NOTIZEN

Zum Madelunganteil der Gitterenergie bei verschiedenen Lithiumhexaoxometallaten

JÜRGEN HAUCK

Institut für anorganische Chemie der Universität Frankfurt am Main

(Z. Naturforsch. 25 b, 749-752 [1970]; eingegangen am 1. April 1970)

Nachdem in vorhergehenden Untersuchungen der Lithiumhexaoxometallate die röntgenographisch bestimmten Bindungsabstände¹, die aus IR-Spektren berech-neten Kraftkonstanten² sowie die charge transfer-Übergänge der Elektronenspektren³ auf einen starken kovalenten Bindungsanteil der XO-Bindung hinweisen, scheint ein vereinfachtes Modell der Hexaoxometallate für die weitere Betrachtung gerechtfertigt, wonach die einzelnen Kristallstrukturen aus weitgehend kovalent gebundenen, oktaedrischen XO6-Gruppen und Lithiumatomen aufgebaut sind. Mit dieser Annahme schien es interessant, den Madelunganteil der Gitterenergie (MAGE) sowie partielle Madelungfaktoren (PMF)⁴ zu berechnen, um bei einzelnen Lithiumhexaoxometallaten folgende Fragen zu klären:

- 1. Welche Anordnung von XO6-Oktaedern ist günstig?
- 2. Welche Aussagen ergeben sich über die Lage der röntgenographisch schwer lokalisierbaren Lithiumatome?

Bei der Berechnung der MAGE-Werte wurde davon ausgegangen, daß die Ladungsverteilung in den kovalent gebundenen XO6-Gruppen unbekannt ist. Um vergleichbare Werte zu erhalten, wurde daher als Madelunganteil der Gitterenergie der Wert berechnet, der sich beim Aufbau der Struktur entsprechend folgender Gleichung ergibt (vgl. l. c. 5):

$$(12-z)\operatorname{Li}_{g}^{+} + \operatorname{X}_{g}^{+z} + 6\operatorname{O}_{g}^{2-} \rightarrow \operatorname{Li}_{12-z}(\operatorname{XO}_{6})_{\text{fest}}$$
.

Für die MAGE-Werte folgt dann mit der bei l. c. 4, 6 angegebenen Definition von PMF:

$$MAGE = \frac{331,81}{R_{XO}} \left[(12 - z) PMF(Li^{\odot}) + PMF(X^{+z}) + 6 PMF(O^{2}^{\odot}) \right]$$

bzw. unter Einbeziehung des für jede Verbindung konstanten Faktors:

MAGE =

$$(12-z) \operatorname{PMF}(\operatorname{Li}^{\odot})' + \operatorname{PMF}(X^{+z})' + 6 \operatorname{PMF}(O^{2}^{\odot})'.$$

Zunächst sollte untersucht werden, inwieweit sich auf Grund der MAGE-Werte die Anordnung der XO6-Oktaeder im Li₅ReO₆ und Li₈SnO₆ unterscheiden. Um vergleichbare Werte zu erhalten, wurde neben der röntgenographisch bestimmten Struktur des Li₅ReO₆ ein Li5ReO6-Modell berechnet, in dem die gleichen ReO-Abstände vorliegen und die Lithiumatome ebenfalls wie im Li₅ReO6 Oktaederlücken besetzen, wo jedoch die XO6-Oktaeder wie im Li8SnO6 angeordnet sind. Die in Tab. 1 angegebenen Werte zeigen, daß die Sauerstoffpackungen jeweils etwa denselben PMF'-Wert beitragen, wie es bei einem Vergleich von kubisch-dichtesten und hexagonal-dichtesten Packungen, die hier vorliegen, zu erwarten ist. Hingegen ist die Anordnung der Kationen in den Oktaederlücken der kubisch-dichtesten Sauerstoffpackung um 51 kcal/Mol günstiger als in der hexagonal-dichtesten Packung.

