
ANAN — A DEBUGGER FOR COMPUTE
CLUSTERS

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich 12 (Informatik und
Mathematik)

der Johann Wolfgang Goethe-Universität
in Frankfurt am Main

von
Alexander Adler

aus Frankfurt am Main

Frankfurt, 2021
(D 30)

Contents

I Introduction 3

1 Danksagung 4

2 Zusammenfassung 5

3 General Introduction; Notation 10

4 Introduction to Debugging 12

5 Introduction to High Performance Computing 17

6 The Contribution of anan 21

II State of the Art 24

7 Clusters 26

8 Monitoring 28

9 Debugging 31

III anan: analyse and navigate 37

10 Existing Technologies and Tools 39
10.1 Programming Language Lua 5.3 39
10.2 Protocol Layer . 43
10.3 Deployment via GNU autotools 46
10.4 SQLite . 47
10.5 Grafana . 50

1

11 Concepts 52

IV Results, Summary, Future Work 59

12 Overview 60

13 Benchmarks 61
13.1 Synthetic Benchmark: 10 Containers on a Laptop 61
13.2 Synthetic Benchmark: In Ten Virtual Machines on a Blade

Center . 62
13.3 Synthetic Benchmark: In 140 Virtual Machines via OpenStack 63
13.4 Practical Benchmark: Monitoring for EPN Farm 64
13.5 Practical Benchmark: A Tiny Case Study 69
13.6 Application Note: Porting anan to an Embedded System . . 71

14 Usability and other “Soft” Criteria 73
14.1 General Observations . 73
14.2 Reasons and Solutions . 76
14.3 Monitoring and Debugging 77

15 Interlude: The notion of simplicity 79
15.1 Forth: Two Stacks, Tiny Functions, Direct Machine Access . 81
15.2 Lisp: Linked Lists, Term Rewriting, Homoiconicity 83
15.3 Simplicity in anan . 84

16 Summary and Future Work 87
16.1 Is anan Successful? . 87
16.2 Is Cloud Debugging Successful? 88

17 Appendix: Reference Manual for anan 96
17.1 Installation and Setup . 96
17.2 General . 98
17.3 Sensors . 99
17.4 Use Sensor Data . 101
17.5 Other functions . 102

18 Appendix: Lebenslauf des Verfassers 104

2

Part I

Introduction

3

Chapter 1

Danksagung

Der erste Dank geht an meine Eltern, die mich in diese (für mich zu-
mindest anfänglich) trockene und kalte Welt gebracht haben und sich noch
eine ganze Weile weiter mit mir befassten.

Danke an meine Frau: Sie zeigt immer wieder, dass man auch einem
Hasen die Ohren lang ziehen kann.

Danke an meine Tochter: Sie lehrt durch Unkenntnis des Worts ”Lau-
ne”, dass man keine schlechte Laune zu haben braucht — weiß es ande-
rerseits durch die Ausbildung von ”Ansichten” zu kompensieren.

Danke an meine beiden Betreuer Profes. Dres. Udo Kebschull und Vol-
ker Lindenstruth, die immer schon wussten, was als Nächstes kommt,
aber trotzdem mit bestem Rat unterstützten.

Danke an Dr. Walther Scholl, der eine Klage stets zu schätzen weiß
und in früheren Fassungen dieser Ausarbeitung genug Anlass zur Klage
gefunden hat — hoffentlich sind in der vorliegenden Fassung die Anlässe
weggefallen. Natürlich sind die verbleibenden Fehler nur dem Autor an-
zulasten!

Danke an Lenny Sandberg, der vermutlich der ideale Gutachter wäre
— zumindest brauchte er für die Lektüre nur ein paar Stunden. Aber auf
das Gutachten wartet die Welt bis heute . . .

4

Chapter 2

Zusammenfassung

ְךֵלֹההָ֡והֹיַֽו ּדהַםָ֣תחְֹנַל֙ןָנָעדּומַּ֤עְּבםמָ֜וֹיםהֶ֨יֵנְפִל֩ ְךֶרֶ֔

ַלְו ֶלָלםהֶָ֑לריאִ֣הְָלׁש֖אֵדּומַּ֥עְּבהָלְי֛ ׃הָלְיָֽלָוםמָֹ֥ויתֶכ֖

The LORD went before them in a pillar of cloud

by day, to guide them along the way, and in a
pillar of fire by night, to give them light, that they

might travel day and night.

Exodus 13,21

Das Projekt anan ist ein Werkzeug zur Fehlersuche in verteilten Hoch-
leistungsrechnern. Die Neuheit des Beitrags besteht darin, dass die be-
kannten Methoden, die bereits erfolgreich zum Debuggen von Soft- und
Hardware eingesetzt werden, auf Hochleistungs-Rechnen übertragen wor-
den sind. Im Rahmen der vorliegenden Arbeit wurde ein Werkzeug na-
mens anan implementiert, das bei der Fehlersuche hilft. Außerdem kann
es als dynamischeres Monitoring eingesetzt werden. Beide Einsatzzwecke
sind getestet worden.

Übersicht über den Aufbau von anan. Das Werkzeug besteht notwen-
digerweise aus zwei Teilen:

1. aus einem Teil, der interaktiv vom Nutzer bedient wird — dieser Teil
ist nur einmal vorhanden;

2. und aus einem Teil, der automatisiert die verlangten Messwerte er-
hebt und nötigenfalls Befehle ausführt — dieser Teil ist pro unter-
suchtem System je einmal vorhanden.

Der erste Teil wurde anan* genannt, der zweite anand. (Somit besteht

*Ursprünglich stand die Abkürzung für analyse and navigate. Diese doppelte Ziel-
setzung erwies sich als zu eng. Glücklicherweise stellte sich heraus, dass das im einlei-
tende Zitat benutzte Wort für “cloud” bzw. Wolke im hebräischen Original ’anan ausge-
sprochen wird, womit der Name beibehalten werden konnte.

5

anand

Sensor1,1

...

Sensor1,n1

Anwendungs-
software

System1

· · ·

anand

Sensork,1

...

Sensork,nk

Anwendungs-
software

Systemk

ananSQL-Datenbank

Dashboard A

Dashboard B

collectd

kafka

...

grafana

Modulares
Monitoring

Abbildung 2.1: Übersicht von anan bei gleichzeitigem Einsatz für Monito-
ring und Debugging

das Projekt anan aus den beiden Programmen anan und anand.) Diese Zwei-
teilung ist notwendig: Zum einen müssen an jedem untersuchten System
Messungen durchgeführt werden, die nur innerhalb des Systems möglich
sind. Zum anderen müssen die Messungen zusammengeführt werden,
um eine abstraktere Sicht als die der einzelnen Werte zu erlauben.

Weil anan ohnehin schon eine große Menge an Daten über den Zu-
stand der Systeme erheben kann und für interaktiven Betrieb hinreichend
schnell sein muss, liegt die Idee nah, anan für Monitoring einzusetzen. In
Abbildung 2.1 ist der vollständige Aufbau bei einer Nutzung für gleich-
zeitiges Monitoring und Debuggen dargestellt. Dabei wird anand auf je-
dem zu untersuchenden System ausgeführt. (Ob dieses System ein Com-
puter, eine virtuelle Maschine, ein Container oder etwas anderes ist, ist aus
anans Sicht egal, sodass weiterhin unspezifisch von ”Systemen” die Rede

6

sein kann. Natürlich unterscheiden sich die messbaren Variablen in den
jeweiligen Fällen.) Jede Instanz von anand führt null oder mehr Sensoren
aus, wobei nicht alle Systeme dieselbe Auswahl an Sensoren ausführen
müssen. Ein Sensor ist ein in der Regel kurzer Algorithmus, der etwa
einmal pro Sekunde ausgeführt wird, und ein Messergebnis erzeugt. Die
Messergebnisse werden im Sekundentakt an anan übermittelt, wo sie für
das Monitoring in eine SQL-Datenbank geschrieben werden.

Eine Schlüssel-Wert-Tabelle ohne weitere Struktur genügt dafür nicht,
weil die übermittelten Daten zwar nur Zeitreihen aus sonst nicht weiter
strukturierten Daten sind, aber sowohl für den Debugger als auch mit-
unter für das Monitoring korreliert oder in kompliziertere Beziehungen
gebracht werden müssen. Das wäre mit einem einfacheren Datenmodell
als dem von SQL vielleicht möglich, aber langsamer und mühseliger. Da-
durch ginge der Hauptvorteil der einfacheren Datenstruktur, nämlich ihre
Schnelligkeit, verloren.

Aus der Sicht von anan ist alle Software in den untersuchten Syste-
men — mit der Ausnahme des Betriebssystems und anand selbst — ”An-
wendungssoftware”. Dazu gehört auch weitere Monitoring-Software, weil
Monitoring beim Entwurf von anan höchstens ein nützlicher Nebengedan-
ke ist. Es besteht daher nicht die Absicht, dass anan das alleinige Monito-
ring-Werkzeug sein soll. Daher wird dem Nutzer des Monitorings eine
Reihe von Dashboards präsentiert, ohne dass er zu wissen braucht, ob sie
(wie Dashboard A) ihre Daten aus einem modularen Monitoring-System
oder (wie Dashboard B) aus einem monolithischen System wie anan ge-
winnen. Es ist auch erfolgreich versucht worden, einen Teil der Daten ei-
nes Dashboards aus gemischten Quellen zu erhalten.

Implementierung. Im endgültige Zustand ist anan eine äußerst schlich-
te Software; aus einer knappen Beschreibung des Verhaltens ließe sich in-
nerhalb von ein bis zwei Monaten eine neue, vollständige Implementie-
rung entwickeln. Dies geht auf eine Reihe von Vereinfachungen mit dem
Zweck besserer Nutzbarkeit und höherer Effizienz zurück. Sensoren wer-
den in einer schematischen Form ähnlich wie beim Werkzeug awk entwi-
ckelt, in mittels der Sprache Lua 5.3 Muster und Auswertungsalgorith-
men eingetragen werden. Passt das Muster, wird der entsprechende Algo-
rithmus ausgeführt. Das Verarbeiten von Informationen aus Dateien wird
auf besonders kompakte Weise unterstützt, weil unter Linux (der relevan-
testen Plattform für anan) die meisten wichtigen Informationen in Datei-
en bzw. Pseudodateien zu finden sind. Allerdings ist der Zugriff auf alle
Funktionen des Betriebssystem möglich, wenn auch deutlich weniger be-
quem. Es zeigt sich, dass sich so gut wie alle interessanten Variablen in
dieser schematischen Form beschreiben lassen, viele davon sogar ziemlich

7

knapp — je knapper, desto einfacher die interaktive Nutzung.
Auch die benutzten Datenaustausch-Formate (das von Lua für Lite-

rale benutzte) und Netzwerkprotokolle (UDP mit zlib-Kompression und
authentifizierter Verschlüsselung per NaCl) sind so einfach wie möglich
gewählt — seltene Datenverluste sind in Kauf zu nehmen, wenn eine nied-
rigere Effizienz oder schlechtere Nutzbarkeit die Alternativen wären.

An das untersuchte System werden nur die geringsten Anforderun-
gen gestellt. Zum einen verringert das die Wahrscheinlichkeit, mit dem ei-
gentlich interessanten Phänomen zu interagieren und es möglicherweise
zu verdecken. Zum anderen erleichtert es die Portierung auf andere Be-
triebssysteme oder Architekturen, obwohl gegenwärtig Linux/x86 64 das
beherrschende System ist. Die Übersetzung für Android/aarch64, Mac OS
X/x64, Linux/microblaze und weitere Systemen gelang meist völlig ohne
oder mit geringen Anpassungen. Ob die übersetzten Programme korrekt
arbeiten, ließ sich in Ermangelung passender Hardware nur in wenigen
Fällen prüfen.

Ergebnisse. Weil anan der erste Vertreter einer neuen Klasse von Werk-
zeugen ist, sind zwei Arten von Ergebnissen nötig:

1. Ist anan performant genug, um praktisch eingesetzt werden? Wo lie-
gen die Grenzen?

2. Falls die Antwort positiv ist: In welchen Situationen kann anan als
Debugger erfolgreich eingesetzt werden?

Die Beantwortung der ersten Frage ist konzeptuell einfach. Dazu wur-
den Versuche angestellt, in denen anan die Daten von einer zunehmen-
den Anzahl von virtuellen Maschinen oder Container verarbeiten muss.
Auch die Performanz bei großen bzw. vielen Sensoren ist gemessen wor-
den. Es stellte sich heraus, dass eine einkernige Variante von anan ohne
weiteres mit dreihundert bis fünfhundert untersuchten Systemen umge-
hen kann, nicht aber mit tausend. Eine Erweiterung auf mehrere Kerne
ist (verhältnismäßig einfach) möglich, aber nicht beabsichtigt, weil gegen-
wärtig keine so großen Systeme untersucht werden.

Die Beantwortung der zweiten Frage ist komplizierter. Es ist nämlich
möglich, dass ein Debugger auf der Ebene eines ganzen Rechenzentrums
kein sinnvolles Konzept ist, diese Ideen aber zu besserem Monitoring füh-
ren; oder umgekehrt könnte dynamischeres Monitoring bereits wie ein
Debugger nutzbar sein. Tatsächlich wurde festgestellt, dass anan in Ver-
bindung mit der Datenbank eine mit sonstigen Monitoring-Werkzeugen
vergleichbare, wenn auch etwas schlechtere Performanz erzielt. Die La-
tenz erhöht sich durch die zusätzlichen Verarbeitungsschritte um einige

8

Sekunden. Allerdings ist es möglich, mit akzeptabler Performanz viel kom-
plexere Daten darzustellen, etwa die Korrelation zwischen offenen Sockets
und Hauptspeicher. Diese Art Anfrage lässt bei üblichen Monitoring-Werk-
zeugen entweder gar nicht oder nicht effizient stellen, sofern man sie nicht
durch Überlagerung zweier Diagramme in einem Dashboard umgeht.

Ohne die Möglichkeit, per SQL-Abfrage mit JOIN verschiedene Zeitrei-
hen oder sonstige Datenquellen zu korrelieren, wäre sinnvolles Debuggen
kaum möglich. Allerdings ließen sich die folgenden beiden (für Fehlersu-
che bedeutsamen) Konzepte auch ohne relationale Datenbank umsetzen:

1. Ein Breakpoint ist ein Sensor, der üblicherweise ein negatives Er-
gebnis gibt und beim Eintreten eines interessanten Ereignisses ein
positives Ergebnis sendet.

2. Eine Watchlist mit Ringpuffer ist eine Liste von Sensoren, welche
die meiste Zeit unauffällige Daten sammeln, aber um das Feuern ei-
nes Breakpoints herum möglicherweise Informationen über das Auf-
treten des interessanten Ereignisses enthalten.

Beide lassen sich per SQL-Abfrage implementieren und müssen daher
nicht fest in anan einprogrammiert sein, obwohl es der Performanz viel-
leicht helfen könnte.

Auch die umgekehrte Frage lässt sich vorsichtig positiv beantworten:
Es gibt gewisse Fragestellungen, bei denen eine Betrachtung jedes einzel-
nen Systems nicht genügend Informationen liefert, um ein Problem zu
identifizieren, die Gesamtbetrachtung mit anan dies aber ermöglicht. Die-
se Fragestellungen sind allerdings selten. Ob das an der kurzen Einsatz-
dauer von anan liegt, ist unklar. Es bedürfte weiterer Arbeit, um zu er-
mitteln, ob anans insgesamt eher schwierige Nutzbarkeit ein Problem der
Klasse Cluster-Debugger oder der konkreten Umsetzung anan ist. Im ersten
Fall könnten immerhin die Erfahrungen mit dynamischerem Monitoring
auf die üblichen Monitoring-Werkzeuge übertragen werden.

9

Chapter 3

General Introduction; Notation

Simple style. This thesis is intended to be easily readable. It applies
the following techniques to achieve that:

• Short sentences;

• no “elegant” style;

• no academic understatement, especially complex nominal phrases
(“reduction of production by introduction of a prediction”) and pas-
sive voice (“this was done . . . that was measured”);

• strong division in sections and subsections.

Complex arguments or constructions are most often presented in a top-
down style (part A consists of parts A1, A2, . . .), although occasionally, the
bottom-up style (part A1, part A2, . . . yield part A) was given preference.

Paragraph leaders. Most paragraphs begin with a short sentence or
leading caption to introduce, sometimes summarise, the paragraph’s main
statement. This feature should enable the reader to quickly skim well-
known material and focus on new or interesting material. Often, the para-
graph leader is written in a rather catchy and provocative way.

Lists instead of prose. When arguing for or against a decision or sum-
marising results, many aspects may be relevant. It is most convenient
to list them in a concise tabular style. The alternative would have been
writing long paragraphs which contain all arguments without clear delin-
eation. Of course, this uses more space on the page.

Mathematical notation. Most of this thesis is prose which discusses
the design, execution and results of the software anan. Sometimes, math-
ematical notation is needed, as in ei·π + 1 = 0 or (a, b) ←− (b, a). The

10

typography is chosen in a way that formulae do not stand out but rather
blend into their surrounding text.

Program code. All examples of program code or program input/out-
put are typeset in monospace. Very short examples such as int x = a+b;

are shown inline without highlighting, somewhat longer examples appear
as paragraphs with line numbers and highlighting:

1 #define SWAP(a, b) {int tmp = a; a = b; b = tmp;}

2 void quicksort(int numbers[25], int first, int last){

3 int i, j, pivot, temp;

4 if (first<last){

5 pivot=first; i=first; j=last;

6 while (i<j){

7 while (number[i]<=number[pivot] && i<last) i++;

8 while (number[j]>number[pivot]) j--;

9 if (i<j) /* no semicolon after SWAP because {block} macro */

10 SWAP(number[i], number[j])

11 }

12 SWAP(number[pivot], number[j])

13 quicksort(number, first, j-1); quicksort(number, j+1, last);

14 }

15 } /* adapted from: Akhil Bhadwal, https://hackr.io/blog/quick-sort-in-c */

Longer code and examples of interactions can be found in the appendix
on p. 95. — Sometimes, names of tools are typeset in monospace in order
to stress that the tool is a piece of code.

11

Chapter 4

Introduction to Debugging

Overview. Every computer programmer who has written more than a
few lines of code knows the fearful realisation: “This program does not do
what it is supposed to do.” In short: The program is buggy, it has a bug.*
The wish to remove bugs does not require any further explanation.

Levels of debugging. As will be shown in section 9, debugging single-
threaded isolated non-networked programs is fairly well understood. Once
one of these restrictions is lifted, almost arbitrary complexity can appear.
Complexity is the natural enemy of debugging. Clearly, a single-threaded
program without any loops is easier to understand and therefore to debug
than a program with loops. In fact, a ladder of features can be found.
Every feature adds capabilities to write more concise or efficient programs.
At the same time, every step up the ladder makes debugging harder. The
ladder could contain the following steps:

• branches and loops;

• global mutable state;

• multiple threads of execution;

• threads with shared memory;

• network communication over possibly faulty lines;

*Anecdotally, the term “bug” for a faulty behaviour in a program is said to stem from
vacuum tube or relay based computers where a moth — a bug — hid in one of the warm
parts and burned together with it. Once the bug was found, computation could resume.
Others claim the term is used in analogy to bacteria and viruses which are also referred
to as “bugs”. The first explanation certainly has the advantage of being more charming.

12

• pieces of the program run on heterogeneous architectures (CPU, mi-
crocontroller, FPGA, GPU) and need to communicate.

This list is not exhaustive — there is no upper limit. Many in-between
steps are missing. Also, steps may be skipped: Not every networked pro-
gram has to contain global mutable state or multiple threads of execution.

