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1 Introduction

Gauge-gravity duality has enabled quantitative studies of the dynamics of certain strongly

coupled non-Abelian plasmas [1–4]. Despite the limitations of holographic models (in-

volving large Nc, strong coupling limits, and supersymmetry), they have provided im-

portant insight into key properties of quark-gluon plasma as observed in relativistic

heavy-ion collisions, including fast “thermalization” and the applicability of near-ideal

hydrodynamics [5–9].

In this paper, we compare the magnetoresponse of QCD plasma and maximally super-

symmetric Yang Mills (N = 4 SYM) plasma — the non-Abelian plasma with the simplest

holographic description. Specifically, we examine the change in thermodynamic properties

induced by a homogeneous background magnetic field. The response to an applied magnetic

field is a useful probe of the dynamics in many condensed matter systems. In our context,

an examination of magnetoresponse is also motivated by work suggesting that electromag-

netic fields (albeit transient) may have significant effects in heavy ion collisions [10, 11].

Holographic models have been found to describe rather accurately many aspects of

strongly coupled QCD dynamics, despite the fact that QCD is neither conformal, super-

symmetric, nor infinitely strongly coupled. Any reasonable measure of QCD coupling

strength in experimentally accessible quark-gluon plasma is order unity, far from the infi-

nite coupling limit, and Nc = 3 appears equally far from Nc =∞. The apparent robustness

of AdS/CFT predictions, despite these limitations, has prompted numerous investigations.

It has been shown, for example, that finite coupling corrections in many thermal quantities
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Figure 1. The ratio R ≡ pT /pL of transverse to longitudinal pressure in QCD, defined with

renormalization point µ = ΛH, for various values of external magnetic field B. (See section 3 for

details.) Left panel: R plotted as a function of T . Right panel: R plotted as a function of T/
√
B.

The different colors indicate different values of the magnetic field and are identical in the two panels.

are modest [12, 13], and that Nc dependence is essentially trivial, with extensive quantities

simply scaling with the number of gauge fields [14, 15].

To investigate whether a similar robustness exists with respect to conformal symme-

try it is natural to examine the effects of deformations which explicitly break conformal

symmetry. Adding a background magnetic field is such a non-conformal deformation.

In the presence of an external electromagnetic field, the definition of the QCD contri-

bution to the total stress-energy tensor depends on a choice of renormalization point. This

issue is discussed in section 2, which reviews basic properties of the stress-energy tensor of

a quantum field theory when minimally coupled to a non-dynamical electromagnetic field.

For QCD magnetoresponse, we take as input results from recent high quality lattice

gauge theory calculations of QCD thermodynamics for a wide range of background mag-

netic field B and temperature T [16, 17]. A natural measure of anisotropy in the system is

the transverse to longitudinal pressure ratio pT /pL, shown in the left panel of figure 1 as a

function of T for different magnetic fields. Interestingly, we find that this ratio exhibits, to

good accuracy, a simple scaling behavior over a wide range of temperature and magnetic

field. As shown in the right panel of the same figure, when plotted as a function of T/
√
B

data from widely differing values of T and B essentially collapse onto a single curve. The

underlying lattice QCD data is discussed in more detail in section 3, (Deviations from this

scaling behavior appear to be present at the lowest temperatures and highest magnetic

fields, but the growth of the error bars precludes making any definitive statement about

this region.)

In any conformal field theory,1 the lack of intrinsic scales automatically implies that

the magnetoresponse (appropriately defined) can only depend on the dimensionless ratio

T/
√
B. So, having found near-universal scaling behavior in the QCD magnetoresponse,

1See ref. [18] for a careful discussion of the relation between scale invariance and full conformal symmetry.
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Figure 2. Region of effective conformality, in the plane of temperature and magnetic field, of the

QCD pressure anisotropy ratio pT /pL. Within the blue region QCD and N = 4 SYM, appropriately

compared, give identical values for this ratio to within the error estimates of the lattice data. The

dark blue band indicates the uncertainty in the border of this region arising from lattice errors.

it is natural to compare this response to that of the simplest holographic model, namely

conformal N = 4 SYM in the strong coupling and large N limit, for which the dual descrip-

tion reduces to 5D Einstein-Maxwell theory. We briefly review N = 4 SYM theory and its

coupling to a background EM field in section 4, and then compare the QCD and N = 4

SYM magnetoresponse in section 5. A key issue, discussed in some detail, concerns how

best to make such a comparison given the unavoidable renormalization point dependence

of the quantities under study.