Weiterhin sollte das Auftreten von Fehlordnungen im Li_6WO_6 und β - Li_6ReO_6 näher untersucht werden. Dabei wurden jeweils verschiedene Modelle von geordneten Strukturen angenommen und dann berechnet, ob eine der erdachten Überstrukturen gegenüber einer anderen energetisch begünstigt ist. Bei beiden Strukturtypen besteht nun der Nachteil, daß ein Teil der Lithiumatome röntgenographisch nicht lokalisiert werden

Atom und Long	I.	Summe den	Atom und Logo	II.	Summa dan
Atom und Lage	PMF'-Werte	PMF'-Werte	Atom und Lage	PMF'-Werte	PMF'-Werte
Re in $3a$	4946	4946	Re in 3 <i>a</i> (000)	4933	4933
2 Li in $3a$	178	990	2 Li in 6 c (0; 0; $\frac{1}{2}$)	175	
3 Li in 3 <i>b</i>	211		2 Li in 6 c $(0; 0; \frac{1}{2})$	182	956
			Li in 3b $(0: 0: \frac{1}{2})$	243	
2 O in 6 c $(\frac{1}{6}; \frac{8}{5}; \frac{7}{10})$	580		6 0 in 18 $f(\frac{1}{2}; 0; \frac{1}{12})$	565	3390
2 0 in 6 c $(\frac{4}{5}; \frac{5}{5}; \frac{7}{72})$	558	3393	3, 3, 12/		
$20 \text{ in } 6c \left(\frac{7}{4}; \frac{2}{3}; \frac{7}{7}\right)$	558	0000			
2 0 m 00 (g, g, 12)	MA	GE = 9330		MA	GE = 9279

Tab. 1. PMF'- und MAGE-Werte (in kcal/Mol) des Li5ReO6 mit der kubisch-dichtesten Sauerstoffpackung (I) sowie eines Strukturmodells mit hexagonal-dichtester Packung (Raumgruppe R3, II)¹⁴.

¹ J. HAUCK, Z. Naturforsch. 24 b, 1067 [1969]. (Hier werden auch weitere l. c. für die in Z. Naturforsch. 24 b [1969]

³ J. HAUCK, Z. Naturforsch. 24 b, 1349 [1969].

- ⁴ R. HOPPE, Angew. Chem. 78, 52 [1966].
- beschriebenen Strukturtypen angegeben.) ² J. HAUCK, Z. Naturforsch. 24 b, 645 [1969].
- ⁵ R. HOPPE, Z. anorg. allg. Chem. 291, 4 [1957]
- ⁶ R. HOPPE, Z. anorg. allg. Chem. 283, 196 [1956].

konnte. Bei β -Li₆ReO₆ wurde daher die verwandte Struktur des Li₅ReO₆ und bei Li₆WO₆ hypothetisches "Li₄WO₆" sowie "Li₅WO₆" betrachtet.

Zunächst wurden drei mögliche Überstrukturmodelle im Schichtengitter des β -Li₆ReO₆ bzw. Li₅ReO₆ berechnet. Dabei soll davon ausgegangen werden, daß die Aufeinanderfolge der Schichten gleich bleibt (ABC-Schichten), hingegen können die Schichten gegeneinander verschoben werden. Die Anordnung der Schichten kann durch die Lage der Rheniumatome in der Projektion auf die hexagonale bzw. pseudohexagonale Grundfläche beschrieben werden (Abb. 1). Der Ab-

Abb. 1. Zur Struktur des Li₅ReO₆: oben Seitenansicht und unten Grundfläche der hexagonalen Zelle (nur die Sauerstoffatome sind eingezeichnet).

stand zwischen den mit Re und Li im Verhältnis 1 : 2 besetzten Schichten beträgt jeweils $c_{\rm hex.}/3 = 4,714$ Å. Aus der Vielfalt von Möglichkeiten wurden drei relativ einfache Anordnungen berechnet, die auch bei der Diskussion der ähnlichen Li₂SnO₃-Struktur betrachtet wurden ^{7, 8}.

