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The development of vision during the first months of life is an
active process that comprises the learning of appropriate neu-
ral representations and the learning of accurate eye movements.
While it has long been suspected that the two learning processes
are coupled, there is still no widely accepted theoretical frame-
work describing this joint development. Here, we propose a com-
putational model of the development of active binocular vision
to fill this gap. The model is based on a formulation of the active
efficient coding theory, which proposes that eye movements as
well as stimulus encoding are jointly adapted to maximize the
overall coding efficiency. Under healthy conditions, the model
self-calibrates to perform accurate vergence and accommodation
eye movements. It exploits disparity cues to deduce the direction
of defocus, which leads to coordinated vergence and accommo-
dation responses. In a simulated anisometropic case, where the
refraction power of the two eyes differs, an amblyopia-like state
develops in which the foveal region of one eye is suppressed due
to inputs from the other eye. After correcting for refractive errors,
the model can only reach healthy performance levels if receptive
fields are still plastic, in line with findings on a critical period for
binocular vision development. Overall, our model offers a unify-
ing conceptual framework for understanding the development of
binocular vision.

efficient coding | active perception | amblyopia | vergence |
accommodation

Our brains are responsible for 20% of our energy con-
sumption (1). Therefore, organizing neural circuits to be

energy efficient may provide a substantial evolutionary advan-
tage. One means of increasing energy efficiency in sensory
systems is to attune neural representations to the statistics of
sensory signals. Based on this efficient coding hypothesis (2),
numerous experimental observations in different sensory modal-
ities have been explained (3, 4). For instance, it has been
shown that receptive field properties in the early visual path-
way can be explained through models that learn to efficiently
encode natural images (5, 6). These findings have extended clas-
sic results showing that receptive field shapes in visual cortex
are highly malleable and a product of the organism’s sensory
experience (7–10).

Importantly, however, animals can shape the statistics of their
sensory inputs through their behavior (Fig. 1). This gives them
additional degrees of freedom to optimize coding efficiency by
jointly adapting their neural representations and behavior. This
idea has recently been advanced as active efficient coding (11,
12). It can be understood as a generalization of the efficient cod-
ing hypothesis (2) to active perception (13). Along these lines,
active efficient coding models have been able to explain the
development of visual receptive fields and the self-calibration
of smooth pursuit and vergence eye movements (11, 12). This
has been achieved by optimizing the neural representation of
the sensory signal statistics while simultaneously, via eye move-
ments, optimizing the statistics of sensory signals themselves for
maximal coding efficiency.

In our formulation of active efficient coding, we maximize
coding efficiency as measured by the Shannon mutual informa-
tion I (R,C ) between the retinal stimulus represented by retinal
ganglion cell activity R and its cortical representation C under
a limited resource constraint. The mutual information can be
decomposed as

I (R,C )=H(R)−H(R |C ), [1]

whereH(R) is the entropy of the retinal response andH(R |C )
is its conditional entropy given the cortical representation.

Prior formulations focused on minimizing the conditional
entropy H(R |C ) only (6). H(R |C ) is a measure of the infor-
mation that is lost (i.e., not represented in the cortical encoding).
The limitation of this prior formulation is that this quantity can
be minimized by simply reducingH(R), the entropy of the retinal
response, since H(R |C )≤H(R). Thus, an active agent could
minimize H(R |C ) by, for example, defocusing or closing the
eyes altogether. In the free energy and predictive processing lit-
erature, this is known as the “dark room problem” (14, 15). In
our formulation, maximizing I (R,C ) is achieved by maximizing
H(R) and minimizing H(R |C ) simultaneously, thus avoiding
this problem. We demonstrate this approach through a con-
crete model of the development of binocular vision, including
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Fig. 1. The action–perception loop in active efficient coding. The sen-
sory input is obtained by sampling input signals from the environment
(e.g., via eye movements). A percept is formed by neural encoding, which
drives the selection of actions and thereby, shapes the sampling pro-
cess. Therefore, perception depends on both neural encoding and active
input sampling. Classic efficient coding theories do not consider the active
sampling component (orange).

the simultaneous calibration of vergence and accommodation
control.

