �(4m2

G).

Numerically, the critical value for �G reads:
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Fig. 3 Loop function �(s) of Eq. (27), real (orange, solid) and imagi-
nary part (black, dash). The subtractions are chosen to make �(s) vanish
at s = m2

G and 3m2
G . By construction, the imaginary part is nonzero

above s > 4m2
G

�G,crit = mG

√
92

3
· 1

64π
√

3
� 0.2967mG ∼ 0.504 GeV,

(29)

where on the right hand side mG = 1.7 GeV was used. The
divergence of the scattering length points to the emergence of
a glueball-glueball bound state. One can therefore summarize
the situation as follows:

for �G > �G,crit: no bound state and aU
0 > 0 ,

for �G →�G,crit: glueballonium at threshold and aU
0 =∞ ,

for �G < �G,crit: glueballonium with mB

∈ (
√

3mG, 2mG), aU
0 < 0 . (30)

The inverse amplitude is plotted in Fig. 4 for three choices
of �G . The zero at m2

G (single particle pole) and s = 3m2
G

(branch point) is always present. For �G > �G,crit no other
zero is present: the attraction is not strong enough to gener-
ate any bound state. For �G → �G,crit � 0.504 GeV a third
zero appears at threshold, which corresponds to the gluebal-
lonium pole. For smaller �G this zero moves to lower value
of s. The mass of the glueballonium mB can thus be found
as function of �G as a solution of the equation:

A−1
0 (s,mG,�G) − �(s,mG) = 0 for s ∈ (3m2

G , 4m2
G) ,

(31)

which is also plotted in Fig. 5. As expected, �G descreases
with the bound state mass. We recall that lattice QCD esti-
mates �G = 0.4 GeV, which implies mB = 3.37 GeV.
Moreover, in the limit �G → 0 (that is, when the cou-
pling constant tends to infinity) the mass of the glueballonium
tends to

√
3mG . Yet, this is a feature of the adopted unita-

rization scheme that does not hold in general, see Appendix
E. For the practical case of the glueballonium, we regard

Fig. 4 The inverse amplitude |AU
0 |−1 as function of s for �G =

0.4 GeV (pink, solid), �G = �G,crit ≈ 0.504 GeV (green, dot), and
�G = 0.8 GeV (blue, dash), text for details

Fig. 5 The mass of the glueballonium as function of the parameter �G

�G � 0.3 GeV as a lower limit for this parameter, thus the
corresponding mass of the glueballonium is still quite close
to threshold where the influence of the unitarization scheme
is expected to be less prominent.

According to the results obtained within our unitarization
scheme, the glueballonium is an additional scalar state that
could be identified with the excited glueball at ∼ 3 GeV
found in [5]. Eventually it could be found in experiments as
yet another additional meson that does not fit in the quark-
antiquark picture, if it and the constituent glueballs are not
too broad. At present the decay width of the lightest glueball
is unknown. Hopefully, this work may provide an estimate
for it, since it depends on �G . Similarly, also the width of
the glueballonium could be determined by studying its two-
and four-body decays.
In Fig. 6 the unitarized phase shifts are shown for different
values of �G . Higher waves have small phase motion: at
threshold they increase as k2
+1, reach a maximum of few
degrees, and slowly approach zero for large s.

The behavior of the S-wave is more interesting: for �G

above the critical value, the phase shift reaches a maxi-
mum, then decreases and vanishes at s = sc defined in
Eq. (17). After this value, the phase shift becomes nega-
tive and approaches −180◦ for large values of s. For �G ≤

123
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Fig. 6 The phase shift of the unitarized amplitude for S- (left), D- (center), and G-wave (right) for the values �G = 0.4 GeV (pink, solid),
0.5041 GeV (green, dot), and 0.8 GeV (blue, dash). The functions are plotted for values of s only slightly higher than the elastic window

Fig. 7 Comparison of unitarized (solid) and tree-level (dash) phase shifts as function of s for �G = 0.4 GeV. In the three panels we show the S-,
D-, and G-waves

�G,crit the behavior of the phase shift is utterly different: it
starts negative already at threshold and, as a consequence of
the existence of the glueballonium, it reaches −180◦ at sc
and further decreases to −360◦ asymptotically. The ampli-
tudes are plotted up to values of s only slightly higher than
the elastic window (3mG)2 � 26 GeV2. To appreciate the
asymptotic behavior, we refer to Appendix D for plots of
larger values of s.