For impatient readers, our end result is shown graphically in figure 2. Within the

shaded region of the temperature-magnetic field plane, the QCD and N = 4 SYM results

for the pressure anisotropy ratio pT /pL, appropriately compared, are found to be identical

to within the errors of the lattice data. Our final section 6 discusses the implications of

this result and possible future directions. An appendix contains a few details regarding a

high temperature matching procedure for relating QCD and SYM quantities.

2 Quantum field theory with an external magnetic field

2.1 Thermodynamics

Consider a quantum field theory (QFT) minimally coupled to an external electromagnetic

U(1) gauge field Aext
µ , with field strength F ext

µν = ∂µA
ext
ν − ∂νAext

µ . A constant magnetic

field B = B ez may be described by the standard choice Aext
µ = 1

2B(x1δ2
µ − x2δ1

µ). The

total action of the theory may be written in the form

S = SQFT(B) + SEM(e,B) , SEM(e,B) ≡ −
∫
d4x

B2

2e2
, (2.1)
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where SEM is the classical Maxwell action, specialized to a pure magnetic field, with e

the (bare) electromagnetic coupling constant, and the QFT action SQFT(B) includes the

minimal coupling to the background EM field.2 Here and henceforth, we choose to scale the

external gauge field Aext
µ so that the electromagnetic coupling e does not appear in covariant

derivatives, but instead e2 is an inverse factor in the Maxwell action. Consequently, our B

is the same as eB if a conventional perturbative scaling of the U(1) field is used.3

From the action (2.1) (generalized to curved space) one derives the stress-energy tensor,

Tµν = −2
δS

δgµν
= TµνQFT + TµνEM , (2.2)

where TµνQFT = −2δSQFT/δgµν is the QFT contribution to the total stress-energy tensor,

while

TµνEM = −2
δSEM

δgµν
=

1

e2

(
FµαF νβ ηαβ −

1

4
ηµνFαβFαβ

)
, (2.3)

is the standard Maxwell stress-energy tensor (in Minkowski space). Specialized to a con-

stant magnetic field in the z-direction, TµνEM = B2

2e2
diag(+1,+1,+1,−1).

In a homogeneous equilibrium state, viewed in a rest frame (with vanishing momentum

density) aligned with the magnetic field, diagonal elements of the expectation value of the

stress-energy tensor can be interpreted as the proper energy density ε, and pressures (or

diagonal stresses) px, py, pz along the x-, y-, z-directions, respectively,

〈Tµν〉 =


ε 0 0 0

0 px 0 0

0 0 py 0

0 0 0 pz

 . (2.4)

The magnetic field defines a preferred direction in space, and induces an anisotropy between

the longitudinal pressure pL ≡ pz and transverse pressure pT ≡ px = py. (Rotational

symmetry about the magnetic field direction implies that px = py.) The relation between

the pressure(s) and energy density constitutes the equation of state of the system.

Similarly to the action (2.1), the thermodynamic grand potential (or Landau free

energy),

F ≡ −T lnZ , (2.5)

may be separated into QFT and EM contributions,

F = FQFT(B) + FEM(e,B) , FEM(e,B) = V B
2

2e2
, (2.6)

with V = LxLyLz the spatial volume. This separation, by definition, places all the re-

sponse to the applied magnetic field in the QFT contribution to the free energy. Let

fQFT = FQFT/V and fEM = FEM/V denote the corresponding free energy densities. Deriva-

tives of the free energy density fQFT with respect to the temperature or magnetic field define

2In this section, we work in Minkowski space with metric ηµν = diag(−1,+1,+1,+1).
3In particular, our magnetic field B corresponds to eB in ref. [16].
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the entropy density and magnetization, respectively,

s = −
∂fQFT

∂T
, M = −

∂fQFT

∂B
. (2.7)

Similarly, pressures are defined by the response of the system to compression in a given

direction,

pi = −Li
V
∂FQFT

∂Li
. (2.8)

In the thermodynamic limit, for homogeneous systems, the pressure is normally just mi-

nus the free energy density, since the free energy is extensive in the volume. But with

a background magnetic field, one must specify what is to be held fixed in the partial

derivative defining the pressure (2.8) [16]. The microscopic definition (2.4) of pressures

as stress-energy eigenvalues corresponds to a thermodynamic definition in which the effect

of compression is evaluated at a fixed magnetic flux Φ = B LxLy.
4 Consequently, the

longitudinal and transverse pressures differ,

pL = −fQFT , pT = pL −M ·B . (2.9)

The thermodynamic relation fQFT = ε− Ts implies that the entropy and energy densities

s and ε are related via

s =
ε+ pL
T

. (2.10)

A final quantity of interest is the interaction measure I, which is (minus) the trace of the

stress-energy tensor

I = −〈Tµµ〉 = ε− 2pT − pL = ε− 3pL + 2M ·B . (2.11)

