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Newton–Okounkov bodies of curve classes

Lucie Devey

Abstract

The purpose of the paper is to initiate the development of the theory of Newton–

Okounkov bodies of curve classes.

Our definition is based on making a fundamental property of Newton–Okounkov

bodies hold also in the curve case: the volume of the Newton–Okounkov body of a

curve is a volume-type function of the original curve. This construction allows us to

conjecture a new relation between Newton–Okounkov bodies, we prove it in certain

cases.

Introduction

In the late 1990s Okounkov associated a convex body ∆Y•
(D) to any ample divisor D

on a projective variety X depending on the choice of an admissible flag Y• and used its

geometric properties to explore the sections H0(X,OX(kD)) for large values of k. In 2008,

Lazarsfeld–Mustaţă [LM09] and Kaveh–Khovanskii [KK08] simultaneously extended this

contruction to any big divisor and developed the theory of Newton–Okounkov bodies.

This object is a vast generalisation of the Newton polytope of a hypersurface and has

come to be known as the ’Newton–Okounkov body’ of D. This article is an attempt to

generalise the theory defining Newton–Okounkov bodies of curve classes instead of divisor

classes and to discover new relations between Newton–Okounkov bodies.

The interest in Newton–Okounkov bodies lies in the fact that they encode information

on the asymptotic behaviour of H0(X,mD) as m → ∞ and have been proved to be

very efficient in providing simple geometric proofs of difficult results such as Fujita’s

approximation theorem ([LM09] Theorem 3.5) or the log-concavity of the volume of a

divisor ([LX19] Theorem 1.6).

The Newton–Okounkov body of a divisor can also reveal information about its Seshadri

constants, invariants introduced by Demailly and measuring the positivity of the divisor.

In [Ito13], Ito furnished a lower bound on Seshadri constants and Dumnicki–Küronya–

Maclean–Szemberg exhibited in [DKMS16] an unexpected relation between SHGH con-

jecture and rationality problems for Seshadri constants using Newton–Okounkov bodies.

As highlighted in the survey article [KL18], there is a strong relationship between

positivity of divisors and the geometry of Newton–Okounkov bodies. This connection

persists locally: [KL17] and [Roé16] relate local positivity of line bundles, for instance

jet-separation, to Newton–Okounkov bodies attached to infinitesimal flags.

Even though Newton–Okounkov theory for divisors turned out to be very fruitful,

there has so far been no visible attempt to construct higher-codimensional generalisations.

One of the most remarkable features of Newton–Okounkov bodies is that the volume

of a divisor

vol(D) = lim supm→∞

h0(X,mD)

mn/n!
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is exactly the euclidean volume of its Newton–Okounov body for any choice of admissible

flag. We want to propose a definition for Newton–Okounkov bodies of curve classes which

still have this concrete and geometrical property. Lehmann and Xiao ([LX19]) constructed

a Legendre–Fenchel type transform M on curve classes by taking the dual of the volume

function :

M(α) = inf
A big and movable

divisor class

(
A · α

vol(A)
1

n

) n
n−1

.

Our definition of Newton–Okounkov bodies for curve classes will satisfy

volRn (∆(α)) = M(α) .

If X is a surface then curves are divisors and consequently Newton–Okounkov bodies

of curves are already defined. Moreover an explicit description of Newton–Okounkov

bodies can be given based on the Zariski decomposition for divisors (see [LM09] Theorem

6.4 or [KLM12] Section 2 for more details).

Lehmann and Xiao have defined a Zariski-type decomposition for curve classes which

we will call the ’movable Zariski decomposition’, based on the volume-type function M

(see [LX19] Theorem 3.12). Assume that the curve class α is movable (or equivalently by

[BDPP13] the dual of Eff1(X)) and M(α) > 0, Lehmann–Xiao’s result states that there

exists a unique big and movable divisor class L such that

α = 〈Ln−1〉

where 〈〉 is the positive product (see Boucksom–Favre–Jonsson in [BFJ09]). Moreover the

infimum arising in the definition of M is attained by L.

Based on this decomposition, we propose a definition for the Newton–Okounkov body

of a curve class α with respect to an admissible flag Y• on X .

Definition (1.6). We define the Newton–Okounkov body of a movable curve class α such
that M(α) > 0 as

∆Y•
(α) = ∆Y•

(L) ,

where α = 〈Ln−1〉 is the movable Zariski decomposition of α.

We present some formal properties, namely the equality between the volume of a

curve class and the volume of its Newton–Okounkov body, and the continuity of Newton–

Okounkov bodies of curve classes.

In the second part of the paper we investigate a potential analogue of the inclusion

∆Y•
(D1) + ∆Y•

(D2) ⊆ ∆Y•
(D1 +D2) .

No such simple inclusion appears to hold for Newton–Okounkov bodies of curves as defined

above. Even in the most simple case, when X = P3 and the curve classes α1 = α2 = 〈D2〉
are given by D = OX(1), the movable Zariski decomposition of the sum α1 + α2 is

α1 + α2 = 〈(
√
2D)2〉 and

∆(α1) + ∆(α2) = 2∆(D) *
√
2∆(D) = ∆(α1 + α2) .

A potential replacement for the Minkowski sum in the context of curve classes is the

Blaschke sum # of convex sets (see Definition 2.3). We would like to prove that the

inclusion
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∆Y•
(α1)#∆Y•

(α2) ⊆ ∆Y•
(α1 + α2) (∗inc)

holds. In this case we would have proved that, for any movable divisor L1 and L2 on X ,

denoting by L3 the unique movable divisor satisfying 〈Ln−1
3 〉 = 〈Ln−1

1 〉+ 〈Ln−1
2 〉,

∆Y•
(L1)#∆Y•

(L2) ⊆ ∆Y•
(L3) .

Since the definition of the Blaschke sum is entirely based on the area measure of convex

sets (see Definition 2.1), this inclusion would be one of the first result we have on the

boundary of Newton–Okounkov bodies.

One motivation for considering Blaschke sums is that the sum of curve classes and the

Blaschke sum of convex bodies satisfy the volume formula (see [LX17] Section 7.A)

vol(K#L)
n−1

n ≥ vol(K)
n−1

n + vol(L)
n−1

n

and M(α1 + α2)
n−1

n ≥ M(α1)
n−1

n +M(α2)
n−1

n .

In this paper we prove (∗inc) in the case of surfaces, of homothetic curve classes and of

toric varieties. It turns out that in the two last cases (∗inc) is an equality. The following

result is really powerful but would require the Blaschke sum to be continuous.

Proposition (3.1). We assume the continuity of the Blaschke sum and consider Newton–
Okounkov bodies with respect to any maximal rank valuation (not only flag valuation).

Then the inclusion (∗inc) holds for movable curves if and only if it holds for curves of
the form αi = An−1

i with Ai ample.

Finally we prove the inclusion (∗inc) in the following case.

Theorem (5.5). Let X be a projective bundle over a curve. Consider two curves α1, α2

of the form αi = An−1
i with Ai ample. Then we have that

∆(α1)#∆(α2) = ∆(α1 + α2) .

In the 1st section we propose the definition of the Newton–Okounkov body of a curve

class and present some of its properties.

In Section 2, we discuss the Blaschke sum and present various analogies with Newton–

Okounkov bodies.

In Section 3 we prove Proposition 3.1.