Two ways to improve debugging. As in most branches of computing,
there are two ways of improving:

1. better tools;

2. better methods.

The first option means better tools are used for the same problem,
e. g. more powerful or more specialised debuggers. They typically have
stronger demands on hardware. As can be found in section 9, most of the
progress focuses on this area.

The second option means the same tools are used with better under-
standing of the underlying problems. Alternatively, programs can be de-
signed in a certain (defensive) way to be easily debugged if necessary. Far
fewer results can be reported in this area. Here, this thesis also finds little
to add (but see page 79 for a few remarks). It mainly tries to present better
tooling.

Inspection and interaction. A symbolic debugger allows the user to fol-
low a program’s execution. Depending on the type of debugger and pro-
gram under consideration, the following things can be inspected:

• code to be executed;

• register values;

• contents of memory regions;

• variables;

• file system operation;

• data structures (as graphs or trees or similar visualisation).

The list is by far not exhaustive, although the most often used objects
are listed. — Nearly every debugger has some means to interact with the
program, e. g.

• return from a function;

13

• change a register value;

• change a variable.

The ability to inspect is more important than the ability to interact with
and change the program’s execution for the following reasons:

• It is pointless to interact blindly with a system that is in an unknown
state.

• Interacting is a nuanced process. It cannot be put into a consistent
scheme as easily as displaying control and data flow.

• Often, seeing the (faulty) behaviour of software suffices to under-
stand and correct the bug.

Introspection on the source level. Obviously, a program without bran-
ches and loops does not require more tooling for introspection than pen
and paper — such a “program” is hardly more than a formula into which
values are inserted. Once loops and branches are added, i. e. the realm
of Turing-complete algorithms is reached, a symbolic debugger becomes
a more helpful tool. As long as the observed bug is to be found inside the
program (as opposed to outside the program, e. g. in faulty hardware or
file system corruption), the symbolic debugger is in principle the correct
tool to find any bugs: Symbolic debuggers are currently among the best
universal tools in cases where the behaviour can be solely explained based
on the program’s source.

Introspection on multiple levels. Typically, programming does not
happen as isolated as imagined in the previous paragraph. Rather, disks
run full, file systems get corrupted, network connections go down or drop
packages or become slow. All of these events cannot be found directly
by a symbolic debugger, although hints to them (e. g. error codes and
exceptions) appear. Additionally, the symbolic debugger has to go to great
lengths to follow the program’s control and data flow without interfering
too much — and the debugger might still interfere, leading to differences
in behaviour (“Heisenbugs”) [Weissenbacher, 2012].

Multiple levels might interact already once there is more than a single
thread of execution and shared memory or message passing is used. The
behaviour cannot be explained strictly following the source code. Now,
the operating system’s scheduling becomes relevant and especially the
fact that it typically is non-deterministic. (Theoretically, including the op-
erating system’s scheduler into the code under observation could help ex-
plaining the behaviour. But this approach is impractical. It can be taken

14

meaningfully only in embedded systems where both the operating system
and the application are small.) This effect only grows in scope when more
steps on the ladder are taken.

Mocking. In the best case, all bugs leading to the relevant unwanted
behaviour are to be found on the same level. If there is some way to
shield every involved system from each other, then every system can be
debugged on its own. For software, there is such a method: Every part of
the system can be replaced by a “mock” replica [Karlesky et al., 2007] —
a piece of software which behaves like the external system in every dis-
cernible way. Of course, such an approach is laborious and may introduce
Heisenbugs itself. Nevertheless, it presents a systematic pathway to the
bug.

Interacting bugs. The previous paragraph’s situation is still idealised
for the following reasons:

• There are no systems without any bugs (the exception proves the
rule).

• Mocks cannot be built meaningfully (i. e. with the necessary faithful-
ness, but still cheap enough) for complex things such as file systems
or network, let alone custom hardware.

• Since mocks are also software, they can introduce new bugs.

• The relevant part containing the bug’s actual source may be over-
looked. The user can easily assume it is not part of the system (e. g.
the electrical supply may be at fault but the user does not consider
checking it).

• Bugs can interact in complex ways.

In this case, no universal approach such as mocking can be given. De-
bugging in real life is a game of hide-and-seek. Therefore, it is important
to have tools which support introspection at multiple levels. For symbolic
debuggers, this is mostly out of scope, although relevant aspects are often
supported, e. g. showing the values of named variables and registers. In
the case of anan, it will be seen that such a simplistic scheme cannot be
supported; more complex views have to be developed and implemented
by the user.

Testing is not debugging. In fact, testing is the dual of debugging in
the following sense: If a test fails, this means some code (either the code
under test or the test itself) is buggy. Debugging helps to find the source

15

of the bug. After the bug is fixed, (automated) testing can make sure it
does not return. In practice, tools for the preparation and automation of
tests make good helpers for debugging because they provide debugging-
related facilities such as mockers. Therefore, these two tasks are somewhat
overlapping.

16

Chapter 5

Introduction to High Performance
Computing

Overview. Moore’s Law [Moore, 1965] used to describe accurately (up
to about the year 2010) that the number of transistors in integrated circuits
grows exponentially. The number of transistors is a proxy for all sorts of
performance characteristics, e. g. clock rates or number of floating point
operations per unit of time or power. It used to be possible to argue (albeit
tongue-in-cheek) in the following way: “Let’s buy a computer in three
years and get results in a day — or buy a computer now and get results in
a few years.” Moore’s law was understood to state the raw computational
power of a single CPU doubles approximately every 18 months. If more
performance than that is requested, multiple CPUs and finally multiple
network-connected compute nodes are needed.

Many problems in engineering can be parallelised to a large extent. The
complexity classes L and FL (deterministic calculation in logarithmic space
[Cook and McKenzie, 1987]) are usually assumed to contain all problems
which can be parallelised efficiently. (This does not mean that the actual
parallel algorithm necessarily uses logarithmic space.) These classes con-
tain solvers for ordinary differential equations; finite element models; k
means clustering; training neural networks; approximate lattice reduction
. . . — and many other scientific and engineering tools. High performance
computing (HPC) is the art of using slow CPUs, memory and networks to
reach fast computation.

Levels of parallelism. A well-written parallel program is friendly to
the following levels of parallelism and other peculiarities of HPC [Hager
and Wellein, 2010, chapter 1], [Ruckert, 2015]:

• Pipelines. Today’s CPUs split any instruction’s execution (“retir-

17

ing”) in tiny steps such as fetch instruction; decoding; fetch ope-
rands; execution; store result. After the first part of the pipeline is
done, the next instruction can enter the pipeline. Thereby, theoret-
ical speedups proportional to the pipeline’s depth are possible (al-
though never achieved in practice). Additionally, when instructions
are scheduled, the CPU might notice that a different ordering or dif-
ferent naming of registers is advantageous (“clever scheduler”), al-
though sometimes, this task is partially or fully relegated to the com-
piler’s code generator (“clever compiler”).

• Branch prediction. In order to keep pipelines filled, the CPU has
to know many cycles in advance, which instruction is going to be
executed. In the case of conditional branches, heuristics are used (al-
though the code may state whether it believes this to be a likely
branch or not) to speculatively follow the branch which the CPU pre-
dicts to be taken. In the case of a mispredicted branch, the pipeline
needs to be flushed, incurring some cost.

• Instruction level parallelism. Certain operations such as integer
multiplication/division and most floating point operations take more
than one cycle. If there are multiple arithmetic units, many arith-
metic operations can be executed simultaneously. This requires both
“clever compilers” and “clever schedulers”.

• Single Instruction, Multiple Data (SIMD). With SIMD, the program-
mer is able to explicitly request the instruction level parallelism he
wants. Usually, special wide vector registers with a corresponding
instruction set are used.

• Caches. Main memory is much slower than a CPU’s registers. In or-
der to bridge this gap, there are multiple levels of data and instruc-
tion caches: Memory which is a bit slower but also a bit larger than
registers. Today’s CPUs have two or three levels of caches which
differ in their positioning between register and main memory.

If a datum from main memory or a higher level cache is loaded into a
register and stored in a lower level cache, the cache controller stores
a whole cache line: a fixed-length contiguous area of memory. This
behaviour enables the cache controller to prefetch areas of memory
if the controller thinks they are likely to be needed in the near future.
Some CPUs offer instructions to advise the memory controller on
likely future fetches.

18

(The hierarchy of caches can be extended to hard disk drives, net-
work attached storage and tape libraries which are again larger and
slower/higher latency by orders of magnitude.)

When memory addresses whose content has been cached are written
to, the cache controller has to take special precaution to make sure
the program always sees the most current version. Famously, “There
are only two hard things in Computer Science: cache invalidation
and naming things” (Phil Karlton).

• Multicore. Computers with over a hundred cores are commercially
available. Multicore systems add some more complications, e. g.:

– In some cases, not all CPUs can run at the peak frequency (to
avoid overheating).

– Main memory is shared, some part of the cache may be shared.

– In larger systems, CPUs may be located on different sockets,
yielding non-uniform communication latencies and speeds.

– Even on the same socket, latencies and speeds may be non-uni-
form.

• Hyperthreading. It has been observed that all the above-mentioned
methods still leave the arithmetic and floating point units idle for
too long. Therefore, another set of registers can be added to each
CPU so that it can feed the instructions of two different threads into
the pipeline. Although the single-threaded performance may be de-
graded (because of administrative costs), the theoretical multi-thread-
ed performance doubles.

• Extensions. Special hardware can complete certain tasks much faster
than general-purpose CPUs, e. g.

– Graphics Processing Units for code which has little memory com-
munication and few branches;

– Field Programmable Gate Arrays for reconfigurable programming;

– Application-specific integrated circuits for specialised tasks (there
is dedicated hardware for deflate (de)compression [Summers
and Engineer, 2008]; fast Fourier transform [Despain, 1979]; cryp-
tography [Yuan et al., 2018]; etc.).

19

• Multiple compute nodes connected via network. Networking is
much slower than any communication inside a single compute node.
Also, typical implementations have non-deterministic latencies, oc-
casionally leading to severely delayed or entirely dropped packets.

HPC is the art of rewriting straight-forward algorithms in clever, but com-
plicated ways to maximise performance on all levels at once.

Tooling. Naturally, tools develop, and any specific tool mentioned
now might be obsolete in a few years. But classes of tools and established
members of these classes do not lose relevance quickly. Compilers tend
to have facilities which report on various optimisations which were per-
formed or could not be applied. Likewise, there are special memory and
cache profilers that can help to increase the program’s cache locality.

• Libraries. There is a set of libraries, based on the basic linear algebra
subprograms BLAS [Duff et al., 2002], such as LAPACK [Anderson
et al., 1990] for numerical linear algebra or FFTW [Frigo and John-
son, 1998] and many more. Using these libraries does not make a
program automatically run optimally in a HPC setting — neverthe-
less, these implementations are likely to be faster than any home-
grown code.

• Open Multi-Processing (OpenMP). A program written in Fortran or
C/C++ can be annotated with compiler directives which specify how
the program can be executed by parallel threads of execution. The
compiler generates code which uses the operating system’s corre-
sponding threading facilities. If the operating system’s threads were
to be used directly, any possible gain in efficiency would be out-
weighed by a loss of clarity: OpenMP’s notation is straight-forward
as it was specifically developed for applications in HPC.

• Open Message Passing Interface (OpenMPI). After a program utili-
ses a single node’s CPU resources fully, the next logical step is using
multiple nodes. In OpenMPI, the only way to exchange data be-
tween nodes is message passing (as opposed to automatically shared
memory). OpenMPI could have been listed under the first point, “Li-
braries”, because it is implemented as a library. — It presents func-
tion for unicast, multicast and broadcast communication between
the nodes of a compute cluster; the typical numerical data types are
supported. The library’s design stresses raw performance above all.

HPC requires a good understanding of both the problem’s and the so-
lution’s domain.

20

Chapter 6

The Contribution of anan

Introduction. The tool anan enables the user to measure anything in-
teresting about a set of networked computers as easily as possible in order
to allow him to inspect faulty or unexpected behaviour of a compute clus-
ter. The remainder of this section tries to unpack and fill in the details of
this task.

Analyse and navigate. Originally, anan was meant to be an acronym
analyse and navigate. It was found that the required scope of anan is much
richer than just navigating data structures. Instead, a global view of a clus-
ter needs to be assumed. Additionally, the user should never be restricted
in his choice of possible variables to be measured. The following workflow
needs to be supported:

1. Find (symptoms of) faulty behaviour.

2. Develop a theory about possible reasons.

3. Based on the theory, predict the system’s behaviour.

4. Perform measurements to falsify the theory. (In case of success, goto
step #2.)

5. Accept the theory once the user is sufficiently convinced.

6. React based on the theory.

Step #1 is outside of anan’s scope — if a compute cluster behaves as
it is supposed to, no debugging is necessary. Likewise, step #6 is mostly
outside of anan’s scope, although some small interventions might be taken
directly from anan. Steps #2, #3 and #5 are an application of the scientific
method [Popper, 1989] to debugging compute clusters. (Of course, many

21

more approaches to science exist, each leading to a different method of
debugging. Also, following the purist approach, theories can never be ac-
cepted, only rejected. This is clearly unhelpful in practice.) Only in step #4,
software tooling is required. This step is anan’s place in the workflow.

Scope of measurements with anan. Since anan is a software tool, any-
thing it measures needs to reach it via software. This is mostly the oper-
ating system’s task because anan operates in user space. If issues of hard-
ware are to be considered, the operating system has to support this type
of measurement. Even with anan, measuring a fan’s speed remains im-
possible as long as the kernel has no access to the fan’s speed. Likewise, if
the kernel does not present correct information, anan cannot show mean-
ingful data. The tool anan is not guaranteed to work in the presence of
broken operating systems or low-level hardware failure. Other than these
two cases, anan must support every possible data source, even if not out
of the box.

Similarly, the collected raw data may need cleaning and additional an-
alytical steps. Since there are many rich toolboxes such as Matlab [Schwei-
zer, 2016], Mathematica [Wolfram, 1991] or even Microsoft Excel, anan of-
fers only the most elementary functions for data analysis, relegating ev-
erything else to more specialised tools. The main feature enabling this is
export into simple and standardised formats such as CSV [Shafranovich,
2005].

Finally, anan should never interfere with any part of the system un-
der consideration and thereby interrupt normal (or even buggy) opera-
tion. This cannot be achieved to the fullest extent: A pure (side-effect free)
program cannot do anything. Instead, the software parts of anan should
minimise their use of resources. This directly contradicts the main goal of
anan: the ability to swiftly measure anything the user requests. The chosen
trade-off will be presented in the section on p. 61. Similarly, usability and
diversity of feature are usually contradictions. Here, the line of trade-off
is less clear.

The plan for this thesis. The project anan is closely related to the fol-
lowing three fields:

• software debugging;

• monitoring;

• high-performance computing.

It is therefore necessary to give a brief overview of the state of the art.
In order to avoid exceeding the scope, pointers to standard reference are

22

given, along with an excerpt of some ideas of specific importance for anan.
Then, the tools are discussed and motivated which were used to develop
anan, leading into an overview of the implementation techniques. A full ref-
erence can be found on p. 95. The results of using anan in different contexts
can be grouped in two parts:

• synthetic benchmarks: How efficiently does the tool use certain resour-
ces?

• practical benchmarks: How good is the tool for a specific task?

Since anan is a new kind of tool, the results need careful interpretation
in order to assess the merits of both the new class and this particular inter-
pretation. Also, some other findings reached during the benchmarks are
outlined in broad strokes.

Main results. It is hardly possible to give a convincing summary about
something not yet presented. Nevertheless, the two main results can be
hinted at:

1. On a technical level, anan fulfils the requirements for both a cluster
monitoring and a debugging tool. Anything which the curious user
might ask about a compute cluster can be measured or calculated by
anan.

2. On a practical level, it remains unclear (although somewhat plau-
sible) if the approach of cluster debugging and the implementation
anan are sound approaches.

23

Part II

State of the Art

24

Introduction. This thesis occupies a spot at the intersection of clus-
ter computing, (single-threaded) software debugging and monitoring or
quality control. The result is a single-node software which can be used for
debugging and related tasks such as monitoring.

First cluster debugger. To the author’s best knowledge, anan is the first
implementation of a cluster debugger. (He would very much appreciate to
be informed of other implementations or other prior art.) Accordingly, the
state of the art is anan itself. Instead of referring to other implementations
of this concept, a short review shall be given of the main ideas of cluster
computing; monitoring; debugging (in increasing degree of detail).

25

Chapter 7

Clusters

Introduction. The grandfather of cluster computing may well be the
original Beowulf cluster [Becker et al., 1995]. The difference from previous
attempts at large-scale computation is that commodity hardware is used:

• Cheap FLOPS. When the considered problem can be parallelised
well, it is more economical and may be more efficient to buy hard-
ware optimised for FLOPS per unit of money. Nevertheless, the sys-
tem has to remain homogeneous.

• Many CPUs. That involves adding as many computational units
(this today includes GPUs and possibly FPGA or ASIC cards) to each
node. This helps reduce the price and keeps communication between
nodes low.

• TCP/IP over Ethernet. Although the original Beowulf used UDP/IP
over Ethernet, TCP/IP has become standard for many applications
in high performance computing. The important point is not the deci-
sion for a specific networking stack, but rather for a standard stack.
This may include InfiniBand today.

• UNIX. Today, UNIX survives mostly as Linux (together with several
descendants of BSD which are not relevant in high performance com-
puting). Again, the more economical (and arguably easier to use)
option is chosen. A similar attitude is taken with regards to the user
land and application software.

This paradigm is not the only one in use today, although it may be
dominant. Therefore, anan can not assume it is running on a homoge-
neous system (see, e. g. some experiences with embedded systems on

26

p. 71). Similarly, the vast majority of high performance computation has
a scientific background. Nevertheless, no application can be ruled out.
(Neither assumption was found to influence anan’s design greatly.)

There is much more to be said about both Beowulf and other architec-
tures and many more aspects of high performance computing [Hager and
Wellein, 2010].

27

Chapter 8

Monitoring

Introduction. Since anan does not attempt to advance the state of the
art with regards to monitoring, this section can be kept short. Most of
its material is based on the surveys [Aceto et al., 2013, Tamburri et al.,
2020, Fatema et al., 2014]. As will be discussed shortly, monitoring is a
field that does not favour peer reviewed journal articles, let alone scholarly
monographs. Therefore, the review is necessarily scarce and fragmented.

Scope of monitoring. There are different users of monitoring, amongst
them

1. providers of cloud services;

2. operators of data centres (“collocation centres”, “server hotels”);

3. users of cloud services.

Accordingly, different properties are of different importance ([Aceto
et al., 2013, §5]), e. g.

• scalability: how well does the monitoring system deal with too many
sensor values;

• elasticity: how well does it deal with wildly fluctuating sensor val-
ues;

• adaptability: does the system interfere with normal operation, lead-
ing to “Heisenbugs” [Weissenbacher, 2012], [Agans, 2002, chapter 5];

(See [Aceto et al., 2013, §5] for the complete list.)
A trend towards higher dynamics, extensibility and richer visualisa-

tion can be found. Most likely, this is the result of two past developments:

28

• Increase in computational power available for monitoring;

• more flexible software platforms accessible (e. g. web browser based
applications implemented in “HTML5”).

