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Abstract

Background: The technical development of imaging techniques in life sciences has
enabled the three-dimensional recording of living samples at increasing temporal reso-
lutions. Dynamic 3D data sets of developing organisms allow for time-resolved quan-
titative analyses of morphogenetic changes in three dimensions, but require efficient
and automatable analysis pipelines to tackle the resulting Terabytes of image data.
Particle image velocimetry (PIV) is a robust and segmentation-free technique that is
suitable for quantifying collective cellular migration on data sets with different labeling
schemes. This paper presents the implementation of an efficient 3D PIV package using
the Julia programming language—quickPIV. Our software is focused on optimizing
CPU performance and ensuring the robustness of the PIV analyses on biological data.

Results: QuickPIV is three times faster than the Python implementation hosted in
openPlV, both in 2D and 3D. Our software is also faster than the fastest 2D PIV pack-
age in openPIV, written in C4++-. The accuracy evaluation of our software on synthetic
data agrees with the expected accuracies described in the literature. Additionally, by
applying quickPIV to three data sets of the embryogenesis of Tribolium castaneum, we
obtained vector fields that recapitulate the migration movements of gastrulation, both
in nuclear and actin-labeled embryos. We show normalized squared error cross-corre-
lation to be especially accurate in detecting translations in non-segmentable biological
image data.

Conclusions: The presented software addresses the need for a fast and open-source
3D PIV package in biological research. Currently, quickPIV offers efficient 2D and 3D PIV
analyses featuring zero-normalized and normalized squared error cross-correlations,
sub-pixel/voxel approximation, and multi-pass. Post-processing options include filter-
ing and averaging of the resulting vector fields, extraction of velocity, divergence and
collectiveness maps, simulation of pseudo-trajectories, and unit conversion. In addi-
tion, our software includes functions to visualize the 3D vector fields in Paraview.

Keywords: Particle image velocimetry, Light-sheet fluorescence microscopy,
Collective cell migration, Julia, 3D image analysis, Tribolium castaneum
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Background

Cellular migration in multi-cellular organisms often involves tissues or groups of cells
that maintain stable or transient cell-cell contacts to preserve tissue integrity, sustain
spatial patterning, or to enable the relocation of non-motile cells [1]. This phenom-
enon is generally known as collective cell migration, and it plays important roles in
developmental processes, such as gastrulation or neural crest migration [2, 3], as well
as in wound closure and cancer invasion [4]. Studies of collective cell migration on 2D
cell cultures only partially reflect the physiology and architecture of in vivo tissues.
Three-dimensional systems—such as model organisms, spheroids or organoids—are
preferable, as they maintain physiological cell structures, neighborhood interactions,
or mechanical extracellular properties, which have been recognized to play a role in
regulating collective cellular migration [5—7]. Besides confocal fluorescence micros-
copy, light-sheet fluorescence microscopy (LSFM) has become one of the preferred
techniques for three-dimensional imaging of biological samples, owing to its fast
acquisition times, excellent signal-to-noise ratios, high spatial resolutions [8, 9], and
low phototoxicity and photobleaching levels [10]. LSEM has been used to generate 3D
time-lapse recordings of the complete embryonic morphogenesis of multiple model
organisms [11, 12]. Based on light-sheet illumination, novel and improved imaging
techniques are continuously being developed. For example, SCAPE (swept confocally-
aligned planar excitation) microscopy offers more control over the viewing angle of
the sample [13], while SVIM (selective volume illumination microscopy) dramati-
cally increases acquisition times by dilating the light-sheet, at the expense of spatial
resolution [14]. High temporal and spatial resolutions can be achieved with lattice
light-sheet microscopy, where a combination of ultrathin light sheets and structured
illumination are used [15]. The two last-mentioned techniques are particularly prom-
ising for resolving cellular migration and tissue rearrangements during quick mor-
phogenetic events.