	Schichtfolge	Raumgruppe
a)	A3, B1, C3	$D_{3}^{3} - P3_{1}12$
b)	A3, B1, C2	$\mathrm{C}_{^{2}\mathrm{h}}^{^{3}}-\mathrm{C}2/m$
c)	A3, B1, C3, A1, B3, C1	$\mathrm{C}{}_{\mathtt{2h}}^{\mathtt{6}}-\mathrm{C}{2}/c$

Die Rechnungen brachten für die drei Strukturmodelle jeweils gleiche partielle Madelungfaktoren

⁷ G. LANG, Z. anorg. allg. Chem. 348, 246 [1966].

⁸ M. TRÖMEL u. J. HAUCK, Z. anorg. allg. Chem. **373**, 8 [1970].

(Tab. 1, I), so daß der Madelunganteil bei diesen Schichtfolgen und wohl auch bei allen anderen denkbaren Schichtfolgen ABC gleich ist. Da auch die anderen Anteile zur Gitterenergie, - die kovalente Bindungsenergie, das Bornsche Abstoßungspotential, das van der Waalssche Potential und die Nullpunktsenergie, - kaum unterschiedlich sein dürften, ergibt sich hiermit eine Erklärung für das Auftreten einer Fehlordnung. Die Tatsache, daß bei längeren Temperzeiten und höheren Temperaturen eine Ordnung eintritt, dürfte dadurch zu erklären sein, daß durch eine Änderung von Parametern bei einer ganz bestimmten Schichtfolge die Gitterenergie vergrößert wird. Dies dürfte auch für Li5ReO6 gelten, da hier die Reflexbreiten auf keine signifikante Fehlordnung hinweisen. Dagegen konnte bei Li₅JO₆ sowie bei allen isotypen Natriumverbindungen⁹ aus dem Röntgendiagramm auf eine Abweichung von der "idealen" Anordnung geschlossen werden.

Für Li₆WO₆, wo Metallatome und Sauerstoffatome ähnliche Lagen wie im MgO-Gitter einnehmen, wurden zwei mögliche Überstrukturen bei doppelten Gitterkonstanten sowie den Raumgruppen $D_{2h}^{24} - Fddd$ und $D_{2h}^2 - Pnnn$ (Abb. 2) zugrunde gelegt. Außer dem "Li₄WO₆" mit den röntgenographisch bestimmbaren

Abb. 2. Anordnung der Wolframatome in der Elementarzelle der Li₆WO₆-Struktur (I, Raumgruppe Immm) sowie in zwei Überstrukturmodellen (II, Raumgruppe Pnnn; III, Raumgruppe Fddd) im Vergleich zum MgO-Gitter, $c(\text{Li}_6\text{WO}_6) \approx 2 a(\text{MgO})$.

Lithiumatomen wurde ein "Li₅WO₆" berechnet, wo alle Oktaederlücken der kubisch-dichtesten Sauerstoffpakkung besetzt sind (Tab. 2). Von geringfügigen Abweichungen bei den Lithiumatomen abgesehen, ergeben sich weitgehend gleiche PMF'-Werte für beide Überstrukturmodelle, so daß auch hier das Auftreten einer Fehlordnung erklärt werden kann. Aus der Differenz der MAGE-Werte für "Li₄WO₆" und "Li₅WO₆" wurde der MAGE-Wert des Li₆WO₆ zu ca. 8190 kcal/Mol abgeschätzt.

Außerdem sollte geklärt werden, ob auf Grund der Madelungfaktoren eine Aussage über die Anordnung

⁹ J. HAUCK, Z. Naturforsch. 24 b, 1064 [1969].

Atom und Lago	Li_4	WO ₆	Li ₅ WO ₆		
Atom und Lage	PMF'-Werte	PMF'-Werte	PMF'-Werte	PMF'-Werte	
W in $8a$ (000)	6335	6335	4962	4962	
4 O in 32 h (0,081; $\frac{1}{4}$; 0)	560	3415	560	3415	
2 O in 16 g (0; 0; $\frac{1}{4}$)	589		589		
2 Li in 16 e (0,169; 0; 0)	172	765	177		
2 Li in 16 e (0,331; 0; 0)	210		206	976	
Li in 8b $(0; 0; \frac{1}{2})$			211		
(, , , 2)	MAG	E = 10515	MA	$\mathrm{GE}=9353$	