As anticipated, the asymptotic behavior of δU
0 (s) is

explained by Levinson’s theorem [76,87,88]: according to
which the number n of poles below threshold (including
bound states) is related to the phase difference δU0 (sth) −
δU0 (∞) = nπ . Since in our convention δU0 (sth) = 0,

δU0 (∞) = −π for �G > �c → n = 1

→ one pole for s = m2
G ; (32a)

δU0 (∞) = −2π for �G ≤ �c → n = 2

→ one pole for s = m2
G and one fors = m2

B .

(32b)

For completeness, we compare in Fig. 7 the phase shifts of
the tree-level and unitarized models. As expected, higher
waves are slightly affected by unitarization, especially close
to threshold. In particular, scattering lengths are unchanged.
Conversely, the S-wave is highly affected by unitarization,
since a new bound state is created.

Finally, we conclude with some important remarks on the
approximations implemented:

1. The choice of the twice-subtracted loop of Eq. (27) fixes
the single-particle pole and the branch point to the ones
of the tree-level amplitude. By using, instead, the once-
subtracted loop that preserves the single-particle pole
only would generate, in addition to a glueballonium, a
ghost with negative norm [89–91]. For this reason, a
single-subtraction cannot be used for the study of the
emergence of a bound state when the potential involves
both cubic and quartic interactions. Yet, as recently
shown in Ref. [92] in the case of the quartic interaction
only, the use of the loop with a single subtraction gener-
ates a qualitative similar pattern for the bound state.

2. A unitarization procedure based on Lippmann-Schwinger
equations would prescribe the potential to depend on the
(off-shell) loop momentum. If the potential is approxi-
mated to be on-shell, it can be factored out of the inte-
gral, and one obtains the simple form of the scalar loop
function. In this way, the unitarized amplitude is simply
given by an algebraic equation and one does not need
to solve the full integral equation. Such simple unita-
rization schemes are quite common in the literature. The
price to pay is a bad description of the left hand cut, and
the possible emergence of unphysical singularities, as the
ghost pole mentioned earlier. However, the effect of these
drawbacks is generally milder close to threshold.

3. In general, the results depend not only on the chosen
subtraction, but also on the unitarization scheme, see e.g.
Refs. [75,80–83,93,94]. Yet, it is expected that the over-
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all phenomenology would be quite similar as long as the
interaction is not too strong (i.e., the glueballonium is
close enough to the threshold). A direct test using another
unitarization scheme – the so-called N/D approach – is
reported in Appendix E. The results for the glueballo-
nium turns out to be quite similar, as long as �G is larger
than 0.3 GeV. In this case, the bound state mass is not far
from threshold and the on-shell and N/D schemes are
quite close to each other. In the future, one should use
other unitarization schemes as well as the higher order
calculations in order to check further the stability of the
results.

4. The imaginary part of the loop in Eq. (25) is taken to be
valid up to indefinitely large values of s. This is not true, as
multiparticle states will also contribute to the imaginary
part. Phenomenologically, this is often realized by intro-
ducing a smooth cutoff function, that can be interpreted
as the overlap of the glueball wave functions. Models
for the latter have been discussed in Refs. [95–98]. Yet,
the form of this cutoff function is not known and would
introduce a model dependence of the results. It should be
reconsidered when lattice data will be available.

5 The (negligible) influence of other glueballs on GG
scattering

So far, we discussed GG scattering within the dilaton poten-
tial, which contains a single scalar field G. It is then natural to
ask if other heavier glueballs can affect the previous results,
especially near the threshold sth = 4m2

G and in connection
to the formation of a bound state. In particular, a hypothet-
ical glueball of mass ∼ 3.5 GeV which can be exchanged
in the s-channel of GG scattering would eventually domi-
nate the near-threshold region, thus modifying our previous
predictions. Indeed, as shown in Ref. [6] there are various
glueballs in that energy region. In the following section, we
shall show that under quite general assumptions relying on
dilatation invariance, no heavy glueball is exchanged in the
S-channel, thus not affecting the results discussed above.