In a CFT, such as N = 4 SYM, conformal symmetry implies that the stress-energy tensor

is traceless. However, adding an external magnetic field B is a non-conformal deformation

of the theory and induces a non-zero trace, and hence a nonzero interaction measure. For

N = 4 SYM (coupled to the external field in the manner described below in section 4),

Tµµ = −N
2
c−1

4π2
B2 . [N = 4 SYM] (2.12)

For an asymptotically free theory like QCD, the stress-energy trace has an intrinsic con-

tribution from the running of the coupling (and quark masses terms), plus the additional

contribution from the external magnetic field. Neglecting quark masses,

Tµµ = −β(g−2)
1

4
trG2

µν − β̃(e−2)
1

2
B2 , [QCD] (2.13)

where Gµν is the gluon field strength, β(g−2) ≡ µ∂µ g−2 = 9/(4π2)+O(g2) is the renormal-

ization group β-function for the SU(3) inverse gauge coupling (with three quark flavors),

and β̃(e−2) ≡ µ∂µ e−2 = −1/(3π2)+O(g2) is the corresponding electromagnetic β-function

arising from the three light quark flavors of QCD.

4To see this, note that the metric variation defining the stress-energy (2.2) leaves unchanged the EM

flux across any 2-surface, Φ =
∫

Σ
F , since integration of a two-form is metric independent.
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2.2 Renormalization

In interacting quantum field theories, bare parameters of the action undergo multiplica-

tive renormalization which introduces dependence on an arbitrary renormalization point

µ.5 In particular, the renormalized electromagnetic coupling e2 acquires logarithmic scale

dependence and satisfies a QED-like renormalization group equation,

µ
d

dµ
e−2 ≡ β̃(e−2) = −2b1 × [1 +O(g2)] , (2.14)

with positive coefficient b1. Explicitly, for QCD,

b1 =
Nc

12π2

∑
f

q2
f =

1

6π2
, [QCD] (2.15a)

where qf denotes the electromagnetic charge assignments (i.e., EM charges in units of e) of

each quark flavor, and the explicit final form is specialized to three flavor QCD. For N = 4

SYM theory,

b1 =
N2
c−1

24π2

[∑
w

q2
w +

1

2

∑
s

q2
s

]
, [N = 4 SYM] (2.15b)

where the sums run over all charged Weyl fermions w and charged scalars s with qw and

qs denoting the corresponding electromagnetic charge assignments. If the electromagnetic

field is regarded as classical (so that EM quantum fluctuations are neglected) then the

higher order corrections in the β-function (2.14) are independent of e2. For QCD in a back-

ground magnetic field, the EM β-function has higher order corrections proportional to the

non-Abelian coupling g2, while for N = 4 SYM (in a background field), no higher order cor-

rections appear in the EM β-function (2.14) due to a supersymmetric non-renormalization

theorem. Neglecting any such higher order corrections, the solution to the renormalization

group equation (2.14) shows the usual logarithmic scale dependence,

e(µ1)−2 = e(µ2)−2 − 2b1 ln(µ1/µ2) . (2.16)

Physical observables, like the total free energy, are necessarily independent of the renor-

malization point µ. However, the separation (2.6) of the free energy into QFT and back-

ground EM contributions requires choosing the scale at which to evaluate the coupling e ap-

pearing in the background EM contribution. So this separation is more properly written as

f = fQFT(B,µ) + fEM(e(µ), B) , (2.17)

with the scale dependence of fQFT(B,µ) necessarily canceling that of the EM term, so that

µ
d

dµ
fQFT(B,µ) = b1B

2 . (2.18)

Similarly, the QFT stress-energy tensor acquires scale dependence,

µ
d

dµ
TαβQFT = 2b1

(
FαγF βδηγδ −

1

4
ηαβF γδFγδ

)
, (2.19)

5With our definition of the magnetic field B, the Ward-Takahashi identity shows that B receives no

wavefunction renormalization and is scale independent.
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which precisely cancels the scale dependence of the EM stress-energy tensor. Hence,

ε(µ′)− ε(µ) = b1B
2 ln

µ′

µ
, (2.20a)

pT (µ′)− pT (µ) = b1B
2 ln

µ′

µ
, (2.20b)

pL(µ′)− pL(µ) = −b1B2 ln
µ′

µ
. (2.20c)

This scale dependence induced by the separation of QFT response from the background EM

contributions is unavoidable, since the background field contributions (for realistic values

of the electromagnetic coupling) are orders of magnitude larger than the matter-induced

response [17] and would otherwise overshadow interesting features in the magnetic field

dependence of the QFT response.

