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Abstract. Bottomonium states are key probes for experimental studies of the
quark-gluon plasma (QGP) created in high-energy nuclear collisions. Theo-
retical models of bottomonium productions in high-energy nuclear collisions
rely on the in-medium interactions between the bottom and antibottom quarks,
which can be characterized by real (VR(T, r)) and imaginary (VI(T, r)) po-
tentials, as functions of temperature and spatial separation. Recently, the
masses and thermal widths of up to 3S and 2P bottomonium states in QGP
were calculated using lattice quantum chromodynamics (LQCD). Starting from
these LQCD results and through a novel application of deep neural network
(DNN), here, we obtain model-independent results for VR(T, r) and VI(T, r).
The temperature dependence of VR(T, r) was found to be very mild between
T ≈ 0 − 330 MeV. Meanwhile, VI(T, r) shows rapid increase with T and r,
which is much larger than the perturbation theory based expectations.

In-medium modifications of quarkonium states are sensitive probes of the QGP produced
in high energy nuclear collisions [1–13]. Sequential suppression patterns among the Υ(1S ),
Υ(2S ) and Υ(3S ) states have been observed in heavy-ion collision experiments [14–17].
Theoretical understanding of these experimental observations rely on effective field theories
(EFT), which naturally lead to an open quantum system based treatment of both open and
hidden bottom states in QGP (for a recent review, see [12]). If interactions between the color-
singlet and color-octet states are neglected then the pNRQCD reduces to a theoretical de-
scription of quarkonia solely based on a potential between the heavy quark and antiquark. A
potential based description allows studies of quarkonia by employing Schrödinger-type equa-
tions [18–21]. One-loop hard thermal loop (HTL) perturbative QCD calculations [22, 23],
and later on pNRQCD calculations [24, 25], show that at high temperatures heavy quark
potential becomes complex with a nonvanishing imaginary part. However, it is difficult to
provide satisfactory descriptions of bound states arising out of strong interactions solely us-
ing perturbative expansions and a nonperturbative treatment, such as the LQCD, is called for.
In the static limit, the heavy quark potential can be extracted from the spectral functions of the
thermal Wilson loop using nonperturbative LQCD calculations [26–29]. To extract the heavy
quark potential from the Euclidean-time Wilson loop spectral functions, these LQCD calcu-
lations rely on weak-coupling motivated functional forms of the spectral functions. On the
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other hand, recent LQCD studies have led to quantification of the masses, thermal widths, and
Bethe–Salpeter amplitudes (BSA) of up to 3S and 2P bottomonium states in QGP [30–32].
As we shall see later, one-loop HTL motivated functional forms of VR(T, r) and VI(T, r) are
not compatible with the recent LQCD results. This observation calls for a model-independent
nonperturbative extraction of the in-medium heavy quark potential.

In our recent work [33], we have developed a model-independent DNN-based method and
determine the r and T -dependence of the in-medium heavy quark potential starting from the
LQCD results [31] for the masses and thermal widths of up to 3S and 2P bottomonium states
at various temperatures. The underlying idea is as follows: At a fixed T , various bottomonium
states differ in sizes and their wavefunctions probe different distances. Knowledge of the
masses and thermal widths of multiple bottomonium states, thereby, provide constraints on
not only the strength of the real and imaginary parts of the bottom-antibottom interactions
in QGP but also its r-dependence. Thus, LQCD results for the masses and thermal widths
of multiple bottomonium states at different temperature can be used to extract VR(T, r) and
VI(T, r) and, presently, DNN is probably the best tool achieve this in an unbiased fashion.
According to the universal approximation theorem [34, 35], DNN can generally provide an
unbiased, yet flexible enough, parameterization to approximate arbitrary functional relations.
We exploited the DNNs to represent the real and imaginary potentials,

VR(T, r) = VR,DNN(bR,WR; T, r) , VI(T, r) = VI,DNN(bI ,WI ; T, r) , (1)

where b and W — called bias and weight, respectively — are the DNN parameters to be
determined by fitting the LQCD masses and thermal widths [31]. In this Proceeding, we will
briefly summarize our method and results. We will further discuss the possible interpretation
and phenomenological consequence, as the complement of [33].