Classification (“Taxonomy”). The Stanford Linear Accelerator Cen-
ter has been maintaining the list of (network) monitoring tools at https:
//www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html for over two de-
cades. [Fatema et al., 2014] sees a trend from general-purpose to (specific)
Cloud monitoring. This does not only mean that the tool measures fewer
lower-level data points, it might also lead to application-specific data: A
tool called “AzureWatch” (as of November 2021 available as “CloudMo-
nix” at https://cloudmonix.com/aw/) can only be used sensibly with Mi-
crosoft Azure. This is by far not the only such example. Therefore, the first
dimension for the classification is the type of cloud which can be moni-
tored (this includes the distinction between general and single-purpose).
This distinction is found to be correlated strongly with other variables:

• General-purpose cloud monitoring tools are less feature-full in gen-
eral (they are less “adaptable”, less efficient, less robust etc.) but
more extensible, scalable, interoperable.

• Proprietary cloud monitoring tools are more feature-full in general
but are less extensible and interoperable.

For obvious reasons, it cannot realistically be expected that a general-
purpose tool is as efficient as a proprietary tool and vice versa (which is
why [Fatema et al., 2014, §8.1] does not list this as future work).

Monitoring in the wild. [Tamburri et al., 2020] is a quantitative study
of monitoring in the industry. The core question — split into eight smaller
questions — is if monitoring is used adequately. The study found (“Find-
ings 1–8”):

1. Monitoring is rarely seen as relevant.

2. It is performed manually or with ad-hoc tools.

3. Involving non-IT personnel in incident management is harmful.

4. Incidents are often handled manually.

5. Monitoring is not considered important by management; therefore,
tools require long learning and are hard to use.

29

https://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
https://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
https://cloudmonix.com/aw/

6. More complex cloud architectures seem to be somewhat more reli-
able. This finding is not entirely clear.

7. More complex cloud architecture may require (and does have) more
and better monitoring.

In discussing the existing literature about monitoring, [Tamburri et al.,
2020, §6.1] concludes:

From our preliminary analysis of the literature, the existing so-
lutions are fragmentary and the field is rather immature; the
present literature is not organic and there is no apparent conti-
nuity between the gray and research literatures.

The term grey (or gray) literature refers to all informal (i. e. not only peer
reviewed) literature and even oral statements. This source of knowledge
has been overlooked traditionally, although it is useful in applied sciences.
See, e. g. [Paez, 2017] for the importance of grey literature in medicine and
[Mathews, 2004] in computer science. Obviously, only a minute part of
work being done in the fields of monitoring and debugging is ever pub-
lished, be it informal or in peer reviewed journals. A review of grey liter-
ature requires substantially more work because there is no formal way of
gathering the relevant sources. With peer reviewed literature, most rele-
vant material is gathered in a handful of journals. Grey literature might be
scattered in blog posts, technical memoranda, lecture notes or conference
proceedings.

The conclusion states:

Our results offer a glimpse of the untapped potential behind
using more structured approaches for cloud applications mon-
itoring and continuous quality improvement.

This sounds like an allusion to anan’s goal.
Summary. Monitoring has to be everything to everyone, find issues be-

fore they happen and be so easy to use that it needs no user. Of course, the
reality is the exact opposite: Monitoring is always specialised, it can only
react to past events (which have to be specified precisely in advance) and
requires a trained operator with a general understanding of all involved
technologies and the system’s architecture. A tool like anan cannot solve
this disparity fully.

30

Chapter 9

Debugging

By June 1949, people had begun to realize that it was not so
easy to get a program right as had at one time appeared. It
was on one of my journeys between the EDSAC room and the
punching equipment that the realization came over me with
full force that a good part of the remainder of my life was going
to be spent in finding errors in my own programs. [Gillmor,
1987]

Introduction. The problem of grey literature holds in a similar way
as in the case of monitoring. It may be even worse: As per the introduc-
tory quotation, debugging is as old as programming*. Since monitoring is
used mostly in the context of large-scale computation, the scope of debug-
ging is also larger than that of debugging. There is much “folklore” and
tricks passed down from generation to generation. Nevertheless, some of
it appears in the formal literature and will be summarised here.

Learn these n tricks. Although [Agans, 2002] does not state it as blunt-
ly, debugging is really simple once some tricks are applied. [Agans, 2002]
proposes the following “debugging rules” (which he calls “DEBUGGING
RULES!”):

1. Understand the system.

2. Make it fail.
*Maurice Wilkes — from whose memoirs the quotation is taken — is considered

to be one of the first programmers in history. Since this thesis does not focus on the
history of computing, it should only be mentioned in passing that Ada Lovelace’s —
who is also sometimes mentioned in this capacity — programs were not executed on a
stored-program computer and therefore should not constitute programming in the mod-
ern sense.

31

3. Quit thinking and look.

4. Divide and conquer.

5. Change one thing at a time.

6. Keep an audit trail.

7. Check the plug.

8. Get a fresh view.

9. If you didn’t fix it, it ain’t fixed.

These nine instructions are clearly helpful for finding bugs, removing
them and ascertaining correct behaviour afterwards. The following criti-
cism is partly due to the age of [Agans, 2002]:

• Complete understanding is not possible anymore. This text book
was written at the heyday of the “dotcom bubble”. Even very com-
plex systems from the late 90’s pale in comparison to today’s com-
modity systems and certainly compute clusters with several layers
of abstraction. Rule #1, “understand the system”, requires reading
the relevant manuals and data sheets “cover to cover”. This is not
practical anymore. Unless it is precisely known where an error is
to be found, this hint is impossible to execute. If a WiFi modem is
attached via USB to a laptop of a certain brand running a certain
operating system and some error condition appears with regards to
networking, any of these technologies (including the laptop’s BIOS,
CPU, PCI bus, memory and cache system, operating system, drivers,
user land etc.) could be at fault. The relevant manuals fill tens of
thousands of pages.

• Bad or complex design. Most of the examples include systems de-
signed in an “electrical engineering style”: Small, well understood
boxes (such as transistors and resistors) are connected in standard-
ised ways into bigger boxes (such as DC converters and op-amps)
and finally the complete system. In the previous paragraph’s exam-
ple, a part of the complete system ”broken network” is designed in
this way, namely the hardware. This way of abstraction is not used
for the software. Instead, the typical paradigm is layering abstrac-
tions: A web application runs in a web browser in a operating sys-
tem’s user land; the operating system was loaded by a boot loader

32

which was prepared and run by a BIOS. (But see [Herder et al., 2006]
for a modular approach which apparently turned out to be a dead
end.) Even the BIOS is not necessarily the first code run after a cold
boot. These layers cannot be separated as cleanly as the electrical
engineer’s boxes. In fact, the layers are often not adhered to: For
reasons of better performance, some hardware appliances use direct
memory access. They bypass the “official” path via hardware inter-
rupts and processing by the operating system. Rules #4 and #5 do
not make sense in a complex setting where the system’s parts are
“complected” with each other instead of being easily separated.

• No logs. Many of the examples (“war stories”) assume elaborate
logging to be present. This cannot be taken for granted anymore.
In fact, much software has only a very limited set of log messages
which can be produced. Essential information cannot be extracted
from the software without rebuilding it — which is impossible for
many use cases. Of course, this does not apply to software which the
user develops and debugs for himself.

Debugging based on the scientific method. The scientific method
[Popper, 1989] is the basis of debugging. In fact, according to [Metzger,
2004], a single science or craft is insufficient. The following “ways” are
required:

1. The way of the detective;

2. the way of the mathematician;

3. the way of the safety expert;

4. the way of the psychologist;

5. the way of the computer scientist.

6. the way of the engineer.

Amusingly, both [Agans, 2002] and [Metzger, 2004] are fond of citing
Sherlock Holmes as a prime example of an effective approach to debug-
ging.* — The six ways are more specific for software than the nine rules

*The author does not believe this to be accurate at all. Since detective fiction is not
even tangentially relevant to this thesis, this argument is kept as short as possible: De-
tective fiction is written with the solution in mind. First, the crime is constructed. Then,
a few hints are chosen. In order to weave the story’s plot, this material is presented to-
gether with the detective’s personality. With this trick, the author can present an almost
omniscient personality who is more intelligent than the author and most readers [Stein,
1995].

33

in [Agans, 2002] and can be applied in cases where the nine rules can-
not. Some of the criticism can be alleviated by this. Strictly following the
“ways” is helpful only for single-level problems, e. g. a fault in a single
program. If several levels interact and therefore, there is a large distance
between symptoms and root cause, the approach is less applicable. Nev-
ertheless, for the limited domain of debugging single-threaded programs,
the approaches presented by [Agans, 2002] and [Metzger, 2004] are prob-
ably nearly optimal.

Debugging in the wild. The study [Perscheid et al., 2017] pursues two
goals:

1. Review the recent literature about debugging;

2. study the practice of debugging in the industry with a mostly quan-
titative approach.

The study admits about the first goal:

Henry Lieberman had to say that ”Debugging is still, as it was
30 years ago, largely a matter of trial and error.”

(The citation refers to [Lieberman, 1997].) Nevertheless, his literature
review gives a great overview of the research landscape.

Regarding the second goal, it is almost impossible to summarise the
findings without gross distortions. The following statements, therefore,
are to be taken as sweeping generalisations from [Perscheid et al., 2017,
§3.3].

1. Debugging is not taught anywhere. In the best case, it is learned “by
osmosis” while observing more experienced coders at work. Pos-
sibly, in recent times, universities started mentioning debugging in
their courses.

2. The general method is similar to the scientific method, based on
theories which can be disproved (“the bug is not in a certain piece
of code or a certain subsystem”). No “scientific” tools such as lab
books are used, let alone digital tools such as wikis.

3. Hypotheses are formulated (and accordingly disproved) as early as
possible.

4. Symbolic debuggers are used almost universally. The ancient tech-
nique of inserting printf statements is not preferred.

34

5. Almost no-one understands more than the most elementary features
of debuggers. Especially back-in-time debuggers (see p. 36) and static
analysis are unknown.

6. There is almost no correlation between programming language and
type of debugging tool used.

7. Debugging takes a lot of time. Bugs are everywhere, although most
of them are easily found.

8. Most people agree debugging did not become harder in the past ten
years.

9. The hardest bugs could not have been found by (direct application
of) the methods presented in [Agans, 2002] and [Metzger, 2004]. Spe-
cial-purpose tools (e. g. memory debuggers such as valgrind) are
very helpful, though.

10. Learning from past mistakes is helpful. People do not like doing that.

11. Test-driven development is far less helpful than expected.

An ad-hoc classification of debugging techniques. This is a list of
debugging tools as encountered by the author. For every tool, its applica-
bility to cluster debugging shall be assessed.

• Tracing via (manually inserted) printf statements. This technique
stems from the time when printf literally meant printing on paper.
It is applicable in every system with some means of outputting data
to the user. The closest cognate in cluster debugging is probably log
files.

• Tracing via built-in execution tracer. A tracer prints the line of code
being executed. It may also interpolate the variables in that line.
Since this creates immense amounts of output, this tool is rarely
used in general-purpose programming. (Also, a tracer needs to be
implemented from scratch for each programming language.) A typi-
cal niche for this technique is scripting languages with an unusually
complicated syntax and semantics such as the UNIX shell. If a shell
script has a relatively short suspicious part, using set +x and set -x

to enable and disable tracing sometimes is helpful. The closest cog-
nate in cluster debugging is selectively enabling or disabling verbose
logging modes in specific tools. Detailed monitoring also qualifies.

35

• Tracing via hardware traps. Most modern computing hardware has
built-in support for debugging. Special code can be executed trig-
gered by events such as

– register value changed;

– RAM location read or written;

– program counter reached a certain address;

– illegal instruction or operation executed.

Most symbolic debuggers use hardware traps. This requires very so-
phisticated code to support the corresponding hardware, operating
system and all of its binary and linking formats. A similar tool does
not exist for clusters. The most similar technique is implemented via
alerting the user based on events occurring at single nodes. Another
similarity can be found in special hardware enabling remote access
to the production hardware such as IPMI [int, 2013].

• Omniscient debugging. A less blatant term is back-in-time debug-
ging. This is usually implemented as an add-on to a symbolic de-
bugger and somewhat similar in usage to reading an execution trace.
While running the program, the debugger periodically stores a part
of the program’s state in memory. If the debugger is stopped at,
e. g. the line x = y + z; and the user learns that y and z have un-
expected values, he can ask the back-in-time debugger where these
values have been set. (The same information could have been found
by searching an execution trace which clearly is less convenient.)

The notion of omniscient debugging does not really make sense in
the context of debugging a cluster. The closest cognate is replaying
logs and monitoring data. It is very apparent that there is a huge gap
in usability between reading execution traces and using a back-in-
time debugger. A similar gap exists with regards to cluster debug-
ging.

36

Part III

anan: analyse and navigate

37

Introduction. This thesis is not an engineering report. Any techni-
cal issues are being discussed only when novel solutions are proposed
or a non-obvious solution (out of several standard approaches) is chosen.
Therefore, no complete presentation of anan is given.

Note: The tool anan consists of two binaries, called anan and anand. If
there ever is a risk of conflating the tool and its binaries, the words “tool”
or “binary” are given to disambiguate.

The first section (chapter 10) discusses the choice of technologies for
most aspects of anan; the second section (chapter 11) discusses the actual
implementation of anan. Naturally, the tooling around anan cannot be dis-
cussed independently. For this reason, these sections refer to each other
recursively.

38

Chapter 10

Existing Technologies and Tools

Overview. The most important question is which programming plat-
form (including the programming language) to chose. Based on this, it is
usually easy to find surrounding helpers (such as libraries or build and
documentation tools).

10.1 Programming Language Lua 5.3

Much of the material in this subsection is based on [de Figueiredo et al.,
2017, Ierusalimschy, 2016].

Note: Versioning. The languages in the Lua family are closely related,
but nevertheless incompatible programming languages. Once a project
decides to choose Lua 5.1, an “update” to version 5.2 is not an update, but
rather a rewrite with the advantage that much code can be reused. The
term “version” does not apply to Lua versions in a similar way as it does to
most other programming languages. Accordingly, code is usually written
to run under exactly one version. Backwards or forwards compatibility is
a feature which requires careful planning. Henceforth, the term Lua refers
to Lua 5.3 except when explicitly noted otherwise.

New versions of Lua are released whenever the developers decide they
want to do so; there is no fixed release schedule. When the first prepara-
tions for implementing anan started, Lua 5.3 was the most recent version
published. Although there were already first alpha versions of the then-
upcoming Lua 5.4, settling on a moving target was considered an unwise
choice. Therefore, then’s stable version 5.3 was chosen. Viewing the dif-
ferences between these two versions, even today there is no good reason
to switch.

Overview about Lua. Lua 5.3 is a lightweight imperative program-

39

ming language. The source distribution is a few hundred kilobytes in size
(under 20 kLOC, including headers and comments) and implemented in
the subset of C which also compiles as C++. For reasons of portability,
by default, only C features available in the ANSI C standard are compiled
into Lua, although on Linux and other POSIX compatible platforms, a few
more features (such as the dynamic linker) are available. Lua strives for
utmost minimalism: There is only one way to structure data (a mixture
of array and hash table called “table”) and only a few ways to organise
control flow, although goto is available [Dijkstra, 1968].

Scripting. The reference manual [de Figueiredo et al., 2017, §1] calls
Lua a scripting language. Commonly, the opposite of scripting is called
“systems programming”: Scripts are throw-away tools developed quickly
and without too much regard to efficient resource usage, elegance or re-
usability. The only goal of “scripting” in the most narrow sense is to solve
the exact problem on hand and forget about it. Lua allows this style of
programming. In fact, this is the correct mode of operation for a debugger:
Any command issued to a debugger is a minuscule throw-away program.
The scripting nature of Lua shows in the following ways:

• No compilation. Lua is interpreted from source (after compilation
to bytecode), the interpreter is available at runtime. Code can be
changed and generated at runtime, allowing high flexibility. It will
be seen later in chapter 11 how this property is enabling anan’s work
flow.

• Garbage collection. Resources like memory, file descriptors or data-
base handles are freed once they become inaccessible [de Figueiredo
et al., 2017, §2.5]. This happens in a conservative manner: Only once
the garbage collector can prove that the “mutator” (the program ma-
nipulating the resources subject to collection) can never access the
resource, the resource is put on a list of objects to be collected. Even-
tually, all resources will be freed (this is guaranteed by Lua’s garbage
collector), unless the program crashes. But garbage collection is in-
herently lazy: A resource may be freed much later than possible.
Therefore, a Lua programmer still needs to exert some care with re-
gards to resource usage.

• Duck typing. “Duck typing was named after the ‘duck test’, by
James Whitcomb Riley: ‘When I see a bird that walks like a duck and
swims like a duck and quacks like a duck, I call that bird a duck’”
[Milojkovic et al., 2017]. In plain words: Types are not declared to

40

the compiler or interpreter. Instead, whenever an operation is at-
tempted with a value, it is the programmer’s task to make sure the
value can perform that operation.

Lua does not allow to declare types for variables. Instead, values have
types. This removes some of the bureaucracy needed in statically
typed programming languages such as C. For an interactive program
where the user should know the types of all data he is operating
with, duck typing is an ideal fit.

• Syntactic sugar. Short or mnemonic or otherwise special notation for
features with otherwise uniform syntax is sometimes called syntac-
tic sugar. A famous example is the notation i++ in C and related
languages for the more verbose i = i + 1. This phenomenon is
purely related to syntax; one cannot say that C is “syntactic sugar”
for assembly language because the translation from C to assembly
language is not trivial. — Lua offers special (short) syntax for lit-
eral values such as complex table structures [de Figueiredo et al.,
2017, §3.4.9] and object oriented programming [Ierusalimschy, 2016,
chapter 21]. Short notations for commonly used operations are con-
venient for an interactive program. In the best case, Lua itself can be
used as the interactive language for anan. (In fact, there was never
any need for another “interactive shell” language for anan because
Lua was already deemed sufficiently concise.)

• Dynamic and extensible. Scripting languages tend to enable a higher
degree of dynamics than compiled languages. The expression x+y in
C has one of the following exactly two meanings:

– integer addition

– floating point addition.

Moreover, the compiler is able to decide the meaning and generate
corresponding code. Conversely, in C++, the operator + can be over-
loaded. Depending on the precise way of overloading the operator,
the compiler might generate code which looks for the corresponding
meaning only at runtime. Thus, not even the compiler knows what
code x+y will run. C++ is more dynamic than C.

Lua is even more dynamic than C++. The following are some exam-
ples of Lua’s dynamic nature:

41

– Metatables. Every data type (except for nil) can have a metat-
able [de Figueiredo et al., 2017, §2.4]: a data structure which con-
trols what happens in otherwise undefined situations. Metata-
bles generalise operator overloading. More examples such as
several implementations of object oriented programming (in-
cluding multiple inheritance) or alternative module systems can
be found in [Ierusalimschy, 2016, chapter 20].

– Environments. Lua does not have global variables. Instead,
in the default configuration, variables which are not defined to
be local behave much like global variables in other lexically
scoped programming languages. This default global environ-
ment can be replaced by another table. Using this facility, a block
of code can be understood to run in a different context, e. g.
a context in which undefined variables (normally nil-valued)
yield error messages. Another example could be helper vari-
ables which automatically come into living based on other vari-
ables.

– eval. Scripting languages often have a function eval() which
calls the interpreter on an arbitrary string. A similar facility is
available in Lua. This facility is perhaps the most dynamic fea-
ture conceivable in programming languages. It allows the im-
plementation of tiny embedded languages. This feature is es-
sential for an extensible tool like anan.

• Weak performance. Almost all scripting languages are slow. The
main reasons are:

– Interpreted, not compiled language;

– high degree of introspection, dynamics, extensibility;

– garbage collection.