3 Lattice quantum chromodynamics

We consider QCD with 2+1 flavors of dynamical quarks with physical masses. The quarks

have their usual electric charge assignments, qu = +2/3 and qd = qs = −1/3. The action

has the form (2.1), with SQFT = SQCD and covariant derivatives augmented to include the

background U(1)EM gauge field. The lattice regularized Euclidean functional integral was

simulated non-perturbatively using a staggered fermion discretization and three different

lattice spacings. Details of the lattice discretization and associated methods are described

in ref. [17].

The lattice QCD results were obtained using a renormalization point µ = ΛH, where

ΛH = 120(9) MeV is a non-perturbatively determined hadronic scale defined by the con-

dition that at T = 0 there be no O(B2) contribution to the matter free energy. In

other words, the total free energy (the sum of matter and magnetic contributions) equals
1
2B

2/e2(ΛH) +O(B4) in the zero temperature limit. For nonzero temperatures, the O(B2)

contribution to the matter free energy becomes nonzero, i.e., the system develops a non-

trivial magnetic permeability.

We begin the discussion with the anisotropic pressure components pT and pL. To

facilitate a comparison with SYM theory, it is natural to consider the dimensionless ratio

R ≡ pT /pL . (3.1)

This combination was shown as a function of the temperature for various values of magnetic

field B in the left panel of figure 1. Notice that the longitudinal pressure pL is always

positive, so the ratio R remains finite for all T and B. For low magnetic fields the ratio

R ≈ 1, signaling the near-isotropy of the system. As the field B grows the anisotropy

becomes more pronounced and the ratio R shifts away from unity — in fact it becomes

negative when the transverse pressure pT changes sign (and becomes a “suction”) for strong

magnetic fields [17].

A remarkable feature of the results for R(B, T,ΛH) is their near-universal nature when

expressed in terms of the dimensionless variable T/
√
B. This is shown in the right panel

– 7 –
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figure 1, which plots the same data with the exception of the B = 0 set. The data from

different values of the magnetic field all collapse onto a single curve. (As noted earlier,

small deviations from this scaling behavior may be present at the lowest temperatures and

highest magnetic fields, but the growth of error bars in this regime prevents any definitive

statement.) This indicates an apparent universality analogous to what one would expect,

a-priori, only in conformal theories. In QCD the ratio R is in general a function of two

independent dimensionless parameters,6

R(B, T,ΛH) = r(T/
√
B,ΛH/

√
B) . (3.2)

The apparent near absence of any significant dependence on ΛH/
√
B motivates us to com-

pare the magnetoresponse of QCD to that of conformal SYM theory, for which T/
√
B is

the only relevant dimensionless ratio.

An important question is how the near-universality of pT /pL is affected by a change

in the renormalization point. We consider a general choice,

µ(cT , cΛ, cB) ≡
√
cTT 2 + cB|B|+ cΛΛ2

H , (3.3)

involving the three underlying scales {T , B, ΛH} characterizing the equilibrium state, pa-

rameterized by three coefficients cT , cB and cΛ. For a quantitative description we introduce

a measure D of the deviation from universality,

D ≡ 1

N

∑
b,b′

∑
t

[r(t, b)− r(t, b′)]2

σ2(t, b) + σ2(t, b′)
, t ≡ T√

B
, b ≡ ΛH√

B
, (3.4)

where σ denotes the error of the ratio r and the sum extends over all points available from

the lattice study of ref. [17]. The integer N counts the number of terms in the resulting

sums. With this normalization, D . 1 indicates that the curves for different magnetic

fields all overlap each other within errors. Additionally, the inherent uncertainty on D is

of order unity. The deviation D is plotted in figure 3 as a heat map in the space of the

coefficients cB, cT and cΛ. The left panel of the figure shows the cB = 0 slice, while the

right panel shows the orthogonal cΛ = 0 slice.7

The ansatz (3.3), reflecting the presence of three different potentially relevant under-

lying scales, is a natural form for parameterizing a dominantly relevant scale in QCD. The

appearance of ΛH reflects the intrinsic lack of scale symmetry in QCD (even in the limit

of massless quarks). In a conformal theory, there is no intrinsic energy scale, and hence

no equivalent of the QCD scale ΛH. A natural question to ask is whether the apparent

universality in our lattice data remains evident when cΛ is small or zero. As indicated in

the left panel of figure 3, this is indeed the case. The region of minimal deviation from

universality is found to be centered around the point (cT , cΛ) = (0.70, 0.46), but it extends

out to include, for example, the purely temperature-driven renormalization point µ = T .

6We neglect to indicate explicitly additional dependence on the ratios of quark masses to ΛH.
7The heat map of D remains very similar if one instead uses a parameterization of the renormalization

point which is analytic in the magnetic field, µ =
(
cTT

4 + cBB
2 + cΛΛ4

H

)1/4
.

