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Abstract

Measuring and reducing energy consumption constitutes a crucial concern in public policies
aimed at mitigating global warming. The real estate sector faces the challenge of enhancing
building efficiency, where insights from experts play a pivotal role in the evaluation process.
This research employs a machine learning approach to analyze expert opinions, seeking
to extract the key determinants influencing potential residential building efficiency and
establishing an efficient prediction framework. The study leverages open Energy Performance
Certificate databases from two countries with distinct latitudes, namely the UK and
Italy, to investigate whether enhancing energy efficiency necessitates different intervention
approaches. The findings reveal the existence of non-linear relationships between efficiency
and building characteristics, which cannot be captured by conventional linear modeling
frameworks. By offering insights into the determinants of residential building efficiency,
this study provides guidance to policymakers and stakeholders in formulating effective and
sustainable strategies for energy efficiency improvement.
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1. Introduction

The increase in greenhouse gas emissions has a relevant impact on global warming.

Commercial and residential buildings are responsible for more than 40% of the world’s

resource and energy consumption and around 33% of the total CO2 emissions (Baek and

Park, 2012). The actual European building stock consumes 40% of total energy and emits

36% of total CO2 emissions. Overall, only 25% of Europe’s building stock is deemed

energy efficient, and in this respect, the European Commission (EC) set a 32.5% target
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as a minimum goal in the 2030 climate and energy framework. Thus, energy efficiency is

receiving increasing attention from government and international institutions and represents

one of the key policy actions for mitigating global warming and fossil fuel usage (see, e.g.

Danish et al., 2019).

The present study aims to identify the key factors representing the necessary technical

interventions contributing to the potential reduction of energy consumption in residential

buildings. This objective aligns with the goals set by the Energy Performance of Buildings

Directive (EPBD) issued by the EC in 2002, which seeks to enhance energy efficiency in the

real estate sector and ultimately reduce energy consumption.

Policymakers aim to reduce greenhouse gas emissions to decrease the environmental

impact of production and consumption activities at the national level and meet the treaties’

targets. Along with the environmental impact, reduced energy consumption has relevant

consequences also in financial risk management. First, greenhouse gas emissions are one

of the main drivers of transition risk (see Basel Committee on Banking Supervision, 2021,

for a detailed description of physical and transition risk drivers). Second, recent findings

on the mortgage credit market have shown that energy-efficient buildings are associated

with a lower solvency risk. For instance, Billio et al. (2021) find that mortgages on energy-

efficient residential buildings in the Dutch market are associated with a lower probability of

default, and the relationship is stronger in the low-income group due to savings coming from

reduced energy costs. Guin et al. (2022) focus on UK residential mortgages and find those

energy-efficient buildings are less frequently in payment arrears than energy-inefficient ones.

Ferentinos et al. (2023) show that policies aiming at increasing the energy efficiency level of

the stock of buildings can reduce the price of inefficient properties.

Several definitions of energy efficiency have been provided by policymakers and public

policy institutes (Semple and Jenkins, 2020). The European Union defines energy efficiency

as “the ratio of the output of performance, service, goods or energy, to the input of energy”.

The Environmental and Energy Study Institute (EESI) defines energy efficiency as “using

2

Electronic copy available at: https://ssrn.com/abstract=4596682



less energy to perform the same task – that is, eliminating energy waste.”1

Within the Energy Performance Certificate (EPC) framework, the quantification of a

building’s energy efficiency is contingent upon its utilization of non-renewable energy sources.

In essence, the lower the consumption of non-renewable energy, the higher the level of

efficiency attributed to the building. This approach allows for a comprehensive assessment of

energy performance, facilitating comparisons and guiding efforts toward optimizing energy

usage and promoting sustainable building practices.

In the European Union, the EPC mechanism was introduced with the EPBD to monitor

the building stock, and in 2010 new requirements were further added to improve the usability

of EPCs in the real estate market (see Arcipowska et al., 2014, for an extensive discussion

of the implementation of Buildings Directive, 2002/31/EC1 and 2010/91/EU, and EPCs in

Europe). As noted in Schuller (2021), EPC procedures differ across countries and are crucial

in the measurement of the energetic performance of buildings through the assignment of an

overall grade based on the characteristics of the services installed. EPCs contain specific

information on the structural characteristics of buildings and services installed, such as

heating systems, cooling systems, and domestic water production, with energy sources and

consumption measures. Furthermore, it is widely recognized that the opinions about energy

efficiency and the effect of hypothetical retrofitting can vary consistently across experts

issuing EPCs, even within the same country (Tronchin and Fabbri, 2012).

Recently, the usage of big data in building energy efficiency has been applied to (i)

forecast energy demand in residential and commercial buildings (Gómez-Omella et al., 2021;

Skomski et al., 2020; Grolinger et al., 2016), (ii) forecast energy efficient enhancement on

buildings (Mehmood et al., 2019; Fan et al., 2018), and (iii) evaluate the effectiveness of

retrofitting measures (Guzhov and Krolin, 2018) also taking into account the thermal comfort

of environmentally friendly constructions (Barbeito et al., 2017).

1Further information can be found in the following sources: https://www.europarl.europa.eu/RegDa
ta/etudes/BRIE/2015/568361/EPRS BRI(2015)568361 EN.pdf and https://www.eesi.org/topics/en

ergy-efficiency/description.
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In this paper, we investigate the determinants of energy efficiency in residential buildings

and propose a flexible non-parametric approach to the analysis of expert opinions with the

aim of providing an effective prediction framework. In the empirical analysis, we considered

two geographical areas from the mid-latitude zone (35◦-55◦) but with different thermal

gradients: i) the Lombardy region in Italy and ii) the Great London region in the UK.

The two areas are expected to experience different extreme climate conditions, such as an

increase in the number of hot days and tropical nights, according to most recent climate

projections (see, e.g. Carvalho et al., 2021). The public availability of big datasets for the

two areas constitutes a unique opportunity to study the effectiveness of machine learning

techniques in predicting energy efficiency and providing support to public policies aimed at

climate change adaptation and mitigation. The first dataset is the Italian EPCs data, also

known as APE (Attestato di Prestazione Energetica) and focuses on the Lombardy Region

that has made publicly available the CENED (Certificazione ENergetica EDifici) database.

Beyond energy ratings, the information available in the CENED database relates to the

location of certified buildings, the energy demand associated with the services present in the

building, the characteristics of buildings, energy systems, and the use of renewable energy

sources. The second dataset considers the UK EPCs data, focuses on the London area’s

residential buildings, and includes information such as average energy efficiency ratings,

energy use, carbon dioxide emissions, location, and characteristics of the buildings.

Understanding the relationships between building features and potential energy efficiency

improvements is challenging, given the large number of variables involved. In this study,

we employ a comprehensive set of linear and non-linear approaches to delve into these

relationships and enhance our understanding of the factors influencing energy efficiency.

Among the nonlinear and nonparametric methods, we explore three tree-based models:

Random Forest (Breiman, 2001), Extreme Gradient Boosting (Chen and Guestrin, 2016),

and Bayesian Additive Regression Tree (Chipman et al., 2010). These non-linear models

are renowned for their capability to capture non-linear relationships and interactions within
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the data, providing a comprehensive understanding of the complexities involved in energy

efficiency prediction. In addition, a comparison with benchmark linear models is considered,

which includes Lasso (Tibshirani, 1996), Ridge (Hoerl and Kennard, 1970), and Elastic Net

(Zou and Hastie, 2005). These models have demonstrated their effectiveness in handling

high-dimensional datasets with correlated predictors, making them suitable candidates for

examining the relationship between building features and energy efficiency potential.

Our findings demonstrate non-linear relationships between building features and

efficiency improvements. Specifically, we provide evidence that a set of interventions, such

as installing internal or exterior insulation and improving heating systems, as well as the

characteristics of buildings, can lead to an improvement in the energy efficiency of a property.

We discuss the results obtained from variable importance and partial dependence analyses

for Italy and the UK and compare the determinants identified as important in both cases. We

present evidence demonstrating that tree-based models surpass linear models, enabling more

precise predictions of potential efficiency improvements. This is particularly notable due to

the presence of non-linear relationships between efficiency and building characteristics.

Our study aims to contribute to the field of energy efficiency in residential buildings

by providing insights for policymakers to develop targeted policies aimed at reinforcing

and boosting energy efficiency. One effective policy measure could be to offer financial

incentives, such as tax credits or subsidies, to homeowners who invest in energy-efficient

upgrades, such as insulation, high-efficiency heating systems, and energy-saving appliances.

Additionally, implementing mandatory energy efficiency standards for new constructions and

conducting energy audits for existing buildings could further reinforce sustainable practices

and reduce carbon emissions. The prioritization of energy efficiency data disclosure holds

paramount importance. By providing transparent and standardized information about the

energy performance of buildings, prospective homeowners and investors can make more

informed decisions. This not only promotes the adoption of energy-efficient practices but

also cultivates a market environment where sustainability is valued and rewarded.
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The remainder of the paper is structured as follows. Section 2 outlines the variable

of interest for predicting energy efficiency improvement while Section 3 introduces the set

of tree-based and linear models. Section 4 presents the empirical analyses for Italian and

UK cases with a discussion on the variable selection and non-linear dependencies. Finally,

Section 5 concludes the paper.

2. Modelling Energy Efficiency

In this section, we present the predicted variable that measures the potential energy

efficiency gain following the implementation of the recommendations in the EPC reported

by the technicians who conducted the inspection to release the energy certificate. Specifically,

our variable of interest is built as described in Section 2.1.

2.1. Definition of efficiency improvement

In many countries, energy efficiency is measured by means of ratings (e.g., A-G scale) and

numeric indicators. Ratings are, in both cases, derived from the numeric indicator. Denote

with Wj the final expected energy performance indicator after interventions, and with Vj

the initial energy performance indicator for the building j and j = 1, . . . , n. The indicators

satisfy the constrain 0 < Wj ≤ Yj < ∞, or equivalently 0 < Zj ≤ 1 where Zj = Wj/Vj.