In order to quantify collective cellular migration in dynamic 3D biological data sets,
we developed quickPlV, a free and open-source particle image velocimetry (PIV) pack-
age that offers fast and robust 3D, as well as 2D, PIV analyses. While several free and
open-source 2D PIV software are readily available [16—19], the same is not true for 3D
implementations. To the best of our knowledge, the Python implementation hosted in
openPIV is the only other free and open-source PIV package that supports 3D analyses
[18]. The fastest implementation in openPIV, however, corresponds to a 2D PIV imple-
mentation written in C+-+. Nevertheless, maintenance of this version was stopped in
favor of the high-level and productive environment of its Python counterpart. In order
to maximize performance without sacrificing productivity, our software is written in
Julia, a modern programming language with high-level syntax similar to Python or Mat-
lab that compiles to highly efficient code on par with C programs [20]. This choice is
motivated by the high data volumes of 3D time-lapse recordings, which makes the analy-
sis of multiple data sets computationally very expensive. For instance, a single sequence
of 3D images of a developing embryo can easily reach data sizes of several Terabytes.
Hence, the design principles of Julia enabled us to prioritize the CPU performance of
quickPIV, and together with further optimizations, made it possible to reduce the pro-
cessing speed of a pair of 3D volumes to several seconds.
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The next subsection introduces PIV and discusses the strengths and limitations of
applying PIV on biological samples. This is followed by a detailed description of the pipe-
line and the features implemented in quickPIV. The evaluation of our software includes
a performance comparison to the C++ (2D) and Python (2D and 3D) implementations
hosted in openPIV, as well as the accuracy evaluation of quickPIV on synthetic data. Fur-
thermore, we analyze the ability of quickPIV to characterize migration patterns on three
3D time-lapse data sets of the embryonic development of the red flour beetle Tribolium
castaneum [21, 22]. This is done by (1) simulating known translations on a 3D volume
of T. castaneum, (2) validating the obtained vector fields against well-known migration
patterns during the gastrulation of T. castaneum, and (3) by comparing the robustness of

quickPIV on an embryo expressing both actin and nuclear molecular markers.

Particle image velocimetry
Particle image velocimetry is a segmentation-free technique developed and established
in the field of fluid dynamics to obtain displacement fields describing the motion of
small tracer particles suspended in a flowing medium [23]. If the density of seeding par-
ticles is not exceedingly high [24], the motion of each suspended particle can generally
be recovered through particle tracking velocimetry (PTV) [25]. PTV is analog to sin-
gle-cell tracking, requiring the segmentation of all particles in two consecutive record-
ings before establishing one-to-one correspondences between the particle positions.
While the size and seeding density of the tracer particles in hydro- and aerodynamic PIV
experiments can be tuned [26], the segmentability of biological samples is challenged
by factors with no or limited experimental control. For example, cell segmentation is
hindered by low contrast of the molecular marker, irregular cell morphologies, or high
cell densities. Instead of detecting and tracking individual objects, PIV relies on cross-
correlation to find the translation that best aligns the intensity patterns contained inside
any given sub-region between two consecutive recordings. Vector fields are generated
by extracting displacement vectors from multiple sub-regions across the input data [23].
The accuracy of PIV on biological data is mostly explained by the strengths and limi-
tations of cross-correlation. In short, cross-correlation is a pattern-matching operation
that is suitable for finding translations of the intensity distributions contained in two
successive recordings [27]. Therefore, PIV is appropriate for quantifying collective cell
migration, which is dominated by a common translation of the migrating group of cells.
Moreover, the pattern-matching nature of cross-correlation extends the application of
PIV to non-segmentable data sets, including unstained samples or those stained with
any persistent intra-cellular marker. PIV has been used to quantify cell migration in 2D
model systems, such as wound healing assays [28], tumor invasion [29, 30], skin pattern-
ing [31] and others [32-34]. Conversely, cross-correlation is challenged by transforma-
tions other than translations, such as rotations, shears or deformations. High temporal
resolutions alleviate the contribution of these transformations by approximating them
to local translations. Uncoordinated cellular migration also reduces the similarity of
intensity patterns between successive recordings, which degrades the accuracy of PIV.
However, if the cells are sufficiently different from each other such that they are unam-
biguously detected by cross-correlation, a PIV analysis matching the size of the cells can
be used to effectively track the movement of independently migrating cell [35, 36].
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Implementation

This section outlines the three-dimensional PIV pipeline implemented in quickPIV. The
workflow of a PIV analysis in quickPIV is illustrated in Fig. 1. This figure shows input
volumes containing Gaussian particles to ease the visualization of the underlying trans-
lation. To accommodate all possible labeling schemes of biological samples, we generally
refer to structures or intensity patterns in the analyzed data.

