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Abstract 

Background:  The technical development of imaging techniques in life sciences has 
enabled the three-dimensional recording of living samples at increasing temporal reso-
lutions. Dynamic 3D data sets of developing organisms allow for time-resolved quan-
titative analyses of morphogenetic changes in three dimensions, but require efficient 
and automatable analysis pipelines to tackle the resulting Terabytes of image data. 
Particle image velocimetry (PIV) is a robust and segmentation-free technique that is 
suitable for quantifying collective cellular migration on data sets with different labeling 
schemes. This paper presents the implementation of an efficient 3D PIV package using 
the Julia programming language—quickPIV. Our software is focused on optimizing 
CPU performance and ensuring the robustness of the PIV analyses on biological data.

Results:  QuickPIV is three times faster than the Python implementation hosted in 
openPIV, both in 2D and 3D. Our software is also faster than the fastest 2D PIV pack-
age in openPIV, written in C++. The accuracy evaluation of our software on synthetic 
data agrees with the expected accuracies described in the literature. Additionally, by 
applying quickPIV to three data sets of the embryogenesis of Tribolium castaneum, we 
obtained vector fields that recapitulate the migration movements of gastrulation, both 
in nuclear and actin-labeled embryos. We show normalized squared error cross-corre-
lation to be especially accurate in detecting translations in non-segmentable biological 
image data.

Conclusions:  The presented software addresses the need for a fast and open-source 
3D PIV package in biological research. Currently, quickPIV offers efficient 2D and 3D PIV 
analyses featuring zero-normalized and normalized squared error cross-correlations, 
sub-pixel/voxel approximation, and multi-pass. Post-processing options include filter-
ing and averaging of the resulting vector fields, extraction of velocity, divergence and 
collectiveness maps, simulation of pseudo-trajectories, and unit conversion. In addi-
tion, our software includes functions to visualize the 3D vector fields in Paraview.

Keywords:  Particle image velocimetry, Light-sheet fluorescence microscopy, 
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Background
Cellular migration in multi-cellular organisms often involves tissues or groups of cells 
that maintain stable or transient cell-cell contacts to preserve tissue integrity, sustain 
spatial patterning, or to enable the relocation of non-motile cells [1]. This phenom-
enon is generally known as collective cell migration, and it plays important roles in 
developmental processes, such as gastrulation or neural crest migration [2, 3], as well 
as in wound closure and cancer invasion [4]. Studies of collective cell migration on 2D 
cell cultures only partially reflect the physiology and architecture of in  vivo tissues. 
Three-dimensional systems—such as model organisms, spheroids or organoids—are 
preferable, as they maintain physiological cell structures, neighborhood interactions, 
or mechanical extracellular properties, which have been recognized to play a role in 
regulating collective cellular migration [5–7]. Besides confocal fluorescence micros-
copy, light-sheet fluorescence microscopy (LSFM) has become one of the preferred 
techniques for three-dimensional imaging of biological samples, owing to its fast 
acquisition times, excellent signal-to-noise ratios, high spatial resolutions [8, 9], and 
low phototoxicity and photobleaching levels [10]. LSFM has been used to generate 3D 
time-lapse recordings of the complete embryonic morphogenesis of multiple model 
organisms [11, 12]. Based on light-sheet illumination, novel and improved imaging 
techniques are continuously being developed. For example, SCAPE (swept confocally-
aligned planar excitation) microscopy offers more control over the viewing angle of 
the sample [13], while SVIM (selective volume illumination microscopy) dramati-
cally increases acquisition times by dilating the light-sheet, at the expense of spatial 
resolution [14]. High temporal and spatial resolutions can be achieved with lattice 
light-sheet microscopy, where a combination of ultrathin light sheets and structured 
illumination are used [15]. The two last-mentioned techniques are particularly prom-
ising for resolving cellular migration and tissue rearrangements during quick mor-
phogenetic events.

In order to quantify collective cellular migration in dynamic 3D biological data sets, 
we developed quickPIV, a free and open-source particle image velocimetry (PIV) pack-
age that offers fast and robust 3D, as well as 2D, PIV analyses. While several free and 
open-source 2D PIV software are readily available [16–19], the same is not true for 3D 
implementations. To the best of our knowledge, the Python implementation hosted in 
openPIV is the only other free and open-source PIV package that supports 3D analyses 
[18]. The fastest implementation in openPIV, however, corresponds to a 2D PIV imple-
mentation written in C++. Nevertheless, maintenance of this version was stopped in 
favor of the high-level and productive environment of its Python counterpart. In order 
to maximize performance without sacrificing productivity, our software is written in 
Julia, a modern programming language with high-level syntax similar to Python or Mat-
lab that compiles to highly efficient code on par with C programs [20]. This choice is 
motivated by the high data volumes of 3D time-lapse recordings, which makes the analy-
sis of multiple data sets computationally very expensive. For instance, a single sequence 
of 3D images of a developing embryo can easily reach data sizes of several Terabytes. 
Hence, the design principles of Julia enabled us to prioritize the CPU performance of 
quickPIV, and together with further optimizations, made it possible to reduce the pro-
cessing speed of a pair of 3D volumes to several seconds.
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The next subsection introduces PIV and discusses the strengths and limitations of 
applying PIV on biological samples. This is followed by a detailed description of the pipe-
line and the features implemented in quickPIV. The evaluation of our software includes 
a performance comparison to the C++ (2D) and Python (2D and 3D) implementations 
hosted in openPIV, as well as the accuracy evaluation of quickPIV on synthetic data. Fur-
thermore, we analyze the ability of quickPIV to characterize migration patterns on three 
3D time-lapse data sets of the embryonic development of the red flour beetle Tribolium 
castaneum [21, 22]. This is done by (1) simulating known translations on a 3D volume 
of T. castaneum, (2) validating the obtained vector fields against well-known migration 
patterns during the gastrulation of T. castaneum, and (3) by comparing the robustness of 
quickPIV on an embryo expressing both actin and nuclear molecular markers.