Since the constraints on the minimum performance value and between the two variables

introduce spurious dependence, we apply a transformation. In order to get a variable defined

on (−∞,+∞) we apply the logistic transform and define

Yj = φ−1(Zj), (1)

where φ−1(v) = log(v) − log(1 − v)) is the inverse logistic. Therefore, we have that

Yj = log(Wj) − log(Yj − Wj). In our model, Wj is the inverse current energy efficiency,

EE, and Yj is the inverse potential energy efficiency EEpot. Thus the response variable Yj
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measures the potential variation of the energy performance index and is defined as

Y = log(EEpot)− log(EE − EEpot), (2)

The response variable takes large values when: either the building potential energy is low,

that is, the variable EE takes large values, or when the efficiency improvement is modest, that

is, the difference EE − EEpot takes small values. It implies that whether the improvement

is fixed, a high (small) value for Y is justified by a low (high) potential energy efficiency. On

the other hand, keeping the final energy efficiency level stable, Y will be higher (lower) when

the potential improvement is smaller (larger). Thus, a high (low) value for Y is associated

with a generally poor (good) energetic performance or potential improvement.

3. Methods

Motivated by the intricate relationships that may exist between the building features

and the potential energy efficiency increase, we employ a comprehensive set of linear and

non-linear modeling techniques. This approach allows us to gain a deeper understanding

of the factors influencing energy efficiency and facilitates more accurate predictions of the

potential energy efficiency increase. Among the linear models, we consider Lasso (Tibshirani,

1996), Ridge (Hoerl and Kennard, 1970), and Elastic Net (Zou and Hastie, 2005), which

have demonstrated their efficacy in handling high-dimensional datasets with correlated

predictors. Among the non-linear models, we investigate three tree-based models, namely

Random Forest (Breiman, 2001), Extreme Gradient Boosting (Chen and Guestrin, 2016),

and Bayesian Additive Regression Tree (Chipman et al., 2010), known for their ability to

capture non-linear relationships and interactions in the data.

Let Yj be the dependent variable measured for the statistical unit j, with j = 1, . . . , n,

that is, the energy efficiency increase for the j-th building in the sample presented in Section

2, and let xj = (x1j, . . . , xmj) ∈ Rm be a vector of covariates, that are the building and
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intervention features. The following relationship is assumed

Yj = f(xj) + εj, εi
iid∼ (0, σ2), (3)

where the function f(·) is an unknown and possibly nonlinear function. In many applications,

the function f(·) may not be smooth, but it could exhibit discontinuities in certain regions of

its support. The following section introduces the three primary methods: i) Bayesian additive

regression trees; ii) Random Forest; iii) Extreme Gradient Boosting; and iv) Penalized

regression models.

3.1. Bayesian additive regression tree (BART)

The BART model is a flexible inference framework that combines non-parametric

regression and ensemble learning (Chipman et al., 2010). BART is a probabilistic framework

that captures possible nonlinear relationships and interactions among covariates and accounts

for uncertainty in the estimates and prediction. The model uses a set of random trees Tj,

j = 1, . . . , J to define a flexible functional form for the conditional mean of the variable

Yi. The regression function f(·) is given by a sum of J piece-wise constant functions, gj(·),

called simple functions:

f(x) =
J∑

j=1

gj(x). (4)

The simple functions gj(·) = g(·; Tj,Mj) are parametrized by a random tree Tj and a set of

tree-specific coefficients Mj = {µj1, . . . , µjLj
}:

g(x; Tj,Mj) =

Lj∑
l=1

µjlI(X ∈ Xjl), (5)

where I(x ∈ A) is the indicator function which takes value 1 if x is in the set A and 0

otherwise.

Each random tree Tj contains a set of internal and terminal nodes (leaves). Each internal

node is associated with a binary splitting rule such that the node is connected to two child
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nodes: a left node when the k-th variable is below a threshold cj, that is Xik ≤ cj and a

right node when the k-th variable is above, that is Xik > cj. A leaf node, say l, has no

splitting rule and is assigned to a parameter µjl. The tree is random since the choice of the

splitting variable and the value of the parameter at the terminal nodes are random, which

adds flexibility to the model. Figure 1 provides an illustration of a simple tree with 3 leaf

nodes and 4 edges, where the complete partition of the real line, R = X11 ∪X12 ∪X13 ∪X14,

X11 = (−∞, 1.36], X12 = (1.36, 13.52] and X13 = (13.52,+∞), is obtained by applying two

thresholds to the value of two covariates.

µ11

µ12 µ13

X1i ≤ 1.36 X1i > 1.36

X1i ≤ 13.52 X1i > 13.52

Figure 1: Example of a simple tree with three leaf nodes (square boxes) and four edges determined by
thresholding two covariates X1i and X2i (lines).

Each tree generates a partition Xj1, . . . ,XjLj
of the covariate space Rn such that

Xjl ∩ Xjl′ = for l′ ̸= l and Xj1 ∪ . . . ∪ XjLj
= Rn. In the BART model, the parameter

µjl represents the contribution given by the j-th tree to the conditional expected value of

Yi when Xi in the l-th element of the partition, given the random partition induced by the

j-th tree.

The specification of the BART model includes the prior distribution on the tree

structures, the leaf parameters, and the variance of the error term

π(T1, . . . , TJ ,M1, . . . ,MJ , σ
2) = π(σ2)

J∏
j=1

π(Mj|Tj)π(Tj). (6)

We consider here the choice for π(Tj), which is given by the product of the following prior
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distributions: i) a prior distribution α(1 + d)−β for the depth d ∈ {0, 1, 2, . . .} of the tree

with α ∈ (0, 1) and β ∈ [0,∞); ii) independent normal distributions N (mµ, σµ) for the leaf

parameters µjl; and iii) the conjugate scaled inverse Chi-square prior distribution νλX 2(ν)

for σ2. Regarding the splitting rule, at each internal node, each splitting covariate has an

equal prior probability of being chosen, i.e. 1/n (see, for instance, Chipman et al., 2010;

Pratola, 2016; Linero, 2018). The posterior distribution is not tractable and following the

standard practice in Bayesian analysis, it has been approximated numerically via a Markov

Chain Monte Carlo (MCMC) algorithm that generates samples from the parameter and tree

posteriors and from the posterior predictive. In the application we considered the following

hyper-parameter setting: α = 0.95, β = 2, mµ = 0 and σ2
µ = (ymax − ymin)/(2k

√
J),

k = 2, ν = 3, and λ = 0.1468, where ymin = min{y1, . . . , ym} and ymax = max{y1, . . . , ym}.

See also Sparapani et al. (2021) for further discussion on the prior choice. We use the R

implementation of the MCMC algorithm included in the packages BayesTree (Chipman and

McCulloch, 2016) and BART (Sparapani et al., 2021). To select the number of trees k, we

perform a cross-validation exercise as reported in Appendix A.3.

3.2. Random Forest

This nonparametric model can capture non-linearity in predicting the energy efficiency

gain. Similarly to BART, it relies on the notion of a decision tree given in the previous section.

The Random Forest model, introduced by Breiman (2001), is based on a combination of single

decision trees trained in parallel on random subsets of the data. At each node, a subset of the

total number of features is selected as candidates to define the splitting rule. This ensures

that the model can handle the correlation between features and grows somewhat uncorrelated

trees. See Casarin et al. (2021) for an introduction to random forests with applications.

We employ the randomForest R-package (see Liaw and Wiener, 2002)2 and perform cross-

validation on the maximum number of terminal nodes in both the Italian and UK cases.

2The randomForest R-package, developed by Andy Liaw and Matthew Wiener, is available for download
at https://cran.r-project.org/web/packages/randomForest.
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Among the specified models with maxnodes = 10, 50, 100, 200, 500, 1000, 2000, 3000, 4000

and 5000, we select the model that exhibits the best performance in terms of correlation with

the true values, mean absolute error, and mean square error on the in-sample observations

within the sub-sample. Our analysis reveals that the optimal model, considering all the

metrics, is the one with maxnodes = 1000 for the Italian case and maxnodes = 3000 for the

UK database. Consequently, we utilize the same specifications for both applications on the

entire sample.

3.3. Extreme Gradient Boosting (XGBOOST)

The second model we consider is an ensemble model based on a collection of

several decision trees Tj j = 1, . . . , J , a collection of functions gj(· · · ; Tj)) j =

1, . . . , J with gj ∈ G and the additive regression function in Eq. 4, where G ={
g(x) = wq(x), q : Rm → 1, . . . , L, w ∈ RL

}
is the space of regression trees, with L the

number of leaves. The main difference is that trees, in this case, are grown sequentially on

a modified version of the original dataset. At the iteration t, given a set of trees g1, . . . , gJ ,

a new tree g(x) ∈ F is included to obtain a new regression function

f̃(x) = f(x) + gJ+1 (x) . (7)

The newly added tree gJ+1 is chosen based on the errors produced by the trees of the previous

iteration (Chen and Guestrin, 2016). This algorithm is designed to learn slowly from the

data, which helps avoid overfitting. For our estimate, we employ the xgboost R-package

(Chen et al., 2023)3 and cross-validate the value for the maximum number of iteration in

both our exercises, on the full sample and the subsample of 10000 observations.