Tab. 2. PMF'- und MAGE-Werte (in kcal/Mol) der hypothetischen Verbindungen "Li₄WO₆" und "Li₅WO₆" bei einer Anordnung in der Raumgruppe Fddd (bez. bei unterschiedlicher Anordnung der Wolframatome in Pnnn, vgl. Abb. 2)¹⁴.

der röntgenographisch schwer bestimmbaren Lithiumatome im Li₆TeO₆ gemacht werden kann. Im Li₆TeO₆ bilden die Sauerstoffatome eine annähernd kubischdichteste Packung, wobei jeder siebente Sauerstoffplatz unbesetzt ist. In dieser Anordnung dürften entweder die Tetraederlücken oder die "Oktaederlücken" besetzt werden, wobei wegen des Fehlens eines Sauerstoffatoms nur fünf nächste Nachbarn da sind (vgl. l. c. ¹⁰). In Tab. 3 werden die PMF'-Werte für diese beiden Mög-

Atom	I. PMF'-Werte	II. PMF'-Werte
Te	2990	3885
6 O	598	584
6 Li	58	172
	MAGE = 6925	MAGE = 8425

Tab. 3. PMF'- und MAGE-Werte (in kcal/Mol) des Li₆TeO₆ bei Besetzung der Tetraederlücken (I, l. c. ¹) bzw. der "Oktaederlücken" (II, s. Text) durch Lithiumatome ¹⁴.

lichkeiten gegenübergestellt. Dabei zeigt sich eindeutig, daß bei einer Besetzung der "Oktaederlücken" entsprechend der Lage 18f (0,26; 0,05; 0,33) die PMF'-Werte für Sauerstoff zwar etwas schlechter werden, hingegen werden die PMF'-Werte für Lithium und Tellur weitaus günstiger, so daß abweichend von der früheren Strukturbestimmung die Lithiumatome die "Oktaederlücken" besetzen dürften. Bei weiteren Intensitätsmessungen der Diffraktometeraufnahmen sowie erneuter Strukturfaktorrechnung wurden folgende Parameter der Raumgruppe R $\overline{3}$ erhalten, die der Berechnung in Tab. 3, II zugrunde gelegt wurden.

Te	(3a)	0	0	0
0	(18f)	0,17	0,22	0,17
Li	(18f)	0,26	0,05	0,33

Für Li_7SbO_6 war bei der röntgenographischen Strukturbestimmung ein ähnliches Gitter wie für Li_8SnO_6 festgestellt worden, wobei im Li_7SbO_6 eine Oktaederlücke unbesetzt sein sollte. Wegen der Ungleichheit der Oktaederlücken sollte hier jedoch keine statistische Be-

 к.	HOPPE	, Bull.	50c.	chim.	France	1905,	1115.

Verbindung	PMF'(O)	PMF'(Li)	$\mathrm{PMF}'(\mathbf{X})$	$\mathrm{PMF'}(\mathbf{X})/z^2$
Li ₅ ReO ₆	566	198	4946	100,9
Li ₆ TeO ₆	584	172	3885	107,9
Li ₆ WO ₆	569	ca. 198	ca. 3590	ca. 99,7
Li7SbO6	574	172	2619	104,7
Li ₈ SnO ₆	557	172	1804	112,8
LiNiO211,13	568	214	1064	118,2
LiCrO2 ^{11,13}	562	212	1048	116,4
LiRhO211,13	549	201	1043	115,9
$MgO^{4,13}$	551		551	137,7
$Li_{2}O^{12}$	543	146	146	145,9

Tab. 5. Beiträge der Sauerstoffatome, Lithiumatome und Zentralatome verschiedener Lithiumhexaoxometallate zum Madelunganteil der Gitterenergie sowie Vergleich mit anderen Verbindungen mit dichtesten Sauerstoffpackungen¹⁴.

setzung mit Lithiumatomen vorliegen, sondern die Lage 3a (0; 0; 0,67) gegenüber 3a (0; 0; 0,33) bevorzugt werden (Tab. 4). Zum Vergleich werden auch die PMF'-Werte für Li₈SnO₆ aufgeführt, wo beide Oktaederlücken gleichwertig sind und auch beide besetzt werden.