The input to a 3D PIV analysis is a pair of 3D volumes taken at consecutive time points,
Vilx, v, z] and Vg1 [, 9, z], where (x, y, z) corresponds to the unique 3D coordinates of each
voxel. Both input volumes are assumed to have the same dimensions. First, V; is subdi-
vided into a 3D grid of cubic sub-regions known as interrogation volumes, IV, j, k], each

1 Divide images into interrogation and search volumes. a) Parameters:

Parameters: Interrogation size & overla
9 P interSize = 16, overlap = 0 interSize = 16, overlap = 8

2 Perform cross-correlation between IV[i,j,k] and SV[i,j,k] pairs.
Parameters: search margin
Options: cross-correlation algorithm

3 (of ion vector from ion matrix
Options: no sub-voxel, 3-point Gaussian or centroid interpolation.

4 Compute signal-to-noise ratio on cross-correlation matrix
Options: signal-t ise ratio 3x3x3 grid 6X5%5 grid

Update vector components in U[i,j,k], VIi,j,k], W[i,j,k] and b) Parameters: search margin = 5
signal-to-noise ratios in SN[i,j,k]
16x16x16 k  26x26x26 = 42x42x42
vV[2,2,2] SV[2,2,2] CCR[2,2,2]
6 If multi-pass counter > 0: ‘
6.1. Reduce multi-pass counter. ¥ e l fe o
6.2. Scale down interrogation volume size, search margin and overlap.
6.3. Go back to step 1: repeat cross-correlation analysis with scaled down
parameters, and using the previously computed vector field U, V, W to
el h==ampindlotthe =caich v clliner C) Options: sub-voxel approximation algorithm

Underlying transation

(5.15,4.4,20)
7 Vector field post-processing

no sub-voxel approximation

s . . U[2,2,2] =5.0
Spatio-temporal averaging Divergence map VI2,2,2) =4.0
W[2,2,2] = 2.0

Collectiveness map Velocity map i Caia

sub-voxel approximation
Magnitude filtering Signal-to-noise filtering

U[2,2,2] =5.12
i 7 . . VI2,2,2] =425
Unit conversion Pseudo-trajectories W[2,2,2] = 2.05

Fig. 1 QuickPIV pipeline The PIV analysis starts by subdividing the input volumes, V; and V4, into a grid of
cubic interrogation, /V, and search volumes, SV. Cross-correlation is performed between each Vi, j, k] and
SVIi, j, k] pair, and a displacement vector, (uli, j, K1, v[i, j, kI, wli, j, K1), is computed from each cross-correlation
matrix through the position of the maximum peak relative to the center of the cross-correlation matrix. The
computed vector components are added to the U, Vand W matrices. Optionally, signal-to-noise ratios are
computed from each cross-correlation matrix and added to SN. If multi-pass is used, the cross-correlation
analysis is repeated at progressively lower scales, which is achieved by scaling down the interrogation

size, overlap and search margin parameters at each iteration. During multi-pass, previously computed
displacements offset the sampling of the search volumes, effectively refining the computed displacements
at each iteration. In order to post-process the PIV-computed vector fields, quickPIV currently implements:
signal-to-noise and vector magnitude filtering, space-time averaging, divergence maps, velocity maps,
collectiveness maps, pseudo-trajectories and unit conversion. (a) Left, two 60 x 50 x 50 voxel volumes

are overlaid, with particles in V; shown in red, and particles in V:1in blue. Interrogation volume size of

16 x 16 x 16 voxels leads to 3 x 3 x 3 subdivision of non-overlapping interrogation and search volumes.
Right, with 50% overlap the grid subdivision size is6 x 5 x 5. (b) Example of 3D cross-correlation between
M2, 2, 2] and SV12, 2, 2]. The use of a search margin of 5 voxels is illustrated, enlarging the search volume

by 5 voxels in all directions. (c) Example of displacement computation. For clarity, this example portrays
low particle densities and big particle radii, which results in sub-optimal accuracy of the 3-point Gaussian
sub-voxel approximation

Page 4 of 20
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specified by its position in the grid, (i, j, k). The dimensions of the grid subdivision are
determined by the interrogation volume size and the overlap between adjacent interroga-
tion volumes, see Fig. 1a. For each interrogation volume, a corresponding search volume,
SVI1i, j, k], can be defined in Vi 41.

