1	Evidence for oxygen-conserving diamond formation in redox-buffered
2	subducted oceanic crust (eclogite)
3 4 5 6	Sonja Aulbach ^{1,*} , Thomas Stachel ² ¹ Institut für Geowissenschaften, Goethe-Universität, Frankfurt am Main, Germany ² Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
7	
8 9 10	*Corresponding author. <i>E-mail address</i> : s.aulbach@em.uni-frankfurt.de
11	Supplementary Information
12	
13	
14	Supplementary Table 1 Parental melt composition modelling based on Wang et al. (2019) ³³

$\Delta \log fO_2$	FMQ-2	FMQ-1	FMQ	FMQ+1		
~Warm Archaean MORB: F = 0.	2 and $T_P = 14$	50 °C (1549 °C at	F = 0.2)			
Peridotite-melt Bulk D(V)	0.23	0.14	0.09	0.05		
V in aggregated melt (ppm)	174	239	301	345		
~Cool Archaean MORB: F = 0.2 and T_P = 1400 °C (1499 °C at F = 0.2)						
Peridotite-melt Bulk D(V)	0.26	0.16	0.10	0.06		
V in aggregated melt (ppm)	154	217	282	333		
~Modern MORB: F = 0.08 and T_P = 1300 °C (1347 °C at F = 0.08)						
Peridotite-melt Bulk D(V)	0.73	0.44	0.27	0.16		
V in aggregated melt (ppm)	81	131	206	314		

 fO_2 oxygen fugacity; FMQ Fayalite-Magnetite-Quartz; *F* melt fraction; T_P mantle potential temperature; *D* distribution coefficient

Note: The spreadsheet of Wang et al. $(2019)^{33}$ calculates V distribution coefficients for spinel peridotite as a function of temperature and fO_2 (and of mineral compositions which were adopted from the spreadsheet) and melt compositions at 1 GPa, whereby temperature increases with increasing *F*; temperature for the first melt increment is taken to be $T_P + 0.4*30$, using the adiabat of Katsura et al. $(2010)^{34}$ and assuming 30 km = 1 GPa where the melt last equilibrates with its source; V abundances are for aggregated fractional melts

V concentrations in the melt for suggested Archaean and modern conditions are highlighted in bold

16 Supplementary Table 2 Cumulate composition modelling for sequential mineral

17 crystallisation

18

Sample	D(V) min-melt	Wt. fraction	Min V ppm	Bulk V ppm			
~Warm Archaean MORB with parental V concentration = 170 ppm at T_{XX} = 1340 °C and fO_2 = FMQ-2							
Spinel	6.94	0.01	1180	13			
Olivine	0.15	0.20	26	5			
Plagioclase	0.06	0.28	10	3			
Bulk sp-ol-pl cumulate	0.12	0.49		21			
Clinopyroxene	2.9	0.16	493	79			
BULK+cpx				100			
BULK+primitive melt		0.47		100			
~Warm Archaean MORB v	with parental V conce	ntration = 300 ppm	n at <i>T_{XX}</i> = 1340 °C a	and $fO_2 = FMQ$			
Spinel	2.95	0.01	885	10			
Olivine	0.05	0.20	15	3			
Plagioclase	0.02	0.28	6	2			
Bulk sp-ol-pl cumulate	0.05			14			
Clinopyroxene	0.85	0.34	255	85			
BULK+cpx				100			
BULK+primitive melt		0.29	300	100			
~Cool Archaean MORB wi	th parental V concent	tration = 154 ppm a	at <i>T_{xx}</i> = 1290 °C an	d <i>f</i> O ₂ = FMQ-2			
Spinel	7.76	0.01	1194	13			
Olivine	0.16	0.20	25	5			
Plagioclase	0.07	0.28	10	3			
Bulk sp-ol-pl cumulate	0.14			21			
Clinopyroxene	3.77	0.14	581	79			
BULK+cpx				100			
BULK+primitive melt		0.52	154	100			
~Cool Archaean MORB wi	th parental V concent	ration = 154 ppm a	at <i>T_{xx}</i> = 1290 °C an	d <i>f</i> O ₂ = FMQ			
Spinel	3.29	0.01	507	6			
Olivine	0.05	0.20	8	2			
Plagioclase	0.02	0.28	3	1			
Bulk sp-ol-pl cumulate	0.05			8			
Clinopyroxene	0.71	0.84	109	92			
BULK+cpx				100			
BULK+primitive melt		0.33	154	100			

 fO_2 oxygen fugacity; *FMQ* Fayalite-Magnetite-Quartz buffer; *F* melt fraction; T_{XX} crystallisation temperature converted from T_P mantle potential temperature using the relationship given in Herzberg and Asimow (2008)³⁵; *D* distribution coefficient; min. mineral; wt. weight; sp spinel, ol olivine, pl plagioclase, cpx clinopyroxene