Indeed, newborns have difficulties bringing objects into focus
and cannot yet verge their eyes properly (16). How infants man-
age to self-calibrate their control mechanisms while interacting
with their visual environment is currently unknown. Additionally,
in certain medical conditions, the calibration of vergence and
accommodation control is impaired. For example, anisometropia
describes a difference in the refractive error between the eyes. If
not corrected early during development, this can evoke ambly-
opia: a disorder of the developing visual system that is charac-
terized by an interocular difference in visual acuity that is not
immediately resolved by refractive correction. Amblyopia can be
associated with a loss of stereopsis and in severe cases, leads to
monocular blindness (17). Furthermore, vergence and accom-
modation eye movements are either less accurate or completely
absent (18, 19).

Although there have been recent advances in the treatment of
amblyopia (20, 21), existing treatment methods do not lead to
satisfactory outcomes in all patients. This is aggravated by the
fact that treatment success strongly depends on the stage of neu-
ral circuit maturation (20). When young patients are still in a
critical period of visual cortex plasticity (10), they often recover
after refractive errors are corrected, while adults mostly remain
impeded (22, 23).

The above findings are all readily explained by our model.
Under healthy conditions, our model develops accurate ver-
gence and accommodation eye movements. When the model is
impaired due to strong monocular hyperopia, we observe that
an amblyopia-like state develops. We show that this is due to
the abnormal development of binocular receptive fields in the
model and demonstrate that healthy binocular vision is regained
as the receptive fields readapt after refraction correction. How-
ever, if the sensory encoding is no longer plastic and does not
adapt to the changes in the visual input statistics, suppression
prevails. Overall, our model suggests that coding efficiency may
provide a unifying explanation for the development of binocular
vision.

Model Formulation
The active efficient coding model that we propose has a mod-
ular structure (Fig. 2). A cortical coding module models the
learning of an efficient representation C of the binocular reti-
nal representation R by minimizing the conditional entropy
H(R |C ). At the same time, an accommodation reinforcement
learning module maximizes H(R), and a vergence reinforce-
ment learning module minimizes H(R |C ) (Eq. 1). All three
modules are plastic and adjust simultaneously in response to
changes in the sensory input statistics. The exact choice of

the algorithms is not important for the model to function. In
fact, different cortical coding and reinforcement learning models
have been successfully applied in previous active efficient coding
models (24, 25).

Our model is presented with a textured planar object. The
object is sampled by the two eyes for 10 iterations, which con-
stitute one fixation. After each fixation, a new object is presented
at a new random distance. The retinal images are rendered based
on the positions of the accommodation, vergence, and object
planes (Fig. 3). The inputs are whitened, contrast adjusted by
an interocular suppression mechanism, and then, binocularly
encoded by a population of cortical neurons. The reinforcement
learning modules control the retinal input of the next itera-
tion by shifting accommodation and vergence planes along the
egocentric axis (Fig. 3).

Cortical Encoding. In our model, the cortical population activity
represents the binocular “percept” based on which behavioral
commands are generated (compare Fig. 1, Upper). The corti-
cal encoding comprises two efficient coders: one for fine details
in the foveal region and one for the periphery that receives a
low pass-filtered input. Both are implemented using the standard
matching pursuit algorithm (26) (Materials and Methods).

To find a set of neurons that best encodes the input, instead
of minimizing the conditional entropy directly, we minimize an
upper bound (i.e., the average of the encoding error ‖S‖2) (27):

H(R |C )≤E
[
‖R− R̂ (C )‖2

]
≡E

[
‖S‖2

]
, [2]

where R̂ is an estimate of the input R based on the activities cj of
cortical neurons with receptive fields bj (Materials and Methods
has details):

R̂=
∑
j

cj bj . [3]

In every iteration, both activities and receptive fields adjust
online to minimize the encoding error ‖S‖2 (Materials and Meth-
ods). Thus, the receptive fields reflect the stimulus statistics (28)
and resemble those of simple cells in the visual cortex (6) (SI
Appendix, Fig. S1).