3The xgboost R-Package, developed by Jiaming Yuan, is available for download at: https://cran.r-p
roject.org/web/packages/xgboost/index.html.
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3.4. Lasso, Ridge and Elastic Net

These are linear parametric models that are f(x) = β0 + β1x1 + . . . + βmxm, with a

penalization that shrinks the coefficients estimates to reduce the overall model complexity

(Tibshirani, 1996). Lasso sets a subset of coefficients to zero using an ℓ1 penalization, Ridge

reduces the impact of the features on the response variable, using an ℓ2 penalization, and

Elastic Net combines ℓ1 and ℓ2 penalizations. In particular, consider the general minimization

problem:

||y − β0 −Xβ||22 + λ

[
α∥β∥1 + (1− α)

1

2
∥β∥22

]
, (8)

where y = (Y1, . . . , Yn), X
′ = (x′

1, . . . ,x
′
n), β0 is the constant, β is the m-vector of the

regularized coefficients, λ is the regularization parameter, α ∈ (0, 1) represents the weight

for the Lasso component, and 1 − α, the weight for the Ridge one. We employ glmnet R-

package (see Friedman et al., 2010)4 to fit three different specifications: i) Lasso (α = 1);

ii) Ridge (α = 0); and iii) Elastic Net (α = 0.5). As suggested in Krstajic et al. (2014), λ

is validated using the largest value for which the error is within one standard error of the

minimum found for λ.

4. Empirical analysis

In this section, we apply the presented models to the EPC data for the two geographical

areas with different latitudinal temperature gradients and climate conditions: the Lombardy

region in the north of Italy and the Greater London area in the UK.

To forecast the prospective surge in energy efficiency, we leverage the technical

specifications outlined in the EPC, coupled with the expert-recommended interventions

derived from the assessment process. Illustrated in Figure 2, the spatial distribution

delineates the energy efficiency measure across both datasets. The left column portrays

the current energy-efficient status, while the right column projects the potential energy

4The glmnet R-package, developed by Trevor Hastie and Rob Tibshirani, is available for download at
https://cran.r-project.org/web/packages/glmnet.
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efficiency level, factoring in the proposed expert interventions. This visual representation

highlights the substantial enhancements achievable through the implementation of expert-

guided recommendations.

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

Figure 2: Geographic distribution of the initial (left) and the potential (right) energy efficiency in the
Lombardy region of Italy (top) and in the Greater London area of the UK (bottom). In each plot: the
colour indicates the efficiency level from high (green) to low (red), and the grey lines provide the limits of
the administrative units in longitude (horizontal axis) and latitude (vertical axis) coordinates. The red area
in the UK map refers to the ward of Darwin, where around 6% of the postcode areas have lower energy
efficiency than the average of the least efficient 0.001% postcode areas in Greater London.

In the first part of each country analysis, we present and compare results obtained

between tree-based and linear models. The models are applied to predict the energy efficiency

potential improvement, leveraging on granular information on the initial characteristics of the

stock of buildings, their energy services, and the interventions recommended by technicians.

In order to ensure a comprehensive analysis, we conduct the applications on both the full

sample and a subsample of the data by selecting a random sample without replacement of
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10,000 observations (see, for instance, Garćıa et al., 2015). On one hand, the inclusion of

the full sample allows us to capture the overall trends and patterns present in the dataset,

providing a broader perspective on the relationship between the predictors and the target

variable. On the other hand, the subsample analysis is particularly valuable in making the

data-driven framework computationally feasible and applicable to real-time decision-making

scenarios. By examining a smaller subset of the data, we can ensure its robustness and

evaluate its ability to generalize across different data distributions.

In the second part, we focus on the variable importance to have a comprehensive

understanding of how the two modeling methods assign significance to the different features

and expert opinions under scrutiny.

4.1. Data source and description

Variables of interest in the EPC databases can be grouped as follows: a) initial

characteristics of the building, its services, and consumption levels; b) current energy

efficiency; c) suggested interventions; d) potential energy efficiency once the interventions

are implemented.

1. Initial characteristics: these include data related to the i) general characteristics of

the building (such as intended use, location, age of the building, size of the real estate

unit, number of real estate units in the building,. . . ); ii) energetic services installed in

the building such as heating system, cooling system, production of domestic water;

2. Current energy efficiency: consumption and energetic performance, expressed using

a number of different indicators such as thermal efficiency, global energetic performance

of renewable and non-renewable energetic sources, consumption level for different fuel

types, energetic class, and similar;

3. Suggested interventions: in the EPC, experts are required to report one or more

possible interventions to increase the energy efficiency level of the building;

4. Potential energetic performance: variables summarising the estimated potential

energy class given the initial conditions of the building and the implementation of one

14
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or more suggested interventions.

In our analysis, features falling in the first and third categories are used as predictors to

forecast the potential increase in energy efficiency. As described in Section 2, the measure is

computed using energy performance indicators included in the second and fourth categories

and is obtained from Equation 2. The two datasets for different geographical areas are

the CENED+2 dataset for Lombardy (Italy) and the EPBD UK dataset (UK). The former

pertains to EPCs issued for buildings in the Lombardy region from January 1, 2016, to

December 31, 2020.5 The EPBD dataset for the UK encompasses Energy Performance

Certificate (EPC) data issued for domestic buildings in England and Wales from January 1,

2008, to December 31, 2021.6

4.2. The Italian case

For the Italian case, energy efficiency is measured through the energy performance

indicator EP of all the non-renewable sources used in a building (global non-renewable

EP ) 7, denoted as EPgl,nren and expressed in kWh/m2.8 The current and potential energy

efficiency in Equation 2 are denoted as EE = EPgl,nren and EEPOT = EPriq,gl,nren,ragg,

respectively.

The response variable Y , as defined in Section 2, exhibits an inverse relationship with

the enhancement in energy efficiency and solely captures positive enhancements. In simpler

terms, the value of EE − EEpot remains non-negative. Thus, a high value for Y signifies

a minimal enhancement rather than a decline in energy efficiency (refer to the upper-left

5The full dataset “CENED+2 Database – Certificazione ENergetica degli EDifici” is available at
https://www.dati.lombardia.it/Energia/Database-CENED-2-Certificazione-ENergetica-deg

li-E/bbky-sde5 and can be used under the Creative Commons Licence Zero (CC0 1.0 universal).
6The full dataset “Energy Performance of Buildings Data: England and Wales” is available at https:

//epc.opendatacommunities.org/
7For the detailed description of the methodology behind these indicators, the reader can refer to the

“Amendment to the Decree of the Minister of Economic Development, June 26, 2009 - Italian National
guidelines for the energy certification of buildings” https://www.mise.gov.it/index.php/it/normativa

/decreti-interministeriali/decreto-interministeriale-26-giugno-2015-adeguamento-linee-gu

ida-nazionali-per-la-certificazione-energetica-degli-edifici
8A description of the original variables is reported in Table A1 in Appendix Appendix A.
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panel in Figure 3). Intriguingly, buildings with lower energy efficiency are anticipated to

experience more substantial improvements (as evident from the lower limit in the upper-right

panel of Figure 3). This observation implies that when a building’s initial energy efficiency

is exceedingly low, any proposed intervention is likely to yield some degree of enhancement.

Conversely, highly efficient buildings cannot exhibit significant performance increments.

Generally, the maximum potential improvement in energy efficiency tends to decrease

as the initial energy efficiency of the building increases, as depicted in the upper bound

of the upper-right panel of Figure 3. Interestingly, the upper bound in the bottom-left

panel of Figure 3 highlights that when EPgl,nren is approximately below 450kWh/m2, the

attainable improvement remains below 1. This underscores a technological constraint within

the building that hinders a complete elimination of inefficiency, preventing it from reaching

the highest energy class.

Table 1 provides an overview of the six distinct structural interventions that experts

can recommend for improving a building’s energy efficiency within the context of an Italian

Energy EPC. These recommendations encompass a range of areas including the building’s

shell, heating and cooling systems, other systems, and renewable sources. Our focus is solely

on EPCs containing at least one recommendation from technicians, as each recommendation

implies a potential increase in energy efficiency.

IMPROVEMENT ID English description Italian description
1 Opaque shell Involucro Opaco
2 Transparent shell Involucro Trasparente
3 Heating System Impianto climatizzazione Inverno
4 Cooling System Impianto climatizzazione Estate
5 Other Systems Altri Impianti
6 Renewable Sources Fonti Rinnovabili

Table 1: Labels for recommendation identifiers in the Italian dataset, presented in both the original Italian
and translated English forms.

From the initial dataset, we exclude observations that do not pertain to private

residential, single-unit, and non-publicly used buildings.9 It is worth noting that EPC

9The analysis focuses on residential buildings classified as E.1(1) and E.1(2) according to the DPR
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information is manually reported in the CENED2+ database, introducing the possibility

of typos and inconsistencies. Consequently, we remove outlier observations with initial or

potential EPgl,nren values below the 1st or above the 99th percentile. Similarly, we exclude

buildings with null potential energy efficiency increases in terms of EPgl,nren or a potential

overall decrease in energy class. Hence, records with null or negative potential improvements

in energy efficiency are considered erroneous or irrelevant to our study’s purpose.

The final dataset of complete cases comprises 205,049 observations and 49 variables (42

of which are used as regressors in the models below) described in Table A1 in Appendix A.10

Histograms depicting the composition of the full dataset and the subset of complete cases

in terms of initial energy efficiency, construction period, and year of EPC issuance can be

found in Figures A1 and A2.

As discussed in the previous section, we also consider a subsample to reduce

computational costs in real-time scenario analyses. Working on a subsample allows for a

relevant decrease in execution time and computational costs leading to almost unchanged

results in terms of predictive accuracy. Consequently, results on the entire dataset are

compared with the one obtained in the sub-sample (about 4.9% of the whole sample). In

both sampling schemes, the whole and the thinned sample, we split the dataset into a training

set (in the sample, 70% of the observations) and a test set (out of sample, 30%).

4.2.1. Forecasting results in the Italian case

The comparison of predictive performance between the tree-based regression models and

the linear models, including LASSO, RIDGE, and ELASTIC NET, is depicted in Table

2. In terms of the correlation between the predicted and actual Y indicator, the tree-based

regression model consistently outperforms the linear models for both the full sample and sub-

sample. This improvement in correlation is observed across the in-sample and out-of-sample

classification. Additional information is available in the Gazzetta Ufficiale, https://www.gazzettauffici
ale.it/eli/id/1993/10/14/093G0451/sg.

