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Abstract Constraints on the Covariant Canonical Gauge
Gravity (CCGG) theory from low-redshift cosmology are
studied. The formulation extends Einstein’s theory of Gen-
eral Relativity (GR) by a quadratic Riemann–Cartan term
in the Lagrangian, controlled by a “deformation” parameter.
In the Friedman universe this leads to an additional geo-
metrical stress energy and promotes, due to the necessary
presence of torsion, the cosmological constant to a time-
dependent function. The MCMC analysis of the combined
data sets of Type Ia Supernovae, Cosmic Chronometers and
Baryon Acoustic Oscillations yields a fit that is well compa-
rable with the �CDM results. The modifications implied in
the CCGG approach turn out to be subdominant in the low-
redshift cosmology. However, a non-zero spatial curvature
and deformation parameter are shown to be consistent with
observations.

1 Introduction

Dark energy, inflation, and dark matter are examples of much
disputed concepts that have been added to Einstein’s General
Relativity (GR) in order to explain observations that other-
wise would not be accounted for, see e.g. [1–3]. The cos-
mological constant, as its value adjusted to fit the current
accelerated expansion of the universe is far at odds with the
calculated vacuum energy of matter which it is supposed to
represent. Quintessence [4–15] – and similar scalar fields
invoked to generate an initial explosive inflation of the uni-
verse and explain the measured isotropy of cosmic radiation
– lack fundamental physical underpinning. Modifications of

a e-mail: benidav@post.bgu.ac.il (corresponding author)
b e-mail: vasak@fias.uni-frankfurt.de
c e-mail: jkirsch@fias.uni-frankfurt.de
d e-mail: struckmeier@fias.uni-frankfurt.de

the gravity are, among other models, hand-crafted just for
matching specific observations. The invisible dark matter,
finally, necessary to explain the dynamics of galaxies, could
not yet been attributed to any field theory, or a known or
unknown particle, despite astronomical budgets devoted to
its search [16–36].

Recently a novel, rigorously derived covariant canonical
gauge theory of gravity (CCGG) has been applied to Fried-
man cosmology. CCGG is based on the covariant version
of the canonical transformation theory with which all gauge
theories are derived on the same footing. The difference is
just the symmetry group under consideration delivering the
appropriate minimal coupling scheme for matter fields and
the dynamical space-time. Such a “universal” approach must
of course be subject to a comprehensive testing against all
kinds of experiments, especially as CCGG is its novel appli-
cation to gravity. In that study [37] CCGG was shown to
deliver an explanation of dark energy as a torsion based phe-
nomenon For earlier investigations on the possible cosmo-
logical role of torsion see for example [38–43,43–45]. There
a first analysis of the CCGG-Friedman cosmology was lim-
ited to varying the only new parameter beyond �CDM. The
comparison of the theory with the Hubble diagram indicated
that the model can deliver viable scenarios of cosmic evolu-
tion.

In this paper that preliminary analysis is extended to
Bayesian analysis with the aim to explore further cosmo-
logical constraints on the full parameter set, and to com-
pare the results with the standard �CDM cosmology. After
a brief review of the CCGG theory and the pertinent Fried-
man equations we first list the observational data considered
with focus on low z. A discussion of the numerical analysis
and the resulting figures follows. The paper concludes with
a discussion of the findings.
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2 The CCGG formulation

Rather than following ad-hoc or trial-and-error approaches
for modifying GR for compatibility with experiments, we
rely ab initio on the powers of proven comprehensive mathe-
matical frameworks. In analogy to point particle physics we
apply the covariant, field theoretical version of the canoni-
cal transformation theory in the De Donder-Hamiltonian for-
malism to imprint a given symmetry on a system of covari-
ant fields. In this way a consistent interaction of gravity
with matter is derived as laid out in Refs. [46–51]. This
approach yields the Covariant Canonical Gauge Gravity
(CCGG), a Yang-Mills type theory in the spirit of Utiyama,
Sciama, Kibble, Hayashi and Shirafuji, and Hehl [52–56],
rooted in a few key assumptions. While Einstein’s Principle
of General Relativity translates into the requirement of dif-
feomorphism invariance of the coupled dynamics of matter
and space-time, the Equivalence Principle is incorporated by
defining at any point of space-time an inertial (observers’)
frame of reference. The pertinent mathematical structure is
a (“Lorentzian”) frame bundle with fibers spanned by ortho-
normal bases fixed up to arbitrary (local) Lorentz transfor-
mations. The gauge group underlying the CCGG approach is
thus the SO(1, 3)(+)×Di f f (M) group. The emerging gauge
fields are the (spin) connection coefficients not restricted to
torsion-free and/or metric compatible geometries. The gauge
field is a priori independent of the metric tensor, or equiv-
alently of the vierbein fields, which come as fundamental
structural elements of the Lorentzian manifold. Minimal cou-
plings are discovered in that way, not postulated a priori. Of
course, the structure of the dynamical space-time is dynam-
ically implemented by a specific choice of the Hamiltonian
of free gravity, but that remains the only freedom the theory
leaves open.

