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Mantle-flow diversion

beneath the Iranian plateau
induced by Zagros' lithospheric
keel
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Previous investigation of seismic anisotropy indicates the presence of a simple mantle flow regime
beneath the Turkish-Anatolian Plateau and Arabian Plate. Numerical modeling suggests that

this simple flow is a component of a large-scale global mantle flow associated with the African
superplume, which plays a key role in the geodynamic framework of the Arabia-Eurasia continental
collision zone. However, the extent and impact of the flow pattern farther east beneath the Iranian
Plateau and Zagros remains unclear. While the relatively smoothly varying lithospheric thickness
beneath the Anatolian Plateau and Arabian Plate allows progress of the simple mantle flow, the
variable lithospheric thickness across the Iranian Plateau is expected to impose additional boundary
conditions on the mantle flow field. In this study, for the first time, we use an unprecedented data set
of seismic waveforms from a network of 245 seismic stations to examine the mantle flow pattern and
lithospheric deformation over the entire region of the Iranian Plateau and Zagros by investigation

of seismic anisotropy. We also examine the correlation between the pattern of seismic anisotropy,
plate motion using GPS velocities and surface strain fields. Our study reveals a complex pattern

of seismic anisotropy that implies a similarly complex mantle flow field. The pattern of seismic
anisotropy suggests that the regional simple mantle flow beneath the Arabian Platform and eastern
Turkey deflects as a circular flow around the thick Zagros lithosphere. This circular flow merges into

a toroidal component beneath the NW Zagros that is likely an indicator of a lateral discontinuity in
the lithosphere. Our examination also suggests that the main lithospheric deformation in the Zagros
occurs as an axial shortening across the belt, whereas in the eastern Alborz and Kopeh-Dagh a belt-
parallel horizontal lithospheric deformation plays a major role.

The knowledge about the relationship and causal link between deep mantle processes and surface tectonic
features such as mountain building is essential to our understanding of dynamic evolution of continental litho-
spheres. The Iranian Plateau and Zagros, as a young continental collision zone along the Alp-Himalayan orogenic
belt, offer an excellent location to examine such a causal link. Composed of several accreted Gondwanan ter-
ranes, the Iranian Plateau was formed as a result of the continental collision between the Arabian and Eurasian
plates (Fig. 1). The Zagros collision zone comprises three main provinces: (1) the Zagros Fold-and-Thrust Belt
(ZFTB), (2) the Sanandaj-Sirjan metamorphic zone (SSZ), and (3) the Urumieh-Dokhtar Magmatic Assemblage
(UDMA). The Arabia-Eurasia oblique convergence, at a rate of ~22 mmyr ™!, has been accommodated by crustal
shortening in different orogenic belts (Zagros, Alborz and Kopeh-Dagh) and several strike-slip fault systems
across the Iranian Plateau®”.

Previous studies®® suggest that the lithospheric thickness is less than 120 km beneath the Iranian microplate
and Arabia, while it increases up to 250 km beneath central and southern Zagros. It is assumed that the thickening
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Figure 1. Geological map of Iran and locations of the seismic stations. ZFTB Zagros folded-and-thrust belt,
8SZ Sanandaj-Sirjan metamorphic zone, UDMA Urumieh-Dokhtar magmatic assemblage, MZT Main Zagros
Thrust, CI Central Iran. Black inverted triangles indicate the location of seismic stations used in this study. Map
is generated using the Generic Mapping Tools (GMT).
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of the Arabian lithosphere beneath the Zagros partially accommodates the Arabia-Eurasia convergence®. Fur-
thermore, tomographic images*¢~'% show high velocities beneath the Zagros and Kopeh-Dagh areas and low

Scientific Reports | (2021) 11:2848 | https://doi.org/10.1038/s41598-021-81541-9 natureresearch



www.nature.com/scientificreports/

velocities beneath central Iran and the Alborz mountains, suggesting a warmer (weaker) lithospheric mantle
beneath the inner part of the plateau, which is trapped and squeezed between colder (stronger) lithospheres.

