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Abstract. We derive three exact sum rules for the spectral function of the electromag-
netic current with zero spatial momentum at finite temperature. Possible applications of
the three sum rules to lattice computations of the spectral function and transport coef-
ficients are also discussed: We propose an ansatz for the spectral function that can be
applied to all three sum rules and fit it to available lattice data of the Euclidean vector
correlator above the critical temperature. As a result, we obtain estimates for both the
electrical conductivity σ and the second order transport coefficient τJ .

1 Introduction and Summary

Among the properties of hadronic matter at finite temperature, whose dynamics is described by quan-
tum chromodynamics (QCD), the spectral function of the electromagnetic current plays an important
role since it contains the full information on the dilepton/photon production rate [1], the electrical
conductivity, and the modification of the spectral properties of vector mesons at finite temperature.
All these quantities have been intensively studied in the context of heavy ion collisions. The spec-
tral function has therefore naturally been investigated within many approaches, such as perturbative
QCD [2], the AdS/CFT correspondence [3], model calculations [4], low-energy effective theory based
on hadronic degrees of freedom [5, 6], sum rules [7–10], and lattice QCD [11–19], which have led
to a large number of diverse results. Under such circumstances, it is useful to have exact constraints
on the spectral function that all approaches should satisfy. Especially in lattice QCD, which can be
directly applicable only for static quantities, it would be useful to have such constraints since the spec-
tral function is a dynamical quantity and thus can not be computed directly. One goal of the present
paper is to provide such constraints in the form of sum rules, and discuss their applications to lattice
QCD analysis.

In the first part of the manuscript, we derive the three sum rules of Eqs. (9), (10), and (13), of
which the second and third one are written down here for the first time. The third one is valid in
the large Nc limit while the other two are exact for general Nc. For this purpose, we make use of a
method developed for the energy-momentum tensor channel in an earlier work by Romatschke and
Son [20]. We emphasize that these sum rules are exact, and valid both in hadron and QGP phases, as
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Figure 1. The contour C, used in the integral of Eq. (1).

long as hydrodynamics is reliable there. Next, we discuss potential applications of the sum rules to
lattice QCD studies of the spectral function. These include the possibility of providing constraints to
the spectral function ansatz used to fit the Euclidean vector correlator lattice data, improvements for
this ansatz, and the extraction of the second order transport coefficient τJ from the spectral function
obtained from a fit to lattice data. More detailed analysis is in Ref. [21].

2 Sum rules

2.1 Sum Rule 1

The quantity we are interested in is the retarded Green function of the electromagnetic (EM) current:
GR
µν(ω,p) ≡ i

∫
dt
∫

d3xeiωt−ip·xθ(t)⟨[ jµ(t, x), jν(0, 0)]⟩, where jµ ≡ e
∑

f q fψ fγ
µψ f is the EM current,

and the average is taken over the thermal ensemble. Here e is the electromagnetic coupling constant,
q f the charge in each quark flavor, and ψ f the quark field with flavor f , respectively. At |p| = 0, there
is only one independent component in the spatial components of this tensor, GR(ω) ≡ GR

ii(ω, 0)/3, due
to isotropy. In this paper, we limit ourselves to this case for simplicity.

First, to introduce the method developed in Ref. [20], we rederive the sum rule of Eq. (9), which
has already been obtained in Ref. [15] from the current conservation law. The retarded Green function
is known to be analytic in the upper half of the complex ω plane. This property enables us to derive
various sum rules. Because of the residue theorem, we have

δGR(iω) − δGR
∞ =

1
2πi

∮
C

dω′
δGR(ω′) − δGR

∞
ω′ − iω

, (1)

for which the contour C is shown in Fig. 1. Here δ stands for the subtraction of the T = 0 value
of GR(ω), δGR(ω) ≡ GR(ω) − GR(ω)|T=0. Due to this subtraction, the ultraviolet behavior of GR

is improved so that the contribution from the arc with infinite radius becomes negligible. Another
subtraction of δGR

∞ ≡ δGR(iω)|ω→∞ is for removing any possibly remaining ultraviolet divergence.
Taking the infinitesimal ω limit, we get

δGR(0) − δGR
∞ =

2
π

∫ ∞
0

dω
ω
δρ(ω), (2)

where we have made use of the fact that the real (imaginary) part of GR(ω) is an even (odd) function
of ω, and introduced the spectral function, ρ(ω) ≡ ImGR(ω). We also changed the integration variable
to ω for simplicity.