– 8 –
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Figure 3. Heat map of the deviation from universality, D, as a function of cT and cΛ for fixed

cB = 0 (left panel), and as a function of cT and cB for fixed cΛ = 0 (right panel). The red dot

indicates the choice of µ = T . The uncertainty in the value of D is of order unity. Inside the dark

colored regions, where D . 1, universality holds to within the error bars of the lattice data.

Therefore, in the following we set cΛ to zero, so that a comparison to N = 4 SYM

theory will be straightforward. As shown in the right panel of figure 3, for vanishing cΛ the

minimum of D defines a valley along the line cB = 0.087–0.084 cT . Below we will compare

QCD to the SYM theory along this valley.

As illustrated in figure 4, other dimensionless ratios, such as pL/ε or pT /ε, have sub-

stantial dependence on ΛH/
√
B and do not exhibit the near universality seen in the pressure

anisotropy ratio pT /pL. Given the connection (2.11) between the trace anomaly and the

interaction measure I = ε − 2pT − pL, this surely reflects the substantial growth of the

interaction measure in QCD as the temperature approaches the confinement transition

due to the intrinsic violation of scale invariance in QCD [19, 20], a feature not present in

conformal N = 4 SYM.

4 N = 4 supersymmetric Yang Mills theory

We consider maximally supersymmetric (N = 4) SU(Nc) Yang-Mills theory, in the limit of

large Nc and large ’t Hooft coupling, λ � 1, coupled to a background “electromagnetic”

U(1) gauge field. To define this coupling, we choose the same U(1) subgroup of the SU(4)

global R-symmetry which was used in ref. [21]. Specifically,

qαw = (3,−1,−1,−1)/
√

3 , qas = (2, 2, 2)/
√

3 , (4.1)

are the respective charge assignments for the four Weyl fermions and three complex scalars

of N = 4 SYM. With these assignments, the U(1) β-function coefficient (2.15b) becomes

b1 =
N2

c−1

4π2
. [N = 4 SYM] (4.2)

(However, as discussed in the next section, when comparing with QCD we will rescale the

above charge assignments by an adjustable factor.)

– 9 –



J
H
E
P
0
9
(
2
0
1
8
)
0
7
0

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
⎯⎯

cT = 1
cΛ = 0
cB = 0

p L
 / 
ε

T / √B

B = 0.1 GeV2

0.2 GeV2

0.3 GeV2

0.4 GeV2

0.5 GeV2

0.6 GeV2

0.7 GeV2 -0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
⎯⎯

cT = 0
cΛ = 1
cB = 0

p T
 / 
ε

T / √B

Figure 4. The ratio pL/ε at the renormalization point µ = T (left panel) and pT /ε at µ = ΛH

(right panel) for various values of the magnetic field B, and plotted as a function of T/
√
B. Unlike

the ratio pT /pL, no near universal behavior is observed in either ratio involving the energy density.

Equilibrium states of this theory, in the presence of a homogeneous background mag-

netic field, have a dual gravitational description given by magnetic black brane solutions

first computed by D’Hoker and Kraus [22]. These are solutions of 5D Einstein-Maxwell the-

ory, which is a consistent truncation of type IIB supergravity. The Einstein-Maxwell action

S =
1

16πG5

∫
d5x
√
−g

[
R− 2Λ− L2FMNFMN

]
+ θ

∫
d5xA ∧ F ∧ F , (4.3)

where M, N = 0, . . ., 4 are the 5D spacetime indices, g is the metric, R is the Ricci scalar,

G5 = π
2L

3/(N2
c−1) is the 5D Newton gravitational constant, Λ = −6L−2 is the cosmo-

logical constant and F = dA is the five-dimensional electromagnetic field strength. The

reduction from IIB supergravity leads to a specific value for the Chern-Simons coupling

θ, but this term vanishes identically for our solutions of interest and may be ignored. So-

lutions to the gravitational theory (4.3) representing uncharged (magnetic) black branes

may be described by a metric of the form [22],

ds2 = −U(r) dt2 +
dr2

U(r)
+ e2V (r) (dx2 + dy2) + e2W (r) dz2 , (4.4)

plus a bulk field strength

F = B dx ∧ dy , (4.5)

representing a constant magnetic field of strength B. The metric functions U , V and W de-

pend only on the radial coordinate r, and must be computed numerically. These functions

have the near-boundary (r →∞) asymptotic behavior,

U(r) = r2/L2 + 2(a4 −
1

3
B2 ln r/L)L6/r2 +O(r−6 ln2 r/L) , (4.6a)

V (r) = ln(r/L) +
1

2
(b4 +

1

3
B2 ln r/L)L8/r4 +O(r−8 ln2 r/L) , (4.6b)

W (r) = ln(r/L)− (b4 +
1

3
B2 ln r/L)L8/r4 +O(r−8 ln2 r/L) . (4.6c)
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The subleading terms in these near-boundary expansions determine the (expectation value

of the) N = 4 SYM stress-energy tensor [21]. Specifically,

〈T tt〉 = ε = κ

(
−3

2
a4 +

1

2
B2 lnµL

)
, (4.7a)