Vergence Learning. The vergence reinforcement learner also aims
to minimize the conditional entropy H(R |C ) (i.e., the encod-
ing error ‖S‖2). Therefore, vergence movements are favored

Fig. 2. Model architecture, with solid arrows representing the flow of
sensory information and dashed arrows representing the flow of control
commands. Sampled input images with given defocus blur and disparity are
whitened at the retinal stage R and contrast adjusted through an interocular
suppression mechanism based on the recent history of cortical activity (Left).
Thereafter, they are encoded by a set of binocular neurons that represents
the cortical encoding C (Center). The cortical population activity serves as
input to two reinforcement learning modules (Right) that control vergence
and accommodation commands. Details are in Materials and Methods.
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A

B
D

C

Fig. 3. Input sampling from the environment. (A) Object (obj.) position,
vergence (verg.) distance, and left (l.) and right (r.) accommodation (acc.)
distance are represented as different plane positions. (B) Abstraction of A.
The gray horizontal bar indicates the range where objects are presented
during the simulation and also, indicates the fixation range (i.e., possible
vergence plane positions). Horizontal axes indicate reachable accommoda-
tion plane positions for the left (light blue) and right (green) eyes. Note
that, when the stimulus is placed at, for example, position 0, it cannot be
focused by the right eye in this example. Accommodation and vergence
errors are measured as the distance between the respective planes and the
object position in a.u. (C) Position range of accommodation and vergence
planes under different conditions. Same scheme as in B. (D) Examples of
retinal input images for different plane position configurations. For better
visibility, disparity shifts and defocus blur are increased compared to actual
values.

that produce visual input that can be most accurately encoded
with the current set of receptive fields. This leads to a self-
reinforcing feedback cycle (Fig. 4A). If inputs of a certain dis-
parity can be encoded particularly well, the vergence learner
will try to produce visual input that is dominated by this dis-
parity. This will cause even more neurons to become selective
for this disparity and make the encoding of this disparity even
more efficient (Fig. 4B). Thus, an initial bias for, say, small dis-
parities can be magnified until the model always favors input
with small disparities and most neurons are tuned to small
disparities.

Accommodation Learning. The entropy of the retinal response
H(R) (Eq. 1) is maximized via the accommodation reinforce-
ment learning module. For this, H(R) is approximated by the
squared activity of the retinal representation ‖R‖2 (Materials
and Methods). We assume the spatial frequency tuning of retinal
ganglion cells to be static and thus, independent of the distri-
bution of spatial frequencies in the retinal input as suggested by
deprivation experiments (9, 29, 30). However, the exact receptive
field shape does not matter for the model to favor focused input
(Fig. 4C).

Suppression Model. Interocular suppression is thought to be a
central mechanism in amblyopia. We use a basic interocular
suppression model (Fig. 5A) to describe dynamic contrast mod-
ulation based on the ocular balance of the input encoding. If
mostly right (left) monocular receptive fields are recruited dur-
ing cortical encoding, the contrast of the left (right) eye input
becomes suppressed in subsequent iterations. This is in agree-
ment with reciprocal excitation of similarly tuned neurons in
visual cortex (31, 32). At the same time, the total input energy is
kept balanced to ensure similar activity levels for monocular and
binocular visual experience as observed experimentally at high
contrast levels (33–35) (Materials and Methods). This leads to a

self-reinforcing suppression cycle when left and right eye inputs
are dissimilar (Fig. 5B).

Results
Active Efficient Coding Leads to Self-Calibration of Active Binoc-
ular Vision. In the healthy condition without refractive errors,
the model learns to perform precise vergence and accommo-
dation eye movements (Fig. 6A and SI Appendix, Fig. S2A).
The object is continuously tracked by the eyes (SI Appendix,
Fig. S3A), and most neurons develop binocular receptive fields
(SI Appendix, Fig. S1). This is not due to artificially introduc-
ing a bias for zero disparity during initialization of the model.
When receptive fields are adapted to a uniform input dispar-
ity distribution, the encoding of zero-disparity input is still most
efficient (Fig. 4B). Due to the overlap of the left and right eye
visual fields, the information contained in the retinal response
H(R) is smallest for zero disparity when the images projected
onto the two eyes maximally overlap. Thus, even an unbi-
ased encoder that can encode inputs of all disparities equally
well will tend to encode zero-disparity input more accurately
because such input contains less information. This bootstraps
the positive feedback loop of active efficient coding (Fig. 4A and
SI Appendix, Fig. S4).