On the left-hand side, the ultraviolet (UV) and infrared (IR) limits of GR constrain the spectral
function integral through Eq. (2). The former quantity can be evaluated using the operator product
expansion (OPE) [22, 23]. Because of the subtraction of the T = 0 piece, all terms with operators
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of mass dimensions less than four vanish, so that the asymptotic behavior at large ω is described by
the operators with mass dimensions four. By computing the coefficients of such operators at leading
order in αs, we get

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2m f δ⟨ψ fψ f ⟩ +

1
12
δ
⟨
αs

π
G2
⟩
+

8
3
δ⟨T 00

f ⟩
]
+ O
(
ω−4
)
, (3)

where Gµν
a ≡ ∂µAν

a−∂νA
µ
a−g fabcAµ

bAν
c is the field strength, G2 ≡ Ga

µνG
aµν, Tαβ

f ≡ iSTψ fγ
αDβψ f is the

quark component to the traceless part of the energy-momentum tensor, Dµ ≡ ∂µ+ igAµ
ata the covariant

derivative, Aµ
a the gluon field, ta the generator of the S U(Nc) group in the fundamental representation,

fabc the structure constant of the S U(Nc) group, m f the current quark mass, g the QCD coupling
constant, αs ≡ g2/(4π), and Nc the number of the colors. ST makes a tensor symmetric and traceless:
STOαβ ≡ (Oαβ + Oβα)/2 − gαβOµ

µ/4. We note that having dropped higher order corrections to the
coefficients above will be justified in the ω → ∞ limit, which allows us to use asymptotic freedom.
Also note that the traceless gluonic component of the energy-momentum tensor [T 00

g , defined above
Eq. (4)] can also in principle appear in the OPE at finite temperature. We have dropped such a term
since it vanishes at leading order in αs, but we will discuss below that it shows up once the operator
mixing is taken into account. We retained the gluon condensate term though formally it is of higher
order in αs, as it turns out to be finite even in the ω → ∞ limit due to its vanishing anomalous
dimension. When considering the ω → ∞ limit, we need to take into account the effects of scaling
and mixing of the operators, reflected in their anomalous dimensions. The anomalous dimensions
of the chiral and gluon condensates are zero, so they do neither scale nor mix. On the other hand,
the quark energy momentum tensor both scales and mixes with a respective gluonic operator. To
understand this behavior, we rewrite the operator as T 00

f = T ′00
f + (T 00 + 2T̃ 00/N f )/(4CF + N f ),

where T ′00
f ≡ T 00

f −
∑

f ′ T 00
f ′ /N f , T 00 ≡ ∑ f ′ T 00

f ′ + T 00
g , and T̃ 00 ≡ 2CF

∑
f ′ T 00

f ′ − N f T 00
g /2. Here,

T µν
g ≡ −Gµα

a Gν
αa + g

µνG2/4 is the gluon component of the traceless part of the energy-momentum
tensor, N f the flavor number, and CF ≡ (N2

c − 1)/(2Nc). A standard renormalization group (RG)
analysis yields the following scaling properties [24]:

T ′00
f (κ) =

[
ln
(
κ0/ΛQCD

)
ln
(
κ/ΛQCD

) ]a′ T ′00
f (κ0), T̃ 00(κ) =

[
ln
(
κ0/ΛQCD

)
ln
(
κ/ΛQCD

) ]ã T̃ 00(κ0), (4)

while T 00 is independent of κ. Here κ and κ0 are renormalization scales, ΛQCD is the QCD scale
parameter, a′ ≡ 8CF/(3b0), and ã ≡ 2(4CF + N f )/(3b0), where b0 ≡ (11Nc − 2N f )/3, which appears
in the expression αs(κ) = 2π/[b0(ln(κ/ΛQCD))]. We see that, except for the T 00 term, all terms are
suppressed logarithmically at large ω. Thus, the resultant expression becomes

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2m f δ⟨ψ fψ f ⟩ +

1
12
δ
⟨
αs

π
G2
⟩
+

8
3

δ⟨T 00⟩
4CF + N f

]
. (5)

This vanishes at ω → ∞ and hence its contribution to Eq. (2) is zero. We note that, in ω → ∞ limit,
which is relevant to the derivation of the sum rule, the asymptotic freedom of QCD guarantees that
the above expression is exact.
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On the other hand, the IR limit is well described by hydrodynamics. At |p| = 0, it suffices to con-
sider the constitutive relation for the system at rest, j = σE−στJ∂tE+O(∂2E), since the conservation
law of the current is trivial (∂t j0 = −∇ · j = 0). Here σ is the electrical conductivity, τJ the second
order transport coefficient for ∂tE, E ≡ −∇A0 − ∂0A the electric field, and Aµ the vector potential. We
have dropped magnetic field dependent terms and the diffusion term from the constitutive relation,
since they vanish in the |p| = 0 case. The linear response theory enables us to extract the retarded
function through the relation,

jµ(ω) = −GR
µν(ω)Aν(ω), (6)

which results in

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

To get δGR, we need to know GR|T=0. Lorentz invariance guarantees the following form:

GR(ω)|T=0 = ω
2G2(ω2). (8)

Here the real part of G2 contains a UV divergence coming from the T = 0 part, so the renormalization
of the photon wave function [24, 25] is necessary, which implies G2(0) = 0. We note that σ and τJ

in Eq. (7) need to be defined for the renormalized version of GR(ω). Also the imaginary part of G2
at small ω is zero because even the lightest vector meson (the ρ meson) has non-zero mass and its
spectral strength vanishes below the ππ threshold, so that the spectral weight around ω = 0 is zero.
For these two reasons, we see that the left-hand side of Eq. (7) is actually equal to δGR. This is not
the case for the higher order terms that are of order ω4 or higher.

We also note that Eq. (7) is correct only in the large Nc limit, in which the coupling effect among
the hydro modes is negligible [26]. Beyond this limit, a nonanalytic term (∼ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we derive in this work. Applying the UV and
IR results of Eqs. (5), (7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (9)

This is the first sum rule (sum rule 1) to be discussed in this paper. We should mention here that this
is the |p| = 0 version of the sum rule derived in Ref. [15].

2.2 Sum Rule 2

In a similar way (replacing GR with ω2GR in the derivation), we derive another sum rule which con-
tains two more powers of ω in the integrand. In analogy to the derivation of sum rule 1, we get
δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where δGR2

∞ ≡ ω2δGR(ω)|ω→∞ and δGR2
0 ≡ ω2δGR(ω)|ω→0. By

using the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π

∫ ∞
0

dωωδρ(ω) = −e2
∑

f

q2
f

[
2m f δ⟨ψ fψ f ⟩ +

1
12
δ
⟨
αs

π
G2
⟩
+

8
3(4CF + N f )

δ⟨T 00⟩
]
. (10)
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Figure 2. The right-hand sides of Eq. (10), divided by T 4 and shown as a function of temperature T . To extract
the temperature dependence of the condensates, lattice QCD data provided in Ref. [27] were used. We used the
value e2 = 0.092 for the plots.

This is the second sum rule (sum rule 2)1 we discuss in this work.
It should be emphasized here that the condensates appearing on the right-hand side of this sum rule

are static quantities, that can be evaluated non-perturbatively from lattice QCD. The gluon condensate
can be computed by using the relation at leading order in αs,

e − 3p =
∑

f

m f δ⟨ψ fψ f ⟩ −
11Nc − 2N f

24
δ
⟨
αs

π
G2
⟩
. (11)

We note that though the sum rule (10) is exact, the evaluation of the gluon condensate using the
expression above is valid only perturbatively. In this study, we take the chiral condensate, energy
and pressure from a recent N f = 2 + 1 lattice calculation by the HotQCD Collaboration [27]. To
understand the behavior of the different terms on the right-hand side of Eq. (10), they are shown in
Fig. 2 as a function of temperature. It is seen in this figure that the quark and gluon condensate terms
are relatively small, comparable in magnitude and have opposite signs. Their contributions therefore
cancel to a large degree, so that the right-hand side of Eq. (10) is almost completely determined by
the dominant δ⟨T 00⟩ term. Because this term does not depend on quark flavor, the decomposition of
Eq. (10) into its flavor components is determined simply by the quark charges q f , meaning that the
u-quark contribution is about a factor of four larger than those of the d and s-quarks.

2.3 Sum Rule 3

In the sum rule to be discussed in this subsection, the integrand of sum rule 1 is in essence divided by
ω2. To avoid potential IR divergences, the derivation however has to be carried out with some care.

1We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in Ref. [9]. However, the coefficient of T 00 in this
reference is not the correct one (Eq. (10)), but is equal to that in the expression where the effect of the mixing/rescaling of the
energy-momentum tensor is neglected.