Structures moving inside IV[i, j, k] by a translation s = (sy, sy, s;) are expected to be found
|Is|| voxels away in the direction of the translation in SV[i, j, k]. The underlying translation, s,
of the structures contained in /V[i, j, k] and SV1j, j, k] is recovered through a cross-correla-
tion analysis [27]. The cross-correlation between a pair of interrogation and search volumes
results in a 3D cross-correlation matrix. In the absence of other transformations, the vector
from the center to the maximum peak of the cross-correlation matrix reflects the underly-
ing translation of the structures contained in Vi, j, k] and SV[i, j, k]. The structures visible
in IV[i, j, k] may move outside the borders of the corresponding SV[i, j, k]. This is known as
out-of-frame loss, and it limits the ability of cross-correlation to match the spatial intensity
distributions between the pair of interrogation and search volumes. This can be compen-
sated by enlarging the search volumes by a given margin along all dimensions, designated as
search margin in quickPIV. The search margin should not be much larger than the expected
translation strength of the structures, as enlarging the search volumes comes at the expense
of performance. Figure 1b depicts the cross-correlation of the central interrogation and
search volumes in Fig. 1a, including a search margin of 5 voxels around the search volume.

By computing a displacement vector for each pair of interrogation and search vol-
umes, PIV analyses generate a vector field that describes the velocity distribution of the
structures contained in the input volumes. The components of the PIV-computed vec-
tor field are returned separately in three 3D matrices: U, V and W. It should be noted
that the resolution of the final vector field is decided by the size of the interrogation vol-
umes and their overlap, which determine the grid subdivision of V; and V;41. Multi-pass
is implemented to overcome this trade-off between resolution and the interrogation size
of the PIV analysis.

Cross-correlation

The cross-correlation of two one-dimensional real-valued functions is defined as:
o0
[f xgls) = / fx)gx+s)dx, (1)
—00

where s has the effect of shifting g(x) along the x-axis. Cross-correlation involves com-
puting the dot product of fix) and g(x + s) for all possible values of s. Since the dot
product entails a basic measure of similarity, the value of s that achieves the highest dot
product represents the translation that best aligns the two functions.

The form of cross-correlation in Eq. (1) is known as spatial cross-correlation. Discrete
implementations of spatial cross-correlation have a 1D complexity of O(N?). Taking
advantage of the convolution theorem, cross-correlation can be computed in the fre-
quency domain through Fourier transforms of f{x) and g(x):

frg=F UF(} Fleh), (2)

where F and F~! denote the Fourier and inverse Fourier transforms, respectively. Each
Fourier and inverse Fourier transform in Eq. (2) can be computed efficiently with the
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Fast Fourier Transform (FFT) algorithm [37], which has a 1D complexity of O(N log N).
Since Eq. (2) does not involve any operations with higher complexities than FFT’s, the
overall complexity of 1D cross-correlation in the frequency domain is O(N log N). For
this reason, cross-correlation in quickPIV is computed in the frequency domain. We
rely on a Julia wrapper around the mature and optimized Fastest Fourier Transform of
the West (FFTW) C library [38] to compute all Fourier and inverse Fourier transforms.
FFTW implementations of FFT generalize to multi-dimensional data, enabling the effi-
cient three-dimensional computation of cross-correlation.

To tackle the bias of the dot product towards high intensities, we implemented zero-
normalized cross-correlation (ZNCC). Considering IV and SV as a pair of 3D interroga-
tion and search volumes, ZNCC is calculated at each translation of IV by:

_ (IVIX] = ) SVIX + 51 = psv)
ectl=2 Ve UVIX] = 11v)? S (SVIx + 8] — sy ) ¥
x,9,Z %952 v x)Z 1224%

where x is a 3D index (x, y, z) running over all voxels of IV, s is the displacement vec-
tor (sx, Sy, Sz), and 17y and ugy are the average intensity values of the interrogation and
search volumes, respectively. Zero-normalized cross-correlation is implemented effi-
ciently in quickPIV following the work of Lewis, who noted that the numerator in Eq. (3)
can be computed efficiently in the frequency domain, while each sum in the denomina-
tor can be calculated with eight operations from an integral array of the search volume
[39].