In a previous study, Kaviani et al."! investigated azimuthal anisotropy beneath the Zagros and Iranian Plateau;
however, the limited station coverage and short observational time frame did not allow for a detailed investi-
gation of the entire region. Sadeghi-Bagherabadi et al.'>!* presented the results of shear-wave splitting (SWS)
analysis from a temporary profile of stations across the NW Zagros, NW central Iran and Alborz. These studies
show small-scale variations in anisotropic structure along the profile; however, it is difficult to generalize the
conclusions deduced from these limited observations to the entire Zagros and the Iranian Plateau. More recently,
Rahimzadeh et al.'" report shear-wave splitting observations from a limited number of seismic stations in the
Makran region in SE Iran, which suggest that seismic anisotropy in this region is mainly affected by simple shear
related to the flat subduction of the Arabian slab beneath the Eurasian plate.

These piecewise earlier studies provided evidence for a complex pattern of anisotropy across the vast region
of the Iranian Plateau. On the other hand, the high-resolution seismic anisotropy study across the neighboring
Turkish-Anatolian Plateau'® suggests a relatively simple pattern of seismic anisotropy governed by large-scale
mantle flow. The current station coverage across the Iranian Plateau and surrounding regions motivated us to
comprehensively examine the causes of the complex pattern of anisotropy in the region. For this purpose, we
use an unprecedented data set of waveforms from a network of 245 stations (Fig. 1) with longer than one decade
of observations at a large number of stations. We analyzed > 7600 core-refracted seismic shear phases (SKS,
SKKS, and PKS, hereafter called XKS) from the network to investigate azimuthal seismic anisotropy across the
study area.

Results

We jointly analyze the XKS waveforms recorded at each station'®!” to calculate the SWS parameters (fast axis and
split time) corresponding to a one-layer model of anisotropy beneath the station. In this approach, the splitting
parameters of the model is obtained such that they minimize the total energy of the transverse-component (T)
of all XKS waveforms recorded at the station. A more detailed description of the approach is given below in the
“method” section (refer to Reiss and Riimpker'” for further details). In Fig. 2 we show the results of the one-layer
inversion at stations where the T-component energy is reduced by more than 30%. The results shown in Fig. 2
are also provided in Table 1 as the supplementary information. In Fig. 2, we also present the results of previous
studies (yellow bars)'*!*, We do not explicitly show earlier results of Kaviani et al.'' and Rahimzadeh et al.",
since we have re-processed and updated the data at the corresponding stations.

To better identify the characteristic pattern of seismic anisotropy, we resample our observations at grid
points separated by 1° in both longitude and latitude. The interpolated anisotropy pattern is shown in Fig. 3.
We observe a relatively uniform NE-SW oriented azimuthal anisotropy in the Arabian Plate, eastern Turkey
and part of the Zagros, whereas the anisotropy exhibits a more complex pattern across the Iranian Plateau. A
striking feature is the gradual change in the direction of anisotropy from a dominantly NNE-SSW trend in the
southern Zagros to a dominantly NW-SE trend along a narrow band extending from NW to SE Iran along the
Sanandaj-Sirjan metamorphic zone and the Urumieh-Dokhtar magmatic assemblage (Fig. 1). The split time also
gradually increases from the Zagros to this narrow band of NW-SE oriented azimuthal anisotropy. The pattern
of azimuthal anisotropy turns back to a dominantly NE-SW trend further north and northeast Iran, while a
dominantly N-S trend of anisotropy is observed in eastern Iran.

Although the parameters of the one-layer model for each station are obtained by the joint inversion of SKS
waveforms, the distribution of individual splitting parameters projected to the piercing points at representative
depths of 100 and 200 km (supplementary Figure S1) also highlights the circular pattern of azimuthal anisotropy
beneath the Central Zagros (mainly at 200 km depth, Figure S1b). The list of single measurements is provided
in the supplementary Table 2.