Section 4 describes Newton–Okounkov bodies of curve classes when X is a projective

bundle over curves, recalls the description of the cones of divisor and curve classes and

explains how the Newton–Okounkov body allows to visualize the positivity.

In section 5, we prove Theorem 5.5.
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1 Definition of Newton–Okounkov bodies of curves

We start with some general definitions. The theory of Newton–Okounkov bodies was

developed simultaneously by Lazarsfeld–Mustaţă [LM09] and Kaveh–Khovanskii [KK08].

We propose an extension of this definition to curve classes.

Throughout this chapter, X will be a projective variety of dimension n and Y• an

admissible flag on X .

1.1 Newton–Okounkov bodies of curve classes

Lehmann and Xiao constructed a Zariski-type decomposition for curve classes generalizing

the Zariski decomposition of divisors on surfaces. It will allow us to construct an analogous

definition of Newton–Okounkov bodies of curve classes.

Let us start with the volume function of curves introduced by Lehmann and Xiao (see

[LX19]). Recall that the volume function for divisors is given by

vol(D) = lim supm→∞

h0(X,mD)

mn/n!
.

Definition 1.1. The dual volume function M on curves is defined by

M(α) = inf
A big and movable

divisor class

(
A · α

vol(A)
1

n

) n
n−1

.

We now recall the definition of the movable Zariski decomposition from [LX19] The-

orem 3.12.

Definition and Theorem 1.2. Any movable curve class α with M(α) > 0 is of the
form

α = 〈Ln−1〉

for a unique big and movable divisor class L, where 〈〉 is the positive intersection product
(Remark 1.3). Moreover the infimum appearing in the definition of M is achieved by L.

Remark 1.3. The positive intersection product, introduced by Boucksom–Favre–Jonsson

(see [BFJ09]), is defined for classes on the Riemann-Zariski space X of a projective variety

X which is the projective limit of all birational models of X . A class in X is a collection of

classes in each birational model of X that are compatible under push-forward. We denote

the set of such classes by Np(X).

A class L is Cartier if and only if there exists a birational model Xπ of X such that

the incarnations of L on higher blow-ups are obtained by pulling-back the incarnation Lπ

of L on Xπ. Such a π is called a determination of L.

If L1, ..., Lp are big Cartier divisor classes, then their positive intersection product

〈L1, ..., Lp〉 is defined as the least upper bound of the set of classes

(L1 −D1) · ... · (Lp −Dp) ∈ Np(X)

where Di is an effective Cartier Q-divisor on X such that Li −Di is nef.

The most relevant property for us is that if L1, L2, ..., Lp ∈ N1(X) are nef Cartier

divisor classes then

〈L1, ..., Lp〉 = L1 · ... · Lp .
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Another essential property is Fujita’s theorem (see [Fuj94]) reformulated in [BFJ09]

Theorem 3.1 into

∀L ∈ Big1(X), vol(L) = 〈Ln〉 .

Remark 1.4. The condition M(α) > 0 is equivalent to having non vanishing intersection

with any non-zero movable divisor class (see [LX19] Lemma 3.9).

Remark 1.5. We call the decomposition ’movable Zariski’ because of the Zariski decom-

position of effective divisors (see [Zar62])

D = B + γ

where B is nef, γ is a negative cycle and B ·γ = 0 from which it follows that the dimension

of the linear system |D| is determined by B alone.

So up to a translation (depending on γ), the Newton–Okounkov body of D is the

Newton–Okounkov body of B (see Paragraph 6.2 [LM09]).

With the ’movable Zariski decomposition’ for curve classes, Lehmann and Xiao ex-

tended the decomposition of Zariski to movable curve classes positive with respect to

M.

This motivates the following definition.

Definition 1.6. Consider a movable curve class α on X that satisfies M(α) > 0 and
hence has a movable Zariski decomposition α = 〈Ln−1〉. We define the Newton–Okounkov
body of α on X with respect to Y• as

∆Y•
(α) := ∆Y•

(L) .

Remark 1.7. The Newton–Okounkov bodies of curve classes are well defined. Indeed,

Newton–Okounkov bodies of big divisors are invariant under numerical equivalence (see

Proposition 4.1 [LM09]).

Example 1.8. Take any movable curve class α on X = Pn with an admissible flag Y•. The

intersection ring of X is

A(X) = Z[H ]/(Hn) ,

so that α can be written as

α = aHn−1 = a〈Hn−1〉 ,

where a ∈ R. Indeed the cone of nef divisors on X coincides with the cone of movable

divisors and taking the positive intersection product of nef divisors corresponds to taking

the intersection of these divisors (see Remark 1.3). The Newton–Okounkov body of α is

then

∆Y•
(α) = ∆Y•

(a
1

n−1H) . ♦

1.2 Formal properties

Let us fix a movable curve class α with M(α) > 0, we denote its movable Zariski decom-

position by α = 〈Ln−1
α 〉. All Newton–Okounkov bodies are defined with respect to the

fixed flag Y• so that we omit Y• in our notation and write ∆(α).

We now summarize some important properties of Newton–Okounkov bodies of curves.

The volume of the Newton–Okounkov body of a divisor computes the volume of the

divisor. The volume of the Newton–Okounkov body of a curve α turns out to be related

to a volume of α (defined by Lehmann and Xiao) as well, and is given by a geometric

intersection.
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Proposition 1.9. Consider a movable curve α such that M(α) > 0. We have the fol-
lowing equalities

n!vol
(
∆Y•

(α)
)
= M(α) = vol(Lα) = 〈Ln

α〉 .

Proof. We have that

n!vol(∆(α)) = vol(∆(Lα)) = vol(Lα)

by [LM09] Theorem 2.3. Then Theorem 3.12 of [LX19] states that

M(α) = vol(Lα)

and the Fujita’s theorem of Remark 1.3 implies that

vol(Lα) = 〈Ln
α〉 . �

Remark 1.10. By [LM09] Proposition 4.1, for any divisor D on X and any integer p > 0,

one has

∆(pD) = p∆(D) .

We have an analogous result for any curve class α:

∆(pα) = p
1

n−1∆(α) .

Another property is the continuity of Newton–Okounkov bodies of curve classes.

Proposition 1.11. The map f : Big1(X) → {convex bodies in Rd} defined by

f : α 7→ ∆(α)

is continuous with respect to Hausdorff distance dH on the set of convex subsets in Rd.

Proof. It follows from Theorem 3.15 [LX19] that the class Lα depends continuously on α,

therefore it is enough to show that the map g : Big1(X) → {convex bodies in Rd} defined

by

g : D 7→ ∆(D)

is continuous with respect to the Hausdorff distance dH on Rd. This notion of continuity

for Newton–Okounkov bodies follows from the convexity of the global Newton–Okounkov

body (see [LM09] Theorem 4.5).

To any point x in the big cone we may associate an arbitrary point φ(x) contained in

the Newton–Okounkov body ∆(x). We may therefore define a map

φ : NS(X) → Rd .

Now, consider a big divisor x in and a ball B of radius r around x contained in the

big cone. Take a point y in B at distance δ from x and set w = x−
(
y−x
δ

)
r.

v3

v2

v1

w

w′

×

××
yδ×

xr

Eff1(X)

B
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Let q be any point in ∆(y). By convexity of the global Newton–Okounkov body, we have

that

s :=
r

r + δ
q +

δ

r + δ
φ(w) ∈ ∆(x) .