To further improve the pattern-matching robustness of cross-correlation, quickPIV
also offers normalized squared error cross-correlation (NSQECC). At each translation of
1V, NSQECC is computed as [40]:

NSQECCI[s] =) _ (IV[x] — SVI[x +s])?

(4)

where x is a 3D index (x, y, z) running over all voxels of IV, and s is the displacement
vector (sy,Sy,s;). Following the example of [39], Eq. (4) is implemented efficiently in
quickPIV by expressing the numerator and denominator in terms of three components:
Z([V[x])z, which is constant, Y (SV[x + s])2, which is computed efficiently for each
translation from an integral array, and —2 > (IV[x]SV[x + s]), which can be computed
as an unnormalized cross-correlation in the frequency domain. For convenience, quick-
PIV implements the inverse of Eq. (4), 1/(1 + NSQECC][s]), to obtain a maximum peak
at the translation that minimizes the differences between the interrogation and search
volumes.

Peak sub-voxel approximation

In order to detect non-integer translations, two sub-voxel interpolation methods are
included in quickPIV: the centroid-based and the 3-point Gaussian sub-voxel approxi-
mations [41]. In both methods, sub-voxel refinements are computed by considering the
direct neighboring values around the maximum peak of the cross-correlation matrix.
The centroid-based sub-voxel refinements, A, are computed by
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Clx+d]—-C[x—d]

Ald] = )
Ld] Clx +d] + Clx] + C[x —d]

(5)

where C refers to the cross-correlation matrix, x are the voxel coordinates of the maxi-
mum peak in the cross-correlation matrix, and d is the standard basis vector for each
dimension, e.g. (1, 0, 0) for the first dimension. Following the same notation, the 3-point
Gaussian sub-voxel refinement of the integer displacement is given by

In (C[x +d]) —In(C[x —d])

Al = o Clx+d) —4 In(CIxD) +2 In (Cix—d]) |

(6)

To acquire sub-voxel precision, the interpolated A is added to the integer displacement
vector from the maximum peak to the center of the cross-correlation matrix. QuickPIV
defaults to the 3-point Gaussian sub-voxel approximation, which performs particularly
well when the input volumes contain Gaussian particles, as the convolution of Gaussians
produces another Gaussian distribution [42].

Multi-pass

We implemented a multi-pass procedure to increase the accuracy of the PIV analysis
and to extend its dynamic range, i.e., the range of detectable displacements. While a
search margin can be added to increase the dynamic range of a standard PIV analysis,
it does not eliminate the dependence on small interrogation volumes to achieve high
resolutions, which limits the specificity and enhances the noise of the intensity patterns
contained in the interrogation volumes [43]. Alternatively, high resolutions with good
dynamic ranges can be achieved by combining large interrogation volumes with high
overlaps. However, this approach is computationally expensive and increases the final
resolution by adding redundancy between consecutive cross-correlation computations
[44].

The multi-pass algorithm starts the PIV analysis with up-scaled interrogation and
search volumes, followed by iterative rounds of PIV analyses with gradually smaller
interrogation size and search volumes. Additionally, the displacements calculated during
previous rounds are used to offset the sampling of the search volumes at future rounds
[45]. The multi-pass factor f defines the number of total rounds that will be conducted.
Therefore, multi-pass is enabled by setting f larger than 1. At each multi-pass round,
the interrogation size, search margin and overlap parameters are scaled with respect to
their user-defined values. The value of these parameters in each round r is computed as
follows:

i =0+f—r) * ko, (7)

where k¢ designates the user-defined value for interrogation size, search margin or over-
lap, «, is the up-scaled value of these parameters at round r, and fis the multi-pass factor.
The final round is performed with a factor of 1, i.e., the initial interrogation sizes.