In typical machine-learning problems, one usually knows some direct informations of the
target function — e.g., its value at discrete points — and is able to tune the DNN parameters
by directly compare its output to the known knowledge. In our network, however, we cannot
compare Eq. (1) to the LQCD masses and thermal widths and fix the parameters. There is an
extra step to map the DNN output (potential) to observables (masses and thermal widths) —
the reduced complex-valued two-body time-independent Schrödinger equation,1
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complex-valued. Here, VI(T = 0, r) = 0, Re[En] = mn − 2mb and Im[En] = −Γn, where mn
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Here, the ∝ λ terms are regularizers in DNN to avoid over-fitting. The summation runs over
six temperature points, T ∈ {0, 151, 173, 199, 251, 334} MeV, and five bottomonium states,
n ∈ {1S, 2S, 3S, 1P, 2P} and the LQCD values were taken from Ref. [31]. We used gradient
descent with Back-Propagation optimization technique, which is based on the derivatives of

1By taking the Cornell potential, we can well reproduce the vacuum masses of up to 3S and 2P bottomonium
states [36] and the corresponding vacuum BSA obtained from LQCD calculation [32], (see [33] for more details).
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Figure 1. Flow chart of the
potential reconstruction
scheme — using generalized
back-propagation to
optimize parameters in the
deep neural networks
coupled with a Schrödinger
equation.

the cost function with respect to the network parameters. We overcame the challenge of gra-
dients evaluation of such implicit functions through perturbative solution of the Schrödinger
equation with respect to small change of V(T, r). Moreover, we invoked Bayesian inference
for uncertainty quantification, whereby the posterior distribution of the network parameters
was evaluated. In Fig. 1 we show the flow chart of our methodology of the potential recon-
struction with DNNs coupled to a Schrödinger equation. To the best of our knowledge, the
current method is developed for the first time here. More details on the method is provided
in [33], along with a closure test to justify our methodology and assess its reliability.

Results and Discussions — We begin with pointing out the inadequacy of weak-coupling
motivated functional form of the potential to consistently describe the LQCD masses and
thermal widths. We chose the functional form proposed in Ref. [37], which incorporates
one-loop HTL based functional forms of VI and of color-electric screening, in addition to a
vacuum potential satisfying Gauss’s law. Taking this functional form for the potential, we
fix α, σ, and B by their vacuum values, and tune µD at different temperatures to fit the finite-
temperature bottomonia masses and widths. As shown by the open squares in Fig. 2, one-loop
HTL motivated functional form of VI and color-electric screening in VR fail to simultaneously
reproduce the LQCD results for the mass shifts and the thermal widths of bottomonium. Even
if allowing an extra magnification factor for VI , one would still miss the state-dependence
of the thermal width (see open diamonds which take magnification factor to be four). The
failure of the only known analytic form to describe the LQCD results necessitates a model-
independent extraction of V(T, r) using an adequate unbiased parameterization. We devised
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Figure 2. In-medium mass shifts
(left) and the thermal widths
(right) of different bottomonium
states obtained from fits to
LQCD results [31] (lines and
shaded bands) using HTL
functional forms [37] (open
symbols) and DNN based
optimization (filled circle). The
points are shifted horizontally for
better visualization. Υ(1S ),
χb0 (1P), Υ(2S ), χb0 (2P) and
Υ(3S ) states are represented by
red, orange, green, blue, and
purple symbols, respectively.
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the above outlined method by coupling Schrödinger equation with DNNs and achieved good
agreement with the LQCD results [31] (see solid symbols in Fig. 2).

The T - and r-dependence of the extracted real and imaginary potentials are shown in
Fig. 3. We see signs that with increasing temperature VR(T, r) becomes flatter at large r, as
expected from color screening effect. However, the temperature dependence of VR(T, r) is
very mild between T ≈ 150 − 330 MeV, and closely approximating its vacuum counterpart.
In the same temperature range, we observed that VI(T, r) monotonically increases both with
temperature and distance. Whereas VI varies a lot as temperature changes, the scaled imag-
inary potential, VI/T as function of r × T , is insensitive to the change of temperature, (see
Right panel of Fig. 3).
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Figure 3. The DNN reconstructed real (Left) and imaginary (Middle) parts of the heavy quark potential
at temperatures T = 151(purple), 173(blue), 199(green), 251(orange), and 334 MeV(red). The uncer-
tainty bands represent the 68%(1σ) confident region. Right panel is the same as Middle, but for x- and
y-axis scaled by temperature T .