〈T xx〉 = 〈T yy〉 = pT = κ

(
−1

2
a4 + b4 −

1

4
B2 +

1

2
B2 lnµL

)
, (4.7b)

〈T zz〉 = pL = κ

(
−1

2
a4 − 2b4 −

1

2
B2 lnµL

)
, (4.7c)

with all off-diagonal components vanishing. Here κ ≡ (N2
c−1)/(2π2) and µ, once again, is

the arbitrary renormalization point used to separate the SYM and background EM contri-

butions to the total stress-energy tensor. For further details, see refs. [21, 23].

5 Comparison of QCD and N = 4 SYM

To compare lattice QCD results with thermodynamic data for N = 4 SYM calculated via

holography, one must decide how best to adjust for the differing field content of the two

theories. Specifically, in making this comparison should the SYM charge assignments be

rescaled? The overall normalization of our SYM charge assignments (4.1) was merely a

convenient choice which corresponds to the absence of additional numerical factors multi-

plying the Maxwell term in the dual gravitational action (4.3) [21]. A uniform rescaling

of charge assignments is equivalent to a rescaling of the magnetic field, so this question

is the same as asking whether comparisons are most usefully made at coinciding values

of magnetic field, as it was introduced in the gravitational action (4.3), or whether it is

appropriate to first rescale the background magnetic field added to SYM theory.

As long as the background electromagnetic field is treated as classical, the normal-

ization of SYM charge assignments is arbitrary, as there is no intrinsic scale available to

define physical units in which to measure a magnetic field. In other words, there is no

quantization of EM charges or magnetic fluxes. Hence, it is completely appropriate to

rescale SYM charge assignments, or equivalently rescale the magnetic field, B → B/ξ for

some choice of ξ, when comparing with QCD. (In contrast, temperature may be regarded

as having a common operational meaning in both theories, so no rescaling of temperature

is performed.) The key question is how should one choose this charge (or magnetic field)

scale factor ξ?

From our earlier discussion (section 2.2) of renormalization point dependence, one

seemingly natural possibility to consider is scaling the SYM charge assignments so that the

leading coefficient b1 in the U(1) β-function (2.15) coincides between QCD and SYM. This

would require scaling the SYM charge assignments inversely with Nc so as to compensate

for the difference in the number of charged degrees of freedom. However, this choice is

neither necessary nor helpful, as one can always first define rescaled stress-energy tensors,

T̃µµ ≡ Tµν/b1, in both QCD and SYM, so that the rescaled tensors satisfy identical

renormalization group equations. Since we are comparing dimensionless ratios such as

pT /pL, such an overall rescaling of Tµν has no effect on the comparison between theories.

– 11 –
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Another possible approach involves matching the magnetoresponse in the asymptot-

ically high temperature limit. As discussed in appendix A, if one considers the entropy

density (which is independent of the renormalization point µ) and demands that the relative

contribution of the O(B2) terms coincide, so that

s(B, T )

s(0, T )

∣∣∣∣
QCD

=
s(B/ξ, T )

s(0, T )

∣∣∣∣
SYM

+O(B4) , (5.1)

then this condition leads to a scale factor choice ξ =
√

19/3 ≈ 2.5.

This value for the charge rescaling defines an arguably sensible scheme for comparing

our two theories. However, it uses information from asymptotically high temperature

QCD which is far from the regime of a few times Tc where it is appropriate to view real

quark-gluon plasma as a strongly coupled near-conformal fluid. Consequently, our preferred

approach is the simplest: we just treat the charge rescaling factor ξ as a free parameter, and

find the value which minimizes the difference between the QCD and SYM results for the

pressure ratio R = pT /pL. More precisely, we first evaluate this pressure ratio (as a function

of B and T ), in both theories at a common renormalization point µ =
(
cTT

2 + cB|B|
)1/2

which lies along the valley defined by cB = 0.087–0.084 cT . As shown in figure 3, along

this valley the QCD ratio R is essentially a function of only the single variable T/
√
B. We

then define a deviation ∆R between the QCD pressure ratio and that of SYM,

∆R(ξ, cT ) ≡ 1

N

∑
B,T

[
RQCD(T/

√
B;µ(cT ))−RSYM(T

√
ξ/B;µ(cT ))

]2

σ2(T,B)
, (5.2)

with the SYM magnetic field rescaled by a adjustable factor ξ and cB determined by cT
along the aforementioned valley. Only lattice QCD data points with T > 150 MeV are

included in this sum, as lower temperatures probe the hadronic phase of QCD, not the

deconfined plasma phase. As in our earlier measure D of the deviation from universal-

ity (3.4), σ denotes the lattice error of the ratio R, and N is the number of terms in the

sum. A value less than unity for the deviation, ∆R < 1, indicates agreement between the

two theories to within the errors of the lattice results, and the inherent uncertainty in ∆R

is of order unity.