Post-processing
Some of the post-processing features explained below include local informa-
tion around the vector being processed. In such cases, a square (2D) or cubic
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(3D) region is sampled around each post-processed vector. For instance, ry and r,
define a square area around an arbitrary vector in a 2D vector field, v;j, given by

L= {V,'_,_rx,j_‘_ry | —=r<r<ramd —r <ry<r}.

Filtering

A PIV-computed vector is considered unreliable if it was computed from a cross-cor-
relation matrix containing multiple peaks with similar heights as the maximum peak.
This reveals uncertainty about the underlying displacement, which might be caused by
unspecific structures, background noise and/or loss of structure pairs [46, 47]. QuickPIV
adopts the primary peak ratio, PPR, to measure the specificity of each computed vector,

PPR = Cmaxl ) (8)

max 2
where Chax1 is the height of the primary peak in the cross-correlation matrix and Cpax2
is the height of the secondary peak. Vectors with high PPR values are considered to have
high signal-to-noise ratios [48]. Therefore, quickPIV offers filtering of unreliable vectors
by discarding those vectors with a PPR value lower than a given threshold, t/ppr [48].

Additionally, quickPIV includes both global and local filtering in terms of vector mag-
nitudes. Currently, quickPIV offers low pass and high pass filters of vector magnitudes,
which can be concatenated to perform band-pass filtering. Global magnitude filtering
can also be performed on those vectors whose magnitude is more than a certain num-
ber of standard deviations away from the mean magnitude of the vector field. Local
magnitude filtering is implemented by discarding vectors whose magnitude is at least #
standard deviations away from the mean magnitude, computed in a radius r around each
vector.

All filtering functions in quickPIV accept an optional argument that is used to deter-
mine the replacement scheme of the filtered vectors. Currently, quickPIV offers three
replacement functions: zero-replacement, mean replacement and median replace-
ment. The former sets all components of the filtered vectors to zero. Both the mean and
median replacement schemes are parametrized by the radius of the neighboring region
used to compute the mean or median vector.

Spatial and temporal averaging

Spatial and spatio-temporal averaging of the computed vector fields are included in
quickPIV. Spatial averaging depends on one parameter: the radius, 7, of the considered
neighboring region around each vector. Different radii for each dimension can be pro-
vided by passing an array of values, (7, 1y, ;]. Spatio-temporal averaging considers two
parameters: the averaging radius in space and the number, #;, of adjacent vectors along
the time axis considered in the temporal averaging, e.g. {v;jx 1| — 1 <1 < n}.

Similarity-selective spatial averaging

Spatial averaging tends to dissolve vectors adjacent to the background and creates arti-
factual vectors in regions containing dissimilar vectors. A similarity-selective spatial
averaging has been developed to overcome these limitations, and to enhance the visuali-
zation of collective migration. Two vectors are considered to be similar if they point in
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the same direction, which is established if their normalized dot product is greater than
a user-defined threshold. Given any vector in the PIV-computed vector field, v[i, j, k], an
average vector is built by considering only those neighboring vectors at a radius r that
are similar to v[i,j, k]. The averaged vector is then normalized to unit length, and its
magnitude is further re-scaled by the ratio between the number of similar neighboring
vectors and the total number of neighboring vectors. Therefore, the effect of similarity-
selective averaging is to average the direction of each vector among similar neighboring
vectors, and to re-scale the magnitude of each vector by the local collectiveness.

Mappings

QuickPIV provides functions for extracting several relevant quantities from the PIV-
computed vector fields. Velocity maps are generated by returning the magnitude of each
vector from a given vector field. QuickPIV implements convergence/divergence map-
pings to detect the presence of sinks and sources in the PIV-computed vector fields. This
is done by generating a cube of normalized vectors that either converge (sink) or diverge
(source) from the center of the cube, and cross-correlating this cube with the normal-
ized vector field. This mapping is parametrized by the size of the cube, which determines
the scale of the convergence/divergence map. Collectiveness maps are built by comput-
ing the number of neighboring vectors at a radius » from each vector in the vector field
v;j whose normalized dot product is greater than a threshold.

