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1. Technical appendix 

For the employed method dual response (e.g., Brazell et al. 2006; Schlereth et al. 2018; Wlömert 

and Eggers 2016), we subsequently detail the covariate-extended hierarchical Bayes logit 

estimator. For a single choice set a, we calculate the choice and purchase probability Prh,i,a of 

respondent h for alternative i from choice set a as: 
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          (hH, iIa, aA).              (A1) 

The first term is the probability of choosing alternative i among the set of alternatives. The second 

term predicts respondent h’s probability of purchasing it, as observed in the second question. This 

model assumes independence between the two decisions – an unlikely assumption. However, 

Diener et al. (2006) compared this model to sequential models, such as the nested logit, and found 

that even the simple model recovers parameter values about equally well.  

Given the observed decisions dh,i,a of respondent h for alternative i in each choice set a and the 

corresponding purchase decisions dh,i’ to the previously chosen alternative i', the likelihood 

function equation (A2) for all choices of respondent h is: 
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 (hH).              (A2) 

The respondent-specific utility uh,i is: 

 
, , , , ,h i h i h i h i h h iu v X        (hH; iIa).                                                   (A3) 

With equation (A4), we allow for heterogeneity of individual parameters through the covariate 
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matrix 𝜃 according to a multivariate regression model: 

𝛽ℎ = 𝜃 ∙  𝑧′
ℎ + 𝜍ℎ   (hH).                                                                      (A4) 

The matrix 𝜃 is a |P| (i.e., number of parameters) by |Q| matrix and contains a set of individual 

covariates zh in each row. In the case of just one study, zh is equal to 1 for all respondents, and 𝜃 

contains the parameters on the population layer. The error terms εh,i and 𝜍ℎ  are assumed to be 

mutually independent and from multivariate normal distributions with zero means and covariance 

matrices Ωh and Σ. Consequently, the vector βh follows a multivariate normal distribution 𝑁(𝜃 ∙

𝑧ℎ
′ , Σ). The prior distribution on 𝜃 is standard diffuse and has a mean close to 0 and a sufficiently 

large variance Ө (i.e., N(  |0, 5)). The standard diffuse prior on Ω is inverted Wishart. 

The estimator is an extended version of the basic multinomial logit sampler described in Train 

(2009, p. 302). As a starting point for our implementation, we used the Matlab code provided on 

Kenneth Train’s website. The core of the covariate-adjustment is explained in Lenk et al.’s (1996) 

Appendix: In particular, the sampling procedure in step 2 and 3, which we transferred to our own 

implementation.3 The resulting Markov chain Monte Carlo (MCMC) iteratively generates random 

deviates from the posterior distribution of one set of parameters given the current value of all other 

parameters and the data. The required conditional distributions are given in the following steps.  

1. Using a Metropolis-Hastings step, we independently generate draws of βh for all 

respondents (expressed as {βh}
H). The conditional posterior of {βh}

H, given 𝜃 ∙ 𝑧ℎ
′ , and   

is 
H({ } | ) ( | ) ( | , )h h h h

h
L g         , where ( | )h hL   is the respondent-specific 

                                                

3 We thank Peter Lenk for providing an implementation of the hierarchical Bayes multinomial 

logistic regression model in Gauss, which served as a reference for the implementation. 
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likelihood function from Equation (A2). To account for the fact that some attributes were 

presented in certain studies, but not in all over time, we set their corresponding parameter 

values to zero instead of assuming a normal distribution. 

2. The Gibbs Sampler for the matrix θ follows the implementation of the covariate extension 

that is described in step 2 of the model in Appendix A in Lenk et al. (1996). The conditional 

posterior is ( | ) ( | , ) ( | 0, )h

h H

p N N V   


    . Also, on the upper layer, we accounted for 

whether an attribute was included in some, but not in all studies: If the attribute was missing 

in the reference study, we set all related parameter values to zero. For all other studies, we 

set them to the negative values in the reference study, such that the sum equals zero. 

3.  The Gibbs Sampler for the inverted Wishart follows the implementation of Lenk et al. 

(1996), in particular, step 3 of the model in Appendix A. The conditional posterior is 

0 0( | ) ( | , ) ( | , )h

h H

p N IW v s 


      . 
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2. Review of studies on electric vehicles 

Study Data Attributes of Interest 
Relationship of Price 

and Range per Charge 
Conclusions 

Axsen et al. 
(2013) 

21 employees in 
the U.K. 