Lua has all of these features. Since they are highly important for
anan, this means that anan can hardly compete with special-purpose
debugging tools and should not try to do so. Nevertheless, there are
two ways to speed up anan if this should prove necessary:

1. Native code. Lua can be extended by native code implemented
in C or C++ [de Figueiredo et al., 2017, §4], [Ierusalimschy, 2016,
part IV]. The API is rich enough to allow even features such as
threading to be added as a (small) loadable library [Fernández,

42

2016]. Additionally, it is a truism that slow code typically has a
small number of hot-spots: tight loops which benefit most from
translation to native code. If such hot-spots were to be found in
anan, it is likely they could be translated to C quickly.

2. Just-in-time compilation. This is really the same idea as in (1)
but the implementation is very different: The program is inter-
preted as usually, except that it is instrumented to find hot-spots
automatically. Once a hot-spot is identified, it is compiled to
native code. Since at runtime, there is more information avail-
able about the hot-spot than at compilation time, the just-in-
time compiler can optimise the hot-spot better than the ahead-
of-time compiler could ever do. There are a few reports about
cases where just-in-time compiled code runs faster than com-
piled code.

Since anan does not need to perform huge computations, it is a priori
unlikely that its performance would become critical. It is, however,
expected that higher (single-core) performance means more systems
can be debugged with more sensors at the same time.

If performance should ever become an issue, the Lua implementa-
tion luajit [Pall, 2008] can be used instead. No attempt has been
made to find out if luajit does in fact run anan unchanged. Since
luajit’s implementation is tightly coupled to the CPU and operat-
ing system it runs on, this would make anan vastly less portable.

10.2 Protocol Layer

Overview. The following functionalities are required for the commu-
nication between anan and anand:

• serialisation

• optionally: compression

• cryptography

Serialisation. There is a number of standard serialisation schemata (for
most of which there is Lua tooling available):

• XML [Bray et al., 2006]

43

• JSON [Bray, 2017]

• ASN.1 [Barry, 1992, rec, 1988]

The first two are text based languages, the latter is a family of “encod-
ing rules” of which most are binary.

Not ASN.1. Naturally, ASN.1 (especially when using “packed encod-
ing rules”) is much tighter than any text based encoding. On the other
hand, ASN.1 requires each message to conform to a scheme. Without the
scheme, a message cannot be parsed. Although this is also true for XML
in a very limited sense (namely that entities cannot be resolved without
the document type definition), real-world XML fragments and all JSON
datasets can be parsed without reference to schemata. This rules out ASN.1:
With ASN.1, all sensors have to either specify their schema (unnecessary
bureaucracy) or conform to one of a limit set of schemata (too strong re-
striction of flexibility).

Not XML. The “X” in XML means extensible. In fact, XML has a stun-
ning degree of extensibility: An entirely normal modus operandi consists
of taking XHTML (the XML version of HTML), embedding scalable vec-
tor graphics [Ferraiolo et al., 2000] and XSLT templates [Clark et al., 1999]
and processing them in some way. The processing application likely uses
XML’s elaborate namespace mechanisms to keep the distinct languages
apart.

Additionally, XML offers redundant features such as attributes. The
following fragments are equivalent ways of expressing the same data:

1 <group>

2 <k1>v1</k1>

3 <k2>v2</k2>

4 <k3>v3</k3>

5 </group>

and

1 <group k1="v1" k2="v2" k3="v3"/>

and

1 <group>

2 <entry k="k1" v="v1">

3 <entry k="k2" v="v2">

4 <entry k="k3" v="v3">

5 </group>

44

To XML experts, these three ways may mean slightly different things.
If anan chose XML as serialisation format, it would need to distinguish
between these three (and any other imaginable encoding) or support some
sort of normalisation.

Not quite JSON. In JSON, there is only one (sensible) way of express-
ing the above-mentioned datum:

1 {

2 "k1": "v1",

3 "k2": "v2",

4 "k3": "v3"

5 }

Lua has a natural way of deserialising data from its literal syntax [de Fi-
gueiredo et al., 2017, §3.1; §3.4.9]. There are libraries to serialise into this
syntax. These observations (and some possible, though not likely com-
plications with JSON described on p. 66) are the main reason why Lua’s
native syntax was chosen over JSON.

Compression. The most popular choice is zlib [Gailly and Adler,
2004]. It is neither the fastest nor the best compression nor a fair com-
promise between both (which is currently best achieved with [Collet and
Kucherawy, 2018, Vladyka, 2018]). A quick measurement found that com-
pression and decompression speeds range in the dozens of megabytes per
second. This speed is certainly sufficient for anan. Considering that com-
pression is only rarely required, the actual compression rates achieved by
zlib are immaterial. (It is not entirely obvious if after compression, text-
based notations like Lua’s literal syntax are more or less space efficient
than binary notations like ASN.1 with “packed encoding rules”.)

Cryptography. The standard choice to ensure encryption, data inte-
grity and authentication between server and client is TLS [Rescorla and
Dierks, 2018]. There are probably dozens of high-quality implementations
of TLS. Many of them are free and open software and easily accessible
from Lua. Additionally, some network tools such as tcpdump understand
TLS and can inspect the data stream when given the private keys. On the
other hand, TLS is very complex and requires some non-trivial setup (key
and certificate management). Therefore, the library NaCl (pronounced
“salt”) was chosen, specifically the implementation TweetNaCl [Bernstein
et al., 2014]. This library provides encryption, integrity and authentication
with very little bureaucracy (for the importance of this, see chapter 15) and
is reasonably fast. A possible security hole is discussed on p. 54.

45

10.3 Deployment via GNU autotools

Introduction. Installing and configuring software is a tedious but es-
sential step before using it. Different distributions of Linux have con-
verged to different package formats and conventions. Other operating
systems have their own facilities. Finally, there are some cross-platform
packaging tools which purport to support “all” (common) operating sys-
tems. It is a herculean task to create packages and build recipes for all these
tools. Instead, the focus was on creating a source distribution which a
package maintainer can easily can turn into whatever format is preferred.

configure scripts. The standard procedure under UNIX and derived
systems for building and installing software is the incantation

./configure ; make ; make install

The configure script tries to find out the relevant information in order
to prepare a Makefile which specifies how to build and install the soft-
ware. Traditionally, configure scripts have been written manually. Today,
there is a group of tools collectively called “autotools” [Vaughan et al.,
1999] which generate the configure script based on a short description of
the project to be built. Almost all software package repositories know how
to deal with “autotools” based packages.

Compiling Lua code. Lua is an interpreted language. It is advanta-
geous to deploy anan and anand as statically linked executable objects for
the following reasons:

• The tools should run on the target systems with minimal require-
ments.

• They should not interfere with any other installed software.

• No update of the target system should break anan.

• The binaries should not have any preference where should to be in-
stalled or executed.

In Lua’s ecosystem, there is tooling which automatically does the fol-
lowing:

• Gather a program’s sources;

• gather a program’s binary objects (static libraries);

• find Lua’s executable’s binary object;

46

• create some boilerplate to glue all these together.

This process can be plugged into the configure script. Depending on
the build environment, some or all facilities presented by POSIX can be
compiled into anan. Since partial compliance to POSIX is rare — an envi-
ronment is either (almost) fully compliant or not at all —, no effort has
been made to automatically check for each feature and generate corre-
sponding code.

Bring your own source. The (autotools-generated) source distribu-
tion of anan brings its own copy of all necessary libraries except for the
libc. Although this may restrict the licensability of anan (some libraries
are licensed under the GNU Public License which “infects” everything
linked to it), this is not problematic as long as the original license is not re-
moved. This also makes anan more self-sufficient and thereby more easily
deployed.

Configuration (“run control file”). Every user of anan and every site
using it are likely to want their specific configuration. This includes site-
specific or project-specific queries and data-sources. To make this trivially
easy, it was decided that both anan and anand expect their configuration
to be the Lua script ./init.lua relative to the current directory. Due to
this choice, arbitrary configuration actions (including recursive inclusion
of more configuration scripts) can be performed at startup. The existence
of a init.lua is, however, not required.

10.4 SQLite

Introduction. Software debuggers do not persist all data by default.
Typically, there are elaborate commands to dump memory areas and other
structures in every relevant format. Storing this data to files comes as
an after-thought. Loading it into the debugger (or other tools) for fur-
ther scrutiny is a rare activity. Hardware debuggers tend to write their
data into on-chip memory and consider this sufficiently persistent. De-
buggers and databases do not typically pair. Once anan was used as a
(makeshift) monitoring tool, it had to store its data in some persistent
place. A database seemed like a good choice for that. After the database
was set up, it became clear that a database is vastly more convenient to
use than the facilities described in [Adler and Kebschull, 2020] (see p. 56
for a summary on the issues). — Most of the material in this subsection is
based on SQLite’s official documentation.

47

History of SQLite. SQLite was originally conceived as an extension
for the “Tool Command Language” TCL. In the given use case, some tool
was required which was in between a simple key-value store and a full-
blown relational database management system (RDBM). On one hand,
complex queries as with RDBMs were needed. On the other hand, the
laborious setup as with then’s (and similarly today’s RDBMs) was pro-
hibitive. Quickly, most features of SQL 92 [mel, 1992] were added, closely
following the example of PostgreSQL [Stonebraker and Rowe, 1986] (from
which many non-standard additions were learned). As a result, SQLite is
certainly the most-often deployed database. According to https://www.

sqlite.org/mostdeployed.html, accessed on October 27th 2021, “SQLite
is the second mostly [sic] widely deployed software library, after libz”.

Some relevant features. The following aspects of SQLite made it rea-
sonable to add SQLite (in favour of other databases) to anan:

• Single file. SQLite stores the whole database as a single file on the
file system (although an open database may need up to two addi-
tional files). This is the basis for most of the following points.

• No client-server architecture. Since every access to the database
happens via the operating system’s IO layer, there is no database
server. Every “client” opens (and locks) the database file and reads
or writes as it sees fit without requiring network or inter-process
communication. The lack of a server greatly simplifies the setup of
an SQLite database and basically removes the need to do any main-
tenance. This obviously is a requirement for easy adoption, the main
feature in connection with anan.

• Weak concurrency. Unlimited concurrent reads are possible, but
only one write at the same time. A server could schedule requests
such that multiple concurrent reads and writes are possible. But
since SQLite rejects the server-client architecture, only a well thought-
out system of locking the database file can be used to ensure data va-
lidity under all circumstances [Härder and Reuter, 1994]. In anan’s
case, some missing or erroneous entries do not hurt too much. Still,
the database must never become corrupted.

The introduction of a write-ahead journal has alleviated much of the
trouble with concurrent writes. On commodity hardware, millions
of inserts per second are not unheard of.

• Language bindings. There are several adapter libraries for Lua 5.3,
although Lua’s ecosystem is often weak in libraries. The chosen li-

48

https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html

brary provides a thin layer on top of the official API in C. By clever
use of Lua’s introspection abilities, most queries can be written in a
natural style. An example:

1 db:query('SELECT name, age, temperature FROM thermal1

2 WHERE name LIKE ? AND temperature BETWEEN ? AND ?',

3 name_pattern, min, max)

Of course, this coding style is not suitable for interactive use. — A
more “introspective” style would have written :name pattern, :min,
:max instead of the question mark ? and relied on variables of the
respective names in the enclosing scope.

• Sloppy typing. Owing to the scripting nature of TCL, SQLite has a
tendency to be more dynamic when it comes to typing of columns.
SQL advises the database to give each column of each table a type.
Once the column AGE is defined to be a non-negative integer, storing
the string "42" in that column should yield some sort of error condi-
tion (and certainly the attempt with the string "forty-two"). By de-
fault, SQLite ignores this restriction: As in a dynamic programming
language, not the variable (the column) has a type, but the value
stored in the variable. Just like the variable age in a dynamic lan-
guage can store any type of value at any given time, in SQLite, any
column can have any value. This feature avoids type mismatches
between anan and SQLite.

• No access control. Since SQLite should not require any setup, access
control cannot be implemented on a database-level. Anyone who
can open the database file can do anything he wants to it, be it via
SQLite’s API or raw file access. Therefore, access control can not be
meaningfully implemented. This takes away some complexity with
regards to setting up and moving databases.

• JSON support. If performance was of high important, then nor-
malising the database to comply with at least the first normal form
[Codd, 1983] would be required. But most of the time (and always
in interactive settings), query performance is less important than
expressive power. In the tiny case study on p. 68, it was conve-
nient to encode some dataset as a JSON array of strings stored in
a database cell (the normal, much faster solution would be one of
several schemes involving an additional table with foreign keys —

49

depending on whether reads or writes are more frequent). There-
fore, SQLite’s built-in support for JSON (and especially the fact that
JSON-based expressions can be used in views) comes very handy.
Any support for JSON from Lua’s side is certainly helpful but does
not aid in formulating SQL queries — for this, only built-in support
is relevant.

• Modern “standard” features. Certain features are almost consid-
ered granted today, although they require much background work.
Amongst them are:

– Unicode support;

– no artificial limits (file size, number of rows, columns etc.);

– strings may contain arbitrary bytes (including null bytes) which
may not conform to any encoding;

– (well-documented) C-based API.

Some of these are mere niceties for anan, some might prove essential
later.

• Grafana data source. There is a plugin for Grafana which allows
querying an SQLite database from Grafana. The results are being
interpreted either as a single time series or as a set of time series.
Although SQL is a less convenient language for formulating moni-
toring queries than specialised query languages, all relevant queries
can be expressed. Additionally, no network round-trips are needed
if the database resides on the same machine as Grafana.

10.5 Grafana

Introduction. A command line tool can present data only in limited
ways. When anan was being designed, no provision was made to plot
data from anan directly. Instead, data should be easy to export in various
formats. External tools should ingest and display the data. — Since anan

was given the additional task of monitoring, this was not sufficient. The
choice of data to be shown had to be decided by the developer. The user
was to be presented ready-made plots and should have little possibility to
change things around.

Requirements.

50

• A panel is a time/value plot of a single or a few variables per system
under consideration.

• A dashboard is a collection of about a dozen panels, typically centred
around a topic. Some dashboards focus on an overview of a single
machine.

• Single nodes or groups can be interactively removed or added to a
dashboard via on-screen widgets.

• The range of time to be shown can be changed interactively.

• The dashboard is recalculated and plotted at regular intervals (which
can be chosen by the user).

• Interesting pieces of plots can be centred around a topic. Some dash-
boards focus on an overview of a single machine.

• Single nodes or groups can be interactively removed or added to a
dashboard via on-screen interactive elements. The groups can be
defined by the application to be monitored.

• Data sources can send their data directly to Grafana or export it in a
way which anan can ingest. Other models may be possible.

• Certain error conditions lead to alerts via email or other means (SMS;
chat; . . .) with detailed information attached. The flow of alerts can
be regulated in order not to fill the recipients’ inboxes unnecessarily
or even cause a denial of service in the messaging system.

Most of these requirements can be directly fulfilled with the combina-
tion of Grafana and anan. Since the user interface of Grafana runs as a
“HTML5” application in the user’s browser, the demands on Grafana’s
server are modest.

51

Chapter 11

Concepts

Light weight demons. The client anan connects to many server in-
stances of anand running on each system under consideration. To pre-
vent bugs stemming from interference with the debugged system [Weis-
senbacher, 2012], the demon should do as little as possible. When no tasks
are given, the demon should sit idle and wait for instructions. (As of now,
anand does send almost empty keep-alive messages. This was introduced
to keep traversed NATs open [Rosenberg et al., 2010], but was found to be
unnecessary).

Demons are programmable. Obviously, any debugging tool must be
able to inspect anything in its domain as fully as possible. Therefore, the
demons have to be programmable. Each demon executes zero or more
sensors. A sensor is a short snippet of code which measures or computes a
quantity and sends it to anan.

awk sensors. Theoretically, sensors could be arbitrary code. It was,
however, found that most sensors are built along the following scheme:

• setup code;

• open one or more files for reading;

– split the file into (generalised) lines;

– split the line into (generalised) fields (“records”);

– execute some code if the lines’ records match some pattern or
condition;

• summarise;

• tear-down code (send result).

52

The main reason for this is believed to be UNIX’s idea of “everything
is a file”. In Linux, the main interface for curious user-space processes are
the pseudo file-systems proc(5) and sysfs(5).

The above-mentioned scheme is, incidentally, very similar to the one
used by awk [Aho et al., 1979]. The question whether this incident is really
pure luck is discussed briefly in chapter 15.

No netlink. Another interface is given by netlink sockets [Neira-
Ayuso et al., 2010]. No effort has been made to also expose netlink sockets
to anan’s sensors for the following reasons:

• The documentation for netlink is spread throughout the Linux ker-
nel’s source and a few manual pages which provide too sparse infor-
mation.

• The communication via netlink uses a binary protocol. This proto-
col differs even for different endpoints of netlink.

• Although netlink enables access to an incredible wealth of informa-
tion, there was never even the slightest need to access this informa-
tion.

Note: There are more low-level kernel interfaces which can give de-
tailed information about the kernel or user-space programs, e. g. ioctl

and fcntl for files or ptrace for processes. Neither were considered rele-
vant. Still, since anand has access to the full interface presented by POSIX
(this includes POSIX’ dynamic linker to load arbitrary libraries at runtime)
and more, it has (cumbersome) access to these facilities.

No artificial intelligence. Artificial intelligence and machine learning
[Bishop, 2006] constitute a broad class of methods which allow the pro-
grammer to specify only an algorithmic scheme; the details are filled in
algorithmically based on “training data” — data for which the algorithm’s
correct behaviour is known. Although this algorithmic class is extremely
rich, it is conceptually not the right tool for debugging. The methods in
this class are non-interactive. In the realm of debugging and software test-
ing, there the following non-interactive tools:

• Fuzzing. Random input is presented to the system under considera-
tion [Sutton et al., 2007]. This class of methods is mostly interesting
for bugs which are hard to find by an “honest” user but can be found
by systematic search for untypical input. Nevertheless, this type of
bug can show (in the worst case as a security vulnerability).

53

• Symbolic execution. The program is not executed with concrete in-
put but with symbolic variables [Cadar et al., 2008, King, 1976]. At crit-
ical points, a theorem prover is called to either show that no illegal
behaviour can occur or find input which leads to illegal behaviour.
A hybrid with concrete values is possible [Sen, 2007].

The general approach taken by anan is to stay close to the analogy
with software and to a lesser degree hardware debuggers. Fuzzing would
translate to feeding random input into the cluster. Symbolic execution
does not translate into anything meaningful; constructing a formal model
of software execution is much easier than of a complete cluster including
all relevant hardware. Both approaches do not fit well into anan. How-
ever, it is possible to use machine learning to detect anomalies [Omar et al.,
2013] in monitoring. That approach has not been followed with anan.

Security. In order to access privileged kernel facilities, anand has to be
run by root (or debug only user-space programs using user-space tools).
Obviously, anand may accept instructions (code for sensors) only by an
authorised sender. Therefore, public key cryptography [Bernstein et al.,
2014] is used to authenticate all messages. Keys are stored alongside the
binaries of anan. An attacker with access to the binaries should also have
access to the keys and vice versa, therefore, this policy does not widen the
attack surface. Additionally, all messages are encrypted, although this is far
less pressing than authentication: It is unlikely that an eavesdropper (i. e.
someone inside the network) can learn anything interesting from sensor
results.

Denial of Service. An active attacker can resend previous messages to
anand. Thereby, he can force any instance of anand into a state it has been
in previously. In that case, anan will reject its messages, since they don’t
match the expected configuration. After a few seconds, anan will alert the
user that the attacked instance of anand has not been sending data for a
certain time. The active attacker can repeat this for each instance of anand.
This leads to a denial of service. The attack can be mitigated by requiring
increasing sequence numbers in every message to anand. This has, however,
not been implemented because this attack is considered too far-fetched.
An active attacker has probably more interesting targets than a debugger.