Pseudo-trajectories

Pseudo-trajectories can be generated with quickPIV to visualize the approximate paths
of cells and tissues from the PIV-computed vector fields. When computing pseudo-tra-
jectories, a user-defined number of particles is randomly distributed within the dimen-
sions of the vector field. The position of each particle is rounded to integer coordinates
in order to sample a displacement from the vector field, which shifts the particle from
its current position. By repeating this process, a three-dimensional path is obtained for
each simulated particle. It is possible to constrain the computation of pseudo-trajecto-
ries to a period of interest by specifying the start and end time points. Moreover, spa-
tially interesting regions can be selected by specifying the spatial range over which to
initialize the positions of the particles.

Conversion to physical units

Last but not least, to convert voxel displacements into physically meaningful velocities
both the frame rate and the physical units of each voxel dimension need to be taken into
account. These values can be provided during the creation of the PIV-parameter object
and quickPIV will automatically re-scale the resulting vector field after the analysis.

QuickPIV accuracy evaluation

The correct implementation of a PIV analysis depends on its ability to detect transla-
tions. Accordingly, the accuracy of quickPIV is assessed by generating pairs of artificial
images and volumes containing synthetic particles related by a known translation. Syn-
thetic particles are rendered according to [49]. The bias and random errors are com-
puted to evaluate the agreement of quickPIV predictions to the known translations [49]:
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1 n
€bias = ; Z |dprv,i — diruel 9)
i=1
1 & -
€rand = 4| > (dprv,i — dpiv)? (10)
i=1

where dpry ; is the jth PIV-computed displacement, dye is the known translation, dprv
is the average PIV-computed displacement and # is the number of repeats. The bias and
random errors represent the accuracy and the precision of quickPIV’s approximation of
the underlying translation, respectively. The effect of the following parameters on the
accuracy of quickPIV are evaluated, both in 2D and 3D: interrogation size, particle den-
sity, particle diameter, 3-point Gaussian sub-pixel approximation and the use of a search
margin to correct for out-of-frame loss.

QuickPIV performance evaluation

The performance of our software is evaluated by comparing the execution times of
quickPIV with those of the C++ and Python implementations hosted in openPIV. First,
we analyzed the time required to compute cross-correlation in the frequency domain
with the three packages. By comparing the execution times of quickPIV and the C++
implementation, we can determine whether calling the FFTW C-library from Julia adds
any noticeable overhead compared to C++. Since the Python implementation uses the
NumPy library to compute the Fourier and inverse Fourier transforms, this test also
reveals any performance differences between FFTW and NumPy. On the other hand, we
compare the execution time of complete 2D and 3D PIV analyses between the three PIV
packages. The set of parameters used in these PIV analyses are listed in the description
of Table 1.

For the sake of using a common benchmarking pipeline, language-specific packages for
measuring the execution times are avoided. Each execution time measurement shown in
Fig. 2e corresponds to the minimum execution time from 1000 repeated measurements.
Taking the minimum execution time filters out random delays originating from back-
ground processes [50]. The left panel in Fig. 2e illustrates the interference of background
processes in the distribution of 1000 execution measurements of FFT cross-correlation.
All measurements presented below were performed on a machine with an Intel Core
i5-8300H processor 4 x 2.3 GHz. All PIV analyses were executed on a single thread.

QuickPIV on the embryogenesis of Tribolium castaneum

To test the accuracy of quickPIV on biological data, we analyzed three 3D time-lapse
data sets of the embryonic development of T. castaneum: (1) two embryos from a
hemizygous transgenic line that ubiquitously expresses nuclear-localized mEm-
erald and (2) one embryo from a double hemizygous transgenic line that expresses
nuclear-localized mRuby2 ubiquitously and actin-binding Lifeact-mEmerald only in
the serosa [22]. Using LSFM, the embryos were recorded at intervals of (1) 30 min-
utes or (2) 20 minutes along 4 directions in rotation steps of 90° around the anterior-
posterior axis in (1) one or (2) two fluorescence channels [21]. The four directions
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Fig. 2 Accuracy and performance evaluations of quickPIV. a-d Mean biases (red lines) and random