Parental melt V concentrations for modelled conditions and initial melt fraction of 0.2 taken from Supplementary Table 1; V concentrations in bulk cumulates of spinel+olivine+plagioclase shown in bold font; weight fraction of clinopyroxene and primitive melt were adjusted such that the resultant mixture with bulk cumulate yields 100 ppm, corresponding to the low end of abundances in gabbroic eclogites (Fig. 3)

Note: Mineral-melt distribution coefficients for spinel peridotite as a function of temperature and fO_2 are from the spreadsheet of Wang et al. (2019)³³, which also considers mineral compositions (adopted from the spreadsheet); V abundances are for sequential crystallisation of spinel, olivine, plagioclase and clinopyroxene at weight fractions that were modelled for fractional crystallisation of picrite at 0.05 GPa by Aulbach and Jacob (2016, ref. ³⁶; their Appendix 5), ignoring, for simplicity, small differences in phase relations arising from differences in fO_2 (example in ref. ³⁶), and decreasing temperatures with progressive crystallisation

19 Supplementary Table 3 Melt composition modelling for fractional crystallisation

			Temperature-fO ₂ conditions					
T _P			1450 °C	1450 °C	1450 °C	1500 °C	1400 °C	
Parent melt V			170	240	300	190	100	
T _{XX}			1340 °C	1340 °C	1340 °C	1380 °C	1290 °C	
$\Delta \log fO_2$			FMQ-2	FMQ-1	FMQ	FMQ-2	FMQ-2	
				D	(V) mineral-me	elt		
Spinel			6.94	4.52	2.95	6.37	0.76	
Olivine			0.15	0.07	0.05	0.14	0.16	
Plagioclase			0.06	0.03	0.02	0.06	0.06	
	Melt <i>F</i>	Melt MgO (wt.%)		Rem	aining melt V (ppm)		
Onset ol XX	0.99	16.8	159	231	294	179	100	
Onset pl XX	0.79	9.8	194	286	366	218	122	
Onset cpx XX	0.51	8.4	363	548	704	410	228	

 fO_2 oxygen fugacity; FMQ Fayalite-Magnetite-Quartz buffer; *F* melt weight fraction remaining; T_{XX} crystallisation temperature converted from T_P mantle potential temperature using the relationship given in Herzberg and Asimow (2008, ref. ³⁵); *D* distribution coefficient; ol olivine, pl plagioclase, cpx clinopyroxene

Parental melt V concentrations for modelled conditions taken from Supplementary Table 1 and mineral-melt distribution coefficients from Supplementary Table 2 or modelled as described therein and in the Methods

Note: V abundances are for sequential fractionation of spinel, olivine, plagioclase and clinopyroxene, and for weight fractions of the remaining melt, ignoring, for simplicity, small differences in phase relations arising from differences in fO_2 (example in Aulbach and Jacob, 2016, ref. ³⁶), and decreasing temperatures with progressive crystallisation; melt weight fractions as well as melt MgO content from ref. ³⁶ (their Appendix 5) which were modelled for fractional crystallisation of picrite at 0.05 GPa

Element ppm ($\Delta \log fO_2$)	IW	V (FMQ-4)	V (FMQ-2)	V (FMQ-1)	V (FMQ)	Ce/Yb _{NMORB}
Co		170	170	170	170	
D rutile-melt		4.96	3.89	3.36	2.82	
D cpx-melt	5.4	6.49	2.14	1.14	0.57	
D garnet-melt	4.2	6.49	2.14	1.14	0.57	
Bulk D eclogite-melt		6.48	2.15	1.15	0.58	
		.				
		Concent	ration (ppm) a	ind ratio in res	idue from b	atch melting
Melt <i>F</i> = 0.05		177	174	171	164	0.65
Melt <i>F</i> = 0.1		185	179	172	158	0.47
Melt <i>F</i> = 0.2		204	190	174	149	0.29
Melt <i>F</i> = 0.3		227	202	176	140	0.19