Moreover, if v1, v2 and v3 are big divisor classes forming a triangle containing B, by

convexity of the global Newton–Okounkov body, every Newton–Okounkov body in the

triangle is bounded by M and

d(s, q) ≤ δ

r + δ
|q|+ δ

r + δ
|φ(w)| ≤ 2Mδ

r
−→
δ→0

0

where M = sup {bound(∆(v1)), bound(∆(v2)), bound(∆(v3))}.
On the other hand, take q′ is a point in ∆(x) and set w′ = x+(y−x

δ
)r. Then the point

s′ :=
q′(r − δ)

r
+

φ(w′)δ

r

is contained in ∆Y•
(y) and

d(s′, q′) ≤ δ

r
|q′|+ δ

r
|φ(w′)| ≤ 2Mδ

r
−→
δ→0

0 .

In conclusion we proved that

dH
(
∆(x),∆(y)

)
= max

{

supq∈∆(x)d(q,∆(y)), supq∈∆(y)d(∆(x), q)
}

≤ 2M
δ

r

where M depends only on r so that dH
(
∆(x),∆(y)

)
tends to 0 with δ. �

2 Blaschke sum

Our long term goal is to study curve classes on a projective complex variety X by means

of Newton–Okounkov theory. In particular, we would like to study the links between the

Newton–Okounkov body ∆(α1 + α2) of a sum of curve classes α1, α2 and the Newton–

Okounkov bodies ∆(α1),∆(α2) of α1 and α2.

For divisors, multiplication of sections leads to the inclusion

∆(D1) + ∆(D2) ⊆ ∆(D1 +D2) . (∗incdiv)

We will study the following question: can the operation # (see Definition 2.3) replace the

Minkowski sum + in the inclusion (∗incdiv) to obtain

∆(α1)#∆(α2) ⊆ ∆(α1 + α2) . (∗inc)

The Blaschke sum # constructs from two convex bodies a third one : in the special

case where we consider the Blaschke sum of two polytopes P1 and P2, the output P3 is

a polytope such that every face of P3 has volume equal to the sum of the volumes of the

parallel faces in P1 and P2.

In fact, while Minkowski sum adds the volumes of dimensional 1-faces, Blaschke sum

adds the volume of codimensional 1-faces. So we can see Blaschke sum as a dual operation

to Minkowski sum. (A formal definition can be found in the next subsection 2.1.)

We are motivated to study the Blaschke sum in this context with a view towards
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relating ∆(α1), ∆(α2) and ∆(α1 + α2) by the inequalities

vol(K)
n−1

n + vol(L)
n−1

n ≤ vol(K#L)
n−1

n

and vol (∆(α1))
n−1

n + vol (∆(α2))
n−1

n ≤ vol (∆(α1 + α2))
n−1

n

satisfied by both the Blaschke sum of convex bodies K,L and the summation of curve

classes α1, α2 (see Section 7.A [LX17]).

2.1 Definition of Blaschke sum

The Blaschke sum sum is defined in terms of the area measure of a convex body.

Definition 2.1. The area measure Sn−1(K, ·) of a convex body K is the measure on the
sphere Sn−1 defined by

Sn−1(K,U) = H
n−1
(
g−1(K,U)

)

where g−1(K,U) is the set of points in δK at which there is an outer unit normal vector
in U and H k is the k-dimensional Hausdorff measure in Rn (for k ∈ {1, ..., n}).

K

g−1(K,U)

Sn−1

g(K, ·)
U

Theorem 2.2 (Minkowski’s theorem). Let ϕ be a finite measure on B(Sn−1) such that

∫

Sn−1

udϕ(u) = 0

and ϕ(s) < ϕ(Sn−1) for each great subsphere.
Then there exists a convex body K unique (up to translation) such that

Sn−1(K, ·) = ϕ .

Proof. See [Sch93] Section 7 for example. �

We can now define the Blaschke sum of two convex bodies.

Definition 2.3. Consider two convex bodies K and L. The Blaschke sum of K and L is
the unique 1 convex body M such that

Sn−1(M, ·) = Sn−1(K, ·) + Sn−1(L, ·) .

Remark 2.4. If K = P,L = Q are polytopes then we denote by u1, ..., uN ∈ Sn−1 a family

of pairwise distinct vectors linearly spanning Rn such that the exterior normal vector of

any face of P or Q is an element of {u1, ..., uN}. Moreover we let f1, ..., fN and g1, ..., gN
(we may have fi = 0 or gi = 0) be the positive real numbers defined by

fi = vol(F (P, ui)) and gi = vol(F (Q, ui))

1up to translation
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where F (P, u) is the face of P with exterior normal vector u.

Then there exists a unique polytope R whose exterior normal vectors are contained

in {u1, ..., uN} such that the volume of the face normal to ui is

vol(F (R, ui)) = fi + gi .

In particular the Minkowski theorem implies that the Blaschke sum of two polytopes P

and Q is a polytope.

Example 2.5. The Blaschke sum of a n dimensional cube of side-length d with itself is

[0, d]n#[0, d]n = [0,
n−1
√
2d]n .

Proposition 2.6. If K and L are 2 dimensional-polytopes then their Blaschke sum and
their Minkowski sum coincide, K#L = K + L.

Proof. A point in an edge of the Minkowski sum K+L is a sum of two points respectively

in the edge with same exterior normal vector in K and in L. So the edges of K + L are

of length the sum of the lengths of the edge with same exterior normal vector in K and

in L. This is the property defining uniquely the Blaschke sum K#L. �

2.2 Motivation

In this subsection we discuss our motivation for studying the Blaschke sum. The first one

was highlighted by Lehmann and Xiao in [LX17] Section 7.A.

2.2.1 Volume in equalities

It is proved in [KS32] that if K and L are any convex bodies then we have

vol(K#L)
n−1

n ≥ vol(K)
n−1

n + vol(L)
n−1

n

with equality if and only if K and L are homothetic. This is called the log concavity of

the (Euclidean) volume.

Proposition 2.7. The volume function M on curves is n−1
n

-log concave on movable
curves with M > 0.

Proof. Consider two movable curve classes α1 and α2 with M(α1),M(α2) > 0 then

M(α1 + α2)
n−1

n = inf
A big and movable

divisor class

A · (α1 + α2)

vol(A)
1

n

≥ inf
A big and movable

divisor class

A · α1

vol(A)
1

n

+ inf
A big and movable

divisor class

A · α2

vol(A)
1

n

= M(α1)
n−1

n +M(α2)
n−1

n .

�

2.2.2 Surfaces

Proposition 2.8. The inclusion

∆Y•
(α1)#∆Y•

(α2) ⊆ ∆Y•
(α1 + α2) (∗inc)

holds for any projective surface.
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Proof. If X is a surface, the Newton–Okounkov bodies for curves and divisors coincide

and moreover the Blaschke sum coincides with the Minkowski sum.

Indeed [Lyu63] gives the equality of the Minkowski sum and the Blaschke sum on

polyhedra and Küronya, Lozovanu and Maclean proved that all Newton–Okounkov bodies

in dimension 2 are polyhedral (see Theorem B [KLM12]).