Our results for ∆R are plotted in figure 5. As clearly seen in the figure, ∆R develops

a minimum around ξ = 4.3 and cT = 0.69 (implying cB = 0.029), with its minimum value

well below 1. The red dot on the right of figure 5 indicates a choice of the high temperature

motivated rescaling factor ξ = 2.5 discussed above combined with cT = 1. At this point

∆R is large compared to 1, indicating much less satisfactory matching between theories

with this choice of rescaling.

A direct comparison of the pressure anisotropy ratio pT /pL in QCD and N = 4 SYM

is displayed in figure 6 using choices of renormalization point and charge rescaling which

minimize ∆R, namely (cT , cB) = (0.69, 0.029) (with cΛ = 0), and ξ = 4.3. In addition to

the universal scaling of the lattice QCD data, one sees that the SYM curve lies atop the

error bars of the QCD data for all T/
√
B & 0.22, or equivalently for magnetic fields up to

≈ 21T 2. Deviations of the QCD data from the SYM curve are present, and are significant,

– 12 –
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Figure 5. The normalized deviation ∆R of the QCD and N = 4 SYM results for pT /pL, plotted

as a function of the SYM charge rescaling factor ξ and the value of cT defining the renormalization

point (with cB correspondingly fixed to lie along the QCD valley of near-universality). The red dot

indicates the high temperature motivated choice µ = T and ξ = 2.5.

-1

-0.5
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 1
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p
T
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L

T / √B

lattice QCD, B = 0.1 GeV2
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0.7 GeV2

N = 4 SYM

Figure 6. The ratio pT /pL from lattice QCD as a function of T/
√
B at optimal universality —

i.e. for a renormalization scale parameterized by cB = 0.029, cT = 0.69 and cΛ = 0. Also included

is the holographic pressure ratio computed at the same renormalization scale and with the electric

charge normalization factor ξ = 4.3.
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for T/
√
B . 0.22. This reflects the limit of the region where it makes sense to model QCD

plasma as a conformal fluid. Figure 2, shown in the Introduction, gives a global view of

the region of the temperature-magnetic field plane, in physical units, in which agreement

between the QCD and SYM magnetoresponse holds to within the error estimate on the

lattice QCD value of pT /pL. Agreement was inevitable at large T/
√
B where the pressure

ratio in both theories necessarily approaches unity. But excellent agreement down to rather

small temperatures, or up to quite large magnetic fields where the deviation of the pressure

anisotropy from unity is substantial, is surprising. More precisely, it is remarkable that

a choice of renormalization scale exists for which the pressure ratio in QCD and SYM,

suitably compared, displays a common conformal behavior over such a substantial range

of temperature and magnetic field.

6 Discussion

In this work, we analyzed data from a recent lattice gauge theory calculation of the thermo-

dynamics of a QCD plasma placed in an external magnetic field. Except at asymptotically

high temperatures, T ≫ ΛQCD, observables in QCD will generically have independent non-

trivial dependence on the value of both temperature and magnetic field (relative to ΛQCD).

Moreover, separating the QCD contribution from the classical Maxwell contribution to

the stress-energy tensor necessarily introduces dependence on an arbitrary renormalization

point µ, as discussed in section 2.2. So in the presence of a non-zero magnetic field, at any

physically accessible temperature, the transverse to longitudinal pressure ratio R = pT /pL
should be expected to display non-trivial dependence on multiple dimensionless ratios, for

example T/
√
B, T/ΛQCD, and T/µ. Choosing the renormalization point to depend in

some dimensionally consistent fashion on the physical scales T ,
√
B, and ΛQCD still leaves

two independent dimensionless ratios on which the pressure ratio should depend. How-

ever, as shown in figure 1, we find that for suitable choices of renormalization point the

pressure anisotropy pT /pL exhibits scale invariance to within the error estimates of the

lattice data, with functional dependence only on the ratio T/
√
B. A more careful study

of the deviations from universality identified an optimal choice of renormalization point,

µ =
(
0.69T 2 + 0.029|B|

)1/2
(given our specific measure (3.4) on the deviation).