Supplementary Table 4 Eclogite composition modelling for high-pressure batch melt extraction

fO₂ oxygen fugacity; IW Iron-Wuestite buffer, FMQ Fayalite-Magnetite-Quartz buffer; *F* melt fraction; *D* distribution coefficient; cpx clinopyroxene

 C_0 for V is chosen as an example, for Ce and Yb it corresponds to concentrations in NMORB of Gale et al. (2013, ref. ³¹); D(V) rutile-melt and D(V) cpx-melt as a function of fO_2 were parameterised from results reported in Holycross and Cottrell (2020, ref. ³⁷) and Mallmann and O'Neill (2009), respectively; D(V) garnet-melt was assumed to be identical to that of cpx based on results reported in Mallmann and O'Neill (2009, ref. ³⁸); cpx-melt D(Ce) and D(Yb) from Barth et al. (2002, ref. ³⁹); bulk D was calculated for 0.005 rutile, 0.445 cpx and 0.55 garnet following Aulbach and Jacob (2016, ref. ³⁶); Ce/Yb_{NMORB} is the NMORB-normalised ratio

Average of mineral-melt D(V) for experiments carried out near the iron-wuestite (IW) oxygen buffer are from Barth et al. (2002, ref. ³⁹)

21

22

23 Supplementary Table 5 Metasomatic clinopyroxene modelling

	Temperature-fO2 conditions					
Metasomatic melt V (ppm)	100	150	100	150	100	150
T _{XX}	1100 °C	1100 °C	1200 °C	1200 °C	1200 °C	1200 °C
$\Delta \log fO_2$	FMQ	FMQ	FMQ	FMQ	FMQ+1	FMQ+1
			D(V) cline	opyroxene-m	elt	
	3.53	3.53	1.84	1.84	1.00	1.00
		V co	ncentration	(ppm) in clin	opyroxene	
	353	530	184	276	100	150

 fO_2 oxygen fugacity; FMQ Fayalite-Magnetite-Quartz buffer; T_{XX} crystallisation temperature; D distribution coefficient; cpx clinopyroxene

Metasomatic clinopyroxene is assumed to crystallise from a kimberlite-like melt with V concentrations of 100-150 ppm, reflecting average concentrations in different kimberlites from the Superior craton as examples (Tappe et al., 2017, ref. ⁴⁰); cpx-melt distribution coefficients as a function of temperature and fO_2 derived from Wang et al. (2019, ref. ³³) as described in Supplementary Table 2 and in the Methods Supplementary Table 6 Ti and V concentrations in synthetic rutile and in three samples
determined by EPMA compared to LAM-ICPMS

Sample	TiO ₂	Total V	Apparent V	% Total V	Corrected V	LAM- ICPMS V	% Deviation EPMA
	wt.%	ppm	ppm ¹		ppm	ppm ²	vs LAM
Avg dl cpx	0.03	152					
Avg dl gt	0.03	159					
Synth Rutile (13)	99.73	2660	2660				
1σ	0.45	68	68				
OE23 cpx (6)	0.49	279	13	5	266	252	5
1σ	0.01	42	0	1	42		
OE16 cpx (2)	0.36	445	10	2	436	455	-4
1σ	0.01	11	0	0	11		
OE34 cpx (9)	0.35	216	9	5	207	198	4
1σ	0.01	59	0	2	59		
OE23 gt (6)	1.01	219	27	13	192	188	3
1σ	0.02	45	0	3	45		
OE16 gt (3)	0.19	118	5	9	113	101	12
1σ	0.01	90	0	11	90		

EPMA Electron Probe Micro Analyser, LAM-ICPMS Laser Ablation Microprobe-Inductively-Coupled Plasma Mass Spetrometer; cpx clinopyroxene, gt garnet, dl detection limit, synth synthetic; number in parentheses = spots measured

 1 V concentration arising from the overlap of TiK β on the VK α peak, as determined by measurement of V₂O₃ in the pure synthetic rutile standard and amounting to 26.7±0.7 ppm V per wt.% TiO₂

² V concentration reported in Aulbach et al. 2020 (ref. ¹⁴)