As a consequence, the inclusion ∆Y•
(α1)#∆Y•

(α2) ⊆ ∆Y•
(α1 + α2) can be rewritten

as

∆Y•
(B1) + ∆Y•

(B2) ⊆ ∆Y•
(B1 +B2),

which holds by the following.

If f is a section of OX(lB1) and g is a section of OX(mB2) then fmgl is a section of

OX

(
lm(B1 +B2)

)
, and

vY•
(B1 +B2)(f

mgl) = mvY•
(B1)(f) + lvY•

(B2)(g)

where vY•
(D) are the valuations used in the construction of the Newton–Okounkov bodies

∆Y•
(D). We then have that

ΓY•
(B1) + ΓY•

(B2) ⊆ ΓY•
(B1 +B2) ,

and consequently

∆Y•
(B1) + ∆Y•

(B2) ⊆ ∆Y•
(B1 +B2) . �

2.2.3 Homothetic curve classes

Proposition 2.9. Assume that there exists A = ar−1 ∈ R∗ such that α2 = Aα1. Then

∆(α1)#∆(α2) = ∆(α1 + α2) = (1 +A)
1

n−1∆(α1) .

Proof. If α1 = 〈Ln−1〉 and α2 = 〈(aL)n−1〉 then ∆(α2) = a∆(α1). Moreover, we have

α1 + α2 = 〈
(
(1 +A)

1

n−1L
)n−1〉 and ∆(α1 + α2) = (1 +A)

1

n−1∆(α1).

If u is a normal vector of a face of ∆(α1) then the volume of the face of ∆(α1 +α2) with

normal vector u is exactly the sum of the volume of the faces of ∆(α1) and ∆(α2) with

normal vector u

vol
(
∆(α1 + α2), u

)
= (1 +A)× vol

(
∆(α1), u

)
= vol

(
∆(α1), u

)
+ vol

(
∆(α2), u

)
. �

Corollary 2.10. Let X be any projective variety with N1(X)R generated by only one
element. The inclusion (∗inc) holds automatically for every movable curve on X positive
with respect to M (and is moreover an equality).

2.2.4 Toric varieties

Toric varieties are known to offer computable examples. Consider a normal projective

toric variety X with torus T and its associated fan Σ (see [CLS11] for more information

about toric varieties). We consider a compatible flag

Y• : X ⊇ D1 ⊇ D1 ∩D2 ⊇ ... ⊇ D1 ∩ ... ∩Dd = {pt}

where D1, ..., Dd are prime T - invariant divisors.
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In [LM09] Proposition 6.1, Lazarsfeld and Mustaţă show that the Newton–Okounkov

body of any big T -invariant divisor with respect to the flag Y• can be written as

∆Y•
(L) = ΦY•,R(∆(L))

where ∆(L) is the Newton polytope of L and ΦY•,R is the linear map obtained by ten-

sorizing by R the dual isomorphism ΦY•
: M → Zd; u 7→ (〈u, ui〉)1≤i≤d.

The same way, we define ∆(α) to be the Newton polytope of Lα and we have

∆Y•
(α) = ΦY•,R(∆(α)) .

Proposition 2.11. A movable curve class α on X satisfies M(α) > 0 if and only if α is
positive along a spanning set of rays of Σ.

Proof. See [LX19] Lemma 4.1 and Theorem 4.2. �

Proposition 2.12. If α1, α2 are movable curve classes on the toric variety X such that
M(αi) > 0 for i = 1, 2 then we have

∆Y•
(α1)#∆Y•

(α2) = ∆Y•
(α1 + α2) .

Proof. As ΦY•
: M → Zd is an isomorphism, it is enough to prove that

∆(α1)#∆(α2) = ∆(α1 + α2) .

This follows directly from Theorem 4.2 of Lehmann and Xiao [LX19]. Take X to be a

projective toric variety with invariant divisors D1, ..., Ds corresponding to rays ρ1, ...ρs
in the fan Σ generated by the vectors u1, ..., us. To a curve α, we may associate by

Minkowski’s theorem a polytope Pα such that the volume of the face Fi is

fi =
(α ·Di)||ui||
(n− 1)!

, (1)

where Fi the face of Pα with exterior normal vertor ui. Lehmann and Xiao ([LX19]

Theorem 4.2) prove that if α is movable and M(α) > 0 then

Pα = ∆(Lα)

which is by definition ∆(α). Now consider two movable curve classes α1, α2 with

M(α1),M(α2) > 0 .

Let α3 be their sum and let f1
i , f

2
i , f

3
i be the volume of the faces of ∆(α1),∆(α2),∆(α3)

orthogonal to ui respectively. By (1) we have that

f3
i = f1

i + f2
i ∀i ∈ {1, 2, 3} ,

so that ∆(α3) is exactly ∆(α1)#∆(α2). �
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3 Potential reduction of (∗inc) to complete intersection

curve classes

To prove (∗inc) in general it may be enough to prove it only for curve classes of the form

α = An−1 ,

for A an ample divisor class. We prove that such a reduction is possible assuming the

continuity of the Blaschke sum, that is to say the continuity of the maps

fQ : {convex bodies in Rd} → {convex bodies in Rd} ,

P 7→ P#Q

for every convex body Q in Rd where the topology is the Hausdorff distance on Rd.

This reduction requires us to consider Newton–Okounkov bodies constructed with

respect to a general maximal rank valuation and not only valuations coming from a flag

(see Definition 3.4 of [73120]). Let us first state our result.

Proposition 3.1. Assume the continuity of the Blaschke sum. If for any projective
complex variety X, any maximal rank valuation on C(X) and any curves of the form

α1 = Bn−1
1 , α2 = Bn−1

2

on X with B1, B2 ample, the inclusion

∆v(α1)#∆v(α2) ⊆ ∆v(α1 + α2) (∗inc)

holds, then the inclusion (∗inc) holds for any projective complex variety X, for any max-
imal rank valuation and for any movable curve classes.

Remark 3.2. Boucksom constructed from any admissible flag satisfying

Yi|Yi−1
is Cartier in Yi−1

a valuation vY•
: C(X) → Zd called the flag valuation (see Example 2.17 of [73120]).

In particular, it follows from Proposition 3.1 that

∆Y•
(α1)#∆Y•

(α2) ⊆ ∆Y•
(α1 + α2) (∗inc)

holds for any projective complex variety X , for any flag as above and for any movable

curve classes.

Remark 3.3. To prove Proposition 3.1, we consider general movable curves and divisors

(αi, Li)i∈{1,2,3} such that

αi = 〈Li〉n−1 and α3 = α1 + α2 .

In Definition 3.4 of [73120], Boucksom generalized the notion of Newton–Okounkov bodies

associated to a flag, to Newton–Okounkov bodies associated to any valuation on C(X).

These Newton–Okounkov bodies are defined up to translation.

More precisely, fixing a line bundle L, a choice of section of L provides an inclusion

H0(X,L) ⊂ C(X) and thus a Newton–Okounkov body. A different choice of section
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leads to a translated Newton–Okounkov body. As C(X) is a birational invariant, these

Newton–Okounkov bodies, defined up to translation are fixed under birational maps.

Consequently, we need to find some sufficiently good common Fujita approximations of

L1, L2, L3 such that the curves αi are also approximated. This is the aim of the following

lemma which is the argument of [FL17] Theorem 6.22 and which we resume and adapt

to the case of several divisors here for the convenience of the reader.