Interessant war nun weiterhin ein Vergleich der partiellen Madelungfaktoren (Tab. 5). Dabei ergibt sich, daß bei der hier durchgeführten Betrachtungsweise die XO6-Gruppen den weitaus größten Anteil zum MAGE-Wert beitragen, während von den Lithiumatomen mit 1000 - 1400 kcal/Mol ein relativ geringer Beitrag hinzugefügt wird. Für das Sauerstoffgerüst erhält man mit einem mittleren Betrag von 570 kcal/Mol einen Wert, der auch bei anderen Strukturen mit dichtesten Sauerstoffpackungen und ähnlichen Abständen XO aufgefunden wurde (vgl. l. c. 11 bzw. Tab. 5). Die PMF'-Werte der Zentralatome nehmen mit der formalen Ladung sehr stark zu, während die reduzierten partiellen Madelungfaktoren ⁴ PMF'/ z^2 sich bei den Hexaoxometallaten nur wenig ändern. Bei den anderen in Tab. 5 aufgeführten Verbindungen mit drei, zwei und einwertigen Atomen werden die Werte hingegen deutlich größer. Für oktaedrisch und tetraedrisch koordinierte Lithiumatome ergeben sich PMF'-Werte zwischen 146 und 214 kcal/Mol.

¹⁰ J. HAUCK, Z. Naturforsch. 24b, 1347 [1969].

	Ι.	Li ₇ S	bO_6	II.	Li ₈ S	nO ₆
Atom und Lage	PMF'-Werte	Summe der PMF'-Werte	PMF'-Werte	Summe der PMF'-Werte	PMF'-Werte	Summe der PMF'-Werte
Sb in $3a$	2619	2619	2619	2619	1804	1804
$3 O_1$ in $9b$ $3 O_2$ in $9b$	576) 571 (3443	$567 \\ 568 $	3406	557	3344
$\begin{array}{c} 3 \text{ Li}_1 \text{ in } 9b \\ 3 \text{ Li}_2 \text{ in } 9b \end{array}$	$173 \\ 173 \\ 173 \\ \}$	1206	$168 \\ 171 \\ \}$	1123	172	1372
Li_3 in $3a$	167 J MA	$\mathrm{GE}=7268$	104 J M.	AGE = 7147	172 J MA	GE = 6520

Tab. 4. PMF'- und MAGE-Werte (in kcal/Mol) des Li₇SbO₆ bei Besetzung von Li₃ in den Oktaederlücken 3 a (0; 0; 0,67) (I) bzw. (0; 0; 0,033) (II, Raumgruppe R3) sowie des Li₈SnO₆ (in den entsprechenden Lagen der Raumgruppe R3) ¹⁴.

Herrn Prof. Dr. R. HOPPE und Herrn Dr. F. STEWNER, Institut für Anorganische und Analytische Chemie der Universität Gießen, danke ich für wertvolle Diskussionen sowie für die Ausführung von MAGE-Rechnungen mit ihrem FOR-TRAN-Programm im Deutschen Rechenzentrum in Darmstadt.

- ¹² G. DITTRICH u. R. HOPPE, Z. anorg. allg. Chem. **371**, 306 [1969].
- ¹³ Ř. W. G. WYKOFF: Crystal Structures, John Wiley, New York, London, Sydney 1963.
- ¹⁴ Die PMF'- und MAGE-Werte wurden jeweils auf- oder abgerundet.