10For a complete dataset description, please refer to https://www.dati.lombardia.it/Energia/Data

base-CENED-2-Certificazione-ENergetica-degli-E/bbky-sde5.
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Figure 3: The case of Lombardy (Italy). The initial non-renewable energy performance index
EPgl,nren,initial (horizontal axis) versus the final index EPgl,nren,initial (vertical axis, top left), the
expected performance difference EPgl,nren,initial −EPgl,nren,final (vertical axis, top right), the expected
performance ratio EPgl,nren,final/ EPgl,nren,initial (vertical axis, bottom left), and the response variable
Z = log(EPgl,nren,final)− log(EPgl,nren,initial − EPgl,nren,final) (vertical axis, bottom right). The entire
sample involves 205,049 buildings (gray dots) and a sub-sample of 10,000 buildings (red dots).
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analyses. In the full sample, the tree-based regression models demonstrate a correlation above

0.71 (0.68) for the out-of-sample in the full sample (subsample), whereas the linear models

exhibit correlations around 0.63 (0.57). Notably, while RANDOM FOREST and XGBOOST

models show slightly better performance in the out-of-sample results, the correlation levels

of the tree-based regression model remain consistently aligned.

The table presented here offers an insightful comparison of predictive model performance,

focusing specifically on the Mean Square Error (MSE) and Mean Absolute Error (MAE)

metrics. For the full sample, we observe interesting patterns in terms of MSE and MAE

values.

In both in-sample and out-of-sample scenarios, linear models—such as LASSO, RIDGE,

and ELASTIC NET—exhibit varying levels of performance, indicating a consistent alignment

between the two samples. In the out-of-sample case, LASSO and ELASTIC NET produce

nearly identical MSE and MAE values, with MSE at 0.779 and MAE at 0.675.6 RIDGE

exhibits slightly higher MSE (0.8552) and MAE (0.7139) values. Transitioning to the

subsample analysis, we observe a continuation of consistent trends. Here, the performance of

the linear models remains steady, with both LASSO and ELASTIC NET displaying similar

values of MSE and MAE, both of which outperform the RIDGE case. This observation

emphasizes the stability of these models, particularly in the context of the subsample.

The tree-based models, specifically RANDOM FOREST, XGBOOST, and BART,

demonstrate remarkable performance superiority in both the full and subsample datasets

compared to the linear models. Within the full sample, XGBOOST showcases the highest

accuracy in terms of MSE and MAE, trailed by the BART and RANDOM FOREST

models. However, in the subsample, the performance of XGBOOST and BART experiences a

noticeable decline between in-sample and out-of-sample scenarios, while RANDOM FOREST

maintains greater stability in its performance across the two situations.

The divergence in performance between linear and tree-based models can be attributed

to the non-linearities inherent in the EPC data incorporating the building characteristics,
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the energetic performance, and technicians’ recommendations to reduce the building’s

energy consumption. The ability of tree-based models to better accommodate these

complexities underscores their utility in accurately representing and predicting energy

efficiency improvements.

Full sample Subsample
In sample Out of sample In sample Out of sample

Correlation
LASSO 0.6351 0.6364 0.6150 0.6135
RIDGE 0.6219 0.6231 0.4927 0.4951
ELASTIC NET 0.6354 0.6367 0.6111 0.6113
RANDOM FOREST 0.7028 0.7052 0.6879 0.6831
XGBOOST 0.7705 0.7292 0.7976 0.6684
BART 0.7259 0.7139 0.7236 0.6766

Mean Square Error
LASSO 0.7732 0.7795 0.7998 0.8350
RIDGE 0.8471 0.8552 1.2682 1.3210
ELASTIC NET 0.7729 0.7792 0.8095 0.8429
RANDOM FOREST 0.6583 0.6613 0.6716 0.7087
XGBOOST 0.5275 0.6126 0.4778 0.7347
BART 0.6125 0.6415 0.6085 0.7197

Mean Absolute Error
LASSO 0.6731 0.6755 0.6867 0.7057
RIDGE 0.7096 0.7139 0.8794 0.9049
ELASTIC NET 0.6730 0.6755 0.6912 0.7102
RANDOM FOREST 0.6184 0.6197 0.6251 0.6413
XGBOOST 0.5513 0.5914 0.5315 0.6580
BART 0.5956 0.6071 0.5997 0.6524

Table 2: Correlation (top), Mean Square Error (mid), and Mean Absolute Error (bottom) between actual
and predicted values estimated by Lasso, Ridge, Elastic Net, Random Forest, XGBoost, and BART. In-
sample and out-of-sample results for the whole sample (first and second column) and a random subsample
(third and fourth column) for the Italian case.

4.2.2. Most relevant variables for the Italian case

Variable importance holds a crucial significance in comprehending the individual

contributions of features to the predictive outcomes of machine learning models. Within

the context of EPCs, this analysis assumes even greater relevance as it sheds light on

the relative influence of each feature, encompassing building characteristics and technician
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recommendations, in predicting energy efficiency improvements.

Table 3 presents the ranking of variable importance for the top 15 variables across a

range of models, including linear models like LASSO, RIDGE, and ELASTIC NET, as

well as tree-based models like RANDOM FOREST, XGBOOST, and BART. These models

encompass selected variables derived from both building characteristics and technician

recommendations, denoted by the label “R :”. Notably, the preeminent variable across

all models is the “R1: Opaque Shell” recommendation, representing one of the six potential

suggested implementations. This recommendation involves applying insulating materials to

the solid structural components, aimed at enhancing the building’s thermal performance

by reducing heat loss in colder periods and heat gain in hotter periods. This practice

significantly contributes to energy efficiency by diminishing the necessity for heating and

cooling systems, resulting in decreased energy consumption and utility bills. Another

feature consistently present in all models, albeit with varying levels of importance, is the

number of recommendations. The interpretation is straightforward: the greater the count

of suggested interventions proposed by experts, the greater the potential enhancement in

energy efficiency. Other building characteristics encompass factors such as “EE WINTER”

(Energy Efficiency in Winter) and “AGE BAND” (Construction period). When examining

the tree-based models, in addition to R1 and the number of recommendations, it becomes

clear that frequently chosen variables include “THERMAL EFFICIENCY”, “SV RATIO”

(Surface/Volume ratio), and “CURRENY ENERGY EFFICIENCY REN” (Current energy

efficiency for renewables) which further emphasizes the significance of current structural

attributes in determining a building’s potential energy efficiency gain. Regarding other

recommendations made by the experts in the EPC, “R2: Transparent Shell” is selected

both by the RANDOM FOREST and the BART models. Transparent shells impact energy

consumption through several mechanisms. Firstly, they allow natural light to penetrate

indoor spaces, reducing the need for artificial lighting during daylight hours. This contributes

to energy savings and decreases electricity consumption. Secondly, transparent shells
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influence the thermal performance of a building. While they allow solar radiation to enter,

they can also lead to heat gain, especially during warmer periods. To mitigate this, advanced

glazing systems with low solar heat gain coefficients are often employed, diminishing the

influence of solar radiation on indoor temperatures and cooling systems. Efforts to enhance

energy efficiency in buildings encompass the utilization of double or triple glazing, low-

emissivity coatings, and insulated frames to curtail heat transfer through windows and

mitigate thermal bridging. The BART model selects two additional recommendations,

namely the “R3: Heating System” and “R6: Renewable Sources”. The former typically

involves upgrading or optimizing components such as boilers, radiators, and heat pumps

to reduce heat loss during colder months, improve heat distribution, and enhance overall

energy performance. The latter entails harnessing solar energy, wind power, hydropower,

and geothermal energy to generate electricity or heat, thereby reducing reliance on non-

renewable energy sources.

Additionally, the rank correlation presented in Table 4 provides valuable insights into

the consistency of variable importance rankings among different machine learning models.

This analysis sheds light on the robustness and stability of the feature selection process,

offering a deeper understanding of which variables consistently contribute to the predictive

performance across diverse modeling techniques. Notably, the linear models – LASSO,

RIDGE, and ELASTIC NET – exhibit a varying correlation with each other, with values

ranging from 0.42 to 0.86. The highest correlation for linear models is in the case of LASSO

and ELASTIC NET. On the other hand, the tree-based models – including RANDOM

FOREST, XGBOOST, and BART – show correlation values ranging from 0.60 to 0.80. This

suggests that these models consistently agree on the relative importance of variables for

predicting energy efficiency improvement Comparatively, the linear and tree-based models

show almost no correlation, indicating a lack of commonalities in the feature importance

rankings. The highest correlation values are observed in the case of ELASTIC NET with

XGBOOST and BART, having values of 0.13 and 0.18, respectively.
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Linear Models

LASSO RIDGE ELASTIC NET
R1: Opaque Shell R1: Opaque Shell R1: Opaque Shell
Domestic Water System: Heat Pump Main Heating System Main Fuel: Solar Heating Domestic Water System: Heat Pump
Surface/Volume Ratio Main Heating System: Solar Heating Number of Recommendations
R6: Renewables Main Heating System Year: 1930-1945 Surface/Volume Ratio
Number of Recommendations Number of Recommendations R6: Renewables
Winter Energy Efficiency (Red) Winter Energy Efficiency (yellow) Winter Energy Efficiency (Red)
Age Band: >2006 Winter Energy Efficiency (Red) Age Band: >2006
Cooling System Flag Transaction Type: New Dwelling Cooling System Flag
Transaction Type: New Dwelling Winter Energy Efficiency (green) Transaction Type: New Dwelling
Age Band: 1993-2006 Main Heating System: Joule Effect Generator Age Band: 1993-2006
Main Heating System: Joule Effect Generator Domestic Water System Year: 1930-1945 Summer Energy Efficiency (green)
Main Heating System: Biomass Generator Goods and People Transport System Flag Main Heating System: Biomass Generator
R4: New Cooling System Age Band: >2006 R4: New Cooling System
Summer Energy Efficiency (green) Domestic Water System: Heat Pump Domestic Water System Energy Efficiency
Domestic Water System Energy Efficiency R6: Renewables Domestic Water System: District Heating