In order to secure the existence of the action integral in
the Hamiltonian picture we also postulate non-degeneracy
of the Lagrangian and the corresponding Hamiltonian den-
sities, which implies that the Lagrangian must contain an at
least quadratic Riemann–Cartan tensor concomitant [57]. A
quadratic term is therefore added as a parameter-controlled
deformation to Einstein’s linear ansatz, endowing space-time
with kinetic energy and thus inertia. In this way the frame-
work delivers a classical, quadratic, first-order (Palatini) field
theory where the connection coefficients emerge as indepen-
dent gauge fields which, in addition to the symmetric met-
ric tensor, determine the space-time geometry and mediate
gravitation. The couplings of matter fields and gravity are
unambiguously fixed. The so called consistence equation in
CCGG is a combination of the canonical (or equivalently
Euler–Lagrange) equations of motion, extending the field
equation of GR:

g1
(
Rαβγμ Rαβγ

ν − 1
4gμν Rαβγ δ R

αβγ δ
)

− 1

8πG

[
R(μν) − gμν

( 1
2 R + λ0

)] = T(μν).
(1)

Here g1 is the dimensionless deformation parameter, G New-
ton’s coupling constant, and λ0 the “bare” cosmological con-
stant.

Rα
βμν = γ α

βν,μ − γ α
βμ,ν + γ α

ξμγ
ξ
βν − γ α

ξνγ
ξ
βμ (2)

is the Riemann–Cartan tensor (in general built from an
asymmetric connection), and T(μν) the symmetrized stress-
energy tensor of matter. (Our conventions are the signature
(+, −, −, −) of the metric, and natural units h̄ = c = 1. A
comma indicates a partial derivative.)

3 The CCGG-Friedman universe

3.1 Homogenous solution

Our aim is to establish a form of the equations governing the
dynamics of the universe that allow for a close comparison
with GR. In particular we require that the stress-energy ten-
sor be covariantly conserved. This requirement is here not
based on the Bianchi identity for the Einstein tensor. It is
invoked independently to retain the standard scaling prop-
erties of matter and radiation. As shown in Ref. [37] this
leads, in a metric compatible space-time, to the necessity to
invoke torsion. For the CCGG version of the Friedman model
that promotes the cosmological constant to the time or scale
dependent function

�(a) =: λ0 + 1
4 P(a) =: � f (a).

P(a) is the torsion-dependant portion of the Ricci scalar.
�(a) reduces to the “bare” cosmological constant λ0 in
torsion-free geometries. The Hubble function acquires, in
addition, a further geometric correction originating from the
quadratic Riemann–Cartan gravity. We ultimately get

E2(a) =: H2(a)

H2
0

= ρ(a)

ρcri t
(3a)

ρ(a) =: ρm + ρr + ρ� + ρK + ρgeom (3b)

ρm(a) =: ρcri t �m a−3 (3c)

ρr (a) =: ρcri t �r a
−4 (3d)

ρK (a) =: ρcri t �K a−3 = −ρcri t K a−2 (3e)

ρ�(a) =: ρcri t �� f (a) = ρcri t
1
3� f (a) (3f)

ρgeom(a) =: ρcri t �geom (3g)

= ρcri t
(1/4�m + ��)(3/4�m + �r )

�g − 1/4�m − ��

, (3h)
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where a is the scale factor and K the curvature parame-
ter of the FLRW metric. �i with i = m, r,�, K are the
standard density constants related respectively to (dark) par-
ticle matter, radiation and dark energy. H(a) = ȧ/a is
the Hubble function, H0 ≡ H(a = 1) the Hubble con-
stant, and ρcri t ≡ 3H2

0 /8πG). For convenience we use
�g =: [32πGH2

0 g1]−1. We notice at this point that the var-
ious pressure terms combine to

p(a) =: 1
3 ρr − ρ� − 1

3 ρK + 1
3 ρgeom . (4)

Obviously the cosmological function has the equation of state
p� = −ρ� of dark energy, and the “geometric fluid” has the
equation of state pgeom = 1

3 ρgeom , i.e. it behaves like (dark)
radiation.