Legend: □ □ Kaapvaal oran ▲ △ Kaapvaal kimb ● ○ Zimbabwe ◆ ◇ C. Slave ♦ ◇ N. Slave ○ ○ Superior Filled symbols = DI, open symbols = xenoliths

- 32 Supplementary Fig. 1 Scatter plots illustrating relationships between various variables
- 33 suggested to be related to temperature-crystal-chemically-controlled uptake of V and other
- 34 minor and trace elements. **a-b** Distribution *D* of V between clinopyroxene and garnet in
- 35 eclogite xenoliths and DI as a function of temperature (°C; thermometer of Krogh, 1988, ref.
- ³⁶ ⁴¹, calculated iteratively with regional conductive model geotherms; see Methods); **c-d** V
- 37 contents (ppm) in garnet as a function of temperature (°C); e-f D(V) as a function of Ca#
- 38 (Ca/(Mg+Fe^{total}+Ca+Mn) molar); **g-h** Na₂O contents (wt.%) in garnet as a function of
- 39 temperature (°C); **i-j** V abundances in garnet (ppm) as a function of Na₂O contents (wt.%); **k**-
- 40 I V abundances in garnet (ppm) as a function of TiO_2 content (wt.%). Several samples from
- 41 Kaapvaal and the northern Slave craton show anomalous (relative to the main trend)
- 42 enrichment in V; data for different localities are split up into two panels to avoid clutter, those
- 43 for the Kaapvaal craton show orangeite-hosted (oran) and kimberlite-hosted (kimb) samples,
- 44 reflecting two distinct periods of magmatism, separately. Average 1σ uncertainties on V
- 45 abundances in garnet from DI are 117 ppm and from xenoliths 5.6 ppm (corresponding to
- 46 typical uncertainties for multiple analyses per sample reported in the literature, see Methods).
- 47 Data sources in Supplementary Data 1.

Legend: \Box \Box Kaapvaal oran \triangle \triangle Kaapvaal kimb \bigcirc \bigcirc Zimbabwe \diamondsuit C. Slave \diamondsuit \land N. Slave \bigcirc \bigcirc Superior Filled symbols = DI, open symbols = xenoliths

- 50 Supplementary Fig. 2 Scatter plots illustrating the effect of accumulation and differentiation,
- 51 using Al₂O₃/FeO as a proxy for plagioclase accumulation during low-pressure protolith
- 52 formation, on trace element and V abundances in eclogite. **a-b** ΣHREE (ppm; summed from
- 53 Tb to Lu) in reconstructed eclogite xenoliths and DI. Effect of accumulation, and of
- 54 decreasing mantle potential temperatures and lower resulting melt fractions, are indicated
- 55 with arrows in **a**, also shown for comparison are mid-ocean ridge basalts (MORB; yellow
- 56 field; data from Jenner and O'Neill, 2012, ref. ⁴²) and MOR gabbros (blue tristars,
- 57 Eu/Eu*>1.05; from PetDB: <u>www.earthchem.org/petdb</u>). Stippled line shows suggested cut-off
- 58 between cumulates and melts; there are few diamonds with clinopyroxene-garnet pairs from
- 59 which bulk rocks can be reconstructed, and few of those with REE data. Vanadium
- 60 abundances (ppm) in **c-d** clinopyroxene and **e-f** garnet. Samples with suggested cumulate vs.
- 61 melt protoliths are indicated. Average 1σ uncertainties on V abundances in clinopyroxene,
- 62 garnet and reconstructed bulk eclogites from DI are 67, 117 and 69 ppm, respectively, from
- 63 xenoliths they are 14.5, 5.6 and 29 ppm, respectively (corresponding to typical uncertainties
- 64 for multiple analyses per mineral and sample reported in the literature, and to propagated
- 65 uncertainties for reconstructed bulk eclogites, see Methods). Data sources in Supplementary
- 66 Data 1.
- 67 68

69 70

Supplementary Fig. 3 Vanadium abundances (ppm) as a function of Mg# (Mg/(Mg+Fe^{total})),
as a proxy for the degree of differentiation during protolith formation. a-b Clinopyroxene and

c-d garnet from eclogite xenoliths and DI. For typical 1σ uncertainties see caption to

74 Supplementary Figure 2.

Supplementary Fig. 4 Vanadium abundances (ppm) in clinopyroxene (cpx) and garnet (gt)
determined by electron probe microanalyser (EPMA) vs. laser ablation inductively-coupled
plasma mass spectrometry (LAM-ICPMS) at Goethe-University Frankfurt. Typical reported
detection limits for EPMA are shown as yellow bar.