16,

Discussion

The main challenge in the interpretation of any SKS splitting observation is the relatively poor depth constraint on
the source of the undergoing anisotropy. It is generally assumed that the main source resides in the upper mantle,
where the LPO of anisotropic minerals is developed by dislocation creep in crystal lattice'®. Yet, the discrimina-
tion between a lithospheric and/or asthenospheric source of anisotropy is both challenging and crucial when
making inferences about the dynamic processes in the upper mantle. Comparison of seismic anisotropy with
other surface observations including geological structures, crustal deformation and large-scale plate motion field
is a helpful approach to address this ambiguity and make the SWS observation more meaningful. While GPS-
derived surface velocity field can provide clues on the plate motion directions and the pattern of the associated
large-scale asthenospheric flow (by assuming a coupling of the lithosphere motion to the asthenospheric flow),
the lateral gradient of the velocity field, as a measure of surface strain field, can offer insights into the lithospheric
deformation (by assuming a vertically coherent deformation). The availability of a relatively uniform and exten-
sive archive of geodetic data across the Iranian Plateau'® provides the opportunity to examine the correlation
between the pattern of seismic anisotropy, plate motion velocities and surface strain fields. For this purpose, we
compare the interpolated anisotropy pattern (red bars) with GPS velocities and horizontal strain rates from Khor-
rami et al.’? and the lithospheric thickness map of Priestley and McKenzie®. In Fig. 4a,b we compare the pattern
of seismic anisotropy with the geodetic strain-rate fields. Figure 4c shows the pattern of azimuthal anisotropy in
comparison with the plate motion vectors (blue arrows) in the ITRF2014 reference frame®. Figure 4d presents
the correlation between the anisotropy directions and the trend of variation in the lithospheric thickness. The
high degree of azimuthal correlation between the plate motion direction and azimuthal anisotropy in the Arabian
Plate, eastern Turkey and the western Zagros (Fig. 4c) suggests that large-scale viscous flow in the asthenosphere
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Figure 2. The results of one-layer anisotropic inversion for each station (red bars). Yellow bars illustrate results
from previous studies. Each bar is oriented along the fast direction of the one-layer model and its length is
proportional to the amount of split time. Map is generated using the GMT®.

is likely the dominant mechanism beneath these regions, as previously suggested'>*-2*. On the other hand, the
spatial variation in the pattern of azimuthal anisotropy across the Iranian Plateau implies a lateral change in the
mantle flow and a more complex deformation history.

Lithospheric deformation?  Anisotropy in the lithosphere can develop due to a long-term deformation
history. Both pure and simple shear regimes can lead to the occurrence of anisotropy in the lithosphere***. By
assuming a vertically coherent deformation, the strain-rate field estimated at the surface from GPS velocities
is proposed to represent the deformation across the entire lithosphere?®. The maximum extensional and shear
strain rates are taken as proxies for the pure and simple shear deformation in the lithosphere, respectively**. The
main assumption in this hypothesis is that the geodetic strain-rate is representative of the long-term strain field
of the mantle deformation* .

Simple shear along major transcurrent faults can generate pervasive anisotropic fabric in the vicinity of the
fault zone if the associated deformation affects the whole lithosphere?*?>*!. In this case, the fast direction of
azimuthal anisotropy can be oriented subparallel to the strike of fault zone as it has been observed for the main
continental transform faults such as the San Andreas Fault*>** and the Dead Sea Fault™. Since a major part of
the Arabia-Eurasia convergence in Iran is accommodated by transpression-type deformation along numerous
strike-slip faults*?, the effect of the fault-related simple shear on the development of azimuthal anisotropy in
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Figure 3. Interpolated anisotropy field at a depth of 150 km as calculated by averaging the directions at
individual stations (see text for more explanation). Map is generated using the GMT.