5.1 Heavy scalar glueball(s)

We consider a heavy scalar glueball H , coupled to the ground
state glueball. Since the original dilaton potential is Z2 sym-
metric for the field G, we assume that this is the case also for
the field H . The enlarged Lagrangian takes the form:

L = Ldil + 1

2
(∂μH)2 − α

2
G2H2 − βH4

≡ 1

2
(∂μG)2 + 1

2
(∂μH)2 − V (G, H) (33)

where we have assumed that –besides Ldil– the other terms
are dilatation invariant. Namely, the parameters α and β

are dimensionless and the corresponding terms are dilata-
tion invariant. A mass term proportional to H2 or three-leg
interaction terms proportional to H2G or GH2 are excluded,
since they corresponding coupling constants are dimension-
ful and thus break dilatation invariance. This contradicts our
assumption that only the logarithmic term for the dilaton field
G is responsible for the trace anomaly. The minimum of the
potential is realized for

⎧
⎪⎨

⎪⎩

∂GV (G, H) = m2
G

�2
G

G3 ln
G

�G
+ αGH2 = 0 ,

∂HV (G, H) = αG2H + 4βH3 = 0 ,

(34)

hence G0 = �G as before, and H0 = 0. The mass of the H
field reads M2

H = αG2
0 = α�2

G . No term G2H is generated,
implying that there is no s-channel H production.

Some additional comments are in order:

1. The same line of argument can be carried out for N heavy
scalar glueballs H1, . . . , HN . Only the field G condenses
and no HkG2 term appears (see also Ref. [99] for a mul-
tiple glueball model).

2. Here, we have assumed that there is a single dilaton field.
We leave for the future the study of the case in which there
are two (or more) dilaton fields. Note, however, that such
a scenario, even if cannot be excluded a priori, seems
quite exotic, since it would imply the emergence of two
(or more) distinct energy scales �G,�H , . . . in the low-
energy QCD domain.

3. The fact that the H field does not affect GG scattering is
true at tree level only. The interaction term proportional to
G2H2 affects the scattering via the an intermediate HH
loop. Yet, since the the mass of an excited scalar glueball
is at least 3 GeV [5], the loop starts to be relevant at
(2mH )2 ∼ 36 GeV2, surely negligible close to threshold.

4. Relaxing the Z2 symmetry yields a more complicated
potential, where multiple scales are generated. A dedi-
cated study of this system is also left for the future.

5.2 Non-scalar glueballs

Here we investigate if glueballs with different quantum num-
bers can also affect the results. This question can be answered
by a systematic study of the allowed cubic vertices of the
type G2X , where X refers to an heavy gluonium. Glueballs
with spin J ≥ 2 are forbidden by dilatation invariance, so
we restrict our analysis to all possible spin 0 and 1. The list
is summarized in Table 1, and show that it is impossible to
accommodate most of the spin parities.
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Table 1 Symmetries for XG2 terms involving a heavy nonscalar glue-
ball X and two scalar glueballs G

P C

0−+ ✗ ✓

0+− ✗ ✗

0−− ✓ ✗

1++ ✗ ✓

1−+ ✓ ✓

1+− ✗ ✗

1−− � ✗

For example, let us consider the pseudoscalar glueball (G̃,
J PC = 0−+), see e.g. Refs. [100–103]. The corresponding
dilatation and parity invariant potential reads

V (G, G̃) = ξG2G̃2 + ρG̃4. (35)

Since G̃ cannot condense because of parity conservation, no
G2G̃ or G3G̃ – which reduces to the former upon condensa-
tion of G – is generated. Similarly, no additonal G2 term is
produced, hence the mass of the scalar glueball is unchanged.
Similarly, one can discuss the other cases, that break parity or
charge conjugation. The only nontrivial case is given by the
oddball Xμ with J PC = 1−+, for which the two symmetries
are satisfied. However, two scalar glueball cannot couple to a
spin one state because of Bose symmetry: the vector current
for a neutral scalar

G∂μG − (∂μG)G = 0 (36)

vanishes identically indeed. We conclude that nonscalar glue-
balls can be safely neglected when evaluating GG scattering
close to threshold.

6 Conclusions

We have investigated the scattering of two scalar glueballs
in the context of the dilaton potential. Using a unitarization
prescription, we calculated the scattering amplitudes for the
three lowest nonvanishing waves. These can be computed
rigorously in pure gauge Lattice simulations, allowing for a
numerical verification of the validity of the dilaton poten-
tial and for an independent determination of its two param-
eters, the glueball mass and – most notably – the scale �G

that parametrizes the breaking of the trace anomaly at the
composite mesonic level. The latter is relevant not only for
the Yang-Mills sector, but for numerous low-energy effective
models of QCD.