Unreliable transport. In almost all settings, the systems under con-
sideration which run anan and anand are in the same network segment.
Therefore, not much effort is needed to keep transport reliable. Single re-
ports as in https://www.openmymind.net/How-Unreliable-Is-UDP/ (re-
trieved October 2021) and similar anecdotal observations make UDP sock-
ets [Postel et al., 1980] seem quite reliable even over several hops. Addi-

54

https://www.openmymind.net/How-Unreliable-Is-UDP/

tionally, since no connection is being needed for each server, anan can eas-
ily handle hundreds of systems under consideration without running out
of file handles or socket slots in the kernel’s table. Finally, even a loss of a
few packets should not make a large impact.

Compression. The choice of UDP as transport layer restricts the max-
imum size of a message to a theoretical 216 − 1 bytes. In practice, pack-
ets of this size are more likely to get lost due to fragmentation on the IP
layer. Sometimes, demons send messages with a size fluctuating around
the maximum size. In this case, messages larger than 216 − 1 bytes are lost
because they cannot be decoded fully. — Sensor results are mostly textual
or numeric data encoded as text and therefore easily compressed. The
often-used zlib [Gailly and Adler, 2004] is used to compress sensor result
prior to encryption/authentication. Very rarely, even after compression
the maximum size is exceeded. In this case, old sensors which accumu-
lated throughout the session can be dropped.

Interactive use. For interactive use, one measurement per second was
deemed sufficient. This is far away from real time usage: Each round-trip
costs at least a second (both anan and anand process data in blocks of about
a second), adding at least two seconds between a configuration update
and a corresponding sensor result. Of course, developing a sensor and
inspecting its results requires usually more time. Therefore, a measure-
ment per second is good enough for interactive debugging and certainly
for monitoring, although not necessarily for real time usage.

Breakpoints; Variables; Watch-lists. In symbolic software debuggers,
a typical pattern is the following:

• set a breakpoint at a place in close vicinity of the suspected bug;

• once the breakpoint fires, inspect the CPU’s registers or the pro-
gram’s variables;

• record parts of the program’s path through the program or values of
the program’s variables for later scrutiny.

No code. A debugger has to operate on some code, be it source or
binary code. A cluster is running code on several levels, e. g.:

1. application specific code;

2. deployment code: ensure certain software is installed and config-
ured in a standardised way;

55

3. run control: “init” scripts run at every start-up and shutdown to
enable or disable certain services.

As there are already symbolic debuggers for most programming lan-
guages, anan is not needed for (1). In fact, the author inspected the first
fifty entries on TIOBE’s Index of the most popular programming languages
(as published in January, 2021) and found that every language on the list
has at last one symbolic debugger.

A typical deployment tool such as ansible [Hochstein and Moser, 2017]
already features a “stepper” — a program which runs the deployment’s
actions one by one and allows inspection of all relevant parameters. Since
deployment is a relatively simple task in comparison to (1), such tooling is
probably sufficient. In any case, anan is not needed for (2).

Similar considerations apply to init systems: Historical init systems
such as SysVinit were shell scripts. If debugging was ever necessary, the
normal tooling for shell scripts was available. Contemporary init systems
such as systemd [Binnie, 2016] are vastly more complex and come with
their own set of debuggers and profilers. It is also unclear, how to execute
anan in the context of a booting system: It would certainly require at least
some file systems to be mounted and networking to be running. Once this
state is reached, most of the init system’s task is done and not much is left
to be debugged. Accordingly, anan is not needed for (3).

Analogy: Hardware debugger. The fallacy common to (1)–(3) is that
anan should be mostly concerned with code running on one machine. But
really, a higher level view is required. All machines contributing to the
distributed systems need to be viewed as a unit, and this unit is the system
to be debugged. This notion is similar to that of a hardware debugger.
With an oscilloscope or a logic analyser, every single wire could be mea-
sured. Such an approach is inferior to a dedicated hardware debugger
which is synthesised alongside the system to be debugged. It contains
logic to measure relevant signals and store them in buffers based on (pos-
sibly external) triggers, communicate with control hardware and maybe
“mock-up” other parts of hardware which are not delivered yet or expen-
sive or dangerous to use. All of these features help to debug a system
without running alongside its source. Such an event-based approach is the
basis for anan.

A functional approach. The approach presented in [Adler and Keb-
schull, 2020] was found to be less helpful than expected. Since it was ulti-
mately unsuccessful and is described in some detail there, only the failure
will be described very briefly. — The functional notation supports the fol-
lowing workflow:

56

• collect one or more time series;

• optionally, map them along the axis of time or host name;

• if more than one, zip them together;

• optionally, perform another final calculation (using the other axis).

No other workflows are possible. Although pieces of code can be nicely
named and composed, yielding readable and “self-documenting” code,
many interesting queries cannot be expressed. A part can be shoehorned
into this workflow, but the example in chapter 13.4 cannot. Another rela-
tively common example is filtering: Not even difference sequences of vari-
ables can be expressed in the functional workflow. Of course, a special
function could be added for applying (e. g. FIR) filters to the functional
workflow. This, however, takes away its simplicity and ease of composi-
tion. That observation was the final blast to this workflow.

Vectorising to the rescue? In parallel to the functional notation, a
short-hand to the above-mentioned workflow was developed, based on
the vector formalisms in numerical programming environments such as
Matlab [Angermann et al., 2020] and numpy [Oliphant, 2006]. The follow-
ing differences were necessary:

• No real vectorisation. A term like data.lambda "x/1000" (which
takes each element of the time series data and divides it by 1000)
does not use a library like LAPACK [Anderson et al., 1990] to vec-
torise the computation (although it was considered to include LA-
PACK).

• Lazy. Instead, the term data.lambda(...) creates a value which
(via Lua’s metatables) behaves like an array. Whenever a value is
requested, it is calculated on demand.

• No cache. For the following reasons, no caching is used:

– Usually, the calculations performed via lambda and other nota-
tions (not introduced here) are small.

– Cache coherence is a non-trivial problem.

– The cache may use a lot of memory. This can be alleviated by a
cache management/retirement strategy.

57

All of this complexity very likely does not buy better performance. To-
gether with the functional notation, its vector short-hand was scrapped.
The code was not removed from the code base, however, because it can
still be reused for the relational formalism: If the result of an SQL query
can be understood as a matrix which is indexed by host names and time,
it can be endowed with the short-hand functional notation.

A relational approach. The approach outlined in this section and dis-
cussed further on p. 67 was not found by systematic inquiry, but it ap-
peared as a makeshift solution that turned out better than expected. In-
stead of understanding sensor results as time series, they are viewed as
tables of a relational database system. SQLite was chosen as database. The
functional workflow translates into simple SELECT statements of the form

1 SELECT f1(f2(x, y, ...)) FROM ...

2 WHERE hostname IN (...) AND time BETWEEN ... AND ...

Variables, breakpoints, watch lists (again). In the relational approach,
variables are represented as relations (data base tables). Breakpoints are
queries which should normally return an empty set. Once the breakpoint
query returns a non-empty set for a certain time range, the breakpoint
is considered “firing”. The watch list, then, is another query around the
same time range. Both breakpoints and watch lists can be implemented
as SQL “views” (names assigned to queries). The creation of views from
breakpoint or watch list statements could be automated. Currently, this
has not proven to be necessary.

Integration. The requirements of both anan and anand are modest. In-
tegration anand into the init system systemd is trivial because it does not
require any other specific services (other than networking and the file sys-
tem) to exist. Likewise, since anand logs to stdout, any logging policy is
easy to implement with existing tooling, be it discarding, storing or aggre-
gating logs.

58

Part IV

Results, Summary, Future Work

59

Chapter 12

Overview

Scope. Since cluster debugging is a novel area, all comparison have to
either compare anan with itself in different settings or compare anan with
another specialised tool. In the latter case, the question is mainly “how
much worse does the general-purpose tool perform than the specialised
tool?”

Synthetic benchmarks. Before any meaningful comparison, it has to
be made sure that anan can deal with a decent amount of data. This in-
cludes both a large number of systems under consideration and a (reason-
ably) large number of sensors. (The number of sensors is naturally limited
by the maximum size of a UDP datagram.)

Practical benchmarks. Before practical benchmarks, anan is like an
answer looking for the corresponding question. It is naı̈ve to expect that
problems will appear which anan is a perfect solution for. Rather, prob-
lems from practice were considered for which anan is a not necessarily op-
timal solution. This was expected to lead to applications in neighbouring
fields, thereby finding the appropriate niche for anan.

60

Chapter 13

Benchmarks

Overview. Three different synthetic benchmarks have been performed.
The third one led up to practical benchmarks and finally some practical
application.

13.1 Synthetic Benchmark: 10 Containers on a
Laptop

Goal. This benchmark should show that anan works with more than
one instance. It was anticipated that once an easily automated test envi-
ronment is available, development should be faster: Every change can be
tested quickly against a standardised environment.

Methods. A Docker image was built, consisting of little more than the
executable anand and the corresponding key and configuration files. Ten
identical instances of this image were run. All of them were connected
to the same network. The executable anan was run in a similar container.
To rule out interaction with the environment outside the containers, all
containers were run without access to the host network.

Results.

• The program starts and stops flawlessly.

• Both individual sensors and sensors sent to all instances are run.

• It can be ascertained that “one-off” sensors do, in fact, run only once.
(This functionality was removed later on. Although it was never
used, it became a burden to maintain.)

• Each individual configuration is executed.

61

• Very little resources (both memory and CPU) are utilised. This re-
sult is limited because Docker interferes with a clean measurement.
Since further benchmarks were planned, no attempt has been made
to measure more precisely.

Summary. The functionality of anan works as expected. No statement
can be made about performance.

13.2 Synthetic Benchmark: In Ten Virtual Ma-
chines on a Blade Center

Goal. This benchmark was designed to show the limits of anan: How
many systems under considerations could be debugged; is the bottle neck
IO, CPU or RAM? Since it was decided that anan should not be used on
data centres with more than about 1000 nodes, the anticipated results were
to be interpreted the following way:

• If the performance would not allow 1000 nodes plus ample room
to spare, then algorithms and data structures were to be improved,
until this goal was reached.

• If the performance allowed far more than 1000 nodes, then addi-
tional features could be added that might weaken anan’s performance,
but add capabilities.

At this point in time, anan implemented only the bare minimum: Sen-
sors were hard-coded, the responses were parsed and only stored in mem-
ory. It was clear that some additional facilities are needed for any success-
ful debugging session.

Methods. A Blade Center was used to set up 10 virtual machines.
Each of the virtual machines had two CPUs and ample RAM for the ex-
periment. The virtual machines ran Ubuntu 18.04, on top of that a then-
current Docker. On each of the ten virtual machines, 100 instances of a
similar Docker image as in the previous section were executed. Since they
were all running inside a Docker swarm (a native clustering environment
for Docker), each container was connected to each other through a central
hub, yielding a star topology. A similar container was constructed for the
executable of anan. For simplicity, that container was run on the swarm’s
management node.

Each container running anand was throttled to 0.01 CPUs. Additionally
to the executable anand, it also ran a “payload” (a simple CPU-intensive

62

program) that could be “debugged” with anan. Theoretically, the 0.01
CPUs of the 100 containers should sum up to a single CPU being utilised,
leaving the second CPU idle.

Results.

• anan could execute a single (hard-coded) sensor on about 1000 sys-
tems under consideration (some containers crashed and could not be
restarted reliably).

• The CPU utilisation of the nine virtual machines on which anan did
not run was about 1.5–2. Since that version of anan was a single-
threaded program, anan used one CPU fully, leaving the other to the
remaining 100 containers which were therefore CPU-starved.

• No precise measurement of lost sensor results was performed. Man-
ual observations (by repeatedly counting the received messages per
second) found that most messages were received and processed.

• The command line interface to anan remained usable, although some-
times input was slightly delayed.

Summary. The performance of anan was sufficiently good. Additional
features may be added to reach a usable tool. It was unclear, how far
anan was from reaching limits. The effects of shaky network connections
were unknown. Only a handful of hard-coded sensors were tested, most
of them of no relevance to actual debugging.

13.3 Synthetic Benchmark: In 140 Virtual Machines
via OpenStack

Goal. Since in the previous benchmark, the limits were not clearly
reached, it was decided to run a final synthetic benchmark: This bench-
mark should be failed by anan. Meanwhile, awk sensors have been added
to anan. It was assumed that the more generic sensors might weaken
anan’s performance.

Methods. Most of this section is based on joint work with Niclas Gün-
ther [Günther, 2020]. — An OpenStack installation (dubbed “Goethe-Wis-
senschafts-Cloud”, or GWC) was used to create 141 virtual machines with
a similar virtual hardware to the experiment on the Blade Center. This
OpenStack installation used SuperMicro machines with two AMD Op-
teron™ processors 6172 (that is, 2 · 12 CPUs) and 64G of RAM as compute

63

nodes. An analogous Docker and swarm setup was used to connect 140
out of 141 nodes. The swarm manager was node 141. This node also ran
anan.

Results.

• Although 100 · 140 = 14 000 instances of anand were expected to run,
only about 10 000 were ever active at the same time. The ultimate
reason for this failure was not found. It was ascertained that this is
not due to a lack of RAM, CPU, IO bandwidth or disk space.

• The low reliability of the GWC made the following results slightly
suspicious. Nevertheless, inexplicable failures most likely have only
a negative influence on performance (although the opposite is not
impossible).

• About 90% of the sensor messages were not processed. This did
not follow a clear pattern: Sometimes, the same node’s messages
were processed every second for a short period of time; sometimes, a
node seemingly went silent for a few minutes. Sometimes, all nodes
dropped about 90% of their messages equally (yielding an event rate
of about 0.1 per second).

• This result was understood that the critical size for a single-threaded
anan is about 1000 nodes.

Summary. It was found that anan reached maturity for practical ap-
plications: The performance of a version with a mostly complete feature
set is good enough for about 1000 systems under consideration. It was as-
sumed this gave enough leeway for unexpected changes because the EPN
farm (in which anan was finally meant to be applied) only ever had about
250 nodes.

13.4 Practical Benchmark: Monitoring for EPN
Farm

Previous run. In the previous run of the experiment ALICE [Aamodt
et al., 2008], the equivalent of the extended processing nodes (then called
the high-level trigger “HLT”) used a custom-designed monitoring based
on Zabbix. Amongst others, the following reasons lead to the choice of
another monitoring solution:

64

• Perceived lack of extensibility;

• insufficient performance for the anticipated higher data rates (in the
previous run, the highest data rate was one measurement per minute
which was increased to one measurement per ten seconds).

Modular stack. Therefore, the Work Package responsible for monitor-
ing of the EPN farm decided to design a modular stack: Take the then-best
solutions for each part of monitoring. The following parts and correspond-
ing solutions have been identified:

• measure data locally: telegraf ;

• aggregate and store data centrally: influxdb;

• display data from a database: Grafana.

This modular stack is also known as the “TIG stack”. Had the decision
been taken today, the last point might have been replaced by the two com-
ponents chronograf and kapacitor (yielding the “TICK stack”), since all
four tools are developed by the same group and therefore might interact
more smoothly.

anan for monitoring. The component anand can be used similarly to
telegraf, the component anan can take the role of influxdb. This was not
possible without changes to anan because anan was designed for interac-
tive command line usage and was unable to present Grafana the HTTP-
based API it wants to query.

Requirements for Grafana. Grafana is used by everyone who is in-
volved in the operation of the EPN farm. Each “dashboard” simultane-
ously shows about a dozen of “panels” of which each graphs the result of
a query to e. g. anan. Therefore, anan has to choose one of the following
solutions:

1. respond to queries very rapidly;

2. use multiple threads;

3. use an external program to answer queries.

Since solution (1) is naive and unrealistic, (2) was attempted. The re-
port on this attempt will be very short since it ultimately failed. Solu-
tion (3) proved to be both more general, more reliable and easier than (1).

65

An a priori analysis might have found this because (3) means reuse of exist-
ing software, whereas (2) means introduction of complexity into a already
somewhat tangled problem.

Failure at implementing Grafana’s API. A few complications have
been found (the more interesting are outlined briefly in the next few para-
graphs), but the ultimate problem was generally bad performance for many
simultaneous queries.

1. JSON. JSON is the JavaScript Object Notation [Bray, 2017]. It is the
textual representation of structured objects in JavaScript and a com-
monly used notation for the exchange of arbitrarily structured ob-
jects over text-based protocols such as HTTP. Since Grafana shows
its dashboard through a web browser and JavaScript runs in the web
browser, using JSON for both query and response objects is the ob-
vious choice. Parsing and creating JSON is easy in Lua; there are
several libraries available for this. The problem is a slight mismatch
between Lua’s and JavaScript’s data structures: Some (not very com-
monly appearing) structured objects are not representable as JSON,
and some JSON objects are not easily represented as Lua object. (Ex-
ample for the former: associative array with non-scalar keys; exam-
ple for the latter: array with “holes”.) Although it is exceedingly
unlikely that either of these malformed objects appear in practice,
there has to be code handling them. Naturally, this code is always
brittle, since it is tested only rarely, but still taints the code base.

2. API documentation. Although Grafana’s API is documented, the
documentation did not fully explain which endpoints need to be
implemented and how data is passed. Time-consuming reverse en-
gineering revealed these details. Some parts remained mysterious.
Luckily, they were not compulsory for a Grafana data source.

3. Constructing strings. The response object needs to be constructed
as a concatenation of many small strings. The naive approach has
quadratic runtime:

1 -- naive approach

2 local accumulator = ""

3 for i = 1, #pieces do

4 -- join with ","

5 accumulator = accumulator .. "," .. generate_piece(i)

6 end

7 print(accumulator)

66

This code has runtime O
(︁⃓⃓
pieces

⃓⃓2)︁ because Lua’s strings are im-
mutable: Every concatenation needs to copy the entire previously
constructed string. — A more efficient approach uses the fact that
dynamic arrays in Lua cost only linear time:

1 -- linear-time approach

2 local accumulator = {}

3 for i = 1, #pieces do

4 -- amortised over the loop, this costs O(1)

5 accumulator[i] = generate_piece(i)

6 end

7 print(table.concat(accumulator, ","))

Although the runtime is O
(︁⃓⃓
pieces

⃓⃓)︁
, this coding style adds compli-

cations wherever it is used.

4. Passing data between threads. It is well known that threading is
another complicating factor. Lua does not bring its own libraries for
threading. There are libraries which wrap POSIX threads in various
ways. The library luaproc [Fernández, 2016, Skyrme et al., 2008] by
the developers of Lua was chosen as it was found to be the only li-
brary (at that point in time) that could reliably use multiple cores and
pass data between threads. It is based on message passing, i. e. copy-
ing all data from the sender’s heap to the receiver’s heap. An elab-
orate framework to do so efficiently (based on the principles men-
tioned in the previous point) was developed. Since it was finally
decided not to use this framework, this thesis will not report more
details.

The performance was frustratingly weak: There was a constant over-
head that made responses returning a few thousand points only a
few seconds faster than responses returning a million points. Better
algorithmic and implementation techniques (i. e. more complicated,
therefore more likely buggy code) would certainly improve this be-
haviour. Still, the cost of these techniques was felt to be higher than
the benefit. Therefore, approach (2) was decided to be a failure.

External program for Grafana’s API. The plugin sqlite-datasource

for Grafana allows the results of SQL queries against a SQLite [Owens and
Allen, 2010] database to be visualised with Grafana. The plugin runs as
a separate process. Grafana deals with the complexity of calling multiple
instances of the plugin’s process when many queries are processed. The
plugin implements the relevant parts of Grafana’s API. The only parts that
need to be filled in are:

67

1. Store monitoring data in an SQLite database.

2. Formulate the necessary queries in SQL (instead of the previously
used query languages InfluxQL and Flux).

The second part is well-understood; there are numerous high-quality
manuals and tutorials for SQLite’s dialect of SQL. Therefore, only a few
interesting aspects for the first part shall be recalled.