Accommodation performance becomes highly accurate as
well. This is due to the edge-enhancing nature of retinal gan-
glion cell receptive fields. With their center-surround shape,
they are selective for sharp contrasts and respond poorly
when out of focus input is presented (Fig. 4C). For sharper
input, the range of responses across the population and
thus, the response entropy increase (SI Appendix, Figs. S5
and S6).

Furthermore, accurate accommodation is achieved without
obvious sign cues: in our simplified visual environment, defocus
blur is independent of whether an eye focuses behind or in front
of the object. Also, neither chromatic nor other higher-order
aberrations are provided in our model, which could help to steer
focus in the right direction (36, 37). Instead, the model learns
to infer the sign of defocus from disparity cues (SI Appendix,

A B C

Fig. 4. The feedback loop of active efficient coding and reward depen-
dencies. (A) Positive feedback loop of active efficient coding. An efficiently
encoded stimulus is preferred over other stimuli (acting). Therefore, the
sensory system is more frequently exposed to the stimulus, and neu-
ral circuits adapt to reflect this overrepresentation (statistical learning),
which further increases encoding efficiency (neural coding). (B) Normal-
ized (norm.) vergence (verg.) reward for different disparity distributions
and neural populations (averaged over 300 textures). The receptive fields
of 300 neurons adapted to different distributions of input disparities with
color-coded SDs. Gray indicates unbiased/uniform, pink and purple indi-
cate Laplacian distributed, and dark blue indicates model trained under
healthy conditions. In each case, stimuli seen at zero absolute (abs.)
disparity produce the highest average (avg.) vergence reward (i.e., the
most efficient encoding). This advantage is even more pronounced when
small disparities have been encountered more frequently (i.e., for smaller
σ). (C) Normalized accommodation (acc.) reward for different whitening
filters. Zero-blur input yields the highest accommodation reward inde-
pendent of the size of the whitening filter. However, smaller whitening
filters induce a stronger preference for focused input. The smallest fil-
ter (dark blue) was used for the simulation (Materials and Methods has
details).

6158 | www.pnas.org/cgi/doi/10.1073/pnas.1908100117 Eckmann et al.
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A B

Fig. 5. Interocular suppression model. (A) When mostly right (left) monoc-
ular neurons cj are activated to encode an input image patch, the right (left)
contrast unit yr (yl) is excited, and the left (right) retinal image is suppressed
in subsequent iterations. Color hue indicates response selectivity for left eye
(blue) or right eye (green). Dashed (solid) lines indicate inhibitory (excit-
atory) interactions. Connection strength is represented by line thickness. We
model interocular suppression as being scale specific (i.e., when the high-
resolution foveal region of the left eye is suppressed, the low-resolution
periphery of the left eye may still provide unattenuated input) (Materials
and Methods). (B) Feedback cycle of the suppression model. Disparate inputs
to both eyes lead to preferential recruitment of monocular neurons, which
results in interocular suppression inducing competition between the eyes.
This impedes precise vergence eye movements and exacerbates disparate
input (purple; left cycle). On a slower timescale, receptive fields (RFs) adapt
to suppression by becoming more monocular, which makes future suppres-
sion more likely (red; right cycle). Dashed lines indicate feedback that affects
future input processing.

Fig. S7). We further examined this entanglement under abnor-
mal input conditions (e.g., when simulated lenses were placed in
front of the eyes of an agent trained under healthy conditions).
We find the responses of the model to qualitatively agree with
experimental results (38, 39) (SI Appendix, Fig. S8).