errors (green error bars) of unnormalized PIV applied to synthetic data containing particles shifted by
homogeneous translations. a PIV errors are reduced by increasing interrogation size. As illustrated under the
2D examples, the intensity patterns contained in small interrogation areas (5x5 pixels) display unspecific
structures, and are more susceptible to out-of-frame loss. The 2D analyses were performed on 200x200

pixel images containing 5k particles, and 3D analyses on 200x200x200 voxel volumes with 100k particles. b
Particle densities of around 15 particles per interrogation region minimize PIV errors. Low particle count are
susceptible to out-of-frame loss, while high particle densities degrade PIV accuracies by producing uniform
intensity patterns. Interrogation size during this evaluation was 10x10 pixels and 10x10x10 voxels. ¢ Particle
sizes of 1-2 pixels achieve optimal PIV accuracies. The 2D examples show that large particle radii blur the
intensity pattern inside the interrogation regions, reducing the pattern complexity. d Top, PIV accuracy under
non-integer translations oscillates between 0.0 and 0.5. Bottom, with 3-point Gaussian interpolation, errors
are reduced by an order of magnitude. The leftmost figures show a slight loss of accuracy due to out-of-frame
loss as the translation strength increases. Adding a search margin greater than the translation strength
completely compensates for this effect. e Left, execution times distribution of 1000 FFT computations

on inputimages of 40 x 40 pixels. Background processes sporadically slow down FFT execution. Right,
comparison of 2D FFT performance between Julia, C++ and Python for increasing input sizes. Julia and C++
calls of FFTW are equally fast, while the FFT implementation in NumPy is approximately three times slower.
The execution time of FFT spikes when the input sizes are prime numbers, e.g. 23, 29 or 43

were fused according to Preibisch et al. [51] to generate evenly illuminated volumes
with isotropic resolution. The fused volumes were cropped to 1000 x 600 x 600 voxels
(height,width,depth), the embryos were manually placed in the center of the volumes
and their anterior—posterior axis was manually aligned with the vertical axis.

Three time points during gastrulation were analyzed with quickPIV in the two
embryos of data set (i). Two time points of the double hemizygous transgenic line (ii)
were analyzed in both channels, allowing to compare the vector fields obtained from
the Lifeact-mEmerald actin signal with those from the nuclear-localized mRuby2
marker. The PIV analyses were performed on both data sets with NSQECC. The vec-
tor fields resulting from these analyses are shown in Figs. 3 and 4, post-processed
with similarity-selective averaging with an averaging radius of 2 neighboring vectors
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and a similarity threshold of 0.5. The visualization of the embryo volumes and the

computed vector fields has been done in Paraview 5.7.0.

Results

The accuracy evaluation of quickPIV quantitatively reproduces the expected accuracies
described in the PIV literature, attesting the correctness of our PIV implementation [52—
55]. Our analysis shows a monotonic decrease of the total error (bias and random errors)
with increasing interrogation sizes [55], reaching errors as low as 0.02 £ 0.01 pixels/vox-
els (Fig. 2a). This is the expected behavior in our synthetic tests, since all simulated par-
ticles are subjected to the same translation. Our results also agree on the presence of
optimal values for both particle density and particle size [52]. It can be appreciated from
the 2D examples included in Fig. 2b and c that high particle densities and large particle
sizes generate diffuse images that can not be unambiguously matched by cross-correla-
tion. Without sub-pixel/voxel interpolation, the PIV analysis cannot capture the decimal
components of the simulated translations, shown in the top row of Fig. 2d [52, 53]. As
described in the literature, the 3-point Gaussian sub-pixel approximation reduces this
error by one order of magnitude (bottom row in Fig. 2d) [56]. Moreover, search mar-
gins are needed to counteract the out-of-frame errors induced by increasing translation
(Fig. 2d, left panel). A search margin of 4 pixels/voxels (Fig. 2d, middle and right panels)
completely compensates this effect for all simulated translations.

We performed an analogous accuracy analysis on the T. castaneum data set, where
we quantified the accuracy of quickPIV in detecting know translations on one 3D vol-
ume in data set (i). We observed that diffuse and unspecific patterns in the embryo
induce biases when using ZNCC. These biases are completely avoided by using
NSQECC, which detects the underlying 