Table names. Sensors have arbitrary names. The default names are
anon-1, anon-2 etc. SQLite permits identifiers containing almost arbitrary
characters using the syntax [whitespace and-hyphens]. This would fail
as soon as a sensor name ever contained unbalanced square brackets, e. g.
the name "1.]". Since this is absurdly unlikely, no attempt was made to
map such names to a legal format. Instead, an error with an explanatory
statement is logged.

Column values. Sensor results are arbitrary Lua objects. A look into a
list of all sensors ever deployed showed that sensor results are tables with
strings (or numeric values) as keys. The values are sometimes non-scalar
but easily mapped to scalars. This mapping is best performed by conver-
sion to JSON because SQLite has native support for JSON. As mentioned
above, care has to be taken to make sure this conversion is successful. It
therefore was decided to change all sensors to only send string or numer-
ical results.

Missing/new columns. Theoretically, a sensor might change the set of
keys it sends over time. It is possible to change an SQL table’s schema.
This operation, however, tends to be costly. If a sensor starts sending new
keys it did not use in the initial message, these keys will be silently ig-
nored. An examination of all sensors found that this could currently never
happen. — On the other hand, missing columns will lead to the (absence
of a) value nil.

Indices. An index on the pairs (hostname, timestamp) greatly increa-
ses the typical query’s performance. Statements to create these indices
were added automatically.

Summary. Monitoring and debugging are different tasks. It is not ob-
vious that a tool for debugging is suitable for monitoring. With a small
extension to harness the power of SQLite, anan proved to be suitable, if
not ideal, as a monitoring tool. It remains to be shown if there are syner-
gies between monitoring and debugging that can be used to improve the
performance, scope or usability of either.

68

13.5 Practical Benchmark: A Tiny Case Study

Overview. The following report is somewhat artificial, although it ab-
stracts an actual case of anan’s application. It may seem that the required
setup until anan could be used productively is too high. This is certainly
true; nevertheless, without anan, even this much setup might have not
sufficed to find the root cause.

The solution. For a more intelligible exposition, the solution of the
problem will be presented before the setup and search towards the solu-
tion. Of course, the reader is urged to follow anan’s user as unknowingly
as the user was while he sought the solution. — A program on one node
(for argument’s sake, say it is epn100) produces minimal (disk and net-
work) IO, sometimes uses a lot of CPU and sends a few kilobytes of data
through a socket. In short, it behaves like

cat /dev/random | nc epn200 12345

(Reading from /dev/random is slow and CPU-intensive. The command
nc <host> <port> opens a TCP socket to host at port. — On more mod-
ern releases of Linux, /dev/random is as fast as the non-blocking device
/dev/urandom.)

On the other machine (in this example, it is called epn200), there is
a corresponding process that collects this data without any meaningful
action, as in:

nc -l -p 12345 > /dev/null

(The switch -l puts nc into server mode, it listens at port 12345 and
stores the data in the pseudo-file /dev/null which discards everything.)

Setup.

1. Finding sockets. The following pseudo-files are relevant:

• /proc/net/tcp

• /proc/net/udp

• /proc/net/tcp6

• /proc/net/udp6

These four files list all TCP/UDP sockets using either IPv4 or IPv6.
(The latter might be less important since the EPN farm shies away

69

from the usage of IPv6.) — Each socket is identified by its local/re-
mote host/port and the protocol UDP or TCP (and the IP version).
In Linux, every socket is internally identified via its inode number.
This number is also given in these files. The process id (pid), how-
ever, is not given. Another (small, but annoying) complication is that
the IPs and ports are given in hexadecimal; the addresses’ octets are
in little endian, whereas virtually everywhere else big endian is ap-
plied. This only adds a few lines of parsing code. — A sensor was
constructed which lists all TCP or UDP sockets with corresponding
addresses and inode numbers.

2. Finding the corresponding process. Every Linux process has a pid.
Given the pid, symbolic links to all file descriptors being held by
the process can be found in the directory /proc/<pid>/fd/ on the
pseudo file system proc(5). Each of these files can be mapped to
its inode number via the system call readlink(2). — A sensor was
constructed which returns a map of all pids to the inode numbers of
the corresponding open sockets.

3. Finding additional information about processes. The pseudo-file-
system proc(5) offers much more information than necessary for
this debugging task. For this task, the file /proc/<pid>/stat is most
interesting: It contains about 50 different tab-separated fields, among
them

• field no. 14: utime, the amount of clock ticks the process has
been scheduled in user mode;

• field no. 15: stime, the amount of clock ticks the process has
been scheduled in kernel mode (system mode).

High values hint to processes that do a lot.

Another interesting file is /proc/pid/cmdline. This ’\0’-separated
file contains the command line used to start the program with the
given pid. It helps identifying the program that runs under this
pid. The program may decide to change the value presented under
this file and thereby “lie”. If a system was ever suspicious of hav-
ing programs that do this, /proc/pid/exe — a symbolic link to the
program’s executable file — might be more helpful.

Sensors reporting these three pieces of information have been deployed.
Crucially, the Linux kernel presents all information in files (“everything is

70

a file”) in formats which anan’s sensors can extract easily. — The data was
correlated using SQL statements joining all three pieces of information. In-
teractive experimentation led to a query showing the exact level of detail,
amongst others adding the following aspects:

• only consider connections inside the EPN (based on the address pre-
fix);

• don’t consider connections that belong to executables called anand

or telegraf because they are known not to misbehave in this way;

• only consider programs which have a somewhat high stime — the
value was found by eyeballing — because the incriminated program
was assumed to spend a lot of CPU time of which a significant part
was likely to be related to system calls.

This query found a list of processes containing the searched-for pro-
gram. Although at no point, a tool like anan was required, it probably still
helped to finish the search more quickly.

13.6 Application Note: Porting anan to an Em-
bedded System

Introduction. For organisational reasons, an embedded system (a board
centred around a TMS570LC53 Hercules™ Microcontroller Based on the
ARM® Cortex®-R Core) could not be used for its intended purpose. It
became a “solution looking for a problem”. This problem was identified:
debug custom hardware in the context of particle physics. The board was
to be equipped with rich measuring electronics and connected to the sys-
tem under consideration. A few boards have been built already. Since they
were relatively small, they could be put in any relevant place. Communi-
cation would happen via Ethernet, although WiFi has been considered.
The device was to be deployed in an environment with increased radia-
tion which rules out WiFi.

This work was performed in cooperation with José Antonio Lucio Mar-
tı́nez.

Choice of operating system. Before the project was stopped (again, for
organisational reasons), anand was cross-compiled for the above-mention-
ed microcontroller. If anand was required to run without an operating sys-
tem, major restructuring would be needed. Therefore, an operating system

71

was run on the microcontroller. Since there was previous experience with
RTEMS 4.1, that operating system was chosen.

Cross-compiling anan. Any configure script constructed by autotools
should automatically support cross-compiling, provided the setup for au-
totools was done correctly. This requires precise specification which tool
should run on the host (as part of the compilation) or on the target (as re-
sulting artefact of the compilation). The build system used for anan does,
in fact, require some parts to be built for the host and executed there to
create some of the build artefacts.

Another complication was the incomplete support of POSIX’ symbols
by RTEMS’ libc and other system libraries. Most of these symbols were
probably not relevant because anan was not supposed to be used to debug
software issues. Therefore, most of the support for POSIX APIs could have
been chucked. For completeness’ sake, bindings for most of RTEMS’ APIs
have been included.

Summary. It could be ascertained that anan could run on that board.
The project was stopped before any actual measurements could be per-
formed by anan. Nevertheless, this shows that anan’s clean and minimalist
design makes porting it to new architectures relatively straight-forward.
(As an aside, the author found that both anan and anand run unmodified
on commodity Android smartphones equipped with a C compiler. The
use case remains unclear.)

72

Chapter 14

Usability and other “Soft” Criteria

14.1 General Observations

“Eat your own dog food.” The author attempted to use anan for as
many different tasks as possible. (Another attempt aimed at managing
configuration files with anan never left the planning stage for various non-
technical reasons.) This approach was meant to improve the “soft” aspects
of anan’s performance, chiefly usability and fitness for as many purposes
as possible.

Smooth interactions. The user interface of anan is a classic REPL (read-
execute-print loop): A prompt is presented, input should be given, the
resulting value of this input is shown. REPLs gain in usability by adding
some features. The following features have been planned, some of them
implemented.

• Line Editing. Following the now standard paradigm of direct ma-
nipulation [Hutchins et al., 1985], the command line prompt is edited
interactively. Without the usage of GNU readline [Ramey, 2015] or
a similar library, only the most elementary line editing is available:
Adding characters at the end of the input string; deleting the last
characters; delete the whole line. — The usage of readline eased the
implementation of automatic completion.

• Syntax highlighting. [Hansen, 1971] This has not been implemented.
It was planned to highlight keywords, strings, string/number liter-
als and nesting levels. The plan was abandoned for the following
reasons:

– Not much usability was added.

73

– Syntax highlighting interferes with line editing (readline ex-
pects to be in full control of the terminal).

– An almost full lexical analysis of the input string is needed to
highlight it correctly.

– A semi-correct highlighting is probably worse than none.

Altogether, the possible gains did not justify the amount of added
code.

• Automatic completion. This feature is so ubiquitous in text-based
interfaces that it needs no explanation. It has two advantages:

– Fewer keystrokes needed.

– Better discoverability: If a command x = complex datum() was
executed, typing x., followed by a tab, will show the subfields
of x. Thus, even deeply nested hierarchies can be traversed eas-
ily.

This feature required somewhat less code than the attempt at syntax
highlighting (because it only supports a tiny subset of Lua’s syntax).
The increase in complexity was greatly set off by the increase in us-
ability.

• Pretty-printing data. Using anan often involves the inspection of
raw sensor responses which is much easier when the datum is shown
in a “pretty” (not necessarily aesthetically pleasing, but systemati-
cally indented) way. This problem is well-understood (e. g. [Hughes,
1995]) and there are software libraries available. Therefore, the ben-
efit of pretty printing came with very little cost.

• “Online” help. A system with online help has a facility to show
help for every object the user can interact with. For anan, a partial
approach has been taken: Variables of types string, number, table,
nil and boolean are easily inspected by pretty-printing and/or au-
tomatic completion. Conversely, thread and userdata values should
never be seen by the user (with the possible exception of file descrip-
tors) and therefore do not require any elucidation. The remaining
type, function, was given an implementation of the meta-function
tostring which returns the function’s documentation. Since this

did not add discoverability and was a burden to maintain, this fea-
ture was removed.

74

A similar effect could have been achieved by the usage of readline:
Additionally to presenting several possible completions, short help
notices (such as argument names and types, possibly with additional
explanations) can be shown. No attempt was made to implement
this for the same reasons as in the previous paragraph.

• Result variables. Sometimes, the user gives a command which per-
forms a lengthy calculation and the result is a complex datum. But
once the datum is pretty-printed, it is lost, although the user might
want to continue using it for further calculation or inspection. To
prevent this, there are three “magical” variables , and that al-
ways store the last three results ([Forster, 1996]; [Steele, 1990, sym-
bols ***, +++, ///]). Although this facility is used rarely, its costs are
negligible.

Debugging the GWC. The second “synthetic benchmark” was perform-
ed using an instance of OpenStack that was dubbed GWC. As reported in
chapter 13.3, the results were inconclusive but slightly positive. Why was
anan not used to debug the benchmark? Of course, this has been tried.
The main obstacle was lack of access to critical information: The bench-
mark executed many thousands of containers running on dozens of vir-
tual machines. The containers were under the GWC’s user’s full control.
This did not hold for the virtual machines: The virtualisation technology
KVM [Goto, 2011] has been employed using the user interface presented
by OpenStack. This gave only very limited possibilities to inspect the vir-
tual machines (besides everything the virtual machine can measure about
itself). Therefore, anan did not have access to crucial information. For or-
ganisational reasons, this access could not be granted in any meaningful
way. Nevertheless, measurements found hints to a possible root cause:
Possibly, either storage itself or the storage system’s network connection
was too slow. Later communication with the GWC’s administration con-
firmed that this issue was known, although it could not be proven conclu-
sively because the GWC went into a phase of restructuring.

Summary. Almost every cluster-related issue can be debugged with
anan. Any questions can be asked and answered, but none easily. The
next subsection will present some educated guesses on possible reasons
and corresponding solutions.

75

14.2 Reasons and Solutions

1. Jack of all trades. Maybe, anan is trying to do too much: A universal
tool is bound to be universally weak in every discipline covered. Is
this also true in anan’s case?

Consider the following tools which are employed in the wider field
of debugging:

• strace (trace system calls);

• tcpdump (dump network communication);

• valgrind (debug memory issues);

• gprof (software performance profiler).

All of these tools are highly specialised and contain very sophis-
ticated algorithms and data structures optimised for the exact use
case. None of them perform tasks that anan could do in any mean-
ingful way. In fact, if this was desired, the necessary plumbing could
be easily added to anan so that it could tap into these tools’ facilities.
The programs anan and anand would not require any change; only
corresponding sensors need to be deployed.

Quite the opposite: anan does not try to do anything that another tool
could do better. Instead, it tries to be the glue combining interesting
sources of information.

2. Too small standard library. Maybe, anan can do too little: The stan-
dard library that ships with anan does not allow the user to do much.
Therefore, he might be stuck reinventing the wheel.

This is certainly true in some sense because anan does not even have
a “standard library”. This is not only due to the fact that anan is
coded in Lua (a language “without batteries included”). On the other
hand, the full abilities of POSIX’ [spe, 2008] C library are available
to all sensors. This is complemented by all tools of the debugged
systems’ user land. And of course, anan can be extended at built
time by any library that can be linked to anan’s binary. Theoretically,
arbitrary C libraries can be loaded and arbitrary C functions called
from Lua. This facility has not been tested extensively, though, and
is believed to be superfluous for anan’s use case (although it is still
available for the rare case). Only a few combinations of operating
system, libc, and compiler/linker support generating static objects

76

(anan always builds as a static object) which can load dynamic ob-
jects. The most popular case of Linux with glibc and gcc or llvm

has been reported to work, though.

3. Too low level. Maybe, anan cannot provide a sufficiently high level
of abstraction. The user has to fight with repetitive details which are
irrelevant to the current problem. Of course, this problem is related
to the previous point (too small standard library). Therefore, the re-
sponse is similar to the previous response: Sensors can use all facil-
ities that can be loaded by anan’s run control file. This can contain
all facilities mentioned in the previous point. Even programming
paradigms, such as functional and object oriented programming, can
be added as libraries [Ierusalimschy, 2016, chapter 20–21]. With this
infrastructure, any desired workflow can be implemented.

Alternatively: insufficiently opinionated. The level is not too low,
all required facilities are reasonably easily accessible, there is not
anything distracting the user, but he is still “unhappy”: The tool anan
does not gently lead him a specific way; it does not present sensible
“best practices”. There is no beaten path to follow. — This criticism
is absolutely true. The reason is that there are no best practices yet.
Even the author never found that there is a standard approach he
should be following.

4. Problem exists between keyboard and chair. This is no serious crit-
icism and should not be rewarded with an answer.

Summary. This remains broadly unclear. A set of answers may in-
clude non-technical issues, such as insufficient documentation; organisa-
tional issues; the complexity of questions that were meant to be resolved;
random personal preferences etc.. Only future experience with anan and
with similar tools yet to be developed can give definitive answers.

14.3 Monitoring and Debugging

Overview. It has been shown that anan is a possible makeshift moni-
toring tool. This does not mean that debugging clusters is similar to mon-
itoring them. This fallacy can be likened to the following one: C++, a pro-
gramming language considered relatively high-level, is just a super-set of
assembly language. On a purely technical level, this is correct: Any assem-
bly program can be “converted” to C++ by adding a few lines of boiler

77

plate code (the main function and the asm statement). By this, how-
ever, it does not become a high-level program. Similarly, abusing anan as
a monitoring tool does not show anything about these two related tasks.

Universal or high-level tooling. Everything can be coded in assembly
language. In fact, at a certain stage during compilation, every statement of
a C++ program is translated into assembly language. Accordingly, every
issue in a distributed system can be detected by properly set up monitor-
ing and debugged by logging in at every machine and measuring manu-
ally. The efficiency of these two approaches is not comparable, though. In
this situation, anan can at least be used to configure monitoring such that
the critical variables are shown. On the scale of universal tools (cf. assem-
bly language) to high-level tools (cf. C++), anan tries to tend to the latter
side.

78

Chapter 15

Interlude: The notion of
simplicity

A complex system that works is invariably found to have evolved
from a simple system that worked.

—John Gall

Overview. A core result (mentioned in many place in this thesis) is that
simplicity is important. It is a truism that complexity for complexity’s sake
and the “creeping features disease” do not go well with reliable and ef-
ficient systems, be it in software or any other field of engineering. This
observation, however, hints to only a small part of the simplicity whose
importance was found. That simplicity is on a conceptual level. Since this
thesis does not primarily deal with philosophical questions, this interlude
is kept as brief as possible.

Definition. Philosophy has been knowing the notion of simplicity for
a long time:

We may assume the superiority ceteris paribus of the demonstra-
tion which derives from fewer postulates or hypotheses [McK-
eon et al., 2009, p. 150].

This is commonly (probably incorrectly) known as Ockham’s Razor.
However, this idea is too imprecise to serve as a definition.

Simple things with complex behaviour. One should not be fooled into
thinking that simple objects show simple behaviour. It has been long ob-
served [Wolfram, 2002, p. 27 about “Rule 30”] that some obviously simple
algorithms (only a few lines of low-level code) show complex behaviour.

79

This observation is central for the field of cryptography. Consider the fol-
lowing algorithm [Paul and Maitra, 2011](where i, j, S[0], . . . , S[255] are
unsigned byte values that have been initialised previously; S is a permu-
tation of the set {0, . . . , 255} of all bytes):

1 uint8_t tmp;

2 j += S[++i];

3 tmp = S[i]; S[i] = S[j]; S[j] = tmp;

4 printf("%u\n", S[i]+S[j]);

The output of this code — after repeated execution — is highly ran-
dom. In fact, this algorithm has long been used as the core of the stream
cipher RC4.

Admittedly, most technology is designed to be testable and therefore
not to show erratic and random behaviour. Therefore, “simplicity” as in
Rule 30 and RC4 can be disregarded.

Kolmogorov complexity. In algorithmic complexity theory, the Kol-
mogorov complexity of a string s is the size of the smallest universal Tur-
ing machine that outputs s and terminates. Since all universal Turing ma-
chines can simulate each other, the precise choice of Turing machine model
and notion of size is immaterial. The Kolmogorov complexity of a string is
incomputable. Only upper bounds can be given. For practical purposes,
[Ziv and Lempel, 1977] entropy-based compression methods often fulfil
this purpose. Even this class of methods does not yield a practical method
to assess the complexity of anything but a string — ideas such as software
architectures or programming languages cannot be compared.

A subjective approach. Simplicity of structured objects such as the
two examples mentioned in the previous paragraph cannot be defined in
a reductive way. Instead, the following tentative definition is proposed: If
the whole object under consideration has one simple idea (or a few) at its
core, then even loading it with almost arbitrarily much complexity cannot
negate the simple basis. This definition requires a few clarifications:

• Self-referential. What is a “simple idea”? This can be quantified via
Kolmogorov complexity because ideas are typically conveyed as text
(i. e. strings). An idea is simple, if it can be described by a very short
human-readable text.