Anisometropia Drives Model into Amblyopic State. To test how the
model evolves under abnormal rearing conditions, we simulated
an anisometropic case by adding a simulated lens in front of the
right eye such that it became hyperopic and was unable to focus
objects at close distances (Fig. 3C, Middle). Therefore, unlike
the healthy case, where neither eye is favored over the other,
in the anisometropic case, the impaired eye receives system-
atically more defocused input. Cortical receptive fields reflect
this imbalance and become more monocular, favoring the unim-
paired eye (compare Fig. 6C, Lower and SI Appendix, Fig. S1,
Upper Center). The combined effect of imbalanced input and
adapting receptive fields results in a vicious cycle that drives the
model into an amblyopia-like state (Fig. 5B). Foveal input from
the hyperopic eye becomes actively suppressed (SI Appendix,
Fig. S9A), while the low-resolution peripheral input is unaf-
fected and still provides binocular information such that a coarse
control of vergence is maintained (Fig. 6A and SI Appendix,
Figs. S2B and S3B). This results in stable binocular recep-
tive fields in the periphery (SI Appendix, Fig. S1, Lower Cen-
ter), which provide enough information for coarse stereopsis as
observed in experiments (40–42). Accommodation adapts such
that the stimulus is continuously tracked with the unimpaired eye
(SI Appendix, Fig. S3).

When both eyes were similarly impaired but with opposite sign
of the refractive error (Fig. 3C, Bottom), receptive fields still
become more monocular, but no eye is preferred (SI Appendix,
Fig. S1, Upper Right). As a result, the relatively more myopic eye
is used for near vision, the relatively less myopic eye is used for
distant vision (SI Appendix, Fig. S10A), and the respective other
defocused eye is suppressed. At intermediate ranges, the stim-
ulus history determines which eye gets recruited (SI Appendix,
Fig. S10 B and C). This configuration is similar to monovi-
sion, which results from a treatment method for presbyopia,
where the ametropic condition is achieved via optical lenses or
surgery (43).

Early but Not Late Refractive Correction Rescues Binocular Vision.
To test if the anisometropic model can recover from amblyopia
upon correction of the refractive error, we first trained a fully
plastic model under anisometropic conditions until it had con-
verged to the amblyopic state. Then, all refractive errors were
corrected. When the receptive fields were fixed after the refrac-
tive error was corrected, receptive fields remained monocular,
and the model did not recover from the amblyopic state. Instead,
it maintained a high level of vergence error (Fig. 6B). In con-
trast, when receptive fields remained plastic and could adapt
to the changed input statistics, the vergence error decreased
(Fig. 6B), and the strong suppression of the formerly impaired
eye was restored to lower values (SI Appendix, Fig. S9B). This
was due to a shift from monocular to binocular receptive fields
as a result of the changed input statistics (Fig. 6C). This is in
line with a large body of evidence suggesting that limited cor-
tical plasticity in adults prevents recovery from amblyopia after
the correction of refractive errors (10, 20, 21). Furthermore, it
predicts that therapies reinstating visual cortex plasticity should
be effective.

Discussion
We have shown how simultaneously optimizing both behavior
and encoding for efficiency leads to the self-calibration of active
binocular vision. Specifically, our model, which is based on the
active efficient coding theory, accounts for the simultaneous
development of vergence and accommodation.

Previous computational models have focused on either the
development of disparity tuning or the development of vergence
and accommodation control but have failed to capture their rich
interdependence (28, 44–46). For example, a model by Hunt
et al. (28) explained how disparity tuning may emerge through
sparse coding and how alternate rearing conditions could give
rise to systematic differences in receptive field properties, but
their model completely neglected vergence and accommodation
behavior. Conversely, others have presupposed populations of
cells readily providing error signals for vergence and accommo-
dation control without explaining their developmental origin (44,
46). Therefore, previous models have failed to explain how the
visual system solves the fundamental “chicken and egg” of dis-
parity tuning and eye movement control: the development of fine
disparity detectors requires the ability to accurately focus and
align the eyes, which in turn, relies on the ability to detect fine
disparities. Our active efficient coding model solves this prob-
lem through the positive feedback loop between disparity tuning,
which facilitates the control of eye movements, and improved
accommodation and vergence behavior, which enhances the