The normalized dark energy function, f (a), is determined
from the ordinary first-order, non-linear differential equation

f ′(a) = 3�m

4�� a4

α(a)

β(a)
. (5)

where:

α(a) = �g

(
3
4�ma

−3 + �r a
−4

)

−
(
�g − 1

4�ma
−3 − �� f

) (
1
4�ma

−3 + �� f
)

,

β(a)=�g

(
3
4�ma

−3+�r a
−4

)
+

(
�g− 1

4�ma
−3−�� f

)2
,

with the boundary condition f (1) = 1. By setting g1 = 0
(which means f ′(a) = 0) and f (a) ≡ 1 we recover in
Eq. (3) the Einstein–Friedman equation for the Hubble func-
tion based on General Relativity. There are five indepen-
dent parameters in the CCGG model that must be opti-
mized, namely �m,�r ,��,�K and �geom. By solving
H0 = H(a = 1), we get the relation for the additional,
deformation parameter:

g1 = 1

2πGH2
0

�K + �� + �m + �r − 1

(4�� + �m)(4�� + �m + 4�K − 4)
. (6)

Notice that for the standard �CDM model (with a spatial
curvature �K ) the sum �K + �� + �m + �r gives 1 and
thus from Eq. (6) we get g1 = 0.

3.2 Stability analysis

In order to test the stability of the model we use the
autonomous system method [58,59]. For simplicity we
ignore the spacial curvature and the radiation part and include
matter, dark energy and the quadratic term that incorporates
the torsional part. In that case the correct definition for the

Fig. 1 The stream plot for a universe with dark matter, dynamical dark
energy �(a) and the quadratic term from the CCGG equations. The x
refers to the matter part and the y refers to the dark energy density. The
figure shows that the matter domination (B) is an unstable point and the
dark energy domination (C) is a stable point

dimensionless parameters reads:

x2 = �m

a3E2 , y2 = ��(a)

E2 , z2 = �geom

E2
(7)

with x2 + y2 + z2 = 1. After some algebra, one can define
the evaluation equations for the system:

dx

dN
= x

2

(
−x2 − 4y2 + 1

)
, (8a)

dy

dN
= 3x2

(
x2 + y2 − 1

) (
x2 + 4y2 − 2

)

y
(

7x4 + 4x2
(
8y2 − 5

) + 16
(
y2 − 1

)2
)

−1

2
y
(
x2 + 4y2 − 4

)
, (8b)

where N = log(a). By setting x ′(N ) = y′(N ) = 0, three
solutions for the system are discovered. In order to estimate
the stability of those points, we evaluate the matrix that con-
tains the derivatives of the system.

Figure 1 shows the stream plot for the system. Point
A(x = 0, y = 0) describes domination of the quadratic term.
The eigenvalues at that point, λ1,2 = 4, 1, are both positive,
which indicates an unstable point. Point B(x = 1, y = 0)

where matter dominates the universe is also unstable as the
eigenvalues of the point are λ1,2 = −3,+3. In contrast,
point C(x = 0, y = 1) with dark energy domination and the
eigenvalues λ1,2 = −3,−20 is stable. The solution shows
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Table 1 Observational
constraints and the
corresponding χ2

min for the
CCGG model with uniform
prior and with the SH0ES prior,
and �CDM model. Here we set
�K = 0

Parameter CCGG CCGG + R19 �CDM

H0 [ km
s·Mpc ] 69.3 ± 1.1 71.26 ± 0.75 70.18 ± 0.86

�m 0.29 ± 0.016 0.28 ± 0.014 0.25 ± 0.06

�� 0.71 ± 0.09 0.72 ± 0.09 0.74 ± 0.04

�r (10−4) 4.14 ± 2.96 5.56 ± 2.87 –

rd [Mpc] 147.4 ± 2.4 143.8 ± 1.62 146.1 ± 1.8

g1 (10114) −0.26 ± 1.541 0.0663 ± 1.094 0

q −0.57 ± 0.012 −0.57 ± 0.012 −0.62 ± 0.007

χ2
min 72.89 73.89 74.87

χ2
min/Dof 0.92 0.93 0.93

AIC 88.51 86.89 84.87

the evolution from point A to C with matter domination dur-
ing the evolution of the universe.