Lemma 3.4. Consider movable Cartier divisors L1, L2, L3 on a complex projective vari-
ety X. Fix an ample divisor H on X.

Then, for any m ∈ N>0, there exists a birational map πm : Xπm
→ X and ample

divisor classes A1,m, A2,m and A3,m such that the following properties hold.

P1: π∗
mLi −Ai,m is pseudo-effective for all i ∈ {1, 2, 3} ;

P2: vol(Ai,m) > vol(Li)− 1
m

for all i ∈ {1, 2, 3} ;

P3: For any ε > 0, for m large enough and for all i ∈ {1, 2, 3}, we have

π∗
m(〈Ln−1

i 〉 − εHn−1) ≤ An−1
i,m ≤ π∗

m((〈Ln−1
i 〉) .

Proof. Applying Proposition 3.7 of [Leh13] to each Li, there exist effective divisors Gi so

that for any sufficiently large m there is a smooth birational model

φi,m : Xφi,m
→ X

and a big and nef divisor Ni,m on Xφi,m
such that

Pσ(φ
∗
i,mLi)−

1

m
φ∗
i,mGi ≤ Ni,m ≤ Pσ(φ

∗
i,mLi) , (A)

where Pσ(.) denotes the positive part of the σ-decomposition of divisors (see [Nak04]).

Because Gi does not depend on m in (A), we can further require that Gi is effective and

ample. Equation (A) implies that (φi,m, Ni,m) satisfies Property P2 and P1 respectively.

Consider πm : Xπm
→ X the projection map of a common resolution of φ1,m, φ2,m

and φ3,m. Denote by Ai,m a small perturbation of the pull back of Ni,m to Xπm
which is

ample and still satisfies Properties P1 and P2.

We now prove that it will also satisfy Property P3. Fix ε > 0. Take m large enough

such that Li − 1
m
Gi are pseudo-effective. By Lemma 6.21 of [FL17], the positive product

satisfies

π∗〈Ln−1〉 = 〈π∗Ln−1〉 ,

for any birational morphism π and big divisor L. Moreover by Proposition 4.13 of [Leh13],

the positive product is invariant under replacing a divisor by its positive part

〈Ln−1〉 = 〈PσL
n−1〉 .

We thus have that

φ∗
i,m

〈(

Li −
1

m
Gi

)n−1
〉

=

〈

Pσ

(

φ∗
i,m

(

Li −
1

m
Gi

))n−1
〉

,

and since φ∗
i,mGi is big and nef, we have Pσ(φ

∗
i,mLi) − 1

m
φ∗
i,mGi ≥ Pσ(φ

∗
i,m(L − 1

m
Gi))
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and consequently

φ∗
i,m

〈(

Li −
1

m
Gi

)n−1
〉

≤
〈(

Pσ(φ
∗
i,mLi)−

1

m
φ∗
i,mGi

)n−1
〉

≤ Nn−1
i,m .

Similarly, we obtain Nn−1
i,m ≤ 〈Pσ(φ

∗
i,mLi)

n−1〉 = φ∗
i,m〈Ln−1

i 〉.
Choosing m sufficiently large, we may ensure that εH − (Ln−1

i − 〈(L − 1
m
G)n−1〉) is

movable by continuity of the positive product. Its pull back by φi,m is again movable and

we have that

φn−1
i,m (αi − εH) ≤ Nn−1

i,m ≤ φ∗
i,mαi . (B)

To prove that (B) remains true on any higher birational model π, it is enough to verify

that (A) still holds under the pull back by π: the left hand side follows from

π∗Pσ(Li) ≥ Pσ(π
∗L) ,

and the right hand side comes from Proposition III.1.14 of [Nak04].

By continuity of the positive product, (B) stays valid under small perturbation. We

have thus proved that (πm, A1,m, A2,m, A3,m) satisfy P3.

Proof of Proposition (3.1). We start with movable curve classes α1, α2 and α3 = α1 +α2

which are non negative with respect to M and which induce by Theorem 1.2 three big

and movable divisor classes L1, L2 and L3 satisfying

αi = 〈Ln−1
i 〉 .

Fix an ample divisor H on X for which we apply Lemma 3.4.

By Property P1, considering the canonical section s of π∗
mLi − Ai,m, each section of

OXπm
(kAi,m) multiplied by s gives rise to a section of OXπm

(kπ∗
mLi) and we then have

that

∆v(π
∗
mLi) ⊇ ∆v(Ai,m) for i = 1, 2, 3 .

By Boucksom’s construction (see Remark 3.3), translation classes of Newton-Okounkov

bodies are birational invariants. Thus the Newton–Okounkov bodies of π∗
mLi coincide for

all m, up to translation.

Taking into account Property P2, Proposition 1.11 which indicates the continuity

of Newton–Okounkov bodies, we obtain that ∆v(Ai,m) converge to the convex body

∆v(π
∗
mLi) = ∆v(αi).

Using Property P3, it follows that An−1
1,m + An−1

2,m and An−1
3,m both converge to α3 when m

tends to ∞.

Finally we supposed that the inclusion ∆v(A
n−1
1,m + An−1

2,m ) ⊇ ∆v(A1,m)#∆v(A2,m)

holds, this induces the inclusion for the movable classes α1, α2, α3

∆v(α3) = lim
m→∞

∆v(A
n−1
1,m +An−1

2,m ) ⊇ lim
m→∞

(∆v(A1,m)#∆v(A2,m)) = ∆v(α1)#∆v(α2) .

�
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4 Newton–Okounkov bodies for curve classes on pro-

jective bundles over curves

In this section, we plan to give a complete description of Newton–Okounkov bodies of

curve classes on a projective bundle over a curve. First we will recall some generalities

on projective bundles over curves and the cones of divisor and curve classes.

In [Mon19] Montero calculates the precise form of Newton–Okounkov bodies of divisors

on projective vector bundles over curves. We summarise the relevant facts and explain

how to see the positivity of a divisor by means of its Newton–Okounkov body.

4.1 Generalities on projective bundles over curves

Definition 4.1 (See [Har77] Page 160). Given a vector bundle E on a curve C, the
projectivisation of E is X = Proj(Sym•E) where the symmetric algebra Sym•E is the
graded OC-algebra given by

Sym•E(U) =
⊕

m∈N

H0(U,E⊗m) .

The power of this definition is in the following proposition.

Proposition 4.2. Denote the natural bundle map by π : X → C. The variety X carries
a natural line bundle OX(1) of quotients by hyperplanes in F = π−1(p) ⊆ X, satisfying

π∗(OX(k)) = SymkE for all k ∈ N .

Let us recall the intersection ring of a projective bundle over a curve.

Proposition 4.3. Set χ = OX(1) and let f = π−1(q) be the fiber of a point. Every
divisor on X can be written in the form D = a(χ − tf) for some real a and t. More
precisely, the intersection ring of X

A(X) =
r⊕

i=0

Ai(X)

is a graded R-algebra with multiplication induced by the intersection form and generated
in degree 1 by χ and f with relations

f2 = 0, χr = d · [pt] and χr−1 · f = [pt] ,

where [pt] denotes the class of a point and d is the degree of first Chern class c1(E).

Remark 4.4. If X is a projectivized splitting vector bundle

P(OP1
(a1)⊕ ...⊕ OP1

(ar))

over P1 then X is a toric variety and we can recover its intersection ring using toric theory

(see Example 7.3.5 and Theorem 12.5.3 of [CLS11]).