Particle image velocimetry

Particle image velocimetry is a segmentation-free technique developed and established 
in the field of fluid dynamics to obtain displacement fields describing the motion of 
small tracer particles suspended in a flowing medium [23]. If the density of seeding par-
ticles is not exceedingly high [24], the motion of each suspended particle can generally 
be recovered through particle tracking velocimetry (PTV) [25]. PTV is analog to sin-
gle-cell tracking, requiring the segmentation of all particles in two consecutive record-
ings before establishing one-to-one correspondences between the particle positions. 
While the size and seeding density of the tracer particles in hydro- and aerodynamic PIV 
experiments can be tuned [26], the segmentability of biological samples is challenged 
by factors with no or limited experimental control. For example, cell segmentation is 
hindered by low contrast of the molecular marker, irregular cell morphologies, or high 
cell densities. Instead of detecting and tracking individual objects, PIV relies on cross-
correlation to find the translation that best aligns the intensity patterns contained inside 
any given sub-region between two consecutive recordings. Vector fields are generated 
by extracting displacement vectors from multiple sub-regions across the input data [23].

The accuracy of PIV on biological data is mostly explained by the strengths and limi-
tations of cross-correlation. In short, cross-correlation is a pattern-matching operation 
that is suitable for finding translations of the intensity distributions contained in two 
successive recordings [27]. Therefore, PIV is appropriate for quantifying collective cell 
migration, which is dominated by a common translation of the migrating group of cells. 
Moreover, the pattern-matching nature of cross-correlation extends the application of 
PIV to non-segmentable data sets, including unstained samples or those stained with 
any persistent intra-cellular marker. PIV has been used to quantify cell migration in 2D 
model systems, such as wound healing assays [28], tumor invasion [29, 30], skin pattern-
ing [31] and others [32–34]. Conversely, cross-correlation is challenged by transforma-
tions other than translations, such as rotations, shears or deformations. High temporal 
resolutions alleviate the contribution of these transformations by approximating them 
to local translations. Uncoordinated cellular migration also reduces the similarity of 
intensity patterns between successive recordings, which degrades the accuracy of PIV. 
However, if the cells are sufficiently different from each other such that they are unam-
biguously detected by cross-correlation, a PIV analysis matching the size of the cells can 
be used to effectively track the movement of independently migrating cell [35, 36].
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Implementation
This section outlines the three-dimensional PIV pipeline implemented in quickPIV. The 
workflow of a PIV analysis in quickPIV is illustrated in Fig. 1. This figure shows input 
volumes containing Gaussian particles to ease the visualization of the underlying trans-
lation. To accommodate all possible labeling schemes of biological samples, we generally 
refer to structures or intensity patterns in the analyzed data.

The input to a 3D PIV analysis is a pair of 3D volumes taken at consecutive time points, 
Vt [x, y, z] and Vt+1[x, y, z] , where (x, y, z) corresponds to the unique 3D coordinates of each 
voxel. Both input volumes are assumed to have the same dimensions. First, Vt is subdi-
vided into a 3D grid of cubic sub-regions known as interrogation volumes, IV[i, j, k], each 

Fig. 1  QuickPIV pipeline The PIV analysis starts by subdividing the input volumes, Vt and Vt+1 , into a grid of 
cubic interrogation, IV, and search volumes, SV. Cross-correlation is performed between each IV[i, j, k] and 
SV[i, j, k] pair, and a displacement vector, (u[i, j, k], v[i, j, k], w[i, j, k]), is computed from each cross-correlation 
matrix through the position of the maximum peak relative to the center of the cross-correlation matrix. The 
computed vector components are added to the U, V and W matrices. Optionally, signal-to-noise ratios are 
computed from each cross-correlation matrix and added to SN. If multi-pass is used, the cross-correlation 
analysis is repeated at progressively lower scales, which is achieved by scaling down the interrogation 
size, overlap and search margin parameters at each iteration. During multi-pass, previously computed 
displacements offset the sampling of the search volumes, effectively refining the computed displacements 
at each iteration. In order to post-process the PIV-computed vector fields, quickPIV currently implements: 
signal-to-noise and vector magnitude filtering, space-time averaging, divergence maps, velocity maps, 
collectiveness maps, pseudo-trajectories and unit conversion. (a) Left, two 60× 50× 50 voxel volumes 
are overlaid, with particles in Vt shown in red, and particles in Vt+1 in blue. Interrogation volume size of 
16× 16× 16 voxels leads to 3× 3× 3 subdivision of non-overlapping interrogation and search volumes. 
Right, with 50% overlap the grid subdivision size is 6× 5× 5 . (b) Example of 3D cross-correlation between 
IV[2, 2, 2] and SV[2, 2, 2]. The use of a search margin of 5 voxels is illustrated, enlarging the search volume 
by 5 voxels in all directions. (c) Example of displacement computation. For clarity, this example portrays 
low particle densities and big particle radii, which results in sub-optimal accuracy of the 3-point Gaussian 
sub-voxel approximation
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specified by its position in the grid, (i,  j,  k). The dimensions of the grid subdivision are 
determined by the interrogation volume size and the overlap between adjacent interroga-
tion volumes, see Fig. 1a. For each interrogation volume, a corresponding search volume, 
SV[i, j, k], can be defined in Vt+1.