Tree-based models

RANDOM FOREST XGBOOST BART
R1: Opaque Shell R1: Opaque Shell R1: Opaque Shell
Number of Recommendations Number of Recommendations R3: Heating System
Thermal Efficiency Thermal Efficiency Thermal Efficiency
Age Band Surface/Volume Ratio Number of Recommendations
CO2 Emissions Winter Energy Efficiency (Red) R6: Renewable Sources
Difference of EE with Similar Building when New Thermal Transmittance Surface/Volume Ratio
Surface/Volume Ratio Heating System Efficiency R2: Transparent Shell
Thermal Transmittance Cooling System Flag Winter Energy Efficiency (yellow)
Dispersing Surface CO2 Emissions Domestic Water System Main Fuel: Natural Gas
Heating System Efficiency Difference of EE with Similar Building when New Solar Heating Flag
Effective Heated Surface Number of Residential Units Cooling System Flag
Natural Gas Consumption Current Energy Efficiency Renewable Age Band: 1993-2006
Domestic Water System Efficiency Dispersing Surface Current Energy Efficiency Renewable
Current Energy Efficiency Renewable Domestic Water System Efficiency Main Heating System: Joule Effect Generator
R2: Transparent Shell Age Band: 1993-2006 Summer Energy Efficiency (green)

Table 3: Variable Importance Rankings for the Top 15 Variables across LASSO, RIDGE, ELASTIC NET,
RANDOM FOREST, XGBOOST, and BART models for the Italian case.

LASSO RIDGE ELASTIC NET RANDOM FOREST XGBOOST BART

LASSO -
RIDGE 0.42 -

ELASTIC NET 0.86 0.51 -
RANDOM FOREST -0.10 -0.02 0.02 -

XGBOOST 0.02 -0.08 0.13 0.80 -
BART 0.09 0.08 0.18 0.69 0.60 -

Table 4: Rank correlation between variable importance ranking across LASSO, RIDGE, ELASTIC NET,
RANDOM FOREST, XGBOOST, and BART Models for the Italian case.
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The previous findings highlight the inherent non-linear nature of the data, which makes

tree-based models more effective at revealing patterns that linear models cannot capture. A

valuable tool to delve deeper into this point is the Partial Dependence Plot (PDP), derived

from the partial dependence function (Friedman, 2001), which illustrates the dependency

of the potential variation of energy performance on a specific building’s characteristics.

As an illustrative example, Figure 4 provides for each considered model the PDP for the

“THERMAL EFFICIENCY” characteristic which measures in kilowatt-hours per square

meter (kWh/m2) how efficiently a building can be heated during the winter. Tree-based

models reveal a negative non-linear relationship and suggest that the potential improvement

in energy efficiency plateaus beyond 200kWh/m2. For the sake of completeness, we also

include in the figure the PDP for the linear models, which is indeed linear. This inherent

non-linearity is a key factor contributing to the superior forecasting abilities of tree-based

models. Buildings exhibit intricate relationships between their characteristics and potential

energy efficiency improvements. This complexity appears to be better captured by tree-based

models compared to linear models.

4.3. The UK case

In the analysis, we focus on residential buildings in the London area (local area codes from

E09000001 to E09000033) and consider EPCs issued between 2014 and 2021.11 We select

the current and potential energy efficiency indicators, CURRENT ENERGY EFFICIENCY

and POTENTIAL ENERGY EFFICIENCY, which account for the cost of energy required

for space and water heating and lighting multiplied by fuel costs.12 This indicator considers

the cost of energy and is expressed in £/m2/year, where cost is derived from kWh.

Importantly, it should be noted that in the context of Italy, a higher value of

11For a detailed description of the variables, the reader can refer to the guidance page available at
https://epc.opendatacommunities.org/docs/guidance.

12See https://www.gov.uk/guidance/standard-assessment-procedure for a detailed description
of the methodology used to compute these indices and Table A2 in Appendix A for a description of the
variables included in this analysis.
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Figure 4: Partial Dependence Plots (PDPs) in the Italian case for the “THERMAL EFFICIENCY”
characteristic across LASSO, RIDGE, ELASTIC NET, RANDOM FOREST, XGBOOST, and BART. For
each model, the plot illustrates the relationship between thermal efficiency (measured in kWh/m2) on the
x-axis and the predicted potential variation of energy performance on the y-axis. The limits of the latter are
set by series min-max values.

the energy efficiency indicator is indicative of lower energy efficiency. Conversely, in

the UK, elevated values of the energy efficiency index correspond to heightened energy

performance. For consistency of the two cases, we consider the inverse of the above

indicators, i.e. EE = (1/CURRENT ENERGY EFFICIENCY) · 100 and EEPOT =

(1/POTENTIAL ENERGY EFFICIENCY) · 100 to compute the target variable as in

Equation 2.

Table 5 shows 63 structural interventions that experts can recommend for improving

a building’s energy efficiency. The recommendation identifiers in the table have been re-

encoded to address duplicates in the dataset and ensure that the labels accurately represent

each unique intervention. For instance, improvement IDs 11, 12, 13, 14, 15, 17, and 18
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were consolidated into a single intervention labeled “Upgrade heating controls”, which

emphasizes the same recommended action of enhancing heating controls across multiple

instances. Other examples of re-encoded recommendations include “Replace boiler with new

condensing boiler” (IDs 20 and 21) and “Wood pellet stove with boiler and radiators” (IDs

23 and 39), reflecting the consolidation of similar interventions under standardized labels.

The total number of interventions after the re-encoding process is 41.

In contrast to the Italian dataset, which encompasses a more limited set of 6

recommendations, the UK dataset exhibits a higher level of granularity and diversity in

the types of interventions such as upgrading heating controls, insulation enhancements

for different building components, replacement of heating systems with more efficient

alternatives, installation of renewable energy sources like solar panels and wind turbines,

as well as improvements in lighting and glazing.

Finally, we consider a record complete when data points are provided for all 82 features

involved.13 The comprehensive list of variables considered for our study can be found in

Table A2 of Appendix A. The dataset initially contains 1,041,806 rows, which is reduced to

445,661 complete records after cleaning. A subsample of 10,000 units is randomly selected

from this complete set, mirroring the approach undertaken in the Italian case. All other

aspects not addressed in this paper adhere to the guidelines provided by the data owner

without modification.

4.3.1. Forecasting results in the UK case

As for the Italian case, we evaluate linear and tree-based models in terms of correlation,

MSE, and MAE, as detailed in Table 6. Beginning with the correlation analysis, the table

illustrates the degree of linear association between predicted and actual values. For both

the full sample and subsample scenarios, the models consistently exhibit robust correlation

values, surpassing those observed in the Italian case. In the out of sample scenario, linear

13To handle missing values, we remove all the records including “NA”, “N A”, “N/ A,” “N/A”, “N/ A”,
“NO DATA!”, “INVALID!”, “Not recorded”, “Not applicable”, or empty data points.
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Improvement ID New improvement ID Description
1 1 Insulate hot water cylinder with 80 mm jacket
2 2 Increase hot water cylinder insulation
3 3 Add additional 80 mm jacket to hot water cylinder
4 4 Hot water cylinder thermostat
5 5 Increase loft insulation to 270 mm
6 6 Cavity wall insulation
7 7 50 mm internal or external wall insulation
8 8 Replace single glazed windows with low-E double glazing
9 9 Secondary glazing to single glazed windows
10 10 Draughtproof single-glazed windows
11 11 Upgrade heating controls
12 11 Upgrade heating controls
13 11 Upgrade heating controls
14 11 Upgrade heating controls
15 11 Upgrading heating controls
16 12 Time and temperature zone control
17 13 Upgrade heating controls
18 13 Upgrade heating controls
19 14 Solar water heating
20 15 Replace boiler with new condensing boiler
21 15 Replace boiler with new condensing boiler
22 16 Replace boiler with biomass boiler
23 17 Wood pellet stove with boiler and radiators
39 17 Wood pellet stove with boiler and radiators
24 18 Fan assisted storage heaters and dual immersion cylinder
30 18 Fan assisted storage heaters and dual immersion cylinder
25 19 Fan assisted storage heaters
31 19 Fan-assisted storage heaters
26 20 Replacement warm air unit
27 21 Change heating to gas condensing boiler
29 21 Change heating to gas condensing boiler
32 21 Change heating to gas condensing boiler
34 22 Solar photovoltaic panels, 2.5 kWp
35 23 Low energy lighting for all fixed outlets
36 24 Replace heating unit with condensing unit
37 25 Install condensing boiler
38 25 Install condensing boiler
40 26 Change room heaters to condensing boiler
41 26 Change room heaters to condensing boiler
42 27 Replace heating unit with mains gas condensing unit
28 28 Condensing oil boiler with radiators
43 28 Condensing oil boiler with radiators
44 29 Wind turbine
45 30 Flat roof insulation
46 31 Room-in-roof insulation
47 32 Floor insulation
48 33 High performance external doors
49 34 Heat recovery system for mixer showers
50 35 Flue gas heat recovery device in conjunction with boiler
56 36 Replacement glazing units
57 37 Suspended floor insulation
58 38 Solid floor insulation
59 39 High heat retention storage heaters and dual immersion cylinder
61 39 High heat retention storage heaters and dual immersion cylinder
60 40 High heat retention storage heaters
62 40 High heat retention storage heaters
63 41 Party wall insulation

Table 5: Original (first column) and re-coded (second column) recommendation identifiers, along with
detailed descriptions of the interventions (third column), in the context of the UK dataset.
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models display correlation coefficients hovering around 0.92, whereas all tree-based models

demonstrate even stronger correlation, notably XGBOOST, and BART, with correlation

coefficients ranging from 0.96 to 0.97. This pattern persists across the MSE and MAE

metrics in all the investigated cases. Once more, XGBoost and BART stand out by

achieving the lowest MSE and MAE values, underscoring their robust prediction accuracy.