the region needs to be taken into account. Kaviani et al.' attempted to explain the pattern of seismic anisotropy
across the Iranian Plateau by simple shearing related to the major strike-slip fault zones. Here, we compare
the anisotropy directions with the maximum shear strain rate vectors across the study area (Fig. 4a). The two
orthogonal directions of the maximum shear-strain rate represent either right- or left-lateral motions along the
fault zones in each region. Despite an apparent correlation between the observed azimuthal anisotropy and the
maximum shear strain rate directions in some regions, the magnitude of the shear strain rate vectors suggests
insignificant shearing along the strike-slip zones. This may suggest that the strike-slip fault systems in Iran do not
affect the whole lithosphere which is required for the development of pervasive anisotropy in the vicinity of the
shear zones. Only in eastern Iran, we observe a more significant azimuthal correlation between the anisotropy
orientations and maximum shear directions with relatively large strain rates. In this region, the fast directions
of azimuthal anisotropy are mainly oriented in an N-S trend subparallel to the strike of the fault systems (Fig. 2)
that accommodate the relative motion between the Lut and Helmand blocks***~*". This implies that the strike-slip
fault system in eastern Iran likely acts as a major plate boundary zone capable of producing pervasive anisotropy.

Previous numerical modeling studies of viscoplastic deformation®* suggest that mountain-parallel LPO can
develop by ductile deformation (pure shear) in the uppermost mantle induced by belt-perpendicular compressive
stresses. This mechanism can explain the observations of belt-parallel seismic anisotropy in some mountain belts
such as the Alps and Central Asia®. Overall, our observations exhibit a low azimuthal correlation between the
directions of horizontal extensional strain rates (pure shear) and seismic anisotropy (Fig. 4b). In regions with
an apparent correlation (such as along the narrow band in central Iran where the fast polarizations are NW-SE
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(a) Mantle anisotropy & maximum shear strain rate (b) Mantle anisotropy & maximum extensional strain rate

. Y 0

— 1.0 Sec iy , J 3 — N
{ \ S - 1.0 Sec \
40" 2 — maximum shear strainrate \,_ |- 40" SN, T -— N T
. 2 X ™~ VLR ,{‘? - haximum extensional strain rate ™
; RANS 2o . 77 L4 Y 3 X .
Y F S Eurasia /7 ; Eurasia
38° N D R A AV -
7l ALL N VAR S V4
/"“‘:/7//%\\* | N L -7
P2\l 2 N .

36" 4 //\ 4 367 Y

28°
26" |

24" | 24°

22° T T T T T T T T T T T - T T T T T T T T T T T -
40° 42 44 46° 48 50° 52° 54° 56° 58° 60° 62° 40° 42 44° 46° 48° 50° 52° 54° 56° 58° 60° 62°

() Mantle anisotropy & Absolute Plate Motion

L L L L L " n

— + t
40° ’////;/::4)(%2{/ fV 7 ; /l%‘ﬁl\fle(ulTRFZOM) ‘\\ . = L0Sec N N
2577 f{‘ﬂ//?’r Eurasia Eurasia
38° ff/ 7 /,“ K?/% Caspian Sea T - , 4 |
| 2LAAS A0 X 1 PR T g N
wl| AT POLEAI I T T A g AP | P |
A ATRIAINTZ T s
T R & 1 [‘YQKZZ(/#*Z’: 77N\ ’}( - e i
AL HITH 5 27 N A b
320 o ” ’)l‘(/{l/:g/(\\\&\\///147\"}‘" SR I
BSIAAO Al S g
- : AN A A AT S >

11111 N {.- - 307
T I W A7 AAH R NN
/%”7// vé /1’ E 25 JaaN

28"

Arabia VAR 7 >y iy
N 3 -
2% | I R 7 7 26" -
A
l ’ s
24" Fo24 i
!
'
22 z T T T T T T T T T T T 22°
40° 42° 44° 46° 48° 50° 52° 54° 56° 58° 60° 62° 40°

100 120 140 160 180 200 220 240 260
Lithosphere thickness (km)

Figure 4. The resampled anisotropy field superimposed on: a) maximum shear strain rate directions, b)
maximum extensional strain rate directions, c) the absolute plate motion in the ITRF2014 reference frame®
(blue arrows), and d) the lithospheric thickness contour map (from Priestley and McKenzie®). GPS velocities
and geodetic strain rates are from Khorrami et al'?. Maps are generated using the GMT®.