Structures moving inside IV[i, j, k] by a translation s = (sx, sy, sz) are expected to be found 
‖s‖ voxels away in the direction of the translation in SV[i, j, k]. The underlying translation, s , 
of the structures contained in IV[i, j, k] and SV[i, j, k] is recovered through a cross-correla-
tion analysis [27]. The cross-correlation between a pair of interrogation and search volumes 
results in a 3D cross-correlation matrix. In the absence of other transformations, the vector 
from the center to the maximum peak of the cross-correlation matrix reflects the underly-
ing translation of the structures contained in IV[i, j, k] and SV[i, j, k]. The structures visible 
in IV[i, j, k] may move outside the borders of the corresponding SV[i, j, k]. This is known as 
out-of-frame loss, and it limits the ability of cross-correlation to match the spatial intensity 
distributions between the pair of interrogation and search volumes. This can be compen-
sated by enlarging the search volumes by a given margin along all dimensions, designated as 
search margin in quickPIV. The search margin should not be much larger than the expected 
translation strength of the structures, as enlarging the search volumes comes at the expense 
of performance. Figure  1b depicts the cross-correlation of the central interrogation and 
search volumes in Fig. 1a, including a search margin of 5 voxels around the search volume.

By computing a displacement vector for each pair of interrogation and search vol-
umes, PIV analyses generate a vector field that describes the velocity distribution of the 
structures contained in the input volumes. The components of the PIV-computed vec-
tor field are returned separately in three 3D matrices: U, V and W. It should be noted 
that the resolution of the final vector field is decided by the size of the interrogation vol-
umes and their overlap, which determine the grid subdivision of Vt and Vt+1 . Multi-pass 
is implemented to overcome this trade-off between resolution and the interrogation size 
of the PIV analysis.

Cross‑correlation

The cross-correlation of two one-dimensional real-valued functions is defined as:

where s has the effect of shifting g(x) along the x-axis. Cross-correlation involves com-
puting the dot product of f(x) and g(x + s) for all possible values of s. Since the dot 
product entails a basic measure of similarity, the value of s that achieves the highest dot 
product represents the translation that best aligns the two functions.

The form of cross-correlation in Eq. (1) is known as spatial cross-correlation. Discrete 
implementations of spatial cross-correlation have a 1D complexity of O(N 2) . Taking 
advantage of the convolution theorem, cross-correlation can be computed in the fre-
quency domain through Fourier transforms of f(x) and g(x):

where F  and F−1 denote the Fourier and inverse Fourier transforms, respectively. Each 
Fourier and inverse Fourier transform in Eq. (2) can be computed efficiently with the 

(1)[f ⋆ g](s) =

∫

∞

−∞

f (x)g(x + s)dx ,

(2)f ⋆ g = F
−1

{F{f } · F{g}} ,
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Fast Fourier Transform (FFT) algorithm [37], which has a 1D complexity of O(N logN ) . 
Since Eq. (2) does not involve any operations with higher complexities than FFT’s, the 
overall complexity of 1D cross-correlation in the frequency domain is O(N logN ) . For 
this reason, cross-correlation in quickPIV is computed in the frequency domain. We 
rely on a Julia wrapper around the mature and optimized Fastest Fourier Transform of 
the West (FFTW) C library [38] to compute all Fourier and inverse Fourier transforms. 
FFTW implementations of FFT generalize to multi-dimensional data, enabling the effi-
cient three-dimensional computation of cross-correlation.

To tackle the bias of the dot product towards high intensities, we implemented zero-
normalized cross-correlation (ZNCC). Considering IV and SV as a pair of 3D interroga-
tion and search volumes, ZNCC is calculated at each translation of IV by:

where x is a 3D index (x, y, z) running over all voxels of IV, s is the displacement vec-
tor (sx, sy, sz) , and µIV  and µSV  are the average intensity values of the interrogation and 
search volumes, respectively. Zero-normalized cross-correlation is implemented effi-
ciently in quickPIV following the work of Lewis, who noted that the numerator in Eq. (3) 
can be computed efficiently in the frequency domain, while each sum in the denomina-
tor can be calculated with eight operations from an integral array of the search volume 
[39].

To further improve the pattern-matching robustness of cross-correlation, quickPIV 
also offers normalized squared error cross-correlation (NSQECC). At each translation of 
IV, NSQECC is computed as [40]:

where x is a 3D index (x, y, z) running over all voxels of IV, and s is the displacement 
vector (sx, sy, sz) . Following the example of [39],  Eq. (4) is implemented efficiently in 
quickPIV by expressing the numerator and denominator in terms of three components: 
∑

(IV [x])2 , which is constant, 
∑

(SV [x + s])2 , which is computed efficiently for each 
translation from an integral array, and −2

∑

(IV [x]SV [x + s]) , which can be computed 
as an unnormalized cross-correlation in the frequency domain. For convenience, quick-
PIV implements the inverse of Eq. (4), 1/(1+ NSQECC[s]) , to obtain a maximum peak 
at the translation that minimizes the differences between the interrogation and search 
volumes.