A B C

Fig. 6. Model performance. (A) Average (avg.) absolute (abs.) vergence
(verg.) and accommodation (acc.) errors of the left (l.) and right (r.) eye after
training under healthy and anisometropic conditions. The dashed line indi-
cates the expected average vergence error when accommodation planes are
moved randomly under healthy conditions. (B) Vergence performance of the
formerly anisometropic model after correction of all refractive errors at iter-
ation 5× 106 (vertical gray line). The (dotted) solid line indicates the model
with (non-)plastic receptive fields (RFs). The initial increase in the vergence
error is due to the recalibration of the reinforcement learning module. (C)
Histogram of foveal RFs binocularity as measured by the right monocu-
lar (monoc.) dominance d(·,r) before and after refractive error correction
(Materials and Methods has details).
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representation of fine disparities. In the end, the tuning prop-
erties of sensory neurons reflect the image statistics produced
by the system’s own behavior (47). Under healthy conditions,
the model develops accurate vergence and accommodation eye
movements. For a simulated anisometropia, however, where one
eye suffers from a refractive error while the other eye is unaf-
fected, it develops into an amblyopia-like state with monocular
receptive fields and loss of fine stereopsis. Recovery from this
amblyopia-like state is only possible if receptive fields in the
model remain plastic, matching findings of a critical period for
binocular development (10).

An important mechanism in amblyopia is interocular sup-
pression. The simple logic behind the model’s suppression
mechanism is that every neuron suppresses input that is incon-
gruent to its own receptive field (34, 35). This implementa-
tion proved sufficient to account for the development of an
amblyopia-like state, with mostly monocular receptive fields in
the representation of the fovea. More sophisticated suppres-
sion models could be incorporated in the future (48, 49), but
we do not expect them to change the conclusions from the
present model. Future work should focus on understanding the
principles of interocular suppression within the active efficient
coding framework. A topic of current interest is how suppression
develops during disease and treatment (e.g., with the standard
patching method) (50). A better understanding of the role of
suppression in amblyopia could lead to improved therapies in
the future.

While we have focused on the development of active binocu-
lar vision, including accommodation and vergence control, our
formulation of active efficient coding is very general and could
be applied to many active perception systems across species and
sensory modalities. Active efficient coding is rooted in classic
efficient coding ideas (2–6), of which predictive coding theories
are special examples (51–53). Classic efficient coding does not,
however, consider optimizing behavior. Friston’s active infer-
ence approach does consider the generation of behavior in a
very general fashion. There, motor commands are generated
to fulfill sensory predictions. In our formulation of active effi-
cient coding, motor commands are learned to maximize the
mutual information between the sensory input and its cortical
representation. This implies maximizing the amount of sensory
information sampled from the environment and avoids the prob-
lem of deliberately using accommodation to defocus the eyes or
closing the eyes altogether to make the sensory input easy to
encode and/or predict.

Materials and Methods
Input Image Rendering. We used 300 grayscale-converted natural images of
the “manmade” category from the McGill Database (54). One image was
presented at a random position (Fig. 3 A and B) during one fixation (i.e., 10
subsequent iterations) before the next image and position were randomly
selected for the next fixation.

For every distance unit between vergence and object plane, the left
(right) eye image was shifted 1 px (pixel) to the left (right). This resulted
in a disparity of 2 px per distance unit. A Gaussian blur filter was applied
to the left and the right eye image, where the SDs depended linearly on
the distance between object and accommodation planes. The 1-a.u. dis-
tance equals 0.8 px of SD (SI Appendix, SI Text and Figs. S11 and S12). Errors
were measured in arbitrary units (a.u.) as distances to the object plane. For
the foveal (peripheral) scale, two retinal images of size 72× 72 (160× 160)
pixels were cropped from the center of the original image (SI Appendix,
Fig. S13).

Input Processing. The left and right retinal input images were whitened
as described by Olshausen and Field (6) (SI Appendix has details). For
each scale, images were cut and merged into 81 binocular patches of size
2 ×8× 8 px, where the peripheral scale was down-sampled with a Gaussian
pyramid by a factor of four (SI Appendix, Fig. S13). The whitened reti-
nal patches R* were normalized to zero mean intensity and subsequently
contrast adjusted via the interocular suppression mechanism (see below).