A way to make the study of vector bundles easier is to only look at semistable vector

bundles. This requires the definition of slope.

Definition 4.5. Consider a curve C, a vector bundle (E, π) on C of rank r and degree
d = deg(c1(E)) and consider X = Proj(Sym•E) its projectivisation.

We denote by µ(E) the slope µ(E) = d/r of E (See [Har77] Page 52).
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Definition 4.6. A semistable vector bundle is a vector bundle E such that for every
subbundle Y ⊆ E we have

µ(Y ) ≤ µ(E) .

The Harder–Narasimhan filtration enables us to decompose E into semistable vector

bundles.

Definition 4.7. The Harder–Narasimhan filtration of E is the unique increasing filtration
of E by sub-bundles

HN•(E) : 0 = El ⊆ El−1 ⊆ ... ⊆ E1 ⊆ E0 = E

such that each of the quotients Ei−1/Ei satisfies the following conditions:

1. Each quotient Ei−1/Ei is a semistable vector bundle ;

2. µ(Ei−1/Ei) < µ(Ei/Ei+1) for all i ∈ {1, ..., l− 1} .

Notation 4.8. We will denote by µi the slope and ri the rank of the quotient Ei−1/Ei.

We define numbers σ1 ≥ σ2 ≥ ... ≥ σr by

(σ1, ..., σr) = (µl, ..., µl
︸ ︷︷ ︸

rl times

, µl−1, ..., µl−1
︸ ︷︷ ︸

rl−1 times

, ..., µ1, ..., µ1
︸ ︷︷ ︸

r1 times

) .

4.2 Cones of divisor and curve classes on projective bundles over

curves

A precise description of the cones of cycle classes was given by Fulger in [Ful11] and

Fulger–Lehmann in [FL17]. We will concentrate on the cones of divisor and curve classes

Nefk(X) ⊂ Movk(X) ⊂ Effk(X)

with k ∈ {1, n− 1}.
The description of the nef cones is due to Fulger ([Ful11] Lemma 2.1). The pseudo-

effective cone of divisors was computed by Nakayama ([Nak04] Corollary IV.3.8.). Fulger

generalised it in [Ful11] Theorem 1.1 computing the pseudo-effective cone for any codi-

mension. In [FL17] Proposition 7.1, Fulger and Lehmann gave a similar description of

the movable cone of cycle classes of X .

Proposition 4.9. The effective, movable and nef cones of divisor and curve classes on
a projective bundle P(E) over a curve C as above are given by







Eff1(X) = 〈f , χ− σ1f〉 ,
Mov1(X) = 〈f , χ− σ2f〉 ,
Nef1(X) = 〈f , χ− σrf〉 ,
Eff1(X) = 〈χr−2 · f , χr−1 − (d− σr)χ

r−2 · f〉 ,
Mov1(X) = 〈χr−2 · f , χr−1 − (d− σ1)χ

r−2 · f〉 ,
Nef1(X) = 〈χr−2 · f , χr−1 − (r − 1)σrχ

r−2 · f〉 .

These data are summarized in the coming pictures. Let us first introduce a last cone

of positivity: C(X).

Definition 4.10. We define C(X) to be the cone generated by complete intersections of
a unique nef divisor

C(X) = Cone(〈Br−1 |B big and nef〉) .



17

In the case of projective bundles over curves, this cone can be described explicitly.

Proposition 4.11. The cone C(X) is the set of curves of the form

χr−1 − sχr−2 · f

with s < (r − 1)σr. Moreover C(X) coincides with the complete intersection cone.

C(X) = 〈χr−1 − (r − 1)σrχ
r−2 · f, χr−2 · f〉

= Cone(〈B1 · ... · Br−1 |Bi big and nef for all i〉)

Eff1(X)

Mov1(X)

Nef1(X)f

χ− σrf

χ− σ2f

χ− σ1f

NS1(X) :

Eff1(X)

Mov1(X) = Nef1(X)

C(X)χr−2 · f
χr−1 − (r − 1)σrχ

r−2 · f

χr−1 − (d− σ1)χ
r−2 · f

χr−1 − (d− σr)χ
r−2 · f

NS1(X) :

Proof. Any nef divisor B has the form B = a(χ− tf) where t ≤ σr. It follows that

Br−1 = ar−1
(
χr−1 − (r − 1)tχr−2 · f

)

and (r − 1)t ≤ (r − 1)σr. Conversely if s < (r − 1)σr then we can write

χr−1 − sχr−2 · f = Br−1 ,

where B = χ− s
r−1f is a big and nef divisor.

For the second part of the proposition, each Bi can be written in the form

Bi = ai(χ− tif)

with ti < σr and we have that

B1 · ... · Br−1 =
r−1∏

i=1

ai

(

χr−1 −
r−1∑

i=1

tiχ
r−2 · f

)

where
∑r−1

i=1 ti < (r − 1)σr. �

Remark 4.12. By [BDPP13] Theorem 0.2, the movable and the nef cone of curve classes

coincide

Mov1(X) = Nef1(X) .

Remark 4.13. Recalling that the intersection ring of X is

A(X) = Z[χ, f ]/(f2, χr+1, χr − dχr−1 · f) ,

the form of the cones of curve classes follows from the form of the cones of divisor classes.

Indeed by [BDPP13] Theorem 0.2, the dual cone to the pseudo-effective cone of divisors
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Eff1(X) = 〈f, χ− σ1f〉 is the movable cone of curves and

{
f · (χr−1 − tχr−2 · f) = χr−1 · f

(χ− σ1f) · (χr−1 − tχr−2 · f) = (d− t+ σ1)χ
r−2 · f .

In the same way we may deduce from the duality between the effective cone of curves and

the cone of nef divisors the form of the latter.

4.3 Newton–Okounkov bodies of divisor classes

In [Mon19], Montero give the form of the Newton–Okounkov body of any divisor associ-

ated to a linear flag on a projective bundle over a curve. We recall everything here.

Definition 4.14. A complete flag of subvarieties Y• on the projective vector bundle P(E)

is called a linear flag if for some point q ∈ C and p ∈ P(E)

Y0 = P(E) , Y1 = π−1(q) ≃ Pr−1 ,

Yi ≃ Pr−i is a linear subspace of Yi−1 ∀i ∈ {1, ..., r} and Yr = {p} .

We need the notion of complete linear flag Y HN
• compatible with the filtrations of

Harder–Narasimhan. Consider the Harder–Narasimhan filtration of E

HN•(E) : 0 = El ⊆ El−1 ⊆ ... ⊆ E1 ⊆ E0 = E .

There is a (possibly partial) flag of linear subvarieties

P((E/E1)|q) ⊆ P((E/E2)|q) ⊆ ... ⊆ P((E/El−1)|q) ⊆ P(E|q) = π−1(q) ⊆ P(E) .

We will consider linear flags that are compatible with the Harder–Narasimhan filtration

of E in the sense that they complete the previous flag.

Definition 4.15. A linear flag Y• on P(E) over q ∈ C is said to be compatible with the
Harder–Narasimhan filtration of E if

YrkEi+1 = P((E/Ei)|q) ≃ Pr−rkEi−1 ⊆ P(E) for every i ∈ {1, ..., l} .