Peak sub‑voxel approximation

In order to detect non-integer translations, two sub-voxel interpolation methods are 
included in quickPIV: the centroid-based and the 3-point Gaussian sub-voxel approxi-
mations [41]. In both methods, sub-voxel refinements are computed by considering the 
direct neighboring values around the maximum peak of the cross-correlation matrix. 
The centroid-based sub-voxel refinements, � , are computed by

(3)ZNCC[s] =
∑

x,y,z

(IV [x] − µIV )(SV [x + s] − µSV )
√

∑

x,y,z(IV [x] − µIV )2
∑

x,y,z(SV [x + s] − µSV )2

(4)NSQECC[s] =
∑

x,y,z

(IV [x] − SV [x + s])2
√

∑

x,y,z(IV [x])2
∑

x,y,z(SV [x + s])2
,
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where C refers to the cross-correlation matrix, x are the voxel coordinates of the maxi-
mum peak in the cross-correlation matrix, and d is the standard basis vector for each 
dimension, e.g. (1, 0, 0) for the first dimension. Following the same notation, the 3-point 
Gaussian sub-voxel refinement of the integer displacement is given by

To acquire sub-voxel precision, the interpolated � is added to the integer displacement 
vector from the maximum peak to the center of the cross-correlation matrix. QuickPIV 
defaults to the 3-point Gaussian sub-voxel approximation, which performs particularly 
well when the input volumes contain Gaussian particles, as the convolution of Gaussians 
produces another Gaussian distribution [42].

Multi‑pass

We implemented a multi-pass procedure to increase the accuracy of the PIV analysis 
and to extend its dynamic range, i.e., the range of detectable displacements. While a 
search margin can be added to increase the dynamic range of a standard PIV analysis, 
it does not eliminate the dependence on small interrogation volumes to achieve high 
resolutions, which limits the specificity and enhances the noise of the intensity patterns 
contained in the interrogation volumes [43]. Alternatively, high resolutions with good 
dynamic ranges can be achieved by combining large interrogation volumes with high 
overlaps. However, this approach is computationally expensive and increases the final 
resolution by adding redundancy between consecutive cross-correlation computations 
[44].

The multi-pass algorithm starts the PIV analysis with up-scaled interrogation and 
search volumes, followed by iterative rounds of PIV analyses with gradually smaller 
interrogation size and search volumes. Additionally, the displacements calculated during 
previous rounds are used to offset the sampling of the search volumes at future rounds 
[45]. The multi-pass factor f defines the number of total rounds that will be conducted. 
Therefore, multi-pass is enabled by setting f larger than 1. At each multi-pass round, 
the interrogation size, search margin and overlap parameters are scaled with respect to 
their user-defined values. The value of these parameters in each round r is computed as 
follows:

where κ0 designates the user-defined value for interrogation size, search margin or over-
lap, κr is the up-scaled value of these parameters at round r, and f is the multi-pass factor. 
The final round is performed with a factor of 1, i.e., the initial interrogation sizes.

Post‑processing

Some of the post-processing features explained below include local informa-
tion around the vector being processed. In such cases, a square (2D) or cubic 

(5)�[d] =
C[x + d] − C[x − d]

C[x + d] + C[x] + C[x − d]
,

(6)�[d] =
ln (C[x + d])− ln (C[x − d])

2 ln (C[x + d])− 4 ln (C[x])+ 2 ln (C[x − d])
.

(7)κr = (1+ f − r) ∗ κ0 ,
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(3D) region is sampled around each post-processed vector. For instance, rx and ry 
define a square area around an arbitrary vector in a 2D vector field, vi,j , given by 
L = {vi+rx ,j+ry | − r ≤ rx ≤ r and − r ≤ ry ≤ r}.

Filtering

A PIV-computed vector is considered unreliable if it was computed from a cross-cor-
relation matrix containing multiple peaks with similar heights as the maximum peak. 
This reveals uncertainty about the underlying displacement, which might be caused by 
unspecific structures, background noise and/or loss of structure pairs [46, 47]. QuickPIV 
adopts the primary peak ratio, PPR, to measure the specificity of each computed vector,

where Cmax1 is the height of the primary peak in the cross-correlation matrix and Cmax2 
is the height of the secondary peak. Vectors with high PPR values are considered to have 
high signal-to-noise ratios [48]. Therefore, quickPIV offers filtering of unreliable vectors 
by discarding those vectors with a PPR value lower than a given threshold, thPPR [48].

Additionally, quickPIV includes both global and local filtering in terms of vector mag-
nitudes. Currently, quickPIV offers low pass and high pass filters of vector magnitudes, 
which can be concatenated to perform band-pass filtering. Global magnitude filtering 
can also be performed on those vectors whose magnitude is more than a certain num-
ber of standard deviations away from the mean magnitude of the vector field. Local 
magnitude filtering is implemented by discarding vectors whose magnitude is at least n 
standard deviations away from the mean magnitude, computed in a radius r around each 
vector.

All filtering functions in quickPIV accept an optional argument that is used to deter-
mine the replacement scheme of the filtered vectors. Currently, quickPIV offers three 
replacement functions: zero-replacement, mean replacement and median replace-
ment. The former sets all components of the filtered vectors to zero. Both the mean and 
median replacement schemes are parametrized by the radius of the neighboring region 
used to compute the mean or median vector.

Spatial and temporal averaging

Spatial and spatio-temporal averaging of the computed vector fields are included in 
quickPIV. Spatial averaging depends on one parameter: the radius, rs , of the considered 
neighboring region around each vector. Different radii for each dimension can be pro-
vided by passing an array of values, [rx, ry, rz] . Spatio-temporal averaging considers two 
parameters: the averaging radius in space and the number, nt , of adjacent vectors along 
the time axis considered in the temporal averaging, e.g. {vi,j,k ,t+r | − nt ≤ r ≤ nt}.