oriented with relatively large split time), the magnitudes of the extensional strain rate vectors are very low. In
the Zagros, the horizontal extensional strain rate and azimuthal anisotropy directions are almost orthogonal.
Furthermore, our examination reveals that there is no clear correlation between the lithospheric thickness and
the observed splitting split times for the whole study area (Figure S2). All these lines of evidence imply that the
lithospheric deformation in the form of pure shear with a horizontal maximum extensional axis has likely a
negligible role in the development of azimuthal anisotropy beneath the Zagros and central Iran.

If a coherent anisotropic fabric exists beneath the Zagros, the weak correlation of the observed SWS splitting
with the structural trends and horizontal strain field in the Zagros most likely suggests a dominantly vertical
symmetry axis of anisotropy such that a sub-vertical traveling XKS wave is less affected. Therefore, we argue
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that the main part of deformation in the thick mantle lithosphere beneath the Zagros is taking place as an axial
shortening with a vertical main axis of deformation. The plausible axial shortening of the lithosphere implies
major coupling between the crust and the underlying mantle beneath the Zagros. In other collision zones such
as Central Asia, it seems that two determining factors allow for the pure-shear deformation in the mantle?: (1)
the relatively high gravitational potential energy (due to high elevation) that does not permit for a dominantly
vertical deformation and (2) the regional tectonic setting that permits for lateral ductile flow in the uppermost
mantle. In contrast, while the lower elevation of the Zagros allows for a vertical deformation (due to the axial
shortening), the possible lateral variation in the lithosphere structure and the limited spatial extent of the Zagros
belt does not favor a lateral mantle flow and pure-shear deformation.

On the other hand, the mountain ranges of northern Iran (Kopeh-Dagh, Alborz, and Talish) are characterized
by stronger azimuthal anisotropy with trends varying along the range. The belt-parallel azimuthal anisotropy in
the central Alborz and Kopeh-Dagh may suggest that the observed SWS is mainly due to an anisotropic source
located in the lithosphere. This indicates a major difference with the Zagros belt where the azimuthal anisotropy
directions are mainly belt-orthogonal, implying a substantial structural and dynamic difference between the
southern and northern collision belts in Iran.

Keel-induced diversion of asthenospheric flow? Assuming that the main cause of the observed ani-
sotropy beneath the Zagros and central Iran is mantle flow, we aim to find an explanation for its relatively com-
plex pattern. Our observation of the circular pattern of azimuthal anisotropy (Fig. 3), though at a smaller scale,
is comparable to the observations in the western United States, which is ascribed to mantle flow that is locally
modified by variation in the lithospheric thickness, the presence of slab segments and a lithospheric drip*-.
Similar observations in other regions also suggest that the interaction between different components involved
in a subduction/collision system can have significant influence on the flow field*-*. In a segment of the Afri-
can-European continental collision zone, in the region of westernmost Mediterranean, the complex pattern of
azimuthal anisotropy is attributed to a toroidal mantle flow related to the subducted slab*"**. These studies also
propose a channelized mantle flow beneath a region with a thinned lithosphere, which explains the coherent
strong azimuthal anisotropy in areas away from the region of proposed toroidal flow. Miller and Becker®, by
geodynamic modeling of shear-wave splitting observations in the Caribbean-South American Plate subduction
system, explain how the interactions between subducted slabs and cratonic keels results in a deflection of the
mantle flow field®.