84 References for Supplementary Information (including Supplementary Data 1)

85		
86	1	Jacob, D. E., Viljoen, K. S. & Grassineau, N. V. Eclogite xenoliths from Kimberley, South
87		Africa - A case study of mantle metasomatism in eclogites. Lithos 112, 1002-1013,
88		doi:10.1016/j.lithos.2009.03.034 (2009).
89	2	Shu, Q., Brey, G. P. & Pearson, D. G. Eclogites and garnet pyroxenites from Kimberley,
90		Kaapvaal craton, South Africa: their diverse origins and complex metasomatic signatures.
91		Mineralogy and Petrology 112, 43-56, doi:10.1007/s00710-018-0595-6 (2018).
92	3	Smart, K. A. et al. Metasomatized eclogite xenoliths from the central Kaapvaal craton as
93		probes of a seismic mid-lithospheric discontinuity. Chemical Geology 578, 120286,
94		doi:https://doi.org/10.1016/j.chemgeo.2021.120286 (2021).
95	4	Aulbach, S., Viljoen, K. S. & Gerdes, A. Diamondiferous and barren eclogites and pyroxenites
96		from the western Kaapvaal craton record subduction processes and mantle metasomatism,
97		respectively. <i>Lithos</i> 368 , doi:10.1016/j.lithos.2020.105588 (2020).
98	5	Aulbach, S. & Viljoen, K. S. Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton:
99		From convecting mantle source to palaeo-ocean floor and back. Earth and Planetary Science
100		Letters 431 , 274-286, doi:10.1016/j.epsl.2015.08.039 (2015).
101	6	Aulbach, S., Gerdes, A. & Viljoen, K. S. Formation of diamondiferous kyanite-eclogite in a
102		subduction melange. Geochimica Et Cosmochimica Acta 179 , 156-176,
103		doi:10.1016/j.gca.2016.01.038 (2016).
104	7	Burness, S. et al. Sulphur-rich mantle metasomatism of Kaapvaal craton eclogites and its
105		role in redox-controlled platinum group element mobility. Chemical Geology 542, 119476,
106		doi:https://doi.org/10.1016/j.chemgeo.2020.119476 (2020).
107	8	Huang, JX., Gréau, Y., Griffin, W. L., O'Reilly, S. Y. & Pearson, N. J. Multi-stage origin of
108		Roberts Victor eclogites: Progressive metasomatism and its isotopic effects. Lithos 142, 161-
109		181, doi:10.1016/j.lithos.2012.03.002 (2012).
110	9	Schulze, D. J., Valley, J. W. & Spicuzza, M. J. Coesite eclogites from the Roberts Victor
111		Kimberlite, South Africa. <i>Lithos</i> 54 , 23-32 (2000).
112	10	Jacob, D. E., Schmickler, B. & Schulze, D. J. Trace element geochemistry of coesite-bearing
113		eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos 71, 337-351,
114		doi:10.1016/s00244937(03)00120-8 (2003).
115	11	Radu, I. B., Harris, C., Moine, B. N., Costin, G. & Cottin, J. Y. Subduction relics in the
116		subcontinental lithospheric mantle evidence from variation in the O-18 value of eclogite
117		xenoliths from the Kaapvaal craton. Contributions to Mineralogy and Petrology 174 ,
118		doi:10.1007/s00410-019-1552-z (2019).
119	12	Smart, K. A. et al. Constraints on Archean crust recycling and the origin of mantle redox
120		variability from the $\delta 44/40Ca = \delta 180 = f02$ signatures of cratonic eclogites. Earth and
121	10	Planetary Science Letters 556 , 116720 (2021b).
122	13	Aulbach, S. et al. Eclogite xenoliths from Orapa: Ocean crust recycling, mantle
123		metasomatism and carbon cycling at the western Zimbabwe craton margin. Geochimica Et
124		Cosmochimica Acta 213 , 574-592, doi:10.1016/j.gca.2017.06.038 (2017).
123	14	Aulbach, S. et al. Ultramatic Carbonated Melt- and Auto-Metasomatism in Mantie Eclogites:
120		Compositional Effects and Geophysical Consequences. Geochemistry Geophysics
127	45	Geosystems 21, $e2019GC008774$, doi:10.1029/2019gC008774 (2020).
120	15	Smart, K. A., Chacko, T., Simonetti, A., Sharp, Z. D. & Heaman, L. M. A Record of
129		Paleoproterozoic Subduction Preserved in the Northern Slave Gratonic Manue. Sr-Pb-O
120		Kimbarlitan Jawrad of Databarry 55, 540, 500, dai:10,1000/patrology/acto27, (0014)
121	16	Kimberlites. Journal of Petrology 55 , 549-583, doi:10.1093/petrology/egi077 (2014).
132	10	Smart, K. A. et al. Tectonic significance and redox state of Paleoproterozoic eclogite and
133		Consider Chamical Coology 455 , 09, 110, doi:10.1016/j.cham.coo.0016.10.014 (0017)
134	17	Canada, Orientidal Geology 400, 90-119, 001.10.1010/j.chemgeo.2010.10.014 (2017).
135	17	Auibach, S., Fearson, N. J., Oheiliy, S. T. & Doyle, D. J. Origins of Xenolithic eclogites and
127		pyroxenites from the central slave craton, Ganada. Journal of Petrology 40 , 1843-1873 (2007)
137	10	(2007). Schmidherger S. S. Simonetti A. Hosmon J. M. Crosser D. A. & Whiteford S. Lu Lifin
130	10	situ Sr and Ph isotone and trace element systematics for mantle eclogites from the Disvik
140		diamond mine: Evidence for Paleoproterozoic subduction beneath the Slave craton. Canada
110		alamenta minor Evidence for raisoprotorozolo subdubitori benediri tre olave oratori, Odriada.