Über die Auswirkung des kovalenten Bindungsanteils in ternären Oxiden

JÜRGEN HAUCK

Institut für anorganische Chemie der Universität Frankfurt am Main

(Z. Naturforsch. 25 b, 752-754 [1970]; eingegangen am 27. April 1970)

Erhitzt man die intensiv gelben Hexaoxorhenate (VII)¹, so wechselt die Farbe über Orange nach Rot ohne eine Veränderung der chemischen Zusammensetzung. Einen ähnlichen Befund erhält man beim Erhitzen der farblosen Verbindungen Li₈PbO₆, Mg3Li2PbO6 und Li7BiO62.3, wobei verschiedene gelbbraune Farbtöne erhalten werden. Während jedoch die Hexaoxorhenate(VII) beim schnellen Abkühlen nach kurzer Zeit wieder die ursprüngliche Farbe annehmen, bleibt die Farbe bei Li8PbO6, Mg3Li2PbO6 und Li7BiO6 erhalten. Außerdem weisen die schnell abgekühlten Proben der Plumbate(IV) und Bismutate(V) sowie auch andere Hexaoxometallate mit schwacher XO-Bindung, wie Li₈SnO₆, Mg₃Li₂SnO₆, Li₈ZrO₆ und Mg₃Li₂ZrO₆^{2,3}, ein verändertes IR-Spektrum auf. Die IR-aktive Valenzschwingungsbande $\nu_3(F_{1u})$ ist, – wahrscheinlich infolge einer stärkeren Wechselwirkung zwischen den XO6-Oktaedern -, wesentlich verbreitert und außerdem nach kleineren Frequenzen verschoben entsprechend einer Verringerung der Kraftkonstante $f_{\rm XO}$ ⁴. Auf Grund dieses zweiten Befundes dürfte die Farbveränderung beim Erhitzen von Hexaoxometallaten darauf zurückzuführen sein, daß das oberste bindende MO

- ¹⁻⁷ J. HAUCK, Z. Naturforsch. **25 b**, 468 [1970]; **24 b**, 1067 [1969]; **25 b**, 109 [1970]; **24 b**, 645 [1969]; **24 b**, 1349 [1969]; **24 b**, 1064 [1969]; **25 b**, 224 [1970].
- ⁸ G. DITTRICH u. R. HOPPE, Z. anorg. allg. Chem. **371**, 306 [1969].

der XO₆-Gruppen jeweils gehoben wird entsprechend der langwelligen Verschiebung des langwelligsten charge-transfer-Überganges⁵ und damit die XO-Bindung geschwächt wird.

Die thermische Zersetzung der Hexaoxometallate sollte in einem engen Zusammenhang mit der Abnahme der Bindungsstärke beim Erhitzen stehen, wobei anzunehmen ist, daß bei einer minimalen Kraftkonstanten der thermische Zerfall eintritt. So zersetzen sich Verbindungen, die stark induktiv wirkende Kationen haben, im allgemeinen bei höheren Temperaturen als Verbindungen, bei denen die XO-Bindung durch den Kationeneinfluß weniger verstärkt wird. Zum Beispiel sind die Lithiumhexaoxometallate thermisch wesentlich stabiler als die jeweils isotypen Natriumverbindungen⁶. Eine Reihe von Austauschreaktionen bei den strukturell ähnlichen Erdalkalihexaoxowolframaten (VI) zeigt, daß auch bei Erdalkali-Verbindungen ähnliche Verhältnisse vorliegen. Ba_3WO_6 , Sr_3WO_6 und Ca_3WO_6 wurden im O_2 -Strom bei 1000 °C, d. h. unterhalb des Schmelzpunktes, mit SrO, CaO und MgO (bzw. den entsprechenden Carbonaten) so lange getempert, bis keine weitere Veränderung der Festkörper-IR-Spektren mehr auftrat (vgl. l. c. 7). Dabei ergab sich aus der Verschiebung der $\nu_3(F_{1u})$ -Bande nach höheren Frequenzen, daß die Ba-, Sr- bzw. Ca-Atome jeweils durch stärker induktiv wirkende Erdalkaliatome ersetzt waren.

Interessant war nun ein Vergleich der Hexaoxometallate mit basenärmeren Verbindungen, wo miteinander verknüpfte Oktaeder vorliegen. Hierzu sind die Lithiumplumbate(IV) und -bismutate(V) besonders geeignet, da bei allen Verbindungen eine oktaedrische Koordination des Bleis bzw. Wismuts vorliegen dürfte. Auch ist anzunehmen, daß die Lithiumatome wegen der geringen Größe jeweils dichteste Sauerstoffpackungen zulassen, wie es auch in den bisher bekannten Struktu-