• What is too much complexity? The definition claims that there is
a limit of added complexity which can drown the original simple
core. To a certain degree, this is subjective. But the following con-
sideration might clarify: If the core idea stops being the core, it does

80

not really matter how many concepts are added — the simple core
is gone. Once most of the interaction with the object under consid-
eration happens through tangential ideas, there is not even a simple
core left.

Consider the following example: The hallmark of relational database
systems is working with operations on relations such as projections,
cross products and joins. But in certain settings, all interactions with
a database happen through “stored procedures” which abstract the
relational operations away. Even though not necessarily much com-
plexity is added, the simple core of relational logic is lost (although
possibly, another simple core can be identified).

• Core and tangential ideas. An idea is a core idea if the object un-
der consideration stops being that object once it is removed. The
object cannot be explained without it. Often, it cannot perform most
functions it usually performs. — The above-mentioned example of
stored procedures also applies here: If the relational logic was re-
moved from the database, then it could not operate at all.

Two examples from the realm of programming languages should illus-
trate this definition. Both languages and corresponding ecosystems are
popularly assumed to be somewhat complicated.

15.1 Forth: Two Stacks, Tiny Functions, Direct
Machine Access

Introduction. Forth is an old programming language [Biancuzzi et al.,
2009, Chapter 4]. It stems from an era when every byte and every clock cy-
cle was precious. Accordingly, although it wanted to be called “fourth” (as
in “fourth generation language”), the system it ran on only allowed five-
letter executable names, yielding the name FORTH (originally in capital
letters).

Tiny functions and the first stack. The most fundamental idea is to use
tiny functions. To simplify communication between functions, the (data)
stack through which function arguments are normally passed is exposed
to the user. Thus, a function does not need to (and, in fact, cannot) declare
how many arguments it receives. Arguments cannot be given names or
types. A function (in Forth parlance, a word) takes as many arguments
from the stack as it wants. It may also return zero or more arguments.
This almost automatically leads to the usage of reverse Polish notation:

81

(3+4)*(7-8)

is spelt as

3 4 + 7 8 - *

No precedence rules or parentheses are required. — A function con-
sisting of a dozen words is already considered long. This leads to a “hori-
zontal” style where most functions occupy one (short) line of code.

The return stack. Conventionally, control flow is implemented via the
same stack: In C and C++, usually the return address is pushed on the
stack, followed by the function’s argument(s). In Forth, there is a separate
return stack that only holds return addresses. There are facilities to copy
items between the two stacks. This is commonly only done to implement
special control flow words, e. g. exception (“condition”) handling or so-
phisticated backtracking.

Direct machine access. The return stack is already a prime example of
direct machine access. Other examples include:

• Full multiplication. On most CPUs that support multiplication, the
product of two x-bit registers is stored in a double register with a
total size of 2 · x bits. In Forth, a special multiplication operator is
available which returns both registers. (Interestingly, historical im-
plementations did not give access to the overflow or underflow flag
of addition or subtraction operations.)

• Inline assembly. Virtually all classical implementations contained
an inline assembler. It was not uncommon to add ad-hoc words im-
plemented in assembly language to use otherwise inaccessible fea-
tures.

• Block files. On implementations with non-volatile mass storage, the
following API was chosen for file IO: The disk consists of numbered
blocks, each 1024 bytes in size. A block can be addressed by its num-
ber. This operation returns a pointer to a buffer with the contents of
that block. After that buffer has been modified, the system needs to
be informed of the modification. The buffer is written to disk either
upon a request to do so or whenever the system runs out of buffers.
— There is a convention that the 1024 bytes are to be understood as
16 lines of 64 bytes each, a size somewhat smaller than a contempo-
rary screen could show.

82

Summary. This outline can only give a glimpse at all the ways Forth
tries to give simple but direct access to the machine’s full abilities. The
simple core is given in this short section’s title. But really, the core is even
simpler: Whenever a compromise between ease of usability and ease of
implementation is needed, err on the latter side. Forth is easily imple-
mented (there is a multitude of hobbyist implementations) and somewhat
easily used. Its semantics, however, is very complex, especially consid-
ering the complex interaction between control and data flow once both
stacks are exercised.

15.2 Lisp: Linked Lists, Term Rewriting, Homoiconic-
ity

Introduction. Lisp is even older than Forth [McCarthy, 1960]. This lan-
guage was conceived as a tool for symbolic artificial intelligence. There-
fore, Lisp has great support for discrete data structures such as trees, graphs
and lists — hence the name list processor.

Linked lists. The oldest and most fundamental data structure is the
singly-linked list, represented as a pair of (1) the first element; (2) a pointer
to the remainder of the list. For obscure historical reasons, these two point-
ers are called the CAR and the CDR of a CONS pair. E. g. the “proper” list
(1, 2, 3, 42) could be represented by the lisp code (LIST 1 2 3 42). Con-
ventionally, a CONS pair (a,b) is spelt (a.b). The above-mentioned list is a
short form for the CONS pairs given by (1.(2.(3.(42.NIL)))); here, NIL is
a marker for the end of a list.

Although more data structures such as arrays, hash tables and records
have been added, lists are the most flexible (though not always most effi-
cient) data structure. Many internal structures are represented as lists and
are supposed to be manipulated as such.

Term rewriting. In fact, the execution of a lisp program can be under-
stood in terms of rewriting a list, namely the program’s source:

• The value of any atomic (i. e. non-list) value is the value itself.

• The value of a list (f x y z ...) is given by the following proce-
dure:

1. Evaluate f, x, y, z,

2. Call function f with arguments x, y, z, (Of course, f should
evaluate to a function.)

83

Based on this, an interesting functional language could be built. On
top of this, Lisp has a rich set of non-functional features such as global
variables, exception handling and mutable data structures as expected for
a typical imperative programming language.

Homoiconicity. Lisp is an example (maybe the oldest in the world of
computing) of homoiconicity: The program’s code is a first-class value of
the language (namely, a list). Therefore, programs can be constructed and
manipulated algorithmically with ease: Code writes code. This is tradi-
tionally implemented by macros, Lisp code which alters the source at com-
pile time. Whole new programming paradigms such as object oriented or
aspect oriented programming can be added as sets of macros. No new
meta-programming language is required, and all facilities for manipulat-
ing data structures are available.

Common Lisp. This standard [Steele, 1990] tried to standardise (al-
most) every feature available in any of then’s major Lisp implementa-
tions. At the same time, it added all non-controversial facilities which
were planned for then’s next generation implementations. Altogether, it
was seen as a huge programming language (although it is small in com-
parison to today’s languages). — More features not conceivable at that
time have been added to modern Lisps, such as networking, graphical
user interfaces, threading, transactional memory,

Summary. This vignette could hardly even scratch the surface of Com-
mon Lisp and other branches of Lisp’s language tree (notably, Scheme was
completely ignored [Clinger and Rees, 1991]). Still, the case could be made
for Lisp’s simple core (consisting of the section title’s three ideas) and the
many useful additions. It is notoriously hard to implement Common Lisp
in a fully conforming way; on the other hand, even the semantics of a full
Common Lisp are relatively straight forward.

15.3 Simplicity in anan

Introduction. This section wants to apply the principle to anan. Its
three core principles are

• awk sensors;

• Lua as extension language for sensors;

• relational queries between sensor results.

Unclear simplicity. All of these can be viewed as “large” technologies:

84

• The POSIX standard [spe, 2008] covers awk on about thirty pages —
which do not include many other features such as regular expres-
sions, localisation etc. discussed in other parts of the standard.

• The Lua reference manual is about 50 pages long [de Figueiredo
et al., 2017]. It is mostly self-contained and relies only on the specifi-
cation of the programming languages C and C++.

• The standard for SQL 92 [mel, 1992] runs over 600 pages (and of
course, SQLite implements much more than the standard defines,
although a small number of features is missing).

Obviously, page counts are arbitrary and depend on formatting and
stylistic issues; additionally, standard documents tend to be more bureau-
cratic and therefore more verbose.

Not full awk. In anan, however, only the core idea of awk is used and
implemented: Parametrise using variables; open files; read (generalised)
lines, split into (generalised) fields; execute code when line matches pat-
tern; gather results. These few words translate into a few hundred lines
of code. Of course, this by far does not constitute a full implementation of
awk.

Lua is small. The draft standard for C89 [c89, 1992] is about three times
as large as the Lua reference manual when counting “pages” the same way.
It is certainly written in a more pedantic style as it was submitted to ISO’s
standardisation process. But since C is known as a small language, Lua
should be understood to be even smaller.

Not much SQL is used. In practice, very simple SELECT statements and
rarely a few NATURAL JOINs have been used. Theoretically, the full power
of SQLite is available. Very little is necessary since it duplicates many of
Lua’s or awk’s facilities.

Summary. The notion of simplicity, based on the ideas of Kolmogorov
complexity, can be successfully applied to software artefacts. From the
right point of view, most apparent complexity becomes tangential, where-
as the simple core can be seen clearly. This can be made somewhat plau-
sible for the programming languages Forth and Lisp; a similar result has
been attempted for anan. Since simplicity is only a tangent in this thesis,
many questions remain, amongst them:

• Can this Kolmogorov-like complexity be quantified numerically?

• Specifically, can objects be ordered systematically by complexity?

85

• Can the root cause of complexity be found and fixed? Is this even
required?

• No negative examples (i. e. seemingly simple, really complex) ob-
jects have been studied. The only (hardly relevant) exception is “Rule
30” and RC4 on p. 79. Without this, the proposed idea cannot be val-
idated fully.

86

Chapter 16

Summary and Future Work

Introduction. The qualities of anan have been assessed, both using syn-
thetic and practical benchmarks and non-functional (usability and similar)
criteria. In this section, these results shall be used to assess the need for
future work. Note that there could be two reasons why a certain aspect
does not require future work:

1. It has been dealt with in a satisfying way. (positive result)

2. The aspect is not needed for anan’s successor. (negative result)

Naturally, previous results will necessarily be restated briefly.

16.1 Is anan Successful?

Benchmarks. The synthetic benchmarks hint and the practical bench-
marks show that anan can be used in somewhat large data centres. Multi-
threading might be a useful addition to make sure anan can be used pro-
ductively with several thousand systems under consideration. This, how-
ever, is a relatively straightforward addition. Other than this, this aspect
is fully satisfactory.

Usability. As mentioned above, anan has been equipped with most
of the amenities typical command line tools offer. This part of usability
about as good as it can get for a command line tool. A graphical user in-
terface might help usability, but was out of scope. Higher level tooling
(large application-specific libraries of well-parametrised sensors; exam-
ples of meaningful SQL queries; tutorial-like examples etc.) would have
probably improved anan’s ease of use greatly. This is, however, partially

87

out of scope, although during normal usage, such examples arise natu-
rally. Therefore, this aspect might require some attention.

Actually found bugs. As mentioned above, besides the tiny case study
in chapter 13.4, no real bugs have been found. That still is no negative
result, be it only for the reason that the facilities used in the case study have
been available only for a short time. The case study has certainly shown
that anan can in principle be used to aid in finding even well hidden bugs,
although the effort may still be considerable.

16.2 Is Cloud Debugging Successful?

Introduction. This thesis can only study a single instance of cloud de-
bugging, anan. Perhaps, this instance was not representative of the (hypo-
thetical) class of cloud debuggers?

Minimum requirements. The mere requirement of being a cloud de-
bugger forces a few properties, among them:

• interactive (although not necessarily command line) use;

• client-server architecture;

• servers on each system under consideration;

• light-weight data transport layer;

• extensibility.

Together, many design choices described in chapter 11 are dictated by
these requirements. Although many are not, any tool that wants to be a
cloud debugger has to be similar to anan. Therefore, a result about anan
almost automatically translates into a result about any cloud debugger of
a comparable level of sophistication. Naturally, a tool into which much
more effort has been invested cannot be compared to a relatively young
tool such as anan.

Summary. A cloud debugger is clearly a success story, be it only as a
do-it-all tool or as “better” monitoring tool. Since debugging is inherently
a finicky task (and the more so for large systems with many moving parts),
even the slightest improvement is helpful. But even the best tool (which
anan is not, as of yet) can always be improved.

88

Bibliography

[rec, 1988] (1988). Specification of abstract syntax notation one (ASN. 1).

[mel, 1992] (1992). ISO/IEC 9075:1992: Information technology–database
languages–SQL.

[c89, 1992] (1992). ISO/IEC 9899:1990: Programming languages—C.

[spe, 2008] (2008). Draft standard for information technology—portable
operating system interface (POSIX®) draft technical standard: Base
specifications, issue 7.

[int, 2013] (2013). Intelligent platform management interface specifica-
tions second generation [ol].

[Aamodt et al., 2008] Aamodt, K., Quintana, A. A., Achenbach, R., Acou-
nis, S., Adamová, D., Adler, C., Aggarwal, M., Agnese, F., Rinella, G. A.,
Ahammed, Z., et al. (2008). The alice experiment at the cern lhc. Journal
of Instrumentation, 3(08):S08002.

[Aceto et al., 2013] Aceto, G., Botta, A., De Donato, W., and Pescapè, A.
(2013). Cloud monitoring: A survey. Computer Networks, 57(9):2093–
2115.

[Adler and Kebschull, 2020] Adler, A. and Kebschull, U. (2020).
Anan—analyse and navigate: Debugging compute clusters with
techniques from functional programming and text stream processing.
In EPJ Web of Conferences, volume 245, page 01041. EDP Sciences.

[Agans, 2002] Agans, D. J. (2002). Debugging: The 9 indispensable rules for
finding even the most elusive software and hardware problems. Amacom.

[Aho et al., 1979] Aho, A. V., Kernighan, B. W., and Weinberger, P. J.
(1979). Awk—a pattern scanning and processing language. Software:
Practice and Experience, 9(4):267–279.

89

[Anderson et al., 1990] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Don-
garra, J., DuCroz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
and Sorensen, D. (1990). LAPACK: A portable linear algebra library for
high-performance computers.

[Angermann et al., 2020] Angermann, A., Beuschel, M., Rau, M., and
Wohlfarth, U. (2020). Matlab–simulink–stateflow. De Gruyter Olden-
bourg.

[Barry, 1992] Barry, P. (1992). Abstract syntax notation-one (ASN.1). In IEE
Tutorial Colloquium on Formal Methods and Notations Applicable to Telecom-
munications, pages 2–1. IET.

[Becker et al., 1995] Becker, D. J., Sterling, T., Savarese, D., Dorband, J. E.,
Ranawak, U. A., and Packer, C. V. (1995). Beowulf: A parallel worksta-
tion for scientific computation. In Proceedings, International Conference
on Parallel Processing, volume 95, pages 11–14.

[Bernstein et al., 2014] Bernstein, D. J., Van Gastel, B., Janssen, W., Lange,
T., Schwabe, P., and Smetsers, S. (2014). Tweetnacl: A crypto library
in 100 tweets. In International Conference on Cryptology and Information
Security in Latin America, pages 64–83. Springer.

[Biancuzzi et al., 2009] Biancuzzi, F. et al. (2009). Masterminds of program-
ming: Conversations with the creators of major programming languages.
O’Reilly Media, Inc.

[Binnie, 2016] Binnie, C. (2016). Supercharged systemd. In Practical Linux
Topics, pages 21–32. Springer.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition. Machine learning,
128(9).

[Bray, 2017] Bray, T. (2017). RFC 8259: The javascript object notation
(JSON) data interchange format.

[Bray et al., 2006] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
Yergeau, F., and Cowan, J. (2006). Extensible markup language (XML)
1.1.

[Cadar et al., 2008] Cadar, C., Dunbar, D., Engler, D. R., et al. (2008). Klee:
unassisted and automatic generation of high-coverage tests for complex
systems programs. In OSDI, volume 8, pages 209–224.

90

[Clark et al., 1999] Clark, J. et al. (1999). XSL transformations (XSLT).
World Wide Web Consortium (W3C)., 103.

[Clinger and Rees, 1991] Clinger, W. and Rees, J. (1991). Revised report on
the algorithmic language scheme.

[Codd, 1983] Codd, E. F. (1983). A relational model of data for large
shared data banks. Communications of the ACM, 26(1):64–69.

[Collet and Kucherawy, 2018] Collet, Y. and Kucherawy, M. (2018). RFC
8478: Zstandard compression and the application/zstd media type.

[Cook and McKenzie, 1987] Cook, S. A. and McKenzie, P. (1987). Prob-
lems complete for deterministic logarithmic space. Journal of Algorithms,
8(3):385–394.

[de Figueiredo et al., 2017] de Figueiredo, L., Celes, W., et al. (2017). Lua
5.3 reference manual.

[Despain, 1979] Despain, A. M. (1979). Very fast fourier transform algo-
rithms hardware for implementation. IEEE Transactions on Computers,
28(05):333–341.

[Dijkstra, 1968] Dijkstra, E. W. (1968). Letters to the editor: go to statement
considered harmful. Communications of the ACM, 11(3):147–148.

[Duff et al., 2002] Duff, I. S., Heroux, M. A., and Pozo, R. (2002). An
overview of the sparse basic linear algebra subprograms: The new stan-
dard from the blas technical forum. ACM Transactions on Mathematical
Software (TOMS), 28(2):239–267.

[Fatema et al., 2014] Fatema, K., Emeakaroha, V. C., Healy, P. D., Morri-
son, J. P., and Lynn, T. (2014). A survey of cloud monitoring tools:
Taxonomy, capabilities and objectives. Journal of Parallel and Distributed
Computing, 74(10):2918–2933.

[Fernández, 2016] Fernández, L. M. (2016). Concurrent programming in
lua—revisiting the luaproc library.

[Ferraiolo et al., 2000] Ferraiolo, J., Jun, F., and Jackson, D. (2000). Scalable
vector graphics (SVG) 1.0 specification. iUniverseo Bloomington.

[Forster, 1996] Forster, O. (1996). Algorithmische Zahlentheorie. Springer.

91

[Frigo and Johnson, 1998] Frigo, M. and Johnson, S. G. (1998). FFTW: An
adaptive software architecture for the FFT. In Proceedings of the 1998
IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP’98 (Cat. No. 98CH36181), volume 3, pages 1381–1384. IEEE.

[Gailly and Adler, 2004] Gailly, J.-l. and Adler, M. (2004). Zlib compres-
sion library.

[Gillmor, 1987] Gillmor, C. S. (1987). Memoirs of a computer pioneer.

[Goto, 2011] Goto, Y. (2011). Kernel-based virtual machine technology.
Fujitsu Scientific and Technical Journal, 47(3):362–368.

[Günther, 2020] Günther, N. (2020). Evaluierung des Cluster Monitoring-
und Debugging-Tools anan unter Berücksichtigung von CERN-
Anforderungen. M. S. thesis, Goethe-Universität Frankfurt.

[Hager and Wellein, 2010] Hager, G. and Wellein, G. (2010). Introduction
to high performance computing for scientists and engineers. CRC Press.

[Hansen, 1971] Hansen, W. J. (1971). Creation of hierarchic text with a
computer display. Technical report, Argonne National Lab., Ill.

[Härder and Reuter, 1994] Härder, T. and Reuter, A. (1994). Principles of
transaction-oriented database recovery. In Readings in database systems
(2nd ed.), pages 227–242.

[Herder et al., 2006] Herder, J. N., Bos, H., Gras, B., Homburg, P., and
Tanenbaum, A. S. (2006). Minix 3: A highly reliable, self-repairing op-
erating system. ACM SIGOPS Operating Systems Review, 40(3):80–89.

[Hochstein and Moser, 2017] Hochstein, L. and Moser, R. (2017). Ansible:
Up and Running: Automating configuration management and deployment the
easy way. O’Reilly Media, Inc.