Another outcome is the emergence of a bound state of
two scalar glueballs, that we call glueballonium. We have

found that the formation of the glueballonium is possible if
the attraction is strong enough, i.e. if the ratio �G/mG is
smaller than a certain critical value. For mG � 1.7 GeV, this
is �G,crit � 0.504 GeV. For �G � 0.4 GeV (obtained by
matching with the lattice measurement of the gluon conden-
sate), a glueballonium with a mass of about 3.4 GeV forms.

If the glueballonium investigated here was confirmed on
the lattice, it would also represent an interesting challenge
for experimental searches, if not too broad. A necessary con-
dition for it to be found experimentally is that the lightest
glueball itself should not be too broad. The most relevant
decay channel of the glueballonium is most likely the one
into four pseudoscalars, that take place when each constituent
glueball undergoes a two-body decay. Moreover, the sim-
pler decay into two pseudoscalars, that emerges when the
two constituent glueballs scatter into two pseudoscalars (for
instance via one-pion exchange), are also expected to be non-
negligible. The evaluation of these decays in an important
task for the future, if the existence of this object shall be con-
firmed by other models and lattice YM. Moreover, the mass
of the glueballonium would be in the energy range covered by
the planned Panda experiment [104,105]. Glueballs can be
also investigated (directly or indirectly via decays of quarko-
nia) in a variety of ongoing experiments [106–111].

As an additional important outlook, we mention the use
of different unitarization schemes, as well as studying the
next-to-leading order of the dilaton potential.
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Appendix A: Decays of the scalar glueball

We consider a toy model where, besides the dilaton/glueball
field, a scalar meson field σ and a triplet pion π are taken
into account. The chiral and dilation invariant potential reads

V (G, σ,π) = V (G)+aG2(σ 2 +π2)+ λ

4
(σ 2 +π2)2. (A1)

Chiral transformations are O(4) rotations in the (σ,π) space.
Note that the parameters a and λ are dimensionless, thus
the only dimensionful parameter of the model is �G in the
dilaton potential. Spontaneous symmetry breaking is realized
for a < 0, when both fields G and σ condense. In principle,
one should search for the minimum in the σ -G space, yet for
illustrative purposes we neglect the G-σ mixing and set the
v.e.v. of G as G0 = �G .

Then, for a < 0 the field σ develops a v.e.v. for

σ 2
0 = −2

a

λ
�2

G � f 2
π , (A2)

where fπ is the pion decay constant. Moreover, the mass of
the scalar σ particle is

m2
σ = 2λσ 2

0 . (A3)

The coupling of G to pions is given by the term proportional
to Gπ2 that reads

−2a�GGπ2 = m2
σ

2�G
Gπ2 , (A4)

hence the decayG → ππ takes the form (inserting a nonzero
pion mass):

�G→ππ = 6

√
m2

G
4 − m2

π

8πm2
G

(
m2

σ

2�G

)2

. (A5)

For mG � 1.7 GeV, mσ � 1.3 GeV (roughly corresponding
to the f0(1370)), and �G � 0.4 GeV, one gets �G→ππ �
0.310 GeV. If one extends to SU (3), get

�G→KK = 8

√
m2

G
4 − m2

K

8πm2
G

(
m2

σ

2�G

)2

,

�G→ηη = 2

√
m2

G
4 − m2

η

8πm2
G

(
m2

σ

2�G

)2

. (A6)

Numerically, �G→KK � 0.340 GeV and �G→ηη � 0.080
GeV. The sum of the 3 pseudoscalar channels amounts
0.729 GeV. Furthermore, one needs to consider at least
G → ρρ → 4π , which is expected to be sizable, but cannot

be determined within this simple approach. Such a glueball
would have a total decay of about 1 GeV and would not be
observable. We recall also that �G � 0.4 GeV is on the right
side of the interval: the smaller �G , the larger the decay
widths. Conversely, widths get smaller if mσ is taken to be
smaller.

Finally, we check the dependence of the parameters with
the number of colors Nc. Besides the scaling �G ∝ Nc and
mG ∝ N 0

c already encountered in Sect. 2, we have λ ∝ N−1
c

(the ππ scattering amplitude scales as N−1
c as expected for

meson scattering), while a ∝ N−2
c , since it describes GG →

ππ scattering [70,71]. It then follows that σ0 scales as N 1/2
c

[112] and mσ is Nc-independent, as expected for the masses
of mesons and glueballs. The decay width σ → ππ scales as
N−1
c , since the amplitude is proportional to λσ0 ∝ N−1/2

c .