Similarity‑selective spatial averaging

Spatial averaging tends to dissolve vectors adjacent to the background and creates arti-
factual vectors in regions containing dissimilar vectors. A similarity-selective spatial 
averaging has been developed to overcome these limitations, and to enhance the visuali-
zation of collective migration. Two vectors are considered to be similar if they point in 

(8)PPR =
Cmax 1

Cmax 2
,
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the same direction, which is established if their normalized dot product is greater than 
a user-defined threshold. Given any vector in the PIV-computed vector field, v[i, j, k] , an 
average vector is built by considering only those neighboring vectors at a radius r that 
are similar to v[i, j, k] . The averaged vector is then normalized to unit length, and its 
magnitude is further re-scaled by the ratio between the number of similar neighboring 
vectors and the total number of neighboring vectors. Therefore, the effect of similarity-
selective averaging is to average the direction of each vector among similar neighboring 
vectors, and to re-scale the magnitude of each vector by the local collectiveness.

Mappings

QuickPIV provides functions for extracting several relevant quantities from the PIV-
computed vector fields. Velocity maps are generated by returning the magnitude of each 
vector from a given vector field. QuickPIV implements convergence/divergence map-
pings to detect the presence of sinks and sources in the PIV-computed vector fields. This 
is done by generating a cube of normalized vectors that either converge (sink) or diverge 
(source) from the center of the cube, and cross-correlating this cube with the normal-
ized vector field. This mapping is parametrized by the size of the cube, which determines 
the scale of the convergence/divergence map. Collectiveness maps are built by comput-
ing the number of neighboring vectors at a radius r from each vector in the vector field 
vi,j whose normalized dot product is greater than a threshold.

Pseudo‑trajectories

Pseudo-trajectories can be generated with quickPIV to visualize the approximate paths 
of cells and tissues from the PIV-computed vector fields. When computing pseudo-tra-
jectories, a user-defined number of particles is randomly distributed within the dimen-
sions of the vector field. The position of each particle is rounded to integer coordinates 
in order to sample a displacement from the vector field, which shifts the particle from 
its current position. By repeating this process, a three-dimensional path is obtained for 
each simulated particle. It is possible to constrain the computation of pseudo-trajecto-
ries to a period of interest by specifying the start and end time points. Moreover, spa-
tially interesting regions can be selected by specifying the spatial range over which to 
initialize the positions of the particles.

Conversion to physical units

Last but not least, to convert voxel displacements into physically meaningful velocities 
both the frame rate and the physical units of each voxel dimension need to be taken into 
account. These values can be provided during the creation of the PIV-parameter object 
and quickPIV will automatically re-scale the resulting vector field after the analysis.

QuickPIV accuracy evaluation

The correct implementation of a PIV analysis depends on its ability to detect transla-
tions. Accordingly, the accuracy of quickPIV is assessed by generating pairs of artificial 
images and volumes containing synthetic particles related by a known translation. Syn-
thetic particles are rendered according to [49]. The bias and random errors are com-
puted to evaluate the agreement of quickPIV predictions to the known translations [49]:
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where dPIV,i is the ith PIV-computed displacement, dtrue is the known translation, dPIV  
is the average PIV-computed displacement and n is the number of repeats. The bias and 
random errors represent the accuracy and the precision of quickPIV’s approximation of 
the underlying translation, respectively. The effect of the following parameters on the 
accuracy of quickPIV are evaluated, both in 2D and 3D: interrogation size, particle den-
sity, particle diameter, 3-point Gaussian sub-pixel approximation and the use of a search 
margin to correct for out-of-frame loss.

QuickPIV performance evaluation

The performance of our software is evaluated by comparing the execution times of 
quickPIV with those of the C++ and Python implementations hosted in openPIV. First, 
we analyzed the time required to compute cross-correlation in the frequency domain 
with the three packages. By comparing the execution times of quickPIV and the C++ 
implementation, we can determine whether calling the FFTW C-library from Julia adds 
any noticeable overhead compared to C++. Since the Python implementation uses the 
NumPy library to compute the Fourier and inverse Fourier transforms, this test also 
reveals any performance differences between FFTW and NumPy. On the other hand, we 
compare the execution time of complete 2D and 3D PIV analyses between the three PIV 
packages. The set of parameters used in these PIV analyses are listed in the description 
of Table 1.

For the sake of using a common benchmarking pipeline, language-specific packages for 
measuring the execution times are avoided. Each execution time measurement shown in 
Fig. 2e corresponds to the minimum execution time from 1000 repeated measurements. 
Taking the minimum execution time filters out random delays originating from back-
ground processes [50]. The left panel in Fig. 2e illustrates the interference of background 
processes in the distribution of 1000 execution measurements of FFT cross-correlation. 
All measurements presented below were performed on a machine with an Intel Core 
i5-8300H processor 4 × 2.3 GHz. All PIV analyses were executed on a single thread.

QuickPIV on the embryogenesis of Tribolium castaneum

To test the accuracy of quickPIV on biological data, we analyzed three 3D time-lapse 
data sets of the embryonic development of T. castaneum: (1) two embryos from a 
hemizygous transgenic line that ubiquitously expresses nuclear-localized mEm-
erald and (2) one embryo from a double hemizygous transgenic line that expresses 
nuclear-localized mRuby2 ubiquitously and actin-binding Lifeact-mEmerald only in 
the serosa [22]. Using LSFM, the embryos were recorded at intervals of (1) 30 min-
utes or (2) 20 minutes along 4 directions in rotation steps of 90◦ around the anterior-
posterior axis in (1) one or (2) two fluorescence channels [21]. The four directions 
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were fused according to Preibisch et al. [51] to generate evenly illuminated volumes 
with isotropic resolution. The fused volumes were cropped to 1000× 600× 600 voxels 
(height,width,depth), the embryos were manually placed in the center of the volumes 
and their anterior–posterior axis was manually aligned with the vertical axis.