The heavy quark potential obtained here is based on LQCD calculations of bottomonium
state using 2+1 flavor dynamical gauge field background with nearly physical values of up,
down, and strange quark masses. Whereas the extant LQCD calculations of VR and VI are
for infinitely heavy static quarks and mostly in pure SU(3) gauge theory without dynamical
quarks [26–29]. Direct quantitative comparison, thus, is difficult. However, our results for the
heavy quark potential is qualitatively different from the weak-coupling motivated extractions
of the static quark potentials [26–29]. Unlike the previous studies, the VR obtained in this
work show very little signs of color-electric Debye screening for r ≲ 1 fm for the entire
temperature range T ∈ [0, 334] MeV. The VI here is much larger in magnitude and increases
more rapidly both with T and r than the one-loop HTL motivated extractions. On the other
hand, it is reassuring that the preliminary results on the static quark potential from very recent
LQCD calculations and without using the one-loop HTL motivated forms are quite similar to
the potential obtained here [38, 39].

Based on our results, one might speculate that, for phenomenologically relevant temper-
atures T ≲ 330 MeV, bottomonia are approximately vacuum-like excitation but very short
lifetime that are inversely proportional to their large thermal widths. This is different from
the conventional picture of the bottomonium in-medium behavior. In the traditional pic-
ture, both the finite temperature free-energy and interaction potential becomes flat at large
distance. As the temperature increases, the platform decreases in height, thus the binding
energy of the boundstate decreases, while its average size increase. At a certain temperature,
Tm, the binding energy approaches to zero, and the average size diverges [18, 19, 40]. Tm is
referred to as the melting temperature, above which a boundstate no longer exists. Similar
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Tm, the binding energy approaches to zero, and the average size diverges [18, 19, 40]. Tm is
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behaviors are observed for potentials with non-vanishing imaginary part [22, 23, 37, 41, 42].
According to the recent lattice QCD calculation for static quark potential [37], the Υ(3S)
state melts at T ∼ 0.2 GeV, while Υ(2S) disappears at T ≳ 0.35 GeV. In our new picture,
on the contrary, all the five bottomonium states can survive up to T = 334 MeV, and their
masses are insensitive to the temperature. On the other hand, the imaginary potential induced
thermal widths, which characterize the dynamical dissociation and increase with tempera-
ture, are significantly larger than previous results [37]. The inverse of thermal width can be
interpreted as lifetime of state at finite temperature. For instance, at T = 334 MeV, we find
Γ(1S) ∼ 0.15 GeV, Γ(2S) ∼ 0.3 GeV, and Γ(3S) ∼ 0.6 GeV, correspond to lifetime 1.3 fm,
0.7 fm, and 0.3 fm, respectively. In such a new continuous dissociation picture, the enhance-
ment of the thermal width compensates the vanishing of the melting effect in the thermal
dissociation.

This is important for studying the Quarkonium dynamics in the rapidly expanding QGP in
heavy ion collisions. The suppression of the Quarkonia production rate in relativistic heavy-
ion collisions is caused by both the color-screening melting and the dynamical dissociation,
the new picture suggests a reduction of the former and an enlargement of the latter. Noting
that such two effects exhibit different temperature dependencies, phenomenological conse-
quence might be expected in the experimental measurements of azimuthal angle distribution
of the production rate, especially for the excitations.

Conclusion — In this work, a bias-free in-medium heavy quark potential with DNN rep-
resentation is determined from the recently obtained LQCD results [31] for the masses and
thermal widths of up to 3S and 2P bottomonium states in QGP. By coupling Schrödinger
equation to DNN, we introduced a novel method for unbiased extractions of the real and
imaginary parts of the heavy quark potential, and invoked Bayesian inference to quantify the
potential uncertainties in a non-local fashion. We obtained model-independent results for
VR(T, r) and VI(T, r) for r ≲ 1 fm and T ≲ 330 MeV. The VR(T, r) has very mild T depen-
dence and closely resembles the vacuum potential. On the other hand, VI(T, r) is large and
rises rapidly with T and r. These results are qualitatively different from the static quark poten-
tial obtained using one-loop HTL perturbative calculations. It would be very interesting to see
the phenomenological consequences [13] of this heavy quark potential, model-independently
extracted from the non-perturbative LQCD calculations.
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