4 Cosmological probes

4.1 Dataset

In order to constraint our model, we deploy the following data
sets: Cosmic Chronometers (CC) exploit the evolution of
differential ages of passive galaxies at different redshifts to
directly constrain the Hubble parameter [60]. We use uncor-
related 30 CC measurements of H(z) discussed in [61–64].
As Standard Candles (SC) we use uncorrelated measure-
ments of the Pantheon Type Ia supernova [65] that were col-
lected in [66]. The parameters of the models are adjusted to
fit the theoretical μth

i value of the distance modulo,

μ = m − M = 5 log10((1 + z) · DM ) + μ0, (9)

to the observed μobs
i value. m and M are the apparent and

absolute magnitudes and μ0 = 5 log
(
H−1

0 /Mpc
)

+ 25 is

the nuisance parameter that has been marginalized. The lumi-
nosity distance is defined by DL = (1 + z) DM , where

DM = c

H0
Sk

(∫ z

0

dz′

E(z′)

)
, (10)

and

Sk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1√−�K
sinh

(√−�K x
)

if �K < 0

x if �K = 0
1√
�K

sin
(√

�K x
)

if �K > 0.

(11)

In addition, we use the uncorrelated data points from
different Baryon Acoustic Oscillations (BAO) collected
in [67] from [68–79]. Studies of the BAO features in the

Fig. 2 The upper panel shows the CCGG best fit vs. the Cosmic
Chronometers dataset. The lower panel shows the the CCGG best fit
vs. 40 uncorrelated points of the Type Ia supernova dataset. The dataset
is presented in red, and the best fit is presented in blue color

transverse direction provide a measurement of DH (z)/rd =
c/H(z)rd , with the comoving angular diameter distance
defined in [80,81]. In our database we use the parameters
DA = DM/(1 + z) and

DV (z) ≡ [zDH (z)D2
M (z)]1/3. (12)
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Fig. 3 One- (68% CI) and two-dimensional (68% and 95% CI)
marginalized posterior distributions for the relevant sampled and
derived CCGG parameters. The upper left panel shows the contour
for �m vs. �� and the right upper panel shows the contour for �m vs.
H0. The lower left panel shows the contour for g1 vs. H0 and the lower

upper panel shows the contour for rd vs. H0. The gray contour describes
the CCGG best fit with a uniform prior. The red contour describes the
CCGG best fit with the SH0ES measurement as a prior. Finally, the blue
contour describes the �CDM best fit with a uniform prior

which is a combination of the BAO peak coordinates. rd is
the sound horizon at the drag epoch. Finally, for very pre-
cise “line-of-sight” (or “radial”) observations, BAO can also
measure directly the Hubble parameter [82].

We use a nested sampler as it is implemented within the
open-source packaged Polychord [83] with the GetDist
package [84] to present the results. The prior we choose is
with a uniform distributions, where �r ∈ [0; 10−3], �m ∈
[0.; 1.], �� ∈ [0.; 1.], H0 ∈ [50; 100] km/s/Mpc, rd ∈
[120; 160] Mpc. When we include a spatial curvature we
extend the prior with �K ∈ [−0.1; 0.1]. The measurement of
the Hubble constant yielding H0 = 74.03±1.42 (km/s)/Mpc

at 68% CL by [85] has been incorporated into our analysis
as an additional prior (R19). We contrast best-fit parameters
and goodness of fit between CCGG and the standard �CDM
with these datasets. We also compare the Akaike information
criteria (AIC) of the two models applied to the data set [86–
88]. In order to make a complete discussion, we include also
the deceleration parameter in our discussion, the dimension-
less quantity q = −1 − Ḣ/H2 measuring the acceleration
of the cosmic expansion.
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Fig. 4 One- (68% CI) and two-dimensional (68% and 95% CI)
marginalized posterior distributions for the the deceleration parameter
q vs. the Hubble parameter H0. The gray contour describes the CCGG
best fit with a uniform prior. The red contour describes the CCGG best
fit with the SH0ES measurement as a prior. Finally, the blue contour
describes the �CDM best fit with a uniform prior. The lower panel
shows a 3D of q and the parameter g1 vs. the Hubble parameter H0