141 Earth and Planetary Science Letters 254, 55-68, doi:10.1016/j.epsl.2006.11.020 (2007). 142 19 Aulbach, S., Stachel, T., Heaman, L. M. & Carlson, J. A. Microxenoliths from the Slave craton: 143 Archives of diamond formation along fluid conduits. Lithos 126, 419-434, 144 doi:10.1016/j.lithos.2011.07.012 (2011). 145 20 Smit, K. V. et al. Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, 146 Canada, and implications for Superior craton formation. Geochimica Et Cosmochimica Acta 147 125, 308-337, doi:10.1016/j.gca.2013.10.019 (2014). 148 21 Phillips, D., Harris, J. W. & Viljoen, K. S. Mineral chemistry and thermobarometry of inclusions 149 from De Beers Pool diamonds, Kimberley, South Africa. Lithos 77, 155-179 (2004). 150 22 Stachel, T. Stachel, Thomas, 2021, Diamond Inclusion Database, Scholars Portal Dataverse, 151 V1 (2021). 152 https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.7939/DVN/EJUE1G 153 23 Viljoen, K. S., Perritt, S. H. & Chinn, I. L. An unusual suite of eclogitic, websteritic and 154 transitional websteritic-lherzolitic diamonds from the Voorspoed kimberlite in South Africa: 155 Mineral inclusions and infrared characteristics. Lithos 320, 416-434, 156 doi:10.1016/j.lithos.2018.09.034 (2018). 157 Deines, P., Stachel, T. & Harris, J. W. Systematic regional variations in diamond carbon 24 158 isotopic composition and inclusion chemistry beneath the Orapa kimberlite cluster, in 159 Botswana. Lithos 112, 776-784, doi:10.1016/j.lithos.2009.03.027 (2009). 160 25 Motsamai, T., Harris, J. W., Stachel, T., Pearson, D. G. & Armstrong, J. Mineral inclusions in 161 diamonds from Karowe Mine, Botswana: super-deep sources for super-sized diamonds? 162 Mineralogy and Petrology 112, 169-180, doi:10.1007/s00710-018-0604-9 (2018). 163 26 De Stefano, A., Kopylova, M. G., Cartigny, P. & Afanasiev, V. Diamonds and eclogites of the 164 Jericho kimberlite (Northern Canada). Contributions to Mineralogy and Petrology 158, 295-165 315, doi:10.1007/s00410-009-0384-7 (2009). 166 27 Davies, R. A., Griffin, W. L., O'Reilly, S. Y. & Doyle, B. J. Mineral inclusions and geochemical 167 characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch 168 Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos 77, 39-55, 169 doi:10.1016/j.lithos.2004.04.016 (2004). 170 Donnelly, C. L., Stachel, T., Creighton, S., Muehlenbachs, K. & Whiteford, S. Diamonds and 28 171 their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest 172 Territories, Canada. Lithos 98, 160-176, doi:10.1016/j.lithos.2007.03.003 (2007). 173 Promprated, P. et al. Multiple-mineral inclusions in diamonds from the Snap Lake/King Lake 29 174 kimberlite dike, Slave craton, Canada: a trace-element perspective. Lithos 77, 69-81, 175 doi:https://doi.org/10.1016/j.lithos.2004.04.009 (2004). 176 30 Stachel, T. et al. The Victor Mine (Superior Craton, Canada): Neoproterozoic Iherzolitic 177 diamonds from a thermally-modified cratonic root. *Mineralogy and Petrology* **112**, 325-336, 178 doi:10.1007/s00710-018-0574-y (2018). 179 31 Gale, A., Laubier, M., Escrig, S. & Langmuir, C. H. Constraints on melting processes and 180 plume-ridge interaction from comprehensive study of the FAMOUS and North Famous 181 segments, Mid-Atlantic Ridge. Earth and Planetary Science Letters 365, 209-220, 182 doi:10.1016/j.epsl.2013.01.022 (2013). 183 Donovan, J. J., Lowers, H. A. & Rusk, B. G. Improved electron probe microanalysis of trace 32 184 elements in guartz. American Mineralogist 96, 274-282, doi:doi:10.2138/am.2011.3631 185 (2011). 186 33 Wang, J. T. et al. Oxidation State of Arc Mantle Revealed by Partitioning of V, Sc, and Ti 187 Between Mantle Minerals and Basaltic Melts. Journal of Geophysical Research-Solid Earth 188 124, 4617-4638, doi:10.1029/2018ib016731 (2019). 189 34 Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T. & Ito, E. Adiabatic temperature profile in 190 the mantle. Physics of the Earth and Planetary Interiors 183, 212-218, 191 doi:10.1016/j.pepi.2010.07.001 (2010). 192 35 Herzberg, C. & Asimow, P. D. Petrology of some oceanic island basalts: PRIMELT2.XLS 193 software for primary magma calculation. Geochemistry Geophysics Geosystems 9, 194 doi:10.1029/2008gc002057 (2008). 195 36 Aulbach, S. & Jacob, D. E. Major- and trace-elements in cratonic mantle eclogites and 196 pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure 197 protoliths. Lithos 262, 586-605, doi:10.1016/j.lithos.2016.07.026 (2016). 198 37 Holycross, M. & Cottrell, E. Partitioning of V and 19 other trace elements between rutile and