Three time points during gastrulation were analyzed with quickPIV in the two 
embryos of data set (i). Two time points of the double hemizygous transgenic line (ii) 
were analyzed in both channels, allowing to compare the vector fields obtained from 
the Lifeact-mEmerald actin signal with those from the nuclear-localized mRuby2 
marker. The PIV analyses were performed on both data sets with NSQECC. The vec-
tor fields resulting from these analyses are shown in Figs.  3 and 4, post-processed 
with similarity-selective averaging with an averaging radius of 2 neighboring vectors 

Fig. 2  Accuracy and performance evaluations of quickPIV. a–d Mean biases (red lines) and random 
errors (green error bars) of unnormalized PIV applied to synthetic data containing particles shifted by 
homogeneous translations. a PIV errors are reduced by increasing interrogation size. As illustrated under the 
2D examples, the intensity patterns contained in small interrogation areas (5× 5 pixels) display unspecific 
structures, and are more susceptible to out-of-frame loss. The 2D analyses were performed on 200×200 
pixel images containing 5k particles, and 3D analyses on 200×200×200 voxel volumes with 100k particles. b 
Particle densities of around 15 particles per interrogation region minimize PIV errors. Low particle count are 
susceptible to out-of-frame loss, while high particle densities degrade PIV accuracies by producing uniform 
intensity patterns. Interrogation size during this evaluation was 10× 10 pixels and 10×10× 10 voxels. c Particle 
sizes of 1-2 pixels achieve optimal PIV accuracies. The 2D examples show that large particle radii blur the 
intensity pattern inside the interrogation regions, reducing the pattern complexity. d Top, PIV accuracy under 
non-integer translations oscillates between 0.0 and 0.5. Bottom, with 3-point Gaussian interpolation, errors 
are reduced by an order of magnitude. The leftmost figures show a slight loss of accuracy due to out-of-frame 
loss as the translation strength increases. Adding a search margin greater than the translation strength 
completely compensates for this effect. e Left, execution times distribution of 1000 FFT computations 
on input images of 40× 40 pixels. Background processes sporadically slow down FFT execution. Right, 
comparison of 2D FFT performance between Julia, C++ and Python for increasing input sizes. Julia and C++ 
calls of FFTW are equally fast, while the FFT implementation in NumPy is approximately three times slower. 
The execution time of FFT spikes when the input sizes are prime numbers, e.g. 23, 29 or 43
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and a similarity threshold of 0.5. The visualization of the embryo volumes and the 
computed vector fields has been done in Paraview 5.7.0.

Results
The accuracy evaluation of quickPIV quantitatively reproduces the expected accuracies 
described in the PIV literature, attesting the correctness of our PIV implementation [52–
55]. Our analysis shows a monotonic decrease of the total error (bias and random errors) 
with increasing interrogation sizes [55], reaching errors as low as 0.02± 0.01 pixels/vox-
els (Fig. 2a). This is the expected behavior in our synthetic tests, since all simulated par-
ticles are subjected to the same translation. Our results also agree on the presence of 
optimal values for both particle density and particle size [52]. It can be appreciated from 
the 2D examples included in Fig. 2b and c that high particle densities and large particle 
sizes generate diffuse images that can not be unambiguously matched by cross-correla-
tion. Without sub-pixel/voxel interpolation, the PIV analysis cannot capture the decimal 
components of the simulated translations, shown in the top row of Fig. 2d [52, 53]. As 
described in the literature, the 3-point Gaussian sub-pixel approximation reduces this 
error by one order of magnitude (bottom row in Fig. 2d) [56]. Moreover, search mar-
gins are needed to counteract the out-of-frame errors induced by increasing translation 
(Fig. 2d, left panel). A search margin of 4 pixels/voxels (Fig. 2d, middle and right panels) 
completely compensates this effect for all simulated translations.

We performed an analogous accuracy analysis on the T. castaneum data set, where 
we quantified the accuracy of quickPIV in detecting know translations on one 3D vol-
ume in data set (i). We observed that diffuse and unspecific patterns in the embryo 
induce biases when using ZNCC. These biases are completely avoided by using 
NSQECC, which detects the underlying translation with 100% accuracy given a suf-
ficiently large search margin (see Figure S1). We further analyzed the height distribu-
tion of the maximum cross-correlation peaks during the PIV analysis with NSQECC 
of two consecutive volumes of T. castaneum, shown in Fig. 4e. High peaks are found 
in the collectively migrating serosa cells at the anterior pole of the embryo, which we 
classify as segmentable and trackable (S/T), and in the non-segmentable and non-
trackable (NS/NT) gastrulating embryo, Fig. 4d. These high peaks indicate that cel-
lular migration in these regions is well approximated by a collective translation, and 