4.2 Spatially flat universe

Table 1 summarises the results with �K = 0. In the CCGG
model the quadratic term provides with the deformation
parameter an additional degree of freedom. Hence while for
�CDM we set �r = 1 − �m − �� for the radiation part,
for CCGG we have �geom = 1 − �m − �� − �r for the
additional geometry term. The Hubble parameter fitted for
the CCGG model is 69.3±1.1 km/s/Mpc for a uniform prior
or 71.26±0.75 km/s/Mpc with the SH0ES prior. The Hubble
parameter for the �CDM model is in between these values
70.18 ± 0.86 km/s/Mpc for the uniform prior.

The �m matter part in the CCGG model is 0.29 ± 0.016
or 0.28 ± 0.014 for the SH0ES prior, which is a bit higher
then the �CDM fit 0.25 ± 0.06. The dark energy �� part is

Parameter CCGG CCGG + R19

H0 [ km
s·Mpc

] 69.76 ± 1.3 71.56 ± 0.7068
Ωm 0.286 ± 0.052 0.26 ± 0.042
ΩΛ 0.7141 ± 0.017 0.711 ± 0.017

Ωr (10−4) 5.01 ± 2.82 5.06 ± 3.04
ΩK (10−2) 0.0134 ± 5.53 2.12 ± 4.54
rd [Mpc] 146.6 ± 2.72 143.1 ± 1.74
g1 (10114) 0.113 ± 2.29 1.09 ± 2.03

q −0.57 ± 0.012 −0.58 ± 0.0124
χ2

min 72.83 73.61
χ2

min/Dof 0.93 0.94
AIC 87.84 88.61

Fig. 5 One- (68% CI) and two-dimensional (68% and 95% CI)
marginalized posterior distributions for the the deceleration parameter
�K vs. the Hubble parameter H0. The gray contour describes the CCGG
best fit with a uniform prior. The red contour describes the CCGG best
fit with the SH0ES measurement as a prior.The table shows Observa-
tional constraints and the corresponding χ2

min for the CCGG model with
uniform prior and with the SH0ES prior with spatial curvature

being 0.71 ± 0.09 or 0.72 ± 0.09 with the SH0ES prior, a bit
lower then the �CDM fit 0.74 ± 0.04.

The BAO scale is set by the redshift at the drag epoch zd ≈
1020 when photons and baryons decouple [89]. For a flat
�CDM, the Planck measurements yield 147.09 ± 0.26Mpc
and the WMAP fit gives 152.99 ± 0.97 Mpc [90]. Final
measurements from the completed SDSS lineage of experi-
ments in large-scale structure provide rd = 149.3±2.8 Mpc
[91]. The �CDM model for the combined data set we use
gives 146.1 ± 1.8 Mpc. However, the CCGG model gives
147.4 ± 2.4 Mpc. For the SH0ES prior, the distance is
143.8±1.62 Mpc. The quadratic term thus changes the hori-
zon scale in the early universe, but still in a moderate and
reasonable range.

From the AIC we see that �CDM is still the better fit to the
late universe, since the AIC for �CDM model 84.87 is then
the CCGG case 88.51 or with SH0ES prior 86.89. However
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the �CDM model does not describe the inflationary epoch,
which the quadratic term naturally provides.

4.3 With �K �= 0

The shape of the universe is a fundamental question. The lat-
ter can be characterized by measuring the spatial curvature of
the universe K , quantifying how much the spatial geometry
locally differs from that of flat space. Most models of inflation
predict a universe which is extremely close to being spatially
flat [90,92,93]. Because of the quadratic term the spatial cur-
vature may be larger. Figure 5 shows the spatial curvature vs.
the Hubble parameter. For the uniform prior case the spatial
curvature turns out to be (0.0134 ± 5.53) · 10−2, while for
the SH0ES prior the spatial curvature is (2.12 ± 4.54) ·10−2.
The model predicts a positive value for �K but the error bar
is sufficient large for the negative values as well. Moreover,
from the AIC criteria it seems that the case for absorbing
the spatial curvature is better since the AIC for this case is
higher: 87.84 for the uniform prior, and 88.61 for the SH0ES
prior.