We may decompose the full flag variety parameterising all complete linear flags into

Schubert cells. The form of a Newton–Okounkov body associated to a complete linear

flag will depend on the Schubert cell of the flag.

Definition 4.16. If we denote by Fr the full flag variety parameterising all complete

linear flags on π−1(q)
f≃ Pr−1, then there is a decomposition of Fr into Schubert cells

Fr =
⊔

ω∈Sr

Ωω

defined as follows.
Consider homogeneous coordinates [x1 : ..., : xr] on Pr−1 and let Y ω

• be the complete
linear flag defined by

Y ω
i = f∗{x1 = ... = xi = 0} ⊂ Y1 = π−1(q) .

There is an action of PGLr(C) on Fr via the natural action on the standard basis points
e1, ..., er ∈ Pr−1. The Schubert cell Ωω is defined to be the orbit

Ωω = B · Y ω
• ,
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where B is the subgroup of PGLr(C) that fixes a reference flag Y HN
• .

We say that a complete linear flag Y• on P(E) over q ∈ C belongs to a Schubert cell
Ωω if the induced complete linear flag Y•|Y1

belongs to Ωω.

To be able to define the decomposition into Schubert cells we needed a reference

flag Y HN
• . The following theorem of Montero tells us that as long as the reference flag

is compatible with the Harder–Narasimhan filtration, Newton–Okounkov bodies do not

depend on the choice of reference flag.

Theorem 4.17. Let X be the projectivisation of a vector bundle E on a curve C and Y•

be any linear flag. Consider also a reference flag compatible with the Harder–Narasimhan
filtration of E and the decomposition of the full flag variety on Y1 into Schubert cells

Fr =
⊔

ω∈Sr

Ωω .

Then the Newton–Okounkov body of X,D = χ− tf, Y• is of the form

∆Y•
(D) =

{

(ν1, ..., νr) ∈ [0,+∞[×∆r−1

∣
∣
∣ ν1 +

r∑

i=2

νi(σω(r) − σω(i−1)) ≤ σω(r) − t
}

,

where ∆r−1 is the unitary simplex of dimension r − 1 and for some permutation ω cor-
responding to the Schubert cell of the flag Y•.

Proof. See Theorem 5.8 and Corollary 5.9 [Mon19]. �

Remark 4.18. The hyperplane

H : ν1 +

r∑

i=2

νi(σω(r) − σω(i−1)) = σω(r) − t

splits Rr into two half spaces and the Newton–Okounkov body P is [0,+∞[×∆r−1 inter-

sected with one of them.

Moreover, in Proposition B of [Mon19], Montero notes that the vector bundle E is

semistable if and only if the σi’s are equal and H is ’straight’ and has equation ν1 =

σω(r) − t. In particular, the Newton–Okounkov body associated to any effective divisor

D = χ− tf is

∆Y•
(D) = [0, σω(r) − t]×∆r−1 .

Example 4.19. Here are representations of all Newton–Okounkov bodies for E of low rank.

rk(E) = 2 :

ν1

ν2

σ2 − t σ1 − t

ω = (1 2)

ν1

ν2

σ2 − t σ1 − t

ω = id

rk(E) = 3 :

ν1

ν2

ν3

ν1 = σ1 − t
ν1 = σ2 − t

ν1 = σ3 − t

ω = (1 2)

ν1

ν2

ν3

ν1 = σ1 − t
ν1 = σ2 − t

ν1 = σ3 − t

ω = (2 3)

ν1

ν2

ν3

ν1 = σ1 − t
ν1 = σ2 − t

ν1 = σ3 − t

ω = id
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ν1

ν2

ν3

ν1 = σ1 − t
ν1 = σ2 − t

ν1 = σ3 − t

ω = (1 3 2)

ν1

ν2

ν3

ν1 = σ1 − t
ν1 = σ2 − t

ν1 = σ3 − t

ω = (1 2 3)

ν1

ν2

ν3

ν1 = σ1 − t
ν1 = σ2 − t

ν1 = σ3 − t

ω = (1 3)

From now on we will assume that our flag is in the Schubert cell corresponding to the

permutation ω = (1 2 ... r).

Remark 4.20. Since ∆(aD) = a∆(D), the above enables us to calculate the form of any

Newton–Okounkov body.

It will be useful to think of Newton–Okounkov bodies as a succession of slices.

Definition 4.21. The ith slice of the Newton–Okounkov body ∆(D) = ∆
(
a(χ − tf)

)
is

the intersection
Si∆(D) =

(
Rn−1

+ × a[σi+1 − t, σi − t]
)
∩∆(D) .

The final slice will be denoted fs(∆(D)).

Example 4.22. Here are two examples in dimension 4.

ν1

ν2

ν3

ν4

ν1 = 0

ν1 = σ4 − t

ν1 = σ3 − t

ν1 = σ2 − t

ν1 = σ1 − t

final slice

third slice

second slice

first slice

ν1 = σ2 − t

ν1 = σ1 − t

ν1 = σ3 − t
= 0

ν1

ν2

ν3

ν4

second slice

first slice

g

As D is not nef,
we have fs(∆(D))=∅

D = χ− tf with σ4 > t D = χ− tf with t = σ3

Remark 4.23. The intersection of ∆(D) with the hyperplane ν1 = σj−t is the intersection

of two simplexes
{

(ν2, ..., νr) ∈ ∆r−1

∣
∣
∣

r∑

i=2

νi
σ1 − σi

σ1 − σj

≤ 1
}

.

Remark 4.24. We can translate the characterisations of the positivity (Proposition 4.9)

of a divisor in terms of its Newton–Okounkov body.

• A divisor is nef if all the slices of its Newton–Okounkov body are non-empty.

• A divisor is effective if its Newton–Okounkov body possesses a slice (i.e. is non-

empty).

• A divisor is movable if its Newton–Okounkov body contains at least the entire first

slice. In particular, if σ1 = σ2 and D = χ − tf is an effective divisor then we

have σ1 = σ2 ≥ t, the first slice is then both empty and full and consequently D is

movable.



21

ν1

ν2

ν3

ν1 = σ1 − t

ν1 = σ2 − t

ν1 = σ3 − t

∆(D)

︸ ︷︷ ︸

D is nef

ν1

ν2

ν3

ν1 = σ1 − t

ν1 = σ2 − t
∆(D)

︸ ︷︷ ︸

D is movable

ν1 ν2

ν3

∆(D)

︸ ︷︷ ︸

D is big

4.4 Newton–Okounkov bodies of movable curve classes

In this subsection we describe Newton–Okounkov bodies of movable M-positive curve

classes. By Theorem 1.2 every movable curve class α = χr−1 − sχr−2 · f with M(α) > 0

can be uniquely written in the form

α = 〈Lr−1〉, where L is movable .

Proposition 4.25. The movable Zariski decomposition of a movable curve class α =

χr−1 − sχr−2 · f is
α = 〈(χ− tf)r−1〉 .

where for some t ≤ σ2. Moreover, if α belongs to C(X) then t = s
r−1 .

The Newton–Okounkov body of α is then

∆(α) = ∆(L) = ∆ (χ− tf) .

5 The inclusion ∆(α1)#∆(α2) ⊆ ∆(α1+α2) on projective

bundles over curves

Consider a projective bundle X over a curve. In this section we would like to find

conditions on curve classes α1, α2 under which the inclusion

∆(α1)#∆(α2) ⊆ ∆(α1 + α2)

holds using the movable Zariski decomposition.