(See figure on next page.)
Fig. 3  3D PIV analysis on the embryogenesis of two T. castaneum embryos. Each vector field in a. 1–3 and 
b. 1-3 is plotted on top of the two volumes it was computed from, where the red signal corresponds to the 
initial time point and blue intensities belong to the consecutive time point. A few spurious vectors obtained 
on the background due to the fluorescence bleeding from the embryo were manually curated. Embryos are 
shown from their ventral and lateral sides. a-b.1 At the onset of gastrulation, serosa nuclei at the anterior 
end of both analyzed embryos collectively spread towards the dorsal side of the embryos. Moreover, the 
central and posterior regions on the ventral side undergo coordinated condensation movements that will 
later give rise to the internalizing germband. a-b.2 The wide-spread serosa cells over the anterior pole and 
the dorsal side engage in a highly coordinated movement of the tissue towards the posterior pole. Time 
points a-b.3 are characterized by a highly collective flow of serosa cells towards the ventral side, leading 
to the emergence and closing of the serosa window. Serosa cells at the anterior pole, dorsal side and the 
posterior pole collectively migrate clock-wise towards the ventral midline, giving rise to a cell migration 
pattern resembling a vortex. c Exemplary post-processing analyses applied to the vector field shown in a.1. 
From left to right: velocity map showing higher velocities in red, divergence(purple)/convergence(cyan) map, 
collectiveness map displaying higher local collectiveness in yellow, and pseudo-trajectories at the anterior 
pole of the embryo in a.1) over 10 time points (5 h)
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that the intensity patterns between the interrogation and search volumes are not 
deformed, rotated or sheared significantly. Non-collective migration of the serosa 
cells reduces the height of the NSQECC peaks in the central regions of the extraem-
bryonic membranes, which we consider to be segmentable but not easily trackable (S/
NT), since cell correspondences between the two time points can not unambiguously 
be assessed visually, Fig. 4d. A three-dimensional visualization of the maximum peak 
distribution in Fig. 4e is provided in Video S1.

Fig. 3  (See legend on previous page.)



Page 14 of 20Pereyra et al. BMC Bioinformatics          (2021) 22:579 

Performance-wise, calling the FFTW C-library is equally efficient from Julia and 
C++ (see Fig.  2e, right). In contrast, the performance of the NumPy implementation 
of the FFT algorithm is three times slower than the one provided in the FFTW library. 

Fig. 4  Validation of quickPIV on non-segmentable data sets. a PIV analyses were performed on the actin 
signal of a double hemizygous transgenic embryo before (top) and during (bottom) gastrulation. For each 
time point, the two consecutive volumes analyzed with PIV are shown in red and blue, next to the computed 
vector fields after similarity-selective spatial averaging. b PIV was also performed for the same time points 
on the nuclear signal, and the resulting similarity-selective averaged vector fields are shown next to the 
actin vector fields. c The orientation similarity between each pair of vectors in the two channels is computed 
through their normalized dot product. The Euclidean error between each pair of vectors is computed as 
well to measure the combined magnitude and direction differences between the vectors. The scatter plot of 
these two quantities shows that most vectors are clustered around a region of high normalized dot product 
and low euclidean error, indicating good agreement between the vector fields in (a) and (b). d Three patterns 
of cell migration can be distinguished in the T. castaneum data set (i): Segmentable and trackable (S/T), 
segmentable and non-trackable (S/NT) and non-segmentable and non-trackable (NS/NT) nuclei. The serosa 
consists of segmentable nuclei. While some regions are easily trackable, in others it is difficult to establish 
unambiguous correspondences of the nuclei between the two time points. High cell densities render nuclei 
in the gastrulating embryo non-segmentable, and therefore non-trackable. e Three-dimensional mapping 
of the height of the maximum peak of NSQECC at each interrogation area during the PIV analysis of the 
two volumes in (d). High values are achieved both in the segmentable and trackable and non-segmentable 
regions of the embryo, indicating that the interrogation and search patterns in these regions are well 
approximated by a translation and high PIV accuracies are expected
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This performance difference is translated to the complete 2D and 3D PIV analyses of 
the PIV packages, where the Python implementation in openPIV is consistently three 
times slower than both the C++ implementation (2D) and quickPIV (2D and 3D), see 
Table 1. Our results also show that 2D PIV analyses are performed faster with quickPIV 
than with the C++ implementation in openPIV. Since both packages share the same 
cross-correlation performance, this difference can only be explained by compiler opti-
mizations brought by Julia’s compilation pipeline, or by the ease of implementing good 
programming practices in Julia’s high-level environment. For instance, quickPIV avoids 
bound checks when possible, minimizes memory allocations by using in-place opera-
tions, and leverages SIMD (single instruction, multiple data) operations exposed by the 
Julia programming language.

From a practical standpoint, we found that performance of PIV analyses can be dra-
matically increased by subsampling the input volumes and removing the background 
interrogation areas from the PIV analysis. For example, a PIV analysis of two volumes 
of T. castaneum with the following parameters (interSize of 60 voxels, searchMargin of 0 
voxels, overlap of 30 voxels and multi-pass factor of 2), while skipping interrogation vol-
umes with a maximum intensity lower than 100, takes 29 minutes. After applying sub-
sampling by a factor of 3, the analogous analysis on the subsampled data (interSize of 20 
voxels, searchMargin of 0 voxels, overlap of 10 voxels and multi-pass factor of 2) takes 
55 s to complete. The results shown in Figs. 3 and 4, which were obtained after subsam-
pling the input volumes by a factor of three in all dimensions, are in full agreement with 
the same analyses performed without subsampling (Fig. S2). The spatial resolution in 
this data set was very high, which is necessary to discern smaller structures. For motion 
analysis a lower image resolution is sufficient to obtain the same results. Before subsam-
pling images, we, however, advise to test the agreement between the PIV vector fields in 
the original and a subsampled image.