The azimuthal correlation between the seismic anisotropy directions and plate-motion vectors (Fig. 4c) in
eastern Turkey and western foreland of the Zagros suggests that a basal drag flow related to the plate motion is
one main cause for the occurrence of anisotropic fabric in the mantle. However, the strength of the plate-driven
anisotropy may be limited for the relatively slow-moving Arabian plate®*. Faccenna et al.*%, by numerical simula-
tions, concluded that a large-scale mantle convection associated with the mantle upwelling underneath Afar in
the south together with the Tethyan slab subduction beneath the Bitlis-Zagros suture in the north provides the
major driving forces for the kinematics of the Arabia-Anatolia-Aegean system. They suggest that the combined
driving forces play the main role in the northward indenter motion of Arabia and the westward movement
of Anatolia. The large-scale mantle flow, acting as a “conveyor belt™*¢, may also affect the mantle beneath the
Zagros and Iranian Plateau superposing the presumably weak basal drag flow. A more recent higher resolution
mantle-flow modeling by Petrunin et al.*” suggests that the large-scale mantle flow that emerges from the Afar
upwelling has a dominant vertical component beneath the Zagros providing an additional explanation for the
relatively weak observed SKS splitting time. The reduction of splitting time beneath this region can be due to a
rapid shift of the regional horizontal mantle flow to a vertical flow. The proposed vertical flow can be a signature
for the initiation of a lithospheric drip (due to Rayleigh-Taylor instabilities) as also proposed for some other
regions such as the Great Basin in the western North America®. The apparent lithospheric thickening beneath
the Zagros can be associated with the proposed lithospheric drip. Further assessment of this notion requires
a high-resolution 3-D imaging of the Zagros lithosphere and a detailed probe of radial anisotropy, which may
allow to examine the extent and strength of the proposed vertical flow. Farther east, the topography of the base
of the lithosphere beneath the Zagros presents boundary conditions that cause the mantle flow to develop a
complex pattern. Previous tomography studies**~! suggest the presence of a hot (and low viscosity) mantle NE
of the Zagros suture beneath the region where we observe a narrow band of the NW-SE oriented azimuthal
anisotropy. The northward push of the Zagros keel** may cause a lateral (in an NW-SE direction) flow of low
viscosity material beneath this region producing a circular flow pattern (Fig. 5). The lithospheric thickness vari-
ation from the central Zagros to central Iran provides a corridor that reorganizes this lateral mantle flow. The
alignment of the azimuthal anisotropy sub-parallel to the lithospheric thickness contour lines (Fig. 4d) provides
additional evidence in favor of this hypothesis. An NW-SE extension in the lithosphere may also produce LPO
that can be sub-parallel to the flow in the underlying asthenosphere causing higher split times. However, as
mentioned above, the surface strain field suggests an insignificant lithospheric extension in this region. Further
NW, at the location of the NW limit of the Zagros keel, we observe a very complex pattern of anisotropy that
can be indicative of a toroidal component of flow, likely implying a sharp boundary of the Zagros keel. This area
extends northward with an NNW-SSE anisotropy orientation that serves as a transition zone between the simple
pattern region in eastern Turkey to the more complex patterns in the Zagros and central Iran. This transition
may be associated with a major lateral discontinuity between the Zagros keel and the mantle lithosphere beneath
NW Iran. The discontinuous nature of the Arabian lithosphere beneath Eurasia may have been inherited from
the segmented structure of the Tethyan slab as seen by seismic images”'**¥->* and the diachronous nature of the
tectonic events occurred along the strike of the suture zone of the Arabia-Eurasia collision zone as suggested
by geological studies®"*2.
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Figure 5. Schematic illustration of the model showing the possible circular mantle flow around the Zagros keel.
(A) a map view and (B) a 3-D view of the proposed circular mantle flow. Figures are generated using the GMT®
and Adobe Illustrator.
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We summarize the idea of the proposed circular mantle flow around the Zagros keel in the interpretative
model shown in Fig. 5. The circular pattern of azimuthal anisotropy at the boundary between the Zagros and
central Iran suggests a circular mantle flow around the Zagros lithospheric keel. At the NW limit of the Zagros
keel, a more toroidal flow pattern is likely provoked by the interaction with the NE plate-driven simple flow. This
location may be related to a lateral discontinuity in the lithosphere structure of the Zagros.