    
 

DOI: 10.1051/, 07022 (2017) 713707022137EPJ Web of Conferences epjconf/201
XIIth  Quark Confinement & the Hadron Spectrum

5



Equation (1) can be written as

δGR(iω) − δGR
∞ =

1
2π

∫ ∞
−∞

dω′
1

ω′2 + ω2

(
ω′δρ(ω′) + ωRe[δGR(ω′) − δGR

∞]
)

=
1
π

∫ ∞
−∞

dω′
ω′δρ(ω′)
ω′2 + ω2 , (12)

where in the second line we have used the property that the contributions from the first and the second
terms are equal, which can be shown by evaluating the right-hand side of Eq. (1) using the residue
theorem with the contour closing in the lower half plane. Subtracting Eq. (2) and −σω from this
expression and using Eq. (7) on the left-hand side, we get

−στJ =
2
π

∫ ∞
0

dω
ω3

[
δρ(ω) − σω] , (13)

in which the −σω term in the integrand is included to remove the IR singularity. This is the third sum
rule (sum rule 3) we have derived in this paper.

3 Application to Lattice QCD

Let us demonstrate that the sum rules we have derived can be used to give constraints to the spectral
ansatz used in fits to lattice QCD data. As a first trial, we consider the simple2 ansatz introduced
in Ref. [13] (all quantities proportional to ρ(ω) or GR in this work are multiplied by a factor of 1/6
compared to the corresponding expressions in Ref. [13]),

ρ(ω) = Cem

[
cBWρpeak(ω) + (1 + k)ρcont(ω)

]
, (14)

where

ρpeak(ω) ≡ 1
3

ωΓ/2
ω2 + (Γ/2)2 , (15)

ρcont(ω) ≡ ω2

4π

(
1 − 2nF

(
ω

2

))
, (16)

correspond to the transport peak and the continuum in the weak coupling limit. Here nF(|k|) ≡
[exp(|k|/T ) + 1]−1 is the distribution function at equilibrium and Cem ≡ e2∑

f q2
f . We note that,

δρ(ω) can be obtained by subtracting ρT=0(ω). Data for this function can be obtained from the exper-
imental (e+e− → hadrons) cross section (see for instance the compilation of data given in the particle
data group [28]), or from zero temperature lattice calculations. In this paper, we will however for
simplicity confine ourselves to the averaged form Cemω

2(1 + k)/(4π)3. Equation (14) contains three
parameters (cBW ,Γ, k) that need to be determined by fitting the data. Sum rule 1 of Eq. (9) provides a
constraint on these parameters:

cBW = (1 + k)T 2. (17)

2A more complicated ansatz, which also contains information on vacuum bound states, was introduced in Refs. [14, 16]. In
these works, the sum rule of Eq. (9) was furthermore used to constrain the parameters appearing in their ansatz.

3This ansatz could be improved by taking into account the lowest few resonances of the spectrum, similar to Refs. [14, 16],
or by making direct use of the (e+e− → hadrons) cross section data.
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Figure 3. Ansatz A (red solid line), ansatz B (blue dotted line), and the ansatz used in Ref. [13] (green dashed
line) as functions of ω. The unit of the vertical axis is CemTω while that of the horizontal axis is T .

This constraint may be used to reduce the number of fitting parameters in the ansatz. Here, we simply
check whether the values of the parameters obtained from the fit [13] satisfy the sum rule. The fitted
values at T = 1.45Tc are k ≃ 0.047,Γ ≃ 2.2T, cBW ≃ 1.2T 2, which give 1.2T 2 on the left-hand side
of Eq. (17) while 1.0T 2 is obtained on the right-hand side. We see that, even though the agreement is
not perfect, the fit satisfies the constraint with reasonable precision.

Nevertheless, the ansatz Eq. (14) can not be applied to the other two sum rules, Eqs. (10) and (13),
because it would cause a UV divergence in sum rule 2 and an IR divergences in sum rule 3. Therefore,
to construct a spectral function that can satisfy all three sum rules, an improved parametrization is
necessary. We hence propose the following ansatz (ansatz A):

ρ(ω) = Cem

[
cBWρpeak(ω)[1 − A(ω)] + A(ω)(1 + k)ρcont(ω)

]
, (18)

where A(ω) ≡ tanh(ω2/∆2). As one can easily check, the cutoff function A(ω) removes all IR and UV
divergences in Eqs. (10) and (13).

The values of Γ, cBW , k, and ∆ should be determined from lattice data. To demonstrate that this
functional form is feasible, we have performed a simple trial analysis, making use of the Euclidean
vector correlator and second thermal moment data provided in Ref. [13] for T = 1.45 Tc. These data
were also used to fit the ansatz of Eq. (14), as explained above. The Euclidean vector correlator is
given in terms of the spectral function as

GE(τ,T ) =
∫ ∞

0

dω
2π

ρ(ω)
cosh[ω(τ − 1/2T )]

sinh(ω/2T )
, (19)

with Euclidian time τ, while the second thermal moment is defined as

G(2)(T ) =
1
2

∫ ∞
0

dω
2π

(ω
T

)2 ρ(ω)
sinh(ω/2T )

. (20)
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Figure 4. Lattice data for the Euclidean vector correlator, adapted from Ref. [13] (black points), the fit result
using Eqs. (14-16) (red solid line) and the fit result using the improved functional form of Eq. (18) (blue dashed
line).