The contrast-adjusted patches R were encoded with the matching pursuit
algorithm (26).

For each patch, we recruited N = 10 of 300 cortical neurons to most
efficiently encode the image. The cortical response C = (c1, . . . , c300) was
determined via an iterative process, where the activities of neurons that
were not selected for encoding remained zero. In the first encoding step,
n = 1, the neuron with the receptive field bj that was most similar to the
retinal input was selected:

in = argmax
j

(
|〈bj , Sn−1〉|

)
, S0≡ R, [4]

where the similarity between a receptive field bj and retinal input R was
measured with the scalar product 〈bj , R〉. When selecting the next neuron,
all information that was already encoded by the first neuron is subtracted
from the original input R:

S1 = R−ci1
bi1

, ci1
= 〈bi1

, S0〉, [5]

Sn = R−
n∑

k=1

cik
bik

, [6]

where S1 is the residual image after the first encoding step and Sn is the
generalized residual after the nth encoding step. Subsequent neurons are
selected based on the similarity of their receptive fields with the residual
according to Eq. 4. By greedily selecting the neuron with maximum response
cik

in each encoding step, the reconstruction error ‖SN‖2 is minimized (i.e.,
coding efficiency is maximized).

After encoding, all receptive fields were updated through gradient
descent on ‖SN‖2 and normalized to unit length. Thus, their tuning reflects
the input statistics (SI Appendix, Fig. S1):

bj←
bj + ∆bj

‖bj + ∆bj‖
, ∆bj =−η

∂

∂bj
‖SN‖2

= 2ηcjSN, [7]

where 2η= 5× 10−5 is a learning rate. Each patch of the foveal scale
was encoded by a subset of the same 300 neural receptive fields. For the
peripheral scale, a separate set of 300 neurons was used for encoding (SI
Appendix, Fig. S13). At the beginning of each simulation, all receptive field
weights were drawn randomly from a zero-mean Gaussian distribution and
subsequently normalized to unit norm.

Reinforcement Learning. We used two separate natural actor critic reinforce-
ment learners (55, 56) with identical architectures to control the accommo-
dation planes and the vergence plane. Possible actions a correspond to shifts
in the respective plane positions: a∈{−2,−1, 0, 1, 2} (compare Fig. 3). The
state information vector comprises the patch-averaged squared responses
of the cortical neurons:

fi =
1

np

∑
p

c2
(i,p), [8]

where c(i,p) is the activity of neuron i after encoding patch p and np =

81 is the number of patches per scale. Therefore, fi is spatially invari-
ant due to averaging over patches and does not depend on the polar-
ity of the input due to the squaring. This is similar to the properties
of complex cells in primary visual cortex (57, 58). After they were nor-
malized to unit norm, the peripheral and foveal scale state vectors are
concatenated into the combined state vector f of size 300× 2. The
next action a is chosen with probability πa(f), and the state value is
estimated as V(f):

πa =
exp(za)∑

j exp(zj)
, za =

∑
j

uajfj , V(f) =
∑

j

vjfj. [9]

The weights uaj and vj are updated via approximate natural gradient
descent on an approximation of the temporal difference error δ (algorithm
3 in ref. 56):

δt = rt + γV(f (t))−V(f (t−1)), [10]

where rt is the accommodation or vergence reward and γ= 0.6 is the tem-
poral discounting factor. At the beginning of each simulation, all network
weights were initialized randomly.

Approximating Mutual Information. Rewards for the reinforcement learners
are based on the squared response after whitening and cortical encoding.

6160 | www.pnas.org/cgi/doi/10.1073/pnas.1908100117 Eckmann et al.
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Together, this can be understood as an empirical estimate of the mutual
information between the whitened response R and cortical response C:

I(R, C) =H(R)−H(R | C), [11]

where the conditional entropyH(R | C) is upper bounded by the reconstruc-
tion error ‖S‖2 (Eq. 2 and SI Appendix). Due to the “energy conservation”
property of the matching pursuit algorithm (26), the energy of the residual
image is equal to the energy of the retinal representation minus the energy
of the cortical representation (SI Appendix): that is,

−‖S‖2
=−

(
‖R‖2−‖C‖2

)
= ‖C‖2−‖R‖2

. [12]

Therefore, we take the difference between cortical and retinal response
energy as the reward for the vergence learner.