Finally, each decay of the glueball into two pseudoscalar
mesons behaves as N−2

c , a result which is also in agreement
with the literature [70,71].

Appendix B: Kinematics and conventions

We consider the elastic scattering of two identical scalar
glueballs G(p1)G(p2) → G(p3)G(p4). The conventional
Mandelstam variables and the relation to the scattering angle
θ are given by:

s = (p1 + p2)
2 , (B1)

t = (p1 − p3)
2 = −2k2(1 − cos θ) ≤ 0 , (B2)

u = (p2 − p3)
2 = −2k2(1 + cos θ) ≤ 0 , (B3)

where k = 1
2

√
s − 4m2

G is the 3-momentum of any particle
in the center of mass. It is immediate to verify that s+t+u =
4m2

G .
The amplitude A(s, t, u) can be re-expressed as A(s, cos θ),

and partial waves can be defined by:

A(s, t, u) = A(s, cos θ) =
∞∑


=0

(2
 + 1)A
(s)P
(cos θ) ,

(B4)

A
(s) = 1

2

∫ 1

−1
d cos θ A(s, cos θ)P
(cos θ) . (B5)

where P
(cos θ) are the Legendre polynomials. Bose sym-
metry imposes A(s, cos θ) to be symmetric in cos θ , so that
odd waves vanish. The reduced (kinematical singularity and
zero free) amplitudes are given by:

Â
(s) = 1

k2l A
(s) . (B6)
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The amplitudes at threshold are often described in term of
scattering lengths, which we normalize to:

a
 = Â
(4m2
G)

32π mG
. (B7)

Partial waves can also be parametrized in terms of scat-
tering shift and inelasticity,

η
(s)e2iδ
(s) − 1

2i
= 1

2
· k2
+1

8π
√
s
Â
(s) ≡ ρ
(s) Â
(s), (B8)

hence

δ
(s) = 1

2
arg

[
1 + 2iρ
(s) Â
(s)

]
, (B9)

η
(s) =
∣∣∣1 + 2iρ
(s) Â
(s)

∣∣∣ . (B10)

If the amplitude is unitarity, then η
(s) = 1 and

Im Â
(s) = ρ
(s)
∣∣∣ Â
(s)

∣∣∣
2

. (B11)

We finally recall that the differential and the total cross sec-
tions are:

dσ

d�
= |A(s, cos θ)|2

64π2s
, (B12)

σ = 1

64πs

∫ 1

−1
d cos θ |A(s, cos θ)|2

= 1

32πs

∞∑


=0

(2
 + 1)k4

∣∣∣ Â
(s)

∣∣∣
2
. (B13)

Appendix C: Generic tree-level scattering length

For 
 ≥ 2, the partial waves reads

A
(s) = 50m4
G

�2
G

Q


(
1 + m2

G
2k2

)

2k2 . (C1)

For k → 0, the argument of the Legendre function diverges.
One can use the definition:

Q
(x)

2k2 = 1

4k2

∫ 1

−1

P
(z)

x − z
dz

= 1

4k2x

∫ 1

−1
P
(z)

∞∑

n=0

( z

x

)n
dz . (C2)

The term zn can be thought of a superposition of Legendre
polynomials of degree ≤ n. Thus the terms with n < l will

vanish because of orthogonality:

= 1

4k2x

∫ 1

−1
P
(z)

∞∑

n=


( z

x

)n
dz

k→0−−→
(

2k2

m2
G

)

1

2m2
G

∫ 1

−1
P
(z)z


dz . (C3)

Still because of orthogonality, we can add lower order poly-
nomial to z
 without changing the integral, to make it propor-
tional to P
(z), the proportionality given by the coefficient
of the leading power of z in the Legendre polynomial:

=
(

2k2

m2
G

)

2
(
!)2

2m2
G(2
)!