When scrutinizing performance within model types, it becomes clear that tree-based models

outperform their linear counterparts across all metrics. This reaffirms, for the UK case

as well, that the inclusion of non-linear characteristics captured by the tree-based models

significantly enhances their predictive capabilities in comparison to the linear models.

Full sample Subsample
In sample Out of sample In sample Out of sample

Correlation
LASSO 0.9226 0.9222 0.9241 0.9218
RIDGE 0.9196 0.9192 0.9211 0.9185
ELASTIC NET 0.9227 0.9223 0.9230 0.9211
RF 0.9469 0.9462 0.9405 0.9411
XGBOOST 0.9816 0.9745 0.9880 0.9565
BART 0.9681 0.9661 0.9686 0.9555

Mean Square Error
LASSO 0.1635 0.1650 0.1630 0.1771
RIDGE 0.1706 0.1721 0.1705 0.1860
ELASTIC NET 0.1633 0.1647 0.1655 0.1789
RF 0.1166 0.1185 0.1393 0.1478
XGBOOST 0.0402 0.0556 0.0268 0.1000
BART 0.0690 0.0735 0.0689 0.1026

Mean Absolute Error
LASSO 0.3085 0.3092 0.3112 0.3192
RIDGE 0.3151 0.3160 0.3172 0.3269
ELASTIC NET 0.3083 0.3090 0.3139 0.3213
RF 0.2497 0.2514 0.2697 0.2768
XGBOOST 0.1383 0.1613 0.1177 0.2231
BART 0.1895 0.1945 0.1961 0.2302

Table 6: Correlation (top), Mean Square Error (mid), and Mean Absolute Error (bottom) between actual
and predicted values estimated by LASSO, RIDGE, ELASTIC NET, RANDOM FOREST, XGBOOST, and
BART. In-sample and out-of-sample results for the whole sample (first and second column) and a random
subsample (third and fourth column) for the UK case.
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4.3.2. Most relevant variables for the UK case

The comparison of variable importance rankings across different machine learning models

provides valuable insights into the significance of the top 15 features for predicting energy

efficiency improvements, as demonstrated in Table 7. As for the Italian case, this discussion

focuses on the similarities observed within linear models, the tree-based models, and the

selection of features between linear and non-linear models.

Starting with the linear models, there is a consistent emphasis on factors related

to heating systems, particularly the recommendation of using dual-fuel systems and

the incorporation of High Heat Retention Storage (HHRS) heaters with dual immersion

cylinders. It’s noteworthy that several recommendations made by technicians are included

in the most important selected features. For instance, upgrading heating controls and

changing to gas-condensing boilers also emerge as important features across all three linear

models. These similarities underscore the agreement of linear models on energy efficiency

improvements as shown by the rank correlation in Table 8. Specifically, LASSO and

ELASTIC NET provide approximately the same variable selection as reported by the

correlation value of 0.98.

In contrast, the tree-based models exhibit a broader range of variables in their top

importance rankings. As for the Italian case, all the considered models include a

recommendation for wall insulation. Specifically, recommendation R7, ”50 mm internal

or external wall insulation,” entails the application of insulation materials to either the

interior or exterior walls of a building with a thickness of 50 millimeters. This practice

aims to enhance the energy efficiency of the building by reducing heat loss through its walls.

Insulating walls can lead to improved thermal comfort and lower energy consumption for

heating and cooling, as it helps maintain a more stable indoor temperature.

While there is some overlap with the linear models, the tree-based models exhibit a higher

degree of complexity and granularity in identifying relevant features. Notably, the tree-based

models place a strong emphasis on variables related to the current environmental impact,
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energy efficiency of heating systems, and heating costs. Additionally, these models highlight

the significance of factors such as low-energy lighting and hot water energy efficiency,

which were not as prominently featured in the linear models. Interestingly, the RANDOM

FOREST, XGBOOST, and BART models incorporate the ”number of recommendations”

feature made by technicians. As observed for the Italian case, this inclusion underscores the

idea that a greater number of suggested interventions corresponds to a potentially higher

level of energy-efficient improvement.

When comparing the feature selection process between linear and non-linear models, it

becomes evident that tree-based models tend to encompass a broader spectrum of variables

within their feature importance rankings. This observation is substantiated by the rank

correlation values, which exhibit lower scores (ranging from 0.58 to 0.73) for the tree-based

models in contrast to the linear models (ranging from 0.79 to 0.98). Additionally, the

correlation between the linear and non-linear models is more varied in the Italian case,

ranging from 0.07 to 0.49. Notably, the highest correlation for the linear models is observed

with RIDGE and BART, exhibiting a correlation of 0.49.

Similarly to the Italian case, Figure 5 provides an illustrative example of the Partial

Dependence Plot (PDP) using the “WALLS ENERGY EFF” characteristic, which pertains

to the energy efficiency rating of a building’s walls. This rating is categorized as “very poor”,

“poor”, “average”, “good”, or “very good”, and is typically represented on energy certificates

using a one to five-star scale. This assessment helps evaluate the energy performance

of the building’s walls, contributing to efforts aimed at enhancing energy conservation.

Interestingly, the RANDOM FOREST and XGBOOST models reveal a skewed U-shaped

non-linear trend, where the most substantial improvement occurs from the “poor” to the

“average” category, and a slight decline in the potential energy efficiency improvement

is observed from the “very poor” to the “poor” category. The BART model exhibits a

similar trend, with the most significant improvement occurring from the “average” to the

“good” category, and a minor decline from the “poor” to the “average” category. The
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Linear Models

LASSO RIDGE ELASTIC NET
Main Fuel: Dual Main Fuel: Dual Main Fuel: Dual
R39: HHRS heaters - dual immersion cylinder R39: HHRS heaters - dual immersion cylinder R39: HHRS heaters - dual immersion cylinder
R21: Change heating to gas condensing boiler R21: Change heating to gas condensing boiler R21: Change heating to gas condensing boiler
R40: High heat retention storage heaters Construction Period: >2012 R40: High heat retention storage heaters
R13: Upgrade heating controls Main Fuel: Liquid Biomass R13: Upgrade heating controls
R26: Change room heaters to condensing boiler R40: High heat retention storage heaters R26: Change room heaters to condensing boiler
R7: 50 mm internal or external wall insulation R26: Change room heaters to condensing boiler R7: 50 mm internal or external wall insulation
R30: Flat roof insulation R7: 50 mm internal or external wall insulation R30: Flat roof insulation
Construction Period: >2012 R30: Flat roof insulation Construction Period: >2012
Main Fuel: Liquid Biomass Main Fuel: LPG Main Fuel: Liquid Biomass
Main Fuel: Oil R20: Replacement warm air unit Main Fuel: Oil
Solar Water Heating Flag Solar Water Heating Flag Solar Water Heating Flag
Transaction Type: Renewable Heat Incentive R9: Secondary glazing to single glazed windows Transaction Type: Renewable Heat Incentive
R20: Replacement warm air unit Transaction Type: Renewable Heat Incentive R12: Time and temperature zone control
R12: Time and temperature zone control R13: Upgrade heating controls R20: Replacement warm air unit

Tree-based models

RANDOM FOREST XGBOOST BART
Current Environmental Impact Current Environmental Impact Current Environmental Impact
Number of Recommendations Number of Recommendations R30: Flat roof insulation
Current Heating Cost Main Heating System Energy Efficiency R7: 50 mm internal or external wall insulation
Current Energy Consumption Current Heating Cost Main Heating System Energy Efficiency
Local Authority Label R23: Low energy lighting for all fixed outlets Current Heating Cost
Main Heating System Energy Efficiency R7: 50 mm internal or external wall insulation Number of Recommendations
R7: 50 mm internal or external wall insulation Current Energy Consumption R40: High heat retention storage heaters
Current CO2 Emissions Main Heating System Environmental Efficiency R39: HHRS heaters - dual immersion cylinder
Walls Energy Efficiency R30: Flat roof insulation Walls Energy Efficiency
Hot Water Energy Efficiency Walls Energy Efficiency R5: Increase loft insulation to 270 mm
Walls Environmental Efficiency Hot Water Energy Efficiency R15: Replace boiler with new condensing boiler
Current Cost Hot Water System Current Cost Hot Water System R6: Cavity wall insulation
Construction Period R39: HHRS heaters - dual immersion cylinder Current Cost Hot Water System
R23: Low energy lighting for all fixed outlets R34: Heat recovery system for mixer showers Main Heating System Environmental Efficiency
Low Energy Lighting Low Energy Lighting Current CO2 Emissions

Table 7: Variable Importance Rankings for the Top 15 Variables across LASSO, RIDGE, ELASTIC NET,
RANDOM FOREST, XGBOOST, and BART Models for the UK case.

LASSO RIDGE ELASTIC NET RANDOM FOREST XGBOOST BART

LASSO -
RIDGE 0.79 -

ELASTIC NET 0.98 0.80 -
RANDOM FOREST 0.18 0.23 0.19 -

XGBOOST 0.07 0.27 0.12 0.58 -
BART 0.32 0.49 0.35 0.67 0.73 -

Table 8: Rank correlation between variable importance ranking across LASSO, RIDGE, ELASTIC NET,
RANDOM FOREST, XGBOOST, and BART Models for the UK case.
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unexpected trend of decreasing potential energy efficiency gains in buildings with improved

“WALLS ENERGY EFF” ratings from the lowest categories might be attributed to the

potential miscategorization of the two types that could be very close from a technical

standpoint. If this is the case, an overlap between categories could blur the distinction

between them, potentially leading to instances of incorrect classification.