Methods

Seismic waves provide an indirect way to investigate deep lithospheric deformation and mantle flow regime via
the study of seismic anisotropy. The lattice preferred orientation (LPO), as a long-term response to the cumulative
strain of intrinsically anisotropic minerals (mainly olivine) is known as the main mechanism for the development
of seismic anisotropy in the mantle>*->%. In such circumstances, the fast axis of the bulk anisotropic medium
is oriented sub-parallel to the maximum extension and/or flow directions in the mantle?. Splitting analysis of
seismic shear waves is a standard approach to study seismic anisotropy in the mantle and crust. By propagating
through an anisotropic medium, a shear wave splits into two components with orthogonal polarization direc-
tions and different speeds. The polarization direction (¢) of the fast component serves as a proxy for the fast
symmetry axis of the anisotropic medium and thus as an indicator for the direction of maximum extension and/
or mantle flow. The split time (8t) between the two components is an integral effect of the strength and extent
of anisotropy along the ray path.

For each station, we jointly analyzed all available XKS waveforms, using the SplitRacer code of Reiss and
Riimpker!”. With this approach, in addition to individual splitting parameters of each XKS phase, the parameters
of a one or two-layer model of anisotropy beneath the station can also be derived by joint minimization of the
T-component energy'® of all XKS phases. A one- or two-layer model of anisotropy is accepted for each station
when the total T-component energy is reduced by more than 30%. The choice of this threshold is based on the
comparison between the mean values of individual measurements and parameters obtained by joint-inversion.
We realized that when the energy reduction in joint-inversion is less than 30%, the one-layer parameters differ
significantly from the mean value of the individual measurements, suggesting that the one-layer assumption is
not valid. Since the two-layer inversion requires significant computation time, we first examined the individual
splitting parameters for systematic azimuthal variation, which could be the first indicator of depth-dependent
anisotropy””®. Visual inspection shows that significant azimuthal variations are limited to less than 5% of sta-
tions. We also attempted to derive two-layer models at these stations in order to examine the contribution from
the lithospheric and/or asthenospheric source of anisotropy. Since this two-layer (four-parameter) inversion is
highly non-unique®, we fixed the fast direction of the lower and/or upper layer of the model (to be parallel to
the plate motion and extensional strain rate directions, respectively). Our examination revealed that at these
stations, a two-layer model neither leads to a better T-component energy reduction of the XKS waveform nor
improves the fit of the azimuthal variation of individual splitting parameters. We conclude that in the main part
of the study region, the observed azimuthal anisotropy can be attributed to a single anisotropic layer dominated
by either asthenospheric flow or lithospheric deformation. However, we cannot completely rule out the cases
where the two layers of anisotropy are subparallel or nearly orthogonal.

To better identify the characteristic pattern of anisotropy on the maps, we resample our observations at grid
points separated by 1° in both longitude and latitude. The splitting parameters (¢ and 8t) at each node of the grid
represent a weighted mean of all observations within the radius of the first Fresnel zone as calculated at a depth
of 150 km for an SKS phase of 10 s wavelength. In this averaging scheme, the one-layer splitting parameter at
each single station is linearly weighted according to its distance from the node. No value is assigned to a node if
no observation occurs within the Fresnel zone.

Data availability

The data from the permanent stations in Iran were provided by the Iranian Seismological Center (Institute of
Geophysics, University of Tehran) and International Institute of Earthquake Engineering and Seismology (IIEES).
Data from the eastern Turkey was included from Kandilli Observatory Digital Broadband Seismic Network (https
://doi.org/10.7914/SN/KO, Kandilli Observatory and Earthquake Research Institute, Bosphorus Univ. (2001)).
The data from temporary stations and global permanent stations and few global permanent stations was down-
loaded via the facilities of IRIS Data Services and specifically the IRIS Data Management Center. IRIS Data
Services are funded through the Seismological Facilities for the Advancement of Geoscience and EarthScope
(SAGE) Proposal of the National Science Foundation under cooperative agreement EAR1261681. This study
was partially supported by the German Research Foundation (DFG) through research grants to AK and MM.
The maps shown in Figs. 1, 2, 3, 4 were generated using the Generic Mapping Tools (GMT)®.
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