∫ 1

−1
P
(z)P
(z)dz

= (
!)2

(2
 + 1)(2
)!m2
G

(
4k2

m2
G

)


. (C4)

The scattering lengths read:

a
 = 25(
!)24
−2

π (2
 + 1)(2
)!
1

�2
Gm

2
−1
G

. (C5)

Appendix D: Asymptotic behaviour of the phase shifts

In Fig. 8 the S-wave and the D-wave unitarized phase-shifts
are shown for different values of �G and up to large values of
s. Even though the range plotted is above the inelastic thresh-
old and should not be regarded as physical, these plots show
that the expectations from Levinson’s theorem are fulfilled,
In particular, when the glueballonium is present, the phase
shifts tends to −360◦, otherwise it saturates at −180◦.

Appendix E: Alternative unitarization

In this Appendix we investigate another possible unitariza-
tion method, in order to estimate the dependence of our
results on the adopted scheme. To this end, we consider the
well-known N/D unitarization [75,94] in its simplest form
(e.g. [113,114]). At lowest order, the left-hand cut is given
by the tree-level amplitude, and the analytic properties are
preserved. The S-wave amplitude reads:

AN/D
0 (s) = A0(s)

D(s)
, (E1)

where

D(s) = 1 − (s − m2
G)

π

∫ ∞

4m2
G

1
2

√
s′
4 −m2

G

8π
√
s′ A0(s′)

(s′ − s − iε)(s′ − m2
G)

ds′ .

(E2)
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Fig. 8 Asymptotic behaviour
of the unitarized phase shifts as
function of s for �G = 0.4 GeV
(pink, solid) and �G = 0.8 GeV
(blue, dashed). In the two panels
we show the S- and the
D-waves

Fig. 9 Left panel: Comparison
of the denominators of the
unitarized amplitudes: D(s)
(gray, dashed) of Eq. (E2) for
the N/D case and Don-shell(s)
(orange, continuous) of Eq. (E3)
for the on-shell scheme. Right
panel: The mass of the
glueballonium as function of the
parameter �G with the on-shell
(orange, continuous) and N/D
(gray, dashed) unitarizations

We require that the unitarized amplitude coincides with
the tree-level one in the vicinity of the single-particle pole
s = m2

G . In other words, we assume that the tree-level ampli-
tude contains the correct position as well as the residue of
the one-particle pole. Admittedly, at this stage this is an addi-
tional convenient assumption driven by the fact that, besides
the single particle pole, there are no other constraints from
lattice data that could be imposed. Moreover, one subtraction
is sufficient, since no ghost appears. The extension to higher
waves is straightforward, but we focus on the S-wave below
threshold in order to study the emergence of the glueballo-
nium. Note, following Ref. [113], the single-particle pole is
left in the numerator.

The bound-state equation is given by D(s) = 0 for
s < 4m2

G . Although this equation allows in principle to study
bound states even below the left-hand branch point s < 3m2

G ,
results are trustworthy only above it. The corresponding crit-
ical value of �G is �G,cri t = 0.500 GeV, which is very
similar to the value �G,crit = 0.504 GeV obtained by the uni-
tarization of Sect. 4. For the illustrative value �G = 0.4 GeV
the glueballonium mass reads 3.372 GeV, in good agreement
with the value reported in the main text. For comparison, we
plot in Fig. 9 (left panel) the denominator D(s) of Eq. (E2) as
well as the analogous quantity of the on-shell unitarization
of Eq. (24):

Don-shell = 1 − A0(s)�(s) . (E3)

The functions display a similar qualitative behavior and are
also numerically very close in the vicinity of the threshold.

In Fig. 9 (right panel) we show the behavior of the mass of
the glueballonium for the two unitarization schemes. They
are indeed very similar for �G � 0.3 GeV and they depart
from each other for lower values. Yet, since the phenomeno-
logical expected range for the parameter �G is larger than
0.3 GeV, we can be cautiously confident that our results are
not strongly affected by the details of the employed unita-
rization. As stated above, for small �G (strong attraction)
the unitarization approaches deliver different results. In par-
ticular, while in the on-shell unitarization of Sect. 4 the mass
of the bound state cannot be smaller then

√
3mG (reached

formally for �G → 0), in the N/D scheme the limit is mG .

Of course, this difference has no physical relevance, as these
approximated methods are not realistic when the attraction
is too large.

In conclusion, even though also the present N/D approach
is subject to certain ad-hoc assumptions, the fact that similar
results for the emergence of a bound state are obtained by
this method and by the twice-subtracted on-shell approach
discussed in the main text, can be regarded as a hint about
the consistency of our results.
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