Purchase price, range per charge, recharge 
time, acceleration 

Price: linear 
Range: linear 

Preferences for electric vehicles can be unstable and therefore changed 
through learning and exposure. Social interactions can also have an 
impact. 

Glerum et al. 
(2013) 

593 respondents 
in Switzerland 

Purchase price, electricity cost, fuel type, 
brand, model, incentive, maintenance cost, 

leasing price, battery lease 

Price: non-linear 
Range: not considered 

Large incentives on the purchase price can increase electric vehicle 
adoption, while too-high operating costs will decrease it. Willingness to 

pay rises with decreases in the battery’s monthly leasing cost. 

Ito et al. 
(2013) 

1,531 

respondents in 
Japan 

Purchase price, electricity cost, range per 

charge, recharge time, fuel availability, fuel 
type, emissions, body type, brand 

Price: linear 
Range: quadratic 

Development of an infrastructure for battery exchange stations can be 
efficient. 

Hoen and 
Koetse (2014) 

1,903 Dutch 
private car 
owners 

Purchase price, range per charge, recharge 
time, fuel availability,  
fuel type, monthly cost, number of brands, 
policy measure 

Price: linear 
Range: linear 

Driving range, refueling time, and refueling opportunities lead to lower 
preferences for electric vehicles compared to fuel cars. 

Jensen et al. 
(2014) 

196 respondents 
in Denmark 

Purchase price, electricity cost, range per 
charge, emissions, charging at home, 
charging in public spaces,  
charging at work 

Price: non-linear 
Range: non-linear 

Preferences may change, especially if people initially do not have actual 

experience. The more informed they are, the more positive their attitude 
toward electric vehicles. 

Axsen et al. 
(2015)  

1,754 
respondents in 
Canada 

Purchase price, electricity cost, range per 
charge, recharge time, charging at home 

Price: linear 
Range: linear 

Plug-in hybrid electric vehicles are more popular than pure electric 
vehicles. Interest in plug-in electric vehicles is higher if people have 
equipment for fast charging at home. 

Hackbarth and 
Madlener 
(2016) 

711 potential 
buyers in 
Germany 

Purchase price, fuel cost, emissions, fuel 
availability, refueling time, battery 
recharging time, policy incentives 

Price: linear 
Range: logarithmic 

There is a big preference heterogeneity across potential buyers. Purchase 
price and electricity cost are relatively unimportant for respondents who 
prefer electric vehicles. 

Our study 
In total 1,556 
respondents in 
Germany  

Purchase price, electricity cost, driving 
range, recharge time, motor power,  
3-4 complementary mobility services 

Price: linear 
Range: linear 

Electric vehicle market is fluctuating with a peak in 2017; preferences 
stay rather stable.  

Table A1: Studies with a focus on electric vehicles 
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3. Choice set example 

 

Figure A1: Choice set example 
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4. Differences in model performance 

 Covariate-Extended Model Separate Estimation Generic Model 

Number of Parameters on Upper Layer 145 475 90 

Model Assumption 

Explicitly captures the different set of 
preferences for each sample of 

respondents, but they are linked 

through a common covariance matrix  

Each set of respondents have an 
unlinked vector of preference 

parameters and a separate covariance 

matrix  

Homogeneity in preferences 

over sets of respondents 

Test for significance in changes between 

samples of respondents 

Directly available through the signs of 

θ draws 
Not directly available Not directly available 

Internal Validity 
Log-marginal density 

(12 choice sets) 
-16410  

 

-16297 -16676 

Predictive Validity 
Log-marginal density 

(2 Holdouts) 

-4765 -5953 -4940 

Mean absolute error 

(between observed and predicted choice 

shares of 100 respondents, which we left 

out from the estimation) 

6.73% 6.87% 6.77% 

Table A2: Differences in model performance 
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5. Assessment of the parameter changes in the experimental conditions 

    2019_1_same 

(reference) 