LASSO RIDGE ELASTIC NET

1 3 5 1 3 5 1 3 5

RANDOM FOREST XGBOOST BART

1 3 5 1 3 5 1 3 5

Figure 5: Partial Dependence Plots (PDPs) in the UK case for the “WALLS ENERGY EFF” characteristic
across LASSO, RIDGE, ELASTIC NET, RANDOM FOREST, XGBOOST, and BART. For each model,
the plot illustrates the relationship between the energy efficiency the rating of a building’s walls efficiency
on the x-axis, and the predicted potential variation of energy performance on the y-axis. The limits of the
latter are set by series min-max values.

5. Conclusion and Policy implications

In this study, we explored the determinants of energy efficiency in residential buildings

by utilizing large and comprehensive datasets of Energy Performance Certificates (EPCs)

from Lombardy, Italy, and London, UK. The primary objective is to gain insights into the
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factors influencing energy efficiency and to develop accurate forecasts of potential efficiency

improvements using the buildings’ characteristics and the recommendations made by the

experts in the ECP.

Our study has several policy implications for policymakers and stakeholders interested

in improving energy efficiency in residential buildings. First, our findings demonstrated

that tree-based models have the ability to more accurately capture the complexities and

non-linear dependencies present in the EPC data. This finding suggests that the non-

linear relationships observed between predictors and target variables in both countries can

be effectively modeled using tree-based approaches. By leveraging these models, we can

improve our understanding of the determinants of energy efficiency and make more accurate

predictions regarding potential efficiency improvements in residential buildings. Therefore,

policymakers can use these models to develop targeted policies to improve energy efficiency

in residential buildings by identifying the key factors that contribute to (energy) inefficiency.

Second, this modeling framework can be extended to include the cost of the transition

resulting from specific government green policies. This can help policymakers develop cost-

effective policies and achieve the desired outcomes in terms of improving energy efficiency in

residential buildings. For example, our model can be used to estimate the cost of transitioning

from traditional heating systems to more energy-efficient systems, such as heat pumps or solar

panels. Billio et al. (2022) highlight a historical lack of attention by policymakers towards

insulation policies. This can be particularly helpful in estimating the cost-effectiveness of

implementing these policies to improve energy efficiency in residential buildings. It can also

be used to assess the effectiveness of combining renewable energy sources, like solar rooftop

photovoltaic systems and heat pumps, with other sustainable solutions, such as green roofs,

in improving energy efficiency in buildings, particularly in specific climate and architectural

conditions.

Finally, policymakers could use the proposed models to simulate the impact of different

climate scenarios on energy efficiency in residential buildings. This can help them identify
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the most effective policies for mitigating the impact of climate change on energy consumption

in residential buildings. For example, one could simulate the impact of alternative climate

scenarios based on the energy consumption in residential buildings and identify the most

effective policies for reducing energy consumption in these scenarios.

Overall, our study provides valuable insights into the determinants of energy efficiency

in residential buildings and highlights the potential of tree-based models for forecasting

potential efficiency improvements. The presented model can support policymakers and

stakeholders in developing effective and sustainable strategies for improving energy efficiency

in residential buildings, ultimately reducing carbon emissions and energy costs.
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Appendix A. Supplementary Insights: Italian and UK Dataset Details

In this section, we provide additional information on the datasets used in our analysis

for Italy (Section Appendix A.1) and the UK (Section Appendix A.2). For each country, we

present histograms that compare the original databases with the subsets of complete cases

considered in our study to demonstrate the absence of selection bias in our identification

strategy. Specifically, we examine variables such as construction period14, year of EPC

issuance, initial energy rating, and climatic area (for Italy only). Additionally, we provide

a comprehensive list of variables included as covariates in the estimated models for both

countries, as presented in Tables A1 and A2. Additionally, we focus on the various

recommendations assessors can suggest to increase energy efficiency, as shown in Table 1.

Lastly, in Section Appendix A.3, we present supplementary graphical results for both the

Italian and UK analyses.

Appendix A.1. The Italian dataset

The section provides a comprehensive overview of the Italian dataset, featuring key

figures and tables for detailed analysis. Figure A1 showcases the composition of the original

Italian dataset, with insights into the construction period, inspection year, energy rating,

and climatic area. Building on that, Figure A2 delves into the composition of the 205,049

complete cases within the Italian dataset, providing a closer examination of the same

variables. Moreover, Table A1 presents essential information, including original and English

labels, descriptions, and variable types, for the 49 variables analyzed in the Italian case.

For further clarity, Table 1 illustrates the original and English labels for recommendation

identifiers in the Italian dataset.

14Following discussions with the EPC Data Team, observations falling under the “2007 onwards” class in
the UK database were reclassified as ”2007-2011”.
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Figure A1: Composition in terms of the construction period (top left), inspection year (top right), energy
rating (bottom left), and climatic area (bottom right) of the original Italian dataset.
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Figure A2: Composition in terms of the construction period (top left), inspection year (top right), energy
rating (bottom left), and climatic area (bottom right) of the 205,049 complete cases in the Italian dataset.

Appendix A.2. The UK dataset

The appendix presents essential visualizations and tables related to the UK dataset,

shedding light on crucial aspects of the analysis. Figure A3 provides a comprehensive

composition overview, highlighting the construction period, inspection year, and energy

rating of the original UK dataset. Building on that, Figure A4 focuses on a sub-sample,

comprising 445,661 complete cases, and offers valuable insights into the distribution of the
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Variable name Description Variable type Original variable

1 MUNICIPALITY Municipality name Categorical COMUNE
2 CLIMATIC AREA Climatic area (D or E) Categorical ZONA CLIMATICA
3 AGE BAND Construction period Categorical ANNO COSTRUZIONE
4 POTENTIAL ENERGY RATING Potential energy rating (A4-G) Categorical RIQ CLASSE RAGG
5 CURRENT ENERGY RATING Current energy rating (A4-G) Categorical CLASSE ENERGETICA
6 MAIN HEATING SYSTEM Main heating system type Categorical CI TIPO IMPIANTO 1
7 MAIN HEATING SYSTEM YEAR Installation year of main heating system Categorical CI ANNO INSTALLAZIONE 1
8 MAIN HEATING SYSTEM MAIN FUEL Main fuel of main heating system Categorical CI VETTORE ENERGETICO 1
9 DOMESTIC WATER SYSTEM Domestic water system type Categorical PA TIPO IMPIANTO 1
10 DOMESTIC WATER SYSTEM YEAR Installation year of domestic water system Categorical PA ANNO INSTALLAZIONE 1
11 DOMESTIC WATER SYSTEM MAIN FUEL Main fuel of domestic heating system Categorical PA VETTORE ENERGETICO 1
12 year Year of inspection Categorical DATA INS
13 TRANSACTION TYPE Reason for EPC issuance Categorical NUOVA COSTRUZIONE,

PASSAG-
GIO PROPRIETA, LO-
CAZIONE, RISTRUT-
TURAZIONE IMPORTANTE,
RIQUALIFI-
CAZIONE ENERGETICA

14 date Inspection date Date DATA INS
15 COOLING SYSTEM FLAG Dummy for cooling system Dummy CLIMATIZZAZIONE ESTIVA
16 MECHANICAL VENTILATION FLAG Dummy for mechanical ventilation Dummy VENTILAZIONE MECCANICA
17 GOODS PEOPLE TRANSPORT FLAG Dummy for goods and people transport Dummy TRASPORTO PERSONE COSE
18 r 1 Recommendation: opaque shell Dummy DS TIPO INTERVENTO 1
19 r 2 Recommendation: transparent shell Dummy DS TIPO INTERVENTO 2
20 r 3 Recommendation: new heating system Dummy DS TIPO INTERVENTO 3
21 r 4 Recommendation: new cooling system Dummy DS TIPO INTERVENTO 4
22 r 5 Recommendation: change other systems Dummy DS TIPO INTERVENTO 5
23 r 6 Recommendation: renewables Dummy DS TIPO INTERVENTO 6
24 LPG FLAG Dummy for LPG Dummy CONSUMI GPL
25 DISTRICT HEATING FLAG Dummy for district heating Dummy CONSUMI TELERISCALDAMENTO
26 DIESEL FLAG Dummy for Diesel Dummy CONSUMI GASOLIO
27 BIOMASS FLAG Dummy for biomass Dummy CONSUMI BIOMASSE GASSOSE,

CON-
SUMI BIOMASSE LIQUIDE,
CON-
SUMI BIOMASSE SOLIDE

28 SOLAR PHOTOVOLTAIC FLAG Dummy for solar photovoltaic Dummy CONSUMI SOLARE FOTOVOLTAICO
29 SOLAR HEATING FLAG Dummy for solar heating Dummy CONSUMI SOLARE TERMICO
30 N RESIDENTIAL UNIT Number of residential units in the building Numeric NUMERO UNITA IMMOBILIARI
31 EFFECTIVE HEATED SURFACE Effective heated surface (square meters) Numeric SUPERFICIE UTILE RISCALDATA
32 EE WINTER Energy efficiency in winter Numeric PI
33 EE SUMMER Energy efficiency in summer Numeric PE
34 CURRENT ENERGY EFFICIENCY Current energy efficiency (the lowest the better) Numeric EP GL NREN
35 CURRENT ENERGY EFFICIENCY REN Current energy efficiency for renewables (the

lowest the better)
Numeric EP GL REN

36 POTENTIAL ENERGY EFFICIENCY Potential energy efficiency (the lowest the better) Numeric RIQ EP GL NREN RAGG
37 CO2 EMISSIONS CO2 emissions Numeric EMISSIONI CO2
38 ELECTRICITY CONSUMPTION Electricity consumption Numeric CONSUMI ENERGIA ELETTRICA
39 NATURAL GAS CONSUMPTION Natural gas consumption Numeric CONSUMI GAS NATURALE
40 DISPERSING SURFACE Dispersing surface Numeric SUPERFICIE DISPERDENTE
41 SV RATIO Surface to volume ratio Numeric RAPPORTO SV
42 THERMAL EFFICIENCY Thermal efficiency Numeric EP H ND
43 SUMMER EQ SOLAR AREA Summer equivalent solar area Numeric A SOL EST A SUP UTILE
44 THERMAL TRANSMITTANCE Thermal transmittance Numeric Y IE
45 HEATING SYSTEM EFFICIENCY Heating system energy efficiency Numeric CI EFFICIENZA MEDIA
46 DOMESTIC WATER SYSTEM EFF Domestic water system energy efficiency Numeric PA EFFICIENZA MEDIA
47 N R Number of recommendations Numeric DS TIPO INTERVENTO 1,

DS TIPO INTERVENTO 2,
DS TIPO INTERVENTO 3,
DS TIPO INTERVENTO 3,
DS TIPO INTERVENTO 4,
DS TIPO INTERVENTO 5,
DS TIPO INTERVENTO 6

48 DIFF ENERGY EFF NEW BUILD Difference in energy efficiency with respect to
similar building when new

Numeric Y

49 Z Energy efficiency increase (logistic transformation) Numeric EP GL NREN,
RIQ EP GL NREN RAGG

Table A1: Original (fourth column) and English (first column) labels, description (second column), and
variable type (third column) of the 49 variables included in the analysis for the Italian case.
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construction period, inspection year, and energy rating within this subset.