We start by computing the Blaschke sum of the Okounkov bodies of two nef divisors.

5.1 Blaschke sum of Newton–Okounkov bodies of nef divisors

Proposition 5.1. Consider some Newton–Okounkov bodies P = ∆Y•

(
χ− t1f

)
and Q =

∆Y•

(
a(χ− t2f)

)
associated to big and nef divisors (i.e. with σr ≥ t1, t2).

The Blaschke sum R of P and Q is then given by

R = P#Q = ∆Y•

(
b(χ− t3f)

)
,

where t3 =
(

t1+ar−1t2
1+ar−1

)

and b = (1 + ar−1)
1

r−1 .

Before starting the proof we define the common component and the final slice of a

Newton–Okounkov body associated to a big and nef divisor.
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Notation 5.2. The volume of the face of P with exterior normal vector u will be denoted

by vol(P, u). We denote by

v =











−1

σ1 − σ2

σ1 − σ3

...

σ1 − σr











the normal vector of the hyperplane

H : ν1 +
r∑

i=2

νi(σω(r) − σω(i−1)) = σω(r) − t

(see Remark 4.18).

We denote by Pi the ith slice of P .

Definition 5.3. Let P = ∆Y•

(
a(χ− tf)

)
be the Newton–Okounkov body associated to a

big and nef divisor. We define the common component and the final slice of P as

cc(P ) = P ∩ ([σ1 − t, σr − t]× Rr−1) and fs(P ) = P ∩ ([σr − t, 0]× Rr−1) .

With these definitions in mind, we may write P as

P = glueingF (cc(P ),−ν1),F (fs(P ),ν1)

(
cc(P ); fs(P )

)
.

In other words, the polytope P is the union of cc(P ) and τ(fs(P )) where τ is the unique
translation identifying F (cc(P ),−ν1) and F (fs(P ), ν1).

ν1

ν2

ν3

ν4

ν1 = 0

ν1 = σ4 − t

ν1 = σ3 − t

ν1 = σ2 − t

ν1 = σ1 − t

final slice of P

common component of P

P

Remark 5.4. Two nef divisors have the same common component up to homothety.

Proof of Proposition (5.1). We claim that it is possible to decompose P#Q into the

following gluing

P#Q = glueing
(
cc(P )#cc(Q); fs(P )#fs(Q)

)
.

The main task is to prove that it is well-defined. As

P = ∆(χ− t1f) and Q = ∆
(
a(χ− t2f)

)

are nef, their common components are multiple of each other cc(Q) = a× cc(P ).

Furthermore, by Proposition 2.9

cc(P )#cc(Q) = b× cc(P ) with b = (1 + ar−1)
1

r−1 .
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The final slices are given by

fs(P ) = [0, σr − t1]×∆r−1 , fs(Q) = a×
(
[0, σr − t2]×∆r−1

)

where ∆r−1 is the r − 1-dimensional simplex of vertices

(0, 0, ..., 0) , (1, 0, ..., 0) , (0, 1, 0, ..., 0) , . . . , (0, ..., 0, 1) .

By Minkowski’s theorem the Blaschke product fs(P )#fs(Q) is the unique polytope R

whose faces have volume

vol
(

F
(
R, u

))

= vol
(

F
(
fs(P ), u

))

+ vol
(

F
(
fs(Q), u

))

=







1

(r − 2)!
+

ar−1

(r − 2)!
if u = ±ν1 .

σr − t1
(r − 2)!

+
ar−1(σr − t2)

(r − 2)!
if u = −νi for i ∈ {2, ..., r} .

Note that vol
(

F
(
R, u

))

= vol
(

F
(
fs(P ), u

))

+ vol
(

F
(
fs(Q), u

))

for u =
∑r

i=2 νi fol-

lows from the previous equations: any polytope S satisfies
∑

u∈S1 F (S, u)u = 0.

Consequently the Blaschke product fs(P )#fs(Q) is given by

fs(P )#fs(Q) = b
(

[0, σr − t3]×∆r−1

)

with t3 =
t1 + ar−1t2
1 + ar−1

and b = (1 + ar−1)
1

r−1 .

The faces F (cc(P )#cc(Q),−ν1) and F (fs(P )#fs(Q), ν1) coincide so that the polytopes

cc(P )#cc(Q) and fs(P )#fs(Q) can be glued and

G := glueing
(
cc(P )#cc(Q); fs(P )#fs(Q)

)

is well defined. It is also convex.

It remains to prove that G = P#Q. If S is any polytope we denote by Sj the jth slice

of S. Let F be a face of G and let u be the exterior normal vector of F . Then u is either

equal to

1. ν1 and in that case

vol(G, u) = vol(G1, u) = vol(P1, u) + vol(Q1, u) = vol(P, u) + vol(Q, u) ;

2. −ν1 and in that case

vol(G, u) = vol(Gr , u) = vol(Pr, u) + vol(Qr, u) = vol(P, u) + vol(Q, u) ;

3. v, −ν2, ..., −νr or
∑r

j=2 νj and in that case

vol(G, u) =

r∑

j=1

vol(Gj , u) =

r∑

j=1

vol(Pj , u) +

r∑

j=1

vol(Qj , u) = vol(P, u) + vol(Q, u) .

It follows that G = P#Q. Now since we have that

cc(P )#cc(Q) = b× cc(P ) and fs(P )#fs(Q) = b
(

[0, σr − t3]×∆r−1

)

,

the gluing G is also equal to ∆
(
b(χ− t3f)

)
. This completes the proof. �
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5.2 Proof of the inclusion (∗inc) in the case α1, α2 ∈ C(X)

Every curve class α = c1χ
r−1 + c2χ

r−2 · f can be written in the form

α = Ar−1 where A = c
1

r−1

1

(

χ− c2
(r − 1)c1

f

)

.

Let A1 = χ − t1f and A2 = a(χ − t2f) be two ample divisors and let α1 = An−1
1 and

α2 = An−1
2 be their associated curve classes.

The ample divisor A3 satisfying α3 = An−1
3 where α3 = α1 + α2 is equal to

A3 = (1 + ar−1)
1

r−1 (χ− t3f) where t3 =
t1 + ar−1t2
1 + ar−1

.

We can now prove Theorem 5.5.

Theorem 5.5. Let X be a projective bundle over a curve. Consider two curves α1, α2

in C(X) ie of the form αi = An−1
i with Ai ample divisor on X.

Then the inclusion (∗inc) holds and is an equality

∆(α1)#∆(α2) = ∆(α1 + α2) .

Proof. We may write α1 = a1(χ − t1f) and α2 = a2(χ − t2f). Set a = a2

a1

and apply

Proposition 5.1 to P = ∆( 1
a1

α1) = ∆(χ − t1f) and Q = ∆( 1
a1

α2) = ∆
(
a(χ − t2f)

)
. We

obtain

P#Q = ∆Y•

(
b(χ− t3f)

)
,

where t3 = t1+ar−1t2
1+ar−1 and b = (1+ar−1)

1

r−1 . As α1+α2 = a1(
1
a1

α1+
1
a1

α2) = ba1(χ−t3f)

we have

∆(α1)#∆(α2) = ∆(α1 + α2) . �
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