[Hughes, 1995] Hughes, J. (1995). The design of a pretty-printing library.
In International School on Advanced Functional Programming, pages 53–96.
Springer.

[Hutchins et al., 1985] Hutchins, E. L., Hollan, J. D., and Norman, D. A.
(1985). Direct manipulation interfaces. Human–computer interaction,
1(4):311–338.

[Ierusalimschy, 2016] Ierusalimschy, R. (2016). Programming in Lua, Fourth
Edition. Lua.Org.

92

[Karlesky et al., 2007] Karlesky, M., Williams, G., Bereza, W., and Fletcher,
M. (2007). Mocking the embedded world: Test-driven development,
continuous integration, and design patterns. In Proc. Emb. Systems Conf,
CA, USA, pages 1518–1532.

[King, 1976] King, J. C. (1976). Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394.

[Lieberman, 1997] Lieberman, H. (1997). The debugging scandal and
what to do about it. Communications of the ACM, 40(4):26–30.

[Mathews, 2004] Mathews, B. S. (2004). Internet resources: Gray litera-
ture: Resources for locating unpublished research. College & Research
Libraries News, 65(3):125–129.

[McCarthy, 1960] McCarthy, J. (1960). Recursive functions of symbolic ex-
pressions and their computation by machine, part i. Communications of
the ACM, 3(4):184–195.

[McKeon et al., 2009] McKeon, R. et al. (2009). The basic works of Aristotle.
Modern Library.

[Metzger, 2004] Metzger, R. C. (2004). Debugging by thinking: A multidisci-
plinary approach. Digital Press.

[Milojkovic et al., 2017] Milojkovic, N., Ghafari, M., and Nierstrasz, O.
(2017). It’s duck (typing) season! In 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), pages 312–315. IEEE.

[Moore, 1965] Moore, G. (1965). Moore’s law. Electronics Magazine,
38(8):114.

[Neira-Ayuso et al., 2010] Neira-Ayuso, P., Gasca, R. M., and Lefevre, L.
(2010). Communicating between the kernel and user-space in linux us-
ing netlink sockets. Software: Practice and Experience, 40(9):797–810.

[Oliphant, 2006] Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trel-
gol Publishing USA.

[Omar et al., 2013] Omar, S., Ngadi, A., and Jebur, H. H. (2013). Machine
learning techniques for anomaly detection: an overview. International
Journal of Computer Applications, 79(2).

[Owens and Allen, 2010] Owens, M. and Allen, G. (2010). SQLite.
Springer.

93

[Paez, 2017] Paez, A. (2017). Gray literature: An important resource in
systematic reviews. Journal of Evidence-Based Medicine, 10(3):233–240.

[Pall, 2008] Pall, M. (2008). The luajit project. Web site: http://luajit. org.

[Paul and Maitra, 2011] Paul, G. and Maitra, S. (2011). RC4 stream cipher
and its variants. CRC press.

[Perscheid et al., 2017] Perscheid, M., Siegmund, B., Taeumel, M., and
Hirschfeld, R. (2017). Studying the advancement in debugging practice
of professional software developers. Software Quality Journal, 25(1):83–
110.

[Popper, 1989] Popper, K. R. (1989). Logik der Forschung.

[Postel et al., 1980] Postel, J. et al. (1980). RFC 768: User datagram proto-
col.

[Ramey, 2015] Ramey, C. (2015). Gnu readline library.

[Rescorla and Dierks, 2018] Rescorla, E. and Dierks, T. (2018). RFC 8446,
the transport layer security (TLS) protocol version 1.3.

[Rosenberg et al., 2010] Rosenberg, J. et al. (2010). Interactive connectivity
establishment (ICE): A protocol for network address translator (NAT)
traversal for offer/answer protocols. Technical report, RFC 5245, April.

[Ruckert, 2015] Ruckert, M. (2015). The MMIX Supplement: Supplement to
The Art of Computer Programming Volumes 1, 2, 3 by Donald E. Knuth.
Addison-Wesley Professional.

[Schweizer, 2016] Schweizer, W. (2016). MATLAB kompakt. De Gruyter
Oldenbourg.

[Sen, 2007] Sen, K. (2007). Concolic testing. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineer-
ing, pages 571–572.

[Shafranovich, 2005] Shafranovich, Y. (2005). Rfc 4180: Common format
and MIME type for comma-separated values (CSV) files.

[Skyrme et al., 2008] Skyrme, A., Rodriguez, N. d. L. R., and Ierusalim-
schy, R. (2008). Exploring lua for concurrent programming. J. Univers.
Comput. Sci., 14(21):3556–3572.

94

[Steele, 1990] Steele, G. (1990). Common LISP: the language. Elsevier.

[Stein, 1995] Stein, S. (1995). Stein on writing: a master editor of some of the
most successful writers of our century shares his craft techniques and strate-
gies. Macmillan.

[Stonebraker and Rowe, 1986] Stonebraker, M. and Rowe, L. A. (1986).
The design of postgres. ACM Sigmod Record, 15(2):340–355.

[Summers and Engineer, 2008] Summers, T. and Engineer, S. A. (2008).
Hardware based gzip compression, benefits and applications. COR-
PUS, 3(2.75):2–68.

[Sutton et al., 2007] Sutton, M., Greene, A., and Amini, P. (2007). Fuzzing:
brute force vulnerability discovery. Pearson Education.

[Tamburri et al., 2020] Tamburri, D. A., Miglierina, M., and Di Nitto, E.
(2020). Cloud applications monitoring: An industrial study. Information
and Software Technology, 127:106376.

[Vaughan et al., 1999] Vaughan, G. V., Elliston, B., Tromey, T., and Taylor,
I. L. (1999). Autoconf, automake, libtool.

[Vladyka, 2018] Vladyka, O. (2018). Kompresnı́ metoda zstandard. B.S.
thesis, České vysoké učenı́ technické v Praze. Vypočetnı́ a informačnı́
centrum.

[Weissenbacher, 2012] Weissenbacher, G. (2012). Explaining Heisenbugs.
In Runtime Verification, volume 9333.

[Wolfram, 1991] Wolfram, S. (1991). Mathematica: a system for doing mathe-
matics by computer. Addison Wesley Longman Publishing Co., Inc.

[Wolfram, 2002] Wolfram, S. (2002). A new kind of science, volume 5. Wol-
fram media Champaign, IL.

[Yuan et al., 2018] Yuan, Y., Yang, Y., Wu, L., and Zhang, X. (2018). A high
performance encryption system based on AES algorithm with novel
hardware implementation. In 2018 IEEE International Conference on Elec-
tron Devices and Solid State Circuits (EDSSC), pages 1–2. IEEE.

[Ziv and Lempel, 1977] Ziv, J. and Lempel, A. (1977). A universal algo-
rithm for sequential data compression. IEEE Transactions on information
theory, 23(3):337–343.

95

Chapter 17

Appendix: Reference Manual for
anan

17.1 Installation and Setup

Since anan is using the GNU build system, it can be built by a simple
invocation of

./configure && make

The usual conventions of configure scripts apply, e. g. the variables CC,
LD override the compiler/linker path and CFLAGS, LDFLAGS append to the
compiler’s/linker’s command line.

Cross compiling is supported via the option --host. The build process
of anan needs to amalgamate all relevant binary and source objects into a
C program. A tool called luastatic is used for that. It needs to run on the
host. Building with the host compiler in a setting of cross compilation is
not easily supported by autotools. Therefore, the following work-around
is recommended for cross-compiling: (The option -static is optional.)

1 # in the directory from opening anan's tarball

2 LDFLAGS=-static ./configure

3 cd lua ; make ; cd .. # liblua.a is a requirement for luastatic

4 make luastatic ; mv luastatic luastatic.host ; make distclean

5 LDFLAGS=-static ./configure --host=aarch64-linux-musl # aarch64 is an example

6 cd lua ; make ; cd .. # trick dependency tracking into believing ...

7 make luastatic ; mv luastatic.host luastatic # ... luastatic is up to date

8 make

The build process should generate the following executable files:

• anan,

96

• anand,

• new keys.

The latter is used to create key pairs for anan:

1 mkdir anand.keys

2 mkdir anan.keys

3 ./new_keys

4 # keys are in anand.keys/ and anan.keys/

The binaries anand and anan expect their keys and their run control
files to be in the current directory. The key creator new keys is set up in
such a way that anan would start happily in the directory anan.keys and
anand in the directory anand.keys. The file id is the tool’s private key, the
.pub file is the other tool’s public key.

The run control file is called init.lua. Using this facility is highly
recommended. It is executed at startup and is expected to return a table of
symbols (i. e., a module) to be added to anan’s global environment or to
the sensors running on anand. An example of an init.lua for anan:

1 local module = {}

2 -- helper function for quickly loading content of small files

3 -- interactive use: slurp "init.lua"

4 -- no error handling

5 module.slurp = function(filename)

6 local f = io.open(file)

7 local rv = f:read("a")

8 f:close()

9 return rv

10 end

11

12 -- global variable

13 -- interactive use: storage[2]

14 module.storage = {"primus", "secundus", "tertius"}

15

16 -- there are no constants in Lua

17 -- interactive use: math.pi

18 module.PI = 4 -- approximately

19

20 return module -- compulsory statement

The database used for anan is at the fixed path "/tmp/monitoring.db".
If this should be inconvenient, it can be easily changed in the source code
(variable DBPATH; appears twice (!)).

The source code of anan (including the build system’s source) is in the
public domain. The remaining sources ship their corresponding licenses
either at the beginning of the source or in the file LICENSE in their source
directories.

97

17.2 General

The command line interface understands Lua code. Both full state-
ments (including branches and loops) and expressions are allowed. Every
line has to be either a complete statement or a complete expressions; new
lines cannot be escaped. (If lines grow too long, some of the material can
be put into init.lua.)

Editing via readline is available, .inputrc is honoured.
The input prompt is <-, the prompt before output is =>. Normal output

is green; error messages are red and include the full error message and
the stack trace (if applicable). Multiple values are displayed with tabs as
separators. Values are pretty-printed by the library serpent in the most
verbose mode. This is hard-coded. If the user wants to avoid this, the
value can be assigned to a variable (statements have no return value).

Lua’s standard library is available; additionally, the following modules
are compiled into anan:

• readline

• zlib

• luatz (time zone handling)

• rxi-json-lua (JSON parser and dumper)

• luaposix (bindings for POSIX functions)

• nacl (bindings for NaCl; implements only TweetNaCl)

• serpent (dumper for Lua’s native format)

• luaproc (threading)

• clutch (high-level bindings for SQLite)

Arbitrary non-native modules can be loaded in the usual way. Na-
tive modules need to be plugged into the build system (for an example,
see how luaproc is added to Makefile.am and configure.ac and see also
luaproc/Makefile.am), unless they happen to be built with the exact same
compiler and the same settings against the same libc.

98

17.3 Sensors

There is only one type of sensor which can be executed by anand. The
following (nonsensical) example shows most features of sensors:

1 awk {

2 id = "don't use weird characters in IDs\nit will confuse everyone/everything",

3 files = { -- may be a list, a single string or empty

4 "/etc/*", -- trailing commas don't hurt

5 },

6 variables = {

7 FS = ":", -- field separator | built-in variable as in AWK

8 KILL_PATTERN = "l33t p4tt3rn", -- user variable

9 GLOB = true, -- expand globs in the section `files`

10 }

11 rules = {

12 --

13 'BEGIN', [[-- before any file is opened

14 fcntl = require "posix.fcntl";

15 posix = require "posix";

16]];

17 -- condition #1

18 'F[1]:match "roo." or #line > 42', [[-- code #1

19 yield{datum = line, msg = "weird line"}

20]];

21 -- condition #2

22 'F[4]:match(KILL_PATTERN)', [[-- code #2

23 yield{datum = line, msg = "Your line was my last word!", f4 = F[4]};

24 die(); -- but still run to completion and die only then

25]];

26 'END', [[

27 yield{msg = "ups, forgot to use fcntl", fcntl = posix.F_SETLKW};

28]]

29 }

30 }

Sensors are constructed by the function awk (the value returned by it is
not relevant). Sensors consists of up to five sections:

• id: If not given manually, then anan chooses names like "anon-42".

• file is a list (or a single string) of file names to be opened during the
main run.

• hostnames is a list (or a single string) of host names where the sensor
should be deployed to. If this is not specified, the sensor is deployed
everywhere.

• variables: Sensors can be given user variables to parametrise the sen-
sor easily. Any value given here can be used as a global variable in
the rules section. The following variables are built-in:

99

– RS, FS are the record and field separators. A file is split into
records (lines by default) according to the Lua pattern RS; each
record is split into (space-separated by default) fields according
to the Lua pattern FS. At the beginning of every record, RS and
FS are checked; changing FS inside an action or condition does
not split the current record into new fields, though.

– If GLOB is set to a true value, filenames are expanded by glob(3).

• rules: This is a list of pairs (condition, action). The condition can
be one of the following:

– BEGIN or END. The action is to be executed before or after the
files are processed.

– The empty string. Equivalent to true.

– A Lua expression. If the expression evaluates a true value, the
action is executed.

The action is a piece of Lua code. The following additional symbols
are available:

– line, F[1], F[2], . . . are the current line and its fields. Assign-
ments to line do not “automagically” affect F or vice versa.

– FNR, NR count the number of records; FNR is reset to 1 at every
new file.

– FILENAME. The current filename, or nil in "BEGIN" rules. In
"END" rules, the last values of FILENAME, FNR and NR are retained.

– All symbols returned from init.lua are available. This is the
only way for sensors to persist state between executions. (This
use is not recommended.)

– yield() adds its arguments to the returned object. Scalar values
and arrays are appended; non-numeric keys are copied. There-
fore, yield{k=1}, followed by yield{k=2}, will result in a re-
turned object with a field k=2.

– die() deactivates the current sensor. It does still run to comple-
tion and returns the aggregated result.

As a shortcut, the sensor awk(string) is equivalent to:

1 awk {

2 id = "quick-42", -- possibly with a different number

100

3 hostnames = hostnames, -- all host names,

4 files = {},

5 variables = {},

6 rules = {

7 'END', string -- execute `string`

8 }

9 }

This is especially convenient with a string ending in "die()" for one-
time measurements.

17.4 Use Sensor Data

Data is stored in memory for a few seconds in the variable messages,
indexed by IP address and message number:

<- add_hostname{"primus", "secundus", "tertius"}

=> { -- reports whether the addition was successful

true,

true,

true

}

<- awk { id = "testName", ... } -- deploy some sensor

<- messages[ips.primus][1].awk.testName.msg

=> "value of msg"

Since this interface is very inconvenient, a somewhat better interface is
given by the function query().

1 -- returns an array of results

2 query "SELECT msg, max(time), hostname FROM testName"

3 query("SELECT hostname, time, msg FROM testName WHERE msg LIKE $pattern",

4 {pattern = thePattern})

The query language is SQL as understood by SQLite 3. The tables are
sensor names, the columns are the sensor’s results. (Sensors should refrain
from changing their column sets.) There are automatically constructed
columns time and hostname. Since SQLite does not directly support struc-
tured column values, sensors need to encode complex data sets as strings.
JSON is preferred because of SQLite’s built-in support. Alternatively, the
database can be normalised manually to at least the first normal form.

Due to batched execution, query might see a delay of up to a few sec-
onds. The same holds when the database is directly opened with SQLite’s
command line client.

101

17.5 Other functions

1. Specifying host names

• alpha(a, z) generates a list of letters spanning from a to z.

• iota(i, j) generates a list of numbers spanning from i to j;
omitting j is equivalent to iota(0, i).

• template(string, l1, ...) interpolates the elements from li
in the i−th place of the character #. The character # itself is
escaped by doubling. Example:

<- template("#-#", {"storage", "compute", "infra"}, iota(2))

=> {

"storage-0",

"storage-1",

"storage-2",

"compute-0",

"compute-1",

"compute-2",

"infra-0",

"infra-1",

"infra-2"

}

• map(f, l1, ...) is useful for many things. It applies the func-
tion f to elements from the lists l1, l2, Instead of a list, a
non-list element can be given. This is equivalent to a list con-
taining infinitely many repetitions of that element. Example:

<- map(function(a, b, c) return a*b+c end, iota(4), iota(4, 8), 3)

=> {

3,

8,

15,

24,

35

}

• filter(f, list) returns a list with elements from list for which
f returns true.

102

2. Processing sensor results

• lambda(string) returns a function which evaluates string. The
variables x, y and z are set to the first arguments of that func-
tion. Example:

1 increment = lambda "1+x"

2 plus = lambda "x+y"

3 lookup = lambda "y[x]"

4 map(lambda[[string.format("str[%q]", x)]], {"'\"'", "\0"})

5 map(lambda "x.complicated[1].value[4]", someSensorResult)

• place(where) is for cases like the last example in line #5. The
call to lambda could have been replaced by:

place ".complicated[1].value[4]"

• find(array, element, comparator) returns the first index of
array where element can be found. The default comparator is
lambda "x == y".

• zip(l1, l2, ...) returns an array with the values of l1, l2,
. . . juxtaposed (“zipped together”). This can act as a poor man’s
JOIN, if the lists are time series with the same offset and spacing.

3. Managing sensors

• clear() deletes all local sensor configurations and correspond-
ing running sensors.

• ls(what) lists all sensors, if what is nil. If what is a string, all
sensors with names matching the Lua pattern what are returned.

• rm(what) is similar, but removes the sensors from the local con-
figuration (without updating the corresponding running sen-
sors).

• update configuration(hostname) updates the hostnames’ con-
figuration to match the local one. This is only needed after rm()
was called.

103

Chapter 18

Appendix: Lebenslauf des
Verfassers

• geboren am 12. August 1989

• Abitur im Jahr 2009 am Lessing-Gymnasium Frankfurt

• Bachelor-Studium der Informatik mit Nebenfach Mathematik an der
Goethe-Universität Frankfurt 2009–2012

• Abschlussarbeit zum Thema exakte Arithmetik; Prüfer waren M. Schmidt-
Schauß und C. P. Schnorr

• Master-Studium der Informatik ohne Nebenfach an der Humboldt-
Universität zu Berlin 2012–2016

• Abschlussarbeit zum Thema aktives Lernen regulärer Sprachen; Prüfer
waren J. Köbler und S. Kuhnert.

104

	I Introduction
	Danksagung
	Zusammenfassung
	General Introduction; Notation
	Introduction to Debugging
	Introduction to High Performance Computing
	The Contribution of anan

	II State of the Art
	Clusters
	Monitoring
	Debugging

	III anan: analyse and navigate
	Existing Technologies and Tools
	Programming Language Lua 5.3
	Protocol Layer
	Deployment via GNU autotools
	SQLite
	Grafana

	Concepts

	IV Results, Summary, Future Work
	Overview
	Benchmarks
	Synthetic Benchmark: 10 Containers on a Laptop
	Synthetic Benchmark: In Ten Virtual Machines on a Blade Center
	Synthetic Benchmark: In 140 Virtual Machines via OpenStack
	Practical Benchmark: Monitoring for EPN Farm
	Practical Benchmark: A Tiny Case Study
	Application Note: Porting anan to an Embedded System

	Usability and other “Soft” Criteria
	General Observations
	Reasons and Solutions
	Monitoring and Debugging

	Interlude: The notion of simplicity
	Forth: Two Stacks, Tiny Functions, Direct Machine Access
	Lisp: Linked Lists, Term Rewriting, Homoiconicity
	Simplicity in anan

	Summary and Future Work
	Is anan Successful?
	Is Cloud Debugging Successful?

	Appendix: Reference Manual for anan
	Installation and Setup
	General
	Sensors
	Use Sensor Data
	Other functions

	Appendix: Lebenslauf des Verfassers