Furthermore, Table A3 contains information about the 82 variables analyzed in the UK

case, including their labels, descriptions, and variable types. This table serves as a valuable

reference for understanding the dataset’s characteristics. Moreover, Table A4 features both

the original and re-coded recommendation identifiers, along with detailed descriptions of the

interventions within the UK dataset.
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rating (bottom) of the original UK dataset.
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Variable name Description Variable type

1 BUILT FORM Building type Categorical
2 CONSTRUCTION PERIOD Construction period Categorical
3 FLOOR LEVEL Floor level Categorical
4 GLAZED TYPE Glazed type Categorical
5 LOCAL AUTHORITY LABEL Local authority Categorical
6 MAIN FUEL Main fuel type Categorical
7 MECHANICAL VENTILATION Mechanical ventilation system type Categorical
8 PROPERTY TYPE Property type Categorical
9 TENURE Tenure type Categorical
10 TRANSACTION TYPE Transaction type Categorical
11 YEAR Year of inspection Categorical
12 MAINS GAS FLAG Mains gas flag Dummy
13 r 1 Recommendation: Insulate hot water cylinder with 80 mm jacket Dummy
14 r 2 Recommendation: Increase hot water cylinder insulation Dummy
15 r 3 Recommendation: Add additional 80 mm jacket to hot water cylinder Dummy
16 r 4 Recommendation: Hot water cylinder thermostat Dummy
17 r 5 Recommendation: Increase loft insulation to 270 mm Dummy
18 r 6 Recommendation: Cavity wall insulation Dummy
19 r 7 Recommendation: 50 mm internal or external wall insulation Dummy
20 r 8 Recommendation: Replace single glazed windows with low-E double glazing Dummy
21 r 9 Recommendation: Secondary glazing to single glazed windows Dummy
22 r 10 Recommendation: Draughtproof single-glazed windows Dummy
23 r 11 Recommendation: Upgrading heating controls Dummy
24 r 12 Recommendation: Time and temperature zone control Dummy
25 r 13 Recommendation: Upgrade heating controls Dummy
26 r 14 Recommendation: Solar water heating Dummy
27 r 15 Recommendation: Replace boiler with new condensing boiler Dummy
28 r 16 Recommendation: Replace boiler with biomass boiler Dummy
29 r 17 Recommendation: Wood pellet stove with boiler and radiators Dummy
30 r 18 Recommendation: Fan assisted storage heaters and dual immersion cylinder Dummy
31 r 19 Recommendation: Fan assisted storage heaters Dummy
32 r 20 Recommendation: Replacement warm air unit Dummy
33 r 21 Recommendation: Change heating to gas condensing boiler Dummy
34 r 22 Recommendation: Solar photovoltaic panels, 2.5 kWp Dummy
35 r 23 Recommendation: Low energy lighting for all fixed outlets Dummy
36 r 24 Recommendation: Replace heating unit with condensing unit Dummy
37 r 25 Recommendation: Install condensing boiler Dummy
38 r 26 Recommendation: Change room heaters to condensing boiler Dummy
39 r 27 Recommendation: Replace heating unit with mains gas condensing unit Dummy
40 r 28 Recommendation: Condensing oil boiler with radiators Dummy
41 r 29 Recommendation: Wind turbine Dummy
42 r 30 Recommendation: Flat roof insulation Dummy
43 r 31 Recommendation: Room-in-roof insulation Dummy
44 r 32 Recommendation: Floor insulation Dummy
45 r 33 Recommendation: High performance external doors Dummy
46 r 34 Recommendation: Heat recovery system for mixer showers Dummy
47 r 35 Recommendation: Flue gas heat recovery device in conjunction with boiler Dummy
48 r 36 Recommendation: Replacement glazing units Dummy
49 r 37 Recommendation: Suspended floor insulation Dummy
50 r 38 Recommendation: Solid floor insulation Dummy
51 r 39 Recommendation: High heat retention storage heaters and dual immersion cylinder Dummy
52 r 40 Recommendation: High heat retention storage heaters Dummy
53 r 41 Recommendation: Party wall insulation Dummy
54 SOLAR WATER HEATING FLAG Solar water heating flag Dummy
55 CO2 EMISSIONS CURRENT Current CO2 emissions Numeric
56 ENERGY CONSUMPTION CURRENT Current energy consumption Numeric
57 ENVIRONMENT IMPACT CURRENT Current environmental impact Numeric
58 EXTENSION COUNT Number of extensions Numeric
59 GLAZED AREA Glazed area Numeric
60 HEATING COST CURRENT Current heating cost Numeric
61 HOT WATER COST CURRENT Current hot water cost Numeric
62 HOT WATER ENERGY EFF Current hot water energy efficiency Numeric
63 HOT WATER ENV EFF Current hot water environmental efficiency Numeric
64 LIGHTING COST CURRENT Current lighting cost Numeric
65 LIGHTING ENERGY EFF Current lighting energy efficiency Numeric
66 LIGHTING ENV EFF Current lighting environmental efficiency Numeric
67 LOW ENERGY LIGHTING Proportion of low energy lighting Numeric
68 MAINHEAT ENERGY EFF Current main heating system energy efficiency Numeric
69 MAINHEAT ENV EFF Current main heating system environmental efficiency Numeric
70 MAINHEATC ENERGY EFF Current main heating system control energy efficiency Numeric
71 MAINHEATC ENV EFF Current main heating system control environmental efficiency Numeric
72 MULTI GLAZE PROPORTION Proportion of multi glaze Numeric
73 N RECOMMENDATION Number of recommendations Numeric
74 NUMBER HABITABLE ROOMS Number of habitable rooms Numeric
75 NUMBER HEATED ROOMS Number of heated rooms Numeric
76 NUMBER OPEN FIREPLACES Number of open fireplaces Numeric
77 TOTAL FLOOR AREA Total floor area Numeric
78 WALLS ENERGY EFF Current walls energy efficiency Numeric
79 WALLS ENV EFF Current walls environmental efficiency Numeric
80 WIND TURBINE COUNT Number of wind turbines Numeric
81 WINDOWS ENERGY EFF Current windows energy efficiency Numeric
82 WINDOWS ENV EFF Current windows environmental efficiency Numeric

Table A2: Labels (first column), description (second column), and variable type (third column) of the 82
variables included in the analysis for the UK case.
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Appendix A.3. Selecting k: Cross-validation on BART

In this section, we present the process for selecting the number of trees, denoted as k, in

the BART model. We estimate eight variations of the BART(k) model using both sampling

schemes, with k values of 1, 5, 10, 20, 50, 100, 150, and 200. The posterior distribution is

approximated via a 2500-iteration MCMC procedure. Figure A5 displays the MCMC trace

plot for the error variance σ2. The results show that BART(150) (in black) converges faster

to the posterior distribution compared to BART(1) (in grey), both computed on the full

sample. A vertical line marks the end of the burn-in samples, which are excluded when

computing posterior quantities of interest.
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Figure A5: MCMC trace plot for the error variance σ2 for BART(150) (black) and BART(1) (grey) fitted
computed on the full sample. The vertical line indicates the end of the burn-in samples.

The predictive performance exhibits a noticeable improvement for smaller numbers of

trees and reaches stability when the number of trees is 100 or greater (refer to Figure A6).

These findings align with previous literature on BART models (see, for instance, Tan and

Roy, 2019; Chipman et al., 2010). It is worth noting that the predictions generated by BART

with 100, 150, and 200 trees are almost equivalent. In Figure A7, we present the distribution

of MSE for each posterior draw obtained from the BART model with 200 trees (indicated

by the grey bars). Additionally, the MSE of the final estimate is depicted as a blue line,

accompanied by its 95% Highest Posterior Density (HPD) region, indicated by blue dots.
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Comparing the results, we observe that the MSE of the LASSO model (red dashed line)

differs significantly from that of the BART models in both the in-sample (left panel) and

the out-of-sample (right panel) analyses. This difference in MSE underscores the distinct

predictive performance between the LASSO model and the BART models, making the latter

a more promising and accurate choice for the considered analysis.
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Figure A6: Correlation between Z and BART estimates for each fitting (k = 1, 5, 10, 20, 50, 100, 150,
200)(black dots) and correlation between Z and Linear Regression estimated values (red line). In sample
fitting on the whole sample.
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Figure A7: MSE posterior distribution for the BART(200) fitted on the sub-sample (grey bars), the average
MSE (blue line), 95% HPD region (blue dots) and the MSE for the LASSO model (red dashed line). Left
panel: in-sample. Right panel: out-of-sample.
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