The application of quickPIV to the two T. castaneum embryos of data set (i) is shown 
in Fig. 3. The red and blue intensities correspond to the nuclear signal of the first and 
second input volumes, respectively, which aids in visualizing the underlying displace-
ment of the nuclei between each pair of analyzed time points. The vector fields at the 
anterior regions of the embryos in Figs.  3a.1 and b.1 capture the underlying radially 
diverging pattern of cell migration towards the dorsal side of the embryo. Our PIV anal-
yses also capture the coordinated condensation movement of the cells in the central and 
posterior regions, which will later give rise to the germband. These regions exhibit high 

Table 1  Performance evaluation of complete PIV analyses

2D analyses were performed on a pair of images of size 512×512 pixel, with the following PIV parameters: FFT cross-
correlation, interrogation size of 32 pixels, no search margin, overlap of 16 pixels, no multi-pass, 3-point Gaussian subpixel 
approximation and peak-to-peak signal-to-noise algorithm. 3D analyses were performed on volumes with dimensions 512×
512×123 pixels, and the following PIV parameters: FFT cross-correlation, interrogation size of (49, 49, 11), no search margin, 
overlap of (14, 14, 3), no multi-pass, 3-point Gaussian sub-voxel approximation and peak-to-peak signal-to-noise algorithm. 
The reported measurement are the minimum execution time from 1000 and 100 repeats, for the 2D and 3D analysis 
respectively

C++ Python quickPIV

2D 63 ms 160.81 ms 50.42 ms

3D - 59.72 s 18.09 s
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cellular densities, challenging visual examination and rendering nuclei segmentation and 
tracking approaches unfeasible. Figure 3a.2 and b.2 are characterized by vastly coordi-
nated movements of the wide-spread serosa cells over the anterior pole and along the 
dorsal side towards the posterior pole. Figures 3a.3 and b.3 depict a highly coordinated 
flow of serosa cells from the dorsal side over both, the posterior pole and the lateral 
equator, towards the ventral side, where they eventually give rise to the serosa window 
[57]. These observations are not only consistent with previous studies of collective cell 
migration during the gastrulation of T. castaneum, which were obtained through 1D PIV 
analyses [58] and manual 2D tracking of the extra-embryonic serosa cells [59, 60], but for 
the first time describe this process in 3D. Figure 3c illustrates the velocity, divergence/
convergence and collectiveness mappings as well as some computed pseudo-trajectories 
on the anterior region of the embryo.

Finally, the results from the analysis of the double hemizygous transgenic line, (ii), 
demonstrate the robustness of quickPIV on non-segmentable data. The agreement of 
the vector fields on the anterior pole of the embryo (which is non-segmentable in the 
actin signal, segmentable in the nuclear signal and exhibits high degrees of collective cell 
migration in both channels) indicates that PIV accuracies are independent of the seg-
mentability of the input data sets, Figs. 4a and b. A quantitative comparison of the PIV 
vector fields between the nuclear and the actin stained volumes shows a high degree of 
similarity. This is illustrated in the scatter plot shown in Fig. 4c, exhibiting a high density 
in the area of large dot products and small Euclidean errors. The similarity of the actin 
and nuclear vector fields in highly dense non-segmentable regions further underlines the 
robustness of quickPIV regardless of the labeling scheme of the data sets.

Conclusions
QuickPIV represents a free and open-source solution for performing efficient and robust 
quantification of collective cellular migration in the increasingly popular 3D dynamic 
data sets in life sciences. Our software includes several well established PIV features, 
such as multi-pass and sub-voxel peak approximation, as well as post-processing func-
tions and visualization of the 3D vector fields in Paraview.

To our knowledge, quickPIV is the only free PIV software that offers normalized 
squared error cross-correlation (NSQECC), which we found to be necessary for accu-
rately describing collective cell and tissue migration in non-segmentable data sets. By 
using NSQECC, we could quantify collective cell migration from the non-segmentable 
and highly dynamic actin signal in a double hemizygous transgenic embryo of T. cas-
taneum. The resulting vector fields were in complete agreement with previously pub-
lished descriptions of the gastrulation movements in T. castaneum, and showed a strong 
correlation with the vector fields obtained from the nuclear signal of the same embryo. 
Moreover, the height distribution of the maximum cross-correlation peaks further indi-
cates that NSQECC is robust to non-segmentable data.

The performance evaluation of quickPIV shows that our software is three times faster 
in 2D and 3D analyses than the Python PIV implementation in openPIV, and also faster 
than the 2D implementation written in C++. This performance advantage is only pos-
sible because of the design of the Julia programming language and the optimization pos-
sibilities that it provides. By considering subsampling and excluding unnecessary regions 
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of the input data (such as empty background), the quickPIV analysis of a pair of 3D vol-
umes can be reduced to several seconds. These speeds are compatible with real-time PIV 
analyses, enabling the integration of PIV pipelines into smart microscopy techniques. 
For example, vector fields obtained with quickPIV could be used to automatically detect 
the onset of developmental events and adjust the acquisition parameters accordingly, 
e.g. laser power or acquisition interval.

Overall, we believe that 3D PIV analyses will play an important role in understand-
ing 3D biological processes as novel 3D imaging techniques are developed and adopted. 
For example, SVIM can already achieve up to 100× higher recording speeds than stand-
ard LSFM. Such high temporal resolutions increase the accuracy of PIV and make PIV 
the ideal solution for reliable and automated pipelines for quantifying collective cellular 
migration. However, the computational demands required to analyze such temporally 
resolved data sets can only be met by further optimizations of quickPIV’s performance. 
Therefore, future efforts will be directed towards adding multi-threading support and 
implementing our PIV analyses on a graphics card [61].

Availability and requirements
Project name: quickPIV

Project home page: https://github.com/Marc-3d/quickPIV
Operating system(s): Platform independent
Programming language: Julia
Other requirements: Julia1.3.1 or higher
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