Scale invariance is, of course, a feature of conformal field theories. Our observed near-

perfect scale invariance in the QCD pressure anisotropy motivated a comparison with the

pressure anisotropy in the simplest four dimensional conformal gauge theory, N = 4 super-

symmetric Yang-Mills (SYM) theory, when this theory is placed in an external magnetic

field. Specifically, we compared with N = 4 SYM in the large Nc and strong coupling limit,

for which a dual gravitational description is available. After a simple matching of the elec-

tromagnetic couplings of the two theories, the SYM pressure anisotropy was found to agree

with that of QCD over a wide range of temperature and magnetic field values, as shown

in figure 6. This agreement persists at unexpectedly low temperatures and large magnetic

fields. (Growing error bars on the lattice data make the comparison inconclusive below

T/
√
B < 0.2.) The region where the pressure ratios of the two theories coincide was visual-

ized in figure 2. It must be noted, however, that ratios of other thermodynamic quantities
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do not exhibit the same universal scaling behavior seen in the pressure anisotropy pT /pL.

For ratios involving the energy density such as pT /ε or pL/ε, no choice of renormalization

scale creates an overlap of data from different values of external field anywhere near as

striking as that seen in the pressure anisotropy ratio. This, presumably, reflects the sub-

stantial peak in the thermal expectation value of the QCD trace anomaly, I = ε−2pT −pL,

near the QCD confinement transition, which is not reproduced by N = 4 SYM.

Although our analysis has exclusively involved equilibrium quantities (for which lattice

QCD calculations are possible), the region of “effective conformality” shown in figure 2 is

presumably also the region in which the long wavelength dynamics of QCD plasma is

reasonably well described by conformal hydrodynamics. Outside this region, effects of

scale non-invariance should be increasingly important, implying significant bulk viscosity

effects in QCD hydrodynamic response.

This work adds the pressure anisotropy magnetoresponse, described by a non-trivial

scaling function of T/
√
B, to the set of thermal observables in QCD which are well-

reproduced by strongly coupled N = 4 SYM, the simplest (four dimensional) conformal

gauge theory with a holographic description. It also reveals the limitations of modeling

hot QCD plasma as a conformal fluid when thermodynamic ratios involving the energy

density are examined. This limitation is unsurprising, given what is known about the

temperature dependence of the trace anomaly expectation value.

It would be interesting to explore extensions of this work involving comparisons with

other strongly coupled theories having holographic descriptions which are closer to QCD

than N = 4 SYM. Possibilities include N = 2∗ SYM [24–27] and other mass deformations of

N = 4 SYM, cascading gauge theory [28, 29], the Sakai-Sugimoto model [30, 31], and various

bottom-up models (for example, [32]). Turning on additional deformations which can be

studied both in lattice QCD and in strongly coupled holographic models, such as a non-zero

isospin chemical potential, could also be instructive. Such work is left for the future.
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A Magnetic field matching at high temperature

To define an optimal matching of the high temperature magnetoresponse in QCD and

N = 4 SYM, we focus on the entropy density s = −∂f/∂T |µ, as this quantity is indepen-

dent of the choice of renormalization point µ. As discussed in ref. [17], at asymptotically

high temperature where T is the only relevant physical scale, the renormalization group

equation (2.18) for the QFT free energy density (namely µ d
dµf = b1B

2) plus dimensional

analysis implies that f = f0 T
4 − b1B2 [ln(T/µ) + const.] +O(B4), where f0T

4 is the free
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energy density at zero magnetic field. Consequently, the entropy density has the form

s = s0 + b1B
2/T +O(B4) . (A.1)

For three flavor QCD at temperatures T � ΛH, asymptotic freedom implies that

the entropy density approaches the Stefan-Boltzmann limit, so s0 = 19
9 π

2T 3. And from

eq. (2.15a), the EM β-function coefficient b1 = 1/(6π2). Hence,8

s

T 3
=

19π2

9
+

B2

6π2 T 4
+O(B4) . [QCD] (A.2a)

For N = 4 SYM at strong coupling, the zero field entropy density s0 = (N2
c−1)π

2

2 T 3 and,

with the charge assignments (4.1), the U(1) β-function coefficient b1 = (N2
c−1)/(4π2). If

these charge assignments are rescaled by an inverse factor of ξ, then

s

T 3
= (N2

c−1)

[
π2

2
+

B2

4π2 ξ2 T 4
+O(B4)

]
. [N = 4 SYM] (A.2b)

Matching the relative contribution of the O(B2) term in the entropy density, i.e., demand-

ing that s(B, T )/s(0, T ) coincide up to O(B4), leads to ξ2 = 19/3, or ξ ≈ 2.5.
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