For the accommodation learner, we maximize the entropy of the
whitened retinal response H(R). We take each entry of R as an indepen-
dent sample of the same underlying random variable and estimate the
entropy of its probability distribution. The distribution is well approximated
by a Laplace distribution, independent of the level of blur in the input (SI
Appendix, Fig. S5). Therefore, we approximate H(R) with the entropy of a
Laplace distribution with the same SD σR:

H(R)≈ ln
(

e
√

2σ2
R

)
. [13]

Since the expected squared activity of the retinal representation E(‖R‖2)
is equal to the variance σ2

R, it is also a monotonic function of the entropy
H(R). More generally, since the retinal response has bounded support and its
probability distribution is unimodal and Lipschitz continuous, the variance
σ2

R is a monotonic function of a lower bound of the entropy (59). There-
fore, we use ‖R‖2 as an empirical estimate of E(‖R‖2) for the reward of the
accommodation reinforcement learning module.

As one would expect for the entropy H(R), ‖R‖2 also decreases for
increasing input blur. Under the assumption of a flat frequency spectrum
after whitening, one finds (SI Appendix)

‖R‖2∝ 1/σ, [14]

where σ is the SD of the Gaussian blur filter that is applied before whitening
to simulate defocus blur.

Reward Normalization. Before being passed to the reinforcement learning
agents, the accommodation and the vergence rewards were normalized
online to zero mean and unit variance: that is,

r(t)←
r(t)− r̂(t)

σ̂(t)
, [15]

where r̂ is the exponentially weighted running average of the reward r and
σ̂2 is an online estimate of its variance

r̂(t + 1) = (1−α)̂r(t) +αr(t), [16]

σ̂(t + 1)2
= (1−α)σ̂(t)2

+α [̂r(t)− r(t)]2, [17]

where α= 0.001 is an update rate that sets the decay of the exponential
weighting (60).

Suppression Mechanism. There are two separate suppression modules, one
per scale, that adjust the contrast of left and right input images (Fig. 5).
We introduce a contrast measure xk, k∈{l, r} that gives an estimate of the
amount of left (right) monocular input over the previous iterations:

xk(t) =

〈∑
i

(
fi∑
j fj

)
d(i,k)

〉
t,τ

. [18]

The monocular dominance of each neuron d(i,k) is weighted with its
relative patch-averaged squared activation fi/

∑
j fj . Here, 〈·〉t,τ is the expo-

nential moving average over time with decay constant τ = 10 (SI Appendix).
The monocular dominance is defined as

d(i,k) =
‖b(i,k)‖

‖b(i,k)‖+ ‖b(i,̄k)‖
, k∈{l, r}, [19]

where b(i,k) is the left/right monocular subfield of neuron i. The contrast
estimate xk of the left and right subfields of the input image is separately
processed by two contrast units:

y(xk) =
m

1− θ
[xk − θ]+. [20]

As the contrast estimate xk crosses the threshold θ, the output y(xk) increases
from zero until it saturates at m. We chose the threshold θ= 0.6 just above
perfect binocular input at xk = 0.5 to provide some margin before the self-
reinforcing feedback loop becomes active (Fig. 5B). Furthermore, we set
the saturation m = 0.8 to prevent total suppression of one eye. Finally, the
subsequent input subpatches for the cortical coder are adjusted to

Rk(t) = R∗
k (t) (1 + y(xk(t− 1))− y(xk̄(t− 1))). [21]

Note that I(R, C) = I(R*, C) since R is homeomorphic to R* (61). Therefore, in
our theoretical framework, we do not distinguish between the contrast-
adjusted and raw retinal response. For the model implementation, the
contrast-adjusted retinal response R is used. SI Appendix has additional
detail.

Software and Documentation. Documented MATLAB code of the model is
available in ModelDB under accession no. 261483 (62).
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