2019_2_add 2019_3_add_remove 2019_4_retakers 

Attributes Attribute 

level 

Parameter 

Values 

Parameter 

Values 

Change Parameter 

Values 

Change Parameter 

Values 

Change 

Constant   -1.52 -1.16  -1.18  -1.27  

Range per charge Per 100 km 0.60 0.65  0.66  0.69  

Purchase price per 10,000€ -1.12 -1.21  -1.15  -1.16  

Charging time 1h 0.24 0.28  0.26  0.28  

4h -0.24 -0.28  -0.26  -0.28  

Electricity cost 

per 100 km 

1 € 0.96 0.95  1.04  0.89  

3 € 0.54 0.41 --- 0.41 --- 0.46  

5 € -0.44 -0.33  -0.41  -0.36  

7 € -1.07 -1.03  -1.03  -0.99  

Motor power 40 kW -0.42 -0.27 ++ -0.37  -0.40  

80 kW 0.42 0.27 -- 0.37  0.40  

IT-based parking 

space and 

payment 

Supported 0.42 0.28 --- 0.41  0.45  

Not 

supported -0.42 -0.28 +++ -0.41  -0.45  

Intelligent 

charging station 

Supported 0.52 0.35 --- 0.45  0.64  

Not 

supported -0.52 -0.35 +++ -0.45  -0.64  

Augmented 

reality services 

via head-up 

displays 

Supported 0.22 0.17 -   --- 0.13 --- 

Not 

supported 
-0.22 -0.17 +   +++ -0.13 +++ 

Remote 

diagnostics and 

update supply 

Supported   0.18 +++ 0.30 +++    

Not 

supported   -0.18 --- -0.30 ---    

Note: posterior assessment of change in parameters in comparison to 2019 study: +: >90%; ++: >95%; +++:>99%; -:<10%; --: <5%; ---: <1%  positive Δ draws 

Table A3: Assessment of the parameter changes in the experimental conditions 
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6. Robustness tests 

We tested the robustness of our results in manifold ways. We tested whether the differences in income 

between the respondents in 2017 and the new ones in 2019 might explain the downturn in the general 

purchase intention. As income was measured on an eight-point Likert scale, where the last point read 

“no comment”, we employed a propensity score weighting approach that weighted each point 

according to the inverse probability of belonging either to the 2017 or 2019 sample (known as inverse 

probability of treatment weighting). The weighted general purchase intentions were 56.17% for 2017 

(unweighted: 58.95%) and 44.57% for 2019 (unweighted: between 39.40% and 42.16%). We 

conclude that the decline in the general purchase intention is robust when controlling for the 

differences in income. The similarly strong decline of the 2019 retakers compared to their response in 

2017 further supports this result. 

Another robustness test was the inclusion of income as an additional covariate. We standardized 

income and used the average in cases where the response was “no comment”. The log-marginal 

density improved further by 25 from -16410 to -16385. This improvement was substantially less than 

when including covariates for the sample-based longitudinal studies (improvement by 266). Given 

that importance weights and purchase probabilities were qualitatively about the same, we decided to 

use the parsimonious model that focuses on sample-based longitudinal studies. 

We also tested the linearity assumption for range per charge and purchase price. We used a partworth 

model for both attributes and treated the changes in their values as new attributes. On the population 

level, the parameter estimates were ordinal and in the expected direction for both attributes: a higher 

purchase price always decreased the deterministic utility, whereas a higher range per charge increased 

it. On the individual level, the standard deviation of the individual mean posterior across respondents 
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were substantially smaller than with a linear model. Adding the partworth model required the 

estimation of four additional parameters for each respondent, which is a lot, given that only 12 choice 

sets are available. We thus opted to use the parsimonious model here as well. 

Finally, we address case #2 in Table 2 (in our article), i.e., whether explicitly allowing the scale 

parameter to differ between samples improves predictions. The scale serves as a multiplier of the 

deterministic utility and is inversely related to error variance, which offers a measure of respondents’ 

decision-making consistency across different data sources. For example, Ellickson et al. (2019) found 

that accounting for different scales substantially improves predictions when combining stated with 

revealed preferences. We implemented a scale-extended hierarchical Bayes sampler together with our 

covariate-extension (c.f., Schlereth and Skiera 2017) and let one version the scale differ across years (i.e., 

three scale parameters for 2013, 2017, and 2019); in another version, we let the scale differ across samples 

(i.e., with six scale parameters). Because the preferences and scale parameters are not simultaneously 

identifiable (Fiebig et al. 2010; Swait and Andrews 2003), we normalized the scale of the reference 

study to 1. Neither of the two versions improved log-marginal density, and all scale values were close to 

1 (e.g., 1 for 2017, 0.93 for 2013, and 0.90 for 2019). One major difference between Ellickson et al. 

(2019) and our study is that they joined two completely different types of data sources (namely, 

revealed and stated preferences), whereas we looked at multiple sets of stated preference data, such 

that differences in scale are very likely not that pronounced. 
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