5 Discussion

This paper discusses the cosmological constraints on the
CCGG formulation from low-redshift observations. CCGG
is a gauge theory of gravity ensuring in a covariant way
full diffeomorphism invariance of the system action. Using
canonical transformation theory the approach unambigu-
ously fixes how matter fields interact with curved geometry
of space-time, and enforces a parameter controlled admixture
of a quadratic Riemann–Cartan concomitant to the Einstein–
Hilbert linear term. In a preliminary study [37] the cosmo-
logical consequence of that quadratic extension were exam-
ined in alignment with the �CDM model. Here we go a
step further and test the CCGG cosmology against a com-
prehensive database of low-redshift cosmological measure-
ments that include the Pantheon Type Ia supernova, Cosmic
Chronometers and Baryon Acoustic Oscillations.

Using the Polychord package we find a good best fit of
the CCGG cosmology with data. By the AIC criterium the
CCGG fit accuracy is comparable with that of �CDM. The
key density parameters are in reasonable agreement with the
�CDM model. The new free parameter of the theory control-
ling the admixture of quadratic gravity and the inflationary
dynamics is of the order 10114. However, the statistical error
bars do not permit any further conclusions about its value,
not even about its sign. Also the non-zero spatial curvature
parameter found for the late universe is, within the error bars,
consistent with zero. The deceleration parameter q, on the
other hand, is predicted to be lower then the �CDM best fit:
−0.57 ± 0.012 for CCGG and −0.62 ± 0.007 for �CDM.

We conclude that the CCGG approach reproduces low-
redshift observation with a similar accuracy as the �CDM
model. The novel features of CCGG, namely the presence
of torsion and the influence of quadratic curvature, repre-
sented by the additional deformation parameter, turn out to
be subdominant in this late era of the cosmic evolution. How-
ever, albeit this calculation does not conclusively determine
the relative admixture of quadratic gravity to Einsten-Cartan
gravity, the data neither excludes a non-zero deformation
parameter, nor a deviation from the flat geometry assumed
in �CDM. This leaves the possibility open that the more
complex space-time geometry of CCGG applies, which natu-
rally invokes inflation [94] and substantially alters the Hubble
expansion in the early universe [37]. The model’s superior-
ity thus might become obvious only when including the early
universe data in the analysis.

The discussion on whether torsion of space-time could
be excluded by solar tests have been sparked by the Gravity
Probe B (GPB) experiment. While Mao et al. [95] propose
to use the high-precision gyroscope for detecting torsion,
Hehl et al. [96] conclude, referring to the Poincare Gauge
Gravity, that torsion can couple to particle spin only, not
to the gyroscope’s angular momentum, and that the accu-
racy needed for detecting such a coupling is far beyond any
currently available technologies. Moreover, they also dis-
miss possible deviations of test particle trajectories from the
geodesic (trajectory of extremal length) by postulating that it
is force-free trajectory of particles, rather than the autoparal-
lel (“straightes trajectory”). These discussions indicate that
torsion may not be detectable in the solar system, but they so
far do not exclude its existence.

While we agree with Hehl’s first conjecture, we advocate
the autoparallel to be the correct force-free trajectory as the
obvious generalization of Newton’s notion of a straight line
to curvilinear space-time. A propagating torsion field that
arises naturally in CCGG will also directly interact with spin
carrying particles. As in presence of torsion the autoparal-
lel and the geodesic are not identical, a modified connection
will in principle be felt by test particles. Direct spin-torsion
interactions [97] will in addition affect the trajectories of
spin-polarized as compared to spinless test particles. How-
ever, if the density of the torsion field is very low in the
solar system then we will encounter similar restrictions on the
detectability of those spin-torsion interactions. Work along
these lines including advanced modeling of the torsion tensor
is in progress.

Public Source: The files with the dataset and the fit pack-
age can be found in https://github.com/benidav/CCGGcosmo
logy2020.
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