199		silicate melt as a function of oxygen fugacity and melt composition: Implications for
200		subduction zones. American Mineralogist 105 , 244-254, doi:10.2138/am-2020-7013 (2020).
201	38	Mallmann, G. & O'Neill, H. S. C. The Crystal/Melt Partitioning of V during Mantle Melting as a
202		Function of Oxygen Fugacity Compared with some other Elements (AI, P, Ca, Sc, Ti, Cr, Fe,
203		Ga, Y, Zr and Nb). Journal of Petrology 50, 1765-1794, doi:10.1093/petrology/egp053 (2009).
204	39	Barth, M. G., Foley, S. F. & Horn, I. Partial melting in Archean subduction zones: constraints
205		from experimentally determined trace element partition coefficients between eclogitic
206		minerals and tonalitic melts under upper mantle conditions. Precambrian Research 113, 323-
207		340 (2002).
208	40	Tappe, S. et al. Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr-Nd-Hf-
209		Os-C-O isotope constraints from the Superior craton (Canada). Chemical Geology 455, 57-
210		83, doi:10.1016/j.chemgeo.2016.08.019 (2017).
211	41	Krogh, E. J. The garnet-clinopyroxene Fe-Mg geothermometer - a reinterpretation of existing
212		experimental data. Contributions to Mineralogy and Petrology 99, 44-48,
213		doi:10.1007/bf00399364 (1988).
214	42	Jenner, F. E. & O'Neill, H. S. Analysis of 60 elements in 616 ocean floor basaltic glasses.
215		Geochemistry Geophysics Geosystems 13, Q02005, doi:10.1029/2011gc004009 (2012).