In Ref. [13] the latter quantity was given relative to its free counterpart:

G(2)(T )

G(2)
free(T )

= 1.067 ± 0.012 (T = 1.45 Tc). (21)

Here, the free second thermal moment can be computed analytically and is in our conventions given
as

G(2)
free(T ) =

14π2

15
T 3. (22)

We moreover employ the sum rule 1 of Eq. (9) to constrain our fit, as it was done in Ref. [14, 16].
Specifically, the constraints of the second thermal moment [Eqs. (20) and (21)] and sum rule 1 allow
us to determine cBW and k and therefore to reduce the number of undetermined parameters to two (Γ
and ∆), which are then fitted to the Euclidean vector correlator data. In this fit, we do not only use
the central value of Eq. (21), but probe the whole range to look for the value that gives the smallest
overall χ2. Following this procedure, we have found that the best fit is obtained for very large values
of Γ, with values of ∆/T of the order of one. This means that the transport peak at low energy is not
generated by the Lorentzian of Eq. (15), but by the function 1 − A(ω), with the width 2∆. As will
be shown in Fig. 3, these two functional forms are quite alike and share many qualitative features.
Quantitatively, our best fit is obtained for,

k = 0.058, 2cBW/(TΓ) = 1.7,
Γ/T = infinity, ∆/T = 1.2, (23)

which gives a χ2/d.o. f of 0.53. The respective (vacuum subtracted) spectral function is shown in
Fig. 3, together with the fit result of Ref. [13], for which Eq. (14) was used. To give the reader a better
idea on the quality of the fit, we show in Fig. 4 the Euclidean vector correlator lattice data with our
fitted curve. For comparison, we also plot the curve corresponding to the fit performed in Ref. [13]
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with Eqs. (14-16). GV(τ,T ), which is used in Fig. 4 is defined as GV(τ,T ) = GE(τ,T ) − χqT/6.
For the quark number susceptibility χq we employ the value provided in Ref. [13]: χq/T 2 = 0.897.
Furthermore, Gfree

V (τ,T ) is related to the free Euclidean vector correlator and can be given analytically
as

Gfree
V (τ,T ) = T 3

[
π(1 − 2τT )

1 + cos2(2πτT )
sin3(2πτT )

+ 2
cos(2πτT )
sin2(2πτT )

]
. (24)

It is seen in Fig. 4 that the fit of Ref. [13] generally agrees better with the central values of the lattice
data points. Their errors are however too large to discriminate the two fits. Reduced errors and more
data points at smaller τT values will likely improve this situation and impose tougher constraints on
the various functional forms used to parametrized the spectral function.

Having the fitted and well behaved spectral function of Eq. (18) at hand, we can now proceed to
compute various quantities of interest. First of all, one can easily extract the electrical conductivity as

σ

T
= lim

ω→0

ρ(ω)
ωT

= Cem
2cBW

3TΓ
= 0.57 ×Cem, (25)

which is about 50 % larger than the value reported in [13].
As a last point, we next discuss the application of sum rule 3 given in Eq. (13). At first, let us

clarify the definition of the parameter appearing in the left-hand side, τJ . It is expressed in terms of the
retarded Green function as, τJ ≡ −GR′′(ω = 0)/(2σ) as can be seen from Eq. (7). τJ therefore does not
explicitly appear in the spectral function since it corresponds to the real part of GR. As the transport
coefficient τJ is furthermore at present not known, this sum rule can not be used as an additional fitting
constraint. If the spectral function is however already determined from other sources, Eq. (13) can be
used to estimate τJ . Using Eqs. (18-25), we get

τJ = 0.067Cem/T (T = 1.45 Tc). (26)

To our knowledge, this is the first time that this transport coefficient has been determined non-
perturbatively. Note that the above number is a quenched QCD estimate, as we have made use of
quenched lattice data to fix the spectral function. We should furthermore mention here that, all the
ansätze used in this section do not take into account the large Nc suppressed nonanalytic behavior at
small ω (which seems to be challenging to see in current lattice QCD analysis) caused by hydro mode
coupling. It is therefore consistent to use sum rule 3 (13), which does not consider this effect as well.
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